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Abstract 

A significant proportion of hereditary breast and ovarian cancer (HBOC) patients receive 

uninformative genetic testing results, an issue exacerbated by the overwhelming quantity 

of variants of uncertain significance identified. This thesis describes a framework where, 

aside from protein coding changes, information theory (IT)-based sequence analysis 

identifies and prioritizes pathogenic variants occurring within sequence elements 

predicted to be recognized by proteins involved in mRNA splicing, transcription, and 

untranslated region binding and structure. To support the utilization of IT analysis, we 

established IT-based variant interpretation accuracy by performing a comprehensive 

review of mutations altering mRNA splicing in rare and common diseases. 

Custom probes targeting 20 complete HBOC genes for sequencing in 379 BRCA-

uninformative patients identified 47,501 unique variants and we prioritized 429 variants 

in both BRCA and non-BRCA genes. Our approach focuses attention on a limited set of 

variants from a spectrum of functional mutation types for downstream functional and co-

segregation analysis. 

Keywords 

3' untranslated regions, binding sites, breast neoplasms, computational biology, genes, 

genetic testing, information theory, next-generation sequencing, non-coding, ovarian 

neoplasms, prioritization, RNA stability, RNA-binding protein, splicing, transcription 

factor binding, tumor suppressor, variants of uncertain significance 
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Chapter 1  

1 Introduction 

The prevalence and aggressive nature of familial breast (BC) and ovarian cancer (OC), 

combined with a large proportion of patients receiving uninformative test results, are 

compelling reasons for devising a means not only for identifying, but analyzing and 

prioritizing variants of uncertain significance (VUS). We devised a unified framework for 

variant analysis and propose this bioinformatic approach as a cost- and time-effective 

means of prioritizing variants for further analysis. This chapter outlines the current state 

of the hereditary breast and ovarian cancer (HBOC) literature, demonstrates the 

challenges and implications regarding VUS, and along with the following chapter, gives 

grounds for our choice of bioinformatic approach. 

1.1 Hereditary Breast and Ovarian Cancer 

Currently, the lifetime risk for a woman to develop BC is 1/8 and 7/50 in the case of OC1. 

BC is the leading cancer affecting women, representing 25% of all cases, whereas OC 

ranks 11th, affecting 4%2. Family history, where multiple individuals on the same side of 

a family present with the disease, is one of the largest risk factors for BC3 and strongly 

indicates a genetic association. 

1.1.1 Prevalence and Risk 

Approximately 5-10% of all BC cases are hereditary in nature, versus 25% for OC4,5. 

Hereditary BC in males represents 1% of all BC cases, and these individuals have an 

increased risk of prostate cancer6. The relative risk (RR) of an individual is estimated 

based on the relatedness to and number of affected family members, and the age of 

disease onset. For example, a meta-analysis of studies having quantified BC risk 

concluded that patients with a 1st-degree affected family member have a 2.1 RR4. This 

increases in patients below the age of 50, or when affected family members were 

diagnosed before 50. In the case of OC, the RR with one affected family member is 

estimated at 3.1 and almost doubles if this individual is the mother (6.0)7. 
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1.1.2 Linkage Studies and Mutation Data 

In the 1990s, the genes BRCA1 and BRCA2 were linked to families with high incidence 

and early onset of BC8,9. These genes are thought to harbor the most number of 

deleterious mutations for families with multiple cases of BC and OC, as determined by 

Ford et al. (1998) in a study of all patients within the Breast Cancer Linkage Consortium 

(BCLC) who had at least four affected family members (N=237)10. The results of this 

study estimated that disease was linked to BRCA1 and BRCA2 in 52 and 35% of families, 

respectively. Findings were congruent with the model for high penetrance genes11, as 

linkage to BRCA1/2 increased as a function of the number of affected family members. 

Alternatively, families with fewer affected members showed greater linkage to non-

BRCA1/2 genes. Families with four or five affected family members showed linkage to 

other genes in 33% of cases, whereas those with more than six affected members were 

estimated at only 4% linkage. 

It is important to note that in the study by Ford et al. (1998), the percentage of families 

with reported BRCA mutations did not agree with the linkage data: only 63% of families 

showing linkage to BRCA1 were found to harbor mutations when the coding and splice 

junctions were sequenced. The same phenomenon was observed in families linked to 

BRCA2 (roughly 38% had reported mutations). Other studies have made similar 

observations. For example, in a study of 706 Dutch families, pathogenic variants were 

identified in 7.4% of families for BRCA1 and 3.5% for BRCA212. Also, in Spanish 

families with at least 3 cases of BC and/or OC, or one male BC case, deleterious variants 

in BRCA1 and BRCA2 were identified 9.6 and 8.5% of the time, respectively13. 

Some of this variation in the proportion of pathogenic BRCA1/2 mutations identified in 

these studies can be attributed to the difference in age, ethnicity, and number of affected 

family members for each cohort investigated. However, there are also likely un-

recognized or un-identified variants in BRCA1/2 that could account for the disparity 

between linkage and mutation data. Finally, with respect to families that show no linkage 

to the BRCA genes, the most likely cause of disease is still genetic in nature, as opposed 
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to environmental, and can be explained by moderate and low-risk susceptibility genes14–

17. 

1.2 Molecular Diagnostics and Variant Classification 

When variants are detected through genetic susceptibility testing in a clinical laboratory, 

they are classified on the basis of their probability of pathogenicity. This allows 

counselors and clinicians to offer further testing recommendations, treatment options, and 

prevention testing within the family. This process is fairly straightforward in the case of 

the well-studied, high-penetrance genes, for which clear management and treatment 

guidelines exist18–23. However, as described by Hollestelle et al. (2010), the risk 

associated with moderate and low-penetrance genes is not as easily determined, as 

pathogenic variants in these genes are not easily recognized24. These genes do not cause 

disease patterns characteristic of high-penetrance, and large families within large studies 

(which are not always available/possible) are necessary to confidently classify an allele as 

pathogenic or benign. As a result, clinical recommendations for gene variants in the more 

recently discovered susceptibility genes have been difficult to establish. Consequently, 

variants identified in these genes remain in the VUS category or worse, misclassified, 

often resulting in patient mismanagement25,26. In addition, while test centres are showing 

concordance in their variant identification ability27, classification approaches have not 

been advancing at the same pace, and tend to be inconsistent between clinical 

laboratories28,29, exacerbating the difficulties associated with the classification of VUS. 

1.2.1 Current Classification Systems 

Previously, variants detected through genetic susceptibility testing would fall under one 

of three groups: definitely pathogenic, of no clinical significance, and uncertain30. 

According to the International Association for Research on Cancer (IARC) Unclassified 

Genetic Variants Working Group, this classification of variants is very conservative, such 

that all variants with 0.1 to 99% probability of pathogenicity are classified under the 

“unknown” category31. Variants categorized as definitely pathogenic are limited to 

coding variants resulting in a clear inactivating mutation (such as an insertion/deletion 
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[indel] causing frameshift or a nonsense mutation). Consequently, all patients with 

variants in this middle category are not eligible for testing of at-risk relatives and they are 

given no further insight to their disease. 

This led to the development of a 5-tiered classification system that has been developed, 

expanded upon, and implemented by two key working bodies: the IARC and the 

American College of Medical Genetics and Genomics (ACMG). 

1.2.1.1 IARC Recommendations 

The IARC, which is a branch of the World Health Organization, created the Working 

Group with the objective of increasing communication and collaboration between large 

centres conducting research on genetic diseases. It was determined that it would be 

beneficial to introduce intermediate categories to the original 3-tiered classification 

system, allowing for better patient care and prevention. An “integrated” approach using 

multiple lines of evidence is recommended. This integration involves combining the prior 

probability of pathogenicity (prior knowledge of the variant and therefore information 

from other groups) with observed data (i.e. new information) to arrive at a final 

probability of pathogenicity32, otherwise known as likelihood ratio (LR). This method 

allows for new information to constantly be accounted for, an option that is vital in this 

era of constant discovery and open-access of information. Both quantitative and 

qualitative data can be used in this model, and can be divided into direct and indirect 

measures of pathogenicity: 

 Direct measures: co-segregation of the variant with the disease phenotype 

(determined by genetic testing of affected and unaffected family members), severity of 

cancer family history, and co-occurrence of the VUS with another clearly pathogenic 

variant; 

 Indirect measures: in silico assessment of sequence and structure alterations 

compared to evolutionary conservation, assessment of a variant’s effect on splicing, and 

in vitro functional analysis. 
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Following LR computation based on as many lines of evidence as possible, variants are 

recommended to be categorized using the classes listed in Table 1.1. 

1.2.1.2 ACMG Recommendations 

The ACMG recommendations33 were published in March of 2015 with the goal of 

promoting standardized terminology and a uniform classification system between centres. 

The classes are similar to those described by the IARC (Table 1.2-1.4), in that they 

follow a 5-tiered system based on the likelihood of pathogenicity, however much more 

structure is provided when it comes to the many lines of evidence that can be used to 

contribute to the likelihood approximation (i.e. assigning weights and thresholds) This 

approach was tested by evaluating the consistency of classification between a number of 

different centres, and has ultimately been accepted and supported by the majority of 

laboratories. It is important to note that these recommendations are specifically for 

Mendelian disorders. 

1.3 VUS and Disease 

As mentioned above, while NGS has allowed for the cataloguing of numerous disease 

associated variants, the literature has consequently been flooded with variants lacking a 

clinical interpretation34. Extensive efforts are being made to classify and interpret VUS, 

as demonstrated by the IARC Working Group and various disease-specific consortiums 

such as the Evidence-based Interpretation of Germline and Mutant Allele (ENIGMA) 

Consortium and the International Society for Gastrointestinal Hereditary Tumours 

(InSiGHT). In the meantime, clinicians and genetic counsellors struggle to select which 

variants are actionable and warrant reporting back to patients. Plon et al. (2011) report 

that physicians ordering panel testing for patients often advise inappropriately, providing 

counselling for a VUS that would normally apply to a clearly pathogenic variant35. 

1.3.1 Consequences of Reporting Unknown Variants 

Studies have shown that patients who undergo genetic susceptibility testing expect a 

dichotomous “mutation/no mutation” result36. However, as discussed above, most 
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Table 1.1. Proposed Classification System for Sequence Variants Identified by 

Genetic Testing* 

Class Description 
Probability of being 

Pathogenic 

5 Definitely Pathogenic > 0.99 

4 Likely Pathogenic 0.95-0.99 

3 Uncertain 0.05-0.949 

2 Likely Not Pathogenic or of Little Clinical Significance 0.001-0.049 

1 Not Pathogenic or of No Clinical Significance < 0.001 

                                                

*Plon, S. E. et al. Sequence variant classification and reporting: recommendations for improving 
the interpretation of cancer susceptibility genetic test results. Hum. Mutat. 29, 1282–1291 (2008). 
Copy of license agreement for Table re-use is provided from John/Wiley & Sons, Inc. (see 
Appendix A). 
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Table 1.2 ACMG Criteria for Classifying Pathogenic Variants* 

                                                

*Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint 
consensus recommendation of the American College of Medical Genetics and Genomics and the 
Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). Copy of license 
agreement for Table re-use is provided from Nature Publishing Group (see Appendix B). 
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Table 1.3. ACGM Criteria For Classifying Benign Variants* 

                                                

*Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the 
American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). 
Copy of license agreement for Table re-use is provided from Nature Publishing Group (see Appendix B). 
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Table 1.4. ACMG Rules for Combining Criteria to Classify Sequence Variants§ 

                                                

§Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus 
recommendation of the American College of Medical Genetics and Genomics and the Association for 
Molecular Pathology. Genet. Med. 17, 405–424 (2015). Copy of license agreement for Table re-use is 
provided from Nature Publishing Group (see Appendix B). 
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variants are classified as unknown and approximately 90% of patients receive an 

“uncertain” result37. Consequently, these patients are given no further insight to their 

disease, and no opportunity to perform genetic prevention screening in family members, 

despite a clear indication of a genetic basis for the disease. 

Two types of uncertain results exist: uncertain negative and uncertain positive37. The 

former represents cases where no mutation was identified in the investigated regions. 

Uncertain positive results encompass variants that were identified in the coding region, 

but their pathogenicity and association with disease was uncertain (“unknown” variant 

classification category mentioned previously). Studies have also shown that disclosing 

information regarding an uncertain variant is more likely to cause distress and these 

results are often misinterpreted. For example, patients have been documented to undergo 

unnecessary prophylactic surgery following the reporting of an unknown variant38. A 

better understanding of these novel, highly prevalent variants is therefore necessary for 

the improvement of screening, risk assessment, prevention, and genetic counseling. 

1.3.2 Implications of VUS for HBOC 

Prior to the advent of sequencing technologies, which made the investigation of areas 

outside the coding regions more affordable and realistic, VUS within the coding regions 

of BRCA1/2 represented a significant proportion of identified variants and currently 

account for 20% of cases where an uncertain result is reported (32 and 53% of BRCA1 

and BRCA2 mutations, respectively)12. The remaining 80% of unknown cases result from 

no pathogenic mutation detected in the tested regions, or “uncertain positive” results. 

This large proportion is thought to be composed of: variants in untested genes, variants in 

untested regions of BRCA1/2 (non-coding regions)30,39, and unrecognized deleterious 

BRCA1/2 variants that are detected and falsely classified as non-pathogenic (false 

negative) due to an inability to accurately assess pathogenicity12. Consequently, VUS in 

BRCA1/2 greatly outnumber known deleterious mutations (71.8% of variants listed in the 

BIC database are either pending classification or of unknown clinical significance)40. 
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1.3.3 Scope of VUS 

Classes of pathogenic variants are limited to clear truncating mutations (indels, nonsense, 

and variants within the dinucleotides of natural SSs), and missense mutations for which 

RR and/or functional analysis have been performed41,42. However, coding regions of the 

genome represent only a small fraction of the genetic code (1.5%), and therefore any 

pathogenic variants within the non-coding regions and intergenic regions are ignored43–49. 

Coding regions are also known to harbor binding sites that play roles in splicing, which 

are also likely to be overlooked. 

1.3.3.1 VUS in Non-coding Regions 

The significance of investigating VUS and non-coding regions is widespread; a meta-

analysis of single nucleotide polymorphisms (SNPs) associated with 22 common diseases 

found 39% to occur in intergenic regions50. Furthermore, 80.4% of MUTYH variants, 

associated with hereditary non-polyposis colorectal cancer (HNPCC), are of unknown 

significance and 22% of β0-thalessemia single nucleotide variants (SNVs) were located 

within intergenic regions51,52. 

Non-coding regions often harbor sequences bound by regulatory factors involved in 

splicing, transcription, or untranslated region (UTR) stability53–56. The impact of a single 

nucleotide change in a recognition site can range from insignificant to complete abolition. 

Interpretation of these variants is therefore complex and computational methods are 

required for their analysis57. In the case of variants affecting splicing, Horvath, et al. 

(2013) used RNA sequencing of triple-negative, non-triple negative, and HER2-positive 

BC tumor samples to identify novel variants affecting splicing and validated their data 

using functional assays58. (Triple-negative breast cancer refers to the absence of estrogen 

receptor (ER), progesterone receptor (PR), and hormone epidermal growth factor receptor 

2 (HER2) expression by the tumor, such that the tumor will not respond to receptor-

targeted treatment. Non-triple negative breast cancer is when one, two, or three of these 

receptors is positive [i.e. expressed by the tumor].) In another study of unclassified 

variants occurring in Spanish patients with Lynch Syndrome, splicing mutations 

accounted for an estimated 15% of cases59. 
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As for the implication of transcription factor binding sites (TFBSs) affected by variants, 

Guo and Jamison (2005) showed that SNPs found within the promoter and upstream 

regions of genes are not evenly distributed. Rather, they are concentrated in regions 

closer to the transcriptional start site and a higher proportion fall within predicted TFBSs 

than non-binding sites60. 

Variants within the UTR can affect both structure and stability of the transcript. Binding 

proteins responsible for the regulation of these processes, as well as cellular localization 

and translation, are also commonly contained within the UTR. Some variants appear to 

have an effect on a combination of these functions, as demonstrated by Zeng et al. (2014) 

where a 3’UTR variant that altered transcript structure, thereby decreasing stability and 

allowing for the creation of a GAPDH binding site61. Another example is the SMAR1 

gene from the growth arrest pathway, which is stabilized by prostaglandin binding to its 

5’ stem loop structure. BC- derived cell lines have been shown to have a 5’UTR variant 

leading to the abolition of this stem loop and low levels of the SMAR1 tumor 

suppressor62. 

Finally, regions associated with microRNAs, histone binding, and other epigenetic events 

can affect transcript levels and thus protein expression, however these topics are beyond 

the scope of this thesis. 

1.3.3.2 VUS in Coding Regions 

Pathogenic variants identified in BRCA1/2 coding regions are attributed to nonsense 

variants, as well as indel and splicing variants resulting in frameshift, prematurely 

truncating the mRNA transcript and downstream degradation through nonsense-mediated 

decay63,64. Predicting the functional significance of such mutations is straightforward, 

whereas VUS in these regions (synonymous, missense, short in-frame indels and splice 

variants outside the canonical dinucleotide donor and acceptor sites) are more difficult to 

interpret as they confer either a negligible alteration or none at all to the downstream 

protein sequence64. In silico prediction tools exist to determine alterations in conserved 

sequences in the case of missense variants, but these predictions provide no experimental 
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proof, would be time-consuming to validate, and thus problematic for risk evaluation in 

the clinical lab65–67. The coding regions may also harbor cryptic SSs or regions bound by 

regulatory factors involved in splicing and transcription factor (TF) binding, which are 

similarly difficult to interpret and unrealistic for a clinical lab to include in their routine 

testing. 

1.3.4 Prioritization of VUS 

Despite efforts to classify variants based on recommended guidelines, the majority 

remain as VUS. Lack of pedigree information, under-reporting of rare variants, and an 

inability to functionally validate every VUS are major limiting factors to variant 

classification. We therefore see a need to efficiently and effectively evaluate variants in a 

way that allows one to rank, or prioritize, variants for further investigation, while 

remaining confident that deleterious variants are not overlooked. 

1.3.4.1 Information Theory-based Analysis 

Ex vivo transfection assays developed to determine the pathogenicity of VUS predicted 

(using in silico tools) to lead to splicing aberrations have been successful in identifying 

pathogenic mutations from VUS68,69. Information theory (IT)-based analysis of splicing 

variants has proven to be robust and accurate in analyzing SS variants (both of natural 

and cryptic sites) as well as splicing regulatory factor binding sites (SRFBSs), and can 

distinguish polymorphisms from these variants in both rare and common diseases70. 

However, IT can be applied to any sequence recognized and bound by another factor71, 

such as with TFBSs and RNA-binding protein binding sites (RBBSs). IT is described in 

further detail in a recently published literature review of information-theoretical analysis 

applied to mRNA splicing mutations and disease (Chapter 2)70. 

IT measures nucleotide sequence conservation, and cannot provide information on effects 

of variants on mRNA secondary (2°) structure, nor can it accurately predict effects of 

amino acid sequence changes. Other in silico methods address these deficiencies. For 

example, Halvorsen et al. (2010) introduce an algorithm called SNPfold, which computes 

the potential effect of a SNV on mRNA 2° structure45. Predictions made by SNPfold can 
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be tested by the SHAPE assay (Selective 2’-Hydroxyl Acylation analyzed by Primer 

Extension)72, which provides evidence for sequence variants that lead to structural 

changes in mRNA by detection of covalent adducts in mRNA. 

1.4 Thesis Objectives 

The inability to functionally validate the overwhelming amount of VUS generated by 

panel and NGS sequencing has created a need for process that quickly and accurately 

bridges the variant identification and classification processes. We hypothesize that IT-

based analysis can be applied in a unified framework for the interpretation and 

prioritization of gene variants in non-coding and coding regions. In order to investigate 

this, our objectives were to: 

1. Design custom probes for in-solution hybridization targeting the complete coding, 

non-coding, and up- and downstream regions of a panel of HBOC susceptibility 

genes; 

2. Recruit a cohort of high-risk BRCA-uninformative patients to participate in this 

study; 

3. Evaluate the ability of IT-based models to predict and prioritize potential non-

coding sequence mutations in SS, TFBS, and RBBS for a cohort of anonymous 

high-risk BRCA-uninformative HBOC patients. Then, apply the model to the 

cohort of recruited patients and supplement the interpretation with pedigree 

analysis. 
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Chapter 2  

2 Interpretation of mRNA splicing mutations in genetic 

disease: review of the literature and guidelines for 

information-theoretical analysis 

The work in this chapter is reproduced (with permission, Appendix C) from: 

Caminsky N, Mucaki EJ and Rogan PK. Interpretation of mRNA splicing mutations in 

genetic disease: a review of the literature and guidelines for information-theoretical 

analysis. [v2; ref status: indexed, http://f1000r.es/54y] F1000Research 2015, 3:282. doi: 

10.2688/f1000research.5654.2). 

2.1 Introduction 

Pre-mRNA splicing is a necessary step in the production of a functional protein product. 

It consists of the recognition of intron/exon boundaries, and the subsequent excision of 

the introns. It is important to distinguish between alternate splicing isoforms and mutant 

splice forms. The former consists of using different combinations of splice sites for the 

same gene. It is estimated to occur in over 60% of human genes, some of which will have 

multiple alternate isoforms1,2. For example, NF1 (neurofibromin 1 – associated with 

Neurofibromatosis Type 1) is reported to produce 46 splice variants3. The cell regulates 

this naturally occurring process through the availability of tissue specific splice factors. 

Alternative splicing is not generated by changes in the unspliced RNA sequence, whereas 

mutations that produce non-constitutive splice forms are the result of dysregulation of 

natural splice site recognition. Mutations can have various consequences to RNA 

processing, such as exon skipping, cryptic splicing, intron inclusion, leaky splicing, or 

less frequently, introduction of pseudo-exons into the processed mRNA. A broad range of 

molecular phenotypes are possible depending on the type and severity of the mutation, 

making it imperative to understand the consequences of splicing mutations. For the 

purposes of this review, we consider sequence changes in genes that affect transcript 

structure or abundance to be mutations, regardless of their allele frequencies. Although 
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spliceosomal recognition and RNA binding factors are operative in mutation-derived and 

normal alternative mRNA splicing events, this review is focused on aberrant sequence 

changes that alter constitutive splicing, and often result in clinically abnormal 

phenotypes. 

The process of U1/U2-based mRNA splicing involves the recognition of a number of key 

sequence components4,5, with exons defined by both intronic and exonic features4,6. The 

intronic sequence flanking the 3′ end of an intron is termed the donor site and the 5′ end, 

the acceptor site. In typical mRNA splicing, the natural donor and acceptor splice sites of 

an exon span intervals of 10 and 28 bases in length, respectively. It is a common 

misconception that these sequences (especially the dinucleotides immediately intronic to 

the exon) are invariant. Although highly conserved, these sequences vary at different 

splice junctions within a gene as well as between genes. The particular combination of 

nucleotides at each position within the same splice determines its overall strength, which 

dictates the likelihood of recognition by the U1 and U2 spliceosomes. Indeed, the 

recognition of the internal exons is reliant on the strength of both natural splice sites7. 

The alteration of exonic splicing signals (described in the following paragraph) by coding 

variants is common (~25%)8, which plays a significant role in disease due to aberrant 

mRNA processing. The creation and loss of binding sites for these splicing factors can 

also result in small changes in mRNA structure and overall gene expression, and is part 

of the diverse tissue-specific regulatory ecosystem of the cell9. 

In addition, binding sites for splicing regulatory elements have been shown to reside over 

a range of distances from the corresponding natural splice sites10; the impact of these sites 

appears to be related to their binding affinities to the cognate RNA binding proteins and 

to their distance from the proximate intron/exon boundary11. Recognition sites for these 

regulatory proteins can reside either within introns or exons. Those within exons are 

commonly referred to as exonic splice enhancers or silencers (ESE or ESS, respectively), 

whereas the corresponding designations for intronic elements are ISE or ISS. Sequence 

variants affecting these protein-binding sites (or mutations in the binding proteins 

themselves) have been documented as contributing to aberrant splicing and pathogenic 
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phenotypes. We focus on variants occurring in cis with target genes, as opposed to those 

in the splicing complex (in trans), leading to abnormal splicing. The efficiency and 

specificity of splicing depends on the combination of natural splice site strengths and the 

binding of splicing regulatory proteins that orchestrate exon recognition12. 

Mutations that affect pre-mRNA splicing account for at least 15% of disease-causing 

mutations13 with up to 50% of all mutations described in some genes14,15. Interpreting the 

effects that these variants have on splicing is not straightforward because natural and 

regulatory splice sites exhibit considerable sequence variation. Furthermore, performing 

in vitro experiments to verify the consequences of each variant is costly and time 

consuming, and may not be practical. In silico prediction methods have become essential 

resources for analyzing these variants. Software programs for splicing analysis use a wide 

variety of bioinformatic approaches. Several splice site prediction tools compare the 

predicted mutant sequence to a consensus sequence, based on a set of functional acceptor 

or donor splice sites16. A drawback of this approach is that low-frequency nucleotides 

present in functional splice sites are not represented, which can lead to misinterpretation 

and false-positive mutation predictions. One example of this was illustrated by Rogan 

and Schneider (1995), in which the MSH2 (hereditary non-polyposis colon cancer) 

variant described by Fishel et al. (1993), IVS12-6T>C, was predicted to be benign, 

despite being located 6 nt from the natural acceptor splice junction17,18. The consensus 

sequence fails to indicate that C and T at this position are nearly equally probable, which 

reclassified this transition as a polymorphism rather than a pathogenic variant. This 

conclusion is supported by evidence that ~10% of normal individuals without 

predisposition to non-polyposis colon cancer harbour this alternate allele19. 

Over the last 20 years we, and others, have developed an information theory (IT)-based 

approach for prediction of splicing mutations, and their impact on mRNA structure and 

abundance. The effects of these mutations is founded on the formal relationship between 

IT and the second law of thermodynamics, in that the change in information ascribed to a 

sequence variant within a splice site is directly related to thermodynamic entropy and free 

energy of binding20,21. A weight matrix consisting of the Shannon information (product of 
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the probability of each nucleotide and –log2 of its probability) at each position of the 

splice site is constructed. The individual information for a splice site (Ri, in bits) is 

defined as the dot product of this weight matrix and the unitary vector of a particular 

splice site sequence. The magnitude of the information content of a nucleotide within a 

given site is an indication of its level of conservation relative to a set of functional sites. 

This method retains all of the sequence variability inherent in each model of donor and 

acceptor splice sites. By contrast, each base in the consensus sequence has the maximum 

Ri value, which is actually rare in the human genome, and is generally not representative 

of the preponderance of natural splice sites. Prior to the introduction of IT-based 

approaches, consensus sequence-based methods were widely used16. The use of neural 

networks, trained on sequences experimentally determined to be “bound” and “unbound”, 

was another early approach used to predict splice sites22. However, these unbound set of 

sequences are known to harbour some contaminating functional sites23,24, which can limit 

the sensitivity and specificity of these networks25. 

There are instances when IT does not accurately predict the consequences of a splice 

variant. This can often be attributed to instances involving multiple sites or multiple 

regulatory factors, which are not components of current splicing models. In addition, 

splicing regulatory proteins can share overlapping and degenerate binding sites, and may 

exert conflicting effects (for example, serine-arginine [SR] vs. hnRNP proteins), making 

in silico prediction less reliable and accurate in these cases26. Finally, functional cryptic 

splicing motifs occurring deep within the introns can be challenging to identify, because 

they tend to be less well conserved than natural splice sites27,28. 

Nevertheless, a number of authors have recommended IT methods for analysis of splice 

site variants (N = 29; Supplementary Table 1; all supplementary tables are provided in 

the Supplementary Content File). In fact, this approach has been described as 

equivalent to using a general reference textbook as a diagnostic tool, which 

complemented by functional assays, may provide a complete molecular diagnosis29. Most 

of the applications of IT for splicing mutation analysis have involved predominantly rare 

diseases, as well as some low frequency variants associated with more common genetic 
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conditions. This is because IT has been used to assess how well computed changes in 

binding affinity conform to levels of expression and/or patient phenotypes. 

Many IT studies have focused on sequence variants in individual disorders or genes. Our 

synopsis of the broader implications of this work sets the stage for this compilation of 

peer-reviewed variants with accompanying IT analyses. We cover all publications 

retrieved through PubMed and Google Scholar that cite the use of IT (N = 367; 

Appendix D) before September 2014. These items include primary research articles, 

review articles, presentations, and theses. Of all references, 216 publications reported 

variants or other results or analyses pertinent to this review (Supplementary Table 2). In 

the remaining studies, analyses were either not performed, insufficient information was 

provided to reproduce the reported result, or authors described unrelated applications of 

IT-based analysis. We summarize the spectrum of variants analyzed to obtain a global 

perspective of splicing mutations resulting in genetic disease. We also highlight common 

errors that can occur in variant analysis and interpretation, and offer guidelines for 

optimal use of our software programs for interpretation of splicing mutations. 

2.2 Information theory and splice site analysis 

IT was first introduced by Claude Shannon in 1948 and is now used in a variety of 

disciplines to express the average number of bits (i.e. the information content) needed to 

communicate symbols in a message30. Bits are the basic unit used in computing and can 

have one of two values (typically the answer to a yes/no, true/false, or +/- problem). In 

nucleic acid molecular biology, the symbols in the message comprise a group of related, 

aligned sequences, with the average number of bits in the set corresponding to the 

amount of information in the message. This is determined from the information content at 

each position in the sequence, summed over all positions31. The average information is 

depicted graphically by a sequence logo, which stacks the individual nucleotides at each 

position ranked by frequency, and where the height of the stack is the position-specific 

contribution to the average information32. If the set of sequences are functional binding 

sites recognized by the same factor, the individual information in each site (i.e. Ri) is 

related to thermodynamic entropy, and thus, to the free energy of binding21. 
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The information content of a nucleic acid binding site is related to the affinity of its 

interaction with proteins and other macromolecular complexes, such as the case during 

mRNA splicing21. Information theory-based position weight matrices (PWMs; Ri [b,l] - 

also referred to as a ribl - where b and l correspond to the nucleotide and position in the 

splice site, respectively) can be determined for set of known binding sites, in this case, for 

the purpose of calculating individual and average sequence information31. Figure 2.1 

shows an example of sequence logos for the canonical acceptor (or 3′, recognized by the 

U2 spliceosome) and donor (or 5′, recognized by the U1 spliceosome) splice sites, 

computed from the majority of constitutive sites at annotated splice junctions in the 

human genome33. The information contained within the natural splice donor site is 

distributed between the last codon of each exon and the adjacent 7 nucleotides of intronic 

sequence, whereas the acceptor sites are almost entirely intronic, extending 26 

nucleotides upstream from the exon boundary. 

The distributions of Ri values for these sets are approximately Gaussian, with a couple of 

important exceptions, namely the distribution has defined upper and lower bounds21. The 

upper limit corresponds to the consensus sequence, as it is not possible to have stronger 

binding than an exact match to this sequence. The theoretical lower limit corresponds to 

Ri = 0 bits. An Ri value less than zero implies that energy would be required (ΔG > 0 

kcal/mol) for a stable binding complex to form (i.e. that the event would not occur 

spontaneously without an exogenous source of energy). The minimum strength site is 

zero bits, the equilibrium state (ΔG = 0). Assuming the contacts at each position in the 

same binding site form independently, this approach is accurate and quantitative. Altering 

a nucleotide with high information (implying high prevalence and conservation at that 

position) will have a greater impact on binding, than if a less-well conserved base were 

altered. The change in information due to a mutation in a site (ΔRi) is the difference 

between Ri,final and Ri,initial values, where Ri,final is the information of the sequence 

containing the variant, and Ri,initial the information of the reference (wild-type) sequence. 

The minimum fold change in binding affinity resulting from the mutation is an 

exponential function based on ΔRi, or ≥ 2ΔRi (Ref. 21). 
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Figure 2.1. Distribution of deleterious natural site variants relative to information 

content 

A) The sequence logo for human acceptor and donor splice sites based on the positive (+) 

strand of the October 2000 (hg5) genome draft. The logo shows the distribution of 

information contents (Ri in bits) at each position over the region of 28 nucleotides for 

acceptor [-25, +2] and 10 nucleotides for donor [-3, +6] from the first nucleotide of the 

splice junction (position 0). Nucleotide height represents its frequency at that position. 

The horizontal bar atop each stack indicates the standard deviation at that position. This 



29 

 

 

figure was modified from Rogan et al. (2003) to include splice sites in genes on both 

strands of the annotated human reference genome33. B) The distribution of deleterious 

single-nucleotide variants reported at the natural acceptor (left) and donor (right) splice 

sites. The variants used to populate this graph (Supplementary Table 3) were included 

only if they were reported to negatively affect splicing (N = 431 for acceptors, 604 for 

donors). The image was aligned to the sequence logo (A) to illustrate potential correlation 

of number of splicing variants at a position to the information content at that position. 
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2.3 Software resources 

2.3.1 Delila package/system 

Information analysis was originally performed using the Delila sequence analysis system, 

which included a language to process nucleic acid sequences, and a library of sequence 

tools to retrieve and process various types of sequence data34,35. Tools to measure 

information content of nucleic acid sequences were subsequently added to Delila31. 

Initially, models of information content of bacteriophage T7 RNA polymerase binding 

sites and other bacterial control systems were studied, and mRNA splice sites were 

subsequently developed31,36. Later, tools to display binding sites as either a) sequence 

walkers showing individual information or b) sequence logos of average information, 

were incorporated into Delila23,32. The former allows for the positive or negative 

contribution of a base at a given position to a sequence’s information to be represented. 

The Automated Splice Site Analysis (ASSA) server introduced in 2004, and its successor, 

Automated Splice Site and Exon Definition Analysis server (ASSEDA), have been freely 

available throughout the last decade, and have been used for IT-based calculations on 

nucleic acid sequences for the preceding 20 years37,38. Both ASSA and ASSEDA still use 

the Delila program suite to retrieve sequences, calculate information content, and create 

sequence walker representations of individual binding sites. ASSEDA is now available in 

a common interface with the other information theory-based tools described below at 

www.mutationforecaster.com. 

2.3.2 ASSA/ASSEDA 

To simplify mutation analysis, we built a web interface for variant analysis using Delila 

software as the processing backbone37. Our aim was to standardize and facilitate IT-based 

mutation analysis by using Human Genome Variation Society (HGVS)-approved variant 

nomenclature (which has since become the worldwide standard), employing server-based 

retrieval/processing, and reporting results as concise predictions in both tabular and 

sequence walker display formats. Initially, ASSA results described mutations in relation 

to genome annotations from the first finished genome release (hg15)37. While many 
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publications cited this version of ASSA for novel splicing mutation analysis, continued 

improvements have introduced more accurate reference sequences, annotations, and 

models (for both constitutive and regulatory splice sites) based on more comprehensive 

sets of binding sites. The ASSA server contained the original donor and acceptor 

information position weight matrices derived by manual curation of GenBank entries, 

murine donor and acceptor weight matrices, a subset of splicing enhancer elements 

(SF2/ASF, SC35 and SRp40), and the lariat branch point recognition sequence36. ASSA 

reported the strengths of all potential sites predicted within the window selected by the 

user, highlighted those with the largest changes in Ri, and computed the minimum fold 

change in binding affinity for each mutation or polymorphism. Tabular results were 

colour-coded. Unaltered sites above and below the Ri,min (described in Minimum splice 

site information content and exceptions) were highlighted grey and white, respectively. 

Pre-existing sites abolished by the variant (where Ri,final < Ri,min) were marked in red, 

while leaky natural sites (Ri,final ≥ Ri,min) were highlighted in blue. Cryptic sites that were 

created, strengthened, or weakened were highlighted in pink, green and teal, respectively. 

The server parsed any mutation type described precisely by the HGVS notation, 

including substitutions, insertions, deletions, and combinations of these changes39. 

Recapitulating variants described in articles before these guidelines were widely adopted 

proved to be highly time-consuming and error-prone25. Multiple binding factors had to be 

analyzed simultaneously; however, results were reported independently. The analysis did 

not consider other factors relevant to splice site recognition, such as the resulting exon 

size, or potential formation of cryptically spliced exons. 

ASSEDA, the successor software to ASSA, provides a new isoform-oriented type of 

mutation interpretation, updates the coordinate system to HG19 (GRCh37), adds current 

gene and single nucleotide polymorphism (SNP) annotations (dbSNP135), and provides 

additional ribls for other splicing regulatory sites (SRp55, TIA1, ELAVL1, hnRNP A1, 

hnRNP H, and PTB). All models, except those for SRp55 and hnRNP H, have been built 

using sequences from publicly available CLIP-seq data, and are based on a larger number 

of binding site sequences. They have been tested by comparing predictions to validated 

binding sites from published primary literature, and to any splice-altering variants found 
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within them38. ASSEDA introduces in silico exon definition analysis by computing the 

total splicing information across an exon38. Total exon information (Ri,total) is the sum of 

the corresponding donor and acceptor Ri values, and corrected for the gap surprisal term, 

which is based on the length of the potential exon formed using those sites (from 

RefSeq)40. The gap surprisal function is based on the genome-wide distribution of 

constitutive exon lengths, also known as self-information. This term ensures that exons 

are computationally defined using donor and acceptor splice sites in close proximity40,41. 

Exons of uncommon length lead to large negative gap surprisal terms, which reduces 

Ri,total. When applied to predicted exons that activate a cryptic splice site, comparison of 

Ri,total values can more accurately predict cryptic site use than the strength of this site 

alone. The gap surprisal term decreases the predicted Ri,total value of particularly long 

internal exons (eg. the 3.4 kb long exon 11 of BRCA1; Ri,total = 1.4 bits), which tends to 

compensate for this effect with strong splice sites and other sequence elements that 

enhance natural splice site recognition and suppress internal cryptic splice sites. 

