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THE ESTIMATION OF PROBABILITY DENSITY FUNCTIONS AND IT8
APPLICATIONS IN ECONOMETRICS

Aman Ullah

Department of Economics
University of Western Ontario
London, Ontario, Canada

Radhey S. Singh

Department of Mathematics and Statistics
University of Guelph
Guelph, Ontario, Canada

SUMMARY

In this paper we present a class of nonparametric estimates of densities
which are asymptotically unbiased and consistent. We point out various
applications of these density estimates in econometrics. Some illustrative

examples, using economic data, are also given.

1. INTRODUCTION

It is now well known that parametric inference in econometrics is carried
on under various pretensions. For example, consider y and x as two economic
variables, say, consumption and income, respectively. Then, first, it is
usually assumed that y is stochastic but x is controlled (non-stochastic) when
in fact both are stochastic. Second, even if both y and x are stochastic the
conditional model (B(ylx)) is used under the assumption that the parameters of
the conditional and marginal distributions are variation free so that x is
weakly exogenous (Engle et al (1983)). Third, the functional form of the
conditional model is taken as linear when in fact it may be nonlinear.

Fourth, the joint density (data generating process) of y and x is usually
assumed to be normal. These are some basic assumptions, among others, which
make the existing empirical research in econometrics look dubious.
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Here we explore an alternative procedure which is free of the assumptions
indicated above. This alternative is based on the estimation of a probability
density function and/or its derivatives and this has drawn considerable
attention in the statistical literature, see, e.g., Rosenblatt (1956), Parzen
(1962), Cacoullos (1966) and Singh (1978, 1981) among others. However, very
few attempts have been made to explore the application of density estimates to
any area of applied research although Singh (1977) has pointed out some
applications to statistical problems. The modest aim of this paper is to
briefly review the literature on density function estimation and investigate

its applications in various areas of econometrics.

In Section 2 we present a class of nonparametric estimates of univariate
and multivariate densities which are asymptotically unbiased and consistent.
Then, in Section 3, we point out the applications of density estimates to
several problems that arise in econometrics. Some illustrative examples are

presented in Section 4.

2. ESTIMATORS OF A PROBABILITY DENSITY FUNCTION
2.1 Univariate Case

The density function of a random variable X at a point x is defined by:

d F(x+h/2)-F(x-h/2)
f = f(X) = = F(x) = 1lim (2.1)
dx h+o h

-1
lim h P[x-(h/2) < X < x + (h/2)]
h+o

-1 1 Xx 1
lim h B[I(- - < =< )]
h2o 2 h 2

where F(x) = P[X < x] is the cumulative probability distribution function
and I(a < X < b) is 1 or 0 according to whether X is in the interval (a,b)
or outside this interval.

Let xl,...,xn be independent identically distributed (i.i.d.) observations
on X. Then an obvious consistent estimator of f(x) is given by
F (x+h/2) - F (x-h/2)
n n
f=f (x)= (2.2)

L}
=2
=
[ ]
L)
~
1
1
A

where Fp(x) is the empirical distribution of x1,...;X%n given by
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number of xl....,x that are < x
n
F (x) = (2.3)
n n

and the window-width h = h, is a positive function of the sample size n which
goes to zero as n + o,

8

To see that (2.2) is an obvious consistent estimator of £, notice that
X -X
-1 -1n 1 t 1 n
for each fixed h, h n I I(- 5 < < 5) is a consistent (as nw)

t=1

X -X

-1 1 1 -1 h h
estimator of h E{I(- 5 < < E)} =h {F(x + ;) - F(x - 5)}.

which in turn approaches to the density £(x) as h+0 by the definition of a
density function. Rosenblatt (1956); taking h = hn. a positive function of n
approaching to zero as n#», proved this and various other properties of fn.

1 1
He further noted that if the non-negative function I(w) = I(- 5 <w< E)

in (2.2) satisfying [I(w)dw = 1 is replaced by any other non-negative
function K(w) satisfying [K(w)dw = 1 the consistency of property of fn
remains invariant. For this reason he introduced the more general "kernel"

[

estimator
X - X 8

- -1 -1 t
) ’ (2.‘)

n
f(x) =h n tt K(

which is asymptotically unbiased and consistent. (The choice of h is
discussed in Section 2.5.) It appears that Whittle (1958), independently of
Rosenblatt, has derived a somewhat similar method of density estimation.

Among the various methods of univariate density estimation are: the
polynomial series (e.g., Schwartz (1967), Kronmal and Tarter (1968) and Watson
(1969)), the maximum likelihood (e.g., Wegman (1970)), the histogram (Van
Ryzin (1973)) and the nearest neighbourhood methods (e.g., Moore and Yackel
(1977)). The most widely used one is the kernel method of estimation, and
this has been considered throughout the paper.

