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ABSTRACT

O

[

In this paper, nonparametric estimators of a multivariate density, of
conditional mean (regression functions) and of conditional variances
(heteroskedasticity) are presented. Among other results, we establish central
limit theorems for the estimators and build up confidence intervals based on
these estimators. Further, some applications of these estimators are explored

in econometrics.
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1.  Introduction

In econometrics and many other scientific disciplines (such as medical
sciences, sociology and psychology) one often has to deal with several
variables simultaneously, each dependent on others in some sense. A common
inference problem in such sciences, especially in econometrics, is to see how
a particular variable on the average is dependent on others, so that
prediction (estimation) of the value (or average values) of the variable in
question can be made at any specified values of the other variables. A second
common inference problem in such sciences, though somewhat related to the
first one, is to see how the chosen variable varies (over various spots,
items, individuals as the case may be) when other variables are held fixed at
certain specified values of interest. The first problem, known as the
regression problem and the second problem, known as the heteroskedasticity
problem in regression, are invariably handled in various sciences by
postulating certain fixed model (functional form) on the regression and by
assuming fixed conditional variance (homoskedasticity) of the variable in
question. However, it is now well known that the set of all suitable
functional forms of the regression (or of the distributions of disturbances)
is quite often large, and any postulations regarding the form of the
regression and the value of the conditional variance (the variance of the
disturbances in the regression) are questionable, and their violations have
varying effects on the econometric inferences and policy implications.

The only way of avoiding the misspecification of the functional form of
the regression model or of the conditional variance is, in fact, to assume no
specific parametric functional form of the regression or of the conditional

variance; and to estimate the conditional mean and the conditional variance



completely nonparametrically. This in turn can be achieved by estimating
nonparametrically the joint probabi;ity density function (p.d.f.) of all the
variables involved. For example, we can estimate the conditional mean and

variance of a variable x, given p-1 other related variables (xz,...,xp), which

1

in turn can obviously be achieved if we can estimate the joint p.d.f. of

[0

(xl.....xp).

Nadaraya (1964), Watson (1964), Rosenblatt (1969). Noda (1976) and
Collomb (1979, 1981) are among the first to consider estimation of a
regression function nonparametrically using Rosenblatt (1956), Parzen (1962)
and Cacoullos (1966)-type kernel estimates of a density function.

In this paper we present nonparametric estimates of a multivariate
density, and of the conditional mean and the conditional variance of a
variable given the others. The integration of the density estimation with the

Monte Carlo technique of doing finite sample econometrics is explored. Also,

a

the nonparametric estimate of the variance is used to analyze the problem of
heteroskedasticity in econometrics.

The plan of the paper is as follows. 1In Section 2 we present the method
of constructing nonparametric estimates of a multivariate p.d.f. and the
conditional mean and the conditional variance of a variable given the others.
In Section 3 we state various results with regard to consistencies, variances
and thg distributions of these estimators. The confidence intervals for the
joint density, the conditional mean and the conditional variance are also
presented. In Section 4 we give proofs of the main results stated in Section
3. Finally, in Section 5 we illustrate the performance of our estimators

through applications to certain econometric problems.
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2. Estimators of the joint p.d.f., the conditional mean and the
conditional variance

suppose we have n independent observations wt = (xtl,...,xt ),
P

t=1,...,n on p random variables xl....,x of our interest. We are to
P

to draw inference about the conditional mean of a variable, say xl, given

the rest x ,...,x . As mentioned in Section 1, we achieve this by first
P

considering the nonparametric estimation of the joint p.d.f., say f, of

x=(x,...,x ), and then considering the estimation of the conditional
~ P

density, say g, of x1 given x' = (xz.....x ).
~ P

3
Throughout the remainder of this paper, we denote [w f(wl.w')dwl
by & (w') where w' = (wz,....w ) is a point in the p-1 dimensional
J -~ ~ P
p-1
Euclidean space R . We shall, however, use only % , 21. 12 and 24.
o

Notice that ®¥ is the marginal p.d.f. of x' = (xz,....x ),
0 ~ P

5(wllw') = f(w)/L (w') is the conditional p.d.f. of x1 at wl given
~ ~ °~

xl =w.’