The exon definition paradigm extends to the assessment of the impact of mutations in 

ESE/ISS elements. ASSEDA calculates Ri,total by adding the Ri value of a regulatory 

splicing element to the contributions of constitutive splice sites, and applying a second 

gap surprisal term based on the frequency of distance from the splicing element to the 

nearest natural site. Currently, the effect of only a single splicing factor can be evaluated 

by the software at a time, although the approach itself is generalizable to multiple 

regulatory binding sites. If a variant causes changes in the Ri values of multiple sites, 

such as the simultaneous creation of both splicing enhancer and repressor elements, there 

will be less confidence in ASSEDA’s predictions. 

Two distinct sets of IT-based models for donors and acceptors are available on ASSEDA. 

The manually curated ribls were originally determined from 1,799 donor and 1,744 

acceptor sites36. We subsequently derived a set of ribl matrices from genome-wide exon 

annotations33. These models were automatically curated using the criteria that enforced Ri 

> 0 for correctly annotated sites. The resultant models consisted of 108,079 acceptor and 

111,772 donor splice sites, however these were not implemented on the ASSA server 
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until 201133. These genome-wide models are used in the calculation of Ri,total values. The 

∆Ri values for a single nucleotide splicing variant are similar for both sets of models. 

Variants having opposite predicted effects between the respective donor or acceptor ribls 

have not been reported. In general, the genome-wide models report slightly lower 

information contents, however the frequencies of nucleotides at the 5′ end of the acceptor 

site differ significantly. This results in differences in the weights in the -4 to -20 nt region 

between the manually-curated and the genome-wide acceptor ribl matrix, which can 

significantly lower Ri values based on the genome-wide model. In the genome, thymine is 

more prevalent than cytosine at these positions and has a higher positive contribution to 

the overall Ri. This can account for up to a 1.97 bit difference between the models. 

Guanine nucleotides within this sequence window significantly lower the Ri values 

computed from the genome-wide acceptor, as well. While these differences contribute 

only a 0.1-0.4 bit difference to the Ri per nucleotide, the cumulative effect of multiple 

differences within this window can lead to significant differences between the acceptor Ri 

values. 

2.3.3 Shannon pipeline and Veridical 

High-throughput DNA sequencing is generating a deluge of novel variants in patients 

with genetic diseases, most of which currently have unknown significance (VUS). For 

example, 20% of the patients with Pelizaeus-Merzbacher disease possess VUS in the 

PLP1 gene, among which are single or compound heterozygous, rare pathogenic 

mutations42. Many solutions have been proposed, however prediction of pathogenicity by 

bioinformatic analyses is often inaccurate43. The Shannon Human Splicing Mutation 

Pipeline software predicts mutations at genome scale to predict which variants may alter 

mRNA splicing and is based on the same principles and IT models used in ASSA and 

ASSEDA44. However, this software processes 5 million substitutions and/or indels in 10-

15 minutes. While initially only available for the CLC-Bio Genomics platform, this 

software is now offered as a web service in the suite of programs available through 

Mutation Forecaster (www.mutationforecaster.com). Variants are batched in standard 

variant call format (VCF). The pipeline reports any genic variant that affects a known 

natural site or a cryptic site where Ri,initial or Ri,final are ≥ 0 bits and ∆Ri ≥ 1.0 bits, however 



34 

 

 

more stringent criteria for selecting variants with significant information changes can be 

applied. 

In Shirley et al. (2013), all variants from the complete genomes of three cancer cell lines 

(A431, U2OS, U251; N = 816,275) were analyzed44. Variants that were common (≥ 1%) 

were removed. Variants that weakened natural sites, or strengthened cryptic sites to levels 

comparable to or exceeding the strength to the nearest natural site, were flagged. Variants 

that strengthen a natural site could have an effect on the splicing profile of a gene (i.e. 

reduce the frequency of exon skipping for the corresponding exon), but are less likely to 

cause a deleterious phenotype. The overall fraction of mutations flagged, after filtering 

out distant cryptic sites and small ∆Ri values, averaged 0.016%, illustrating how the 

software can be used for prioritizing variants. Some of the prioritized variants occurred in 

genes with known defective functional and biochemical pathways in these cancer cell 

types, i.e. cytokine signalling (in A431), DNA replication and cell cycle (in U2OS). 

Natural splice mutations were confirmed by expression data to a greater extent than leaky 

or cryptic splice site variants. 

In a complete cancer cell line genome, the number of cryptic sites with altered Ri values 

greatly exceeds the number of affected natural splice sites. Many of these are weak 

decoys, which can occur throughout genes. Using the principle that novel cryptic sites 

that are likely to be activated must compete with the natural splice site for spliceosomal 

recognition, the relevant cryptic sites are restricted to those with Ri values comparable to 

or greater to the corresponding strength of the adjacent natural site of the same polarity25. 

Additionally, the proximity of potential cryptic sites to the natural site should be 

considered in assessing whether an exon could be formed with the natural splice site of 

opposite polarity. Cryptic sites that are considerably weaker than the nearest natural site 

of the same type, or cryptic sites that would lead to unusually large exons, diminish the 

likelihood of cryptic site activation. Benaglio et al. (2014) used the Shannon Pipeline to 

screen 303 sequenced patients and flagged five variants that each strengthened or created 

a different cryptic site45. While comparable in strength to the natural site, these were all 

distant (> 400 nt away) and thus, less likely to be recognized. The authors also stated that 
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the ΔRi values for three of these sites were discordant with results obtained with 

NNSplice, a neural network based splicing prediction program. In fact, both the Shannon 

Pipeline and NNSplice demonstrated strengthening of these decoy cryptic splice sites. 

Shirley et al. (2013) evaluated the predictions of the Shannon Pipeline by manually 

inspecting RNAseq data for each variant with significant information changes in each cell 

line44. However, manual review is unfeasible for many large datasets, especially from 

tumors, because of the large numbers of potential somatic mutations affecting splicing in 

each genome. Veridical, an in silico method for validation of DNA sequencing variants 

that alter mRNA splicing, has been developed to provide high throughput, statistically-

robust unbiased evaluation based on RNAseq data46. The method has been implemented 

as software for analysis of potential splicing variants from large datasets and catalogues 

their effects. Veridical takes Shannon Pipeline output from predicted genomic variants 

with effects on splicing and performs a case-control analysis of corresponding expressed 

transcripts that cover the same genomic region, taken from normal tissues. Upon Yeo-

Johnson transformation of the expressed read count distribution, parametric statistics are 

used to compare normal and abnormal mRNA species (exon skipping, intron inclusion 

and cryptic site use). Veridical is designed to be used with large data sets, as the 

statistical analysis gains power with an increasing numbers of control samples. A recent 

study of 442 breast cancer tumors from the Cancer Genome Atlas Project revealed 5,206 

putative splicing mutations using the Shannon Pipeline. Veridical was then used to 

confirm exon skipping, leaky or cryptic splicing of 988 of these variants47. Veridical is 

also available through the same interface as the above-mentioned tools 

(www.mutationforecaster.com). 

2.4 Natural sites 

The early splice site recognition literature often oversimplified the composition of the 

U1/U2-type 5′ donor and 3′ acceptor sites by presenting only consensus sequences and 

truncating the positions in each site16,48,49. However, the conserved tracts extend well 

beyond the canonical GT and AG dinucleotides adjacent intron/exon junctions. 

Furthermore, a small, albeit significant, proportion of natural donor sites (~800, or 0.7%) 
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contain cytosine at position +2 in the genome. This is reflected by a corresponding small 

decrease in average information at this position (Figure 2.1). Sequences adjacent to these 

positions are more variable, but are nevertheless essential for the accurate recognition by 

the spliceosome. Specifically, the donor is defined with the three terminal nucleotides of 

each exon and the first seven bases of the downstream intron. Conversely, acceptor sites 

are represented by the first two bases of the exon and the last 26 bases of the upstream 

intron. Because ASSA and ASSEDA use an integer-based coordinate system, there is a 

zero coordinate at the first intronic base of each splice site (Figure 2.1), which is not used 

in the conventional numbering system. The coordinate ranges for the donor and acceptor 

site positions are therefore [-3, +6] and [-25, +2], respectively. Individual information 

analysis computes the Ri values over these intervals for normal and variant-containing 

splice sites. As discussed below, information content present in intronic intervals justifies 

sequencing and analyses of sequences well beyond the locations of the splice junctions 

themselves. 

Certain variants within donor and acceptor sites are tolerated and may even have benign 

effects, while others have a deleterious impact on spliceosomal recognition. IT accounts 

for all of these possible outcomes. Unusual donor sites (with cytosine at position +2) are 

detected by information analysis, but could be falsely called deleterious by consensus 

sequence-based methods. Although the terminal position of exons contributes 

significantly to donor splice sites with a preference for G, a significant proportion of sites 

naturally possess A or U at this position, or less frequently, C. 

Of the published IT-based variant analyses, single nucleotide variants (SNVs) that were 

reported to affect a natural splice site (multi-nucleotide and insertion/deletion variants are 

listed separately in Supplementary Table 4) were compiled and reanalyzed. After 

reducing this set to only those variants occurring within the intervals covered by the 

splice site information weight matrices described above, 1,120 SNVs were reported to 

affect the strengths of either natural donor or acceptor sites. A variant was considered 

deleterious if it was predicted to affect splicing (either leaky expression or exon 

skipping), or if it was experimentally shown to reduce or abolish splicing of the 
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corresponding exon. In instances where prediction and validation did not concur, the 

latter were used to determine the effect of the variant. Variants predicted to have a neutral 

effect but demonstrated to be deleterious in the validation study were classified as 

damaging. In total, 1,036 deleterious natural splice site variants were analyzed 

(Supplementary Table 3). 

Sequence conservation has long been considered a surrogate measure of evolutionary 

constraint and, by inference, functional significance. The average information quantitates 

the relative conservation at each of the positions within a binding site. We compiled the 

mutation spectra for all mutations that significantly affected the strengths of donor and 

acceptor splice sites and compared these with the average information contents at each 

position. Figure 2.1b indicates, at each position of the natural acceptor and donor sites, 

the frequencies of variants deemed deleterious by information analysis. Interestingly, 

when the sequence logo is overlaid with the histogram of the corresponding mutation 

spectra, the relative frequencies of deleterious mutations and the average information are 

comparable. Indeed, these frequencies and the information contents across each type of 

site are strongly correlated (r = 0.95 for acceptors and 0.90 for donors). Our interpretation 

is that the susceptibility to deleterious mutation at a position is related to its overall 

conservation within the splice site, which reflects the contribution of that ribonucleotide 

to the stability of the interaction with the corresponding spliceosome. Nevertheless, there 

is an unstated bias in ascertainment in these mutation spectra. Variants occurring at sites 

with low information and/or that are benign are under represented, as they are less likely 

to be associated with genetic disease, and were less likely to be reported. Also, the 

distribution is dependent on the region sequenced by the authors of the reviewed 

publications; in early work, the full sequence interval containing the entire splice site was 

sometimes not included or unavailable for analysis. 

An interactive website was created to summarize this set of SNVs. This software 

application renders interpretations of variant effects in a more practical, useful way than 

the corresponding table of supplemental data (Supplementary Table 5). The “Splicing 

Mutation Calculator” (SMC; http://splicemc.cytognomix.com) is a web service that 
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amalgamates all published results for the same type of substitution in a natural splice site, 

regardless of genic context. Variants that create cryptic splice sites that do not alter the 

strength or have a marginal effect on the natural site were excluded. We consider these 

cases to be sequence-specific as opposed to positional. With this program, users have the 

option of exploring mutation data (at present, only SNVs can be analyzed) linked to the 

original literature citations. SMC processes and provides literature support for the 

variants that occur within the defined regions spanned by natural splice sites. The user 

first selects the type of site (donor or acceptor), position (based on ASSEDA’s integer-

based system), wild-type or reference nucleotide, and the alternate substitution at that 

position (Figure 2.2a). The software tool outputs the ΔRi and the number of variants that 

have been reported and analyzed to date using IT (Figure 2.2b). SMC provisionally 

classifies the reported variants based on the degree to which these predicted effects are 

expected to decrease spliceosomal affinity, and consequently splicing. The following 

criteria are empirically based on affinity changes and a summary of published phenotypes 

associated with these changes: “Deleterious” (if the site is weakened by more than 7.0 

bits), “Probably Deleterious” (if the site is weakened such that -4.0 bits ≥ ΔRi ≥ -7.0 bits), 

“Leaky” (the site is weakened such that -1.0 bits ≥ ΔRi ≥ -4.0 bits), or “Benign, probable 

polymorphism” (if the site is weakened by less than 1.0 bits). The “Benign” variants, 

which are likely polymorphisms, are now catalogued (see Supplementary Table 6 for 

the list of variants that were added). It is important to appreciate that the ΔRi is a constant 

for a specific nucleotide change at a specific position, though the absolute strength of the 

splice site depends on the sequence context of the mutation. This context varies between 

mutations, and Ri,initial is not the same for each case, which can result in different Ri,final 

values for different mutations. 

Besides published sources, the software also can predict effects of mutations by 

computing ΔRi values directly. Particular substitutions that have not been reported in 

Supplementary Table 5 can nonetheless be provisionally interpreted. The ΔRi value is 

computed and reported from the ribl. While SMC enables rapid exploration of results for 

validated and novel mutations, it is, however, not a replacement for ASSEDA or the 
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Figure 2.2. Sample retrieval of average change in information content (ΔRi) with 

splicing mutation calculator (SMC) for published mutations 

A) Example mutation input for SMC (T>A at the 3rd intronic position of natural 

acceptor). The type of splice site is selected by clicking on the corresponding sequence 

logo [acceptor (left) or donor (right)]. The purple slider bar appearing below the logo is 

used to select the position of the mutation. The reference and mutant nucleotides are then 

designated, and the variant is submitted to the software (‘Submit your selection’). SMC 

outputs a table indicating the user input, the number of instances in the literature where 

this substitution has been analyzed using IT, and the computed ΔRi values (in bits) using 



40 

 

 

both the old (1992; top) and new (2003; bottom) ribls. The cell color for ΔRi values 

indicates the predicted severity of the inputted variant according to defined 

thresholds25,50. 

B) Tabular output detailing each instance of the selected mutation from the source table. 

The user may view, in a separate window, extensive details of all variants referred to in 

SMC output (Supplementary Table 5). 
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Shannon Pipeline, since it does not consider the sequence context, which can also 

influence the interpretation of deleterious, leaky, or benign variants. 

2.4.1 Minimum splice site information content and exceptions 

The minimum theoretical information content of a binding site, Ri,min, is zero bits, which 

corresponds to binding at equilibrium (ΔG = 0 kcal/mol)21. Comparison of the Ri values 

of a series of inactivated and minimally active splice sites revealed the minimum strength 

of functional splice sites (Ri,min) to be at least 2.4 bits for the original donor and acceptor 

models of Stephens and Schneider (1992) (based on 103 mutations with functional 

validation, including 57 natural and 46 cryptic site activating mutations)25. This value 

was redefined based on information models from a genome-wide set of donor and 

acceptor models (Figure 2.1a) to be 1.6 bits using the identical set of mutations33. It is 

likely that the differences between these values are not significant and are attributable to 

the increased precision of the ribl using the ~50-fold larger set of sites. Weakened natural 

sites, with significantly reduced Ri values that remain above these thresholds, are 

considered to be leaky (lower affinity binding), whereas those below this threshold are 

found to completely abolish natural splice site recognition, resulting in either exon 

skipping or activation of neighbouring cryptic splice sites. However, these outcomes are 

not mutually exclusive, since leaky splice site mutations may also result in exon skipping 

and/or activate neighboring cryptic sites. Natural splice sites below these thresholds are 

extremely rare, and their recognition is likely enhanced through the binding of specific 

RNA binding proteins that promote exon definition (eg. XPC exon 4 acceptor and 

MYBP3 exon 12 acceptor, genes involved in xeroderma pigmentosum and hypertrophic 

cardiomyopathy, respectively51,52). 

Leaky natural sites have Ri values exceeding the Ri,min threshold, which, in theory, retain 

some capacity to be recognized by the spliceosome. There were 84 variants predicted to 

cause leaky splicing, of which 19 were shown experimentally to lead to exon skipping 

without any detectable residual natural splicing (Supplementary Table 2: #32, 120, 

128/380, 195, 276.5, 355, 360, 363, 364, 365, 379, 409, 477/496/934, 573, 842, 853, 
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883/1589, 886, and 918). Of those, seven are donor splice site mutations at position +5 

(∆Ri ~ -3.5 bits; #128/380, 195, 355, 842, 853, 883/1589, 886), four alter the first exonic 

nucleotide of a donor site (∆Ri ~ -3.0 bits; #276.5, 360, 379, 409), and three are donor 

mutations at position +4 (∆Ri ~ -2.6 bits; #120, 365, 573). The Ri,final values of these 19 

inactivated natural sites range from 2.7 bits to 8.8 bits, which suggests the possibility that 

the variant may also simultaneously affect other adjacent or overlapping sites that 

preclude recognition of the mutated natural site. Additionally, weakening of 11 of these 

variants activates a neighbouring cryptic splice site, in which no residual natural splicing 

was detected. However, changes in splice site preference due to small changes in binding 

affinity within exons are probably related to the processive nature of donor splice site 

selection53. 

Leaky splicing mutations are readily detected when the expressed transcript contains the 

causative variant or a neighbouring polymorphism. However, there are a number of 

practical limitations on the methods for experimental validation of leaky splicing 

mutations. RT-PCR alone would only be considered reliable for confirmation of 

homozygous mutations (and in one case, a compound heterozygote where two separate 

variants abolished natural splicing of the same exon), unless combined with a secondary 

quantitative methodology54. Similarly, it is difficult to assess leaky splicing of 

heterozygotes using RNAseq data, as reduced levels of wild-type splicing are challenging 

to determine without adequate read coverage and controls for comparison. However, 

leaky splicing can be assessed by comparing the frequency of the causative allele to the 

normal allele in the same cell line when the variant is present within the sequenced 

reads44. These are special cases however, as the variant itself must either be expressed 

within an exon or, if intronic, must lead to an activation of a cryptic site further into the 

corresponding intron. 

We previously suggested that weaker splice sites are more susceptible to mutational 

inactivation relative to stronger sites25. In the present study, all experimentally verified 

variants affecting natural sites (where leaky and abolished splicing could be 

differentiated) were analyzed (N = 98). Variants predicted to abolish splicing (Ri,final < 
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Ri,min and/or ΔRi < 7.0 bits) were filtered out, as large changes in binding affinity will 

essentially abolish splicing, despite remaining binding strength and regardless of initial Ri 

value. Figure 2.3 illustrates the frequency of abolishing by these variants relative to 

initial Ri value. Variants occurring at weak splice sites (Ri,initial < 4.0 bits) abolish splicing 

in 5 of 6 cases (where ΔRi < 7.0 bits), but are not represented as they all weaken the site 

below Ri,min. The remaining variant slightly weakens a site where Ri,initial is -0.1 bits 

(where ΔRi = 0.5 bits), and its recognition may be supported by SR elements51. Moderate 

strength splice sites (5.0-11.0 bits are inactivated in 25-60% of cases), and at strong 

splice sites (Ri,initial ≥ 12.0 bits) tend to be leaky (Figure 2.3b). Mutations that abolish 

natural sites (without cryptic splice site activation) are expected to result in a complete 

loss of normal splicing. However, of the 94 variants which reduced natural splice site 

strength below Ri,min, 11 were reported to have residual normal splicing activity 

(Supplementary Table 2: #185/750, 275, 881, 914, 1315, 1321, 1325, 1326, 1361, 1380, 

and 1407)25,44,55,56. Two of these occurred at the G of the +1 position of the donor site 

(Supplementary Table 2: #185/750 and 1326), which is essentially invariant in 

functional splice sites. This suggests potential problems in IT or experimental analysis of 

these mutations. Surprisingly, the majority of these variants occur at the +2 position of a 

donor splice site and are T>G mutations, which are predicted to abolish splicing 

activity44. However, the analysis of RNAseq data for these variants showed no splicing 

defects (Supplementary Table 2: #1315, 1321, 1325, 1361, 1380 and 1407). One 

explanation is that resultant aberrantly spliced transcripts were subjected to nonsense-

mediated decay (NMD) and degraded. Another possibility is that the coverage of these 

splice junctions is insufficient to distinguish expression of a single allele from that same 

allele plus the leaky splice junction. The remaining variants differ in the position within 

the splice site and decrease natural site strengths to between 0.9 to 2.2 bits25,55. 

Theoretically, a site lacking the canonical G at +1 (donor) or -1 (acceptor) position of a 

natural site may exceed Ri,min. Ozaltin et al. (2011) and Di Leo et al. (2009) each assessed 

mutations at positions +1 or -1, which weaken natural splice sites to Ri > Ri,min, and note 

that these sites are predicted to be leaky57,58. However, this is not the sole criterion for 
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Figure 2.3. Frequency of Abolishing Variants in Relation to Initial Strength 

All experimentally verified variants affecting natural sites (where leaky splicing could be 

assessed) were organized based on the Ri,initial of the altered natural site (N = 98). Variants 

predicted to abolish splicing were filtered according to Ri,final < Ri,min ; ΔRi < 7 bits.  

Histograms display results either cumulatively (A) or are binned (B). In panel (A), the X-

axis represents all variants in natural splice sites, which are weaker than the indicated Ri 

values. In panel (B), the X-axis represents Ri,initial in 1 bit intervals. The Y-axis shows the 

percentage of analyzed variants in that interval, as well as the percentage of those 

variants that were experimentally shown to abolish splicing. Variant ZRANB3: 

g.136148401A>T is an outlier mutation, with a high Ri,initial value (20.4 -> 17.6 bits and 

results in leaky splicing) that was omitted to facilitate the display of the rest of the 

mutation distribution. 
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interpreting splice site mutations using IT-based methods. The overall change in binding 

affinity must also be considered, as both mutated sites were predicted to have only 0.4-

0.5% of binding affinity of the corresponding natural splice sites57,58. 

2.4.2 Branch-point mutations 

Although branch-point (BPS) recognition occurs independently and post-exon definition, 

mutations in this sequence have also been described, due to its proximity to the natural 

acceptor site. Following the recognition of and binding to the 5′ss (upstream donor site) 

by the U1 snRNP, the U2 is recruited to the 3′ss (downstream acceptor) and recognizes 

the BPS, resulting in the formation of the pre-spliceosome59. Association of U2 with the 

BPS is essential, as it is the first energy-requiring step, allowing for the tri-snRNP 

complex of U4/U6 × U5 to be recruited to the BPS, which produces a catalytically active 

spliceosome60. The BPS typically contains a conserved adenosine and a downstream 

polypyrimidine tract. It is located within 40 nt of the natural 3′ss, however there are 

reported cases where it can be up to 400 nt away. 

Recognition of the BPS is thus a crucial step in proper splicing, and sequence variants 

can disrupt this event, impede lariat formation, and intron excision. The complete list of 

BPS variants analyzed using the ASSA and ASSEDA server can be found in 

Supplementary Table 7. The variants range in distance from 0-76 nt from the natural 

acceptor junction, and either weaken, abolish, or strengthen the BPS. When validation 

assays were performed, the prediction by the server was correct in 9/11 cases. We 

deemed the two other cases to be partially discordant (NM_004628.4:c.413-24A>G and 

NM_005902:IVS8-55A>G). ASSEDA predicted these variants to abolish the BPS, but 

leaky and normal splicing were observed, respectively. The predictions are partially 

concordant with experimental findings because ASSEDA also predicted the existence of 

nearby alternative BPS, which if used, could account for the observed phenotype. 

Although IT-based prediction of a variant effects on BPS has been accurate, the number 

of validated sites used to compute the ribl is substantially smaller (N = 20), and it is not 

as reliable as those used to determine Ri values of natural acceptor and donor sites. 
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Furthermore, these motifs are short and relatively frequent in unspliced mRNA. One 

possible explanation for the rarity of BPS mutations is that compensatory, alternative 

BPS sequences can be recognized and used. Furthermore, the weak constraint on the 

precision of the distance between the BPS and the 3′ (acceptor) splice site (Figure 2.4) 

further enables activation of these alternative sites. These factors increase the chance that 

a variant will be falsely predicted to affect a BPS. For example, variants within donor 

splice site sequences are routinely predicted to alter strength of false BPS. This error is 

easily avoidable if the potential recognition sequence is filtered for the genomic context 

of the variant, as well as its proximity to acceptor splice sites. 

2.5 Activation of cryptic splicing 

It has been estimated that 1.6% of disease causing missense mutations can affect splicing 

and recent predictions suggest that approximately 7% of exonic variants in the general 

population may disrupt splicing, which includes cryptic splicing61,62. The genome is 

replete with pseudo (or decoy) splice sites with varying degrees of similarity to natural 

sites that are not recognized in constitutive splicing63. However, mutations that alter the 

strengths of either these decoys or the natural splice site of the same polarity may shift 

the balance of isoforms towards non-constitutive splice isoforms that predominate over or 

eliminate normal mRNAs (Figure 2.5). Mutations can create a cryptic splicing event by 

creating or strengthening a site in either intronic or exonic regions (Figure 2.5, Type 1), 

weaken the natural site while simultaneously altering an overlapping decoy site (Figure 

2.5, Type 2), or exclusively weaken the natural site, leading to the activation of a pre-

existing decoy site (Figure 2.5, Type 3). Although the contributions of cryptic splicing to 

genetic disease have long been recognized, IT analysis correctly predicts most, but not 

all, cases (Figure 2.5). The challenges in identifying potential cryptic sites or 

determining activation are attributable to our incomplete understanding of the 

requirements for activation64–66, which include exon length, processivity of donor site 

recognition, and involvement of splicing regulatory factors. A database of aberrant 3′ and 

5′ splice sites has been compiled66. 
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Figure 2.4. Ribl used for the prediction of a variant's effect on branch-point sites 

Sequence logo for information model for the branch-point site, created using 20 

annotated branch-point sequences. 
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Figure 2.5. Outcomes of cryptic splicing mutations 

A prototypical internal exon (in purple) with flanking exons (in blue); introns are 

represented by black solid, and dashed lines (top). The three types of cryptic splice site 

activation are then illustrated. Type 1 cryptic splice site activation (left) is caused by the 

activation (green arrow) of a cryptic site by strengthening a pre-existing, or by creating a 

novel splice site (blue). Type 2 (middle) results from the simultaneous weakening or 

abolition (red arrow) of the natural splice site while strengthening or creating (green 

arrow) a cryptic site. Type 3 (right) involves the activation of a pre-existing cryptic site 

due to the weakening or abolition of the natural splice site (indicated by orange triangle). 

The number of cases that have been reported in the literature that has been analyzed by IT 

for each type is indicated, with the percent accuracy in parentheses. The bottom row 

represents the resulting mRNA structure due to the activated cryptic splice site.
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Another bioinformatic method for cryptic site recognition relies on a training set 

composed of cryptic sites that are known to be used67. There are a number of drawbacks 

to this approach: the training set is itself not representative of all cryptic sites; and sites 

that are altered but unused cannot be discriminated from those that are activated (since 

the latter group also depends on the strength of the corresponding natural splice site). IT-

based methods rank cryptic and cognate natural site strength in a way that predicts 

whether the site will be activated, as well as the abundance of each pair of splice 

isoforms. Furthermore, the structures of the prospective isoforms are presented by 

ASSEDA with relative quantitation of each, both prior to and post-mutation. 

During our review, we noted 203 variants with experimental support for cryptic splicing 

(Supplementary Tables 8-10). Of these, 38 variants resulted in Type 1 cryptic splicing. 

From those, site activation (existence of the site and strength ≥ 2.4 bits25) was correctly 

predicted by ASSEDA in 34 cases (89.5%). We identified 56 variants resulting in Type 2 

splicing, 38 of which (67.7%) were accurately predicted, while the remaining 119 

variants resulted in Type 3 cryptic splicing and 99 (90.8%) of the alternate splice sites 

matched predictions. 

Prediction of Type 3 cryptic splicing was more accurate than Types 1 or 2. The criteria 

for concordance with experimental data were that ASSEDA predicted both the cryptic 

site and that the variant weakened the natural site. However, the strength of a site is not 

the sole determinant of whether or not a site is activated. Unlike natural sites, novel 

cryptic sites are not under selection to maintain binding to the spliceosome, and their 

genomic context is less constrained than natural splice sites. The presence of cooperative 

splicing enhancer or repressor elements adjacent to cryptic sites, which could influence 

cryptic splice site activation, is not yet predictable. Additionally, many of the reported 

activated cryptic sites have been confirmed using non-quantitative approaches, and 

therefore these may not constitute the predominant splice forms relative to constitutive 

exons with stronger natural sites. Finally, certain isoforms may not be detected; as 

aberrant transcripts are often subject to degradation and the tools used evaluate functional 

splicing consequences do not always have sufficient resolution to distinguish small 
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differences in isoform structure. All of these factors can affect the concordance of 

predicted cryptic site activation with experimental validation. 

We also separated each sub-group of cryptic splice variants by location (intronic vs. 

exonic) and computed the average difference in strength between pairs of natural (post-

mutation) and the activated cryptic sites. For intronic Type 1 variants, activated cryptic 

sites were 0.9 ± 5.3 bits stronger than the corresponding natural site (N = 12). There were 

eight Type 1 variants (4 at acceptors and 4 at donors) that were missed, because the Ri,final 

value of the natural site exceeded the strength of the corresponding cryptic site by ≥ 1.0 

bits (variants with ΔRi < 1.0 bits are not reliably detected experimentally). We 

hypothesize that these cases could be explained by concomitant change in surrounding 

regulatory binding site sequences. Exonic Type 1 variants were often slightly weaker 

than their cognate natural sites (-1.1 ± 3.8 bits; N = 26). Nearly all of these involved 

ectopic donor site activation (12 of 13), consistent with a processive mechanism for 

donor site recognition, which searches downstream from the acceptor splice site to the 

first donor site of sufficient strength to form an exon38. The opposite pattern was 

observed with intronic Type 2 cases, in which 20 of 21 exceptions occurred at acceptor 

sites. On average, the activated cryptic site exceeded the strength of the cognate natural 

site (1.4 ± 4.6 bits; N = 57). Activated, exonic Type 2 acceptor cryptic sites tended to be 

weaker than their natural site counterparts (-2.3 ± 3.4 bits; N = 4). This result may be 

attributable a low sample size, with 2 of these mutations exhibiting natural sites that were 

stronger (≥ 1.0 bits) than the corresponding cryptic site (1 donor and 1 acceptor). Finally, 

Type 3 activated intronic cryptic sites exhibited the greatest difference between the 

strengths of cryptic sites and cognate natural splice sites (6.3 ± 4.9 bits; N = 104). This 

category contained the fewest number of exceptional cryptic sites, with Ri values less 

than those of natural sites (5 acceptors and 3 donors). This is consistent with the idea that 

the intronic cryptic sites are generally not under selection for adjacent functional 

regulatory binding sites, and, in order to be activated, are required to be substantially 

stronger than the natural site. Although Ri,final values were stronger (2.1 ± 1.9; N = 20) 

than the natural site, exonic Type 3 cryptic splice sites did not show as great a difference 

in strength with a single exceptional case (of an acceptor). Despite these exceptions, 
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activated cryptic splice sites are generally stronger than the corresponding natural splice 

sites25. 

The distribution of activated cryptic sites relative to their natural splice site is indicated in 

Figure 2.6. Among the reported mutations, donor or acceptor cryptic sites are activated 

with similar frequencies (113 donors and 108 acceptors). These cryptic sites are located 

within both introns and exons (59.3% of cryptic donors and 38.0% of acceptors are 

intronic, the remainder are exonic). Cryptic sites have been confirmed to occur over a 

broad range of distances from corresponding natural sites, however there is a distinct 

preference for cryptic site activation adjacent to the acceptor intron-exon junction. These 

splice sites are most common at the first nucleotide downstream from the natural acceptor 

splice junction (Figure 2.1), which has particular implications for the approaches used to 

verify the structure of the aberrant transcript (See Validation methods). 

2.6 Combinatorial effects 

While functional natural splice sites and an intact BPS are integral for accurate and 

efficient splicing, other genetic elements have been shown to make essential 

contributions to exon definition68. Introns will often contain more than one potential 

splice site recognition sequence, but nevertheless, the correct natural site is consistently 

selected63. Differences among the strengths of potential sites, as determined by IT 

analysis, are a major, but not the sole, determinant of splice site utilization. The 

implication is that additional sequences within the gene are necessary to ensure 

specificity and precision of exon recognition. Studies of facultatively expressed 

alternative exon structures have revealed cis-acting sequence elements that function to 

enhance or repress exon recognition. These sequences cooperate with factors that 

recognize natural splice sites, whose sequences and relative strengths can vary 

considerably. Depending on their context, these elements have been referred to as exonic 

splicing enhancers (ESEs), exonic splicing silencers (ESSs), intronic splicing enhancers 

(ISEs) or intronic splicing silencers (ISSs). In general, these elements serve as binding 

sites for trans-acting elements, which will either promote or impede the spliceosomal 
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Figure 2.6. Distribution of activated cryptic sites 

The frequency of validated cryptic splice acceptors (A) and donors (B) occurring at 

positions relative to the natural splice site. Positions are given using ASSEDA 

coordinates. Lower two panels magnifies the cryptic site distribution of the region 

circumscribing the natural splice site. 
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recognition of a splice site. The majority of enhancer elements will act through the 

recruitment of SR proteins and associate components of the U1 and U2 spliceosomes69,70. 

Silencers are often of the hnRNP class, which act through a diversity of mechanisms 

including steric hindrance, the formation of dysfunctional complexes, or blocking 

processiveness71–73. To add to the complexity of splicing regulation, it has recently been 

shown that SR protein function is dependent on context, i.e. whether the corresponding 

binding site is intronic or exonic74,75. 

To improve accuracy of exon definition, the strengths of regulatory elements (i.e. their Ri 

values) have been incorporated into splicing mutation prediction. The significance of 

regulatory elements in disease has been demonstrated in many cases. For example, in the 

NF1 gene, ESE disruption is the primary cause of exon skipping76. Many other genes 

[Adenomatous polyposis coli (APC), survival motor neuron (SMN), bestrophin 1 

(BEST1), pyruvate dehydrogenase alpha 1 (PDHA1)]77–80 have been proven to harbour 

variants that disrupt ESEs and have a confirmed impact on mRNA splicing. 

Adding to the complexity, the recognition sequences for these RNA binding factors, 

while well defined, tend to be short, and can vary to the degree that the same sequence 

may contain overlapping elements of binding sites for multiple factors. However, this 

does not necessarily imply that such a sequence is bound with similar affinity by each 

factor or that it contributes to exon definition. At the same time, these sequences tend to 

be evolutionarily conserved and may be required for proper splicing81,82. 

ASSEDA optionally incorporates PWMs for regulatory binding sites for mutation 

analysis (Table 2.1) in addition to the default donor and acceptor sites. The program 

selects the most proximate predicted ESE/ISS to the natural splice site when calculating 

Ri,total. The molecular phenotype, which dictates the splice isoforms (and their relative 

abundance) that are predicted, accounts for both the potential effect on the natural site 

and the most relevant splicing regulatory site. For these regulatory binding sites, a second 

gap surprisal term specific to the ESE/ISS of interest is applied to the Ri,total calculation38. 

The gap surprisal functions for SF2/ASF and SC35 have been previously described38, 



54 

 

 

Table 2.1. Splicing regulatory protein binding sites ASSEDA scans for and their 

associated effect on splicing. 

Splicing 
Factor 

Rsequence 
(bits) Sequence Logo 

Location-dependent 
effect on splicing 
Intronic Exonic 

hnRNPH1 8.9 ± 1.8 

 

E83,84/ S85,86 S / E87 

hnRNPA1i 4.6 ± 1.5 

 

S / E88 S 

TIA1 7.6 ± 3.1 

 

E N/A 

SRSF6 
(SRp55) 5.2 ± 1.4 

 

E / S86 E / S 

SRSF5 
(SRp40) 4.5 ± 1.5 

 

E / S86 E / S89 

SRSF2 
(SC35) 4.5 ± 1.6 

 

E / S90 E / S91 

SRSF1 
(SF2/ASF)92 5.8 ± 1.5 

 

E / S90,93,94 E / S 

PTBii 4.9 ± 1.9 

 

S / E95 S 

ELAV1 9.6 ± 3.4 

 

S / E / 
N96,97 S 

 

Reported dominant effect is bolded. E – Enhancer; S – Silencer; N - Neutral. 
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iEnhancer activity by hnRNP A1 occurs at the junction88. iiPTB does not directly enhance 

splicing, but can do so indirectly by preventing the binding of splicing repressors95.



56 

 

 

where the most common distance of the ESE/ISS is within 10nt of the natural site. The 

gap surprisal penalty gradually increases with distance from the natural site. Gap 

surprisal distributions for ELAVL1, TIA1, and SRp55 show a similar pattern, while 

hnRNPA1 and PTB binding sites are strongly clustered around splice junctions. It should 

be feasible to include the contributions of multiple splicing regulatory binding sites of the 

same or different RNA binding proteins in determining Ri,total; however this capability 

had not yet been implemented. Currently, if multiple sites of the same type are altered, 

the strongest (before or after mutation) is chosen by ASSEDA software. 