Parzen (1962) extended Rosenblatt's estimator to cases where the weight .

function need not be non-negative. For any Borel measurable function K(w)

-

satisfying [K(w)dw = 1, Sup [K(W)] < », [|K(W)|dw < ® and 1i
—~CW<® | "T’”’

IwK(w)| = 0, he showed that f£(x) in (2.4) is asymptotically unbiased
and mean square consistent at every continuity point of f£. The asymptotic

distribution of (f(x) - BE(x))/JV(E(x)) is shown to be standard normal.
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Some further asymptotic properties of f(x) have been investigated in Nadarya
(1964) and Schuster (1976).

A paper by Johns and Van Ryzin (1972) showed how to construct estimators
whose mean squared errors (MSE) converge to zero, as n+w, more quickly, as
suggested by Parzen (1962) and Bartlett (1963). A method, different from that
of Johns and Van Ryzin, was proposed by Schuncany and Sommers (1976). Their
restimators, which turn out to be linear combinations of the original
estimators (Rosenblatt (1956); Parzen (1962)), utilize the generalized
jackknife method of Schucany, Gray and Owen (1971).

Motivated by Rosenblatt (1956) and Parzen (1962), the following estimator
of f

X - X

n -1 t
Tt h K(

=1t h

t

* 1

£(x) =n ) . (2.5)
n

closely related to (2.4), was introduced by Wolverton and Wagner (1969) and
apparently independently by Yamato (1971). Notice that, if additional data
become available, then to update the estimator (2.4), incorporating all the
(n+1) observations, one has to recompute all the n+l functions
K((xt- x)/hn+1).t=1.’...n+1. a rather tedious job. In contrast, the estimator
in (2.5) is recursive in the sense that it can be updated by the formula
X - x
-1 t
(x) + h  K(
n+l h
n+l

x x

-1
f (x) = (n+1) ([n £
n+l

)1 . (2.6)

n

The estimator f: is also asymptotically unbiased and mean squared consistent.

*
Various other asymptotic properties of fn(x) have been discussed in Davies
(1973), Deheuvels (1974b), Davies and Wegman (1975) and Carroll (1976).

The kernel estimator in (2.4) has been extended to the case of dependent
time series observations case by Robinson (1983) and Singh and Ullah (1985),

among others.

Bhattacharya (1967) and later Schuster (1969) used Rosenblatt’s estimates
of £ to construct estimates of the rth order, r > 0, derivatives f(r) of E.

This is given by

) 2.7)

nh
where K(T) is the rth order derivative of K. Notice that (2.7) is the rth

order derivative of (2.4). Alternative estimators and their properties have
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been developed in Singh (1974, 1977, 1979b, 1981). Singh (1974, 1977, 1980a,
1980b) also developed estimators of the average of the densities or their
derivatives.

2.2 Multivariate Case

The kernel method of estimation of a univariate density function,
introduced by Rosenblatt (1956) and studied in detail by Parzen (1962) and
Bartlett (1963), was first generalized to the multivariate density function by
Cacoullos (1966). Let Xy 0 t=1,...,n be n independent m X 1 random vectors
generated from an unknown m-variate density function. COnsidenj§ tobea
class of all Borel-measurable real valued bounded functions K on the
m-dimensional Euclidean space R such that

[K(w)dw = 1, JIK(w)|dw < & (2.8)
Wi IX(w)] + 0  as jiwll + =,

where |lw|| is the usual Euclidean norm of w in R". Then Cacoullos estimated f
m
at a point x in R by

. X -X
-1 -mn t
f(x) =n h T K( ) (2.9)
t=1 h

where as before h = hy + 0 as n*». He showed that the estimator f(x) is
asymptotically unbiased and mean square consistent. Further for xl,....xj.

~ ~

distinct continuity points of f in R®, the vector (f(xl).....f(xj)) is
asymptotically j-variate normal. Cacoullos work was extended to estimation of

partial (or any mixed partial) derivatives of a density by Singh (1978,
1981). In Singh (1981), the speeds of various convergences of the estimators

to the true value are also examined.

In the multivariate case, the recursive estimator corresponding to f:(x) in
(2.5) has been proposed in Singh and Ullah (1984). In their paper, Singh and
Ullah consider the case when h = hit’
among other things, that the recursive estimator is more efficient compared to

i=1,...,m and t=1,...,n. They show,

f(x) in (2.9). For the case of dependent observations (especially in the time
series context) the estimators of type (2.9) and their properties have been
analyzed in Robinson (1983) and Singh and Ullah (1985). For some other work
on the estimation of a multivariate density, see Loftsgaarden and Quesenbury
(1965), and Epanechniko (1969), among others.

]



(»

(&

6

2.3 Estimators of Marginal and Conditional Densities

Let us write the m components of the m X 1 vector x, of section (2.2) as

] [ ]
X, = [yt,zt]'. t=1,...,n (2.10)

where Y. is a p X 1 vector and z, is a q X 1 vector such that p + q = m.
Similarly, as in Section 2.2., let Kl and Kz be p and q variate functions
obtained after integrating K(wl.....wh) with respect to ('b+1""'"h) and with
respect to (wl""’"b) respectively. Further, consider x = [y'z']' be a point

in R® at which the density is to be estimated.