~

M(w') = 2 (Ww')/2 (w')
~ 1~ o ~

~

is the conditional mean of x1 given x' = w', and
2
V(w') = (lz(w')/i (Ww')) - M (w')
~ ~ o~ ~

is the conditional variance of x given x' = w'.

As in Singh (1981), for an integer s > 1 and for i=l1,...,p, leth: be

the class of all Borel-measurable real valued bounded function, on the real

line, symmetric about zero, such that for a Ki §}(:,



1 if j=0

3
2.1 K. (y)dy =
@n Iy 1777 04f 3o, 81,

Ilysxi(y)ldy < ® and lyKi(y)l + 0 as |y| » ». For example, for s=2,

take Ki(y) =.1/2I(~1 < y < 1) or (ZH)_%exp(-yZIZ) for all i; and for s = 3
or 4 take Ki(y) = (ZH)-%IZ exp(-y2/2) - 2-% exp(-yzlé)lI(-a <y < ®) or
(2!!)"%(1"2)(3-y2)exp(—y2/2)1(—‘D <y <®) for all i. Other examples of

function K, may be found in Singh (1979 and 1981). Define X on rP by

i

K( poevy ):K( )’K(Y)o-.x( )
y1 yp 1 y1 2 2 P yp

N 151 K0y

Remark 2.1 We have chosen the above kernel only for the sake of
simplicity. All the results of this paper remain valid if K in

various results is replaced by a more general K, namely a

(e

Borel-measurable real valu bounded function on Rp symmetric

about the origin such that

A i
1
Iy ...,y P K(Y ,...,¥ ) =1 or O according to
1 P 1 P
J =...=3 =0o0r0<j + ... 43 < s-1;
1 P 1 4
j k|
1 p - . *
fly ...y Ky ,...,7y )| <oifj + ...+3 =3s
1 P 1 P 1 P

and llyll|k(y)] » 0 as |lyll » = where ||yl is the usual

Euclidean norm.

For i-1,...,p, let 0 < h.1 = hi(n) be functions of the sample size n

such that h.1 » ®as n » o (A suitable choice of hi's will be given later.)

(s



We estimate the joint p.d.f. f of x = (xl,....x ) at w = (wl.....w )

P P
by
- 1 1w “ep
-1n - P P
(2.2) f(w) = n Z(Hh YK( )
~ t=1 i=1 i h h
1 P
X -w
-1 n B -1 ti i
=n 3 {0 (h K N}
t=1 i=1 i i h.
1

Singh (1981) and Singh and Ullah (1984) have considered estimator (2.2) with

h1 = ... = hp = h. For other estimators, we define, for j=0,1,
-~ x -w.
- n i ﬁ -1 ti i
L w)=In | Y (x )N (h K )}
j~ t=1 ¢t1 i=2 i i hi
xl_wl
-1 n j -1 ~t ~
= Y x ( ﬁ h )K'( )
t=1 t1 i=2 i h!
where x' = (x ,...,x ), w!' = (w ,...,w ), and
~t t2 tp ~ ~2 P
x'-w' X -w
~t ~ H ~ti ~i
K'( ) = I (K ( ))
h' i=2 i .
~ i
A nonparametric estimate of the marginal p.d.f. of x' = (xz....,x )
~ P
evaluated at w' is therefore
J £(w ,...,Ww)dw =& (w').
1 P 1 o~
The estimate of the conditional density of x1 at wl given x' = w' is
. £(w')
g(w |w') = -
1 ~
L (w')

Qo ~



With the estimate of the conditional p.d.f. of x1 given x' in view,
a nonparametric'estimate of the conditional mean M(w') of xl given

x' = w' is therefore

-~ ~

2.3) M(w') w g(w |w')dw
( w f .8 1|~ 1

-

L (w')
1 ~

L (w')
o~

Finally, our proposed estimator of the conditional variance V(w') of x1

given x' = w' is
-~ ! (w') ~
2 ~ 2
(2.4) V(w') = (< - M (w'))
R (w")
°~

- ~ ~

We will claim in the next section that the statistics f, M and V

are consistent estimators for £, M and V respectively.

