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Abstract 

The ability of the perfusion MRI technique, arterial spin labeling (ASL), to quantify cerebral 

blood flow (CBF) makes it attractive for longitudinal studies of changes in brain function, 

such as those related to chronic pain. However, ASL's poor spatial resolution makes image 

alignment between sessions difficult, leading to increased variance and greater Type-I errors. 

In addition, variability due to differences in basal blood flow between sessions and 

confounding effects such as the arterial transit time (ATT) have the potential to reduce 

reproducibility over time. The focus of this thesis is to investigate the ability of ASL to detect 

long-term changes in regional CBF within an individual on a voxel-wise level. It is 

hypothesized that ASL has the sensitivity to detect activation-induced CBF changes over 

periods as long as a month if the sources of variance that degrade between-session 

comparisons are minimized. To test this hypothesis rest and activation (motor task) CBF 

images were acquired from healthy subjects on three separate imaging sessions. Registration 

errors were minimized by using individual head molds to replicate the head position in 

successive sessions. Variations in resting CBF were controlled for by performing the imaging 

during the same time of day, and subjects were asked to refrain from using common 

substances, such as caffeine, that are known to affect CBF. Finally, ATT maps were 

generated on each session to investigate its stability. From these data sets, the within- and 

between-session variability in CBF was determined and motor-related activation maps were 

generated from rest and activation data acquired on from the same session and from sessions 

separated by a week and a month. The results demonstrated excellent reliability (intraclass 

correlation coefficients greater than 0.75) both within- (0.89 ± 0.2) and between-session 

(0.84 ± 0.15), and high reproducibility (within subject coefficient of variation, wsCV, greater 

than 20%) within- (wsCV = 4.7 ± 4.5%) and between-session (wsCV = 5.7 ± 4.4%). 

Between-session reproducibility of the ATT was high (wsCV = 5.0 ± 2.7%), suggesting that 

the confounding effect of ATT over a month was minimal. The similarity in within- and 

between-session variability and their activation maps indicated that registration errors 

between sessions were minimal. Measures of precision of activation demonstrated that less 

than ~20% of between-session activation were false positives. These results demonstrate the 

feasibility of conducting voxel-wise analysis of CBF images acquired on different days and 

highlight the potential of this technique for longitudinal studies.  
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Chapter 1  

1 Introduction 

1.1 Clinical Relevance: Chronic Pain 

In its most benign form, pain is an unpleasant, although necessary short-term sensation 

that warns of impending or actual tissue damage. When this sensation outlasts the normal 

time of healing, typically identified as 3-6 months, it is considered chronic and no longer 

serves a biological purpose 
1–3

. Instead, it imposes a burden on the individuals it affects 

and society. Chronic pain is one of the most prevalent diseases and is a common cause of 

major disability and economic loss 
4
. One in five Canadians suffer from chronic pain and 

each year it costs over $6 billion in healthcare costs and over $37 billion in costs related 

to job loss and sick days 
4–6

. Compared to other chronic medical conditions, individuals 

suffering from chronic pain face significantly lower quality of life as indicated by short 

form health surveys (SF-36v2). Upwards of 70% of participants indicated that their 

condition greatly interfered with their daily routines 
7
. Although treatment plans are able 

to reduce pain intensity by up to 30%, it does not guarantee an improvement in function 
8
. 

In many cases this means that chronic pain sufferers remain unable to regain their former 

independent lifestyles.  

Strategies for treatment and management of pain remain a challenge for health care 

providers. Since pain is a subjective experience, and in the absence of a biological 

marker, the primary tool for assessment is self-reports from patients 
9
. While 

multidisciplinary treatment approaches that take social and physiological factors into 

account help with coping, there is currently an unmet need for novel and efficacious 

treatments particularly for individuals with intractable pain who already suffer from acute 

diseases such as cancer, HIV and diabetes 
6
. Treatment of pain has become heavily reliant 
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on opioids for temporary relief which are addictive and have serious side effects. A 

recently published review identified that over the past 25 years the steady increase in 

dose, volume and prevalence of opioids among chronic pain sufferers and has led to an 

overall increase in deaths related to opioid overdoses 
10

. Given these unsettling facts, 

there is growing need to better understand the underlying causes of chronic pain and 

determine potential targets for therapeutic interventions. Functional neuroimaging is a 

powerful tool for noninvasively mapping brain activity and has shown promise in pain 

research 
11

.  

Perception of acute pain involves the transfer of nerve impulses from the peripheral 

nociceptors to the central nervous system and into the brain where these impulses 

directed to various regions based on intensity and bodily location of the painful stimulus. 

This process has led to the theory that plasticity of the central nervous system plays a role 

in the development and maintenance of chronic pain 
12

. Unlike the bottom-up state of 

acute pain where sensory pain information dominates, chronic pain is believed to be a 

top-down state governed by cognitive factors. This was confirmed by neuroimaging 

studies which report a strong correlation between alterations in thalamic activity and 

duration of chronic pain 
13,14

. Long term chronic pain patients had decreased thalamic 

activity, suggesting an adaptive top-down response whereas those with early onset of 

chronic pain had increased thalamic activity, coinciding with the sensory pathway of pain 

processing in healthy individuals. 

The vast majority of pain studies have primarily focused on activation related to 

stimulated pain 
11,15–17

. More recently, studies have been investigating the ongoing or 

chronic pain state 
18,19

; however, to date no studies have investigated functional changes 

in the brain related to progression of acute-to-chronic pain. Being able to quantify these 

changes would provide a better understanding of how the duration of pain affects the 



3 

 

 

 

 

 

brain and, more importantly, treatment efficacy. That is, can we discriminate between 

treatment responders and non-responders based on differences in brain activity related to 

their current pain state? Answering this question will require a functional imaging 

method capable of longitudinal monitoring. Ideally the technique would have the 

sensitivity to monitor changes in individual patients considering the large variability in 

treatment response. Towards this goal, this thesis will focus on investigating a method for 

detecting long-term changes in cerebral blood flow.  

1.2 Modern Neuroimaging 

The predominant brain mapping methods being used currently are based on the coupling 

between neuronal activity and regional cerebral blood flow (CBF). These neuroimaging 

techniques can be broadly categorized into nuclear medicine and functional magnetic 

resonance imaging (fMRI) methods. Nuclear imaging techniques consist of positron 

emission tomography (PET) and single photon emission computed tomography (SPECT), 

while fMRI encompasses blood oxygen dependent (BOLD) and arterial spin labeling 

(ASL) 
20

.  

 

Figure 1.1: Comparison of general characteristics of nuclear imaging techniques (PET/SPECT), 

shown in blue, and functional MRI technique (BOLD), shown in pink. Areas of overlap are 

shown in purple.  
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Each approach bears strengths and weaknesses, making them better suited for different 

applications (Figure 1.1). Nuclear perfusion imaging techniques involve measuring the 

uptake of an injected radioactive tracer. Based on the pharmacokinetics of the tracer, 

detected regional activity distribution will reflect various biological parameters. To 

measure CBF, PET uses radioactive water (
15

O-H2O) whereas gamma emitting 

hexamethylpropyleneamine oxime technetium (
99m

Tc-HMPAO) is a commonly used 

SPECT flow tracer. The utility of PET and SPECT stems from their abilities to detect 

nanomoles of tracer with high sensitivity and specificity in absolute units 
21

. However, 

exposure to ionizing radiation and the half-life of the tracer limits the number of 

measurements acquired per subject. This limits voxel-wise analysis, or statistical 

parametric mapping (SPM), to either group analysis or a template-based approach 
22,23

. 

For the purposes of tracking disease progression within a single subject, this approach is 

suboptimal because the detected activity depends on the control template and the 

accuracy of spatial normalization 
24

. For example, in a PET study comparing glucose 

metabolism patterns in Alzheimer’s disease patients to healthy controls, the extent and 

localization of regions demonstrating metabolic changes varied based on whether a 

common 
18

F-FDG PET or 
15

O-H2O PET template was used to spatially normalize the 

data 
25

. These artifacts or false positives due to normalization can introduce ambiguities 

into the final interpretation of the results. Additionally, modeling tracer kinetics required 

for CBF quantification is an involved and invasive process as the time-dependent 

variation in the radioactivity in the arterial blood needs to be measured by collecting 

arterial blood samples. This is both time consuming and sensitive to error, making it 

difficult to justify for routine imaging. To avoid arterial sampling, the arterial input 

function can be estimated based a population-based input function 
26,27

. However, the 

shape of the arterial input will vary based on the disease group and the radioactive tracer 

being used, introducing variability in CBF estimations. Alternatively, a semi-quantitative 
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approach may be implemented by intensity normalizing signals to a global mean at the 

expense of reduced accuracy 
28,29

. 

FMRI is a more popular technique for functional imaging as it offers a safe and non-

invasive approach to measuring brain function. The dominant method using BOLD 

contrast is based on the change in the oxyhemoglobin concentration caused by an 

increase in CBF 
30

. Deoxyhemoglobin is a paramagnetic molecule that produces a 

susceptibility induced field change, resulting in a decrease in the apparent transverse 

relaxation time constant (T2*) 
31,32

. Oxyhemoglobin, on the other hand, is diamagnetic 
33

. 

With increased brain activity, the amount of oxyhemoglobin relative to deoxyhemoglobin 

increases due to the increase in CBF. This results in a local increase in T2*. While BOLD 

has become the standard neuroimaging method, low frequency baseline signal drifts 

reduce its sensitivity if the spacing between the baseline and stimulus is greater than a 

few minutes 
34,35

. In addition, BOLD contrast is a relative signal change and consequently 

the technique is not suitable for monitoring across imaging sessions 
36

.  

The stability of the ASL signal combined with being non-invasive, unlike PET and 

SPECT, and quantifiable, unlike BOLD, makes it ideal for studying long-term changes in 

brain activity. The unique feature that separates ASL from the other functional 

neuroimaging techniques is that arterial blood water is used as an endogenous diffusible 

tracer. Image contrast is based on the changes in brain tissue signal due to the increase or 

decrease in tracer concentration. Since subjects are not exposed to ionizing radiation, the 

technique is well suited to repeated scanning 
37

. This is advantageous in populations (e.g. 

pediatric or renal disease) where the use of radioactive tracers poses a large risk 
38

. In 

relation to BOLD, ASL provides greater spatial localization. The spatial correlation of the 

BOLD signal to the site of activation is relatively poor since more than 65% of the BOLD 

signal is accounted for by intravascular spins 
39

. In contrast, the ASL signal reflects tracer 
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delivered to the tissue. Consequently, in theory ASL reflects regional changes in activity 

with greater sensitivity. Furthermore, since CBF is in theory insensitive to scanning 

parameters, in addition to the traditional detection of global hypo and hyperperfusion, it 

permits comparison of multiple measurements in a longitudinal study 
40

. 

1.3 Arterial Spin Labeling 

1.3.1 Overview 

As previously alluded to, ASL signal contrast is generated by magnetically labeling the 

blood flowing into the tissue of interest 
41

. Following a short delay to allow the labeled 

blood water to reach the imaging plane, an image that contains signal from labeled water 

and static tissue is acquired. To remove the static tissue contribution, a second image, 

known as the control, is acquired using the same imaging parameters, but without the 

arterial labeling. Control and tag images are acquired in interleaved succession. 

Subtraction of the control-tag pairs results in perfusion weighted or difference images 

(ΔM) that are directly proportional to CBF 
42

.  