Now the estimator of the joint density f at x from (2.9) is
X -x

a -

-l1n -m t
£(x) = n t21h K( ) = f(y,2) . (2.11)

Using this we can write the marginal density of zy at z as
X -x

-~ -~

-1n -m t
£f(z) = [f(y,z)dy = n tzlh JK(

)dy (2.12)

-l n -~
=n thql(
t=

)

t
(
2

The marginal density of y can be similarly written.

Next, the estimator of the conditional density of Yo given z, =z can be
obtained as
y - zZ -z
t y t

n -
- ;< ) tzlh K(h' n)
2 ol
f(ylz) = .y = (2.13)

zZ -2
£(2)

)

n -q

Ih K(
t=1 2
where f(y.z) and f(z) are as given in (2.11) and (2.12) respectively.

In an interesting special case the joint kernel function is

]

K(wl.....wm) kl(wl)...kp(wp)kp+1(w

p+1)...km(wm) (2.14)

ﬁ K k ( .
i=1 1("1) =1 p+j "§+j)

where kj are univariate symmetric (around zero) Borel-measurable functions.
Notice that kj. for j=1,...,m, can be identical. Taking kl = ... =km= k (say)

we can write (2.14) as



y
- ti i t
The B y Bres 3y,
=1 i=1 h i=1 h

£(yl ) = (2.15)
A zZ -2

n - t
N RV
t=1 J=1 h
where ytj, i=1,...,p and p elements of y, and Ztj, j=1,...,q, are q components

of zt.

These estimators of conditional and marginal densities are asymptotically
unbiased and mean squared consistent. These, and other distributional
properties, have been discussed in Singh and Ullah (1984) for independent
observations, and in Singh and Ullah (1985) for dependent observations.

2.4 Properties of Estimators and Confidence Intervals

Here we state the main results on unbiasedness, variance, consistency and

distribution of the estimators f of f and E(ylz) of £(ylz). The proofs of the
results are given in Singh and Ullah (1984) for independent observations, and

in Singh and Ullah (1985) for dependent observations.

Asymptotic Unbiasedness: Let x be a point in R" at which f is continuous.
Then for K ¢ ¥

B(x) = (Ef(x) - £(x)) = o(1) (2.16)
and
SupxIB(x)l = o(l) . (2.17)

Variance: At every continuity point x of f,

V(E(x)) = (nhM™)-1€(x)[K2{1 + o(1)} . (2.18)

Consistency: If (nhm)-1 = 0(1), then at every continuity point x of £

£x) - £00) = op(1) . (2.19)

For any integer r > O, let_ﬂsr be the class of real valued

Borel-measurable bounded functions K on Rm such that
i i
1 m
Ju ... u Ku,...,u)=14if 1 + ... +1 =0 (2.20)
1l m 1 m 1 m

=0if 0<i+...+1 <r
1 m

(L]

.

®
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It x| < = for i = 0 and ¢

lul®1kCu) | + 0 as flufl + » .
For example, for r = 0,1,2 m variate standard normal density belongs t°-2§r'
and go is the function K(ul,....um) = 2 “j:l I(-1 < uj < 1), where I(¢)

stands for the indicator function.

If for some r > 1, rth order partial derivatives of f are continuous at
x, then for K in.zfr (see (2.20))

r r
B(x) = 0(h ) and Sup IB (x)|] = 0Ch ) . (2.21)
m n
XecR
Further, if (2.18) and (2.21) hold then
° r m-1/2
f(x)f-(x) = 0 (h +(nh ) )
P
° r m-1/2
Sup |£(x)-£(x)| = 0 (h +(nh ) ) . (2.22)
X P

Note also that when h is chosen so that

h ~ p 1/ (20H0) (2.23)

then from (2.22)

;(x)-f(x) = Op(n—r/2f+m) and Supxlg(x)—f(x)l = op(n—f/2r+m) . (2.24)

It has been shown in Singh and Ullah (1985) that if the characteristic
function of the function K involved in the definition of f is absolutely
integrable then f(x) is uniformly weak consistent, that is,

PISupy|£(x)-£(x)| > €] = o(1) for every ¢ > 0 . (2.25)

Asymptotic Normality: If for some r > 1, g;h order partial derivatives of f
are continuous at x, and with this r, K is taken from.}gr. then choosing h as

in (2.23) we have

(nh™)1/2(£(x)-£(x)) ~ N(O,E(x)[K2Z) . (2.26)

From (2.26) 100(1-B)% C.I. for f(x) is

£(x) t zg;(nh®)-1/2[£(x)[K2]1/2 (2.27)
where zl',,,2 is such that if Z is the univeriate standard normal
1='[-z|3/2 <Z< zﬂlzl = 1-B8 . (2.28)
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Asymptotic Normality of f(ylz): If for some r >1, g&h order partial
derivatives of f are continuous at x, and h is as in (2.23) we_have

m1l/2 ° £(y,z) 2
(nh ) tf(ylz)-f(ylz)l ~ 50, =12 1% (2.29)

2
(£(z)]
where ?(ylz) is as given in (2.13).
The 100(1-B)% C.I. for f(ylz) can easily be written by using (2.29). .