3. Consistency and distributional properties of the estimates
£, M and V along with confidence intervalg for £, M and V

Under certain regularity conditions on f we show in this section that

~ ~ -~

the statistics f(w), M(w') and V(w') are consistent estimators for

f(w), M(w') = E(xllx' = w') and V(w') = var(xllx' = W') respectively.

We further obtain the variances and the estimates of the variances of f

- -

M and V. We also prove the asymptotic normality of these estimators.

Finally, using the estimates of the variances of f, M and V and their

distributional properties we obtain 100(l-a)% confidence intervals for f, M

\8



and V. Proof of the results will be presented in Section 4.

~ ~ -~

3.1 Consistencies and asymptotic distributions of £, M and V

-Theorem 3.1. Let all the sth order partial derivatives of f be continuous at

w. Then taking

-1(2s+p)

(3.1) h «n

1
we have

° -8/ (2s+p)
(3.2) f(w) = f(Ww) + 0 (n ),

~ ~ P

and with

(3.3) a = n( H h),
n i=1 i

-~

(3.4) a var(f(w)) = A (w) + o(1)

n ~ o~
where
2 2 ﬁ 2
(3.5) AW =£fwW [K; [K = NI K (y)dy),
o~ ~ i=1 i
and

- ~

%
(3.6) a (f(w) - Ef(w)) + N(O,A (wW)).
n ~ >~ °~

Remark 3.1 Since, as we will see in the proof of Theorem 3.1,

-~

s s
(3.7) Bf(w) = f(w) + O(max{hl,...,h b,
~ ~ p

if we take h 's so that
i

% s s
(3.8) a (maxf{h ,...,h }) = o(1),
n 1 P

-1/(2s+p-¢)
for example take h 's proportional to n for any ¢ > 0, then
i



-~

%
(3.9) a (f(w) - f(w)) » N(O,A (W)).
n . ~ ~ ° ~

Theorem 3.2 Let the sth order partial derivatives of %, and %, be

.continuous at w'. Further, let 12 be continuous at w'. Then taking

-1/(2s+p-1)

(301). h «< n ’
i
we have
° -s/(2s+p-1)
(3.10) M(w') = M(w') + 0 (n )
~ ~ p
and with

(3.3)! a! = n(.ﬁ h),
n i=2 i

-~

(3.11) a' var(M(w') = Al(w‘) + o(1)
n ~ ~

where

2
(W')) - M (w')
°~ ~

L (w')
°~

(L (w')/2
2 ~ 2
« J(K*)

(3.12) Al(w')

2
[var(xllx' = w')/% (Ww)I[(K') ,
-~ L d o~

e
o
t=

2 ﬁ 2
fx") (K (y)dy);
i=2 i

and

~ -

(3.13) (a') (M(w') - E(M(w'))) - N(O.Al(w‘))-
n ~ ~ ~

[

.



Remark 3.2 From the proof of Theorem 3.2, it follows that

-

8 s
EM(W') = M(w') + O(max{hz....,h .
P

Therefore, if hj's are chosen in such a way so that

' %

s s
(a ) (max{h ,...,h }) = o(1),
n 2 P

-1/(2s+p-1-¢)
e.g. take hi's proportional to n for any ¢ > 0, then

Y

(3.14) a'(M(w') - M(w')) ~» N(O,Al(w‘))
n ~ ~ -~

th
Theorem 3.3 Let the s order partial derivatives of % , 11 and 22
o
be continuous at w'. Further, let & be continuous at w'. Then
taking hi's as in (3.1)', we have
- -s/(2s+p-1)
(3.15) V(w') = V(w) + 0 (n )
~ ~ P
(3.16) a' var(V(w')) = Az(w') + o(1)
n ~ ~
where
2
(2 (W')/0 (w')) — (X (w')/2 (w'))
4 o 2 o 2
(3.17) A (W) = [ (x")
2 ~ L (w')
o -~
2 2
= [var(x |x' = w')/% (Ww')] [ (X') ,
1 o
and
% ~ -~
(3.18) (a') (V(w') - E(V(w'))) > N(O.Az(w'))
n "~ ~ ~
Remark 3.3 It will be seen in the proof of Theorem 3.3 that

s s
E(V(w')) = V(w') + O(max{hz...,h }). Thus if h satisfy the hypothesis
P i

of Remark 3.2, then
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LY

%
(3.19) (a') (V(w') - V(w')) H(O.Az(w').
n. -~ ~ ~

The computable confidence intervals of f, M and V, respectively, can

'easily be written from (3.6), (3.14) and (3.18) after replacing f and ij'

j=0,1,2 and 4 by their consistent estimates E and ij.