The magnitude of the signal difference is dependent on the lifetime of the labeled blood 

water - i.e., the longitudinal relaxation time of blood, T1a (1300 – 1750 ms); the amount 

of time it takes for the labeled blood water to reach imaging voxels, which is referred to 

as the arterial transit time (ATT) (800 – 1200 ms); and blood flow 
43

. Since the ATT and 

T1a are similar in magnitude, the signal change is typically only 0.5 - 1% of equilibrium 

magnetization, resulting in a poor signal-to-noise ratio (SNR) 
38

. To improve the SNR, 

ASL images are acquired at relatively low resolution (4 x 4 x 6 mm
3
 voxel) and multiple 

control-tag pairs are acquired for signal averaging 
44

. In a study by Gevers et al., it was 

estimated that 20 control-tag pairs are required to obtain steady and reproducible CBF 

values 
45

. Although, to improve the SNR, it is not uncommon to acquire upwards of 40 
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images 
38,46

. A second limitation of ASL is its temporal resolution. To obtain a single 

perfusion weighted image, two images, namely the control and label, are required. Since 

repetition times range between 2 – 4 seconds, perfusion weighted images are acquired 

every 4 – 8 seconds 
43

. This makes ASL less suitable for detecting fast changes in the 

brain. In addition, it can lead to increased sensitivity to gross head motion and 

physiological motion 
47

. With emerging methods such as single-shot ASL, where control 

and tag images are acquired after a single labeling period, and phased array receiver coils 

which can be optimized for parallel imaging, scan time can be reduced 
48

. 

Clinically, ASL imaging has been used to study conditions including, but not limited to 

chronic pain 
17,49

, Alzheimer’s disease 
50,51

, stroke and carotid occlusive diseases 
52,53

. In 

addition to its clinical applications, ASL has provided valuable information regarding 

physiology in healthy individuals 
54,55

 and drug development 
56–58

. It has been 

demonstrated that ASL has the sensitivity to detect relevant changes in CBF within an 

individual. For example, in a study assessing activation related to experimental pain, ASL 

was able to detect as small as a 2.2% change in CBF within an individual 
15

. Furthermore, 

ASL has been validated against PET perfusion imaging, the gold standard method of 

CBF measurement 
59–61

. 

1.3.2 Labeling Schemes 

Depending on the duration and spatial extent of signal inversion, labeling strategies are 

classified as pulsed (PASL), continuous (CASL) or pseudo-continuous (pCASL) (Figure 

1.2). With PASL, a large volume of tissue (10-20 cm) proximal to the imaging slice is 

labeled using a short (5 – 25 ms) inversion radiofrequency (RF) pulse 
62–64

. With CASL, 

a continuous off-resonance RF pulse, typically 1 – 3 s, is applied in the presence of weak 

gradient to invert the magnetization of arterial blood flowing through a labeling plane 

perpendicular to the feeding artery 
38,65

. This process is known as adiabatic fast passage 
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(AFP). In the presence of an applied magnetic gradient, the resonant frequency is 

spatially dependent and the blood magnetization experiences a frequency sweep as it 

flows through the labeling plane. For a high inversion efficiency, denoted α, blood 

passing through the plane needs to meet the adiabatic condition: 1/T1, 1/T2 << Gν/B1 << 

γB1 
66

, where T1 is the longitudinal relaxation rate, T2 is the transverse relaxation rate, G 

is the gradient amplitude, ν is the velocity of blood along the direction of the gradient, B1 

is the strength of the RF magnetic field and γ is the gyromagnetic constant. The strength 

of the applied gradient and RF are chosen based on the typical range of velocities found 

in the carotids.  

 

Figure 1.2: Schematic of (A) PASL, (B) CASL and PCASL labeling schemes overlaid on a 

sagittal human brain. PASL inversion of blood and tissue signal occurs in the thick band shaded 

in red. For CASL/PCASL, inversion takes place as blood passes through the thin red band.  

PASL offers high labeling efficiency, since unlike CASL, signal inversion is not sensitive 

to the velocity of blood within the labeling volume 
44

. However, the SNR for PASL is 

less than for CASL because the in-flowing arterial blood is only labeled once and this 

magnetization quickly decays with T1a. Despite the improved SNR achieved using 
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CASL, this approach is difficult to implement due to the off-resonance irradiation of 

large marcromolecules in the tissue 
67

. The magnetization transfer between this bound 

pool and tissue water produces an unwanted signal change that is much greater than the 

ASL signal and, therefore, must be carefully controlled. One approach is to use a separate 

RF coil for labeling, but this is technically more complicated 
68

. 

To address the limitations of CASL, pCASL, the current recommended labeling strategy, 

was developed by Alsop et al. 
43,69

. Conceptually, this approach is identical to CASL, 

except in lieu of a continuous pulse, a series of short RF pulses (1 pulses/ms) are applied 

69
. This labeling scheme results in reduced magnetization transfer effects 

43,44,69
. Pseudo-

CASL is easily implemented on conventional 1.5/3 T MRI scanners and has been quickly 

adopted in the ASL community. 

1.3.3 Cerebral Blood Flow Quantification Model 

To quantify CBF in standard units of flow (i.e., mL of blood/100g of tissue/min), 

perfusion weighted images are incorporated into the general kinetic model. The general 

kinetic model describes the kinetics of ΔM as the delivery function c(t), the residue 

function or the clearance of labeled blood from the voxel r(t), and the recovery of the 

longitudinal magnetization in the tissue m(t) 
70

. For pCASL, the delivery function is 

given by the piecewise function: 

 

𝒄(𝒕) =

{
 
 

 
 

𝟎 𝟎 < 𝒕 < 𝑨𝑻𝑻
  

𝜶𝒆
−𝑨𝑻𝑻
𝑻𝟏𝒂 𝑨𝑻𝑻 < 𝒕 < 𝝉 + 𝑨𝑻𝑻
  
𝟎 𝝉 + 𝑨𝑻𝑻 ≤ 𝒕

 (1.1) 

where ATT is the arterial transit time, T1a is the longitudinal relaxation of arterial blood, 

α is the labeling efficiency and τ is the labeling duration. As demonstrated in this 
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equation, the delivery of label the tissue is dependent on the ATT, which will be 

discussed further in the following sections. Following labeling, the labeled magnetization 

in tissue decays at: 

 
𝒎(𝒕) = 𝒆

−𝒕
𝑻𝟏 (1.2) 

where T1 is the longitudinal relaxation of tissue. Assuming single compartment kinetics, 

r(t) is given by: 

 
𝒓(𝒕) = 𝒆−

𝒇𝒕
𝝀  (1.3) 

where f is the CBF in mL/100g/min, and λ is the blood-brain partition coefficient of 

water (assumed to be 0.9 mL/g). Since arterial blood water diffuses from the blood into 

the tissue, λ represents the equilibrium ratio of the water concentration in tissue and 

blood. Although, it varies slightly based on tissue type, error encountered by assuming a 

single value is less than 10% 
43,71

. The difference signal is the convolution of the input 

function with the tissue response. Mathematically, 

 𝜟𝑴 = 𝟐𝑴𝒐𝒇{𝒄(𝒕) ∗ [𝒓(𝒕)𝒎(𝒕)]} (1.4) 

Assuming instantaneous exchange of labeled water from the microvasculature to the 

surrounding tissue, the analytical solution to the convolution or the difference in 

magnetization as a function of time is a stepwise function: 

𝜟𝑴(𝒕) =
𝟐𝜶𝑴𝟎𝒇𝑻𝟏𝒂𝒑𝒑

𝝀
𝒆
−𝑨𝑻𝑻
𝑻𝟏𝒂

∙

{
 
 
 

 
 
 
  𝟎      𝟎 < 𝒕 < 𝑨𝑻𝑻

  𝟏 − 𝒆

−(𝒕−𝑨𝑻𝑻)
𝑻𝟏𝒂𝒑𝒑      𝑨𝑻𝑻 < 𝒕 < 𝝉 + 𝑨𝑻𝑻

  𝒆

−(𝒕−𝑨𝑻𝑻−𝝉)
𝑻𝟏𝒂𝒑𝒑 (𝟏 − 𝒆

−𝝉
𝑻𝟏𝒂𝒑𝒑)      𝝉 + 𝑨𝑻𝑻 ≤ 𝒕

 

 

(1.5) 
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where M0 is the equilibrium magnetization of tissue and T1app is called the apparent T1, 

and is given by: 

 𝟏

𝑻𝟏𝒂𝒑𝒑
=

𝟏

𝑻𝟏𝐭
+
𝒇

𝝀
 (1.6) 

Considering that T1 of grey matter and blood are similar in values and f/λ is quite small, 

it is not unreasonable to assume that T1a is approximately equal to T1app. Using this 

assumption, CBF can be determined from Equation (1.5). For the condition that the PDL 

> ATT, CBF is given by: 

 

𝒇 =
𝜟𝑴𝝀𝒆

𝑷𝑳𝑫
𝑻𝟏𝒂

𝟐𝜶𝑴𝟎𝑻𝟏𝒂 (𝟏 − 𝒆
−(𝝉+𝑷𝑳𝑫)

𝑻𝟏𝒂 )

 (1.7) 

1.3.4 Confounds to Cerebral Blood Flow Quantification  

Equation (1.7) demonstrates that the relationship between ∆M and CBF depends on the 

proton density or equilibrium magnetization (M0), T1a, labeling efficiency, and ATT. T1a, 

labeling efficiency and ATT can be based on values from the literature; however, 

variability between subjects and variations across brain regions in terms of ATT can lead 

to errors in the calculated CBF.  

The relaxation rate of the tracer depends on its local environment. Consequently, once the 

label diffuses from the blood into the tissue, the relaxation rate shifts from the T1 of 

blood (T1a) to the T1 of tissue (T1t). The one compartment model assumes that T1a and 

T1t are similar. However, if they are not, assigning a one compartment model can lead to 

a ~20% overestimation in grey matter perfusion 
72

. An alternate approach which avoids 

the need for measuring T1t, is to set the acquisition window such that images are acquired 

after the label reaches the microvasculature but before the label diffuses into the tissue. 
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Since the signal remains intravascular, the single compartment model is able to provide a 

robust estimate of CBF 
40

. 

The second confound to measuring CBF is variations in labeling efficiency. The labeling 

efficiency refers to the efficiency of the adiabatic inversion of arterial blood water. In 

pCASL, α is assumed to be 85% 
69

. However, due to magnetic field inhomogeneities and 

blood velocities outside the optimal range (10 – 60 mL/100g/min), this value may be 

lower than this literature value 
40,73

. The labeling efficiency can be measured with phase 

contrast (PC) MRI. PC is a non-invasive technique for which applies a gradient to induce 

a phase shift in moving protons. The signal intensity reflects the direction and speed of 

the protons. To estimate the labeling efficiency, PC images of the feeding arteries of the 

brain acquired over one cardiac cycle are used to measure the CBF volume (mL/min). 

The ratio of the CBF volume measured with PC and the CBF volume measured with ASL 

(i.e. cerebral volume from a T1-weighted image and CBF from ASL) gives the labeling 

efficiency 
40

. Since errors in the labeling efficiency calculation is reflected as a systemic 

shift in global CBF, for studies assessing changes in CBF, all images will be affected in 

the same manner and therefore will not affect the end result. Consequently, in this 

situation, measurement of the labeling efficiency is not essential. 

A third confound to accurate CBF quantification is the dependency of the ASL signal on 

the ATT. The ATT represents the time required for labeled blood water to move from the 

labeling plane to an imaging voxel. To reduce the influence on ATT on the M signal, 

Alsop et al., introduced the concept of introducing a delay between the end of the 

labeling period and the start of image acquisition (i.e. the PLD) to allow all of the labeled 

water to reach the imaging volume 
74

. The challenge with this approach is selecting the 

optimal PLD. That is, if the PLD is too short, CBF will be underestimated as the labeled 

blood has not fully reached the imaging plane, whereas long PLDs lead to substantial 
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signal loss due to T1 decay. While the choice of PLD can be selected from previous 

studies in which the ATT was directly measured, there are variations due to age, gender, 

pathology and within different vascular territories in the brain 
75

. For example, older 

individuals, the age bracket where chronic pain is most prevalent 
2
, have long ATTs 

(~1200 ms) as the vessels in the brain becomes more are tortuous 
43

. Additionally, within 

all individuals, there are increased ATT in white matter, water shed regions or vascular 

border zone regions 
75

.  