\e

We note that for dependent observations strict stationarity of the process
x is assumed. Further for proving asymptotic properties certain conditions on
strongly mixing coefficients are required. For details see Singh and Ullah
(1985).

2.5 On the Choice of the Kernmel K and the Window-Width Function h

First for the univariate case we note from the work of Singh (1979b, 1981)
and (2.21) that

B(x) = h"f(”kr =o®), r>1 (2.30)
(r)

where f represents rth order partial derivatives of f and kr a 1/r!

Iurx(u)du; K belonging to in (2.20) such that the first r-1 moments of K
r

are zero. .

Using (2.18) and (2.30) we can write the mean squared error (MSE) of E(x) as

-~

MSE(£(x)) ~ (h2C(£(F)k.)2 + n-lh-1f[K2) (2.31)

An examination of (2.31) indicates that, for given h, we should choose K so
that ki and IKZ are not too large (in fact smaller the better). Such a
choice of K, however, should satisfy the following moment conditions (see

(2.20))
fudkqu) =1 1£§=0 (2.32)
=0 ifj=1,...,r-1 .

To look into K's which satisfy (2.32) consider

r-1 i
K(u) = (it aiu Yo(u), ¢(u) ~ N(0,1) . (2.33)
=0

Then it can be verified that

[
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K(u) = ¢(u) forr =1 or 2 (2.34)
1 2 .
= 5 (3-u )¢(u) forr = 3 and 4
2
-1 -1/2 —u /4
= [2¢(u)-2 w e ] forr = 3 and 4 .
1 1
However, if ¢(u) = 3 = P I(-1 < w < 1) then
1
K(u) = 3 for r = 0,1,2 (2.35)
2
(9-15u ) 1
K(U) = 5 .

For a given kernel, we now consider the choice of window-width h. An
examination of MSE in (2.31) indicates that as h decreases the (bias)2
decreases but the variance increases. Therefore, we should try to choose h in
such a way that the bias and variance both remain under control. Such a

choice of h may be taken as cn_1/(1+2r) since it makes both the (bias)2 and
variance, hence MSE, to be of order o(n-Zr/(1+2r)) provided ¢ does not depend
onn. Using h = cn-1’(1+r) we note from (2.31) that the optimal choice of ¢ is
1/(1+2r)
1 £ Ix
c = [— ( ) —1] . (2.36)
0 2r 2 2
(r) k
£ ) r

However, this requires some knowledge of the ratio £/(£(r))2 and thus it is

not useful in practice.

Another point to note is that the V(f(x)) will become inflated whenever
X - X
VIK(

2
)] is large which occurs when V(xt) = o (say) is large.
X - X

2
This effect of o on V[K( )] will be eliminated if h is

proportional to 0. Therefore, a good choice of h is

naon~1/ (1420) _ _ -1/(1+2r) (2.37)

We recommend (2.37) especially when o is large. A too small o will again
inflate the variance of E, as it can be ssen from (2.18).

Next, we observe that the speed noted above for the MSE approaches to

O(n-l) as r gets large. However, for large r, construction of a kernel

satisfying the moment conditions set out earlier will not be an easy job,
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and the estimator based on such a kernel will be difficult to compute.

If x is m X 1 vector then the h can be chosen as

-1/ (m+2r)
.hao n s i=1,...,m , (2.38)
i xi

(L]

and

Ku ,...,u) =
1 m

o —1-]

K(ui) ’ (2.39)

where K(uj) is as given in the univariate case discussed before.

3. APPLICATIONS

In this section we investigate the applications of density estimates,

given in Section 2, for the various problems in econometrics.

3.1 BEstimation of Conditional Mean (Regression Function)

Let y and zl,....zq be a set of q + 1 random variables. The conditional

expectation of y given the values of =z ...zq is then given by

)
E(y ) = M(Z2 ,...,2 ) = M(2) (3.1)
Z .2 1 q
1 q
The function M( ) shows how the average values of y change with a change in
the value of zl....,zq. This function plays a significant role in
econometrics for the purposes of prediction and testing economic theories.
However, we note that g is known only if either the data generating process
(joint density f(y,z ,...,z )) is known or the true f(y )
1 q Z y...02

is known. Since these are rarely, if ever, known the econometrigians have
invariably specified, a priori,

R(y ) =Mz ,...,2)=2B + ...28 (3.2)
zl....,z 1 q 11 qQq

and labelled it "the linear regression function" or "the linear conditional
model”. The least square theory is then used for estimation and prediction

[

purposes.

A useful alternative proposed here is to estimate directly the multivariate s

density f(y,z ..zq) and the marginal density f(zl,....zq) by the methods

10
discussed in Sections 2.2 and 2.3, and then estimate (3.2). For example,

using (2.13) we can get



y-vy z-2
" -1 n t
- £ K(e—e, )
f(Y.z) t=1 h h
f(yl ) = — = (3.3)
z zZ -2
f(2) n t
LK ( )
t=1 2
and
E(y ) = [yf(y )dy (3.4)
Z 4eees2 Z 4.e-02
1 q 1l q
zZ -2z
n t
IyK( ) R
t=1t 2 h n
= = T yr (z) = M(2)
2 -2 t=z1 t ¢t
n
L K( )
t=1 2 h
where
z - zZ -2z
t n t
r (z) =K ( )/ T K ( ) (3.5)
t 2 t=1 2 h
The E(y ) in (3.4) can be used for econometric analysis.