4, Proofs of the Theorems in Section 3

In this section we give proofs of our theorems in Section 3.

Proof of Theorem 3.1. Since (xtl,....xt ), t=1,...,n are i.i.d. with joint
P

p.d.f. £, taking the expectation of f(;) in (2.2) with respect to the joint

distribution of x = (xl.....x ) and using the transformation theorem, we get
~ P

(4.1)  Ef(w) = [ K(y)E(w + hy)dy

where (w + hy) (w1+ hlyl.....w + hy ). Now replacing f(w + hy) by

P PP
its Taylor-series expansion at w with Lagrange's form of the remainder at

the sth stage, appling the properties of Ki' and then using the continuity of

the sth order partial derivatives of f at w, it follows from the arguments

in the proof of Theorem 1 of Singh (1981) that

-~

-8 s
(4.2) Ef(w) = f(w) + O(max{hl....,h }) .
~ ~ p

Further, since (xtl,...,xt ) for t=1,2,...,n are i.i.d. with joint
P

p.d.f. £,



11

X -Ww
-1 ﬁ -1 11 i
n var( I h K(———))
i=11 h

~

(4.3) var(f(w))

-~

-1 -1 2 2
n ((°H1h° YK (9EG + hy) - (BE(w)) )

-1 -1 2
n o CHa ek + o))
i=1 1 ~

2 2

where [K = 'HI(IK.(y.)dy.). and the last equation follows by arguments
i= i i i

used to prove Theorem 2.2 of Singh and Ullah (1984). Now (3.4) follows from

(4.3).

Now (4.2) and (4.3) followed by (3.1) prove that

- -2s/(2s+p)
(4.4) MSE(f(w)) = O(n )

which, with an application of Tchebysheff's inequality prove (3.2).

To prove (3.6), let

X - W X -Ww .
-1 H -1 ~t ~ ~t ~ 172
L =n (lITh )IK( )- EK( Y1/(var £(w))
nt J=11 ~
where
xt- w xtl- wl xt - W
K( ) = K( » ’ )
h h

n
Then Lpj,...,Lpn are i.i.d. centered random variables with Sp = Z¢.1lpt =

1/2
(f(w) - Ef(w))/(var(f(w))) and var (8 ) = 1. Temporarily, let ¥(°)
~ ~ ~ n
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denote the distribution function of the standard normal r.v. Then by

the Berry-Esseen Theorem (see Theorem 7.41 of Chung (1968))

n 3
(4.5) sup |[P[S < E) - #(¥)| <c¢f EIL |
- EcR n t=1 nt

where ¢ is an absolute constant. But by ¢ -inequality (Loeve (1963), p. 155),
r

X -w
3 - -3/2 -1 H -13 ~t ~ 3
EIL | < 4(var £(w)) (n ITh ) EB|K( )| . Since
nt ~ j=13 h
X -w
~t ~~

-1 3 3 3
(jﬁlhj YE|K( )l = JIK] f(w + hy) = f(WfIK|] + o(1), and

a vat(f(w)) = A (w) + o(l), we see that
n ~ o~

n 3 -1/2
Itz Ellpel =0(aq )

Thus, we conclude that

f(w) - Ef(w)
~ ~ -1/72
sup_ |P[ - < t]l - &t)| = O(a )
EeR 1/2 n

(var f(w))

and (3.6) follows from (3.4). a

Proof of Theorem 3.2. Throughout this proof io, il- iz. L5, 27 and %,
are evaluated at w' = (wz,...,w ) e Rp—l

and therefore the argument w' in
p ~

these functions will not be displayed. From the proof of Theorem 3.1, and the

hypothesis on 11, it follows that

L4

"

n



o

13

~

8 8
(4.6) By = % + O(max{hy,...,hy}), and

-

' -1 2
var(%,) = (an) [R5[(K') + o(1)])

. . R -2s/(2s+p-1)
Thus with the choice of hj's in (3.1)', MSE(Ly) = O(n ), and hence

- -2/(2s+p-1)
(8.7) g = 25 + Op(n ).