Although the disruption of splicing regulatory sequences can cause aberrant splicing, the 

interpretation of variants affecting these sites is not as straightforward. Due to their 

degenerate nature, short sequence, and a lack of understanding for the context of their 

use, altered regulatory sites should be functionally validated before being deemed 

pathogenic10. Using variants from a number of different studies, ASSEDA accurately 

predicted experimentally determined changes in binding at a splicing regulatory site 75% 

of the time (N = 12)38. However, there were instances where regulatory sequences had 

been analyzed by IT, and considered to contribute to disease, but the results were not 

reproducible. For example, Kölsch et al. (2009) described SNPs associated with 

Alzheimer’s Disease, one of which strengthened and created SRp40 and SRp55 sites, 

respectively, but were reported by authors to be abolished98. This study did not report any 

evidence to support the significance of these predictions. 

Functional validation of the effects of these mutations could contribute to understanding 

of the roles of these factors in regulating constitutive splicing. Similarly, there is still little 

understanding on how multiple regulatory binding sites within the same region function 

as a unit. Using a pull-down assay, Olsen et al. (2014) demonstrated how different 

variants affect the binding of multiple regulatory proteins26. One mutation was predicted 

to create and strengthen multiple hnRNPA1 sites and slightly strengthen an SF2/ASF 

(SRSF1) site. The pull-down studies showed up-regulation of hnRNPA1 binding and a 

decrease in SF2/ASF binding. However, SF2/ASF binding increased when a mutation 
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disrupting hnRNPA1 affinity was introduced, suggesting that the strong hnRNPA1 sites 

outcompete the weaker SF2/ASF site. 

In some instances, an alteration in regulatory splice site recognition sequence and natural 

splice strength were altered concomitantly, with both predicted to have similar effects 

splicing. Alteration of a regulatory sequence can sometimes provide a plausible 

explanation for discordant in silico prediction and experimental validation. As an 

example, Smaoui et al. (2004) analyzed a donor mutation 

(NM_001040667:c.1327+4A>G) in HSF4 in a family with congenital cataracts54. This 

variant was predicted to cause leaky splicing (Ri,final = 5.4 bits; ΔRi = -2.6 bits; 67.5% 

residual binding), however RT-PCR showed complete exon skipping. Our further 

analysis showed that it is predicted to also create an overlapping hnRNPA1 site (Ri,final = 

4.2 bits; ΔRi =17.1 bits). Another case involved a mutation in the XPC gene 

(NM_004628:c.2033+2T>G) that created a novel intronic cryptic site 4 nt downstream of 

a natural donor site99. However, a weaker site 68 nt downstream from the natural site was 

activated. A possible explanation could be that activation of the cryptic site is influenced 

by a neighbouring hnRNPA1 site that is itself strengthened (Ri,final = 5.2 bits; ΔRi = 2.2 

bits) and an SRp55 site that is significantly weakened (Ri,final = 1.9 bits; ΔRi = -4.0 bits). 

The effects of changes in regulatory binding site strengths may ascribe potential functions 

to previous VUS. For example, Maruszak et al. (2009) present a PIN1 variant associated 

with late-onset Alzheimer’s Disease (NM_006221:c.58+64C>T)100. Based on IT, it is 

expected to abolish an intronic SC35 site, which could have either an enhancing or 

silencing effect (Table 2.1). A 2.82-fold decrease in transcript levels was demonstrated, 

which is concordant with previous findings reporting decreased PIN1 levels in the brains 

of Alzheimer’s Disease. Another study described an exonic missense variant within the 

ETFDH gene in a patient with multiple acyl-CoA dehydrogenase deficiency 

(NM_004453:c.158A>G) that showed evidence of exon skipping. The variant was 

predicted to be “benign” or “tolerated” when evaluated with PolyPhen and SIFT26. 

ASSEDA, on the other hand, predicted the creation of an hnRNPA1 site (Ri,final = 5.9 bits; 

ΔRi = 17.1 bits), a slightly strengthened hnRNPH site (Ri,final = 4.0 bits; ΔRi = 0.2 bits), 
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the abolition of an SRp40 site (Ri,final = -3.3 bits; ΔRi = -6.3 bits) and two novel, weak 

SF2/ASF sites (Ri,final = -4.6 bits; ΔRi =0.8 bits and Ri,final = -2.4 bits; ΔRi = 0.4 bits)26. The 

natural donor site was unaltered by the mutation. As indicated earlier, the mutation was 

confirmed experimentally to increase hnRNPH and hnRNPA1 and decrease SRp40 and 

SF2/ASF binding. 

2.7 Validation of results 

A number of early mutation studies did not perform expression analysis and relied solely 

on the ASSEDA or ASSA server to interpret potential mutations. This is not 

recommended, as there are limitations to any in silico predictive method, which impacts 

accuracy and precision of the prediction. Assuming that the impact of the mutation on 

expression can be detected, experimental validation of IT-based mutation analysis can 

reveal its limitations. We describe the various validation methods that were employed in 

the articles where expression data were available. Below, advantages and disadvantages 

of these approaches are explored, as well as how lower sensitivity validation can result in 

misinterpretation. Finally, we determine the accuracy of IT-based prediction, and point 

out some instructive, discordant cases. 

2.7.1 Validation methods 

The two most widely used methods for validating mutant mRNA splicing isoforms have 

been RT-PCR analysis of patient mRNA, and transfection of minigene constructs 

expressing the mutated exon into cell lines, followed by RT-PCR. These assays were, in 

some cases, accompanied by other techniques such as direct sequencing of cDNA, 

Western blotting, luciferase expression assays, or immunostaining. A number of studies 

used quantitative RT-PCR or real-time PCR to estimate isoform abundance. RNA or 

cDNA sequencing and exon expression microarrays were also used in several studies to 

support in silico predictions. Certain functional assays that we reviewed were unique to a 

single study, including: allelic instability, exon trapping, immunoprecipitation of splicing 

factors, and flow cytometry26,101–103. Other indirect methods of justifying the association 

between a splice site variant and disease included fundoscopy, loss of heterozygosity, 
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blood protein levels, and segregation with disease104–107. Because a variant may result in 

aberrant splicing but might not be accompanied by a detectable phenotypic change, we 

excluded the results of indirect assays of phenotype. Indirect measures of phenotype can 

support disease association, but do not inform about accuracy of splicing prediction. 

Endpoint RT-PCR and minigene assays probe the specific variant in question, but do not 

reveal relative abundance of each isoform, whereas qPCR does. Neither method resolves 

mRNA sequence at the nucleotide level, which can fail to confirm predicted splicing 

mutations, especially in instances where a small number of nucleotides are retained at the 

constitutive splice junction108. The resultant frameshifted mRNAs can cause premature 

truncation of the transcript (PTC), instability, and NMD, leaving no evidence of the 

mutated isoform (unless the cells had been treated with an NMD inhibitor). A 

disadvantage is that in cases where the protein is not degraded, but still impaired or 

dysfunctional, the result will be incorrectly categorized as benign. For example, 

Wessagowit et al. (2005) used sequencing of a COL7A1 variant 

(NM_000094:c.341G>T), responsible for recessive dystrophic epidermolysis bullose, to 

demonstrate a 87 nt deletion in the cDNA109. The authors also performed immunostaining 

of the corresponding protein with a monoclonal antibody, which showed no difference 

between wild-type and mutant samples because the epitope was not disrupted by the 

deletion. Had the authors only performed the binding assay, the variant would have likely 

been disregarded. NMD can be a predominant cause of false-negative results when 

validating splice variants. When aberrant splicing causes a frameshift and PTC, 

translation of truncated proteins is prevented, which otherwise can have dominant 

negative effects or exhibit gain-of-function110. However, if these transcripts are degraded 

and only the normal allele is detectable (in the case of a heterozygote or leaky splicing), 

then the splicing prediction will not be supported. Interestingly, Khan et al. (2004) were 

able to show that NMD had occurred by comparing levels of total message (qPCR) 

between wild-type and mutant samples51. Experimental methods have been developed to 

stabilize transcripts with premature termination of translation, thus circumventing NMD. 

The use of emetine, which inhibits translation and stabilizes RNA transcripts, can 

increase the relative amount of aberrant transcript observed111,112. However this approach 
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can induce a stress response within the cell and further transcription must be halted using 

actinomycin D. This combination was used by Bloethner et al. (2008) in an approach 

called Gene Identification by NMD Inhibition 113. Similarly, the use of puromycin and 

cycloheximide were shown to inhibit NMD and restore predicted aberrant splice 

forms101,114. Furthermore, certain mutations proximate to the carboxy-terminus of the 

coding region evade NMD115,116. 

2.7.2 Regulatory sequence variants 

A number of assays have been developed to confirm direct effects of variants on splice 

site recognition, however fewer methods are available to measure effects of mutations at 

binding sites of splicing regulatory proteins117. The most reliable approach is to associate 

a change in splicing with a change in regulatory protein binding. A combination of 

electrophoretic mobility shift assay and RT-PCR were used to confirm that a predicted 

change in an SF2/ASF binding site caused exon skipping in the CFTR gene responsible 

for cystic fibrosis118. Others performed RNA affinity purification in combination with 

Western blotting26. 

Another approach tests multiple variants at the same position through minigene assays. 

Anczuków et al. (2008) observed that two variants at the same position in the highly 

penetrant hereditary breast/ovarian cancer gene BRCA1 (c.3600G>T and c.3600G>C) 

predicted different effects on regulatory sequences, as well as different observed effects 

on splicing119. The G>T variant predicted abolishment of a SRp40 site and weakening of 

an SF2/ASF site by both ASSA and ESEfinder, and showed a significant reduction in the 

relative amount of normal transcript. The G>C variant, which did not elicit a change in 

splicing, was not predicted by ASSA to have a significant effect on either site (although 

ESEfinder predicted weakening of the SRp40 site below its default threshold). The 

difference in splicing efficiency could be due to the loss of binding by one or both of 

these regulatory proteins. This assay associates predicted changes to regulatory protein 

binding site strength to changes in splicing. A direct binding assay would lend key 

support for such predictions. 
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2.8 Accuracy of IT-based prediction 

We previously evaluated the accuracy of IT-based prediction using a set of validated 

splicing mutations (85.2%; N = 61)28. Other studies have also evaluated the accuracy of 

ASSA/ASSEDA while evaluating differences between multiple predictive programs and 

have shown varying levels of concordance (68.8%, N = 16; 90.1%, N = 22; 100%, N = 

24)55,108,120. With a comprehensive list of all published variants analyzed using IT-based 

methods (Appendix D), we perform a meta-analysis of all of these variants to minimize 

bias in interpretation and impact of ascertainment of specific phenotypes from individual 

studies. The list of variants is more extensive than any previous study examining 

accuracy of IT-based methods. The variants are not restricted to a single or even group of 

diseases, but rather cover over 150 different conditions (Supplementary Table 2). 

In total, 905 variants were reported in 122 different publications to have been validated 

for their effect on splicing (1,727 total variants analyzed from 216 papers – 

Supplementary Table 11). In all cases, the authors performed information analysis; 

however, the validation experiments were sometimes contained in the original reports and 

in other cases, later studies. In a minority of mutations, the validation results were either 

uninformative (N = 36) or the methods did not directly imply an effect on splicing (N = 

2); these mutations were therefore excluded in determining the accuracy of predictions 

(shaded in grey in Supplementary Table 11). 

More specifically, in order for experimental results and predictions to be considered 

concordant, one or more of the following criteria had to be met: 

a. A variant predicted to abolish a splice site did abolish splicing, with no residual 

splicing observed. Exceptions to this were assays in which both the mutant and 

wild-type alleles were expressed in the same cell line or patient sample, and could 

not be discriminated from one another (i.e. RT-PCR); 

b. A variant predicted to be leaky exhibited residual normal splicing, with the 

exception of cases where a much stronger cryptic splice site was activated; 
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c. A variant that strengthened the natural site and showed normal or increased levels 

of the wild-type isoform, consistent with it having a benign phenotype and/or 

being polymorphic; 

d. A variant predicted to activate a pre-existing splice site, while also reducing the 

natural splice site strength, was demonstrated experimentally to result in cryptic 

splicing, regardless of whether it was predicted it to be the predominant isoform; 

e. A variant predicted to affect a splicing regulatory protein-binding site was 

consistent with validation experiments explicitly assessing binding affinity and 

associated splicing alterations. 

Cumulatively, 87.9% of variants documented by expression studies (762 of 867) that 

satisfied these criteria were accurately predicted by ASSEDA. A minority of papers 

reported variants to be “partially concordant” (3.1%; 27/867), meaning that while the 

cryptic site observed was predicted, it was not the most likely splice isoform relative to 

other expressed cryptic exons. Because this method of scoring met our criteria (see point 

d above), we included these in our determination. 

2.8.1 Predicted mutations discordant with validation results 

Limitations of both the predictive model and the validation data/methods were the 

primary reasons for discordance. Where information analysis predicted a neutral change 

or no effect, but validation showed aberrant splicing, we hypothesize that there are either 

unrecognized splicing regulatory protein binding sites that are weakened or abolished, or 

that there are underlying mechanisms that are not currently addressed by current 

information models26,38,54–56,58,100,102,103,103,118,121–131. The validation methods used can also 

contribute to discordant results. We note that 41 discordant results originated from one of 

our own studies44. This study used RNAseq data to validate predictions, a genome-wide 

approach that should be used with caution when inferring changes resulting from 

potential splicing mutations. Until this study was published, IT-based mutation analysis 

was based on single or candidate disease gene studies. RNAseq reveals all changes in 

transcript levels for all genes, which although potentially relevant to splicing, may not 
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necessarily contribute to the phenotype in question. This leads to the possibility, 

especially in cancer phenotypes, of bystander effects (global splicing dysregulation, 

natural alternative splicing) that are not directly attributable to the predicted mutations. 

Furthermore, because the sequence reads at splice junctions are short, and often limited in 

number, a relevant splicing aberration may result from a given variant, but it was not 

detectable. Finally, the predictions of IT can pick up variants that should alter splicing for 

example, of rare recessive alleles, that that may not have any disease relevance. 

2.9 Misinterpretation of variant effects 

While preparing this review, several variants misinterpreted with IT-based tools were 

noted. These variants have been re-analyzed to disseminate the correct findings and to 

avoid making similar errors in the analysis of newly discovered variants. Supplementary 

Table 2 contains these results. The most common problems result from unfounded 

emphases on altered or pre-existing cryptic sites that are determined to be significantly 

weaker relative to the cognate natural site113,132–136, and from selectively reporting a 

single change in the Ri value when, in fact, multiple significant changes can be 

detected52,132,137–140. An example of the first type of error is exemplified by a variant in 

CGI-58 (ABDH5) in a patient with Dorfman-Chanarin syndrome, where the natural splice 

site is 9.1 bits (or ≥ 549-fold) stronger than the reported cryptic site133. Henneman et al. 

(2008) selectively reported the effect of a mutation that weakens a natural donor splice 

site in APOA5 and is thought to cause hypertriglyceridemia, however only a change in 

the information content of an SC35 binding site was indicated140. 

Other common problems include incorrect declaration of small ∆Ri values as significant 

changes113,141,142, use of incorrect Ri,min values143,144, and the computation of predicted 

binding strength changes on a linear scale145 rather than the correct exponential function 

(i.e. ≤2ΔRi)21. Smaoui et al. (2004) described an 8.0 bit donor site as weak, which is 

actually equivalent in strength to Rsequence, the average strength36. Allikmets et al. (1998) 

and Ozaltin et al. (2011) both described an inactivating mutation as leaky, because the 

weakened site remained above the Ri,min
57,138. However, the variant mutation produces a 

site with < 0.7% of its original binding affinity, which would substantially reduce exon 
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recognition and lead to exon skipping116. Also, cryptic sites created in the promoter 

regions of genes should not be considered to be splicing mutations146. Variants that are 

predicted to create a cryptic site upstream or overlapping a natural site of the opposite 

polarity (i.e. cryptic donor upstream of a natural acceptor) have been reported135,136,147, 

which would be inconsistent with established splicing mechanisms38. A rare exception 

that could render such a site active is to the creation of a cryptic exon that occurs in 

conjunction with a proximate, correctly oriented, pre-existing cryptic splice site of 

opposite polarity25,33. Insufficient numbers of examples of mutations creating cryptic 

exons have been reported to date for ASSEDA to accurately model predicted cryptically 

spliced exons by default. 

Several results were generated by incorrect entry of mutations to ASSA/ASSEDA. For 

example, altered cryptic splice sites have been confused with natural sites52,141,148,149. 

Additionally,  ‘residual binding strength’ displayed has been misinterpreted as a percent 

decrease148,150. Strong, pre-existing cryptic sites outside of the default sequence analysis 

window (54 nt circumscribing the mutation) have also been missed because the window 

was not expanded to include these sites151. Although the predicted isoform structure 

generated by ASSEDA will, by default, display skipping for mutated natural sites with 

ΔRi ≥ -7 bits (or ≥128-fold)116, smaller decreases in natural site strength of an internal 

exon can partially induce exon skipping. This value is adjustable, and it may be advisable 

to explore different thresholds depending on the particular susceptibility of a splice 

junction to exon skipping. Sharma et al. (2014) used the default threshold from ASSEDA 

to interpret CFTR mutations c.2988G>A (9.6 to 6.6 bits, natural donor site of exon 18) 

and c.2657+5G>A (9.1 to 5.6 bits, natural donor site of exon 16), but exon skipping was 

documented55. IT analysis was not discordant for these variants, which significantly 

weaken the corresponding splice sites by ≥ 8- and 11-fold, respectively, and has been 

shown in other genes to lead to exon skipping, leaky splicing, or both of these outcomes. 

Aissat et al. (2013) tabulated variants that were predicted to affect strengths of ESE 

binding sites, but did not comprehensively report all findings even though predictions by 

ASSA and ESEfinder were concordant (eg. CFTR: c.1694A>G). Alternate mutation entry 

methods, which do not use contextual gene name annotations, such as entry by rsID, 
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report predicted binding changes on both strands. And in a study of hereditary 

Alzheimer’s disease, the abolition of SRp40 binding sites on the antisense strand was 

confused with binding sites for CYP46A1, which is transcribed from the sense strand152. 

Other problems include inadvertent mislabelling of splice site type or location153–155, 

interchange of the terms information content and change in information (Ri and ∆Ri)126, 

and unclear variant interpretation (i.e. “run on into the intron”)156. Moriwaki et al. (2009) 

claim ASSA did not predict a mutated natural donor site, but in fact, the site was present 

in our reanalysis157. Published Ri values from Rogan et al. (1998) and von Kodolitsch et 

al. (1999) are in some instances different from current values due to updates of the 

reference genome sequence25,50. Nevertheless, the overall predicted effect did not change, 

but initial and final Ri values were inconsistent. Interpretations of certain mutations could 

not be reproduced in some instances107,149,158–160. Finally, we noted that ASSEDA can 

sometimes improperly parse indels entered using c. or IVS notation. Such errors have led 

to published false results71,120,161,162. 

2.10 Interpretation of published variants in studies that use 
information analysis 

2.10.1 Genotype-phenotype association 

The severity of phenotype by due to splicing mutations can be related to their effects on 

mRNA splicing, after careful consideration of the overall impact on mRNA levels and 

protein coding163. Significant information changes (where ∆Ri ≥ 7 bits or where Ri ≤ 2.4 

bits) of splicing variants in hemophilia patients (F8C and F9) were shown to correspond 

to the severe clinical phenotypes of the disease (reduced protein activity, increased 

clotting time, bleeding frequency)131. The overall effect on the coding potential of the 

mutated transcript should be considered, as skipping events that maintain the reading 

frame commonly lead to milder phenotypes106,164,165. Nevertheless, two variants that 

abolish splice site recognition in PTPRO in Idiopathic Nephritic Syndrome reported by 

Ozaltin et al. (2011) had similar phenotypes even though one retained the reading frame 

and the other caused a frameshift57. The exon deleted by the in-frame skipping event is 

highly conserved57. Exon skipping events that cause frameshifts close to the carboxy-
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terminus may lead to mild phenotypes, as they avoid NMD116,166. Dominant negative 

mutations with either Ri > Ri,min or with modest decreases in ∆Ri, may be less likely to 

cause severe phenotypes, as a residual amount of the natural isoform continues to be 

expressed107,121,145,167–170. The impact of cryptic site-activating variants on phenotype can 

be similarly assessed. Activated cryptic sites that shift the reading frame have been 

shown to be more severe clinically relative to those which maintain the same reading 

frame as the native gene106,109,171,172. 

IT-based tools exhibit high specificity for analysis of splicing neutral variants in 

breast/ovarian cancer and other disorders120. These predictions can reduce the 

requirement for experimental validation of low-priority candidate mutations with 

minimal changes in information content17,25. IT analysis has been used in numerous 

studies to infer neutral effects of variants17,37,101,113,120,123,132,133,155,160,161,173–187. Similarly, 

variants that strengthen natural splice sites188–190 are also likely to be neutral, though these 

variants can increase retention of exons that are otherwise frequently alternatively 

spliced191,192. However, binding site variants with minimal splicing information changes 

may still alter mRNA processing by disrupting mRNA secondary structure193. 

2.11 Polymorphisms and splicing 

Early studies suggested that common polymorphic sequence variations (SNPs) at splice 

sites corresponded to small ΔRi values, consistent with these changes having little impact 

on mRNA abundance25. More recently, it has been appreciated that certain rare SNPs 

have significant genetic loads, can actively alter mRNA splicing profiles, and lead to 

non-obvious splicing phenotypes62,191. Nevertheless, it is not uncommon for reports to 

solely analyze novel variants and ignore known SNPs140,160,162,194, or limit results only to 

those that occur in the vicinity of natural splice sites186. We find that 56.4% of common 

SNPs (with population frequencies ≥ 1% in Supplementary Table 2) within natural sites 

significantly alter strength [12.8% abolish and 28.2% cause leaky splicing, 15.4% 

modestly strengthen sites (∆Ri < 2.6 bits)], and 43.6% have insignificant ∆Ri values, as 

expected (N = 39). The mean Ri,final and ∆Ri values, for these natural sites are 7.9 ± 4.0 

bits and -1.4 ± 3.0 bits, respectively, which suggests the effects of these polymorphisms 
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on splicing are nil to limited. However, polymorphisms can significantly modulate 

splicing, as some common SNPs are predicted to abolish natural splicing 

(Supplementary Table 2: #1291, 1296, 1431, 1435, and 1436). These include 

rs10190751 in CFLAR, which modulates the production of two short isoforms, and is 

associated with an increased risk of lymphoma191,195, rs3892097, which alters exon 

inclusion in CYP2D633 and leads to a non-functional protein and altered drug 

metabolism196, and rs1805377 in XRCC437, which has been associated with oral cancer 

susceptibility197 and increased risk of gliomas198. There is also experimental support for 

common SNPs that have been predicted to affect splicing25,102,111,114,118,122,153,167,191,199. For 

example, experimental evidence for increased exon inclusion has been described for three 

of six SNPs that increase strength of natural splice sites191,192. Numerous common SNPs, 

that were either deemed neutral or predicted to affect splicing, have not been confirmed 

experimentally17,25,28,37,50,56,98,103,135,137,148,149,152,155,168,169,181,185,187,190,200–210. 

Polymorphisms with significant information changes should be investigated, as they may 

not be completely benign and can have a significant impact on mRNA splicing. 

2.12 Inference of variant pathogenicity by IT analysis 

Recently, American College of Medical Genetics and Genomics recommendations for 

reporting incidental findings in sequencing have suggested that bioinformatic predictions 

are not sufficient to declare significance211. Preceding the publication of these guidelines, 

numerous peer-reviewed articles suggested variants analyzed by IT to be 

causative/pathogenic/disease-causing, without confirmation of the predicted splicing 

effect105,139,141,154,164,170,180,207,212–220. Other authors have qualified the interpretation of 

bioinformatic results with less certain terms (i.e. ‘suggest’ and ‘likely’ 

pathogenic)114,116,178,221–225. Leclerc et al. (2002) state that a predicted variant confirmed 

to affect splicing is likely deleterious, but could not be unequivocally shown to cause the 

observed phenotype169. Although IT predictions can relate a sequence change to the 

resultant phenotype, caution should be exercised when deeming a predicted splicing 

variant as pathogenic in the absence of other functional evidence. The high level of 

concordance between IT mutation analysis and experimental findings indicates that this 
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approach, in conjunction with other evidence, can be used to detect splicing effects, 

which may be used to explain disease phenotypes. 

2.13 Comparisons to other software programs 

There are now over a dozen other publically available splicing prediction tools, some 

using strategies similar [MaxEntScan (MES)] and others, which are quite different 

(NNsplice) that are compared with IT226,227. Vreeswijk et al. (2009) assessed the 

applicability of different splice prediction programs to diagnose BRCA1/2 variants151. 

These authors recommended that the outcome of 3 programs was sufficient for analysis, 

unless all three predictions were discordant from one another (2 for false positive 

predictions). Despite the obvious appeal of consensus between different analytical 

methods, a major caveat in using polling strategies for mutation assessment is that these 

approaches are prone to both systematic and sampling errors43. 

We summarize results of 36 publications that used both IT-based prediction tools and one 

or more alternate prediction tool (14 for 5′ and 3′ splicing, six for splicing regulatory 

proteins) to assess mutations26,42,101,103,107,115,118–

121,127,134,136,145,151,160,162,168,169,173,181,187,191,199,212,220,228–237. The analysis performed by the 

authors allowed us to compare the similarity of predictions to those programs and IT in 

Table 2.2a and Table 2.2b. Those most commonly used for 5′ and 3′ splice sites 

(NNsplice, MES, NG2, HSF and SSF) were highly concordant for natural sites (85.4% 

for donor and 77.6% for acceptor sites; Table 2.2a). Discordance of acceptor predictions 

may be due to methodologies that do not analyze the complete acceptor site (HSF 

analyzes only 14 intronic nucleotides upstream of acceptor splice sites)238. Some 

programs (SSF, HSF) exhibit greater concordance with IT for cryptic splice site 

prediction (96% for donor and 76.9% for acceptor sites). The level of discordance 

between IT and other commonly used software programs (59.5% for donor and 60% for 

acceptor sites) may be attributable to the empirically-derived scoring thresholds and the 

validation sets used to predict mutated splice sites. Models that are typically built (or 

trained) using known natural splice sites may be less sensitive for differentiating true 

cryptic splice forms from decoys in the genome, which tend to be weaker than natural 
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Table 2.2a. Concordance of splice-prediction programs to information theory-based tools for natural and cryptic sites 

 MES1 BDGP1 NG21 HSF SSF1,2 SSqF1 GS SV SP SS GenS ASD GeneS GM 
Nat. 

Donors 42/48 37/39 24/32 23/28 25/27 15/18 6/11 9/9 5/8 2/2 1/2 1/1 1/1 - 

Nat. Acc. 21/26 14/19 14/20 12/16 15/18 9/11 3/5 4/5 3/5 - - - - - 
Cryp. 

Donors 16/24 4/8 5/10 16/17 8/8 0/7 2/2 - - - 0/1 0/1 - - 

Cryp. Acc. 7/13 2/3 3/4 8/11 2/2 2/2 - - - - - - - 0/1 
Neut. Mut. 31/31 8/8 4/4 26/26 - - - - - 2/2 - - - - 

Table 2.2b. Concordance of splice-prediction programs to information theory-based tools for splicing regulatory 

proteins 

 ESEfinder3,4 Rescue-ESE Ex Skip3,4 ESEsearch PESX 
ESEs (all types) 9/15 3/4 4/14 2/3 1/1 

Neut. Mut. 4/4 1/1 3/3 - - 

Concordance was assessed from the analysis of variants from 36 publications that used IT-based tools and a secondary 

predictive method. Each value corresponds to the number of variants that were concordant with IT-based tools versus the total 

number of variants for each category. 1 – includes Vreeswijk et al. (2008), which may not have properly reported predicted 

cryptic sites, as they did not report any cryptic sites predicted by ASSA beyond the default window size (54 nt) from the 

mutation. 2 - predictions made using the SSF-like algorithm in the Alamut splicing prediction module were combined with the 

SSF category (SSF is no longer supported). 3 – Aissat et al. (2013) contributes highly to the discordance of these programs, 

and may be due to improper reporting/analysis. 4 – Mutations predicted by alternate program to affect SR protein to which 

ASSEDA has no model (i.e. 9G8) were not included in statistics. 
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MES – MaxEntScan; BDGP – Splice Site Prediction by Neural Network, NNSplice; NG2 – NetGene2; HSF – Human Splice 

Finder; SSF – Splice Site Finder; SSqF – Splicing Sequences Finder; GS - GeneSplicer; SV – SpliceView; SP – Splice 

Predictor; SS - Shapiro-Senapathy; GenS – GenScan; ASD - ASD-Intron analysis; GeneS – GeneScan; GM – GeneMark; 

PESX - Putative Exonic Splicing Enhancers/Silencers. 
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splice sites. Tools are highly consistent when analyzing variants expected to be neutral 

with respect to splicing (100%; N = 71). Colombo et al. (2013) compared nine programs 

to evaluate accuracy in predicting mRNA splicing effects and reported that ASSA, along 

with HSF, demonstrated 100% informativeness and specificity120. 

ASSEDA has also been used to analyze RNA binding proteins that enhance or silence 

exon recognition (Table 2.2b). ESEfinder was used for 42.2% of these mutations in one 

or more regulatory binding sites239,240. However, variants predicted by ESEfinder to have 

deleterious effects are discordant with some IT predictions (6 of 15; Table 2.2b). The 

discordance with ESEfinder may be associated with differences in the respective analytic 

methods, as several of the models (SF2/ASF, SC35, SRp40) used by ASSA and 

ESEfinder were created from the same source of experimental data91,241. While the 

majority of the discordant results were cited in a single study114 (5/6 variants), the small 

size of the dataset (ranging from 28-34 sites) may artificially exacerbate differences 

between these results. In multiple instances, ASSA has been used to analyze SR proteins, 

but other programs were used to analyze 5′ and 3′ splice site mutations26,103,119. This was 

surprising, since the donor and acceptor Ri values are generated by default by ASSA and 

ASSEDA. The advantage of performing both constitutive and regulatory splice site 

analysis with IT is that all results are reported on the same scale, and the strengths of all 

interactions, and effects of mutations are directly comparable to one another. 

2.14 Other applications of information theory- based splice 
site analysis 

The use of IT to analyze splicing is not limited to sequence variant analysis. The natural 

and alternative splicing of several genes have been characterized using this 

method111,202,242. Khan et al. (2002) scanned all natural sites in the XPC gene and found a 

weak acceptor (-0.1 bits), and with RT-PCR found that this exon (exon 4) was skipped to 

a greater extent than another (exon 7), which possessed a strong acceptor, illustrating a 

relationship between the information content of a natural splice site and its level of 

alternative splicing111. IT has also been used in genetic engineering in the design and 
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alteration of binding sites, and has been used in the design of constructs for transgenic 

animal models243–245. Thus, IT-based splice site analysis can be adapted for other 

important molecular genetic applications. 

2.15 Guidelines for information theory-based splicing 
mutation analyses 

Our comprehensive review of the use of IT in splicing mutation analysis has led us to 

propose general recommendations, which we formulate as guidelines. Adoption of these 

guidelines should ensure the accurate and comprehensive results from IT analyses of 

VUS and other pathogenic variants that alter mRNA splicing. 

2.15.1 Report gene isoform and genomic coordinates 

When analyzing a variant with ASSEDA, the user is prompted to select an mRNA 

isoform (GenBank or RefSeq accession) from the gene in question. When entering the 

same variant (in either IVS or c. notation) for different isoforms, either the variant will 

parse one but not the other representation, or the variant syntax will be processed for 

both. In the first situation, the user is prompted to verify the position and substitution, 

which may elicit the realization that the incorrect isoform had been selected. However, in 

the case where the variant can still be parsed (despite being incorrectly entered for the 

isoform selected), an incorrect nucleotide may coincidentally have the same sequence, 

and the user may not necessarily realize that the intended position is not being analyzed. 

We were unable to reproduce results for several variants, because the mRNA or gene 

isoform was not reported. This issue could be resolved by comparing the genomic 

sequence in papers where the context of the mutation was included54,99,145,181,246–248. 

Where flanking sequences were unavailable, the location of the mutation was inferred 

from either descriptions in the text, the corresponding Ri value of the splice site, or 

relative coordinate numbering148,249,250. Although we attempted to reproduce all the 

results, this was not always possible if the specified sequence was ambiguous or the 

source was deprecated (GenBank accession numbers, BAC clones, 

etc.)52,101,174,181,182,210,229,234,251,252. 
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We note that ASSA/ASSEDA cannot account for genes with redacted exons, where the 

exon numbering or sequence in the original mRNA accession has not been corrected. A 

well-known example is BRCA1, for which the constitutive isoform lacks the exon 

designated as number 4. IVS notation beyond this point in this gene must be reduced by 

one intron. Alternatively, one of the HGVS-approved methods can be used to input 

variants, or the variant can be designated with the genomic coordinate (g.) format. 

Review of ASSA/ASSEDA output (coordinates and/or the sequence walker20) is a 

prudent approach to confirm that the correct region has been analyzed. 

To eliminate ambiguity, we recommend that reported variants be accompanied by the 

accession number used in its analysis (consistent with HGVS notation39) and the genomic 

coordinates with the corresponding reference genome build. The table of results from 

ASSEDA or Shannon pipeline output could also be included as supplementary published 

material. This will ensure that reported results can be reproduced and compared to other 

experimental or in silico results. 

2.15.2 Report Ri values 

The results generated by IT software provide Ri,initial, Ri,final, and ΔRi for donor and 

acceptor sites by default, and for all other ribl matrices selected. Reporting these values 

along with the interpretation improves the clarity of said interpretation. Several 

publications have not reported Ri, and instead only the interpretation of these 

values129,142,150,214,229,253,254. This presumes that the analysis was performed correctly, and 

accurately interpreted. In one instance, our reanalysis differed from the published 

interpretation142. Other publications provide Ri values, but were incorrectly reported, 

which resulted in misinterpretations52,126. Simply reporting ΔRi itself does not provide 

sufficient information about the context of the mutation or possible cryptic splice sites, 

which is necessary to fully appreciate the resultant effect on splicing140,247,255. We 

recommend Ri values be provided for each variant analyzed. We also suggest that the 

specific donor and acceptor ribl used for variant analysis be indicated, because of the 

differences obtained using the genome-wide and original PWMs in IT analysis33,36. The 
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distinction can also be significant, when the Ri,final value of a mutated splice site 

approaches Ri,min. 

2.15.3 Consider impact of missense and synonymous mutations on 
mRNA splicing 

Missense and synonymous mutations can alter natural splicing, create cryptic sites, and 

alter crucial ESE and ESS binding sites256. IT tools have been employed to analyze 

exonic variants that strengthened or create exonic cryptic sites, which were also 

confirmed experimentally28,42,44,46,102,109,120,128,134,153,155,180,257,258. Similarly, IT tools can 

predict potential effects on strengths of SR and hnRNP protein recognition sites26,121. 

There is no justification for cataloguing intronic and exonic variants, but only assessing 

splicing effects for the intronic variants or those within natural splice 

sites123,136,177,188,210,212,216,217,250,259,260. We recommend that IT-based analysis should 

evaluate all variants within a gene for potential splicing mutations. 

2.15.4 Experimentally validate variants 

Many studies have reported only coding changes and the results of IT (or other in silico) 

analyses without experimental validation. Our review indicated that IT-based splicing 

predictions are highly concordant with results for validation results (87.9%) Nevertheless, 

the discordant mutations support the need for robust post-prediction validation, since 

even a single discordant result can lead to misdiagnosis. We do not detect any consistent 

pattern amongst the discordant predictions to provide guidance as to which IT analyses 

will be erroneous. Experimental verification will mitigate incorrect interpretations of IT 

predictions and has been recommended by others29. 

2.15.5 Report the sequence window used in the analysis 

ASSA/ASSEDA allows the user to alter size of sequence window range surrounding the 

mutation. The default window range has been set to maximize the speed of analysis, 

which is to some degree dictated by the number of matrices and the length of the 

sequence analyzed. Arbitrary abbreviation of the sequence analysis window can result in 

the failure to detect activated intronic or exonic cryptic sites, which can in some instances 
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significantly lengthen (eg. 231 and 313 nucleotide extensions, respectively166,171) or 

shorten the corresponding natural exon. Therefore, we suggest expanding this window if 

one wishes to assess the possibility that long range, pre-existing cryptic splice sites may 

be activated. 

We note that unequivocal prediction of cryptic splice site use in large exons (> 1000 nt) 

can be challenging due to the reliance of these gene regions on splicing enhancers, 

silencers, and other regulatory elements to prevent ectopic splice site use and ensure 

fidelity of splicing261. In a case of familial hypobetalipoproteinaemia, Di Leo et al. (2007) 

determined a variant abolishing the natural acceptor for exon 26 of APOB (7572 nt long), 

causing the activation of a weak cryptic site 1180 nt downstream262. There are several 

other stronger candidate cryptic splice sites that occur between the natural and cryptic 

splice site, but there is no evidence that any are used in the individual carrying this 

mutation. 

2.15.6 Designate genic rearrangements (insertions, deletions, 
duplications) with genomic coordinates 

Complex insertions and deletions in IVS or c. notation may occasionally be parsed to the 

wrong coordinates within a gene. Indels will parse properly when genomic coordinates 

are used. If IVS or c. notation is used, it is suggested that users confirm that the expected 

alteration of the mutation is correct by reviewing the sequence walker display generated 

by ASSEDA for all insertions, deletions and duplications. 
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Chapter 3  

3 A unifying framework for prioritization of non-coding 

variants of uncertain significance in heritable breast and 

ovarian cancer 

The work in this chapter has been submitted for publication as: 

Mucaki EJ∗, Caminsky NG∗, Perri AM, Lu R, Laederach A, Halvorsen M, Knoll JHM, 

Rogan PK. A unifying framework for prioritization of non-coding variants of uncertain 

significance in heritable breast and ovarian cancer. BMC Medical Genomics (2015). 