Given these facts, measurement of the ATT can improve the accuracy of CBF 

measurements. The interdependence between the ATT and the ASL signal allows for the 

measurement of ATT. As shown in Figure 1.3 and Equation (1.5), the ASL signal is 

consists of 3 parts. The first period is the time when the labeled blood has not reached the 

imaging voxel and therefore the signal is equal to zero.  

 

Figure 1.3: pCASL fractional signal as a function of time. The plot was generated using Equation 

(1.5) and the following parameters: α = 85%, CBF = 60 mL/100g/min, T1a = T1app = 1650 ms, 

ATT = 800 ms, λ = 0.9 mL/g and τ = 1500 ms. 
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As the inflowing labeled blood water reaches the imaging voxel or tissue, the signal 

increases. Finally as the signal decays, the signal decreases. By acquiring ASL images at 

multiple PLDs and fitting the fractional signal to Equation (1.5), the ATT can be 

estimated. Current strategies proposed for measuring ATT, such as those involving blood 

flow crusher gradients or multiple PLDs, tend to be time consuming, suffer from low 

SNR and contamination from intravascular signals; thus, leading to inaccurate 

measurements 
76

. A second approach is to use a relatively low resolution ASL sequence. 

ATT images are fundamentally low resolution since variations are based on large 

vascular territories 
76

. By increasing the voxel size, the time required to acquire ATT 

images is greatly reduced. 

1.4 Reproducibility, Reliability and Precision Measurements 

Analysis of measurement error is an important step towards the widespread use of a new 

technique. Reliability refers to the magnitude of error variance relative to “true” and 

inherent variability between subjects. In other words, it expresses the consistency of test 

and retest measurements made at different time points. Reliability is measured using the 

intra-class correlation coefficient (ICC) 
77

. Although there are six versions, the most basic 

form of the ICC is given by the ratio between the between-subjects (𝜎𝑏𝑠
2 ) variance and the 

total variance (or the sum of between subject variance and the error variance (𝜎𝑒𝑟
2 ): 

 
𝑰𝑪𝑪 =

𝝈𝒃𝒔
𝟐

𝝈𝒃𝒔
𝟐 + 𝝈𝒆𝒓

𝟐
 

(1.8) 

 

In a repeated measures design or a two way mixed model design, error variance is 

considered to come from one of two sources: systematic error (𝜎𝑠𝑒
2 ), or error due to bias 

in the repeated measures, and random error (𝜎𝑒𝑟
2 ), or error due to chance factors 

77
. 

Taking these into account, the ICC becomes: 
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𝑰𝑪𝑪 =

𝝈𝒃𝒔
𝟐

𝝈𝒃𝒔
𝟐 + 𝝈𝒔𝒆

𝟐 + 𝝈𝒆𝒓
𝟐

 
(1.9) 

 

ICC values vary from 0 to 1 where values closer to 1 represent greater agreement 

between measurements. As a general guideline, ICC < 0.4 is denoted as poor, 0.4 – 0.59 

as fair, 0.60 – 0.74 as good, and > 0.75 as excellent 
78

. A notable weakness of using the 

ICC as a measure of reliability is that it is dependent on the variability between subjects 

in the sample. For example, populations with low between-subject variability will have 

artificially deflated ICC values relative to a group with high between subject variability 

even if the variability between repeated measures is small 
79,80

. Consequently, it is 

difficult to generalize results as ICC will vary based on the population. For this reason, it 

is beneficial to assess the reproducibility in conjunction with reliability.  

Reproducibility is defined as the variation in repeated measures from the same subject 

under changing conditions 
81

. In the ASL literature, it is common to use the 

reproducibility to assess variability in resting blood flow or activation patterns from data 

acquired on different days 
82,83

. If the variation between measurements is low, despite the 

changing conditions, the reproducibility will be high. Reproducibility is measured using 

the within subject coefficient of variation (wsCV). WsCV is the ratio of the standard 

deviation of the difference between repeated CBF measurements to the mean CBF 
84

. 

Mathematically it is given by: 

 𝒘𝒔𝑪𝑽 =
𝑺𝑫∆𝑪𝑩𝑭
𝑴𝒆𝒂𝒏𝑪𝑩𝑭

∙ 𝟏𝟎𝟎 (1.10) 

where 𝑆𝐷∆𝐶𝐵𝐹 is the standard deviation of the difference in CBF. WsCV ranges from 0 – 

100%. As a general guideline, wsCV below 20% are considered to be within the normal 

range of ASL studies 
85

. One of the advantages of the wsCV is that it is a normalized 
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parameter and therefore does not depend on the population being studied. This allows for 

comparisons across studies. 

Precision, also known as the positive predictive value is a commonly used metric used to 

assess the ability of a technique to correctly identify relevant information. The precision 

is defined as the ratio of the number of correctly predicted positive cases to the total 

number of predicted positive cases. Mathematically precision is given by:  

 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =

𝑻𝑷

𝑻𝑷 + 𝑭𝑷
∙ 𝟏𝟎𝟎 

(1.11) 

where TP represents the amount of true positives and FP represents the number of false 

positives 
86

. Precision can be used to quantitatively assess the extent of false positives in 

activation maps.  

 

Figure 1.4: Depiction of precision measurement. The region shaded in: pink represents false 

negatives, blue represents the false negatives and purple represents true positives. 

As shown in Figure 1.4, the precision would be the ratio of the purple region to the total 

area of the blue and purple region. Precision ranges from 0 – 100%, where higher values 

indicate fewer false positives and thus greater similarity between the detected activation 

and the true activation.  
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1.5 Longitudinal Studies 

Knowledge regarding brain function in healthy and chronic pain patients originates from 

cross-sectional functional neuroimaging studies 
19,87,88

. In general, data are compared 

across groups that differ in the variable of interest, but bear great similarity otherwise. 

For example, to assess regions associated with pain, chronic pain patients are compared 

to age-matched healthy controls 
87

. However, to investigate the plasticity of the brain, 

simple comparison of controls against patients is not enough. Convergent evidence from 

cross-sectional studies indicates that there are changes in brain activity related to the 

duration of the disease process 
13,14

. In addition, these conclusions represent a nomothetic 

generality and can misrepresent processes which occur in a single individual 
89,90

. For 

these reasons, it would be beneficial to test and confirm these hypotheses with 

longitudinal studies. Longitudinal studies present a more direct, idiographic measurement 

of process-related changes that recognizes individual differences. The distinguishing 

feature of longitudinal studies is that subjects are observed repeatedly allowing for direct 

assessment of slow changes in CBF over time. Since each subject serves as their own 

control, confounding effects, such as differences in age and gender no longer confound 

the results. This allows for studying not only chronic pain, but processes that impede and 

affect normal development as well as the progression of other pathologies. 

1.5.1 Longitudinal Studies with ASL: Challenges and Previous work 

As explored in Section 1.2, primarily attributed to its insensitivity to task frequency, ASL 

is arguably the best tool at our disposal for longitudinal neuroimaging of changes in brain 

function. In addition to being non-invasive, the quantitative feature of ASL – namely its 

ability to measure CBF – makes it well suited for comparing functional data acquired in 

separate imaging sessions 
34

. This was originally demonstrated by Wang et al., who 

compared the ability of BOLD and ASL to detect brain activity generated from 
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alternating rest and finger tapping periods that were separated by 0.5, 1, 2.5, 5, 10, 20 

minutes, 1 and 24 hours 
34

. Shown in Figure 1.5 are the BOLD group t-maps 

corresponding to intervals of 30 s and 1 h. These images demonstrated the expected 

robustness of the BOLD signal when rest and task are separated by 30 seconds; however, 

the activation disappears when the rest and task epochs are acquired in different sessions 

separated by 1 hour 
91

. In contrast, activation was detected by ASL at both time intervals, 

including a separation of 24 hours; although the statistical power appears to decrease as 

the separation increased, as indicated by the decrease in cluster size. 

 

Figure 1.5: Talairach normalized group activation maps of motor task paradigm when rest and 

task were separated 30 s and 1 h with BOLD and perfusion (ASL) imaging. Adapted from Wang 

et al.
34

. 

Since noise analysis was not performed in this study, a question that remains is the 

sources of variability leading to decreased activation at low task frequency. One possible 

explanation is that analysis was performed at a group level. Group analysis has decreased 

sensitivity for detecting differences between states due to the high variability between 

subjects 
92

. There is heavy reliance on the accuracy of the normalization procedure as 

spatial mismatch of cortical structures reduces the statistical power. In addition because 

of this high variability, similar to cross sectional studies, this analysis represents a 
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nomothetic generality, that is, conclusions made from a group study may not apply to 

individuals. 

A second factor is the inherently low SNR of ASL which impedes its sensitivity. When 

comparing data between sessions, due to the additional sources of variance, the statistical 

power to detect changes is reduced and therefore the cluster size decreases. Sources of 

noise in an ASL images can be characterized by scanner and subject noise 
93,94

. Scanner 

noise reflects changes in signal related to: (1) fluctuations in signal caused by 

temperature dependent motion of electrons (thermal noise) and (2) fluctuations in the 

functioning MRI hardware including drift and inhomogeneities in the static magnetic 

field (systemic noise). Subject noise is generally defined as variability in the signal 

caused by the subject's physiology excluding the neuronal activity of interest 
95

.  

While each of these can reduce the SNR and thus the reproducibility of the signal, certain 

features of ASL images mitigate their effects. The signal difference between subsequent 

control and label pairs is ~1% due to the T1 relaxation of blood. Multiple repetitions are 

acquired and averaged to ensure a sufficient SNR. This averaging also reduces thermal 

noise. Systemic noise, in particular drift, is reduced by subtracting control-label pairs 
35

. 

Hence, much of the scanner related noise is small in magnitude can be removed with 

preprocessing steps 
96

. Subject noise within a session can have severe effects on 

reproducibility of resting CBF. Gross head motion within an imaging session causes 

blurring which renders the data unusable. With the use of foam to keep the head in place, 

as is convention, sequences with background suppression, as well as motion correction 

algorithms and spatial smoothing, this variability can be reduced 
43

. Consequently for 

within-session data, the predominant source of variability is measurement or scanner 

error, which in most cases is small 
97

. Therefore, studies have been able to demonstrate 

high reproducibility of within-session activation acquired on different days 
82,98

.  



20 

 

 

 

 

 

Variability between sessions on the other hand, is greatly influenced by physiologic 

factors and therefore it is important to take steps to reduce its influence 
85,99,100

. When 

data are compared between days, additional variability due to transient effects (e.g., 

mood, arousal, caffeine, food consumption etc.) and between-session co-registration 

errors due to variability in head positioning in the scanner can result. Previous studies 

have encouraged subjects to abstain from consuming vasoactive substances and/or scaled 

the CBF images (e.g. by whole-brain grey matter perfusion), to remove transient changes 

in global CBF 
101,102

. However, scaling needs to be approached with caution as it has the 

potential to remove relevant variability 
102

. Between-session co-registration errors are 

particularly detrimental in multi-slice acquisitions with gaps between slices. Few studies 

have assessed the ability of ASL to detect between-session activation, or activation when 

rest and task are from separate imaging sessions.  