Z ,..042
For examp{e, theqforecast of y for a given value of z can be obtained from
(3.4). Also the change of y due to a unit change in, say z,, can be
determined by calculating partial derivatives of (3.4). See the illustrative
examples in Section 4 for the estimates of (3.4).

We note that the nonparametric estimator (conditional model) in (3.4),
unlike (3.2) is obtained without making assumptions about the functional form,
the joint density of y and z's, and non-stochastic behaviour of z's. Further,
since (3.4) has been obtained by estimating joint density we do not require to
check up the weak exogeneity of z. Thus the four problems of parametric
inference indicated in the beginning of Section 1 are absent in the

nonparametric estimator (3.4).

The following result has been proved in Singh and Ullah (1985).

Consistency and Asymptotic Normality: Let the r."t:"h order partial derivatives
of Iyif(y,z)dy (i=0,1,2) be continous at z. Then taking

we have



13

r
° - 2r+m-1
M(z) = M(z) + op(n ) (3.7)
and
2
1/2 v(y| )k
m-1 z

(nh ) (M(z)-M(z)) ~ N(O, ~——————) , (3.8)

f(z)

where V(y|;) is the conditional variance of y given z.

From (3.8), 100(1-B)% C.I. for M(z) is

) 1/2
X -1/72 Vv(y| )k
m- b4
M(z) *z (nh ) [ ———] . (3.9)
B/2 £(z)

In practice, (3.9) can be used by replacing f(z) by its consistent estimator

E(z) given in (2.12), and V(y|,) by its consistent estimator given in Section
3.2,

a. Estimation of Linear Probability Model

The estimator (3.4) can also be used in the context of a regression model
in which the dependent variable y is a binary variable taking the value yt =1
with probability P, if the event occurs and yt = 0 with probability 1 - pt
otherwise, t=1,...,n. Examples of this are participation in the labor force,
decision to marry, bankruptcy, etc. Note that for the binary variable Y,

By, =p, and V(y) =p.(1-p) . (3.10)

In empirical econometrics work various assumptions regarding pt.have been
made. Some of these are as given below
z B 2
-1/72 t -w/2
(i) Probit: pt= (2nm) I e dw and

-
-1
_zta
(ii) Logit: pt =(1l+e )

so that py in these cases become cumulative probability distribution function
F(ztﬂ) = E(yt ), zt is a q X 1 given vector and B is a q X 1 vector
z

y 1-y
n t t
of parameters. The likelihood function L = tnlpt (l—pt) is then

written and the parameters are estimated.

2]

(s

(e

{e
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It is clear from (3.10) that the specification of the linear probability
model amounts to specifying the probability ptn E(yt ) by a suitable
z

cumulative probability density. An alternative is to consider the
nonparametric approach discussed in Section 2. That is, if our interest is to
estimate the conditional expectation with respect to vector Z,,

;t = ﬁ(yt ), then we can verify that it is as given in (3.4). Note,
z

however, that in our present model y; is either 1 or 0. Thus, ﬁt from (3.4)
will be between 0 and 1.

The qualitative response models discussed in Mcfadden (1984) can also be
similarly analyzed.

b. Censored and Truncated Models

The statistical literature on the estimation of censored normal and
truncated normal distribution is very long (see Cohen (1950), Hald (1949) and
Halperin (1952)). In econometrics, censored normal models have been used
extensively by Tobin (1958), Amemiya (1973), Heckman (1976) and Fair (1977)
and truncated normal models have been used by Hausman and Wise (1976, 1977)

among others.

% x
Suppose f(y*,z) is the joint density function of y* and z. Let Yyeeeoo¥y

and zl,...,zn be the samples of size n. For y* we record only those values

which are greater than a constant c. For those values of ykx < ¢, we record

the value ¢. Thus, for t=1,...,n,
% *
Ve = Y if Vi 5 © (3.11)
=c otherwise.
The resulting sample yl....,yn is said to be a censored sample.

For the above case

- .
E(yl ) = cPly=c] 1 + | yf(y| )dy (3.12)
Zz A Cc b'A

or

fly=c,z] o f(y,z)
E(ylz) =C——+] y

dy . (3.13)
£(z) c f(2z)

The model in (3.13) can then be analyzed by using the nonparametric estimates
of the marginal and joint densities given in Section 2.3.
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Now consider the truncated model. Suppose yj,...,y, is a sample drawn from
the truncated population of y < " Then the truncated model is

£
(yt)

f = f < = . .14
(yt) (ytlvt co) ) (3.14)

o

where F(cy) is the cumulative distribution of £(y). And in the case of two
variables yt and zt

f(yt’zt e f( )
o Z
Y, Y, %,

f(y ) =

= . (3.15)
tiz f(z ) F(e )E(z )
t t o t

Again for prediction (E(y|g)) and other econometric analyses the estimates of
the marginal and conditional densities given in Section 2.3 can be used. This

would overcome the specification of E(ylz) = 2B as well as the normality
assumption used by Hausman and Wise (1976, 1978) or the assumption of
Edgeworth density by Lee (1982). Note that Cosslett (1978, 1980) suggests a
pseudo~nonparametric procedure for the above model.