3.1 Background 

Advances in NGS have enabled panels of genes, whole exomes, and even whole genomes 

to be sequenced for multiple individuals in parallel. These platforms have become so 

cost-effective and accurate that they are beginning to be adopted in clinical settings, as 

evidenced by recent FDA approvals1,2. However, the overwhelming number of gene 

variants revealed in each individual has challenged interpretation of clinically significant 

genetic variation3–5. 

After common variants, which are rarely pathogenic, are eliminated, the number of VUS 

in the residual set remains substantial. Assessment of pathogenicity is not trivial, 

considering that nearly half of the unique variants are novel, and cannot be resolved using 

published literature and variant databases6. Furthermore, loss-of-function variants (those 

resulting in protein truncation are most likely to be deleterious) represent a very small 

proportion of identified variants. The remaining variants are missense and synonymous 
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variants in the exon, single nucleotide changes, or in frame insertions or deletions in 

intervening and intergenic regions. Functional analysis of large numbers of these variants 

often cannot be performed, due to lack of relevant tissues, and the cost, time, and labor 

required for each variant. Another problem is that in silico protein coding prediction tools 

exhibit inconsistent accuracy and are thus problematic for clinical risk evaluation7–9. 

Consequently, 90% of HBOC patients receiving genetic susceptibility testing will receive 

an inconclusive or uncertain result10. 

One strategy to improve variant interpretation in patients is to reduce the full set of 

variants to a manageable list of potentially pathogenic variants. Evidence for 

pathogenicity of VUS in genetic disease is often limited to amino acid coding 

changes11,12, and mutations affecting splicing, transcription activation, and mRNA 

stability tend to be underreported13–19. Splicing errors are estimated to represent 15% of 

disease-causing mutations20, but may be much higher21,22. The impact of a single 

nucleotide change in a recognition sequence can range from insignificant to complete 

abolition of a protein binding site. The complexity of interpretation of non-coding 

sequence variants benefits from computational approaches23 and direct functional 

analyses24–28 that may each support evidence of pathogenicity. 

Ex vivo transfection assays developed to determine the pathogenicity of VUS predicted to 

lead to splicing aberrations (using in silico tools) have been successful in identifying 

pathogenic sequence variants29,30. IT-based analysis of splicing variants has proven to be 

robust and accurate at analyzing splice site (SS) variants, including splicing regulatory 

factor binding sites (SRFBSs), and in distinguishing them from polymorphisms in both 

rare and common diseases31. However, IT can be applied to any sequence recognized and 

bound by another factor32, such as with transcription factor binding sites (TFBSs) and 

RNA-binding protein binding sites (RBBSs). IT is used as a measure of sequence 

conservation and is more accurate than consensus sequences33. The individual 

information (Ri) of a base is related to thermodynamic entropy, and therefore free energy 

of binding, and is measured on a logarithmic scale (in bits). By comparing the change in 

information (ΔRi) for a nucleotide variation of a bound sequence, the resulting change in 
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binding affinity is ≥ 2ΔRi, such that a 1 bit change in information will result in at least a 2-

fold change in binding affinity34. 

IT measures nucleotide sequence conservation and does not provide information on 

effects of variants on mRNA secondary (2°) structure, nor can it accurately predict effects 

of amino acid sequence changes. Other in silico methods have attempted to address these 

deficiencies. For example, Halvorsen et al. (2010) introduced an algorithm called 

SNPfold, which computes the potential effect of a single nucleotide variant (SNV) on 

mRNA 2° structure15. Predictions made by SNPfold can be tested by the SHAPE assay 

(Selective 2’-Hydroxyl Acylation analyzed by Primer Extension)35, which provides 

evidence for sequence variants that lead to structural changes in mRNA by detection of 

covalent adducts in mRNA. 

The ramifications for better interpretation of VUS are particularly relevant for HBOC36. 

Although linkage studies suggest approximately 85% of high-risk families have 

deleterious variants in BRCA1 and BRCA2, less than half have identified pathogenic 

mutations37. This implies that deleterious variants lie in untested regions of BRCA1/2, 

untested genes, or are unrecognized38,39. Consequently, VUS in BRCA1/2 greatly 

outnumber known deleterious mutations40. 

Here, we develop and evaluate IT-based models to predict potential non-coding sequence 

mutations in SSs, TFBSs, and RBBSs in 7 genes sequenced in their entirety in 102 

HBOC patients who did not exhibit known BRCA1/2 coding mutations at the time of 

initial testing. The genes are: ATM (Ataxia Telangiectasia Mutated), BRCA1 (Breast 

Cancer 1, Early onset), BRCA2 (Breast Cancer 2, Early onset), CDH1 (Cadherin 1, Type 

1, E-Cadherin), CHEK2 (Checkpoint Kinase 2), PALB2 (Partner and Localizer of 

BRCA2), and TP53 (Tumour Protein P53), and have been reported to harbor mutations 

that increase HBOC risk41–63. We apply these IT-based methods to analyze variants in the 

complete sequences of coding, non-coding, and up- and downstream regions of the 7 

genes. In this study, we established and applied a unified IT-based framework, first 

filtering out common variants, then to “flag” potentially deleterious ones. Then, using 
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context-specific criteria and information from the published literature, we prioritized 

likely candidates. 

3.2 Methods 

3.2.1 Design of Tiled Capture Array for HBOC Gene Panel 

Nucleic acid hybridization capture reagents designed from genomic sequences generally 

avoid repetitive sequence content to avoid cross hybridization64. Complete gene 

sequences harbor numerous repetitive sequences, and an excess of denatured C0t-1 DNA 

is usually added to hybridization to prevent inclusion of these sequences65. RepeatMasker 

software completely masks all repetitive and low-complexity sequences66. We increased 

sequence coverage in complete genes with capture probes by enriching for both single-

copy and divergent repeat (> 30% divergence) regions, such that, under the correct 

hybridization and wash conditions, all probes hybridize only to their correct genomic 

locations64. This step was incorporated into a modified version of Gnirke and colleagues’ 

(2009) in-solution hybridization enrichment protocol, in which the majority of library 

preparation, pull-down, and wash steps were automated using a BioMek® FXP 

Automation Workstation (Beckman Coulter, Mississauga, Canada)67. 

Genes ATM (RefSeq: NM_000051.3, NP_000042.3), BRCA1 (RefSeq: NM_007294.3, 

NP_009225.1), BRCA2 (RefSeq: NM_000059.3, NP_000050.2), CDH1 (RefSeq: 

NM_004360.3, NP_004351.1), CHEK2 (RefSeq: NM_145862.2, NP_665861.1), PALB2 

(RefSeq: NM_024675.3, NP_078951.2), and TP53 (RefSeq: NM_000546.5, 

NP_000537.3) were selected for capture probe design by targeting single copy or highly 

divergent repeat regions (spanning 10 kb up- and downstream of each gene relative to the 

most upstream first exon and most downstream final exon in RefSeq) using an ab initio 

approach64. If a region was excluded by ab initio but lacked a conserved repeat element 

(i.e. divergence > 30%)66, the region was added back into the probe-design sequence file. 

Probe sequences were selected using PICKY 2.2 software68. These probes were used in 

solution hybridization to capture our target sequences, followed by NGS on an Illumina 

Genome Analyzer IIx (Supplementary Methods – Appendix E). 
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Genomic sequences from both strands were captured using overlapping oligonucleotide 

sequence designs covering 342,075 nt among the 7 genes (Figure 3.1). In total, 11,841 

oligonucleotides were synthesized from the transcribed strand consisting of the complete, 

single copy coding, and flanking regions of ATM (3,513), BRCA1 (1,587), BRCA2 

(2,386), CDH1 (1,867), CHEK2 (889), PALB2 (811), and TP53 (788). Additionally, 

11,828 antisense strand oligos were synthesized (3,497 ATM, 1,591 BRCA1, 2,395 

BRCA2, 1,860 CDH1, 883 CHEK2, 826 PALB2, and 776 TP53). 

For regions lacking probe coverage (of ≥ 10 nt, N=141; 8 in ATM, 26 in BRCA1, 10 in 

BRCA2, 29 in CDH1, 36 in CHEK2, 15 in PALB2, and 17 in TP53), probes were selected 

based on predicted Tms similar to other probes, limited alignment to other sequences in 

the transcriptome (< 10 times), and avoidance of stable, base-paired 2° structures (with 

unaFOLD)69,70. The average coverage of these sequenced regions was 14.1-24.9% lower 

than other probe sets, indicating that capture was less efficient, though still successful. 

3.2.2 HBOC Samples for Oligo Capture and High-Throughput 
Sequencing 

Genomic DNA used in prior susceptibility testing, from 102 anonymized (only gender 

and age of onset were provided) patients was received from the Molecular Genetics 

Laboratory (MGL) at the London Health Sciences Centre in London, Ontario, Canada. 

Patients qualified for genetic susceptibility testing as determined by the Ontario Ministry 

of Health and Long-Term Care BRCA1 and BRCA2 genetic testing criteria71 (see Table 

3.1). BRCA1 and BRCA2 were previously analyzed by Protein Truncation Test (PTT) and 

Multiplex Ligation-dependent Probe Amplification (MLPA). The exons of several 

patients (N=14) had also been Sanger sequenced. No pathogenic sequence change was 

found in any of these individuals. In addition, one patient with a known pathogenic BRCA 

variant was re-sequenced by NGS as a positive control. 



110 

 

 

 

Figure 3.1. Capture Probe Coverage over Sequenced Genes 

The genomic structure of the 7 genes chosen are displayed with the UCSC Genome 

Browser. Top row for each gene is a custom track with the “dense” visualization 

modality selected with black regions indicating the intervals covered by oligonucleotide 

capture reagent. Regions without probe coverage contain conserved repetitive sequences 

or correspond to paralogous sequences that are unsuitable for probe design. 
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Table 3.1. Risk Categories for Individuals Eligible for Screening for a Genetic 

Susceptibility to Breast or Ovarian Cancers as determined by the Ontario Ministry 

of Health and Long Term-Care Referral Criteria for Genetic Counseling 

Category Description 

1 Ashkenazi Jewish and BC <50 years, or OC at any age 

2 BC <35 years of age 

3 Male BC 

4 Invasive serous ovarian cancer at any age 

5 BC <60 year, and a 1st or 2nd-degree relative with OC or male BC 

6 BC and OC in the same individual, or bilateral BC with the first case <50 

7 Two cases of OC, both <50 years, in 1st or 2nd-degree relatives 

8 Two cases of OC, any age, in 1st or 2nd-degree relatives 

9 Ashkenazi Jewish and BC at any age, and any family history of BC or OC 

10 Three or more cases of BC or OC at any age 

11 Relative of an individual with known BRCA1 or BRCA2 mutation 

12 

Ashkenazi Jewish and 1st or 2nd-degree relative or individual with: BC <50 

years, or OC at any age, or male BC, or BC, any age, with positive family 

history of BC or OC. 

13 
A pedigree strongly suggestive of HBOC, i.e. risk of carrying a mutation for 

the individual being tested is >10% 

Only patients from groups 5-8, and 10 were considered for this study.
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3.2.3 Sequence Alignment and Variant Calling 

Variant analysis involved the steps of detection, filtering, IT-based and coding sequence 

analysis, and prioritization (Figure 3.2). Sequencing data were demultiplexed and 

aligned to the specific chromosomes of our sequenced genes (hg19) using both CASAVA 

(Consensus Assessment of Sequencing and Variation; v1.8.2)72 and CRAC (Complex 

Reads Analysis and Classification; v1.3.0)73 software. Alignments were prepared for 

variant calling using Picard74 and variant calling was performed on both versions of the 

aligned sequences using the UnifiedGenotyper tool in the Genome Analysis Toolkit 

(GATK)75. We used the recommended minimum phred base quality score of 30, and 

results were exported in variant call format (VCF; v4.1). A software program was 

developed to exclude variants called outside of targeted capture regions and those with 

quality scores < 50. Variants flagged by bioinformatic analysis (described below) were 

also assessed by manually inspecting the reads in the region using the Integrative 

Genomics Viewer (IGV; version 2.3)76,77 to note and eliminate obvious false positives 

(i.e. variant called due to polyhomonucleotide run dephasing, or PCR duplicates that 

were not eliminated by Picard). Finally, common variants (≥ 1% allele frequency based 

on dbSNP142 or > 5 individuals in our study cohort) were eliminated. 

3.2.4 IT-Based Variant Analysis 

All variants were analyzed using the Shannon Human Splicing Mutation Pipeline, a 

genome-scale variant analysis program that predicts the effects of variants on mRNA 

splicing78,79. Variants were flagged based on criteria reported in Shirley et al. (2013): 

weakened natural site ≥ 1.0 bits, or strengthened cryptic site (within 300 nt of the nearest 

exon) where cryptic site strength is equivalent or greater than the nearest natural site of 

the same phase78. The effects of flagged variants were further analyzed in detail using the 

Automated Splice Site and Exon Definition Analysis (ASSEDA) server80. 

Exonic variants and those found within 500 nt of an exon were assessed for their effects, 

if any, on SRFBSs80. Sequence logos for splicing regulatory factors (SRFs) (SRSF1, 

SRSF2, SRSF5, SRSF6, hnRNPH, hnRNPA1, ELAVL1, TIA1, and PTB) and their 
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Figure 3.2. Framework for the Identification of Potentially Pathogenic Variants 

Integrated laboratory processing and bioinformatic analysis procedures for comprehensive complete gene variant 

determination and analysis. Intermediate datasets resulting from filtering are represented in yellow and final datasets in green. 
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Non-bioinformatic steps, such as sample preparation are represented in blue and prediction programs in purple. Sequencing 

analysis yields base calls for all samples. CASAVA72 and CRAC73 were used to align these sequencing results to HG19. 

GATK75 was used to call variants from this data against GRCh37 release of the reference human genome. Variants with a 

quality score < 50 and/or call confidence score < 30 were eliminated along with variants falling outside of our target regions. 

SNPnexus102–104 was used to identify the genomic location of the variants. Nonsense and indels were noted and prediction tools 

were used to assess the potential pathogenicity of missense variants. The Shannon Pipeline78 evaluated the effect of a variant 

on natural and cryptic SSs, as well as SRFBSs. ASSEDA80 was used to predict the potential isoforms as a result of these 

variants. PWMs for 83 TFs were built using an information weight matrix generator based on Bipad95. Mutation Analyzer 

evaluated the effect of variants found 10 kb upstream up to the first intron on protein binding. Bit thresholds (Ri values) for 

filtering variants on software program outputs are indicated. Variants falling within the UTR sequences were assessed using 

SNPfold15, and the most probable variants that alter mRNA structure (p < 0.1) were then processed using mfold to predict the 

effect on stability70. All UTR variants were scanned with a modified version of the Shannon Pipeline, which uses PWMs 

computed from nucleotide frequencies for 28 RBPs in RBPDB99 and 76 RBPs in CISBP-RNA100. All variants meeting these 

filtering criteria were verified with IGV76,77. Sanger sequencing was only performed for protein truncating, splicing, and 

selected missense variants. 
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Rsequence values (the mean information content81) are provided in Caminsky et al. (2015)31. 

Because these motifs occur frequently in unspliced transcripts, only variants with large 

information changes were flagged, notably those with (a) ≥ 4.0 bit decrease, i.e. at least a 

16-fold reduction in binding site affinity, with Ri,initial ≥ Rsequence for the particular factor 

analyzed, or (b) ≥ 4.0 bit increase in a site where Ri,final ≥ 0 bits. ASSEDA was used to 

calculate Ri,total, with the option selected to include the given SRF in the calculation. 

Variants decreasing Ri,total by < 3.0 bits (i.e. 8-fold) were predicted to potentially have 

benign effects on expression, and were not considered further. 

Activation of pseudoexons through creating/strengthening of an intronic cryptic splice 

site was also assessed82. Changes in intronic cryptic sites, where ΔRi > 1 bit and Ri,final ≥ 

(Rsequence – 1 standard deviation [S.D.] of Rsequence ), were identified. A pseudoexon was 

predicted if a pre-existing cryptic site of opposite polarity (with Ri > [Rsequence - 1 S.D.]) 

and in the proper orientation for formation of exons between 10-250 nt in length was 

present. In addition, the minimum intronic distance between the pseudoexon and either 

adjacent natural exon was 100 nt. The acceptor site of the pseudoexon was also required 

to have a strong hnRNPA1 site located within 10 nt (Ri ≥ Rsequence)80 to ensure accurate 

proofreading of the exon83. 

Next, variants affecting the strength of SRFs were analyzed by a contextual exon 

definition analysis of ΔRi,total. The context refers to the documented splicing activity of an 

SRF. For example, TIA1 has been shown to be an intronic enhancer of exon definition, so 

only intronic sites were considered. Similarly, hnRNPA1 proofreads the 3' SS (acceptor) 

and inhibits exon recognition elsewhere84. Variants that lead to redundant SRFBS 

changes (i.e. one site is abolished and another proximate site [≤ 2 nt] of equivalent 

strength is activated) were assumed to have a neutral effect on splicing. If the strength of 

a site bound by PTB (polypyrimidine tract binding protein) was affected, its impact on 

binding by other factors was analyzed, as PTB impedes binding of other factors with 

overlapping recognition sites, but does not directly enhance or inhibit splicing itself85. 
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To determine effects of variants on transcription factor (TF) binding, we first established 

which TFs bound to the sequenced regions of the gene promoters (and first exons) in this 

study by using ChIP-seq data from 125 cell types (Supplementary Methods)86. We 

identified 141 TFs with evidence for binding to the promoters of the genes we sequenced, 

including c-Myc, C/EBPβ, and Sp1, shown to transcriptionally regulate BRCA1, TP53, 

and ATM, respectively87–89. Furthermore, polymorphisms in TCF7L2, known to bind 

enhancer regions of a wide variety of genes in a tissue-specific manner90, have been 

shown to increase risk of sporadic91 and hereditary breast92, as well as other types of 

cancer93,94. 

IT-based models of the 141 TFs of interest were derived by entropy minimization of the 

DNase accessible ChIP-seq subsets95. The details of this approach have been described in 

a manuscript submitted by our laboratory for publication and are not provided in this 

thesis. While some data sets would only yield noise or co-factor motifs (i.e. co-factors 

that bind via tethering, or histone modifying proteins96), techniques such as motif 

masking and increasing the number of Monte Carlo cycles yielded models for 83 TFs 

resembling each factor’s published motif. Supplementary Table 11 (all supplementary 

tables are provided in the Supplementary Content File) contains the final list of TFs and 

the models we built (described below)97. 

These TFBS models (N=83) were used to scan all variants called in the promoter regions 

(10 kb upstream of transcriptional start site to the end of IVS1) of HBOC genes for 

changes in Ri
98 Binding site changes that weaken interactions with the corresponding TF 

(to Ri ≤ Rsequence) are likely to affect regulation of the adjacent target gene. Stringent 

criteria were used to prioritize the most likely variants and thus only changes to strong 

TFBSs (Ri,initial ≥ Rsequence), where reduction in strength was significant (ΔRi ≥ 4.0 bits), 

were considered. Alternatively, novel or strengthened TFBSs were also considered 

sources of dysregulated transcription. These sites were defined as having Ri,final ≥ Rsequence 

and as being the strongest predicted site in the corresponding genomic interval (i.e. 

exceeding the Ri values of adjacent sites unaltered by the variant). Variants were not 
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prioritized if the TF was known to a) enhance transcription and IT analysis predicted 

stronger binding, or b) repress transcription and IT analysis predicted weaker binding. 

Two complementary strategies were used to assess the possible impact of variants within 

UTRs. First, SNPfold software was used to assess the effect of a variant on 2° structure 

of the UTR (Supplementary Methods)15. Variants flagged by SNPfold with the highest 

probability of altering stable 2° structures in mRNA (where p-value < 0.1) were 

prioritized. To evaluate these predictions, oligonucleotides containing complete wild-type 

and variant UTR sequences (Supplementary Table 13) were transcribed in vitro and 

followed by SHAPE analysis, a method that can confirm structural changes in mRNA35. 

Second, the effects of variants on the strength of RBBSs were predicted. Frequency-

based, position weight matrices (PWMs) for 156 RNA-binding proteins (RBPs) were 

obtained from the RNA-Binding Protein DataBase (RBPDB)99 and the Catalog of 

Inferred Sequence Binding Preferences of RNA binding proteins (CISBP-RNA)100,101. 

These were used to compute information weight matrices (based on the method described 

by Schneider et al. 1984; N = 147) (see Supplementary Methods)32. All UTR variants 

were assessed using a modified version of the Shannon Pipeline78 containing the RBPDB 

and CISBP-RNA models. Results were filtered to include a) variants with |ΔRi| ≥ 4.0 bits, 

b) variants creating or strengthening sites (Ri,final ≥ Rsequence and the Ri,initial < Rsequence), and 

c) RBBSs not overlapping or occurring within 10 nt of a stronger, pre-existing site of 

another RBP. 

3.2.5 Exonic Protein-Altering Variant Analysis 

The predicted effects of all coding variants were assessed with SNPnexus102–104, an 

annotation tool that can be applied to known and novel variants using up-to-date dbSNP 

and UCSC human genome annotations. Variants predicted to cause premature protein 

truncation were given higher priority than those resulting in missense (or synonymous) 

coding changes. Missense variants were first cross referenced with dbSNP142105. 

Population frequencies from the Exome Variant Server106 and 1000Genomes107 are also 

provided. The predicted effects on protein conservation and function of the remaining 
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variants were evaluated by in silico tools: PolyPhen-2108, Mutation Assessor (release 

2)109,110, and PROVEAN (v1.1.3)111,112. Default settings were applied and in the case of 

PROVEAN, the “PROVEAN Human Genome Variants Tool” was used, which includes 

SIFT predictions as a part of its output. Variants predicted by all four programs to be 

benign were less likely to have a deleterious impact on protein activity; however this did 

not exclude them from mRNA splicing analysis (described above in IT-Based Variant 

Analysis). All rare and novel variants were cross-referenced with general mutation 

databases (ClinVar113,114, Human Gene Mutation Database [HGMD]115,116, Leiden Open 

Variant Database [LOVD]117–124, Domain Mapping of Disease Mutations [DM2]125, 

Expert Protein Analysis System [ExPASy]126 and UniProt127,128), and gene-specific 

databases (BRCA1/2: the Breast Cancer Information Core database [BIC]129 and 

Evidence-based Network for the Interpretation of Germline Mutant Alleles 

[ENIGMA]130; TP53: International Agency for Research on Cancer [IARC]131), as well 

as published reports to prioritize them for further workup. 

3.2.6 Variant Classification 

Flagged variants were prioritized if they were likely to encode a dysfunctional protein 

(indels, nonsense codon > 50 amino acids from the C-terminus, or abolition of a natural 

SS resulting in out-of-frame exon skipping) or if they exceeded established thresholds for 

fold changes in binding affinity based on IT (see Methods above). If previous studies 

performed functional or pedigree analyses, allowing to categorize a variant as pathogenic 

or benign, this superseded our analysis. 

3.2.7 Positive control 

We identified the BRCA1 exon 17 nonsense variant c.5136G>A (chr17:41215907C>T; 

rs80357418; 2-5A)132 in the sample that was provided as a positive control. This was the 

same mutation identified by the MGL as pathogenic for this patient. We also prioritized 

another variant in this patient (Table 3.2)133. 
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Table 3.2. Prioritized Variants in the Positive Control 

Gene 
mRNA 

Protein 

rsID (dbSNP142) 

Allele Frequency 

(%)† 

Category Consequence Ref 

BRCA

1 

c.5136G>A 

p.Trp1712Ter 
rs80357418 Nonsense 151 AA short 132 

BRCA

2 

c.3218A>G 

p.Gln1073Ar

g 

rs80358566 

Missense 

Listed in ClinVar as conflicting interpretations (likely 

benign, unknown) and in BIC as unknown clinical 

importance. 2 in silico programs called deleterious. 

133 

SRFBS 

Repressor action of hnRNPA1 at this site abolished (5.2 

to 0.4 bits). Blocking action of PTB removed as site is 

abolished (5.5 to -7.5 bits) and may uncover binding 

sites of other SRFs. 

† If available. Positive control was sample 2-5A. 
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3.2.8 Variant Validation 

Protein-truncating, prioritized splicing, and selected prioritized missense variants were 

verified by Sanger sequencing. Primers of PCR amplicons are indicated in 

Supplementary Table 14). 

3.3 Results 

3.3.1 Capture, Sequencing, and Alignment 

The average coverage of capture region per individual was 90.8x (range of 53.8 to 118.2x 

between 32 samples) with 98.8% of the probe-covered nucleotides having ≥ 10 reads. 

Samples with fewer than 10 reads per nucleotide were re-sequenced and the results of 

both runs were combined. The combined coverage of these samples was, on average, 

48.2x (± 36.2). 

The consistency of both library preparation and capture protocols was improved from 

initial runs, which significantly impacted sequence coverage (Supplementary Methods). 

Of the 102 patients tested, 14 had been previously Sanger sequenced for BRCA1 and 

BRCA2 exons. Confirmation of previously discovered SNVs served to assess the 

methodological improvements introduced during NGS and ultimately, to increase 

confidence in variant calling. Initially, only 15 of 49 SNVs in 3 samples were detected. 

The detection rate of SNVs was improved to 100% as the protocol progressed. All known 

SNVs (N=157) were called in subsequent sequencing runs where purification steps were 

replaced with solid phase reversible immobilization beads and where RNA bait was 

transcribed the same day as capture. To minimize false positive variant calls, sequence 

read data was aligned using 2 different software programs, CASAVA and CRAC, and 

variant calling was performed for both sets of data using GATK72,73,75. 

GATK called 14,164 unique SNVs and 1,147 indels. Only 3,777 (15.3%) SNVs were 

present in both CASAVA and CRAC-alignments for at least one patient, and even fewer 

indel calls were concordant between both methods (N=110; 6.2%). For all other SNVs 

and indels, CASAVA called 6,871 and 1,566, respectively, whereas CRAC called 13,958 
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and 110, respectively. Some variants were counted more than once if they are called by 

different alignment programs in two or more patients. Intronic and intergenic variants 

proximate to low complexity sequences tend to generate false positive variants due to 

ambiguous alignment, a well known technical issue in short read sequence analysis134,135, 

contributing to this discrepancy. For example, in Figure 3.3, CRAC correctly called a 19 

nt deletion of BRCA1 (rs80359876; also confirmed by Sanger sequencing) but CASAVA 

flagged the deleted segment as a series of false-positives. For these reasons, all variants 

were manually reviewed. 

3.3.2 IT-Based Variant Identification and Prioritization 

3.3.2.1 Natural SS Variants 

The Shannon Pipeline reported 99 unique variants in natural donor or acceptor SSs. After 

technical and frequency filtering criteria were applied, 12 variants remained 

(Supplementary Table 15). IT analysis allowed for the prioritization of 3 variants, 

summarized in Table 3.3. 

First, the novel ATM variant c.3747-1G>A (chr11:108154953G>A; sample number 7-4F) 

abolishes the natural acceptor of exon 26 (11.0 to 0.1 bits). ASSEDA reports the presence 

of a 5.3 bit cryptic acceptor site 13 nt downstream of the natural site, but the effect of the 

variant on a pre-existing cryptic site is negligible (~0.1 bits). The cryptic exon would lead 

to exon deletion and frameshift (Figure 3.4A). ASSEDA also predicts skipping of the 

246 nt exon, as the Ri,final of the natural acceptor is now below Ri,minimum (1.6 bits), altering 

the reading frame. Second, the novel ATM c.6347+1G>T (chr11:108188249G>T; 4-1F) 

occurs at the natural donor of exon 44 and abolishes the 10.4 bit donor (ΔRi = -18.6 bits), 

resulting exclusively in exon skipping. Finally, the previously reported CHEK2 variant, 

c.320-5A>T (chr22:29121360T>A; rs121908700; 4-2B)136 weakens the natural acceptor 

of exon 3 (6.8 to 4.1 bits), possibly activating a cryptic acceptor (7.4 bits) 92 nt upstream 

of the natural acceptor (Figure 3.5). 

Variants either strengthening (N=4) or slightly weakening (ΔRi < 1.0 bits; N=4) a natural 

site were not prioritized. In addition, we rejected the ATM variant (c.1066-6T>G; 
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Figure 3.3. BRCA1 Deletion Inaccurately Aligned by CASAVA 

A 19 nt BRCA1 deletion was not identified by one alignment program (CASAVA), and 

instead appears as a series of SNVs. The BRCA1 deletion is still observable on IGV 

(middle box) as these SNVs align to two separate regions of BRCA1 exon 15 (arrowed 

red boxes). This deletion leads to a frameshift starting with p.1655Ser and a premature 

STOP at p.1670, resulting in the loss of 193 AA. 
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Table 3.3. Variants Prioritized by IT Analysis 

UWO ID Gene mRNA 
rsID (dbSNP142) 

Allele Frequency 
(%) 

Information Change 

Consequence¥ or Binding 
Factor Affected Ri,initial Ri,initial ΔRi 

(bits) (bits) (bits) 

Abolished Natural SS 

7-4F ATM c.3747-1G>A* Novel 11.0 0.1 -10.9 Exon skipping and use of 
alternative splice forms 

4-1F ATM c.6347+1G>T*** Novel 10.4 -8.3 -18.6 Exon skipping 

Leaky Natural SS 

4-2B CHEK
2 c.320-5T>A* 

rs121908700 
6.8 4.1 -2.7 Leaky splicing with intron 

inclusion 0.08 

Activated Cryptic SS 

7-3E BRCA1 c.548-293G>A 
rs117281398 

0.74 
-12.1 2.6 14.7 

Cryptic site not expected to be 
used. Total information for 

natural exon is stronger than 
cryptic exon. 

7-4A BRCA2 c.7618-269_7618-
260del10 Novel 3.9 9.4 5.5 

Cryptic site not expected to be 
used. Total information for 

natural exon is stronger than 
cryptic exon. 
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Pseudoexon formation due to activated acceptor SS 

7-3F BRCA2 c.8332-805G>A Novel -9.3 5.4 5.6 6,065/211/592 

7-3D CDH1 c.164-2023A>G 
rs184740925 

-6.6 4.3 6.5 61,236/224/1,798 
0.3 

5-3H CDH1 c.2296-174T>A 
rs565488866 

7.3 8.5 5.0 1,175/50/124 
0.02 

Pseudoexon formation due to activated donor SS 

3-6A BRCA1 c.212+253G>A 
rs189352191 

4.1 6.7 5.2 186/63/1,250 
0.08 

5-2G BRCA2 c.7007+2691G>A 
rs367890577 

4.7 7.2 7.7 2,589/103/5,272 
0.02 

Affected TFBSs 

7-4B BRCA1 c.-8895G>A Novel 10.9 -0.2 -11.1 GATA-3 (GATA3) 

5-3E 
CDH1 c.-54G>C 

rs5030874 
1.7 12.0 10.4 E2F-4 (E2F4) 

7-4E 0.16 

5-2B PALB2 c.-291C>G rs552824227 12.1 -1.3 -13.4 GABPα (GABPA) 
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0.1 

7-2F TP53 c.-28-3132T>C 
rs17882863 

-6.3 10.9 17.2 RUNX3 (RUNX3) 
0.3 

4-1A TP53 c.-28-1102T>C 
rs113451673 5.1 12.3 7.2 E2F-4 (E2F4) 

0.4 8.0 12.9 4.8 Sp1 (SP1) 

Affected RBBSs 

7-4G ATM 

c.-244T>A 

rs539948218 

0.04 
9.8 -19.9 -29.7 RBFOX 

c.-744T>A 

c.-1929T>A 

c.-3515T>A 

5-3C CDH1 c.*424T>A Novel 
-20.3 9.6 29.9 SF3B4 

8.2 1.8 -6.4 CELF4 

7-2E CHEK
2 c.-588G>A rs141568342 10.9 3.7 -7.2 BX511012.1 

4-3C.5-4G CHEK
2 c.-345C>T§ rs137853007 3.3 11.4 8.2 SF3B4 

3-1A TP53 c.-107T>C rs113530090 10.5 4.5 -6.0 ELAVL1 
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4-1H c.-188T>C 0.72 

4-2H 

TP53 

c.*1175A>C 
rs78378222 

0.26 
10.7 4.1 -6.6 KHDRBS1 7-2F c.*1376A>C 

 
c.*1464A>C 

*Confirmed by Sanger sequencing; ***Ambiguous Sanger sequencing results; §Prioritized under missense and was therefore 

verified with Sanger sequencing. Variant was confirmed; †If available; ¥Consequences for pseudoexon formation describe how 

the intron is divided: “new intron A length/pseudoexon length/new exon B length. 

None of the variants have been previously reported by other groups with the exception of CHEK2 c.320-5T>A136. 
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Figure 3.4. Predicted Isoforms and Relative Abundances as a Consequence of ATM 

splice variant c.3747-1G>A 

Intronic ATM variant c.3747-1G>A abolishes (11.0 to 0.1 bits) the natural acceptor of 

exon 26 (total of 63 exons). A) ASSEDA reports the abolition of the natural exon (Ri,total 

reduced from 14.5 to 3.6 bits) and predicts exon skipping as a result (isoform 7 after 

mutation) and/or the use of a cryptic site 13 nt downstream (Ri,total for cryptic exon = 9.0 

bits) of the natural site leading to exon deletion (isoform 1). The other isoforms use weak, 

alternate acceptor/donor sites leading to cryptic exons with much lower total information. 

B) Before the mutation, isoform 7 is expected to be the most abundant splice form. C) 

After the mutation, isoform 1 is predicted to become the most abundant splice form and 

the wild-type isoform is not expected to be expressed. 
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Figure 3.5. Predicted Isoforms and Relative Abundances as a Consequence of 

CHEK2 splice variant c.320-5T>A 

Intronic CHEK2 variant c.320-5T>A weakens (6.8 to 4.1 bits) the natural acceptor of 

exon 3 (total of 15 exons). A) ASSEDA reports the weakening of the natural exon 

strength (Ri,total reduced from 13.2 to 10.5 bits), which would result in reduced splicing of 

the exon otherwise known as leaky splicing. A pre-existing cryptic acceptor exists 92 nt 

upstream of the natural site, leading to a cryptic exon with similar strength to the mutated 

exon (Ri,total = 10.0 bits). This cryptic exon would contain 92 nt of the intron. B) Before 

the mutation, isoform 1 is expected to be the only isoform expressed. C) After the 

mutation, isoform 1 (wild-type) is predicted to become relatively less abundant and 

isoform 2 is expected to be expressed, although less abundant in relation to isoform 1.
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chr11:108119654T>G; 4-1E and 7-2B), which slightly weakens the natural acceptor of 

exon 9 (11.0 to 8.1 bits). Although other studies have shown leaky expression as a result 

of this variant137, a more recent meta-analysis concluded that this variant is not associated 

with increased breast cancer risk138. 

3.3.2.2 Cryptic SS Activation 

Two variants produced information changes that could potentially impact cryptic 

splicing, but were not prioritized for the following reasons (Table 3.3). The first variant, 

novel BRCA2 deletion c.7618-269_7618-260del10 (chr13:32931610_32931619del10; 7-

4A) strengthens a cryptic acceptor site 245 nt upstream from the natural acceptor of exon 

16 (Ri,final = 9.4 bits, ΔRi = 5.5 bits). Being 5.7-fold stronger than the natural site (6.9 

bits), two potential cryptic isoforms were predicted, however, the exon strengths of both 

are weaker than the unaffected natural exon (Ri,total = 6.6 bits) and neither were 

prioritized. The larger gap surprisal penalties explain the differences in exon strength. 

The natural donor SS may still be used in conjunction with the abovementioned cryptic 

SS, resulting in an exon with Ri,total = 3.5 bits. Alternatively, the cryptic site and a weak 

donor site 180 nt upstream of the natural donor (Ri = 0.7 vs 1.4, cryptic and natural 

donors, respectively), result in an exon with Ri,total = 6.5 bits. The second variant, BRCA1 

c.548-293G>A (chr17:41249599C>T; 7-3E), creates a weak cryptic acceptor (Ri,final = 2.6 

bits, ΔRi = 6.2 bits) 291 nt upstream of the natural acceptor for exon 8 (Ri = 0.5). 

Although the cryptic exon is strengthened (final Ri,total = 6.9 bits, ΔRi = 14.7 bits), 

ASSEDA predicts the level of expression of this exon to be negligible, as it is weaker 

than the natural exon (Ri,total = 8.4 bits) due to the increased length of the predicted exon 

(+291 nt)80. 

3.3.2.3 Pseudoexon Formation 

The Shannon Pipeline initially reported 1,583 unique variants creating or strengthening 

intronic cryptic sites. We prioritized 5 variants, 1 of which is novel (BRCA2 c.8332-

805G>A; 7-3F), that were within 250 nt of a pre-existing complementary cryptic site and 
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have an hnRNPA1 site within 5 nt of the acceptor (Table 3.3). If used, 3 of these 

pseudoexons would lead to a frameshifted transcript. 

3.3.2.4 SRF Binding 

Variants within 500 nt of an exon junction and all exonic variants (N = 4,015) were 

investigated for their potential effects on affinity of sites to corresponding SRFs80. IT 

analysis flagged 54 variants significantly altering the strength of at least one binding site 

(Supplementary Table 16). A careful review of the variants, the factor affected, and the 

position of the binding site relative to the natural SS, prioritized 36 variants (21 novel), of 

which 4 are in exons and 32 are in introns. 