A number of studies have assessed the reproducibility and reliability of resting ASL data 

within time frames ranging from hours 
85,97

, weeks 
99,103

 to months 
104

. These studies 

demonstrated good reproducibility (wsCV < 20%) of resting perfusion. A common 

finding was that shorter scan intervals had less variability 
82,99

. For example, Floyd et al. 

found that the coefficient of variability was 5.8% when rest periods were separated by an 

hour and increased to 13% when they were separated by a week 
99

. Reproducibility in 

resting perfusion measured with ASL has also been shown to be comparable to PET 

105,106
. In a study by Heijtel et al., it was shown that the repeatability index of CBF 

measurements between modalities (22.9%) was similar to the between-session 

repeatability for each modality (i.e. PET (27.6%) and ASL (25.1%)). Since the sources of 

noise in PET and ASL are different, agreement supports the idea that detected changes 

are related to biological processes 
85

. Among the labeling schemes, pCASL has been 

shown to have the highest reproducibility 
100,102

. This is attributed to its superior SNR 

relative to PASL and inversion efficiency relative to CASL. Within mean grey matter, the 
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wsCV within-session, after an hour and after a week were: 3.5%, 5.5% and 8.5% 

respectively. These figures represent on average a 24% decrease in variability relative to 

PASL 46% decrease relative to CASL. More recently, studies have shown good 

reproducibility across multiple centres 
103

 and multiple vendors 
107

. While these studies 

are a good indication of the applicability of ASL within a clinical setting, all of them 

focused on region-of-interest (ROI) analysis. ROI analysis is commonly used for both 

longitudinal and cross sectional assessments of brain function. However, voxel-wise 

analysis bears greater clinical relevance as regions impacted by the disease may not be 

known a priori. In addition, accurate delineation of ROIs is performed manually and thus 

is susceptible to variability between operators, requires experienced personnel and is time 

consuming 
108

.  

The few studies that have performed voxel-wise noise analysis of resting CBF 

demonstrated high correlation between within-session measurements and no significant 

differences in resting CBF between sessions 
102,109

. While baseline variability is an 

important factor in the detection of activation in longitudinal studies, on its own it is not 

indicative of the reproducibility of the signal. Inherent noise in both rest and task data 

introduces uncertainty in regards to what can be considered true activation. Therefore, 

full characterization of the detection limits can only be accomplished by pairing baseline 

with task data.  

Currently, there are two studies which have conducted a similar line of work. The first 

study, demonstrated the ability of ASL to detect activation within an individual against a 

group baseline template 
110

. Activation was generated by comparing resting perfusion 

template created from 25 healthy subjects and activation data from a single subject 

performing a motor task. Although, activation obtained using the group template and 

standard general linear model (GLM) analysis were comparable, use of a template is 
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heavily dependent on the accuracy of the spatial normalization and how well the template 

characterizes the data 
22,24,92

. Therefore, its utility within the context of longitudinal 

studies is limited. In the second study, using a visually cued motor task (finger tapping), 

the ability of ASL to detect activation when rest and task were separated by 30 days was 

compared to activation data generated from rest and task data acquired within the same 

session 
111

.  

 

Figure 1.6: Individual subject activation maps for motor-visual activation task. Panels to the left 

are within-session activation, whereas for panels to the right rest and task are separated by 30 

days. Adapted from Borogovac et al.
111

 

Within-session data clearly demonstrated the expected activation in the occipital lobe and 

the primary motor cortex and supplementary motor cortex (Figure 1.6, left panel). 

However, when rest and task data were separated by 30 days, significant voxels unrelated 

to the task were observed (Figure 1.6, right panel). In particular, the magnitude and extent 

of activation in the motor regions and occipital lobe have increased and spurious 

activation is detected. As previously discussed, between-session variability is dominated 

by physiological sources of error. Therefore, it is highly possible that the observed 

spurious activation is caused by between-session repositioning errors and the increased 

magnitude and extent of activation is related to fluctuations in basal blood flow between 

sessions. These sources of error are detrimental for longitudinal studies, as false positive 

activation could be misinterpreted as activation related to physiology. By taking these 
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sources of variation into account, the aim of my thesis is to investigate whether ASL has 

the sensitivity to detect longitudinal changes in CBF within an individual at the voxel-

wise level. 
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Chapter 2  

2 Methods 

2.1 Study Design 

The purpose of this study was to investigate the ability of ASL to detect long-term 

changes in brain function through the associated changes in regional CBF. By accounting 

for sources of variance that can have a significant impact on longitudinal monitoring, the 

aim was to show that ASL has the sensitivity to detect activation-induced changes in 

regional CBF over periods extending up to a month despite its relatively poor spatial 

resolution (4 x 4 x 6 mm
3
). Previous studies have demonstrated low variability in resting 

CBF and the ability of ASL to detect activation between imaging data acquired on 

separate days
34,102,109,111

. However, most of these studies relied on ROI-based analysis 

rather than the voxel-wise as would be performed on data collected in the same imaging 

session. This work extends on these studies by investigating voxel-wise reproducibility, 

reliability and the precision of activation maps produced when resting data were 

separated from task data by periods up to a month. 

To assess the ability of ASL to detect longitudinal activation, a simple finger tapping task 

was chosen because it is a well-studied paradigm that produces focal and robust 

activation in the sensorimotor network
112

. These characteristics are advantageous for 

assessing the quality of activation maps generated from data acquired on separate days 

because it is relatively straightforward to distinguish between true activation and false 

positives based on the well-defined activation patterns associated with motor tasks. To 

replicate a potential longitudinal study design that could be used in a clinical cohort, for 

instance to assess treatment response in chronic-pain patients, data were collected in three 

imaging sessions separated by a week and a month. 
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2.1.1 Activation Paradigm 

In each of the three imaging sessions, ASL images were acquired continuously (see 

Section 1.3.1 for details) during a 5-min rest period followed by a 5-min period of self-

paced sequential finger tapping (right-hand). Volunteers were instructed to lay still with 

their eyes closed during the rest period and not focus on a particular task.  

 

Figure 2.1: Sequence for sequential finger tapping; (1) thumb to index finger, (2) thumb to 

middle finger, (3) thumb to ring finger, (4) thumb to little finger, (5) thumb to ring finger, (6) 

thumb to ring finger, and (7) restarting the sequence from the beginning. 

To start the task period, volunteers were verbally cued to begin briskly tapping the tip of 

their thumb to each finger with their right hand in a sequential manner, starting with the 

index finger and ending on the little, followed by a repetition of the task in reverse 

(Figure 2.1).  

 

Figure 2.2: Schematic of motor task paradigm. During the ASL sequence, volunteers perform a 

rest and finger tapping task twice. Each epoch lasted 5:36 min (approximately 6 min). Between 

the two runs, the equilibrium image (M0) is acquired. 
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This sequence was repeated throughout the task period. The entire rest-task paradigm was 

performed twice within each imaging sessions with a short delay (~ 1 min) between runs 

(Figure 2.2). Volunteers were monitored from the control room of the MRI suite to 

ensure the task was being performed properly. 

Dividing the rest and task data into two distinct periods, rather than using a more 

traditional block design consisted of shorter epochs (e.g. 30 s), was chosen in order to 

combine rest and task CBF data from different imaging sessions. That is, baseline CBF 

reproducibility and reliability was assessed: (1) within session by comparing CBF images 

from the two rest periods, and (2) between sessions by comparing the rest CBF images 

from the first session to its counterpart from the second session (1 week separation) and 

the third session (1 month separation). In a similar fashion, activation maps associated 

with finger tapping were generated from within-session and between-session analysis. 

Within-session activation maps were obtained using rest and task CBF images from the 

same run within a session. Between-session maps were generated using the task CBF 

images from session 1, and either the rest CBF images from the second (1 week 

separation), or the third session (1 month separation). For the between-session analysis, 

the task data always remained the same (i.e. from session 1) and, therefore, any 

deviations in the activation maps would be caused by either fluctuations in resting CBF 

across days or registration errors when aligning images from separate sessions. 

Activation data from runs 1 and 2 were concatenated separately; task data from run 1 was 

always compared to baseline data from run 1 (and similarly for run 2), to avoid 

confounding effects, such decreased attentional processing between runs 
82

. Provided that 

sources of between-session variation, such as repositioning errors are minimal, variability 

in baseline CBF should be similar to the within-session variation. Likewise, the between 

and within-session activation maps should be similar. 
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2.1.2 Arterial Transit Time Imaging 

Signal changes caused by variations in ATTs can be a significant confounder to ASL 

perfusion measurements. Accurate quantification of CBF when using an ASL protocol 

with a single PLD relies on the assumption that the labeled arterial blood water will reach 

the imaging slice and exchange with tissue water prior to image acquisition, which may 

not always occur. In addition, variations in ATT across days could reduce the 

reproducibility of the CBF images. Therefore, a second goal of this study was to acquire 

ATT images in each of the three imaging sessions in order to determine the between-

session variability in ATT. 

A challenge with measuring ATTs is it requires acquiring ASL images at multiple PLDs, 

which can significantly increase the overall acquisition time (up to 25 minutes) 
69

. For 

this reason, ATT imaging is not routinely performed 
111

. One approach for reducing the 

imaging time, which was adapted in this study, is to collect ASL images used to map 

ATT at a lower spatial resolution since variations in ATTs tend to occur between large 

vascular territories 
69

. Lowering the image resolution (e.g. from 3 x 3 x 5 mm
3
 to 12 x 12 

x 4 mm
3
) improves voxel-based SNR, thereby reducing the number of acquisitions 

required to map ATT.  

2.2 Volunteers 

The study was approved by University Research Ethics Board and all volunteers provided 

written informed consent prior to each session. Seven healthy right-handed volunteers (2 

male, 5 female, aged 22.6 ± 1.3 years) participated in the study.  
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2.3 Between-Session Variability 

Subjects were instructed to get adequate sleep and abstain from consuming coffee and 

food for at least 6 hours and alcohol for 24 hours prior to scanning due to their potential 

vasomotor effects on CBF 
113

. The majority of scans were scheduled in the morning to 

minimize the effect of diurnal CBF fluctuations 
85

.  

An immobilizing head mold was used to restrict motion within a session and to reduce 

variability in head position between sessions. The polyurethane foaming agent was 

formed by the reaction of methylene diphenyl diisocyanate (MDI) with a polyol (Alpha 

Cradle, Smithers Medical Products, Inc.). The foaming agent was poured into a bag and 

which was placed under the volunteer's head inside the head coil. Anatomical landmarks 

(nose and eyebrows) were aligned to location markers on the head coil using the external 

laser positioning system (LAP Laser, Lüneburg, Germany). Subjects were required to 

remain still while the mold set (approximately 15 minutes). On return visits, each 

subject’s individual head mold was reused in order that the position of their head from 

the first session could be reproduced at closely as possible.  

As a secondary step to further minimize errors due to image misalignments, manual 

alignment was performed based on comparing structural MRIs acquired in the first and 

subsequent session. First, using a sagittal structural image, the anterior-to-posterior 

commissure angle was compared to that measured in the first session and a 0 - 6° 

adjustment in the angle of the slice was made to reproduce the same slice positioning. 

Second, using the axial structural image, slice positioning in the head to foot direction 

was adjusted to match the slice location on the first day by comparing easily identifiable 

landmarks (i.e. eyes, skull and acoustic nerves). Typically, the axial slice positioning was 

adjusted by 0 - 2.5 mm to improve the alignment relative to the images acquired in the 
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first session. Following these adjustments, a second axial structural MRI image was 

acquired to confirm the accuracy of the axial positioning.  