Similarly, in view of the hypothesis on il and % , it follows that
2

~

s s
(4.8) By = %1 + O(max{hz,...,hp}). and

~

L | 2
var(2)) = (ap) [L2J(K")  + o(1)]

and, hence with (3.1)'

° -s/(2s+p-1)
(4.9) 11 = %) + Op(n )
Now we evaluate the cov(i ,i ). Recall that x' = (x ,...,x ) and
o 1 ~t t2 tp
K'(y ,...,¥ ) = H K (y ). Since summonds in & are i.i.d., and so are
2 P i=21 i o

~

the summonds in 11.

xl_wl xl_wl
R -1 ~1 ~ ~ ~
(4.10) a' cov(2 ,2 ) = ( ﬁ h DJecovix K'(——), K'( ))
n o 1 i=2 i 11 h!
x!' - w -w
~ ~ ﬁ ~1i i .
where K'( ) = ) (K.(———;——-)). But the r.h.s. of (4.10) is
i= i



14

-~ -~

2
(K'(y)) f(y ,w+ h seessW + h Jdy - ( H h )(EY )(ER )
Iyl, ! y1 2 2y2 P pyp Z i=2 i o 1

2
=2 J(K') + o(.ﬁ h)
1 i=2 i

by arguments used to prove the first part of Theorem 3.1. Thus, from (4.11)

) - -

2
(4.11) ap cov(Rg,27) = 23f(K') + o(l)

Now, writing

(4.12) MK=12 /2

l o
EL L - ER £ - ER
1 1l o ] -
= — {1+ — - — +0 (a') ]
P n
ER ER EQ
o 1 o

and applying (4.6)-(4.9), we get (3.10).

Now (4.12) followed by (4.6)-(4.9) and (4.11) gives

2 2
. L L J(K") 2
1 2 J")
a' var(M) = — [ - + o(1)]
n 2 2
L L o
o 1l
= A + O(l)

from the definition of A7 in (3.12). Thus the proof of (3.11) is complete.

Now we prove (3.13). From the arguments used to prove the asymptotic

normality of E. it follows that

(€

“

“
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-~ -

' 172 2
(4.13)  (ap) (%o - Big) > N(O,2,f(K") )

and

- -

' 172 2
(4.18)  (ap) (R - ERy) - N(O,2,J(K') )

These results applied to (4.10) give (3.13). O

Proof of Theorem 3.3. As in the proof of Theorem 3.2, throughout the proof

-

of this theorem too, % , v, N, L., V and M are evaluated at w' the point
J J ~

displayed in Theorem 3.2.

By the arguments identical to those used in the proof of Theorem 3.2, it

follows that

-~

S B8
Ely = 25 + O(max{hz.....hp})

~

' -1 2
(4.15)  var(R)) = (ap) [24J(K') + o(1)], and

-

-s/(2s+p-1)
12 = 9.2 + Op(n )

with h 's taken as in Theorem 3.1. Further, arguments applied to prove (4.11)
i

can be used to show that

- ~

' 2
(4.16) ap cov(Ry,22)] = RJ(K') + o(1),

and writing

L ER L - Ef % - ER
2 2 2 2 0 o -
(4.17) -~ = - [1 + - - = + 0 (a') l.
P n
L E2 E% EL
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and using (4.6)-(4.9) and (4.15)-(4.16), it follows that

-~ -

s s
E(R /2 ) = (L /2 ) + O(max{h ,...,h }) -
2 o 2 o 2 P
2 2 2 s
. - (8 - (2 72 )1J(Kk")
4 2 o
(4.18) a' var(i /% ) = + o(1)
n 2 o 2
|
o
=N + o(l).
2
Hence by Tchebysheff's inequality
9
2 2 -1/2
(4.19) — = — + 0 (a')
L P n
L o .
o =
Moreover by the arguments used to prove the asymptotic normality of f, it o

follows that

-~ -~

' 172 2
(4.20)  (ap) (8- ERp) » N(O,24f(K') )

Thus (4.17) followed by (4.13) and (4.20) proves

- - - -~

"1/
(4.21)  (ap)  ((R2/%5) - E(R2/%)) * N(O,Ay)