3.3.2.5 TF Binding 

We assessed SNVs with models of 83 TFs experimentally shown to bind 

(Supplementary Table 12) upstream or within the first exon and intron of our sequenced 

genes (N=2,177). Thirteen variants expected to significantly affect TF binding were 

flagged (Supplementary Table 17). The final filtering step considered the known 

function of the TF in transcription, resulting in 5 prioritized variants (Table 3.3) in 6 

patients (one variant was identified in two patients). Four of these variants have been 

previously reported (rs5030874, rs552824227, rs17882863, rs113451673) and one is 

novel (c.-8895G>A; 7-4B). 

3.3.2.6 UTR Structure and Protein Binding 

There were 364 unique UTR variants found by sequencing, which includes splice forms 

with alternate UTRs (in BRCA1 and TP53). These variants were evaluated for their 

effects on mRNA 2° structure through SNPfold, resulting in 5 flagged variants (Table 

3.4), all of which have been previously reported. 

Analysis of three variants using mfold70 revealed likely changes to the UTR structure 

(Figure 3.6). Two variants with possible 2° structure effects were common (BRCA2 c.-

52A>G [N=26 samples] and c.*532A>G [N=40]) and not prioritized. The 5’UTR CDH1 

variant c.-71C>G (chr16:68771248C>G; rs34033771; 7-4C) disrupts a double-stranded 
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Table 3.4. Variants Predicted by SNPfold to Affect UTR Structure 

Class¥ UWO ID Gene mRNA UTR position 

rsID (dbSNP142) 

Allele Frequency 

(%)† 

Rank§ p-value 

F 
In 26 

patients 
BRCA2$ c.-52A>G 5’ UTR 

rs206118 

14.86 
2/900 0.002 

F 
In 40 

patients 
BRCA2$ c.*532A>G 3’ UTR 

rs11571836 

19.75 
239/2700 0.089 

P 7-4C CDH1⌘ c.-71C>G 5’ UTR 
rs34033771 

0.56 
69/600 0.115 

F 
4-2E 

5-4A 
TP53$ c.*485C>T 3’ UTR 

rs4968187 

5.11 
169/4500 0.038 

F 

2-1A, 7-1B, 

5-2A.7-1D, 

7-2B, 7-2F 

TP53$ c.*826G>A 3’ UTR 
rs17884306 

5.71 
371/4500 0.082 
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7-4C 

¥F:Flagged; P:Prioritized; $Long Range UTR SNPfold Analysis; ⌘Local Range SNPfold Analysis; †If available; §Rank of the 

SNP, in terms of how much it changes the mRNA structure compared to all other possible mutations. 
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Figure 3.6. Predicted Alteration in UTR Structure Using mfold for Variants Flagged 

by SNPfold 

Wild-type and variant structures are displayed, with the variant indicated by a red arrow. 

A) Predicted wild-type structure of CDH1 5’UTR surrounding c.-71. B) Predicted CDH1 

5’UTR structure due to c.-71C>G variant. C) Predicted wild-type TP53 3’UTR structure 

surrounding c.*485. D) Predicted TP53 5’UTR structure due to c.*485G>A variant. E) 

Predicted wild-type TP53 3’UTR structure surrounding c.*826. F) Predicted TP53 

5’UTR structure due to c.*826G>A variant. §SHAPE analysis revealed differences in 

reactivity between mutant and variant mRNAs, confirming alterations to 2° structure. 
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hairpin region to create a larger loop structure, thus increasing binding accessibility 

(Figure 3.6A and B). Analysis using RBPDB and CISBP-RNA-derived IT models 

suggests this variant affects binding by NCL by decreasing binding affinity 14-fold 

(Ri,initial = 6.6 bits, ΔRi = -3.8 bits) (Supplementary Table 18). This RBP has been shown 

to bind to the 5’ and 3’ UTR of p53 mRNA and plays a role in repressing its 

translation139. 

In addition, the TP53 variant c.*485G>A (NM_000546.5: chr17:7572442C>T; 

rs4968187) is found at the 3’UTR and was identified in two patients (4-2E and 5-4A). In 

silico mRNA folding analysis demonstrates this variant disrupts a G/C bond of a loop in 

the highest ranked potential mRNA structure (Figure 3.6C and D). Also, SHAPE 

analysis shows a difference in 2° structure between the wild-type and mutant (data not 

shown). IT analysis with RBBS models indicated that this variant significantly increases 

the binding affinity of SF3B4 > 48-fold (Ri,final = 11.0 bits, ΔRi = 5.6 bits) 

(Supplementary Table 18). This RBP is one of four subunits comprising the splice 

factor 3B and is known to bind upstream of the branch-point sequence in pre-mRNA140. 

The third flagged variant also occurs in the 3’UTR of TP53 (c.*826G>A; 

chr17:7572101C>T; rs17884306), and was identified in 6 patients (2-1A, 7-1B, 5-2A.7-

1D, 7-2B, 7-2F, and 7-4C). It disrupts a potential loop structure, stabilizing a double-

stranded hairpin, and possibly making it less accessible (Figure 3.6E and F). Analysis 

using RBPDB-derived models suggests this variant could affect the binding of both 

RBFOX2 and SF3B4 (Supplementary Table 18). A binding site for RBFOX2, which 

acts as a promoter of alternative splicing by favoring the inclusion of alternative exons141, 

is created (Ri,final = 9.8 bits; ΔRi = -6.5 bits). This variant is also expected to 

simultaneously abolish a SF3B4 binding site (Ri,final = -20.3 bits; ΔRi = -29.9 bits). 

RBPDB and CISBP-RNA-derived information model analysis of all UTR variants 

resulted in the prioritization of 1 novel and 5 previously-reported variants (Table 3.4). 

No patient within the cohort exhibits more than one prioritized RBBS variant. 
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3.3.3 Exonic Variants altering protein sequence 

Exonic variants called by GATK (N=245) included insertions, deletions, nonsense, 

missense, and synonymous changes. 

3.3.3.1 Protein-Truncating Variants 

We identified 3 patients with different indels (Table 3.5). One was a PALB2 insertion 

c.1617_1618insTT (chr16:23646249_23646250insAA; 5-3A) in exon 4, previously 

reported in ClinVar as pathogenic. This mutation results in a frameshift and premature 

translation termination by 626 residues, abolishing domain interactions with RAD51, 

BRCA2, and POLH127. We also identified two known frameshift mutations in BRCA1: 

c.4964_4982del19 in exon 15 (chr17:41222949_41222967del19; rs80359876; 5-1B) and 

c.5266_5267insC in exon 19 (chr17:41209079_41209080insG; rs397507247; 5-

3C)136,142. Both are indicated as pathogenic and common in the BIC Database due to the 

loss of one or both C-terminal BRCT repeat domains127. Truncation of these domains 

produces instability and impairs nuclear transcript localization143, and this bipartite 

domain is responsible for binding phosphoproteins that are phosphorylated in response to 

DNA damage144,145. 

We also identified 4 nonsense mutations, one of which was novel in exon 4 of PALB2 

(c.1042C>T; chr16:23646825G>A; 4-4D). Another in PALB2 has been previously 

reported (c.1240C>T; chr16:23646627G>A; rs180177100; 7-3A)45. As a consequence, 

functional domains of PALB2 that interact with BRCA1, RAD51, BRCA2, and POLH 

are lost127. Two known nonsense mutations were found in BRCA2, c.7558C>T in exon 

15146 and c.9294C>G in exon 25147. The first (chr13:32930687C>T; rs80358981; 7-1G) 

causes the loss of the BRCA2 region that binds FANCD2, which loads BRCA2 onto 

damaged chromatin148. The second (chr13:32968863C>G, rs80359200; 4-4A) does not 

occur within a known functional domain, however the transcript is likely to be degraded 

by nonsense mediated decay149. 
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Table 3.5. Variants Resulting in Premature Protein Truncation 

UW

O ID 
Gene Exon 

mRNA 

Protein 

rsID (dbSNP142) 

Allele Frequency 

(%)† 

ClinVarabc Details Ref 

Insertions/Deletions 

5-1B BRCA1 
15 of 

23 

c.4964_4982del19

* 

p.Ser1655Tyrfs 

rs80359876 

6a; Pathogenic/likely pathogenicb; 

Familial breast and breast-ovarian 

cancer, Hereditary cancer-

predisposing syndromec. 

STOP at 

p.1670 

193 AA 

short 

- 

5-3C BRCA1 
19 of 

23 

c.5266_5267insC* 

p.Gln1756Profs 
rs397507247 

13a; Pathogenic, risk factorb; 

Familial breast, breast-ovarian, 

and pancreatic cancer, Hereditary 

cancer-predisposing syndromec. 

STOP at 

p.1788  

75 AA short 

136, 

142 

5-3A PALB2 
4 of 

13 

c.1617_1618insTT

* 

p.Asn540Leufs 

- 
1a; Pathogenicb; Hereditary 

cancer-predisposing syndromec. 

STOP at 

p.561  

626 AA 

short 

- 
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Stop Codons 

7-1G BRCA2 
15 of 

27 

c.7558C>T** 

p.Arg2520Ter 
rs80358981 

5a; Pathogenicb; Familial breast, 

and breast-ovarian cancer, 

Hereditary cancer-predisposing 

syndromec. 

899 AA 

short 
146 

4-4A BRCA2 
25 of 

27 

c.9294C>G* 

p.Tyr3098Ter 
rs80359200 

3a; Pathogenicb; Familial breast 

and breast-ovarian cancerc. 

321 AA 

short 
147 

7-3A PALB2 
4 of 

13 

c.1240C>T* 

p.Arg414Ter 
rs180177100 

3a; Pathogenicb; Familial breast 

cancer, Hereditary cancer-

predisposing syndromec. 

773 AA 

short 
45 

4-4D PALB2 
4 of 

13 

c.1042C>T* 

p.Gln348Ter 
Novel - 

839 AA 

short 
- 

*Confirmed by Sanger sequencing; **Not confirmed by Sanger sequencing; †If available; aNumber of submissions; bClinical 

significance; cCondition(s) 
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3.3.3.2 Missense 

GATK called 61 missense variants, of which 18 were identified in 6 patients or more and 

19 had allele frequencies > 1.0% (Supplementary Table 19). The 40 remaining variants 

(15 ATM, 8 BRCA1, 9 BRCA2, 2 CDH1, 2 CHEK2, 3 PALB2, and 1 TP53) were assessed 

using a combination of gene specific databases, published classifications, and 4 in silico 

tools (Supplementary Table 20). We prioritized 27 variants, 2 of which were novel. 

None of the non-prioritized variants were predicted to be damaging by more than 2 of 4 

conservation-based software programs. 

3.3.4 Variant Classification 

Initially, 15,311 unique variants were identified by complete gene sequencing of 7 HBOC 

genes. Of these, 132 were flagged after filtering, and further reduced by IT-based variant 

analysis and consultation of the published literature to 87 prioritized variants. Figure 3.7 

illustrates the decrease in the number of unique variants per patient at each step of our 

identification and prioritization process. The distribution of prioritized variants by gene is 

34 in ATM, 13 in BRCA1, 11 in BRCA2, 8 in CDH1, 6 in CHEK2, 10 in PALB2, and 5 in 

TP53 (Supplementary Table 21), which are categorized by type in Table 3.6. 

Three prioritized variants have multiple predicted roles: ATM c.1538A>G in missense 

and SRFBS, CHEK2 c.190G>A in missense and UTR binding, and CHEK2 c.433C>T in 

missense and UTR binding. Of the 102 patients that we sequenced, 72 (70.6%) exhibited 

at least one prioritized variant, and some patients harbored more than one prioritized 

variant (N=33; 32%). Supplementary Table 22 presents a summary of all flagged and 

prioritized variants for patients with at least one prioritized variant. 

3.3.5 Variant Verification 

We verified prioritized protein-truncating (N=7) and splicing (N=4) variants by Sanger 

sequencing (Table 3.5 and Table 3.3, respectively). In addition, two missense variants 

(BRCA2 c.7958T>C and CHEK2 c.433C>T) were re-sequenced, since they are indicated 

as likely pathogenic/pathogenic in ClinVar (Supplementary Table 20). All protein-
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Figure 3.7. Ladder Plot Representing Variant Identification and Prioritization 

Each line is representative of a different sample in each sequencing run (A-E), illustrating the number of unique variants at 

important steps throughout the variant prioritization process. The left-most point indicates the total number of unique variants. 

The second point represents the number of unique variants remaining after common (> 5 patients within cohort and/or ≥ 1.0% 
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allele frequency) and false-positive variants were removed. The right-most point represents the final number of unique. No 

variants were prioritized in the following patients: 2-1A, 2-5A, 2-6A, 3-2A, 3-3A, 3-4A, 3-5A, 3-8A, 4-1B, 4-2C, 4-2F, 4-3B, 

4-3D, 4-4B, 4-4E, 5-1G, 5-1H, 5-3D, 5-4C, 5-4D, 5-4F, 5-4G, 5-4H, 7-1B, 7-1C, 7-1D, 7-1H, 7-2B, 7-2C, 7-2H, 7-3H, 7-4A, 

7-4D, 7-4H. The average number of variants per patient at each step is indicated in a table below each plot, along with the 

percent reduction in variants from one step to another. 
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Table 3.6. Summary of Prioritized Variants by Gene 

 
Indel Nonsense Missense 

Natural 

Splicing 

Cryptic 

Splicing 
Pseudoexon 

SR 

Factor 
TF 

UTR 

Structure 

UTR 

Binding 
Total 

ATM 0 0 14 2 0 0 18 0 0 1 34¥ 

BRCA1 2 0 2 0 0 1 7 1 0 0 13 

BRCA2 0 2 3 0 0 2 4 0 0 0 11 

CDH1 0 0 2 0 0 2 1 1 1 1 8 

CHEK2 0 0 2 1 0 0 3 0 0 2 6¥ 

PALB2 1 2 3 0 0 0 3 1 0 0 10 

TP53 0 0 1 0 0 0 0 2 0 2 5 

¥Counts represent the number of unique variants identified (i.e. a variant is not counted twice if it appeared in multiple 

individuals).  

Three variants were prioritized under multiple categories: ATM chr11:108121730A>G (missense and SRFBS), CHEK2 

chr22:29121242G>A (missense, UTR binding), and CHEK2 chr22:29130520C>T (missense, UTR binding). 
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truncating variants were confirmed, with one exception (BRCA2 c.7558C>T, no evidence 

for the variant was present for either strand). Two of the mRNA splicing mutations were 

confirmed on both strands, while the other two were confirmed on a single strand (ATM 

c.6347+1G>T and ATM c.1066-6T>G). Both documented pathogenic missense variants 

were also confirmed. 

3.4 Discussion 

NGS technology offers advantages in throughput and variant detection116, but the task of 

interpreting the sheer volume of variants in complete gene or genome data can be 

daunting. The whole genome of a Yoruban male contained approximately 4.2 million 

SNVs and 0.4 million structural variants150. The variant density in the present study 

(average 948 variants per patient) was 5.3-fold lower than the same regions in HapMap 

sample NA12878 in Illumina Platinum Genomes Project (5,029 variants)151. The 

difference can be attributed primarily to the exclusion of polymorphisms in highly 

repetitive regions in our study. 

Conventional coding sequence analysis, combined with an IT-based approach for 

regulatory and splicing-related variants, reduced the set to a manageable number of 

prioritized variants. Unification of non-coding analysis of diverse protein-nucleic acid 

interactions using the IT framework accomplishes this by applying thermodynamic-based 

thresholds to binding affinity changes and by selecting the most significant binding site 

information changes, regardless of whether the motifs of different factors overlap. 

Previously, rule-based systems have been proposed for variant severity 

classification152,153. Functional validation and risk analyses of these variants are a 

prerequisite to classification, but this would not be practical to accomplish without first 

limiting the subset of variants analyzed. With the exception of some (but not all83) protein 

truncating variants, classification is generally not achievable by sequence analysis alone. 

Only a minority of variants with extreme likelihoods of pathogenic or benign phenotypes 

are clearly delineated because only these types of variants are considered actionable152,153. 

The proposed classification systems preferably require functional, co-segregation, and 
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risk analyses to stratify patients. Nevertheless, the majority of variants are VUS, 

especially in the case of variants occurring beyond exon boundaries. Of the 5,713 

variants listed in the BIC database, the clinical significance of 4,102 BRCA1 and BRCA2 

variants are either unknown (1,904) or pending (2,198), while 1,535 are classified as 

pathogenic (Class 5)154. Our results cannot be considered equivalent to validation, which 

might include expression assays31 or the use of RNA-seq data155 (splicing), qRT-PCR156 

(transcription), SHAPE analysis (mRNA 2° structure)35, and binding assays to determine 

functional effects of variants. Other post-transcriptional processes (eg. miRNA 

regulation) affected by variants have not been addressed in this study, but should also be 

amenable to IT-based modeling. With the proposed approach, functional prediction of 

variants could precede or at least inform the classification of VUS. 

It is unrealistic to expect all variants to be functionally analyzed, just as it may not be 

feasible to assess family members for a suspected pathogenic variant detected in a 

proband. The prioritization procedure reduces the chance that significant variants have 

been overlooked. Capturing coding and non-coding regions of HBOC-related genes, 

combined with the framework for assessing variants balances the need to 

comprehensively detect all variation in a gene panel with the goal of identifying variants 

likely to be phenotypically relevant. 

3.4.1 Non-coding variants 

Variant density in non-coding regions significantly exceeded exonic variants by > 60-

fold, which, in absolute terms, constituted 1.6% of the 15,311 variants. This is 

comparable to whole genome sequencing studies, which typically result in 3-4 million 

variants per individual, with < 2% occurring in protein coding regions157. IT analysis 

prioritized 3 natural SS, 36 SRFBS, 5 TFBS, and 6 RBBS variants and 5 predicted to 

create pseudoexons. Two SS variants in ATM (c.3747-1G>A and c.6347+1G>T) were 

predicted to completely abolish the natural site and cause exon skipping. A CHEK2 

variant (c.320-5A>T) was predicted to result in leaky splicing. 
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The IT-based framework evaluates all variants on a common scale, based on bit values, 

the universal unit that predicts changes in binding affinity158. A variant can alter the 

strength of one or a “set” of binding sites; the magnitude and direction of these changes is 

used to rank their significance. The models used to derive information weight matrices 

take into account the frequency of all observed bases at a given position of a binding 

motif, making them more accurate than consensus sequence and conservation-based 

approaches31. 

IT has been widely used to analyze natural and cryptic SSs31, but its use in SRFBS 

analysis was only introduced recently80. For this reason, we assigned conservative, 

minimum thresholds for reporting information changes. Although there are examples of 

disease-causing variants resulting in small changes in Ri
159–166, the majority of deleterious 

splicing mutations that have been verified functionally, produce large information 

changes. Among 698 experimentally deleterious variants in 117 studies, only 1.96% 

resulted in < 1.0 bit change31. For SRFBS variants, the absolute information changes for 

deleterious variants ranged from 0.2 - 17.1 bits (mean 4.7 ± 3.8). This first application of 

IT in TFBS and RBBS analysis, however, lacks a large reference set of validated 

mutations for the distribution of information changes associated with deleterious variants. 

The release of new ChIP-seq datasets will enable IT models to be derived for TFs 

currently unmodeled and to improve existing models167. 

Pseudoexon activation results in disease-causing mutations168, however such 

consequences are not customarily screened for in mRNA splicing analysis. IT analysis 

was used to detect variants that predict pseudoexon formation and 5 variants were 

prioritized. Previously, we have predicted experimentally proven pseudoexons with IT 

(Ref 34: Table 2, No #2 and Ref 169: Table 2, No #7)34,169. Although it was not possible 

to confirm prioritized variants in the current study predicted to activate pseudoexons 

because of their low allele frequencies, common intronic variants that were predicted to 

form pseudoexons were analyzed. We then searched for evidence of pseudoexon 

activation in mapped human EST and mRNA tracks170 and RNA-seq data of breast 

normal and tumour tissue from the Cancer Genome Atlas project171. One of these variants 
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(rs6005843) appeared to splice the human EST HY160109172 at the predicted cryptic 

splice site and is expressed within the pseudoexon boundaries. 

Variants that were common within our population sample (i.e. occurring in > 5 

individuals) and/or common in the general population (> 1.0% allele frequency) reduced 

the list of flagged variants substantially. This is now a commonly accepted approach for 

reducing candidate disease variants152, based on the principle that the disease-causing 

variants occur at lower population frequencies. Variants occurring in > 5 patients all 

either had allele frequencies above 1.0% or, as shown previously, resulted in very small 

ΔRi values173. 

The genomic context of sequence changes can influence the interpretation of a particular 

variant31. For example, variants causing significant information changes may be 

interpreted as inconsequential if they are functionally redundant or enhancing existing 

binding site function (see IT-Based Variant Analysis for details). Our understanding of 

the roles and context of these cognate protein factors is incomplete, which affects 

confidence in interpretation of variants that alter binding. Also, certain factors with 

important roles in the regulation of these genes, but that do not bind DNA directly or in a 

sequence-specific manner, (eg. CtBP2174), could not be included. Therefore, some 

variants may have been incorrectly excluded. 

3.4.2 Coding sequence changes 

We also identified 4 nonsense and 3 indels in this cohort. In one individual, a 19 nt 

BRCA1 deletion in exon 15 causes a frameshift leading to a stop codon within 14 codons 

downstream. This variant, rs80359876, is considered clinically relevant. Interestingly, 

this deletion overlaps two other published deletions in this exon (rs397509209 and 

rs80359884). This raises the question as to whether this region of the BRCA1 gene is a 

hotspot for replication errors. DNA folding analysis indicates a possible 15 nt long stem-

loop spanning this interval as the most stable predicted structure (data not shown). This 

15 nt structure occurs entirely within the rs80359876 and rs397509209 deletions and 

partially overlaps rs80359884 (13 of 15 nt of the stem loop). It is plausible that the 2° 
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structure of this sequence predisposes to a replication error that leads to the observed 

deletion. 

Missense coding variants were also assessed using multiple in silico tools and evaluated 

based on allele frequency, literature references, and gene-specific databases. Of the 27 

prioritized missense variants, the previously reported CHEK2 variant c.433G>A 

(chr22:29121242G>A; rs137853007) stood out, as it was identified in one patient (4-

3C.5-4G) and is predicted by all 4 in silico tools to have a damaging effect on protein 

function. Accordingly, Wu et al. (2001) demonstrated reduced in vitro kinase activity and 

phosphorylation by ATM kinase compared to the wild-type protein175, presumably due to 

the variant’s occurrence within the forkhead homology-associated domain, involved in 

protein-phosphoprotein interactions176. Implicated in Li-Fraumeni syndrome, known to 

increase the risk of developing several types of cancer including breast177,178, this variant 

is expected to result in a misfolded protein that would be targeted for degradation via the 

ubiquitin-proteosome pathway179. Another important missense variant is c.7958T>C 

(chr13:32936812T>C; rs80359022; 4-4C) in exon 17 of BRCA2. Although classified as 

being of unknown clinical importance in both BIC and ClinVar, it has been classified as 

pathogenic based on posterior probability calculations180. 

It is unlikely that all prioritized variants are pathogenic in patients carrying more than one 

prioritized variant. Nevertheless, a polygenic model for breast cancer susceptibility, 

whereby multiple moderate and low-risk alleles contribute to increased risk of HBOC 

may also account for multiple prioritized variants181,182. There was a significant fraction 

of patients (29.4%) in whom no variants were prioritized. This could be due to: a) the 

inability of the analysis to predict a variant affecting the binding sites analyzed, b) a 

pathogenic variant affects a function that was not analyzed or in a gene that was not 

sequenced, or c) the significant family history was not due to heritable, but instead to 

shared environmental influences. 

BRCA coding variants were found in individuals who were previously screened for 

lesions in these genes, suggesting this NGS protocol is a more sensitive approach for 

detecting coding changes. However, the previous testing was predominantly based on 
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PTT and MLPA methods, which have lower sensitivity than sequence analysis. 

Nevertheless, we identified 2 BRCA1 and 2 BRCA2 variants predicted to encode 

prematurely truncated proteins. Fewer non-coding BRCA variants were prioritized 

(15.7%) than expected by linkage analysis37, however this presumes at least 4 affected 

breast cancer diagnoses per pedigree, and, in the present study, the number of affected 

individuals per family was not known. 

Prioritization of a variant does not equate with pathogenicity. Some prioritized variants 

may not increase risk, but may simply modify a primary unrecognized pathogenic 

mutation. A patient with a known BRCA1 nonsense variant, used as a positive control, 

was also found to possess an additional prioritized variant in BRCA2 (missense variant 

chr13:32911710A>G), which was flagged by PROVEAN and SIFT as damaging, as well 

as flagged for changing an SRFBS for abolishing a PTB site (while simultaneously 

abolishing an exonic hnRNPA1 site). This variant has been identified in cases of early 

onset prostate cancer and is considered a VUS in ClinVar133. A larger cohort of patients 

with known pathogenic mutations would be necessary to calculate a background/basal 

rate of falsely flagged variants. 

Other groups have attempted to develop comprehensive approaches for variant analysis, 

analogous to the one proposed here183–185. While most employ high-throughput 

sequencing and classify variants, either the sequences analyzed or the types of variants 

assessed tend to be limited. In particular, non-coding sequences have not been sequenced 

or studied to the same extent, and none of these analytical approaches have adopted a 

common framework for mutation analysis. 

Our published oligonucleotide design method64 produced an average sequence coverage 

of 98.8%. The capture reagent did not overlap conserved highly repetitive regions, but 

included divergent repetitive sequences. Nevertheless, neighboring probes generated 

reads with partial overlap of repetitive intervals. As previously reported135, we noted that 

false positive variant calls within intronic and intergenic regions were the most common 

consequence of dephasing in low complexity, pyrimidine-enriched intervals. This was not 

alleviated by processing data with software programs based on different alignment or 
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calling algorithms. Manual review of all intronic or intergenic variants became 

imperative. As these sequences can still affect functional binding elements detectable by 

IT analysis (i.e. 3’ SSs and SRFBSs), it may prove essential to adopt or develop 

alignment software that explicitly and correctly identifies variants in these regions135. 

Most variants were confirmed with Sanger sequencing (10/13), and those that could not 

be confirmed are not necessarily false positives. A recent study demonstrated that NGS 

can identify variants that Sanger sequencing cannot, and reproducing sequencing results 

by NGS may be worthwhile before eliminating such variants186. 

3.5 Conclusions 

Through a comprehensive protocol based on high-throughput, IT-based and 

complementary coding sequence analyses, the numbers of VUS can be reduced to a 

manageable quantity of variants, prioritized by predicted function. Exonic variants 

corresponded to a small fraction of prioritized variants, illustrating the importance of 

sequencing non-coding regions of genes. We propose that our approach for variant 

flagging and prioritization is an intermediate bridge between high-throughput sequencing, 

variant detection, and the time-consuming process of variant classification, including 

pedigree analysis and functional validation. 



149 

 

 

3.6 References 
1. Collins, F. S. & Hamburg, M. A. First FDA Authorization for Next-Generation 

Sequencer. N. Engl. J. Med. 369, 2369–2371 (2013). 

2. Green, E. D., Guyer, M. S. & National Human Genome Research Institute. Charting 

a course for genomic medicine from base pairs to bedside. Nature 470, 204–213 

(2011). 

3. Cassa, C. A. et al. Disclosing pathogenic genetic variants to research participants: 

Quantifying an emerging ethical responsibility. Genome Res. 22, 421–428 (2012). 

4. Domchek, S. M., Bradbury, A., Garber, J. E., Offit, K. & Robson, M. E. Multiplex 

Genetic Testing for Cancer Susceptibility: Out on the High Wire Without a Net? J. 

Clin. Oncol. 31, 1267–1270 (2013). 

5. Yorczyk, A., Robinson, L. S. & Ross, T. S. Use of panel tests in place of single gene 

tests in the cancer genetics clinic. Clin. Genet. 88, 278–282 (2015). 

6. Foley, S. B. et al. Use of Whole Genome Sequencing for Diagnosis and Discovery 

in the Cancer Genetics Clinic. EBioMedicine 2, 74–81 (2015). 

7. Schwartz, G. F. et al. Proceedings of the international consensus conference on 

breast cancer risk, genetics, & risk management, April, 2007. Cancer 113, 2627–

2637 (2008). 

8. Kavanagh, D. & Anderson, H. E. Interpretation of genetic variants of uncertain 

significance in atypical hemolytic uremic syndrome. Kidney Int. 81, 11–13 (2012). 

9. Tavtigian, S. V., Greenblatt, M. S., Lesueur, F., Byrnes, G. B. & Group, I. U. G. V. 

W. In silico analysis of missense substitutions using sequence-alignment based 

methods. Hum. Mutat. 29, 1327–1336 (2008). 

10. Vos, J. et al. The counsellees’ view of an unclassified variant in BRCA1/2: recall, 

interpretation, and impact on life. Psychooncology. 17, 822–830 (2008). 

11. Domchek, S. & Weber, B. L. Genetic variants of uncertain significance: flies in the 

ointment. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 26, 16–17 (2008). 

12. Braun, T. A. et al. Non-exomic and synonymous variants in ABCA4 are an 

important cause of Stargardt disease. Hum. Mol. Genet. 22, 5136–5145 (2013). 



150 

 

 

13. Castello, A., Fischer, B., Hentze, M. W. & Preiss, T. RNA-binding proteins in 

Mendelian disease. Trends Genet. TIG 29, 318–327 (2013). 

14. Chatterjee, S., Berwal, S. K. & Pal, J. K. in eLS (John Wiley & Sons, Ltd, 2001). at 

<http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0022408/abstract> 

15. Halvorsen, M., Martin, J. S., Broadaway, S. & Laederach, A. Disease-associated 

mutations that alter the RNA structural ensemble. PLoS Genet. 6, e1001074 (2010). 

16. Misquitta, C. M., Iyer, V. R., Werstiuk, E. S. & Grover, A. K. The role of 3’-

untranslated region (3’-UTR) mediated mRNA stability in cardiovascular 

pathophysiology. Mol. Cell. Biochem. 224, 53–67 (2001). 

17. Latchman, D. S. Transcription-Factor Mutations and Disease. N. Engl. J. Med. 334, 

28–33 (1996). 

18. Ward, A. J. & Cooper, T. A. The Pathobiology of Splicing. J. Pathol. 220, 152–163 

(2010). 

19. Araujo, P. R. et al. Before It Gets Started: Regulating Translation at the 5’ UTR. 

Comp. Funct. Genomics 2012, 475731 (2012). 

20. Cáceres, J. F. & Kornblihtt, A. R. Alternative splicing: multiple control mechanisms 

and involvement in human disease. Trends Genet. TIG 18, 186–193 (2002). 

21. Teraoka, S. N. et al. Splicing defects in the ataxia-telangiectasia gene, ATM: 

underlying mutations and consequences. Am. J. Hum. Genet. 64, 1617–1631 (1999). 

22. Ars, E. et al. Mutations affecting mRNA splicing are the most common molecular 

defects in patients with neurofibromatosis type 1. Hum. Mol. Genet. 9, 237–247 

(2000). 

23. Paul, D. S., Soranzo, N. & Beck, S. Functional interpretation of non-coding 

sequence variation: Concepts and challenges. BioEssays 36, 191–199 (2014). 

24. Guo, Y. & Jamison, D. C. The distribution of SNPs in human gene regulatory 

regions. BMC Genomics 6, 140 (2005). 

25. Horvath, A. et al. Novel insights into breast cancer genetic variance through RNA 

sequencing. Sci. Rep. 3, 2256 (2013). 

26. Pavithra, L. et al. Stabilization of SMAR1 mRNA by PGA2 involves a stem loop 

structure in the 5’ UTR. Nucleic Acids Res. 35, 6004–6016 (2007). 



151 

 

 

27. Pérez-Cabornero, L. et al. Evaluating the effect of unclassified variants identified in 

MMR genes using phenotypic features, bioinformatics prediction, and RNA assays. 

J. Mol. Diagn. JMD 15, 380–390 (2013). 

28. Zeng, T. et al. A novel variant in the 3’ UTR of human SCN1A gene from a patient 

with Dravet syndrome decreases mRNA stability mediated by GAPDH’s binding. 

Hum. Genet. 133, 801–811 (2014). 

29. Gaildrat, P. et al. The BRCA1 c.5434C->G (p.Pro1812Ala) variant induces a 

deleterious exon 23 skipping by affecting exonic splicing regulatory elements. J. 

Med. Genet. 47, 398–403 (2010). 

30. Tournier, I. et al. A large fraction of unclassified variants of the mismatch repair 

genes MLH1 and MSH2 is associated with splicing defects. Hum. Mutat. 29, 1412–

1424 (2008). 

31. Caminsky, N. G., Mucaki, E. J. & Rogan, P. K. Interpretation of mRNA splicing 

mutations in genetic disease: review of the literature and guidelines for information-

theoretical analysis. F1000Research 3, 282 (2015). 

32. Schneider, T. D., Stormo, G. D., Yarus, M. A. & Gold, L. Delila system tools. 

Nucleic Acids Res. 12, 129–140 (1984). 

33. Schneider, T. D. & Stephens, R. M. Sequence logos: a new way to display 

consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990). 

34. Rogan, P. K., Faux, B. M. & Schneider, T. D. Information analysis of human splice 

site mutations. Hum. Mutat. 12, 153–171 (1998). 

35. Steen, K.-A., Siegfried, N. A. & Weeks, K. M. Selective 2’-hydroxyl acylation 

analyzed by protection from exoribonuclease (RNase-detected SHAPE) for direct 

analysis of covalent adducts and of nucleotide flexibility in RNA. Nat. Protoc. 6, 

1683–1694 (2011). 

36. Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 

2008. Int. J. Cancer 127, 2893–2917 (2010). 

37. Ford, D. et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and 

BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. 

Am. J. Hum. Genet. 62, 676–689 (1998). 



152 

 

 

38. Levy-Lahad, E. & Plon, S. E. Cancer. A risky business--assessing breast cancer risk. 

Science 302, 574–575 (2003). 

39. Plon, S. E. et al. Sequence variant classification and reporting: recommendations for 

improving the interpretation of cancer susceptibility genetic test results. Hum. 

Mutat. 29, 1282–1291 (2008). 

40. Borg, A. et al. Characterization of BRCA1 and BRCA2 deleterious mutations and 

variants of unknown clinical significance in unilateral and bilateral breast cancer: 

the WECARE study. Hum. Mutat. 31, E1200–40 (2010). 

41. Adank, M. A. et al. CHEK2*1100delC homozygosity is associated with a high 

breast cancer risk in women. J. Med. Genet. 48, 860–863 (2011). 

42. Baloch, A. H. et al. Missense mutations (p.H371Y, p.D438Y) in gene CHEK2 are 

associated with breast cancer risk in women of Balochistan origin. Mol. Biol. Rep. 

41, 1103–1107 (2014). 

43. Benusiglio, P. R. et al. CDH1 germline mutations and the hereditary diffuse gastric 

and lobular breast cancer syndrome: a multicentre study. J. Med. Genet. 50, 486–

489 (2013). 

44. Brooks-Wilson, A. R. et al. Germline E-cadherin mutations in hereditary diffuse 

gastric cancer: assessment of 42 new families and review of genetic screening 

criteria. J. Med. Genet. 41, 508–517 (2004). 

45. Casadei, S. et al. Contribution of inherited mutations in the BRCA2-interacting 

protein PALB2 to familial breast cancer. Cancer Res. 71, 2222–2229 (2011). 

46. CHEK2 Breast Cancer Case-Control Consortium. CHEK2*1100delC and 

susceptibility to breast cancer: a collaborative analysis involving 10,860 breast 

cancer cases and 9,065 controls from 10 studies. Am. J. Hum. Genet. 74, 1175–1182 

(2004). 

47. Garber, J. E. & Offit, K. Hereditary cancer predisposition syndromes. J. Clin. 

Oncol. Off. J. Am. Soc. Clin. Oncol. 23, 276–292 (2005). 

48. Kangelaris, K. N. & Gruber, S. B. Clinical implications of founder and recurrent 

CDH1 mutations in hereditary diffuse gastric cancer. JAMA 297, 2410–2411 (2007). 



153 

 

 

49. Kaurah, P. et al. Founder and recurrent CDH1 mutations in families with hereditary 

diffuse gastric cancer. JAMA 297, 2360–2372 (2007). 

50. Kluijt, I. et al. Familial gastric cancer: guidelines for diagnosis, treatment and 

periodic surveillance. Fam. Cancer 11, 363–369 (2012). 

51. Martin, A.-M. et al. Germline TP53 mutations in breast cancer families with 

multiple primary cancers: is TP53 a modifier of BRCA1? J. Med. Genet. 40, e34–

e34 (2003). 

52. Masciari, S. et al. Germline E-cadherin mutations in familial lobular breast cancer. 

J. Med. Genet. 44, 726–731 (2007). 

53. Maxwell, K. N. et al. Prevalence of mutations in a panel of breast cancer 

susceptibility genes in BRCA1/2-negative patients with early-onset breast cancer. 

Genet. Med. Off. J. Am. Coll. Med. Genet. 17, 630–638 (2015). 

54. Minion, L. E. et al. Hereditary predisposition to ovarian cancer, looking beyond 

BRCA1/BRCA2. Gynecol. Oncol. 137, 86–92 (2015). 

55. Olivier, M. et al. Li-Fraumeni and related syndromes: correlation between tumor 

type, family structure, and TP53 genotype. Cancer Res. 63, 6643–6650 (2003). 

56. Pharoah, P. D., Guilford, P., Caldas, C. & International Gastric Cancer Linkage 

Consortium. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) 

mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 

121, 1348–1353 (2001). 

57. Rahman, N. et al. PALB2, which encodes a BRCA2-interacting protein, is a breast 

cancer susceptibility gene. Nat. Genet. 39, 165–167 (2007). 