2.4 Data Acquisition 

All imaging was conducted using a Siemens 3 T Biograph mMR scanner equipped with a 

32-channel head coil (Siemens Medical Systems, Erlangen, Germany). Imaging sessions 

began with a localizer scan, followed by the acquisition of high-resolution sagittal T1-

weighted magnetization prepared rapid gradient echo (MPRAGE) image (repetition time 

(TR)/echo time (TE): 2000/2.98 ms, flip angle: 9°, field of view (FOV): 256 x 256 mm
2
, 

176 slices, voxel size: 1 mm
3
 isotropic resolution, scan duration: 3:35 min). This imaging 

volume was used for sagittal manual image alignment, spatial normalization of the ASL 

images to Montreal Neurological Institute (MNI) co-ordinates and to generate grey and 

white matter fractional tissue maps. Axial turbo spin echo (TSE) T2-weighted images 

(TR/TE: 6100/106 ms, flip angle: 120°, FOV: 220 x 220 mm
2
, 31 slices, voxel size: 0.57 

x 0.57 x 4 mm
3
, gap: 0.8 mm, scan duration =2:14 min) were acquired for the previously 

described axial manual online image realignment. 

ASL images were acquired using single-shot 3D gradient/spin-echo (GRASE) sequence 

with the following parameters: TR/TE: 3500/22.76 ms, label duration: 1500 ms, PLD: 

1200 ms, FOV: 240 x 240 mm
2
, 24 axial slices, voxel size = 3.8 x 3.8 x 6 mm

3
, scan time 

= 11:12 min) 
114

. A pseudo continuous labeling scheme was applied 90 mm below the 

center slice. As described in section 2.1.1, the pCASL sequence was performed twice for 

the two finger tapping runs. Each run, a total of 96 control-tag pairs were acquired for the 

rest and task period (48 control-tag pairs for each condition). Between the runs, an image 

set of the equilibrium magnetization was acquired with the same GRASE sequence: 

TR/TE: 5000/22.76 ms, PLD: 4000 ms and scan time: 30s.  
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For ATT mapping, ASL images were acquired at five PLDs: 700, 1300, 1900, 2500 and 

3100 ms. The other changes to the sequence included 5 control/tag images per PLD, 

TR/TE: 6000/18.76 ms, FOV: 500 x 500 mm
2
, voxel size: 12 x 8 x 6 mm

3
, and a total 

scan time of 5 min. 

2.5 Image Processing and Analysis 

2.5.1 Perfusion-Weighted Imaging 

Data was first converted from Digital Imaging and Communications in Medicine 

(DICOM) format to Neuroimaging Informatics Technology Initiative (NIfTI) format. 

Images were checked for gross motion: translations greater than 3 mm and rotations 

greater than 3º as defined by Wang et al. 
115

. Image processing was performed with SPM8 

(Wellcome Trust Center for Neuroimaging, University College London, UK), FSL 

(FMRIB Software Library, Functional Magnetic Resonance Imaging of the Brain Centre, 

University of Oxford, Oxford, UK) and MATLAB (2012a, The MathWorks, Natick, 

MA). The main pre-processing steps are summarized in Figure 2.3. Raw pCASL and M0 

data from all sessions were realigned to the first image using a least squares approach and 

a six-parameter rigid body spatial transformation. In this step, the first scan of sessions 2 

and 3 were aligned to the first scan of session 1. Next, the remaining scans within each 

session were aligned to the newly aligned first scan of the session (individually). 

Together, these steps corrected for possible differences in head positioning between 

sessions and within-session motion. Raw ASL data were pair-wise subtracted to generate 

∆M images. Pairwise subtraction of control and label images was performed using 

ASLtbx 
115

. T1-weighted images were skull stripped using FSL brain extraction tool 

(BET) to improve the co-registration and segmentation process 
116

. Skull-stripped T1-

weighted images were then segmented using unified segmentation. This step served two 

purposes: First, to generate a grey matter mask used to estimate of grey matter CBF; and 
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second, to generate normalization parameters based on morphology of the brain 
117

. Each 

subject’s M0 image was co-registered to their respective skull-stripped high-resolution 

T1-weighted image with a rigid body transformation to correct for in-plane shifts and 

rotations and to improve the accuracy of the normalization process.  

 

Figure 2.3: Overview of preprocessing steps. Green arrows represent the structural processing 

pipeline and red arrows represent perfusion weighted image pipeline. Briefly, (1) images were 

motion corrected; (2) ASL images were pairwise subtracted; T1-weighted images were skull 

stripped (3a) and segmented into grey matter and white matter (3b); (3) M0 images were co-

registered to skull stripped T1-weighted images (from step 3a) and the parameters were applied to 

the ∆M images; (4) ∆M and M0 images were smoothed; (5) CBF was calculated and (6) spatially 

normalized by applying normalization parameters from the segmentation step.  

Transformations were estimated iteratively by minimizing the cost function representing 

the sum of squares difference in intensities between the anatomical and functional image. 

Parameters required to transform the M0 image were applied to the time series of ∆M 
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images. The resulting ∆M images were then smoothed with an isotropic 6 mm full width 

at half maximum (FWHM) Gaussian kernel to improve the SNR and eliminate any 

remaining anatomical variability. ASL images were converted into physiological units 

(mL/100g/min) using a single compartment flow model (Equation (2.1)) 
118

.  

 

𝒇 =
𝜟𝑴𝝀𝒆

𝝎
𝑻𝟏𝒂

𝟐𝜶𝑴𝟎𝑻𝟏𝒂 (𝟏 − 𝒆
−(𝝉+𝝎)
𝑻𝟏𝒂 )

 (2.1) 

The following assumptions were made: λ = blood/tissue water partition coefficient, 0.9 

g/mL 
71

; α = labeling efficiency 86% 
69

; ω = post-labeling delay of 1.2 s; τ = label 

duration 1.5 s; and T1a = 1.650 s 
119

. Deformation parameters generated in the 

segmentation step were used to transform CBF maps into MNI space. 

2.5.2 Arterial Transit Time Images 

All raw ASL data were realigned using the same two-step process as the single PLD ASL 

data. Using ASLtbx, control images were subtracted from their labeled pair. The FSL 

BET routine was used to skull strip both the T1-weighted and ATT images. A voxel-wise 

parametric fit of perfusion-weighted data to the one compartment kinetic model was 

performed using the fast ASL and BOLD Bayesian estimation routine (FSL, FABBER) 

120
. The Bayesian approach provides more robust estimates of ATT and CBF using prior 

knowledge about the parameters (i.e. CBF, ATT, bolus length, T1 of tissue) based on 

biophysically realistic assumptions 
121

. The model included spatial priors and was iterated 

200 times to maximize convergence. The resulting estimate of ATT was co-registered to 

their respective T1-weighted image volume using a rigid-body transformation in SPM. 

Next, skull stripped T1-weighted and ATT images were normalized to the MNI template 

using the SPM T1-weighted template. 
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2.6 Reproducibility of Arterial Spin Labeling 

2.6.1 Variability in Resting Cerebral Blood Flow 

Using a 2 x 3 (2 runs / 3 sessions) voxel-wise repeated measures ANOVA that was 

implemented in MATLAB, variance was decomposed into within and between-session 

contributions, which were used to calculate reproducibility and reliability. 

Reproducibility was measured using the wsCV 
122

 given by: 

 
𝒘𝒔𝑪𝑽 =

𝑺𝑫∆𝑪𝑩𝑭
𝑴𝒆𝒂𝒏𝑪𝑩𝑭

∙ 𝟏𝟎𝟎 (2.2) 

where 𝑆𝐷∆𝐶𝐵𝐹 represents the standard deviation of CBF between repeated measurements 

(i.e. for within-session, 𝑆𝐷∆𝐶𝐵𝐹 represents the standard deviation between runs, and for 

between-session, it represents the standard deviation between sessions). 𝑀𝑒𝑎𝑛𝐶𝐵𝐹 is the 

average CBF across all sessions. Reliability was measured using a two way mixed model 

ICC of absolute agreement 
77

. This is given by: 

 
𝑰𝑪𝑪 =

𝝈𝒃𝒔
𝟐

𝝈𝒃𝒔
𝟐 + 𝝈𝒔𝒆

𝟐 + 𝝈𝒆𝒓
𝟐

 (2.3) 

where 𝜎𝑏𝑠
2  is the between subject variance, 𝜎𝑠𝑒

2  is the systemic error (variance between the 

repeated measures), and 𝜎𝑒𝑟
2  is the error variance. For the within-session ICC, 𝜎𝑠𝑒

2  

represents the variability between runs, and for the between-session ICC, 𝜎𝑠𝑒
2 , represents 

the variability between sessions. Reliability and reproducibility were also assessed within 

regions of interests (ROIs): two based on tissue type (grey and white matter), the four 

major lobes (frontal, parietal, temporal, occipital lobe) and pain regions (anterior 

cingulate cortex, amygdala, hippocampus, insular cortex, posterior cingulate cortex, 

somatosensory cortex and thalamus). Lobe and pain region ROIs were defined using the 

Automated Anatomical Labeling (AAL) atlas within the wfupickatlas toolbox in SPM8. 
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Grey and white matter masks were generated by thresholding the corresponding SPM8 

probability maps by 80 and 60% respectively. Measurements of reliability and 

reproducibility within ROIs were generated by multiplying ICC and wsCV images by 

dichotomous masks and averaging the values within the defined region.  

A 2 x 3 repeated measures ANOVA was conducted with IBM SPSS Statistics (Version 

20.0, IBM Corp, Armonk, NY) to test for differences in resting CBF across sessions and 

between lobes and tissue types. To assess the effect of day-to-day variations in baseline 

CBF on the reproducibility and reliability of CBF, voxel-wise analysis of resting CBF 

was performed using absolute CBF (aCBF) and CBF intensity normalized by mean grey 

matter CBF (i.e. relative CBF, rCBF). 

2.6.2 Variability in Arterial Transit Time 

A group mean ATT map was calculated for each session to visualize regional variability. 

Reproducibility of ATT was assessed at the voxel-wise level and within grey matter. For 

each voxel, wsCV between subjects and between sessions was calculated using variance 

derived from the repeated measures ANOVA implemented in MATLAB. In addition, 

using SPM, a contrast comparing ATT across sessions (within-subjects repeated 

measures design) was formulated to test for significant voxel-wise differences. Since 

ATT patterns across the brain are dependent on which vessel they are being supplied by, 

namely the anterior cerebral artery (ACA), middle cerebral artery (MCA) or posterior 

cerebral arteries (PCA), reproducibility was assessed within these regions. ROIs of the 

vascular territories were defined using the AAL template in wfupickatlas based on 

templates established by Tatu et. al 
123

. A 1 x 3 (1 run x 3 sessions) repeated measures 

ANOVA was used to test for differences in ATT between sessions and between vascular 

territories in SPSS.  
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2.6.3 Motor Activation 

2.6.3.1 Reliability and Reproducibility 

Activation maps were generated at the subject level for each contrast. Contrasts were 

generated by concatenating task data from the first session with rest data from: (a) the 

same session, (b) the second session at 1 week and (c) the third session at 1 month as 

shown in Figure 2.4.  

 

Figure 2.4: Schematic describing the formation of activation contrasts based on within-session 

data and between-session data (1 week and 1 month). Notice that for each of the contrasts, the 

task remains the same, while the rest period changes. 

Analyses were performed using aCBF and rCBF data sets. Since normalizing by the grey 

matter CBF has no effect on within-session activation (i.e., both rest and task data sets are 

scaled by the same intensity), only aCBF activation maps were generated for the within-

session analysis. Thus, a total of 5 contrasts were generated for each subject. The first 

image set of each series was removed to as the magnetization was not at equilibrium. It is 

important to emphasize that the task data remained the same for all contrasts, while the 
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rest data varied based on which imaging session it was obtained. Activation maps were 

generated using the standard first level GLM analysis in SPM8. Areas of activation were 

identified with the t statistic after correction for multiple comparisons using the family 

wise error rate (FWE) (p < .05) and no cluster size threshold.  