3.2 Estimation of Conditional Variance (Conditional Heteroscedasticity)

Let us write the conditional variance of y given zl.....zq as
2 2
v(y ) =V(z) = B(y | ) - [E(y| )] . (3.16)
Z .02 2 z
1 q

Then a consistent nonparametric estimator (see Singh and Ullah (1985)) is
given by

® 2 "2

v(z) = Eytrt(z) - M (2) (3.17)

where r¢(z) and M(2) = Iygry(z) are as given in (3.5) and (3.4),
respectively. The higher order conditional moments of y can similarly be

estimated.

The estimation of variability is of interest due to various reasons.
First, there are many economic models in which the variasbility (risk term)
appears as a regressor and, second, variability in economic variables such as
inflation and interest rates is in itself of interest to the policymakers.
For details, see Friedman (1977). In addition there are many economic models
in which the conditional variance of the dependent variable is
heteroscedastic. Thus a nonparametric estimator (3.17), which does not use

any functional form of heteroscedasticity, is useful for the efficient

L]

(

"
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generalized least squares estimation of the model.

3.3 Model Adequacy and Other Tests

It was noted in Section 3.1 that the nonparametric estimator ﬁ(ylz) in
(3.4) is obtained without making assumptions about the weak exogeneity of z,

functional form, and the joint density of y and z. Thus the nonparametric

residuals

- EB( ) =u t=1,...,n
yt ytz t' ’ ’
are robust and they can be used to perform meaningful diagnostic tests for the

adequacy of the model

yt yt'z t

This can be done by simply using nonparametric residuals Gt and the fitted
values é(ytl ), instead of non-robust least squares residuals and
z

fitted values, in various diagnostic tests for normality, heteroscedasticity,
serial correlation, exogeneity, misspecification and encompassing (non-nested)
given in Pagan (1983) and Ullah (1985). A point to be noted here is that the

nonparametric residual ﬁt is such that
r

- * - 2r+m-1
u-u = -(E(y ) - B(y )) =0 (n )
t t tiz t zt P

because of (3.7).

Since most of the diagnostic tests may be non-robust under
misspecifications a better alternative will be to use the results of Section 2
directly. For example, the normality can be checked up by estimating

f(ﬁ) and calculating its C.I. from (2.27). Similarly, the misspecification,
heteroscedasticity, and serial correlation can be analyzed by using

nonparametric estimates of B(Glz), V(Glz) and cov(ﬁt.ﬁt_llz), respectively.
Some other tests can also be performed and these are given below.

a. Test of Independence
For the test of independence (see Hausman (1978)) we can estimate the

conditional and marginal densities, f(zlﬁ) and f(z), respectively by
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using the methods of Section 2.3 and calculate

2 - ~ ~ ~

2 1/2 - 172
d (z|u); d(zju) = (f(z|u)) - (£(2)) . (3.18)

d =

e e
N™mB

The statistic d2 is then the statistic for checking the independence of .

~

x and u. Notice that d2 is Bhattacharya's (1967) distance measure which
satisfies all the properties of a metric. An alternative to Bhattacharya's
distance would be to use Kulback-Leibler information divergence measure

~ ~ ~

f£(z)
——) f(z|u). For details on divergence

f(z|u)
measures see Burbea and Rao (1982) and Ullah (1983).

{9

in which d(z]u) = - (log

It is our conjecture that dz may follow chi-square asymptotically. The

work on this will follow in a future paper.

b. Testing Causality

In most economic models not only is a cause and effect relationship assumed
to hold but, furthermore, the direction of causality is also taken to be .
known. The truth is, however, that in non-experimental subjects like
economics it is difficult to find convincing evidences in favour of such

)

assumptions. In view of this, following the work of Wiener, Granger (1969)
first formalized the idea of causality. The essence of Granger's causality is
that z does not cause y if

£( ) = £¢( ) (3.19)
ytlQ yt
t-1 Qy
t-1
where {Qt—l = 9:_1.9:_1} is the information set consisting of past values of

y as well as z. Note that (3.19) is the "causality with respect to the
particular Qt-l used.” Since the conditional distribution functions in
(3.19) are unknown, a testable definition has been used in terms of a summary

statistic, viz, linear predictions. More precisely z causes y if

MSE(y ) < uss(yl ) . (3.20)
Qt 1 y

ts

t-1

An alternative but equivalent test proposed in the literature is to regress

the current value of y on the lagged values of z as well as y and testing for
the coefficients of lagged values of z are zero by the F-test. If the
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hypothesis is accepted z is said to be not causing y in Granger's sense.