58. Renwick, A. et al. ATM mutations that cause ataxia-telangiectasia are breast cancer 

susceptibility alleles. Nat. Genet. 38, 873–875 (2006). 

59. Sidransky, D. et al. Inherited p53 gene mutations in breast cancer. Cancer Res. 52, 

2984–2986 (1992). 

60. Slater, E. P. et al. PALB2 mutations in European familial pancreatic cancer families. 

Clin. Genet. 78, 490–494 (2010). 

61. Thompson, D. et al. Cancer risks and mortality in heterozygous ATM mutation 

carriers. J. Natl. Cancer Inst. 97, 813–822 (2005). 



154 

 

 

62. Tischkowitz, M. et al. Rare germline mutations in PALB2 and breast cancer risk: a 

population-based study. Hum. Mutat. 33, 674–680 (2012). 

63. Walsh, T. et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in 

families at high risk of breast cancer. JAMA 295, 1379–1388 (2006). 

64. Dorman, S. N., Shirley, B. C., Knoll, J. H. M. & Rogan, P. K. Expanding probe 

repertoire and improving reproducibility in human genomic hybridization. Nucleic 

Acids Res. 41, e81 (2013). 

65. Pinkel, D. et al. Fluorescence in situ hybridization with human chromosome-

specific libraries: detection of trisomy 21 and translocations of chromosome 4. 

Proc. Natl. Acad. Sci. U. S. A. 85, 9138–9142 (1988). 

66. Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0. (2013). at 

<<http://www.repeatmasker.org>> 

67. Gnirke, A. et al. Solution Hybrid Selection with Ultra-long Oligonucleotides for 

Massively Parallel Targeted Sequencing. Nat. Biotechnol. 27, 182–189 (2009). 

68. Chou, H.-H., Hsia, A.-P., Mooney, D. L. & Schnable, P. S. Picky: oligo microarray 

design for large genomes. Bioinforma. Oxf. Engl. 20, 2893–2902 (2004). 

69. Markham, N. R. & Zuker, M. UNAFold: software for nucleic acid folding and 

hybridization. Methods Mol. Biol. Clifton NJ 453, 3–31 (2008). 

70. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. 

Nucleic Acids Res. 31, 3406–3415 (2003). 

71. Predictive Cancer Genetics Steering Committee Ontario physicians’ guide to 

referral of patients with family history of cancer to a familial cancer genetics clinic 

or genetics clinic. Ont Med Rev. 68, 24–30 (2001). 

72. DePristo, M. A. et al. A framework for variation discovery and genotyping using 

next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011). 

73. Philippe, N., Salson, M., Commes, T. & Rivals, E. CRAC: an integrated approach to 

the analysis of RNA-seq reads. Genome Biol. 14, R30 (2013). 

74. Picard. at <http://picard.sourceforge.net/>. Accessed June 1, 2015. 



155 

 

 

75. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for 

analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 

(2010). 

76. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 

(2011). 

77. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer 

(IGV): high-performance genomics data visualization and exploration. Brief. 

Bioinform. 14, 178–192 (2013). 

78. Shirley, B. C. et al. Interpretation, stratification and evidence for sequence variants 

affecting mRNA splicing in complete human genome sequences. Genomics 

Proteomics Bioinformatics 11, 77–85 (2013). 

79. Mutation Forecaster. at <https://www.mutationforecaster.com/index.php>. Accessed 

June 1, 2015. 

80. Mucaki, E. J., Shirley, B. C. & Rogan, P. K. Prediction of Mutant mRNA Splice 

Isoforms by Information Theory-Based Exon Definition. Hum. Mutat. 34, 557–565 

(2013). 

81. Schneider, T. D., Stormo, G. D., Gold, L. & Ehrenfeucht, A. Information content of 

binding sites on nucleotide sequences. J. Mol. Biol. 188, 415–431 (1986). 

82. Dhir, A. & Buratti, E. Alternative splicing: role of pseudoexons in human disease 

and potential therapeutic strategies. FEBS J. 277, 841–855 (2010). 

83. Peterlongo, P. et al. FANCM c.5791C>T nonsense mutation (rs144567652) induces 

exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. 

Hum. Mol. Genet. (2015). doi:10.1093/hmg/ddv251 

84. Tavanez, J. P., Madl, T., Kooshapur, H., Sattler, M. & Valcárcel, J. hnRNP A1 

proofreads 3’ splice site recognition by U2AF. Mol. Cell 45, 314–329 (2012). 

85. Paradis, C. et al. hnRNP I/PTB can antagonize the splicing repressor activity of 

SRp30c. RNA N. Y. N 13, 1287–1300 (2007). 

86. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the 

human genome. Nature 489, 57–74 (2012). 



156 

 

 

87. Boggs, K. & Reisman, D. Increased p53 transcription prior to DNA synthesis is 

regulated through a novel regulatory element within the p53 promoter. Oncogene 

25, 555–565 (2005). 

88. Chen, Y. et al. c-Myc activates BRCA1 gene expression through distal promoter 

elements in breast cancer cells. BMC Cancer 11, 246 (2011). 

89. Gueven, N. et al. Site-directed mutagenesis of the ATM promoter: Consequences 

for response to proliferation and ionizing radiation. Genes. Chromosomes Cancer 

38, 157–167 (2003). 

90. Frietze, S. et al. Cell type-specific binding patterns reveal that TCF7L2 can be 

tethered to the genome by association with GATA3. Genome Biol. 13, R52 (2012). 

91. Connor, A. E. et al. Associations between TCF7L2 polymorphisms and risk of 

breast cancer among Hispanic and non-Hispanic white women: the Breast Cancer 

Health Disparities Study. Breast Cancer Res. Treat. 136, 593–602 (2012). 

92. Burwinkel, B. et al. Transcription factor 7-like 2 (TCF7L2) variant is associated 

with familial breast cancer risk: a case-control study. BMC Cancer 6, 268 (2006). 

93. Chen, J., Yuan, T., Liu, M. & Chen, P. Association between TCF7L2 Gene 

Polymorphism and Cancer Risk: A Meta-Analysis. PLoS ONE 8, e71730 (2013). 

94. Purrington, K. S. et al. Genome-wide association study identifies 25 known breast 

cancer susceptibility loci as risk factors for triple-negative breast cancer. 

Carcinogenesis 35, 1012–1019 (2014). 

95. Bi, C. & Rogan, P. K. Bipartite pattern discovery by entropy minimization-based 

multiple local alignment. Nucleic Acids Res. 32, 4979–4991 (2004). 

96. Wang, J. et al. Sequence features and chromatin structure around the genomic 

regions bound by 119 human transcription factors. Genome Res. 22, 1798–1812 

(2012). 

97. Rebhan, M., Chalifa-Caspi, V., Prilusky, J. & Lancet, D. GeneCards: integrating 

information about genes, proteins and diseases. Trends Genet. TIG 13, 163 (1997). 

98. Gadiraju, S., Vyhlidal, C. A., Leeder, J. S. & Rogan, P. K. Genome-wide prediction, 

display and refinement of binding sites with information theory-based models. BMC 

Bioinformatics 4, 38 (2003). 



157 

 

 

99. Cook, K. B., Kazan, H., Zuberi, K., Morris, Q. & Hughes, T. R. RBPDB: a database 

of RNA-binding specificities. Nucleic Acids Res. 39, D301–8 (2011). 

100. Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. 

Nature 499, 172–177 (2013). 

101. Weirauch, M. T. et al. Determination and inference of eukaryotic transcription 

factor sequence specificity. Cell 158, 1431–1443 (2014). 

102. Dayem Ullah, A. Z., Lemoine, N. R. & Chelala, C. SNPnexus: a web server for 

functional annotation of novel and publicly known genetic variants (2012 update). 

Nucleic Acids Res. 40, W65–W70 (2012). 

103. Dayem Ullah, A. Z., Lemoine, N. R. & Chelala, C. A practical guide for the 

functional annotation of genetic variations using SNPnexus. Brief. Bioinform. 14, 

437–447 (2013). 

104. Chelala, C., Khan, A. & Lemoine, N. R. SNPnexus: a web database for functional 

annotation of newly discovered and public domain single nucleotide 

polymorphisms. Bioinformatics 25, 655–661 (2009). 

105. dbSNP. at <http://www.ncbi.nlm.nih.gov/SNP/>. Accessed June 1, 2015. 

106. Exome Variant Server. at <http://evs.gs.washington.edu/EVS/>. Accessed June 1, 

2015. 

107. 1000Genomes. at <http://www.1000genomes.org/>. Accessed June 1, 2015. 

108. Adzhubei, I. A. et al. A method and server for predicting damaging missense 

mutations. Nat. Methods 7, 248–249 (2010). 

109. Reva, B., Antipin, Y. & Sander, C. Determinants of protein function revealed by 

combinatorial entropy optimization. Genome Biol. 8, R232 (2007). 

110. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein 

mutations: application to cancer genomics. Nucleic Acids Res. 39, e118 (2011). 

111. Choi, Y. A Fast Computation of Pairwise Sequence Alignment Scores Between a 

Protein and a Set of Single-locus Variants of Another Protein. in Proceedings of the 

ACM Conference on Bioinformatics, Computational Biology and Biomedicine 414–

417 (ACM, 2012). doi:10.1145/2382936.2382989 



158 

 

 

112. Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the 

Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 7, e46688 

(2012). 

113. ClinVar. at <http://www.ncbi.nlm.nih.gov/clinvar/>. Accessed June 1, 2015. 

114. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence 

variation and human phenotype. Nucleic Acids Res. gkt1113 (2013). 

doi:10.1093/nar/gkt1113 

115. Stenson, P. D. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum. 

Mutat. 21, 577–581 (2003). 

116. Human Gene Mutation Database (HGMD). at <http://hgmd/cf/ac/uk/ac/index.php>. 

Accessed June 1, 2015. 

117. Fokkema, I. F. A. C. et al. LOVD v.2.0: the next generation in gene variant 

databases. Hum. Mutat. 32, 557–563 (2011). 

118. Leiden Open Variation Database (LOVD) - Ataxia Telangiectasia Mutated (ATM). 

at 

<http://chromium.lovd.nl/LOVD2/variants.php?action=search_unique&select_db=

ATM>. Accessed June 1, 2015. 

119. LOVD - IARC Breast Cancer Type 1 susceptibility protein (BRCA1). at 

<http://brca.iarc.fr/LOVD/variants.php?action=view_unique&select_db=BRCA1>. 

Accessed June 1, 2015. 

120. LOVD - IARC Breast Cancer Type 2 susceptibility protein (BRCA2). at 

<http://brca.iarc.fr/LOVD/variants.php?action=view_unique&select_db=BRCA2>. 

Accessed June 1, 2015. 

121. LOVD - Leiden Open Variation Database Partner and localizer of BRCA2 

(FANCN) (PALB2). at 

<https://grenada.lumc.nl/LOVD2/shared1/variants.php?action=search_unique&sele

ct_db=PALB2>. Accessed June 1, 2015. 

122. LOVD - Leiden Open Variation Database tumour protein p53 (TP53). at 

<http://proteomics.bio21.unimelb.edu.au/lovd/variants/TP53>. Accessed June 1, 

2015. 



159 

 

 

123. Zhejiang University Center for Genetic and Genomic Medicine (ZJU-CGGM) 

cadherin 1, type 1, E-cadherin (epithelial) (CDH1). at 

<http://www.genomed.org/lovd2/variants.php?action=search_unique&select_db=C

DH1>. Accessed June 1, 2015. 

124. Zhejiang University Center for Genetic and Genomic Medicine (ZJU-CGGM) 

checkpoint kinase 2 (CHEK2). at 

<http://www.genomed.org/lovd2/variants.php?action=search_unique&select_db=C

HEK2>. Accessed June 1, 2015. 

125. Domain Mapping of Disease Mutations (DM2). at <http://bioinf.umbc.edu/dmdm>. 

Accessed June 1, 2015. 

126. Expert Protein Analysis System (ExPASy). at <http://www.expasy.org/>. Accessed 

June 1, 2015. 

127. The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 

43, D204–D212 (2015). 

128. UniProt. at <http://uniprot.org/>. Accessed June 1, 2015. 

129. Breast Cancer Information Core (BIC) Database. at 

<https://research.nhgri.nih.gov/projects/bic/Member/index/shtml>. Accessed June 1, 

2015. 

130. Evidence-based Network for the Interpretation of Germline Mutant Alleles 

(ENIGMA). at <http://enigmaconsortium.org/>. Accessed June 1, 2015. 

131. International Agency for Research on Cancer (IARC) TP53 Database. at 

<http://p53.iarc.fr/tp53genevariations.aspx>. Accessed June 1, 2015. 

132. Ozcelik, H. et al. Individual and family characteristics associated with protein 

truncating BRCA1 and BRCA2 mutations in an Ontario population based series 

from the Cooperative Family Registry for Breast Cancer Studies. J. Med. Genet. 40, 

e91 (2003). 

133. Maier, C. et al. Subgroups of familial and aggressive prostate cancer with 

considerable frequencies of BRCA2 mutations. The Prostate 74, 1444–1451 (2014). 



160 

 

 

134. McIver, L. J., Fondon III, J. W., Skinner, M. A. & Garner, H. R. Evaluation of 

microsatellite variation in the 1000 Genomes Project pilot studies is indicative of the 

quality and utility of the raw data and alignments. Genomics 97, 193–199 (2011). 

135. Tae, H., Kim, D.-Y., McCormick, J., Settlage, R. E. & Garner, H. R. Discretized 

Gaussian mixture for genotyping of microsatellite loci containing homopolymer 

runs. Bioinformatics 30, 652–659 (2014). 

136. Castéra, L. et al. Next-generation sequencing for the diagnosis of hereditary breast 

and ovarian cancer using genomic capture targeting multiple candidate genes. Eur. 

J. Hum. Genet. EJHG 22, 1305–1313 (2014). 

137. Austen, B. et al. Pathogenic ATM mutations occur rarely in a subset of multiple 

myeloma patients. Br. J. Haematol. 142, 925–933 (2008). 

138. Ding, H. et al. Lack of association between ATM C.1066-6T > G mutation and 

breast cancer risk: a meta-analysis of 8,831 cases and 4,957 controls. Breast Cancer 

Res. Treat. 125, 473–477 (2011). 

139. Chen, J., Guo, K. & Kastan, M. B. Interactions of nucleolin and ribosomal protein 

L26 (RPL26) in translational control of human p53 mRNA. J. Biol. Chem. 287, 

16467–16476 (2012). 

140. Champion-Arnaud, P. & Reed, R. The prespliceosome components SAP 49 and 

SAP 145 interact in a complex implicated in tethering U2 snRNP to the branch site. 

Genes Dev. 8, 1974–1983 (1994). 

141. Li, Y. I., Sanchez-Pulido, L., Haerty, W. & Ponting, C. P. RBFOX and PTBP1 

proteins regulate the alternative splicing of micro-exons in human brain transcripts. 

Genome Res. 25, 1–13 (2015). 

142. Dobričić, J. et al. Serbian high-risk families: extensive results on BRCA mutation 

spectra and frequency. J. Hum. Genet. 58, 501–507 (2013). 

143. Nelson, A. C. & Holt, J. T. Impact of RING and BRCT domain mutations on 

BRCA1 protein stability, localization and recruitment to DNA damage. Radiat. Res. 

174, 1–13 (2010). 



161 

 

 

144. Clark, S. L., Rodriguez, A. M., Snyder, R. R., Hankins, G. D. V. & Boehning, D. 

Structure-Function Of The Tumor Suppressor BRCA1. Comput. Struct. Biotechnol. 

J. 1, (2012). 

145. Leung, C. C. Y. & Glover, J. N. M. BRCT domains: easy as one, two, three. Cell 

Cycle Georget. Tex 10, 2461–2470 (2011). 

146. Håkansson, S. et al. Moderate frequency of BRCA1 and BRCA2 germ-line 

mutations in Scandinavian familial breast cancer. Am. J. Hum. Genet. 60, 1068–

1078 (1997). 

147. Scottish/Northern Irish BRCAI/BRCA2 Consortium. BRCA1 and BRCA2 

mutations in Scotland and Northern Ireland. Br. J. Cancer 88, 1256–1262 (2003). 

148. Hussain, S. et al. Direct interaction of FANCD2 with BRCA2 in DNA damage 

response pathways. Hum. Mol. Genet. 13, 1241–1248 (2004). 

149. Chang, Y. F., Imam, J. S. & Wilkinson, M. F. The nonsense-mediated decay RNA 

surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007). 

150. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible 

terminator chemistry. Nature 456, 53–59 (2008). 

151. Platinum Genomes. at <http://www.illumina.com/platinumgenomes/>. Accessed 

July 31, 2015. 

152. Richards, S. et al. Standards and guidelines for the interpretation of sequence 

variants: a joint consensus recommendation of the American College of Medical 

Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 

Off. J. Am. Coll. Med. Genet. 17, 405–424 (2015). 

153. Tavtigian, S. V., Greenblatt, M. S., Goldgar, D. E., Boffetta, P. & IARC 

Unclassified Genetic Variants Working Group. Assessing pathogenicity: overview 

of results from the IARC Unclassified Genetic Variants Working Group. Hum. 

Mutat. 29, 1261–1264 (2008). 

154. Easton, D. F. et al. A systematic genetic assessment of 1,433 sequence variants of 

unknown clinical significance in the BRCA1 and BRCA2 breast cancer-

predisposition genes. Am. J. Hum. Genet. 81, 873–883 (2007). 



162 

 

 

155. Viner, C., Dorman, S. N., Shirley, B. C. & Rogan, P. K. Validation of predicted 

mRNA splicing mutations using high-throughput transcriptome data. 

F1000Research 3, 8 (2014). 

156. Carleton, K. L. Quantification of transcript levels with quantitative RT-PCR. 

Methods Mol. Biol. Clifton NJ 772, 279–295 (2011). 

157. Biesecker, L. G. Opportunities and challenges for the integration of massively 

parallel genomic sequencing into clinical practice: Lessons from the ClinSeqTM 

project. Genet. Med. Off. J. Am. Coll. Med. Genet. 14, 393–398 (2012). 

158. Schneider, T. D. Information content of individual genetic sequences. J. Theor. Biol. 

189, 427–441 (1997). 

159. Mucaki, E. J., Ainsworth, P. & Rogan, P. K. Comprehensive prediction of mRNA 

splicing effects of BRCA1 and BRCA2 variants. Hum. Mutat. 32, 735–742 (2011). 

160. Bonnet-Dupeyron, M.-N. et al. PLP1 splicing abnormalities identified in Pelizaeus-

Merzbacher disease and SPG2 fibroblasts are associated with different types of 

mutations. Hum. Mutat. 29, 1028–1036 (2008). 

161. Fei, J. Splice Site Mutation-Induced Alteration of Selective Regional Activity 

Correlates with the Role of a Gene in Cardiomyopathy. J. Clin. Exp. Cardiol. 

S12:004, (2013). 

162. Khan, S. G. et al. Two essential splice lariat branchpoint sequences in one intron in 

a xeroderma pigmentosum DNA repair gene: mutations result in reduced XPC 

mRNA levels that correlate with cancer risk. Hum. Mol. Genet. 13, 343–352 (2004). 

163. von Kodolitsch, Y., Berger, J. & Rogan, P. K. Predicting severity of haemophilia A 

and B splicing mutations by information analysis. Haemoph. Off. J. World Fed. 

Hemoph. 12, 258–262 (2006). 

164. Martoni, E. et al. Identification and characterization of novel collagen VI non-

canonical splicing mutations causing Ullrich congenital muscular dystrophy. Hum. 

Mutat. 30, E662–672 (2009). 

165. Nasim, M. T. et al. Molecular genetic characterization of SMAD signaling 

molecules in pulmonary arterial hypertension. Hum. Mutat. 32, 1385–1389 (2011). 



163 

 

 

166. Pink, A. E. et al. Mutations in the γ-secretase genes NCSTN, PSENEN, and PSEN1 

underlie rare forms of hidradenitis suppurativa (acne inversa). J. Invest. Dermatol. 

132, 2459–2461 (2012). 

167. Sanders, D. A., Ross-Innes, C. S., Beraldi, D., Carroll, J. S. & Balasubramanian, S. 

Genome-wide mapping of FOXM1 binding reveals co-binding with estrogen 

receptor alpha in breast cancer cells. Genome Biol. 14, R6 (2013). 

168. Suga, Y. et al. Lamellar ichthyosis with pseudoexon activation in the 

transglutaminase 1 gene. J. Dermatol. 42, 642–645 (2015). 

169. Rogan, P. K., Svojanovsky, S. & Leeder, J. S. Information theory-based analysis of 

CYP2C19, CYP2D6 and CYP3A5 splicing mutations. Pharmacogenetics 13, 207–

218 (2003). 

170. Kent, W. J. et al. The Human Genome Browser at UCSC. Genome Res. 12, 996–

1006 (2002). 

171. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast 

tumours. Nature 490, 61–70 (2012). 

172. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. 

GenBank: update. Nucleic Acids Res. 32, D23–26 (2004). 

173. Rogan, P. & Mucaki, E. Population Fitness and Genetic Load of Single Nucleotide 

Polymorphisms Affecting mRNA splicing. ArXiv11070716 Q-Bio (2011). at 

<http://arxiv.org/abs/1107.0716> 

174. Di, L.-J., Fernandez, A. G., De Siervi, A., Longo, D. L. & Gardner, K. 

Transcriptional regulation of BRCA1 expression by a metabolic switch. Nat. Struct. 

Mol. Biol. 17, 1406–1413 (2010). 

175. Wu, X., Webster, S. R. & Chen, J. Characterization of tumor-associated Chk2 

mutations. J. Biol. Chem. 276, 2971–2974 (2001). 

176. Durocher, D., Henckel, J., Fersht, A. R. & Jackson, S. P. The FHA domain is a 

modular phosphopeptide recognition motif. Mol. Cell 4, 387–394 (1999). 

177. Bell, D. W. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni 

syndrome. Science 286, 2528–2531 (1999). 



164 

 

 

178. Varley, J. M., Evans, D. G. & Birch, J. M. Li-Fraumeni syndrome--a molecular and 

clinical review. Br. J. Cancer 76, 1–14 (1997). 

179. Lee, S. B. et al. Destabilization of CHK2 by a missense mutation associated with 

Li-Fraumeni Syndrome. Cancer Res. 61, 8062–8067 (2001). 

180. Biswas, D. K. et al. NF-kappa B activation in human breast cancer specimens and 

its role in cell proliferation and apoptosis. Proc. Natl. Acad. Sci. U. S. A. 101, 

10137–10142 (2004). 

181. Antoniou, A. C. & Easton, D. F. Models of genetic susceptibility to breast cancer. 

Oncogene 25, 5898–5905 (2006). 

182. Peto, J. Breast cancer susceptibility—A new look at an old model. Cancer Cell 1, 

411–412 (2002). 

183. Kurian, A. W. et al. Clinical Evaluation of a Multiple-Gene Sequencing Panel for 

Hereditary Cancer Risk Assessment. J. Clin. Oncol. 32, 2001–2009 (2014). 

184. Kassahn, K. S., Scott, H. S. & Caramins, M. C. Integrating Massively Parallel 

Sequencing into Diagnostic Workflows and Managing the Annotation and Clinical 

Interpretation Challenge. Hum. Mutat. 35, 413–423 (2014). 

185. Li, M.-X., Gui, H.-S., Kwan, J. S. H., Bao, S.-Y. & Sham, P. C. A comprehensive 

framework for prioritizing variants in exome sequencing studies of Mendelian 

diseases. Nucleic Acids Res. gkr1257 (2012). doi:10.1093/nar/gkr1257 

186. Kluska, A. et al. New recurrent BRCA1/2 mutations in Polish patients with familial 

breast/ovarian cancer detected by next generation sequencing. BMC Med. 

Genomics 8, 19 (2015). 

 



165 

 

 

Chapter 4  

4 Prioritizing variants in complete hereditary breast and 

ovarian cancer (HBOC) genes in patients lacking 

known BRCA mutations 

The work in this chapter has been submitted for publication as: 

Caminsky NG, Mucaki EJ, Perri AM, Lu R, Knoll JHM, Rogan PK. Prioritizing variants 

in complete hereditary breast and ovarian cancer (HBOC) genes in patients lacking 

known BRCA mutations. Human Mutation (2015). 

Research Ethics Board (REB) approval was provided for this study (Appendix F) for this 

study. Documentation provided to patients upon invitation to the study (letters of 

information and response card) are provided in the Appendix (G-J). 

4.1 Introduction 

Currently, the lifetime risk for a woman to develop breast cancer (BC) is 12.3% and 1.3% 

in the case of ovarian cancer (OC1). Approximately 5-10% of all BC cases are hereditary 

in nature, versus 25% for OC, where relative risk (RR) of BC or OC with one affected 1st 

degree family member is estimated at 2.1 and 3.1, respectively2,3. Two highly penetrant 

genes, BRCA1 and BRCA2, are associated with a large proportion of HBOC cases. 

However, the estimated rate of linkage to these genes is significantly higher than the 

proportion of pathogenic mutations identified in HBOC families4, suggesting 

unrecognized or unidentified variants in BRCA1/2. 

Clinical BRCA1/2 testing is restricted primarily to coding regions. Limitations on how 

variants can be interpreted, lack of functional validation, and mutations in other genes 

contribute to uninformative results. The heritability that is not associated with BRCA 

genes is likely due to other genetic factors rather than environmental causes, specifically 

moderate- and low-risk susceptibility genes5. Hollestelle et al. (2010) point out the 
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challenges in estimating increased risks associated with mutations in these genes, as the 

disease patterns are often incompletely penetrant, and require large pedigree studies to 

confidently assess pathogenicity6. 

Next-generation sequencing (NGS) of gene panels for large cohorts of affected and 

unaffected individuals has become an increasingly popular approach to confront these 

challenges. Numerous HBOC gene variants have been catalogued, including cases in 

which RR has been determined; however the literature is also flooded with variants 

lacking a clinical interpretation7. It is not feasible to functionally evaluate the effects all 

of the VUS identified by NGS. Several approaches have been developed to better assess 

variants from exome and genome-wide NGS data8,9. Nevertheless, there is an unmet need 

for other methods that quickly and accurately bridge variant identification and 

classification. To begin to address this problem, we have presented a unified IT 

framework to identify and prioritize variants in coding and non-coding regions of 

BRCA1, BRCA2, and 5 other HBOC genes (ATM, CDH1, CHEK2, PALB2, and TP53 

[Mucaki et al., submitted]). This distinguishes prioritized variants from flagged or 

common alleles that affect regulatory protein binding and coding sequences in 70.6% of 

patients from a cohort of 102 BRCA-negative, anonymized HBOC patients. 

In the present study, we have selected 13 additional genes that are being evaluated as 

hereditary BC loci (BARD1 [BRCA1 Associated RING Domain 1], EPCAM [Epithelial 

Cell Adhesion Molecule], MLH1 [MutL Homolog 1], MRE11A [MRE11 Meiotic 

Recombination 11 Homolog A], MSH2 [MutS Homolog 2], MSH6 [MutS Homolog 6], 

MUTYH [MutY Homolog], NBN [Nibrin], PMS2 [Postmeiotic Segregation Increased 2], 

PTEN [Phosphatase And Tensin Homolog], RAD51B [RAD51 Paralog B], STK11 

[Serine/Threonine Kinase 11], and XRCC2 [X-Ray Repair Complementing Defective 

Repair In Chinese Hamster Cells 2]10). These genes encode proteins with roles in DNA 

repair, surveillance, and cell cycle regulation (Figure 4.1; for further evidence supporting 

this gene set see Supplementary Table 2311,12]), and are also associated with specific 

disease syndromes that confer an increased risk of BC and OC, as well as many other 

types of cancer (Supplementary Table 24). High-risk genes confer > 4-times increased 



167 

 

 

 

Figure 4.1. Significant Genome Stabilizing Pathways, Risk, and Relevant Literature 

for 20 HBOC Genes 

The green, purple, and blue circles indicate sequenced genes that play important roles in 

the MMR, Fanconi Anemia and DNA double-strand break repair pathways, respectively. 

The orange circle contains genes involved in cell cycle control. Genes considered to 

present a high risk of breast and/or ovarian cancer when mutated are bolded, moderate-

risk genes are underlined, and low-risk genes are in normal font. The estimated number 

of articles listing a gene’s association with breast or ovarian cancer (based on a 

systematic search in PubMed [performed June 2015]) is indicated in superscript. 

*MUTYH is only high risk in the case of bi-allelic mutations. **EPCAM is not involved 

in any pathways, but is associated with hereditary non-polyposis colorectal cancer 

(HNPCC) by virtue of the fact that 3’ deletions of EPCAM can cause epigenetic silencing 

of MSH2, causing Lynch syndrome protein. See Supplementary Table 23 for citations 

and further evidence supporting this gene set. 
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risk of BC compared to the general population. BRCA1 and BRCA2 are estimated to 

increase risk by 20-fold13. Pathogenic variants in other high-risk genes, CDH1, PTEN, 

STK11, and TP53, are rarely seen outside of their associated syndromes, and account for 

< 1% of hereditary BC cases14. EPCAM, MLH1, MSH2, MSH6, and PMS2 have also been 

proposed to harbor high-risk BC alleles, but the RR is still controversial14. Genes with 

moderate-risk alleles, ATM, CHEK2, and PALB2, cause between a 2- and 4-fold 

increased risk of BC11,14. The remaining genes (BARD1, MRE11A, MUTYH, NBN, 

RAD51B, and XRCC2) are newly identified and currently associated with unknown risks 

for HBOC (Figure 4.1). 

We report NGS of hybridization-enriched, complete genic and surrounding regions of 20 

known HBOC-associated genes followed by variant analysis of 287 consented patients 

from Southwestern Ontario, Canada with previously uninformative HBOC susceptibility 

test results. We then reduced the set of gene variants in each individual by prioritizing the 

results of coding and IT-analyses. After applying a frequency-based filter, the IT-based 

framework prioritizes variants based on their predicted effect on the recognition of 

sequence elements involved in mRNA splicing, transcription, and untranslated region 

(UTR) binding, combined with UTR 2° structure and coding variant analysis. Our 

approach integrates disparate sources of information, including bioinformatic analyses, 

likelihood ratios based on familial segregation, allele frequencies, and published findings 

to prioritize disease-associated mutation candidates. 

4.2 Methods 

4.2.1 Ethics and Patient Recruitment 

Recruitment and consent of human participants was approved by the University of 

Western Ontario Research Ethics Board (Protocol 103746). Patients were enrolled from 

January, 2014 through March, 2015 at London Health Sciences Centre (LHSC). Patients 

met the following criteria: male or female, aged between 25 and 75 years, > 10% risk of 

having an inherited mutation in a breast/ovarian cancer gene, diagnosed with BC and/or 
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OC, and previously receiving uninformative results for a known, pathogenic BRCA1 or 

BRCA2 variant in either the patient or other relatives. 

The median age of onset for patients (N=287; Figure 4.2) with BC was 48 (N=277), and 

46 for OC (N=17), and 7 were diagnosed with both BC and OC. Furthermore, 31 patients 

had bilateral BC (98 patients at diagnosis; 23 developed tumors on the opposite side after 

the initial occurrence), 1 had bilateral OC, and 13 have had recurrent BC in the same 

breast. There was a single case of male BC (Supplementary Table 25). 

4.2.2 Probe Design, Sample Preparation, and Sequencing 

Probes for sequence capture were designed as described in Mucaki et al., (submitted) 

covering a total of 1,103,029 nt across the 21 sequenced genes, including negative control 

gene ATP8B1 (see Appendix K: Supplementary Information for gene names, 

GenBank accession numbers, and OMIM reference numbers). This set of genes was 

proposed for evaluation at the Evidence-based Network for the Interpretation of Germline 

Mutant Alleles (ENIGMA) Consortium Meeting (2013). Other genes that have been 

found to be mutated in HBOC could not be included (eg. BRIP1, RAD50, RAD51C, 

RAD51D15–17). 

Patient DNA extracted from peripheral blood was either obtained from the initial genetic 

testing at LHSC Molecular Genetics Laboratory or isolated from recent samples. NGS 

libraries were prepared using modifications to a published protocol18 described in Mucaki 

et al., (submitted), except all post-capture pull-down steps were automated 

(Supplementary Information). 

Library preparation and re-sequencing were repeated for samples with initial average 

coverage below our minimum threshold (< 30x). To ensure that the proper sample was 

re-sequenced, the variant call format (VCF) files from each run were compared to all 

others in the run using VCF-compare (http://vcftools.sourceforge.net/). VCF files from 

separate runs for the re-sequenced patient were concordant, except for minor differences 

in variant call rates due to differences in coverage. The aligned reads from both runs were 

then merged (with BAMtools; http://sourceforge.net/projects/bamtools/).  
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Figure 4.2. Distribution of Patients by Eligibility Group and Age 

The number of patients falling within each age group (blue: 35-44 years, red: 45-54 

years; orange: 55-64 years, and purple: 65 years or older) is indicated for each eligibility 

group. 
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Samples were demultiplexed and aligned using CASAVA (Consensus Assessment of 

Sequencing and Variation; v1.8.219) and CRAC (Complex Reads Analysis & 

Classification; v1.3.0 [http://crac.gforge.inria.fr/]). Variants were then called using the 

Genome Analysis Toolkit (GATK [https://www.broadinstitute.org/gatk/]). Variants 

flagged by bioinformatic analysis (described in Mucaki et al., submitted) were also 

assessed by manual inspection with the Integrative Genome Viewer v2.3 (IGV; 

http://www.broadinstitute.org/igv/). 

4.2.3 Information Models 

Models for natural splice sites (SSs) and splicing regulatory factors (SRFs) are described 

in Mucaki et al., (2013)20. These models were used to predict deleterious effects on 

natural splicing, the activation of cryptic SSs, and changes to binding of splicing 

enhancers and silencers. In addition, using a combination of cryptic site activation and 

hnRNPA1 site prediction, pseudoexon formation was also assessed. 

We previously built models for TFBSs (N=83) using ENCODE ChIP-seq data (Mucaki et 

al., submitted). We identified 8 additional transcription factors (TFs) with ChIP-seq 

evidence that they bind and regulate the additional genes; however models that passed 

quality control criteria could only be derived for 3 of these. Models could not be 

generated for the remaining TFs (N=5) as these models either consisted of noise 

reflecting the binding motif of an interacting TF cofactor, or the factor is a histone 

deacetylase, which may be detected by ChIP-seq, despite not directly binding DNA 

(Supplementary Information). Supplementary Table 26 contains the list of TFs 

(N=86), and indicates which genes have experimental evidence of binding. 

Information weight matrices for sequences bound by RNA-binding proteins (RBPs) from 

the CISBP-RNA (http://cisbp-rna.ccbr.utoronto.ca/) and RBPDB 

(http://rbpdb.ccbr.utoronto.ca/) databases were used to determine changes in binding 

affinity due to SNVs, with conservative information thresholds described in Mucaki et 

al., (submitted). Finally, predicted changes in UTR structure due to a variant were 
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determined using SNPfold21. Significant changes in UTR structure and stability were 

represented using mfold (http://unafold.rna.albany.edu/?q=mfold). 

4.2.4 Variant Analysis 

Information analysis of binding site Ri changes and minimum information levels used to 

flag variants affecting protein binding, and variant prioritization criteria are outlined in 

Mucaki et al., (submitted). To assess coding changes affecting predicted protein chain 

length or amino acid(s) composition, we used SNPnexus (http://snp-nexus.org/). 

Insertion/deletions (indels) and nonsense mutations were noted, and missense variants 

were further assessed with in silico tools, by referencing the published literature, and 

consulting mutation databases (listed in Supplementary Table 27; see Mucaki et al., 

[submitted] for details on variant analysis). 

EPCAM mutations in familial cancer are limited to 3’ deletions causing epigenetic 

silencing of MSH2, and there is currently no evidence of other types of variants that alter 

its mRNA transcript or protein product22. Therefore, with the exception of indels, none of 

the variants flagged in EPCAM were prioritized. We chose to prioritize variants in 

MUTYH using the same framework as all other genes, despite MUTYH pathogenicity 

resulting from biallelic variants23, because it is possible that a second MUTYH mutation 

remains unrecognized. 

All protein truncating (nonsense and indels), and selected splicing and missense 

mutations were tested and where possible confirmed by Sanger sequencing (details in 

Supplementary Table 28). 

4.2.4.1 Negative Control 

Variants present in the ATP8B1 gene were used as negative controls for our variant 

analysis framework. Initially, it was included in the list of prioritized HBOC genes 

provided by ENIGMA, but evidence for its association with HBOC is lacking in the 

published literature. Furthermore, it is not a known susceptibility gene for any type of 

cancer (mutations in ATP8B1 cause progressive familial intrahepatic cholestasis24), and is 
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infrequently mutated in breast tumors in several studies (for example, see Cancer 

Genome Atlas Network [2012]25). 

4.2.5 Likelihood Ratios (LRs) 

Patients with prioritized coding and/or splicing variants, which we consider the most 

likely to be pathogenic, were selected for co-segregation analysis using an online tool that 

calculates the likelihood of a variant being deleterious based on pedigree information26. 

Because the penetrance parameters cannot be altered from the settings given for BRCA1 

or BRCA2, the BRCA2 option was selected for patients with prioritized variants in non-

BRCA genes. Penetrance in BRCA2 is known to be lower than BRCA1 values26. Current 

evidence suggests that mutations in non-BRCA genes may be less penetrant than those in 

the BRCA genes11, however the penetrance of many of these variants remains unknown 

(Supplementary Information). 

4.3 Results 

4.3.1 Variant Analysis 

We identified 38,372 unique variants among 287 patients (26,636 intronic, 7,287 

intergenic, and 714 coding), on average 1,975 variants per patient, before any filtering 

criteria were applied. 