2.6.3.2 Precision of Motor Task Activation 

Precision was used to assess the number of false positives detected within session 

compared to when rest and task were separated by either a week or a month. Significant 

within-session activation, as detected by GLM analysis, was used as the ground truth. To 

avoid bias, activated regions from run 2 data were used as the ground truth for the run 1 

analysis and vice versa. In addition, masks were dilated by 3 voxels isotropically to 

include additional voxels related to motor activation. Voxels were classified as a TP or 

FP based on their state (activated or not activated) relative to ground truth.  
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Chapter 3  

3 Results 

3.1 Study Demographics 

Five female and two male right-handed volunteers aged 22.6 ± 1.3 years participated in 

the study. Subjects were scanned during 3 sessions separated by a week (7.0 ± 0.5 days) 

and a month (28.9 ± 2.5 days). Task data from the first run of the first session for subject 

1 was removed from the analysis because the task was not performed correctly. A 

summary of scan times for each subject is displayed in Table 3.1. While the majority of 

the scans took place in the morning, 5 of 21 scans took place in the afternoon due to 

scheduling conflicts.  

Table 3.1: Scan times for each subject. Scans taken in the afternoon are shown in bold. 

Subject Session 1 Session 2 Session 3 

1 9am 4pm 9am 

2 9am 2pm 1pm 

3 9am 2pm 9am 

4 9am 9am 9am 

5 9am 9am 9am 

6 1pm 9am 9am 

7 7am 8am 9am 

3.2 Alignment of Images 

Figure 3.1 shows T2-weighted images of a representative subject acquired during three 

sessions separated by a week and a month (relative to the first session). No additional 

post processing steps were applied to these images. Notice the good alignment of the 

images from the second and third session relative to the image from the first session, 

despite the separation in time. Within-session motion was characterized in terms of the 
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rigid transformation (translation and rotation) between the first image of the first run 

relative to the first image of the second run required to align images in the realignment 

step. Similarly, between-session motion was defined as the difference in translation 

between the first images from the two separate sessions (i.e. the first session and either 

the second or third session). 

 

Figure 3.1: T2-weighted images acquired during three imaging sessions. Despite the separation 

in time and absence of post processing steps (i.e. realignment), the images are near identical. For 

this particular subject, the between-session parameters required to align images were: 0.06 ± 0.02, 

1.26 ± 0.62 and 0.43 ± 0.55 mm translations in the x, y, and z direction respectively and 0.36 ± 

0.25, 0.09 ± 0.02 and 0.02 ± 0.02º rotations in the pitch roll and yaw direction, respectively. 

Averaged rotation (roll, pitch, yaw) and translation (x, y, z) parameters from the 

realignment step within- and between-sessions are shown in Table 3.2. Transformations 

required to align images within the same session were similar to those when aligning 

images from two separate sessions. No significant differences was found between the 

within-session and between-session translation parameters; although, the magnitude of 

the latter was generally higher. 
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Table 3.2: Mean translation and rotation parameters within and between sessions. 

   Translation (mm)  Rotation (degrees) 

 x y z  pitch roll yaw 

Within 

Session 
0.30 ± 0.50 1.48 ± 0.37 0.46 ± 0.66  0.22 ± 0.08 0.14 ± 0.10 0.09 ± 0.08 

Between 

Sessions 
0.45 ± 0.76 0.97 ± 0.19 0.67 ± 0.71  0.36 ± 0.38 0.23 ± 0 26 0.14 ± 0.28 

3.3 Analysis of Resting Cerebral Blood Flow 

3.3.1 Mean Resting Blood Flow 

Figure 3.2 shows group averaged mean resting aCBF maps for each session. Within grey 

matter the mean CBF was 55.9 ± 9.05, 58.2 ± 4.9, 56.0 ± 5.8 mL/100g/min for sessions 1, 

2 and 3 respectively.  

 

Figure 3.2: MNI normalized group average mean resting CBF in ml/100g/ml for sessions 1, 2 

and 3. (N=7) 

Using the FWE rate (p < .05), voxel-wise within-subjects repeated measures ANOVA 

revealed no significant differences resting absolute or relative CBF across sessions or 
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between runs. Table 3.3 summarizes mean CBF across subjects within each ROI for each 

session and run. Mean CBF demonstrates consistent flow over time. Differences in CBF 

within session (run 1 vs run 2) and between sessions (session 1 vs session 2 vs session 3) 

were not significant for any of the ROIs. Since there was no significant main effect of 

session on CBF, pairwise comparisons between individual sessions were not assessed. 

There was also no significant difference in CBF between the 4 major lobes; however, 

white matter CBF was significantly lower than grey matter CBF (p < .05).  

Table 3.3: Mean resting CBF (ml/100g/ml) in select ROIs (N = 7). (± standard deviation) 

 Session 1 Session 2 Session 3 

ROI Run 1 Run 2 Run 1 Run 2 Run 1 Run 2 

Tissue Class       
Grey Matter 57.0 ± 8.8 54.8 ± 9.3 59.3 ± 5.0 57.0 ± 4.8 56.0 ± 5.5 55.9 ± 6.1 

White Matter 45.1 ± 7.6 43.7 ± 6.7 47.9 ± 2.9 45.3 ± 2.6 44.8 ± 5.1 44.8 ± 4.6 

Lobes       

Frontal Lobe 57.2 ± 9.7 54.7 ± 9.6 59.4 ± 5.7 57.4 ± 4.7 56.2 ± 5.5 56.0 ± 5.7 

Temporal Lobe 57.0 ± 8.5 54.6 ± 8.5 59.5 ± 4.7 56.4 ± 3.9 56.1 ± 5.6 55.7 ± 5.2 

Occipital Lobe 56.8 ± 9.7 55.6 ± 10.0 59.8 ± 8.2 56.7 ± 6.6 56.6 ± 9.6 56.9 ± 9.0 

Parietal Lobe 56.5 ± 10.4 54.4 ± 9.6 58.6 ± 5.4 56.2 ± 4.3 55.3 ± 6.5 55.5 ± 6.5 

Pain Regions       

Anterior Cingulate 60.4 ± 8.9 57.2 ± 9.9 62.9 ± 5.6 60.3 ± 5.2 59.6 ± 5.3 59.2 ± 6.0 

Amygdala 42.1 ± 5.3 41.0 ± 5.7 46.1 ± 4.5 43.8 ± 3.9 42.3 ± 3.4 42.8 ± 4.4 

Hippocampus 43.2 ± 5.0 42.1 ± 6.6 46.1 ± 3.9 44.5 ± 3.4 43.3 ± 4.0 44.1 ± 4.3 

Posterior Cingulate 55.0 ± 8.1 52.6 ± 7.0 56.7 ± 4.2 54.9 ± 2.5 54.7 ± 5.1 54.6 ± 5.0 

Somatosensory Cortex 52.5 ± 6.6 52.8 ± 5.9 57.8 ± 4.2 53.2 ± 3.1 51.7 ± 5.0 52.3 ± 4.0 

Insular Cortex 51.8 ± 9.1 49.7 ± 8.1 54.3 ± 5.5 52.1 ± 4.0 51.2 ± 5.8 51.3 ± 6.2 

Thalamus 42.7 ± 8.2 46.0 ± 6.0 50.4 ± 3.9 44.8 ± 4.4 40.3 ± 7.3 44.4 ± 7.4 

3.3.2 Reproducibility of Resting Blood Flow 

WsCV maps assessing variability in resting CBF within- and between-sessions are shown 

in Figure 3.3. The histogram represents the frequency distribution of voxel-wise wsCV 

values for within and between-session analysis. Results are presented for error analysis of 

absolute and relative CBF.  



41 

 

 

 

 

 

 

Figure 3.3: Relative and absolute voxel-wise wsCV maps for: (A) within-session aCBF images 

(B) between-sessions aCBF images (C) within-session rCBF images, and (D) between-session 

rCBF images. The corresponding histograms to the right display the distributions of voxel-wise 

within- and between-sessions wsCV values for both aCBF and rCBF data sets. 

All wsCV maps were relatively homogeneous throughout cortical grey matter. The 

corresponding mean wsCV values for aCBF were 9.1 ± 5.2% and 10.0 ± 4.9% for the 

within-session and between-session analyses. Using the rCBF images, within-session 

wsCV reduced to 4.7 ± 4.5% and between-session wsCV reduced to 5.7 ± 4.5%. It is 

evident from visual inspection of the wsCV maps that there was a global increase in 

wsCV in the aCBF images compared to the rCBF images. This increased variance for 

aCBF is reflected by its broader and right-shifted distribution in the histograms for both 

the within-session and between-session results, and confirmed by the ROI analysis (Table 

3.4). Average wsCV values in the majority of ROIs for both within and between-session 

results were higher for aCBF compared to rCBF.  
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Table 3.4: Mean voxel-wise wsCV for absolute and relative resting CBF in select ROIs (± 

standard deviation). 

 aCBF wsCV (%)  rCBF wsCV(%) 

ROI 
Within  

Session 
Between 
 Session 

 
Within  

Session 
Between  
Session 

Tissue Class      

Grey Matter  9.1 ± 5.2 10.0 ± 4.9  4.7 ± 4.5 5.7 ± 4.4 

White Matter  9.8 ± 4.6 10.9 ± 4.7  4.4 ± 4.0 5.6 ± 3.4 

Lobes      

Frontal Lobe 9.1 ± 4.1 10.0 ± 4.0  3.6 ± 2.8 5.1 ± 3.1 

Temporal Lobe 7.8 ± 4.0 8.1 ± 3.0  4.0 ± 3.0 4.8 ± 2.8 

Occipital Lobe 8.7 ± 3.6 8.9 ± 3.6  3.0 ± 2.3 5.1 ± 3.1 

Parietal Lobe 11.5 ± 5.5 9.2 ± 3.7  4.9 ± 3.8 4.8 ± 3.6 

Pain Regions      

Anterior Cingulate  11.2 ± 2.8 9.8 ± 3.5  3.1 ± 1.8 4.4 ± 2.3 

Amygdala 8.6 ± 3.4 15.9 ± 4.3  4.2 ± 5.0 7.8 ± 3.3 

Hippocampus 8.0 ± 4.8 12.3 ± 4.5  6.9 ± 6.5 6.5 ± 4.1 

Posterior Cingulate 8.3 ± 5.0 13.6 ± 4.5  5.8 ± 5.7 6.2 ± 4.1 

Somatosensory Cortex 9.2 ± 4.1 10.2 ± 4.2  3.5 ± 2.8 5.4 ± 3.5 

Insular Cortex 8.7 ± 4.1 7.7 ± 2.8  3.5 ± 2.4 5.0 ± 2.4 

Thalamus 5.1 ± 3.6 21.7 ± 8.1  13.4 ± 5.5 14.6 ± 7.3 

While aCBF and rCBF within most ROIs had good reproducibility (wsCV < 20%), 

wsCV was noticeably higher in midbrain regions for the between-session analysis (Figure 

3.3 B &D), particularly for the aCBF images. For example, the mean wsCV in the 

thalamus was 21.7 ± 8.1% for between-session analysis of aCBF images. This increased 

variance was reduced by global normalization – in the thalamus the between-session 

wsCV reduced to 14.6% in the rCBF images, but this value is still higher than 

corresponding cortical and subcortical regions. 
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3.3.3 Reliability of Resting Blood Flow 

ICC maps and their corresponding histograms are displayed in Figure 3.4. The histogram 

distribution represents the frequencies of voxel-wise ICC values from the within and 

between-session analysis. Results are presented for both absolute and relative CBF. 