Now we obtain the results of Theorem 3.3 with regard to V. From (4.12),

(4.6)-(4.9) and (4.11) it follows that

w



L2l

o
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2 ~ ~ -~ -~
ER var(g ) var(? ) 2 cov(l ,2 )
t 2 1 o 1 o -1
(4.22) EM) = (—)I[1 + — + — T T + O(a;) ]
ER (BL ) (EL ) (B )ER
o 1l ] 1 o

2 -1
(/72 ) [1 +0Ca') ]
1l o n

2 -1
(L /% ) + 0o(a')
l o n

Hence from (4.18) it follows that

Y

2 s s
(4.23) E(V) = (R /2 ) - (R /2 ) + O(max{h veoosh })
2 o 0 2 P

N v =

s
=V + O(max{h ,...,h })
P

and from (4.19) and (3.10) it follows that

-

%
(4.24) V=V +0 (a')
P n

which proves (3.15). Now, from (4.12) and (4:6)-(4.9) it follows that

V=R /%)-M =(2/2)-M +0 (a')
2 o 2 o P n
This result followed by (4.18) proves (3.16), and followed by (4.21) proves

(3.18). O
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5. Applications

In this section we consider the econometric applications of the

estimation of densities and variances.

{3

5.1 Estimating the Density Functions of Exact Sampling Distributions of x

Econometric Estimators

An important application of the kernel estimator is in estimating the
density functions of the exact sampling distributions of econometric
estimators and test statistics which are non linear functions of the
endogenous data. Such estimated density functions are useful directly e.g.
for estimating the true size of asymptotic tests, and indirectly as input to
the extended rational approximants (ERA's) of Phillips (1983). The aim of

this section is to illustrate the technique with an example which is simple

]

but also has wide applicability and allows the production of new results.

Assume a data generating process (DGP) or joint p.d.f. of the form:

(5.1) y Bx +vyy +u

1t 1t 2t 1t

+v ; t=1,..., T

(5.2) y T X
22 2t 2t

+

T X
2t 12 1t
Equation (5.1) is a structural equation containing the parameters of interest
B and y while (5.2) is a reduced form equation showing how the endogenous
variable y2 is generated as a linear combination of the two exogenous

variables x. and x, plus an independent normal error v, which has zero mean

1 2 2
and variance Wyq The error uy is also assumed to be independent, normal
with mean zero and variance %1 There is also a reduced form equation for ’
Yy
(5.3) ylt =T %0 + "1 %0t + Vit &

where v1 is independent N(O, wll).
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Because equation (5.1) is just-identified we can write the parameters of

interest as functions of the reduced form parameters:

¥ w
12 21
and B = v -

L 11
22 22

(5.4) Y =

The normality of the errors together with the exogeneity of the x's
implies that least squares (LS) applied to (5.2) and (5.3) will produce
maximum-likelihood (ML) estimators of the parameters 'ij from which ML
estimators of B and vy can be obtained from (5.4). These estimators of B
and vy are also indirect-least-squares (ILS) or instrumental-variable (IV)
estimators where X, and x, are the instruments. They are consistent with
asymptotically normal sampling distributions. Their exact sampling
distributions were given by Basmann et al (1971) who pointed out that they

possess no positive integral-order moments.

Two test statistics of natural interest are:

(5.5) t =
as(B) Y as(y)

where as(é) and as(;) are the (estimated) asymptotic standard errors of

-~

8 and ;. Asymptotically tg and tY follow the standard normal distribution

but their exact distribution appears to be unknown. (Richardson and Rohr
(1971) derive the exact distribution for similar test statistiecs in the
over-identified case). Although the random denominators in these ratios are

always positive, the fact that the numerators lack moments makes one
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reluctant to assume that the ratios have moments.