4.3.1.1 Natural Site Variants 

The Shannon Human Splicing Mutation Pipeline was used to predict the effect of the 

14,458 variants that could potentially affect splicing, of which 244 reduced natural SS 

strength. Further stringent filtering of the natural SS based on information content 

changes and allele frequency resulted in 7 flagged variants (Supplementary Table 29). 

Four of these variants were prioritized (Table 4.1). A novel synonymous variant in exon 

2 of RAD51B, c.84G>A (p.Gln28=; 8-1H.9-1E), is predicted to increase exon skipping by 

weakening the natural splice donor (Ri,final = 5.2 bits, ΔRi = -3.0 bits). A known ATM 

variant, c.6198+1G>A (8-1D.9-1B27), abolishes the natural donor SS of exon 42 (Ri,final = 

-13.7 bits, ΔRi = -18.6 bits). This will either lead to exon skipping or activation of a pre- 



174 

 

 

Table 4.1. Prioritized Variants Predicted by IT to Affect Natural and Cryptic Splicing 

UWO ID Gene Variant rsID (dbSBP142) 
Allele Frequency (%)† 

Information Change 

Consequence Ri,initial 
(bits) 

Ri,final 
(bits) 

ΔRi 
(bits) 

8-1D.9-1B ATM c.6198+1G>A1,2 - 4.9 -13.7 -18.6 Abolished naturala,d 

12-4E.13-5B MRE11A c.2070+2A>T* - 7.6 -11 -18.6 Abolished naturala,d 

10-4D MLH1 c.306+4A>G*3 rs267607733 8.6 6 -2.6 Weakened naturalb 

8-1H.9-1E RAD51B c.84G>A* 
p.Gln28= Novel 8.2 5.2 -3 Weakened naturala 

8-1D.9-1B BARD1 c.1454C>T* 
p.Ala485Val Novel -2.7 4.4 7.1 Created crypticb 

15-4A BRCA1 c.5074+107C>T rs373676607 -1.3 5.7 7 Created crypticc,e 

15-3G CDH1 c.1223C>G*4 
p.Ala408Gly Novel -0.6 4.3 4.9 Created crypticb 

10-4B RAD51B c.958-29A>T*** rs34436700 
0.78 2.2 4.4 2.2 Strengthened crypticc 

10-5A STK11 c.375-194GT>AC rs35113943 17.61 
rs117211142 0.80 7.5 8.8 1.3 Strengthened crypticc 

8-2F XRCC2 c.122-154G>T Novel 8.1 10 1.9 Strengthened crypticc 
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*Confirmed by Sanger sequencing; ***Ambiguous Sanger sequencing results; †If available; aexon skipping; bexon truncation; 
cintron retention; duse of alternate isoform; ereduced expression of natural isoform; 1Stankovic et al., 1998 (Ref 27), 2Reiman et 

al., 2011 (Ref 28), 3Tournier et al., 2008 (Ref 29), 4Schrader et al., 2011 (Ref 32). 
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existing cryptic site (Figure 4.3). An Ataxia-Telangiectasia patient with this variant 

exhibited low expression, protein truncation, and abolished kinase activity of ATM28. 

MLH1 c.306+4A>G (rs267607733; 10-4D) causes increased exon skipping (and a 

decrease in wild-type exon relative expression) due to the weakening (Ri,final = 6.0 bits, 

ΔRi = -2.6 bits) of the exon 3 natural donor. Tournier et al., (2008) assessed this variant 

using an ex vivo splicing assay and observed cryptic site activation and exon 3 skipping29. 

MRE11A c.2070+2A>T (12-4E.13-5B) is indicated in ClinVar as likely pathogenic and 

abolishes the natural donor site of exon 19 (Ri,final = -11.0 bits, ΔRi = -18.6 bits), while 

strengthening a cryptic site 5 nt upstream of the splice junction (Ri,final = 8.1 bits, ΔRi = 

0.6 bits). Either cryptic SS activation or complete exon skipping are predicted. 

The BRCA2 variant c.68-7T>A (rs81002830; 15-6G) was not prioritized as its 

pathogenicity has not been proven despite evidence of its induction of (in-frame) exon 

skipping30, and was shown to not segregate with disease in Portuguese HBOC patients31. 

This same study did not observe abnormal splicing following RT-PCR experiments. The 

previously discussed ATM variant c.1066-6T>G (rs201686625; 8-3F.9-3F) was also not 

prioritized (Mucaki et al., [submitted]). 

4.3.1.2 Activation of Cryptic Splicing 

The Shannon Pipeline identified 9,480 variants that increased the strength of at least one 

cryptic site, of which 9 met or exceeded the defined thresholds for information change. 

Six of these were prioritized (Table 4.1). A novel BARD1 variant in exon 6 (c.1454C>T; 

p.Ala485Val; 8-1D.9-1B) creates a donor SS (Ri,final = 4.4 bits, ΔRi = 7.1 bits), which 

would produce a 58 nt frameshifted exon if activated. The natural donor SS of exon 6, 

116 nt downstream of the variant, is stronger (5.5 bits), but the ASSEDA server predicts 

equal levels of expression of both natural and cryptic exons. A BRCA1 mutation 

5074+107C>T (rs373676607; 15-4A) downstream of exon 16 is predicted to extend the 

exon by 105 nt, and be slightly more abundant than the natural exon (Ri,total of 8.6 and 8.1 

bits, respectively). CDH1 c.1223C>G (p.Ala408Gly; 15-3G), previously reported in a 

BRCA-negative lobular BC patient with no family history of gastric cancer32, creates a  
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Figure 4.3. Predicted Isoforms and Relative Abundance as a Consequence of ATM 

natural splice variant c.6198+1G>A 

A) Intronic ATM variant c.6198+1G>A abolishes the natural donor of exon 42 (4.9 -> -

13.7 bits), and would either result in exon skipping (causing a frame-shift), or possibly 

activate a downstream cryptic site (isoform 1 maintains reading frame, isoform 2 would 

not). B) In the wild type mRNA, the natural exon (isoform 15) has the highest predicted 

abundance. C) The mutation predicts isoform 1 to be the most abundant and isoform 2 to 

be slightly less abundant than 1. 
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cryptic donor site (Ri,final = 4.3 bits, ΔRi = 4.9 bits) in exon 9, 97 nt downstream of the 

natural acceptor. While residual splicing of the normal exon is still expected, the cryptic 

is predicted to become the predominant splice form (~twice as abundant; Figure 4.4). 

STK11 c.375-194GT>AC (rs35113943 & rs117211142; 10-5A), and the novel XRCC2 

c.122-154G>T (8-2F) both strengthen strong pre-existing cryptic sites exceeding the 

Ri,total values of their respective natural exons. Finally, a known RAD51B variant 29 nt 

upstream of exon 10: c.958-29A>T (rs34436700; 10-4B) strengthens a cryptic acceptor 

(Ri,final = 4.4 bits, ΔRi = 2.2 bits) that, if activated, would produce a transcript retaining 21 

intronic nucleotides and exon 10. 

The remaining cryptic site variants (Supplementary Table 29) were not prioritized. The 

novel BRCA2 c.7618-269_7618-260del10 (7-4A) variant is predicted to create a cryptic 

site with an exon having a lower Ri,total value (5.2 bits) than the natural exon (6.6 bits). 

PMS2 c.1688G>T (p.Arg563Leu; rs63750668; 15-6A, 15-3B, 15-4B) does not segregate 

with disease. Drost et al., (2013) demonstrated that this variant does not impair DNA 

repair activity33. Finally, RAD51B c.728A>G (p.Lys243Arg; rs34594234; 7 patients) 

predicts an increase in the abundance of the cryptic exon; however the natural exon 

remains the predominant isoform. 

4.3.1.3 Pseudoexon Activation 

Pseudoexons arise from creation or strengthening of an intronic cryptic SS in close 

proximity to another intron site of opposite polarity. Our analysis detected 623 variants 

with such intronic cryptic sites, of which 17 were prioritized (among 9 genes) occurring 

within 250 nt of a pre-existing site of opposite polarity, with an hnRNPA1 site within 5 nt 

of the acceptor of the predicted pseudoexon (Supplementary Table 30). Three are novel 

(BRCA2 c.7007+824C>T, BRCA2 c.8332-1130G>T, and PTEN c.802-796C>A), and the 

remainder were present in dbSNP. Seven of these variants (BARD1 c.1315-168C>T, 

BRCA2 c.631+271A>G, MLH1 c.1559-1732A>T, MRE11A c.1783+2259A>G, MSH6 

c.260+1758G>A, PTEN c.79+4780C>T, and RAD51B c.1037-1012C>A), although rare,  
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Figure 4.4. Predicted Isoforms and Relative Abundance as a Consequence of CDH1 

cryptic splice variant c.1223C>G 

A) A missense variant within exon 9 of CDH1 (c.1223C>G; p.Ala408Gly; 

chr16:68847301C>G; 15-3G) is novel and creates a cryptic donor (-0.6 -> 4.3 bits). If 

used (as predicted by ASSEDA), the resultant cryptic exon would be 97 nt shorter 

(isoform 1) and cause a frameshift. B) In the wild type mRNA, the natural exon (isoform 

2) as the most abundant splice form. C) The mutation causes cryptic isoform 1 to be most 

abundant. 
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occur in multiple patients, and patient 12-5H has predicted pseudoexons in both BARD1 

and RAD51B. 

4.3.1.4 SRF Binding 

Variants within exons or within 500 nt of a natural SS (N=9,998) were assessed for their 

potential effect on SRF binding sites (SRFBSs). Initially 216 unique variants were 

flagged (Supplementary Table 31), but after considering each in the context of the SRF 

function and location within the gene34, we prioritized 148, of which 57 are novel. Some 

prioritized variants affect distant SRFs that may activate cryptic sites, but were not 

predicted to affect natural splicing. Of the 88 suitable prioritized variants for which exon 

definition analysis was performed (where initial Ri,total of the exon > SRF gap surprisal 

value), 55 were predicted to induce or contribute to increased exon skipping. For 

example, an uncommon ATM missense variant within exon 41, c.6067G>A 

(p.Gly2023Arg; rs11212587; 10-3H), strengthens an hnRNPA1 site (Ri,final = 5.2 bits, ΔRi 

= 4.7 bits) 30 nt from the natural donor, and is predicted to induce exon 41 skipping 

(ΔRi,total = -9.5 bits). 

4.3.1.5 TF binding 

To assess potential changes to TFBSs, variants occurring from 10 kb upstream of the start 

of transcription through the end of the first intron were analyzed by IT, flagging 88 (of 

4,530 identified; Supplementary Table 32). Considering the gene context of each TFBS 

and extent of information change prioritized 36 variants. The following illustrates the 

rationale for highlighting these variants: BRCA1 c.-19-433A>G (rs191197821; 15-6H) 

abolishes a binding site for HSF 1 (Ri,initial = 5.5 bits, ΔRi = -7.8 bits). While HSF 1 is 

known to be a transcriptional activator associated with poor BC prognosis35, the specific 

effect of reduced HSF 1 binding to BRCA1 has not been established. Similarly, MLH1 c.-

4285T>C (rs115211110; 10-6B.11-1B, 10-2C, 10-5D, 12-2G, and 13-6A) significantly 

weakens a C/EBPβ site (Ri,initial = 10.1 bits, ΔRi = -6.3 bits), a TF that has been shown to 

play a role in BC development and progression36. Another MLH1 variant, c.-6585T>C 

(novel; 15-5H), greatly decreases the binding strength (Ri,initial = 12.5 bits, ΔRi = -10.8 



181 

 

 

bits) of the NF-κB p65 subunit, which is activated in ER-negative breast tumors37. Two 

prioritized variants (PMS2 c.-9059G>C and XRCC2 c.-163C>A) weaken PAX5 binding 

sites, a TF which when overexpressed can result in mammary carcinoma cells regaining 

epithelial cell characteristics38. 

4.3.1.6 Alterations to mRNA Structure 

A total of 1,355 variants were identified in the 5’ and 3’ UTRs of the patients. Analysis 

of the variants, most likely to alter mRNA structure with SNPfold, flagged 3 unique 

variants (p < 0.05), in BRCA1, BARD1, and XRCC2 (Table 4.2). The predicted mRNA 2° 

structures of the reference and variant sequences are shown in Figure 4.5 (generated with 

mfold). (generated with mfold). The BRCA1 variant occurs in the 3’UTR of all known 

transcript isoforms (NM_007294.3:c.*1332T>C; rs8176320; in 8-5C.9-5C, 8-6A.9-6A, 

10-2G). The most likely inferred structure consisting of a short arm and a larger stem 

loop is destabilized when the variant nucleotide is present (Figure 4.5A and B). The 

BARD1 variant falls within the 5’ UTR of a rare isoform (XM_005246728.1:c.-53G>T; 

rs143914387; 8-3E.9-3E, 8-6F.9-6F, 8-4H.9-4H, 13-2E, 15-4C), and is within the coding 

region of a more common transcript (NM_000465.2:c.33G>T). While the top ranked 

isoform following mutation is similar to the wild-type structure, the second-ranked 

isoform (ΔG = +1.88kcal/mol) is distinctly different, creating a loop in a long double-

stranded structure (Figure 4.5C and D) The XRCC2 variant is within its common 5’ 

UTR (NM_005431.1:c.-76C>T; rs547538731; 15-2D) and is located 11 nt downstream 

from the 5’ end of the mRNA. The variant nucleotide disrupts a potential GC base pair, 

leading to a large stem-loop that could allow access for binding of several RBPs (Figure 

4.5E and F). The variant simultaneously strengthens a PUM2 (Ri,initial = 2.8 bits, ΔRi = 

4.4 bits) and a RBM28 site (Ri,initial = 4.0, ΔRi = 3.6 bits), however there is a stronger 

NCL site (8.3 bits) in the area that is not affected and may compete for binding. 

4.3.1.7 RBP binding 

Using IT models of 76 RBBSs, 33 UTR variants were prioritized (Supplementary Table 

33) from the initial list of 1,367 UTR variants. Interestingly, one of the three variants that 

destabilized the mRNA was also flagged using our RBP scan. The BARD1 c.53A>C  
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Table 4.2. Variants Predicted by SNPfold to Significantly Affect UTR Structure 

UWO ID Gene Variant UTR Position rsID (dbSNP142) 
Allele Frequency (%)† Rank p-value 

8-3E.9-3E 
8-6F.9-6F 
8-4H.9-4H 

13-2E 
15-4C 

BARD1 
XM_005246728.1:c.-

53G>T 
(c.33G>T p.Gln11His) 

5'UTR rs143914387 
0.04 6/600 0.01 

8-5C.9-5C 
8-6A.9-6A 

10-2G 
BRCA1 NM_007294.3:c.*1332T>C 

NM_007299.3:c.*1438T>C 3'UTR rs8176320 
0.42 13/450 0.03 

15-2D XRCC2 NM_005431.1:c.-76C>T 5'UTR rs547538731 
0.08 3/300 0.01 

†If available 
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Figure 4.5. Predicted RNA Structure Change due to Variants Flagged by SNPfold 

using mfold 

Wild-type (A, C, and E) and variant (B, D and F) structures are displayed. The variant 

nucleotide is marked with a red arrow. A) Predicted wild-type structure of BRCA1 3’UTR 

surrounding c.*1332G>A. B) BRCA1 3’UTR structure due to c.*1332A variant, 

extending arm length while reducing hairpin size. C) BARD1 5’UTR structure of rare 

isoform (XM_005246728.1:c.-53G>T). Two overlapping pre-existing RBP sites (SRSF7 

[outer box] and SRSF2 [inner box]) are predicted and either could occupy this location if 

accessible. D) 2° BARD1 5’ UTR structure of the region predicted only with sequence 

containing the c.-53T mutation. The primary predicted c.-53T structure is identical to 

wild-type (with one disrupted C-G bond leading to a 4.1 kcal/mol lower ΔG). The variant 

both weakens and abolishes the pre-existing SRSF7 and SRSF2 sites, respectively. E) 

XRCC2 structure within common 5’UTR surrounding c.-76C>T variant. F) XRCC2 

5’UTR structure predicted from c.-76T sequence, containing a hairpin not found in wild-

type. This hairpin may allow for the binding of previously inaccessible nucleotides 

including the altered nucleotide. 
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variant weakens a predicted 8.3 bit SRSF7 site (ΔRi = -3.0 bits) while simultaneously 

abolishing a predicted 9.7 bit SRSF2 site (ΔRi = -29.7 bits) (Figure 4.5C-D). 

4.3.2 Exonic Protein-Altering Variants 

4.3.2.1 Protein Truncating 

Of the 714 identified coding variants, 6 were indels, each of which found in a single 

patient, and 2 preserve the reading frame. In addition, 5 nonsense variants were found in 

6 different patients. All of these variants were prioritized unless otherwise stated (Table 

4.3 and Supplementary Table 34). 

A novel insertion, c.3550_3551insA (p.Gly1184Glufs; 11-6H), identified in exon 10 of 

BRCA1, causes premature termination and loss of 676 amino acids, including both BRCT 

domains, and the domain responsible for binding PALB239. Two other frameshifting 

variants are previously reported PALB2 deletions: c.757_758delCT (p.Leu253Ilefs; 

rs180177092; 10-6F), reported in a Fanconi Anemia patient40 and c.2920_2921delAA 

(p.Lys974Glufs; rs180177126; 8-3A.9-3A), identified in a BRCA-negative HBOC 

patient41. These variants are predicted to cause the loss of 932 and 208 amino acids in the 

protein, respectively. Consequently, the WD repeat regions are lost (only 5/7 are lost in 

the case of the shorter deletion) along with domains important for the interaction with 

RAD51 and BRCA2. We found another frameshift mutation in the last exon of BRCA2: 

c.10095delCins11 (p.Ser3366Asnfs; rs276174803; 15-4E). Borg et al., (2010) report this 

variant as a VUS in a HBOC patient due to its proximity to the carboxy terminus of the 

coding region42, however it is classified as likely benign in ClinVar, and was therefore 

not prioritized. 

The two frame-preserving mutations are 3 nt deletions occurring in CDH1 and CHEK2. 

The first, c.30_32delGCT (p.Leu11del; 10-4A), is novel, occurs in exon 1, and deletes a 

leucine from the signal peptide domain. The second variant, c.483_485delAGA 

(p.Glu161del; 10-1E), deletes a glutamic acid from the FHA domain, necessary for  



185 

 

 

Table 4.3. Variants Resulting in Premature Protein Truncation 

UWO ID Gene Exon Variant 
rsID (dbSNP142) 
Allele Frequency 

(%)† 
Details 

Frameshift Insertions/Deletions 

11-6H BRCA1 10 of 23 c.3550_3551insA** 
p.Gly1184Glufs Novel STOP at p.1187 

676 AA short 

10-6F PALB2 4 of 13 c.757_758delCT* 
p.Leu253Ilefs rs180177092 STOP at p.255 

932 AA short 

8-3A.9-3A PALB2 9 of 13 c.2920_2921delAA* 
p.Lys974Glufs rs180177126 

STOP at p.979 

208AA short 

Insertions/Deletions with Conserved Reading Frame 

10-4A CDH1 1 of 16 c.30_32delGCT*** 
p.Leu11del Novel 

Loss of 1 AA 
Frame and AA sequence 

conserved 

10-1E CHEK2 4 of 14 c.483_485delAGA* 
p.Glu161del - 

Loss of 1 AA 
Frame and AA sequence 

conserved 

Stop Codons 

10-2F ATM 13 of 63 c.1924G>T* 
p.Glu642Ter - 2415 AA short 



186 

 

 

12-4G.13-
5D ATM 62 of 63 c.8977C>T* 

p.Arg2993Ter - 64 AA short 

8-5D.9-5D BRCA1 23 of 23 c.5503C>T** 
p.Arg1835Ter rs41293465 28 AA short 

15-1E PALB2 13 of 13 c.3549C>G* 
p.Tyr1183Ter rs118203998 4 AA short 

*Confirmed by Sanger sequencing; **Not confirmed through Sanger sequencing; ***Ambiguous Sanger sequencing results; 
†If available; AA: amino acid 



187 

 

 

protein-protein interaction. This variant reduces CHEK2 phosphorylation in response to 

DNA damage, and protein instability and occurs in HBOC43. 

All of the nonsense mutations in the cohort (N=5) have been previously reported. ATM: 

c.1924G>T (p.Glu642Ter; 10-2F) was identified in a BC family by Goldgar et al., 

(2011)44 and results in a loss of 2,415 amino acids. ATM c.8977C>T (p.Arg2993Ter; 12-

4G.13-5D) similarly truncates the protein by 64 amino acids and has been reported in 

cases of Ataxia-Telengiectasia45,46. BRCA1 c.5503C>T (p.Arg1835Ter; rs41293465; 8-

5D.9-5D) was described by Dong et al., (1998) in two HBOC patients47 and occurs in the 

terminal exon. PALB2 c.3549C>G (p.Tyr1183Ter; rs118203998; 15-1E) also occurs in 

the terminal exon and has been reported in BC48. Finally, BRCA2 c.9976A>T was 

identified in 2 patients (p.Lys3326Ter; rs11571833; 12-2H and 13-3C) and is likely 

benign due to its low odds ratio (1.01)49. 

4.3.2.2 Missense Variants 

Of the 155 unique missense variants (Supplementary Table 35), 119 were prioritized by 

consulting literature and disease- and gene-specific databases. All are of unknown 

clinical significance and 21 have not been previously reported. 

The ATM variant c.7271T>G (p.Val2424Gly; rs28904921; 10-1F, 12-1D) replaces a 

hydrophobic residue by glycine in the conserved FAT domain, in which is required for 

ATM activation, and confers a 9-fold increase (95% CI) in BC risk44. Functional studies, 

assessing ATM kinase activity in vitro with TP53 as a substrate, showed that cell lines 

heterozygous for the mutation had less than 10% of wild-type kinase activity, such that 

this variant is expected to act in a dominant-negative manner50. 

CHEK2 c.433C>T (p.Arg145Trp; rs137853007; 4-3C.5-4G.14-4A) and c.470T>C 

(p.Ile157Thr; rs17879961; 12-2G, 15-5G) both fall within the FHA domain, which 

mediates ATM-dependent phosphorylation of CHEK2 and targets the protein to other 

binding partners such as BRCA151. c.433C>T results in rapid degradation of the mutant 

protein52. 
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The PMS2 variant c.2T>C (p.Met1Thr; 11-4H) is listed in ClinVar as pathogenic and 

would be expected to abrogate correct initiation of translation. This variant has not been 

reported in BC families, but is associated with colorectal cancer (CRC)53. 

4.3.3 Variant Prioritization 

We prioritized an average of 18.2 variants in each gene, ranging from 7 (XRCC2) to 61 

(ATM), an average of 0.41 variants/kb, and an average of 0.65 variants/patient (Table 

4.4). ATM had the second greatest gene probe coverage (103,511 nt captured), the highest 

number of unique prioritized variants, and was among the top genes for number of 

prioritized variants/kb (0.59). 

In total, our framework allowed for the prioritization of 346 unique variants in 246 

patients, such that 85.7% of tested patients (N=287) had at least 1 prioritized variant. 

Most patients (84.7%) harbored fewer than 4 prioritized variants. The distribution of 

patients with prioritized variants did not significantly differ across the eligibility groups 

(Table 4.5). Figure 4.6 illustrates the distribution of these variants by category, and 

Supplementary Tables 36 and 37 show this information by gene and patient, 

respectively. 

All prioritized protein-truncating (N=10), and selected splicing (N=7) and missense 

(N=5) variants were verified by Sanger sequencing. Of the protein-truncating variants, 4 

nonsense, 1 indel with a conserved reading frame, and 2 frameshifts were confirmed 

(Table 4.3). Six splicing variants and all missense were confirmed (Table 4.1 and 

Supplementary Table 35). 

4.3.4 Negative Control 

ATP8B1 was sequenced and analyzed in all patients as a negative control 

(Supplementary Table 38). We prioritized 21 ATP8B1 variants with an average of 0.22 

variants/kb and 0.57 variants/patient. This is lower than the prioritization rate for many of 

the documented HBOC genes, but illustrates that prioritization is a screening approach 

that can generate false positives. 
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Table 4.4. Comparing Counts of Prioritized Variants 

Gene 
Unique 

prioritized 
variants 

Unique 
patients 

Gene probe 
coverage (nt) 

Prioritized 
variants/patient Prioritized variants/kB 

ATM 61 102 103511 0.60 0.59 

ATP8B1 21 37 94793 0.57 0.22 

BARD1 17 46 73735 0.37 0.23 

BRCA1 19 24 52075 0.79 0.36 

BRCA2 24 28 73332 0.86 0.33 

CDH1 21 32 61312 0.66 0.34 

CHEK2 12 13 28372 0.92 0.42 

MLH1 18 25 50553 0.72 0.36 

MRE11A 17 31 64713 0.55 0.26 

MSH2 18 17 112437 1.06 0.16 

MSH6 19 23 25216 0.83 0.75 

MUTYH 8 16 21439 0.50 0.37 

NBN 11 21 57067 0.52 0.19 
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PALB2 26 46 25319 0.57 1.03 

PMS2* 8 15 11726 0.53 0.68 

PTEN** 15 23 86059 0.65 0.17 

RAD51B*** 22 47 62465 0.47 0.35 

STK11 12 20 28373 0.60 0.42 

TP53 11 30 23544 0.37 0.47 

XRCC2 7 10 19942 0.70 0.35 

* high homology to other regions in the genome, thus fewer probes designed within gene; ** PTEN has pseudogene PTENP1, 

thus fewer probes covering exonic regions; *** probes limited to 1,000 nt surrounding all exons, and 10,000 nt up- and down-

stream of gene 
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Table 4.5. Distribution of Recruited Patients Among Eligibility Groups 

Eligibility Group† Number of Patients within 
Eligibility Group 

Number of Patients with Prioritized 
Variants 

Breast cancer <60 year, and a first or second-degree 
relative with ovarian cancer or male breast cancer (5). 68 62 

Breast and ovarian cancer in the same individual, or 
bilateral breast cancer with the first case <50 years (6). 37 32 

Two cases of ovarian cancer, both <50 years, in first or 
second-degree relatives (7). 72 59 

Two cases of ovarian cancer, any age, in first or 
second-degree relatives (8). 1 1 

Three or more cases of breast or ovarian cancer at any 
age (10). 109 92 

 
287 246 

The Risk Categories for Individuals Eligible for Screening for a Genetic Susceptibility to Breast or Ovarian Cancers are 

determined by the Ontario Ministry of Health and Long Term-Care Referral Criteria for Genetic Counseling. † Numbers in 

parentheses correspond to Eligibility Group designation. 
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Figure 4.6. Distribution of Unique Prioritized Variants by Category 

Truncating variants include indels and nonsense variants. Splicing variants include significantly weakening or abolishing 

natural SSs, activating cryptic SSs, or activating the formation of pseudoexons. 
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4.3.5 Pedigree Analysis 

Pathogenic BRCA2 variants within a region of exon 11 have been associated with a high 

incidence of OC. We therefore verified whether there were a high number of OC cases in 

the families of patients prioritized with exon 11 BRCA2 variants (N=3). The family of 13-

6H (c.4828G>A; p.Val1610Met; diagnosed with BC at 65) has 3 reported cases of 

BC/OC, 1 of which is OC (diagnosed at 74), 2 degrees of separation from the proband. 

Patient 12-1H (c.6317T>C; p.Leu2106Pro; diagnosed with BC at 52) has 3 other affected 

family members, 2 with OC and 1 with BC. Finally, patients 8-4B.9-4B, 10-2A, 11-2F, 

and 14-3C.15-2A (c.5199C>T; p.Ser1733=) do not have any family members with 

reported cases of OC. 

We also selected patients with prioritized mismatch repair (MMR) variants (N=8, in 10 

patients) to assess the incidence of reported CRC cases in these families. Notably, patient 

8-1E (MSH2 c.1748A>G) had 5 relatives with CRC. A similar analysis of prioritized 

CDH1 variants did not reveal any patients with a family history of gastric cancer. 

4.3.6 Likelihood Ratio Analyses 

We carried out co-segregation analysis of 25 patients with prioritized pathogenic variants 

(4 nonsense, 4 frameshift, 2 in-frame deletions, 6 missense, 4 natural splicing, and 6 

cryptic splicing, including 8-1D/9-1B who exhibited prioritized natural and cryptic SS 

variants). We compared these findings with those from patients (N=25) harboring 

moderate-priority variants (variants prioritized through IT analysis only) and those in 

whom no variants were flagged or prioritized (N=14). In instances where disease alleles 

could be transmitted through either founder parent, the lineage with the highest LR was 

reported. For patients with likely pathogenic variants, the LRs ranged from 0.00 to 70.96 

(Table 4.6 and Supplementary Table 39). Disease co-segregation was supported (LR > 

1.0) in 18 patients, and the remainder were either neutral (LR < 1.026) or could not be 

analyzed either due to missing pedigree information or limited numbers of affected 

individuals in a family. Patient 10-6F (PALB2: c.757_758delCT) exhibited the highest 

likelihood (LR=70.96). Prioritized variants with neutral evidence include a variant that  
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Table 4.6. LR Values for Patients with Prioritized Truncating, Splicing, and Selected Missense Variants 

Gene 
Variant 

Category UWO ID LR 
mRNA Protein 

ATM 

c.1924G>T p.Glu642Ter Nonsense 10-2F 7.46MGM 
9.61MGF 

c.6198+1G>A - Natural splicing 8-1D.9-1B 1.00 

c.7271T>G p.Val2424Gly Missense 
10-1F 1.44 

12-1D 1.96P 

c.8977C>T p.Arg2993Ter Nonsense 12-4G.13-5D 5.30P 

BARD1 c.1454C>T p.Ala485Val Cryptic splicing 8-1D.9-1B 1.00 

BRCA1 
c.3550_3551insA p.Gly1184Glufs Frameshift indel 11-6H 3.36P 

c.5503C>T p.Arg1835Ter Nonsense 8-5D.9-5D 41.99 

BRCA2 c.10095delCins11 p.Ser3366Asnfs Frameshift indel 15-4E 3.71 

CDH1 
c.30_32delGCT p.Leu11del Inframe deletion 10-4A 1.00 

c.1223C>G p.Ala408Gly Cryptic splicing 15-3G 2.14 

CHEK2 c.470T>C p.Ile157Thr Missense 
12-2G 2.86 

15-5G 19.44P 
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c.433C>T p.Arg145Trp Missense 4-3C.5-4G.14-4A 3.48 

PALB2 

c.3549C>G p.Tyr1183Ter Nonsense 15-1E 1.78 

c.757_758delCT p.Leu253Ilefs Frameshift indel 10-6F 70.96 

c.2920_2921delAA p.Lys974Glufs Frameshift indel 8-3A.9-3A 5.03 

PMS2 c.2T>C p.Met1Thr Missense 11-4H 16.53P 

RAD51B 
c.84G>A p.Gln28= Leaky splicing 8-1H.9-1E 3.51P 

c.958-29A>T - Cryptic splicing 10-4B 7.44P 

STK11 c.375-194GT>AC - Cryptic splicing 10-5A 2.67M 

Note: LR values in favor of neutrality are not shown. P paternal; M maternal; MGF maternal grandfather; MGM maternal 
grandmother.
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abolishes a natural SS in MRE11A, c.2070+2T>A (12-4E/13-5B; LR=0.03), and an in-

frame deletion c.483_485delAGA in CHEK2 (10-1E; LR=0.00). 

4.4 Discussion 

Rare non-coding and/or non-truncating mutations can confer an increased risk of disease 

in BC54. This study determined both coding and non-coding sequences of 20 HBOC-

related genes, with the goal of discovering and prioritizing rare variants with potential 

effects on gene expression. This work emphasizes results from the analysis of non-coding 

variants, which are abundant in these genes, yet have been underrepresented in previous 

HBOC mutation analyses. Nevertheless, alterations to mRNA binding sites in BRCA, and 

lower risk or rare HBOC genes, have been shown to contribute to HBOC (ESEs in 

ATM55, BARD156, and BRCA genes57,58. We prioritized 346 unique variants that were 

predicted to result in 4 nonsense, 3 frameshift, 2 indels with preserved reading frame, 119 

missense, 4 natural splicing, 6 cryptic splicing, 17 pseudoexon activating, 148 SRFBS, 36 

TFBS, 3 UTR structure, and 31 RBBS mutations (Supplementary Table 36). Among 

these variants, 101 were novel (Supplementary Table 40). Compared to our initial 7-

gene panel (Mucaki et al., [submitted]), the inclusion of the additional genes in this study 

prioritized at least 1 variant in 15% additional patients (increased from 70.6 to 85.7%). 

The BRCA genes harbor the majority of known germline pathogenic variants for HBOC 

families59. However, a large proportion of the potentially pathogenic variants identified in 

our study were detected in ATM, PALB2, and CHEK2, which although of lower 

penetrance, were enriched because the eligibility criteria excluded known BRCA1 and 

BRCA2 carriers. BRCA1 and BRCA2 variants were nevertheless prioritized in some 

individuals. We also had expected intragenic clustering of some BRCA coding variants60. 

For example, pathogenic variants occurring within exon 11 of BRCA2 are known to be 

associated with higher rates of OC in their families61. We identified 3 variants in exon 11, 

however there was no evidence of OC in these families. Overall, ATM and PALB2 had 

the highest number of prioritized variants (61 and 26, respectively). However, only 12 

variants were prioritized in CHEK2; potentially pathogenic variants may have been 
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under-represented during sequence alignment as a consequence of the known paralogy 

with CHEK2P2. 

Fewer TP53, STK11, and PTEN variants were prioritized, as pathogenic variants in these 

genes tend to be infrequent in patients who do not fulfill the clinical criteria for their 

associated syndromes (Li-Fraumeni syndrome, Peutz-Jeghers syndrome, and Cowden 

syndrome, respectively6). Although the density of prioritized variants in these genes is 

below average (18.2 per gene), the total number was significant (TP53=11, STK11=12, 

PTEN=15). 

Certain missense variants show stronger penetrance than truncating variants, which is 

contrary to the notions about the severity of truncating variants. For example, the 

missense variant ATM c.7271T>G (p.Val2424Gly; 10-2F, 12-1D), has been shown to act 

in a dominant-negative manner and confer a higher risk of developing BC than some 

truncating mutations in this gene44. 

We compared the frequency of all prioritized variants in our patient cohort to the 

population allele frequencies (1000 Genomes Project, Phase 3) to determine if variants 

more common in our cohort might be suggestive of HBOC association. Three variants in 

at least 5 HBOC patients are present at a much lower frequency in the general population. 

The NBN c.*2129G>T (4.18% of study cohort), is considerably rarer globally (0.38% in 

1000Genomes; < 0.1% in other populations). Conversely, BARD1 c.33G>T (1.74%), has 

only been detected in the American and European populations (0.04%). In Southwestern 

Ontario, individuals are often of American or European ancestry. The allele frequency of 

this variant in our HBOC population may simply be enriched in a founder subset of 

general populations. Similarly, the RAD51B c.-3077G>T variant (2.09%), is rare in the 

European and one sub-South Asian population (0.08%). While we cannot rule out 

skewing of these allele frequencies due to population stratification, our findings suggest 

that gene expression levels could be impacted by these variants. 

Co-segregation analysis is recommended by the American College of Medical Genetics 

and Genomics (ACMG) for variant classification62. Among patients with likely 
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pathogenic, highly penetrant mutations in our cohort, some variants had LR values 

consistent with causality, whereas others provided little evidence to support co-

segregation among family members (Table 4.6 and Supplementary Table 39). An 

important caveat however was that use of BRCA2 penetrance values in non-BRCA genes 

may have resulted in underestimates of LR values. 

Co-segregation analysis was also performed on patients with moderate priority variants 

(i.e. variants affecting binding sites) and patients with no flagged or prioritized variants 

(N=25 and (Figure 4.7). The proportion of LR values supporting neutrality and those 

supporting causation were comparable across all three groups of patients (Figure 4.7). 

This suggests co-segregation analysis is only useful in the context of other supporting 

results for assessing pathogenicity (eg. likelihood of being pathogenic or benign). 

A small number of patients with a known pathogenic variant carried other prioritized 

variants. These were likely benign or possibly, phenotypic modifiers. For example, 

patient 8-5D.9-5D possessed 5 prioritized variants (1 missense, 1 SRFBS, 1 TFBS, and 2 

RBBSs) in addition to a BRCA1 nonsense mutation (c.5503C>T). While these variants 

may not directly contribute to causing HBOC, they may act as a risk modifier and alter 

expression levels5. 

Similarly, genes lacking association with HBOC can be used as a metric for determining 

a false-positive rate of variant prioritization. In this study, we prioritized 21 ATP8B1 

variants among 37 of our HBOC patients (Supplementary Table 38) despite it having 

not been previously associated with any type of cancer. A variant with a deleterious 

effect on ATP8B1 may lead to ATP8B1-related diseases, such as progressive familial 

intrahepatic cholestasis24, but should not increase the chances of developing BC. Thus, 

while our framework may be effective at prioritizing variants, only genes with previous 

association to a disease should be included in analyses similar to the present study to 

minimize falsely prioritized variants. 

Additional workup of prioritized non-coding and non-BRCA variants is particularly 

important, because with few exceptions63, the pathogenicity of many of the genes and  
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Figure 4.7. Computed Likelihood Ratios for Patients with Variants of Disparate 

Priority 

Co-segregation analysis was performed using available pedigree information for patients 

with high priority variants (likely pathogenic), moderate priority variants, and individuals 

with no flagged or prioritized variants. The calculated likelihood ratios were graphed 

logarithmically. The distribution of values supporting neutrality (LR ≤ 1) and those 

supporting causation (LR > 1) is similar between the three patient groups. 
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variants has not been firmly established. Furthermore, mutations in several of these genes 

confer risk to other types of cancer, which alters the management of these patients64. The 

next step towards understanding the role these prioritized variants play in HBOC is to test 

family members of the proband and to carry out functional analysis. If this is not 

possible, then their effects on gene expression could be evaluated using assays for RNA 

stability and RNA localization. Protein function could be evaluated by binding site 

assays, protein activity, and quantitative PCR. 