 

Figure 3.4: Voxel-wise ICC maps within and between sessions calculated using absolute CBF 

and CBF scaled by mean grey matter CBF (rCBF). (A) within-session aCBF (B) between-

sessions aCBF (C) within-session rCBF and (D) between-session rCBF. Corresponding histogram 

displaying frequency of ICC values in voxel-wise maps is displayed to the right. 

The ICC maps depict excellent within-session grey matter reliability, with ICC values 

consistently above 0.75. This is also shown in the corresponding histograms in Figure 

3.4: the distributions of ICC values for within-session reliability, shown in orange and 

green, are skewed towards a maximum value of 1. Average within-session grey matter 

ICC for the aCBF images was 0.85 ± 0.23 and 0.89 ± 0.20 for the rCBF images. Average 

within-session and between-session ICC values for all ROIs are given in Table 3.5. 

Similar to the wsCV results, mean voxel-wise ICC values was greater within session 

compared to between-sessions and for rCBF images compared to aCBF images. Within 
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grey matter, between-session reliability calculated with aCBF was good (0.66 ± 0.19) 

while rCBF reliability was excellent (0.84 ± 0.15). 

Table 3.5: Mean voxel-wise ICC for absolute and relative resting CBF in select ROIs (± standard 

deviation). 

 aCBF ICC  rCBF ICC 

ROI 
Within  

Session 
Between 
 Session 

 
Within  

Session 
Between  
Session 

Tissue Class      

Grey Matter  0.85 ± 0.23 0.66 ± 0.19  0.89 ± 0.20 0.84 ± 0.15 

White Matter  0.87 ± 0.17 0.69 ± 0.17  0.92 ± 0.13 0.86 ± 0.12 

Lobes      

Frontal Lobe 0.93 ± 0.06 0.71 ± 0.16  0.93 ± 0.07 0.85 ± 0.13 

Temporal Lobe 0.91 ± 0.06 0.72 ± 0.12  0.92 ± 0.07 0.85 ± 0.11 

Occipital Lobe 0.94 ± 0.05 0.75 ± 0.14  0.93 ± 0.07 0.85 ± 0.12 

Parietal Lobe 0.86 ± 0.11 0.54 ± 0.21  0.90 ± 0.1 0.79 ± 0.17 

Pain Regions      

Anterior Cingulate  0.90 ± 0.06 0.66 ± 0.14  0.95 ± 0.04 0.84 ± 0.11 

Amygdala 0.70 ± 0.27 0.34 ± 0.17  0.72 ± 0.28 0.64 ± 0.19 

Hippocampus 0.68 ± 0.28 0.45 ± 0.18  0.68 ± 0.32 0.73 ± 0.2 

Posterior Cingulate 0.78 ± 0.24 0.61 ± 0.2  0.87 ± 0.16 0.83 ± 0.13 

Somatosensory Cortex 0.94 ± 0.06 0.74 ± 0.16  0.91 ± 0.08 0.87 ± 0.09 

Insular Cortex 0.88 ± 0.08 0.55 ± 0.21  0.92 ± 0.07 0.84 ± 0.10 

Thalamus 0.44 ± 0.39 0.55 ± 0.21  0.61 ± 0.21 0.68 ± 0.17 

3.4 Arterial Transit Time Reproducibility 

Mean grey matter ATT values averaged across subjects were 806 ± 45, 801 ± 35, and 796 

± 39 ms for sessions 1, 2 and 3, respectively. There were no significant differences 

between values. Group mean ATT maps for each of the three sessions are shown in 

Figure 3.5. Regional heterogeneity in ATTs was observed, with increased ATT towards 

medial posterior and medial frontal regions of the brain.  
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Figure 3.5: Group mean ATT maps (in seconds) for each session. (N=7) 

The spatial patterns of the ATT maps were consistent across sessions, as demonstrated by 

the low between-session voxel-wise wsCV (5.0 ± 2.7%). In a voxel-wise repeated 

measures ANOVA (implemented in SPM) testing for differences in ATT between 

sessions, no voxels survived the statistical threshold (p < .05, FWE). Variability between 

subjects was higher than between-sessions with mean grey matter wsCV equal to 9.7 ± 

3.5%. The between-subject maps showed increased variability in the medial regions of 

the brain, while cortical grey matter remained relatively homogeneous (Figure 3.5). 

 

Figure 3.6: Between-sessions and between-subjects reproducibility of arterial transit times. 
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Since ATT values can vary based on the feeding artery, variability in ATT across the 

three main vascular territories was assessed. Mean ATT was the lowest in the ACA (796 

± 3 ms) followed by the PCA (812 ± 8 ms) and lastly, the MCA (817 ± 7 ms). Between 

the three sessions, there was no significant difference in the ATT. However, the ATT in 

the MCA was significantly higher from the value for the ACA territory (p < .05). 

3.5 Reproducibility of Motor Task Activation  

Activation patterns generated from rest and task data sets from the same session and 

those generated from rest and task data acquired in sessions separated by a week and a 

month are shown in Figure 3.7. Results are presented for both aCBF and after 

normalizing each session’s data by grey matter CBF (i.e. rCBF). Within-session 

activation represents the “best case” scenario since it is not affected by additional noise 

caused by repositioning errors and day-to-day variations in basal blood flow.  

Since the task data remained the same in all comparisons, the within-session and 

between-session activation patterns should appear similar, provided these additional 

sources of noise were minimal. Regions in color represent voxels that survived the 

statistical threshold after correction for multiple comparisons using the FWE rate (p < 

.05). There was good agreement in the spatial pattern of activation generated in within-

session and between-session data, particularly after normalizing the perfusion images to 

grey matter CBF. In subjects 1 and 2, the diminished cluster size observed in aCBF 

between-session activation data relative to within-session data, is not observed when 

rCBF was used to generate activation. Interestingly, activation maps generated using 

aCBF for subjects 3 and 6 showed an increase in the size of activation in the motor 

regions in the between-sessions analysis compared to the original within-session analysis. 
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Figure 3.7: Areas of significant CBF increases associated with finger tapping overlaid on a T1-

weighted MNI template brain. For each subject, activation maps were generated for: (a) within-

session with aCBF rest and task data, (b) aCBF rest and task data separated by a week, (c) aCBF 

rest and task data separated by a month, (d) rCBF rest and task data separated by a week and (e) 

rCBF rest and task data separated by a month. Regions in colour represent voxels that survived 

the statistical threshold after correction for FWE (p < .05). Data from the first run for subject 1 

were excluded from this analysis since the task was not performed correctly.  
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Percent signal change within the motor cortex for run 1 and run 2 when rest and task 

were within the same session, separated by a week and separated by a month are shown 

in Table 3.6. There were no significant differences in the percent signal change within the 

primary motor cortex for any of the conditions using either absolute or relative CBF. 

However, the variability in the CBF response based on the analysis of the aCBF images 

was greater for the between-session analyses compared to the within-session analysis. 

This was caused by sizable day-to-day variations in resting CBF in some subjects, as 

evident for subject 3 in Figure 3.7. The results of the rCBF data show that this variability 

is considerably reduced by global normalization.  

Table 3.6: Percent CBF change in the motor cortex during finger tapping averaged across all 

subjects. Results are reported separately for the two runs and for the within-session and between-

session analyses 

 Run 1  Run 2 

 
Within 

Session 

Between-Sessions 
 

Within 
 Session 

Between-Sessions 

Week Month Week Month 

Absolute 
 ∆CBF (%) 

24.7 ± 8.6 21.0 ± 14.2 28.0 ± 15.8  20.2 ± 8.4 14.0 ± 12.8 17.2 ± 8.3 

Relative 
 ∆CBF (%) 

 25.8 ± 8.1 25.2 ± 6.8   19.7 ± 10.2 19.5 ± 7.8 

3.6 Precision of Motor Activation 

Individual subject precision estimates based on the analysis of aCBF and rCBF data are 

shown in Figure 3.8. Data from the first run for subject 1 was excluded as discussed 

previously. Mean precision estimates from the within-session analysis and when the rest 

and task runs were separated by a week and by a month were 93.9 ± 11.0, 74.2 ± 31.2, 

and 65.0 ± 32.7% for aCBF, respectively, and 94.5 ± 12.1, 84.6 ± 15.0, and 78.5 ± 15.2% 

for rCBF, respectively. For the majority of subjects, the precision was higher for the 

rCBF analysis, particularly for subjects 3 and 6. 
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Figure 3.8: Precision measurements for each subject when rest and task data were from the same 

session (black), and when rest and task data were separated by a week (grey) or a month (white). 

For both aCBF and rCBF data, there appeared to be a decline in precision as the 

separation between rest and task increased; however, this trend was only statistically 

significant for the rCBF data.  
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Chapter 4  

4 Discussion  

The primary aim of my thesis was to investigate whether ASL has the sensitivity to detect 

longitudinal changes in CBF within an individual. This was achieved by: (1) assessing 

the within and between-session variability in resting CBF, (2) determining whether 

changes in ATT could confound longitudinal perfusion monitoring, and (3) as a proof of 

concept, I investigated the ability of ASL to detect motor activation when rest and task 

images were from the same session, and when they were separated by a week and a 

month. 

Exploratory neuroimaging methods are advantageous for identifying regions of the brain 

affected by neurological disease, especially when there is little to no a priori knowledge. 

This is in contrast to the more widely used ROI-based analysis, in which average CBF 

values in predefined regions are compared. There are two main consequences that arise 

from this key difference. First, averaging over neighboring voxels reduces the effect of 

artifacts caused by realignment errors. In contrast, precise realignment is imperative for 

voxel-wise analysis in order to avoid false positive activation arising from spatial offsets. 

Secondly, because CBF is not spatially averaged when performing voxel-wise analysis, 

the sensitivity of the approach is diminished by additional noise sources when comparing 

images from separate sessions. Therefore, for successful exploratory analysis, it is critical 

to understand and manage the sources of noise 
124

.  

Within-session variability primarily comes from noise in the MR signal and subject 

motion, while between-session variability also includes physiological noise (i.e. 

differences in basal blood flow) and errors introduced by differences in head position 

between sessions 
99,100,125

. Accurate alignment of images from different sessions is 
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challenging with ASL because of the relatively large size of the voxels (~ 4 x 4 x 6 mm
3
), 

which are typically used in order to improve SNR. Consequently slight alignment errors 

can lead to regional signal differences when comparing CBF images from separate 

sessions, and these can translate into false positive activation in the resulting statistical 

parametric map 
111

. Evidence of this was shown in Figure 1.6 for a visually cued motor 

task paradigm in which false activation is easily identified as activation in brain regions 

not associated with the paradigm. For my work, a relatively simple approach was 

implemented to mitigate registration errors. A personalized head mold was generated for 

each subject, which was used in subsequent imaging sessions to replicate the position of 

the head from the first day. The effectiveness of this approach is evident in high-contrast 

structural MR images shown in Figure 3.1. Despite the fact that the images from sessions 

2 and 3 were acquired one week and one month later, they appear nearly identical to the 

image acquired on the first day. This agreement is reflected in the similarity in the 

magnitude of the between-session and within-session transformation values (Table 3.2). 

The magnitude of the rotation and translation required to align images from the separate 

sessions were less than 3 mm and 3º, respectively. These results are a good indication that 

alignment errors when comparing functional imagines acquired on between days should 

be small, thus minimizing false positives in the activation maps
115

. 