Monte Carlo simulation can be used to produce samples of values of
ﬁ, ;, tg and ty. However, measures of bias, mean-squared-error and other
moments computed from such samples are of little relevance, given the

non-existence of the population parameters. However, nonparametric methods

-~ -~

are well suited to estimating the density functions of B, v, tB and tY'

Indeed, such density function estimates may well be regarded as more complete
and useful than moment estimates even if the population moments did exist.
For the purposes of the Monte Carlo experiment the parameters of the DGP

were set to the following values:

o = .545455, v = .163636, w , = -.272727, « = .818182, T = 20
11 21 12 22
Values of xlt and x were generated such that:
2 2
Ix =3Ix =0.0, Ix =13Ix = 20.0
t1it t 2t t 1t t 2t
and Exltxzt = 0.0. The set of x's was fixed over repeated samples. Two

alternative reduced form error covariances were employed. Under the heading

"loose fit" wll = ,535537 and W,y = 53.5537. When combined with the x's,

these values give standard errors such that: s(;21) = w1 and g(uzz) = 2wy,

i.e. the probability of obtaining a negative value of ;22 is .309. Under the

heading "tight fit" ©qc .0360331 and Wy, = .0826446. These values gave

population goodness of fit measures of .90 for both reduced form equations.

LY

»

«

v
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While this may be a realistic specification it implies that the probability of

-

. _33
obtaining a negative my; is less than 1.7765 x 10. In both cases the

covariance between v1t and V2t' Wy90 was set to 0.0. Two experiments, each
of 100 replications, were run; one loose fit and one tight fit.
The random number generator used was a version of Marsaglia's Super

Duper generator as implemented by McLeod (1982).

Each experiment resulted in a frequency distribution for 5, ;. tg and
ty. In addition frequency distributions were formed for ;21 and ty =
(%21 - ¥21)/s(%p1), where s(wp1) is the (estimated) standard error of w2.

While these frequency distributions convey some information about the
underlying sampling distributions, the modest number of replications used
means they are lumpy, with several empty classes.

Non-parametric estimates of the densities of é. ;. tB, and tY were

obtained from

. z -2z
1 100 i
(5.6) f(z) = —— I K(—)
100h i=1 h
where:
(i) z; is a value of ﬁ, ;. tg or tY' obtained by Monte Carlo

Simulation, standardized by subtracting its average over the 100
replications and dividing by its standard deviation over the 100
replications. This standardizing transformation alters the
location and scale of the density but not its shape.

(ii) z is a value at which the density is to be estimated. Values of
Zz were set between -5 and 5 in increments of .l1.

(iii) h is the window width, 100 1/° = .308.
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(iv) The normal kernel is used;

2
zZ -2 b4 - Z
k || = em™? { e }
— = exp - = | ————
h 2

h

(8

3

Of course, the estimates obtained by this procedure embody some sampling
error. Therefore, when (5.6) was evaluated with z; formed from ;21, the
resulting density function was not exactly standard normal: compare the

standard normal density in Figure 1 to the estimated densities for

;21 from the tight fit experiment in Figure 2. (The estimated density of

;21 from the loose fit experiment and the estimated densities of t, for both

experiments were nearly identical to Figure 2.) Although the density function

in Figure 2 has its peak slightly too far right and is slightly skewed left,

it is still a very good estimate of the standard normal density function in

Figure 1, even though it is based on only 100 points. This gives us a

confidence that the estimated densities for ﬁ. ;, tg and ty will also be

close to their population counterparts.
The estimated density for ﬁ from the loose fit experiment is plotted

in Figure 3. The analogous plot for ; is extremely close to that shown in
Figure 3. Both densities have very high peaks and long, thin tails. The

estimated density of t_ from the loose fit experiment, see Figure 5, looks

B

very similar to Figure 2, but the estimated density of tY is strongly skewed

to the left, see Figure 6.

The estimated density of ﬁ from the right fit experiment is plotted

&

in Figure 4. (The plot of ; was very similar to that for ﬁ.) It contrasts

[

sharply with the earlier results; the high peaks and long tails are absent.

Indeed Figure 4 looks very much like Figure 2. Figures 7 and 8 show the
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estimated densities for tB and tY when the fit was tight. Now the tY
distribution closely resembles the tB distribution, in contrast to the skewed
distribution obtained when the fit was loose.