Note that the simplified Granger's causality test would be useful, that is
the F-test proposed would have power, if there are no misspecifications in the
specified variables z and y and there is no misspecification in the error term
of the regression indicaied above. Further, although the definition in (3.20)
is simple, it is a long way from the rather general definition started with in
(3.19). The true causality may be missed, or spurious causality observed,
because of these simplifications. Thus, again an alternative is to use
nonparametric methods to estimate the conditional density

f(y I ) and the marginal density
tiz RS 4 3 AETERES 4
1 t-1 1 t-1
f(ytl ) and compare them. The variable z does not cause y if
Y""Qy
1 t-1
these two estimated densities are the same, that is
E(ytl ) = E(yt ) (3.21)
Z ,...,2Z Y seee rerssy
1’ e171" e o LY

We can also check whether or not there is a significant difference between the
conditional and marginal densities by using the statistic

fm
d =4 (y l ) (3.22)
zy t

d(ytl ) = E(ytl . ) - E(yt y y ).
z .Il’ . * o 0 * o0
t-1" "t 1’ 171 Ve D S |

We can also check for the instantaneous independence of z and y by using

n ~ ~
A= dy | ) Ay ] d=£y| ) - £y) (3.23)
zZy z tiz tiz t

c. Non-Nested Model Selection

Let x, y and z be three economic variables such that there are two data
generating processes for y, that is f(Y|x) and f(ylz). If the maintained
hypothesis is f(le) then the non-nested model selection problem is to see if
f(ylz) is significantly different from f(ylx). Usually the parametric
specification in terms of regression models is used in order to test such an
hypothesis (see, e.g., Davidson and MacKinnon (1981)). We propose the
estimation of f(ylx) and f(ylz) first and then the use of
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2

m 172
d =L {g
y

1/2 2 g "
(y) -8 _ (N} ; 8 (y) =% £yl ), g (y) =L £Cy} )
1l 2 1 x X 2 z z

where % is f-number of points of x and z. Again, as in the case a, one
. izm )
can use Kulback-Leibler divergence measure d = I log - gl(y).
(y)
81 y

3.4 Finite Sample Econometrics .

There is a large literature in econometrics on deriving the exact and
approximate densities and moments of various econometric estimators (see,
e.g., Phillips (1983), among others). These works are of great importance for
proper inference in finite sample situations, particularly since the concept
of a "large” sample is fuzzy for practical situations. However, despite its
great importance, work in this area has so far not been very useful because of
the complicated expressions of exact results and their nonlinear dependence on

unknown parameters.

We propose a nonparametric Monte-Carlo integrated approach here. Suppose,
based on the 5000 random samples of size 10 we generate 5000 observations on

the estimator of a parameter (5) in a parametric specification. Using these
observations on ﬁ we can then easily estimate the unknown exact density of
ﬁ.f(ﬁ). by the nonparametric method discussed in 2.1, say f(ﬁ). Moments

of the estimators, based on E(ﬁ) can then be analyzed easily. The results can
be compared with the Monte-Carlo results as well as the exact results,
available in the literature. Notice that the procedure can be extended to the
estimation of multivariate or marginal density of a parameter vector B
appearing in an econometric model. Similarly, kernel density estimation can
be integrated with the bootstrapping approach of Efron (1979).

4 ILLUSTRATIVE EXAMPLES

Here we present some examples, based on Monte-Carlo as well as real world
data sets, to illustrate the techniques of Section 2 in the context of
econometric problems discussed in Sections 3.1 and 3.2. The illustrations for
the issues in Sections 3.3 and 3.4 are beyond the scope of this paper, and
they will be subjects of a future study.

(3

«

(
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4.1 Estimation of Conditional Mean and Variance (Monte-Carlo)

The objective of the experiment here is to verify how the nonparametric
estimates of conditional mean (regression function) and variance
(heteroscedasticity) perform when the true forms of the conditional mean and
variance are known, and the data are generated from a known population.

Consider the true model as a quadratic regression function given by
2
Yt = p°+ Blzt + Bzzt + ut' t=1....,n (‘.1)

where y is a dependent variable, z is an exogenous variable, B's are
regression parameters, and u is the disturbance term such that

u, ~ N(0,0%) (4.2)
From (4.1) and (4.2), the parametric forms of the conditional mean and

variance are

i}

2
B+Bz +PB 2z because E(u )=EBu =0 (4.3)
o 1t 2t tiz

s(ytlz ) .

t

2
V(u ) =V(u) =0 .
t t

v( )
ytlz z
t t

To generate the observations on y we (i) specify Bo =5,B1 =1, By = 3,
(i1) choose n = 50 values of z of an economic variable and (iii) generate

random samples of sizes n = 50, 100, 400 from u ~ N(0,1). This gives samples
of sizes n = 50, 100, 400 for the y from (4.1). Note that the values of £ for
n = 100 and 400 are generated by repeating its 50 values.