The benefits of minimizing variability in head position were evident by the agreement in 

the variability measurements for within- and between-session analyses. Average voxel-

wise wsCV values for grey matter rCBF were 4.7 ± 4.5% from the within-session 

analysis and 5.7 ± 4.4% from the between-session analysis. Similarly, the reliability, as 

indicated by the ICC measurements, was excellent for both within-session (0.89 ± 0.20) 

and between-session analysis (0.84 ± 0.12). This agreement demonstrates that 

minimizing registration errors helped to substantially reduce additional variance when 

comparing CBF images from separate sessions. Despite the efforts to minimize 
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physiological noise in this study, it still contributed to the between-session variability. In 

comparison to wsCV for between-session rCBF analysis, the mean wsCV for aCBF was  

75% higher and the corresponding ICC decreased from a rating of excellent (0.84 ± 0.12) 

to good (0.66 ± 0.19). This marked reduction in between-session reliability and 

reproducibility reflects the increased physiological noise caused by day-to-day variations 

in CBF associated with diurnal fluctuations and state of arousal 
39–41

. Despite efforts to 

reduce these effects, these results highlight the challenges of accounting for all sources of 

variability. As a caveat, the within-session wsCV also improved after global 

normalization. This was likely caused by changes in wakefulness and breathing pattern 

during an imaging session
42,43

. Previous reproducibility studies have used ROIs to assess 

within- and between-session variability of resting CBF. For example, Mezue et al. 

demonstrated good between-session (week to month separation) reproducibility of resting 

grey matter CBF (wsCV 5.3 – 10.0%)
24

. Similarly, Wang et al. also showed high 

reproducibility with a wsCV of 5.7% in cortical grey matter
44

. The current study indicates 

that similar levels of can also be achieved at the voxel-wise level. 

The reproducibility and reliability maps (Figure 3.3 and Figure 3.4) revealed spatial 

heterogeneity, particularly for the between-session analysis. The most noticeable feature 

was the higher variance in the centre of the head, which corresponds to midbrain regions 

such as the thalamus. It has been suggested that increased variability in thalamic activity 

is a reflection of variability in arousal 
82,130

. Mezue et al. demonstrated that resting CBF 

in the thalamus decreased over 30 minutes, suggesting a decrease in attentional 

processing over time. However in the current study, it is unlikely that thalamic activity is 

the sole contributor to the increased variability as the area extends beyond its borders. A 

second, possibility is additional noise caused by geometric distortions in the images due 

to magnetic susceptibility artifacts in the intracranial cavities near the midbrain 
130

. A 

third possibility, and the most likely in this study, is related to the 3D GRASE sequence. 
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Single-shot 3D imaging was implemented to provide fast acquisition with good spatial 

coverage, and SNR, which is advantageous for functional applications 
114,131

. However, 

since raw image data were acquired within a single excitation with a long acquisition 

window due to T2 decay, it is prone to axial signal wrap-around and through-plane 

blurring 
43,132,133

. The greater between-session variance observed in the centre of the head, 

resulting from z-direction blurring caused by pulsatile flow in large cerebral vessels 

located below the thalamus, could affect the results in applications of interest relating to 

midbrain regions. For example, chronic pain, where the thalamus plays a key role in the 

modulation of nociceptive information 
13,14

. One possible solution would be to use a 

multi-shot 3D GRASE sequence to improve the phase encoding along the axial direction 

and reduce the acquisition window 
132,133

.  

Recent studies have identified spatial heterogeneity in ATTs as a confounder for 

measuring CBF accurately 
111,134

. Although multi-PLD sequences have been used to 

image ATT and CBF simultaneously, the trade-off is suboptimal SNR for perfusion 

imaging and lengthy acquisitions 
76

. In the current study, a low-resolution ATT sequence 

was implemented because ATT values differ based on large vascular territories 
109,134,135

. 

The similarity in the appearance of group-wise ATT maps generated per session (Figure 

3.5) and low between-sessions wsCV values (Figure 3.6) demonstrate that regional ATT 

values were consistent across time. In a repeated measures ANOVA that tested for 

differences across sessions, no voxels survived statistical threshold (p < .05, FWE). 

Likewise the between-session variability was low (wsCV < 10%). Average ATT values 

for the three sessions (806 ± 45, 801 ± 35, and 796 ± 39 ms, respectively) were shorter 

than the implemented PLD (1.2 s). This indicates that there was sufficient time for 

labeled blood water to reach the imaging voxels prior to image acquisition. These results 

indicate that the ATT would not be a substantial confound in longitudinal CBF studies, at 

least in healthy individuals, provided the chosen PLD is within an optimal range. It would 
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be prudent to monitor ATT in longitudinal studies involving older subjects or patients 

with vascular disease, considering that low-resolution ATT images can be acquired 

within a few minutes 
76

. 

The similarity in the with-session and between-session measures of reproducibility and 

reliability indicate that ASL should have sufficient statistical power to detect longitudinal 

changes in regional CBF. To demonstrate this, statistical parametric mapping was 

performed on rest and motor activation ASL data sets from sessions separated by up to a 

month. This approach represents a proof of concept of the ability of ASL to detect low 

frequency activation, rather than the variability in activation measured across imaging 

sessions, which has been extensively studied 
54,82,98,136

. From the within-session analysis, 

activation was detected in the primary motor cortex in all subjects and also in the 

supplementary motor cortex and the cerebellum in a few subjects (Figure 3.7). The 

similarities between these activation maps (i.e. the ground truth) and the corresponding 

maps generated using resting CBF data acquired one week and one month later 

demonstrate the ability of ASL to detect on a voxel-wise basis longitudinal changes in 

CBF. Visual inspection of the within and between-session activation maps generated 

before (aCBF) and after global normalization (rCBF) indicate that fluctuations in global 

CBF can significantly degrade the activation maps. This effect was most clearly 

illustrated in the 1 month aCBF activation map from subject 3. The large number of 

falsely identified activated voxels was caused by a 12.4 ml/100g/min change (or 26 % 

increase) in global CBF between the two imaging sessions. True activation in motor-

related regions can still be identified by their larger t-scores relative to the values for the 

remainder of the brain. Normalizing the CBF images in each session by their 

corresponding global value substantially reduced the number of false positives (Figure 

3.8), consequently the between-session rCBF activation maps appeared very similar to 

the original within-session activation maps (Figure 3.7). 
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Despite the remarkable similarities in the appearance of the within and between-session 

rCBF activation maps, displaying a single slice cannot properly assess the extent of false 

activation. Instead, the quality of the activation maps was characterized by measuring the 

precision, which was calculated from the number of true activation voxels in motor-

related regions and the number of false activation voxels in the rest of the brain. Although 

this is a relative measure that depends on the extent of brain activation for the chosen 

task, it does provide a means of assessing the magnitude of false activation. Similar to the 

noise metrics, the precision was found to be lower for the between-session analysis 

compared to the within-session, and was better for the rCBF images compared to the 

aCBF images. Relative to the within-session activation, the precision decreased by 20% 

for aCBF images separated by a week and 30% for aCBF images separated by a month. 

As expected, global normalization improved the between-session precision. Relative to 

the within-session activation, the precision decreased by 10% for rCBF images separated 

by a week and 17% for rCBF images separated by a month. In other words, even with a 

month separation between rest and task, less than ~20% of activation detected would be 

false positives. Considering that the fraction of true activated voxels was 1% of the total 

number of grey matter voxels, these precision estimates highlight the ability of ASL to 

detect longitudinal changes in CBF, particularly if the confounding effects of variations 

in global CBF are removed.  

The minimal CBF change in a given voxel that can be detected was calculated based on 

the standard paired samples t-test equation (i.e. ∆CBFmin = (SD∆CBF /√n)/tcrit ). The critical 

t-statistic (tcrit) was estimated using the FWE corrected t-threshold generated by voxel-

wise analysis, SD∆CBF was calculated from the MATLAB implemented ANOVA and n is 

the number of perfusion images per run. For the within-session analysis, this threshold 

was approximately 3%, while for the between-session analysis it was 7% based on the 

variance measured for aCBF and 4% for rCBF. These thresholds are considerably smaller 
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than the 20 to 25% change in CBF measured in the motor cortex (Table 3.6), but are in-

line with previous calculations 
15

. The magnitude of the between-session thresholds 

indicate that ASL should be capable of detecting longitudinal changes in brain function, 

such as caused by pain
137

, which are associated with smaller CBF changes than those 

produced by a sensory task like finger tapping.  
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Chapter 5  

5 Summary  

5.1 Limitations and Future Work 

These experiments represent an idealized situation; firstly, the subjects were young and 

healthy and secondly, a task paradigm with a predicable activation pattern and large 

effect size was used. Detection of regional changes in brain activity in clinical 

populations would pose a greater challenge considering there could be greater variability 

in the extent and magnitude of changes in regional CBF. Therefore there are a number of 

important implications to consider if a similar approach was used in a clinical population. 

In this study ATTs were not found to have a substantial effect on the reproducibility of 

CBF. However, in older individuals and stroke patients this may not be the case. Studies 

have shown that cerebral vessels in older people are more tortuous and therefore the 

amount of time it takes for the label to reach the brain increases with age 
43

. Furthermore, 

it could vary over time in patients with age and extent of vascular disease. Future studies 

involving older populations or patient populations are likely necessary to verify the 

suitability of ASL imaging with one PLD and to assess the stability of the ATTs over 

time.  

The results of these experiments highlight the benefits of normalizing the CBF image by 

the global average; however, this approach should be implemented with caution. 

Normalizing in the presence of global systemic shifts between populations has been 

shown to alter group-wise differences 
126

. It is unclear if normalization on an individual 

basis, such as performed in this study, would be affected in a similar manner the same 
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issues; however, one solution is to normalize the CBF images by a region considered 

unaffected by the disease 
101

. 

Despite high degree of alignment between sessions, the steps employed to reproduce the 

same head position across sessions were time consuming, adding on average an extra 30 

minutes to the session. This is clearly suboptimal, particularly when dealing with patients 

who are less tolerant to long scan times (e.g., children, dementia patients) 
138

. 

Realignment of the same imaging position in subsequent sessions requires the use of 

automatic alignment software. A recent multi-center study highlighted the capability of 

using such software to reposition subjects regardless of scanner location and operator 
103

. 

Despite the involvement of 284 subjects and 28 centers, variability baseline CBF was low 

(the within-subject standard deviation was 5.3 ml/100g/min). For within session motion, 

self-navigation or prospective motion correction techniques (e.g. PROMO) where the 

pulse sequence is adjusted in real time based positioning of subject in scanner have 

shown promise. However, many of these are sequence specific. In some cases, they 

require additional hardware and are often implemented at the expense of increased scan 

time 
139–141

. 

Future considerations will be to implement a multi-shot 3D GRASE sequence to avoid 

smearing and wrap around effects. This is important for the study of chronic pain 

considering a number of midbrain regions are associated with pain perception and this is 

the area that demonstrated the highest between-session variability. In these experiments a 

relatively simple functional task with a well-defined pattern of activation was used as a 

proof of concept. Future experiments could involve a paradigm more closely related to 

the disease of interest such as an experimental pain stimulus. Another possibility would 

be to increase the time between rest and task sessions given that CBF monitoring over 

periods greater than a month would be needed to study disease progression or treatment 
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effects. For example, recovery of motor abilities in stroke patients extends beyond 30 

days 
142

.  

5.2 Conclusion 

This study demonstrated that ASL has the sensitivity to detect motor activation over 

periods extending up to a month within an individual. At the voxel-wise level, we 

demonstrate low variability in resting CBF, similar within- and between-session 

activation, and between-session precision of activation once the effects of basal blood 

flow were accounted for. In the young healthy population studied, ATT is not a 

substantial confound to the reproducibility of CBF measurements. Future investigations 

are required to assess the influence of ATT on the variability of CBF in clinical and older 

populations. These results demonstrate the feasibility of conducting voxel-wise analysis 

of CBF images acquired on different days and highlights the potential of this technique 

for voxel-wise longitudinal studies to assess changes in perfusion related to disease 

processes. 
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