The estimated density functions presented in Figures 3 to 8 suffer from
the disadvantage that they are point estimates. One might reasonably ask for
measures of their precision or, better still, interval estimates. Asymptotic

95% confident intervals for f£(z) are given by

X - 172
f£(z)

f(z) + 1.96
2nhvw

with n = 100, the number of replications used in the simulation. These
confidence intervals are plotted for tB and tY for the loose fit experiment in
Figures 9 and 10. Both sets of confidence intervals from the right fit
experiment closely resembled Figure 9. The Standard normal density function
(Figure 1) lies entirely within those confidence limits for tg from both
experiments and for tY from the tight-fit experiment. However, it lies
outside these limits for tY from the loose-fit experiment.

The nonparametric density estimates presented in this section suggest
several conclusions. First, the shape of the exact, small sample
distributions of ILS/IV estimators of the structural parameters of just
identified models depends crucially upon the probability that reduced form
coefficient estimates, which appear in the denominators of ratios entering the
expression for structural coefficient estimates, change in sign. This
probability will be high if the goodness of fit of the reduced form is low
and/or when small samples are employed. When this probability is high the

small-sample distributions of the structual coefficient estimators have high
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peaks and long thin tails, i.e.: they are much different from their
large-sample’ asymptotic distributions. The difference between the small and
large sample distribution grows less as the probability of sign change becomes
smaller.

The second conclusion, which is of much greater operational
significance, is that the small-sample distribution of t ratios depends not
only on the probability of reduced form coefficient estimates changing sign,
but also upon which structural coefficients enters the t ratio. Those formed
from the coefficients of exogenous variables appear to have small-sample
distributions which always resemble their large sample distributions.

However, £ ratios formed from the coefficients of endogenous variables have
small-sample distributions resembling the standard normal only if the
probability of sign change noted above is small, e.g., if the reduced form
fits tightly. In other cases their shape is distinctly non-normal so that the

use of the standard normal may yield poor inferences.

5.2 Estimation of unknown variances (heteroskedasticity)

Here we analyze the conditional variance of earning (y) with respect to
experience (z). For simplicity in illustration, we have assumed schooling to
be constant. Our main interest is to look into the specification of the
variability in earnings. For this purpose we considered Canadian data (1971
Canadian Census Public Use Tapes) on 205 individuals' ages (for experience)
and their earnings. These individuals were educated to grade 13. The
conditional variance, V(y|z), in (2.4) was estimated by using the kernel

function:

1 4

Ty

1]
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2
z -2z
t
z -z “%(—) -1/5
( ; 1 h . h=n s
K = — e
viw

2 -2
where s = x(zt-z) /n is the sample variance of z.

It is clear from the estimate of conditional variances in Figure 11

that the true form of the variability in y with respect to z, G(ylz), is a
second degree polynomial convex to the z axis. This is consistent with the
result of Mincer (1974, p. 101). The important point to note, however, is
that the variability of earnings here has been examined without using the
grouped data unlike in Mincer (1974).
In view of the above finding we may conclude that the V(y|z) is

negatively related with the nonparametric estimate of E(y|z) which is, as
jindicated in Ullah (1985), a second degree polynomial concave to the z axis.

To see that this is actually the case we estimated the regression of y on

~

2
z, z and V(y|z). The result was as follows:

~

2
y = 11.649 + .1152 - .001z - 1.103V(y|z)
(.987) (.039) (.005) (.602)

Note that the coefficient of G(ylz) is negative and significant indicating
the negative relationship between E(y|z) and i(ylz). The above result
provides a possible alternative specification of the earnings equation with

variability as an additional variable.
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The nonparametric estimates of V(y|z) can also be utilized to perform
the generalized least squares (GLS) estimation technique in the earnings

equation
2
Yy=a+Bz+yz +u=XK§+u

2
where X = [1 2z ] and § = [a B Y]'. The GLS estimator is

~

- 1 -1 °-1
§=(X't X) X'I y

where I = Diag.[@(ylzl),...,ﬁ(ylz ).
n

The least squares (LS) and the GLS estimates obtained are:

2

LS: y = 10.041 + .173z - .002z
(.518) (.027) (.0003)
GLS: y = 10.274 + .165z - .00222

(.498) (.025) (.0003)

where the numbers in parentheses are standard errors. It is clear that the
GLS outperforms the LS estimates. The important point to note here is that

the GLS estimates have been obtained without using any assumption about the

form of heteroskedasticity. To our knowledge, this has not been done in the

literature on heteroskedasticity.
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