The nonparametric estimates of E(ylz), given in (3.4), are plotted in
Figures 1 and 2, respectively for n = 100 and 400. The kernel chosen for this

purpose was

2
z -
1 t
zZ -z -=-( )
K( ) . 2 h (4.4)
S e— .
Vix
-1/5 2 n _2
where h = s n + 8 =X (2 -2) /n. It is evident from the figures

that the no:parametrfc estimates of the conditional mean approximate the true
model in (4.1) extremely well for both n = 50 and 400 but especially for

n = 400. The plot for n = 100 was similar to that for n = 400. Though not
plotted here, the 95% confidence interval, based on (3.8), contained the
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true model except in the tail ends. Similar results were obtained with

various other choices of K discussed in Section 2.

Figure 3, for n = 400, shows that the nonparametric estimate of the V(ulz)
fluctuates very closely around the true value 1. Thus, again the

nonparametric estimate performed well.

The implication of the above results is that the nonparametric estimates
can be taken as a reasonably good approximation of the conditional mean
(econometric model or the functional form) and variance when in actual
practice, as in the econometric issues of the following sections, they are not
known.

4.2 Forecast and Variability of Inflation

The questions of accurate forecasting and the variability of inflation
rates are of significant interest for the macroeconomists and the policymakers
in the government and industries. 1In fact, Friedman's Nobel Prize Lecture
(1977) ascribe real effects in an economy to a higher rate of
inflation if that higher rate is accompanied by increased variability.

Both the issues of forecasting and variability can be analyzed by the
nonparametric estimates of the conditional mean and variance, that is,
B(P ) and V(P )
tiI tiI
t-1 t-1

where Py is the inflation rate and I{_j; is the information available up to the
period t-1. For this purpose we considered the U.S. decade data (1750-1980)

on the wholesale price index (see Batra (1985, p. 85)).

For the purpose of forecasting we estimated E(Ptlp ) by using
t-3
(3.4) and the kernel function in (4.4). The choice of P,_3 was due to the
fact that the inflationary peaks appeared roughly after every three decades,

see Figure 3. Our calculations provided E(PlggolP ) = .031 and

E(onoo p ) = .029. These results are consistent with the cycle of

inflation in Figure 4 and the conjecture of low inflation rates during
1990-1994 indicated in Batra (1985, p. 95).

The variability in inflation, G(Pt L ) can be obtained by using

t-1
(3.17). For this purpose we considered It-) as P¢-] and calculated

o

[(4
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G(Pt p ) as well as E(Pt P ). The plots of these values in Figure 5

t-1 t-1
support the hypothesis that, in the U.S. case, variability does increase with

the anticipated inflation. A similar result was also found on the basis of
the plot using unanticipated inflation, ﬁtz Pt- ﬁ(Pt . 1),instead of

P¢. The positive relationship between i( ) and ﬁ( ) has been referred as
absolute variability by Pagan, et al (1983).

4.3 Test for Random Walk
Consider the first-order stochastic difference equation as
yt = °yt-1 + ut. t=1l,...,n (4.5)

where u, are independently and identically H(O.oz) disturbance terms. When
a = 1 then yt is said to follow a random walk. The random walk hypothesis
Plays an important role in rational expectation hypothesis, and this
hypothesis has been investigated in a variety of empirical studies in time
series economics. For the model (4.5), the random walk hypothesis a = 1 has
been investigated recently by Evans and Savin (1981).

Note that the random walk hypothesis Hozo = 1 implies

H :B( ) = .
o ytly yt—1
t-1

This hypothesis can therefore be analyzed by obtaining the nonparametric
estimate of E(y | ) and calculating the confidence interval for
t yt—l

E(yt y ) = yt—l given in (3.9).

t-1

For an illustration we analyzed the random walk hypothesis for the

Canadian-U.S. monthly spot rates data that were kindly supplied by the Bank of
Canada, and used in Longworth (198l1). Considering yta log of spot rate =
log s we estimated E(y I ), using kernel in (4.4), and its 95% C.I.

t t yt-l
Since under Ho:gytly = yt )’ Figure 6 does not support the random

t-1
walk hypothesis. This is because most of the yi_j; points are outside the
confidence bands. The implication of this result is that the past spot rate

is not necessarily a good predictor of the current spot rate.
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5. CONCLUSION

We have reviewed the literature on the class of nonparametric denmsity
estimators. The application of these estimators in the estimation of
regression functions, model specification, specification testing, and finite
sample econometrics has been explored. Illustrative examples of the
estimation of regression function, variability, forecasting and random walk
hypotheses are presented.

The list of applications, in addition to ones provided in Section 3, are
large and all of them cannot be presented here. 1In fact one can analyze any
econometric issue by nonparametric methods, and lead to better inference for
policy purposes. Some of the other areas of applications which can be
mentioned are the estimation of quantile functions (see Parzen (1979)),
estimation of hazard functions (Tanner and Wong (1984), Heckman and Singer
(1984)), estimation of entropy measures, and estimation of the Fisher
information matrix (Singh (1977)). The future areas of applications are the
estimation of rational expectations models and nonlinear simultaneous
equations models.
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