A significant challenge associated with VUS analysis, particularly in the case of many of 

these recent HBOC gene candidates, is the under-reporting of variants and thus positive 

findings tend to be over-represented in the literature65. Hollestelle et al., (2010) argue that 

a more stringent statistical standard must be applied (i.e. P-values of 0.01 should be used 

as opposed to 0.05) to under-reported variants (namely in moderate-risk alleles), because 

of failure to replicate pathogenic variants6, which we have also found66. In the same way 

that we use IT-based analysis to justify prioritizing variants for further investigation, 

variants that are disregarded as lower priority (and that are likely not disease-causing) 

have been subjected to the same thresholds and criteria. Integrating this set of labeled 

prioritized and flagged, often rare variants, from this cohort of BRCA-negative HBOC 

patients, to findings from exome or gene panel studies of HBOC families should 

accelerate the classification of some VUS. 

Reducing the full set of variants in a patient to a prioritized list is one approach for 

targeting clinically-relevant information. The ACMG recommends that known or likely 

pathogenic variants should be reported in 10 of the genes sequenced in this study 

(BRCA1, BRCA2, MLH1, MSH2, MSH6, MUTYH, PMS2, PTEN, STK11, and TP5367). 

However, the guidelines do not currently address interpretation of non-coding variation. 

Patients could be informed of prioritized VUS, which may increase patient accrual and 

participation68. However, it will be critical to explain both the implications and 

significance of prioritization and the limitations, namely counselling patients to avoid 

clinical decisions based on this information69. 



201 

 

 

4.5 References 
1. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary 

CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin 

KA (eds). SEER Cancer Statistics Review, 1975-2011, National Cancer Institute. 

Bethesda, MD, http://seer.cancer.gov/csr/1975_2011/, based on November 2013 

SEER data submission, posted to the SEER web site, April 2014. 

2. Stratton, J. F., Pharoah, P., Smith, S. K., Easton, D. & Ponder, B. A. A systematic 

review and meta-analysis of family history and risk of ovarian cancer. Br. J. Obstet. 

Gynaecol. 105, 493–499 (1998). 

3. Walsh, T. et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and 

peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl. Acad. 

Sci. U. S. A. 108, 18032–18037 (2011). 

4. Ford, D. et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and 

BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. 

Am. J. Hum. Genet. 62, 676–689 (1998). 

5. Antoniou, A. C. & Easton, D. F. Models of genetic susceptibility to breast cancer. 

Oncogene 25, 5898–5905 (2006). 

6. Hollestelle, A., Wasielewski, M., Martens, J. W. & Schutte, M. Discovering 

moderate-risk breast cancer susceptibility genes. Curr. Opin. Genet. Dev. 20, 268–

276 (2010). 

7. Cassa, C. A. et al. Disclosing pathogenic genetic variants to research participants: 

Quantifying an emerging ethical responsibility. Genome Res. 22, 421–428 (2012). 

8. Duzkale, H. et al. A systematic approach to assessing the clinical significance of 

genetic variants. Clin. Genet. 84, 453–463 (2013). 

9. Kircher, M. et al. A general framework for estimating the relative pathogenicity of 

human genetic variants. Nat. Genet. 46, 310–315 (2014). 

10. Minion, L. E. et al. Hereditary predisposition to ovarian cancer, looking beyond 

BRCA1/BRCA2. Gynecol. Oncol. 137, 86–92 (2015). 

11. Apostolou, P. & Fostira, F. Hereditary Breast Cancer: The Era of New 

Susceptibility Genes. BioMed Res. Int. 2013, e747318 (2013). 



202 

 

 

12. Al Bakir, M. & Gabra, H. The molecular genetics of hereditary and sporadic ovarian 

cancer: implications for the future. Br. Med. Bull. 112, 57–69 (2014). 

13. Antoniou, A. et al. Average risks of breast and ovarian cancer associated with 

BRCA1 or BRCA2 mutations detected in case Series unselected for family history: 

a combined analysis of 22 studies. Am. J. Hum. Genet. 72, 1117–1130 (2003). 

14. Maxwell, K. N. & Domchek, S. M. Familial Breast Cancer Risk. Curr. Breast 

Cancer Rep. 5, 170–182 (2013). 

15. Heikkinen, K., Karppinen, S.-M., Soini, Y., Mäkinen, M. & Winqvist, R. Mutation 

screening of Mre11 complex genes: indication of RAD50 involvement in breast and 

ovarian cancer susceptibility. J. Med. Genet. 40, e131 (2003). 

16. Seal, S. et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-

penetrance breast cancer susceptibility alleles. Nat. Genet. 38, 1239–1241 (2006). 

17. Janatova, M. et al. Mutation Analysis of the RAD51C and RAD51D Genes in High-

Risk Ovarian Cancer Patients and Families from the Czech Republic. PloS One 10, 

e0127711 (2015). 

18. Gnirke, A. et al. Solution Hybrid Selection with Ultra-long Oligonucleotides for 

Massively Parallel Targeted Sequencing. Nat. Biotechnol. 27, 182–189 (2009). 

19. DePristo, M. A. et al. A framework for variation discovery and genotyping using 

next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011). 

20. Mucaki, E. J., Shirley, B. C. & Rogan, P. K. Prediction of Mutant mRNA Splice 

Isoforms by Information Theory-Based Exon Definition. Hum. Mutat. 34, 557–565 

(2013). 

21. Halvorsen, M., Martin, J. S., Broadaway, S. & Laederach, A. Disease-associated 

mutations that alter the RNA structural ensemble. PLoS Genet. 6, e1001074 (2010). 

22. Ligtenberg, M. J. L. et al. Heritable somatic methylation and inactivation of MSH2 

in families with Lynch syndrome due to deletion of the 3’ exons of TACSTD1. Nat. 

Genet. 41, 112–117 (2009). 

23. Jones, S. et al. Biallelic germline mutations in MYH predispose to multiple 

colorectal adenoma and somatic G:C-->T:A mutations. Hum. Mol. Genet. 11, 2961–

2967 (2002). 



203 

 

 

24. Gonzales, E., Spraul, A. & Jacquemin, E. Clinical utility gene card for: progressive 

familial intrahepatic cholestasis type 1. Eur. J. Hum. Genet. EJHG 22, (2014). 

25. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast 

tumours. Nature 490, 61–70 (2012). 

26. Mohammadi, L. et al. A simple method for co-segregation analysis to evaluate the 

pathogenicity of unclassified variants; BRCA1 and BRCA2 as an example. BMC 

Cancer 9, 211 (2009). 

27. Stankovic, T. et al. ATM mutations and phenotypes in ataxia-telangiectasia families 

in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, 

and breast cancer. Am. J. Hum. Genet. 62, 334–345 (1998). 

28. Reiman, A. et al. Lymphoid tumours and breast cancer in ataxia telangiectasia; 

substantial protective effect of residual ATM kinase activity against childhood 

tumours. Br. J. Cancer 105, 586–591 (2011). 

29. Tournier, I. et al. A large fraction of unclassified variants of the mismatch repair 

genes MLH1 and MSH2 is associated with splicing defects. Hum. Mutat. 29, 1412–

1424 (2008). 

30. Théry, J. C. et al. Contribution of bioinformatics predictions and functional splicing 

assays to the interpretation of unclassified variants of the BRCA genes. Eur. J. 

Hum. Genet. EJHG 19, 1052–1058 (2011). 

31. Santos, C. et al. Pathogenicity Evaluation of BRCA1 and BRCA2 Unclassified 

Variants Identified in Portuguese Breast/Ovarian Cancer Families. J. Mol. Diagn. 

16, 324–334 (2014). 

32. Schrader, K. A. et al. Germline mutations in CDH1 are infrequent in women with 

early-onset or familial lobular breast cancers. J. Med. Genet. 48, 64–68 (2011). 

33. Drost, M., Koppejan, H. & de Wind, N. Inactivation of DNA mismatch repair by 

variants of uncertain significance in the PMS2 gene. Hum. Mutat. 34, 1477–1480 

(2013). 

34. Caminsky, N. G., Mucaki, E. J. & Rogan, P. K. Interpretation of mRNA splicing 

mutations in genetic disease: review of the literature and guidelines for information-

theoretical analysis. F1000Research 3, 282 (2015). 



204 

 

 

35. Santagata, S. et al. High levels of nuclear heat-shock factor 1 (HSF1) are associated 

with poor prognosis in breast cancer. Proc. Natl. Acad. Sci. U. S. A. 108, 18378–

18383 (2011). 

36. Zahnow, C. A. CCAAT/enhancer-binding protein beta: its role in breast cancer and 

associations with receptor tyrosine kinases. Expert Rev. Mol. Med. 11, e12 (2009). 

37. Biswas, D. K. et al. NF-kappa B activation in human breast cancer specimens and 

its role in cell proliferation and apoptosis. Proc. Natl. Acad. Sci. U. S. A. 101, 

10137–10142 (2004). 

38. Vidal, L. J.-P. et al. PAX5alpha enhances the epithelial behavior of human 

mammary carcinoma cells. Mol. Cancer Res. MCR 8, 444–456 (2010). 

39. Roy, R., Chun, J. & Powell, S. N. BRCA1 and BRCA2: different roles in a common 

pathway of genome protection. Nat. Rev. Cancer 12, 68–78 (2012). 

40. Reid, S. et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N 

and predispose to childhood cancer. Nat. Genet. 39, 162–164 (2007). 

41. Casadei, S. et al. Contribution of inherited mutations in the BRCA2-interacting 

protein PALB2 to familial breast cancer. Cancer Res. 71, 2222–2229 (2011). 

42. Borg, A. et al. Characterization of BRCA1 and BRCA2 deleterious mutations and 

variants of unknown clinical significance in unilateral and bilateral breast cancer: 

the WECARE study. Hum. Mutat. 31, E1200–40 (2010). 

43. Sodha, N., Mantoni, T. S., Tavtigian, S. V., Eeles, R. & Garrett, M. D. Rare Germ 

Line CHEK2 Variants Identified in Breast Cancer Families Encode Proteins That 

Show Impaired Activation. Cancer Res. 66, 8966–8970 (2006). 

44. Goldgar, D. E. et al. Rare variants in the ATM gene and risk of breast cancer. Breast 

Cancer Res. BCR 13, R73 (2011). 

45. Li, A. & Swift, M. Mutations at the ataxia-telangiectasia locus and clinical 

phenotypes of A-T patients. Am. J. Med. Genet. 92, 170–177 (2000). 

46. Magliozzi, M. et al. DHPLC screening of ATM gene in Italian patients affected by 

ataxia-telangiectasia: fourteen novel ATM mutations. Dis. Markers 22, 257–264 

(2006). 



205 

 

 

47. Dong, J. et al. A high proportion of mutations in the BRCA1 gene in German 

breast/ovarian cancer families with clustering of mutations in the 3’ third of the 

gene. Hum. Genet. 103, 154–161 (1998). 

48. Tischkowitz, M. et al. Rare germline mutations in PALB2 and breast cancer risk: a 

population-based study. Hum. Mutat. 33, 674–680 (2012). 

49. Mazoyer, S. et al. A polymorphic stop codon in BRCA2. Nat. Genet. 14, 253–254 

(1996). 

50. Chenevix-Trench, G. et al. Dominant negative ATM mutations in breast cancer 

families. J. Natl. Cancer Inst. 94, 205–215 (2002). 

51. Li, J. et al. Structural and Functional Versatility of the FHA Domain in DNA-

Damage Signaling by the Tumor Suppressor Kinase Chk2. Mol. Cell 9, 1045–1054 

(2002). 

52. Lee, S. B. et al. Destabilization of CHK2 by a missense mutation associated with 

Li-Fraumeni Syndrome. Cancer Res. 61, 8062–8067 (2001). 

53. Senter, L. et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 

mutations. Gastroenterology 135, 419–428 (2008). 

54. Tavtigian, S. V. et al. Rare, evolutionarily unlikely missense substitutions in ATM 

confer increased risk of breast cancer. Am. J. Hum. Genet. 85, 427–446 (2009). 

55. Heikkinen, K. et al. Association of common ATM polymorphism with bilateral 

breast cancer. Int. J. Cancer 116, 69–72 (2005). 

56. Ratajska, M. et al. Cancer predisposing BARD1 mutations in breast–ovarian cancer 

families. Breast Cancer Res. Treat. 131, 89–97 (2011). 

57. Gochhait, S. et al. Implication of BRCA2 -26G>A 5’ untranslated region 

polymorphism in susceptibility to sporadic breast cancer and its modulation by p53 

codon 72 Arg>Pro polymorphism. Breast Cancer Res. BCR 9, R71 (2007). 

58. Sanz, D. J. et al. A High Proportion of DNA Variants of BRCA1 and BRCA2 Is 

Associated with Aberrant Splicing in Breast/Ovarian Cancer Patients. Clin. Cancer 

Res. 16, 1957–1967 (2010). 

59. Chong, H. K. et al. The validation and clinical implementation of BRCAplus: a 

comprehensive high-risk breast cancer diagnostic assay. PloS One 9, e97408 (2014). 



206 

 

 

60. Mucaki, E. J., Ainsworth, P. & Rogan, P. K. Comprehensive prediction of mRNA 

splicing effects of BRCA1 and BRCA2 variants. Hum. Mutat. 32, 735–742 (2011). 

61. Lubinski, J. et al. Cancer variation associated with the position of the mutation in 

the BRCA2 gene. Fam. Cancer 3, 1–10 (2004). 

62. Richards, S. et al. Standards and guidelines for the interpretation of sequence 

variants: a joint consensus recommendation of the American College of Medical 

Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 

Off. J. Am. Coll. Med. Genet. 17, 405–424 (2015). 

63. Easton, D. F. et al. Gene-panel sequencing and the prediction of breast-cancer risk. 

N. Engl. J. Med. 372, 2243–2257 (2015). 

64. Knappskog, S. & Lønning, P. E. P53 and its molecular basis to chemoresistance in 

breast cancer. Expert Opin. Ther. Targets 16 Suppl 1, S23–30 (2012). 

65. Kraft, P. Curses--winner’s and otherwise--in genetic epidemiology. Epidemiol. 

Camb. Mass 19, 649–651; discussion 657–658 (2008). 

66. Viner, C., Dorman, S. N., Shirley, B. C. & Rogan, P. K. Validation of predicted 

mRNA splicing mutations using high-throughput transcriptome data. 

F1000Research 3, 8 (2014). 

67. Green, R. C. et al. ACMG Recommendations for Reporting of Incidental Findings 

in Clinical Exome and Genome Sequencing. Genet. Med. Off. J. Am. Coll. Med. 

Genet. 15, 565–574 (2013). 

68. Murphy, J. et al. Public expectations for return of results from large-cohort genetic 

research. Am. J. Bioeth. AJOB 8, 36–43 (2008). 

69. Vos, J. et al. Opening the psychological black box in genetic counseling. The 

psychological impact of DNA testing is predicted by the counselees’ perception, the 

medical impact by the pathogenic or uninformative BRCA1/2-result. 

Psychooncology. 21, 29–42 (2012). 

 

 



207 

 

 

Chapter 5  

5 General Discussion 

The objective of this thesis was to show that IT-based analysis could be used uniformly 

for the interpretation and prioritization of variants affecting DNA and RNA binding sites. 

In Chapter 2, we sought to compile and summarize the complete body of literature 

surrounding IT-based splicing mutation analysis, covering over 300 peer-reviewed 

articles and nearly 2,000 individual variants. This review allowed us to illustrate the 

distribution of deleterious variants involving both natural and cryptic splicing. It also 

inspired the design of an open-access tool, called Splicing Mutation Calculator, which 

computes the information change for natural site variants and provides a list of published 

articles that have applied IT analysis to variants at the same position and nucleotide 

change as the user’s input. The purpose of this review was not only to gain insight on the 

landscape of splicing variants and disease, but also to establish the accuracy of IT 

analysis for the interpretation of such variants. We demonstrate that 87.9% (N=867) of 

splicing variants that have been experimentally validated were accurately interpreted by 

information analysis. This gave us the grounds to seek expansion of this approach to 

other types of protein/nucleic acid binding events and have confidence in its ability to 

accurately interpret and quantify the consequence of sequence variants. 

In Chapter 3, we generated information models for TFBS and RBBS, and aimed to apply 

IT-based analysis uniformly to sequence variants affecting splicing, TF and RBP binding, 

so that the consequence of all sequence changes would be evaluated using the same unit 

of measurement: bits of information. We applied our framework to an anonymous group 

of BRCA-negative HBOC patients. In addition, we designed custom probes targeting 7 

HBOC genes (complete coding, non-coding, and 10 kb-surrounding regions) that were 

successfully used in solution hybridization to capture our sequences of interest prior to 

NGS. Our analysis, which included a comprehensive assessment of indel, nonsense, and 

missense variants, resulted in 70.6% (N=102) of patients having at least one prioritized 

variant. 
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In Chapter 4, we took our approach one step further by expanding our gene panel to 20 

HBOC susceptibility genes, selected based on a consensus by the ENIGMA Consortium, 

and recruiting BRCA-negative HBOC patients to consensually participate in the study. In 

this portion of the project we optimized capture pull-down through automation and 

supplemented our analysis with patient pedigree information, used for co-segregation 

analysis. By increasing the number of genes investigated, we greatly improved the rate of 

variant prioritization, such that 86.1% (N=287) of patients had at least one prioritized 

variant. 

5.1 Patient Recruitment and Participation 

Between January 1st 2014 and March 25th 2015, 555 patients were invited through the 

Cancer Genetics Clinic at the LHSC to in this study (REB Protocol 103746). Following 

invitation, 21 patients were later found to be deceased, 48 declined, 4 were later deemed 

ineligible because their family history was not accurate, and 48 letters were returned 

(because the patient no longer resided at the mailing address used). 

In total 292 (53%) provided verbal and written consent to participate. Of these, 10 were 

previously sequenced in the anonymous group of patients provided by the MGL for runs 

UWO2-7. To date, 287 patients have been sequenced by our lab, and the remainder will 

be completed at a later date, by another member of our lab. 

Through personal communication with the patients, it was clear that those participating 

were highly motivated and interested in the study, predominantly out of concern for 

relatives (mainly daughters, nieces, etc.). This was demonstrated by many patients calling 

just after the six-month period following enrolment, wondering if their results were 

ready. One drawback in the design of this study was that patients were told that they 

could expect results within 6-8 months of enrolment. Due to delays involving sample 

preparation and sequencing, as well as improvements to binding models and the variant 

interpretation framework, patients had to wait approximately 18 months before receiving 

results. In general, patients were understanding, however disappointed that they would 

need to wait longer. 
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5.2 Variant Prioritization in the Context of ACMG 
Guidelines 

Currently, the variant analysis approach presented in this thesis integrates 4 types of data 

(population, computational/predictive, other database, and other data) from the ACMG 

Framework (Table 5.1), and 5-6 if provided with additional DNA samples from other 

family members and/or given the opportunity to perform functional analysis. When 

considering the IT-analysis component in isolation, variants affecting protein-binding 

sites (SRFBSs, TFBSs, RBBSs) can only be considered to “support” pathogenicity, based 

on the classification criteria presented in Table 1.5 of Chapter 1. This is because the 

definition of moderate-to-very strong support is limited to missense and truncating 

variants. According to ACMG guidelines, at least one “moderate” line of evidence must 

be met (in addition to 4 “supporting” criteria) to consider a variant as likely pathogenic 

and therefore unless other data is available on a given variant, IT-based analysis on its 

own will result in the variant remaining of uncertain significance (see Table 1.7 of 

Chapter 1). 

That being said, by developing a framework for variant prioritization, our objective was 

to close the gap that currently exists between variant identification and classification, as 

opposed to allowing direct classification as likely pathogenic/pathogenic. We do this by 

creating a prioritized “short list” of variants that should undergo functional (or so-

segregation) analysis. Functional analysis demonstrating a deleterious effect (along with 

two additional supporting lines of evidence) is sufficient to classify a variant as likely 

pathogenic. However, with the number of VUS identified in large-scale studies (see 

Chapter 3) that additional workload associated with functional validation of variants is 

unacceptable for any setting, whether clinical or research. Our approach is meant to 

effectively streamline the functional validation process (as demonstrated by an average 

13.4-fold reduction in the number of flagged variants per patient) and future work 

demonstrating the accuracy of IT-based variant analysis is required. Should this be the 

case, we anticipate that our approach would encourage functional validation of VUS by 

removing the risk of it being a shot in the dark. 
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Table 5.1. Evidence Framework from the ACGM. 

 

This chart organizes each of the criteria by the type of evidence as well as the strength of 

the criteria for a benign (left side) or pathogenic (right side) assertion. BS, benign strong; 

BP, benign supporting; FH, family history; LOF, loss of function; MAF, minor allele 

frequency; path., pathogenic; PM, pathogenic moderate; PP, pathogenic supporting; PS, 

pathogenic strong; PVS, pathogenic very strong. 5 

                                                

5Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint 
consensus recommendation of the American College of Medical Genetics and Genomics and the 
Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). Copy of license 
agreement for Table re-use is provided from Nature Publishing Group (see Appendix B). 
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5.3 Improving Variant Prioritization and Alternative 
Approaches 

As discussed in Chapter 4, others have presented the concept of variant prioritization. 

Each example varies either by the in silico tools or thresholds used and genic regions 

selected for analysis. With the approach described in this thesis, we consider our 

approach unique in that it the in silico analysis performed for protein binding sites is 

equivalent for all factors. More specifically, different factors can be compared to one 

another because the impact of a variant is assessed using the same unit of measurement, 

new factors can be included, and models can be continuously updated, and improves as 

new data becomes available. Using changes in information is also more reliable than 

relying on conservation data, as it computes changes related to entropy, a key concept of 

classical thermodynamics. 

However, our approach by no means “solves” the issue of VUS, nor is it infallible at 

filtering out all benign variants. At the moment, variant identification using NGS 

technologies is leaps and bounds ahead of variant interpretation capabilities. However, it 

is simply a question of time before reliable and affordable high-throughput technology 

becomes available for the assessment of variants on sequence binding and other 

important cellular processes. Until this time, other approaches are necessary to bridge this 

gap, substantiating the development of our variant prioritization schema. 

Our framework currently allows for the assessment of a broad range of consequences, 

from protein truncation to binding sites associated with splicing, transcription, and 

transcript stability. Expansion of our approach would allow for increased variant analysis 

robustness, the prioritization of additional variants, and more confident filtering of non-

prioritized variants. Analysis could be extended to include microRNA regulation, histone 

binding, and promoter methylation. Information from additional databases would also 

contribute to a more thorough assessment of variants, especially missense and 

synonymous coding changes. For example, genome-wide association studies employ 

next-generation sequencing of large disease and control cohorts to identify variants with a 
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strong likelihood of being associated with disease. While these variants are not defined as 

disease-causing, an association would lend additional support for prioritization over 

rejection. Online Medelian Inheritance in Man is another source of disease-associated 

variants that could be used to improve the assessment of variants within our framework. 

An alternative to variant prioritization would be to emphasize the variants that have been 

filtered out and are not expected to have a deleterious impact on gene expression and 

disease. As mentioned in Chapter 3, studies almost exclusively highlight pathogenic 

variants and neglect to report or stress variants not expected to contribute to disease. 

Should this practice change, and efforts be made to catalog variants with evidence of 

being benign, this information could be a valuable addition to the step in variant 

prioritization where variants are subjected to a technical and population filter. In the 

interim, an additional step could be included in variant prioritization, whereby variants 

are subjected to a secondary round of prioritization. This second round would take into 

consideration variants that a) co-occur with known pathogenic variants (and can be 

assumed to be benign or disease-modifiers based on the idea that HBOC is a monogenic, 

autosomal dominant disease) or b) occur in a given percentage of patients in the study 

cohort. If this process eventually became automated, the user could potentially pre-set the 

various thresholds for the population frequency filters, and information changes filters for 

that matter. 

An alternate approach to variant prioritization could be the integration of high-throughput 

functional assays. The interpretation of a variant’s consequence would be key to 

streamlining this process, because while high throughput assays allow for an exponential 

decrease in experimentation time, these assays are expensive and a systematic assessment 

of every variant identified through NGS remains unfeasible. This functional analysis 

could also follow a prioritization schema, as there are many options available in terms of 

the type of consequence that can be probed. In the cases where expression levels are 

predicted to be altered due to a significant ΔRi of a binding site, it would be sensible to 

first assess changes in binding affinity in vitro1,2. 
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Should the results indicate a significant change in binding affinity, the next step could be 

more specific to the variant in question. For example, if the gene is involved in DNA 

damage repair, specific assays exist that allow for the quantification of DNA repair 

efficiency3. The advantage with all of these assays is that patient RNA is not required, as 

the variant oligos or proteins can be synthesized and/or expressed in vitro. 

That being said, should fresh DNA and RNA samples be collected upon patient 

enrollment, there is the possibility of employing a less labor-intensive approach to high-

throughput binding studies, a technique that our lab is currently developing (P.K. Rogan, 

personal communication). Briefly, RNA oligos for both the wild-type and variant 

sequences are synthesized, biotinylated, and incubated with cell or protein extracts, 

followed by streptavidin pulldown. Seleted reaction monitoring4, which uses tandem 

mass spectroscopy5 to quantitatively measure the amount of a specific protein within a 

sample, can then be used to differentiate between RNA-protein interactions of binding 

sites with different strengths (i.e. before and after mutation). 

Another option, also requiring patient DNA and RNA, involves a modified version of a 

software program developed by our lab called Veridical6 (an in silico method for the 

automatic validation of DNA sequencing variants that alter mRNA splicing). This 

program would allow for the determination of allele specific effects on transcript levels. 

Currently, Veridical performs a statistically valid comparison of normalized read counts 

between RNA-seq data from the patient and a sample lacking the sequence variant being 

evaluated. The modified program would count reads and compute the probability that the 

levels of expression of a mutant allele would differ from normal, regardless of whether a 

particular splice form is altered, providing direct molecular phenotypic evidence 

supporting or refuting an IT-based prediction. 

5.4 Future Directions 

5.4.1 Controls 

Throughout the course of this project, we had both a positive and negative control for the 

purpose of our IT analysis. As a positive control, we sequenced and assessed an HBOC 
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patient with a known deleterious BRCA variant. We were also provided with a list of 

SNVs identified by the MGL using Sanger sequencing. We used this information to test 

the accuracy of our capture, sequencing, and variant calling methods. Moving forward, 

using a positive control for our variant interpretation framework would be desirable, 

however challenging, as it would require sequencing information on patients with 

variants known to disrupt protein/nucleic acid binding sites. 

With regard to the positive control, we included in our gene panel a gene (ATP8B1) that 

is not known to be associated with BC or OC (neither sporadic, nor hereditary) in any 

way. Using the assumption that any variants prioritized in ATP8B1 (aside from the 

previously-identified pathogenic variant) were likely not disease-causing, we wanted to 

have an idea of the “background” rate of false-positive prioritization. While not truly 

false-positive (because transcript levels may still result from a variant), these variants are 

not expected to cause HBOC. In the future, it would be desirable to perform this analysis 

on a group of normal patients that lack BC/OC family history. 

5.4.2 Contribution to HBOC Literature 

While it is important to develop methods for more accurate variant detection and 

interpretation, this information is exponentially more valuable when combined with other 

groups’ findings. A significant challenge associated with VUS analysis, particularly in 

the case of many of these recent HBOC gene candidates, is the under-reporting of 

variants and thus positive findings are currently over-represented in the literature7. As a 

member of the ENIGMA consortium, which is a designated international organization for 

the curation of HBOC mutations, our lab has committed to depositing the results of this 

project to the database. It is important to note that the ENIGMA database contains 

protections to ensure the genetic privacy of the study participants is maintained. 

5.4.3 Patient Counseling 

An advantage of this study is that a large proportion of the samples used came from 

patients who had provided informed consent to participate. These patients will be re-

contacted and provided with the results of our analysis. At this point, for patients with 
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prioritized variants, it would be desirable to invite other family members to undergo 

genetic testing. Furthermore, an additional blood draw would be required of the patient, 

specifically for isolation of mRNA for the purpose of conducting functional analysis and 

validation of the IT prediction. 

Depending on the gene harboring the pathogenic variant (especially if this gene is 

associated with a high risk of other types of cancer), the patient (and potentially their 

affected family members) should be provided with gene-specific counseling and 

preventative measures such as early screening by MRI8 or CT scan in families with 

increased risk of pancreatic cancer9, and risk-reducing surgery10. 

In both cases of clearly pathogenic and prioritized uncertain variants, additional genotype 

information on family members would contribute to more accurate risk estimates through 

co-segregation analysis. Finally, re-contacting patients would also allow for the 

cataloguing of other information (eg. tumor pathology) that when combined with 

genotype and functional information, may lead to a more in-depth understanding of the 

genotype-phenotype relationship of HBOC. 
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Appendix E: Supplementary Methods (Chapter 3) 

Design of Tiled Hybridization Capture Reagent for BRCA Gene Panel 

Probe sequences within single copy intervals1 in ATM, BRCA1, BRCA2, CDH1, CHEK2, 

PALB2, and TP53 were selected using PICKY 2.2 software2; settings set to 65ºC Tm, 30-

70% GC content, 5 probes per sequence, 20 nt maximum overlap, all other settings 

default. PICKY will only report a maximum of 5 oligos per sequence analyzed. 

Therefore, gene sequences were split into 100 nt segments, overlapping by 50 nt. Probes 

were designed for both the forward and reverse strand of each gene. These overlapping 

and opposite-stranded sequences were run through PICKY separately; as the program 

would remove identical probes selected from two sequence segments (including probes 

which are reverse compliments of each other). This method helps result in significant 

probe overlap, which leads to a more efficient capture. If regions were lacking probes due 

to high/low %GC, the process was repeated with expanded GC settings (20% minimum 

or 80% maximum) and probes over those regions were added to the initial probe file. A 

Perl script entitled “Amalgamated-Post-Picky-Program” was written to perform 4 tasks: 

1) MPI-BLAT (through Shared Hierarchical Academic Research Computing Network or 

SHARCNET3) each PICKY-selected oligo to the transcriptome and eliminate any which 

match elsewhere (< 1 hour on 16 nodes), 2) Eliminate redundant probes (i.e. removal of a 

smaller probe overlapped by a larger probe on the same strand), 3) Reduce highly 

overlapped regions by eliminating one of two near identical probes that differ by a 1 nt 

shift, and 4) Generate a BED genome browser track of the accepted oligos for visual 

evaluation of the coverage of the generated tiling array oligos. 

Generating, Cleaving, and Purifying Tiled BRCA Microarray Oligos 

Primer binding sites were added to each end of the designed capture oligos (5’ 

ATCGCACCAGCGTGTN36-70CACTGCGGCTCCTCA). The selected sequences were 

then synthesized onto two cleavable 12K microarray chips using a Combimatrix B3 

CustomArray Synthesizer (CustomArray, Inc., Bothell, WA) in our laboratory, requiring 

approximately 48 hours. Forward and reverse strand oligos were placed on separate chips 
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to avoid cross-hybridization between complementary strands, which could reduce capture 

efficiency. 

The cleavable microarrays were treated with concentrated (14.5N) ammonium hydroxide 

at 65ºC for 4 hours. This served to break the sulfonyl-amidite bond linking the 

oligonucleotide to the microarray. The base was cooled, transferred into a 

microcentrifuge tube, and placed into a speed-vac for 1 hour at 65ºC. The resulting pellet 

was resuspended into 100uL of 1x TE buffer, and was then purified using a MicroSPIN 

DNA column (#11814419001, Roche, Indianapolis, IN). Purified oligos were then 

amplified by conventional PCR (25 cycles) using Kapa HiFi DNA Polymerase 

(#KK2602, KapaBiosystems, Wilmington, MA) (forward 5-

CTGGGAATCGCACCAGCGTGT-3; reverse 5-CGTGGATGAGGAGCCGCAGTG-3). 

The PCR product was purified using a Qiagen MinElute PCR Purification Kit (#28006, 

Qiagen, Valencia, CA) and then amplified again (25 additional cycles) using a forward 

primer with an SP6 promoter-binding site (5-

CATACGATTTAGGTGACACTATAGAAATCGCACCAGCGTGT-3). Biotin-labelled 

RNA bait was generated from this product using a MAXIscript SP6 in vitro transcription 

kit (#AM1310, Ambion, Carlsbad, CA) with a UTP to biotin-16-UTP (#11388908910, 

Roche) ratio of 4 to 1. 

Sample Preparation, Library Preparation, and Oligo Capture for Sequencing 

Genomic DNA (gDNA) was previously extracted from whole blood using the MagNA 

Pure Compact Nucleic Acid Isolation kit I (#03730964001, Roche) and stored in 1x low 

TE buffer. Samples with inadequate available gDNA (< 3 µg) were whole genome 

amplified using the Illustra GenomiPhi V2 DNA Amplification Kit (#25-6600-30, GE 

Healthcare, Little Chalfont, UK). The gDNA was diluted to 100 ng/µL in a volume of 51 

µL for S220 Focused-ultrasonicator (Covaris, Woburn, USA) shearing (150-300 nt 

fragments generated with the following settings: Time 120 sec, Duty cycle 10%, Intensity 

5, and Cycles per burst 200). 
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The sheared samples were prepared using KAPA Biosystems Standard (KK8200, Kapa 

Biosystems) and High Throughput (KK8234, Kapa Biosystems) Library Preparation kits, 

following the manufacturer’s protocol. Standard Illumina paired-end and multiplex 

adapter oligos and primers (sequences provided by Illumina) were purchased from IDT 

(Coralville, IA). Adapters were hybridized together by mixing two oligos to a final 

concentration of 100 µM each, heating to 95ºC for 5 minutes on a thermocycler 

(Mastercycler pro, Eppendorf) and gradually cooling 0.1ºC/sec to 4ºC. Samples being 

treated were initially purified using Qiagen MinElute PCR purification kits and Sigma 

GenElute gel purification kits (#NA1111, Sigma, St. Louis, MO). Sample loss was 

greatly decreased by switching to DNA-binding Agencourt Ampure XP beads (#A63880, 

Beckman Coulter, Brea, CA), using the protocol described in Fisher et al. (2011), which 

allows the re-use of beads by the rebinding of DNA using a 20% polyethylene glycol 

(PEG) in a 2.5M NaCl solution and avoids gel extraction and column purification steps4. 

The switch to Ampure beads allowed for the automation of sample preparation using a 

Beckman Coulter BioMek FX workstation, increasing sample throughput to 32 samples 

processed simultaneously (end-repair, A-tailing, and adaptor ligation steps were 

performed on the BioMek FX along with all wash steps; PCR steps were performed 

separately in a thermocycler). The amplified library samples were then reduced to a 

volume of 6.8 µL using a SpeedVac concentrator prior to genomic capture. 

Genes of interest were enriched with Tiled BRCA RNA bait, following a modified 

version of the hybridization selection protocol from Gnirke et al. (2009)5. Modifications 

which increased coverage include: a) an increase in sample quantity from 0.5 µg to half 

of the library prepared per capture (1 to 2 µg depending on sample prep yield), b) an 

RNA bait increase from 0.5 to 1.5 µg and, c) an increase in the quantity of M-280 

streptavidin Dynabeads (#1205D, Invitrogen, Carlsbad, CA) from 50 µL to 75 µL to 

account for this increase in RNA bait concentration. Genomic sequences in each library 

sample were captured in two separate solutions, one for each strand of RNA bait (which 

were pooled at the end of the procedure). The capture was then incubated at 65ºC for 66-

72 hours, in a thermocycler with the heated lid set to 80°C (to help reduce volume loss 

due to evaporation). Forward and reverse strand capture reactions for the same sample 
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were then purified with streptavidin beads and mixed on a nutator (Adams Nutator, 

#1105, Clay Adams, Franklin Lakes, NJ) for 30 minutes at room temperature. Use of 

freshly transcribed RNA bait also greatly improved coverage values. These 

improvements enabled multiplexed sequencing (4 samples per lane), where the index was 

added during the post-hybridization amplification using standard Illumina Multiplex PCR 

Primers (#2, 4, 6, 7; chosen for index dissimilarity). After post-hybridization 

amplification, remaining primers were removed by Ampure bead purification. DNA 

samples were then quantified using qPCR following the protocol outlined by KAPA 

Library Quantification Kit for Illumina Platform (#KK4824, KAPA Biosystems). 

Samples were then pooled (if multiplexing), and treated to standard Illumina paired-end 

sequencing on a Genome Analyzer IIx. Read length was increased from 36x36 

(sequencing batch 1 and 2) to 50x50 (batch 3) and finally to 70x7x70 (batch 4, 5 and 6) 

to maximize overall coverage. 

Position Weight Matrix Generator (PoWeMaGen) 

We have developed an information weight matrix generator designed to automatically 

create position weight matrices (PWMs). These PWMs are used to accurately predict and 

localize transcription factor binding sites (TFBSs) from genome-scale epigenetic data 

(i.e. ChIP-seq). The PoWeMaGen software engine, in its current implementation, is set to 

run exclusively on SHARCNET. The script, however, can easily be converted to run on 

different Linux-based platforms. The engine, outlined in Figure SM1 below, has three 

primary sections: Preliminary file processing, ChIP-seq data filtering, and the execution 

of the Bipad. 

The PoMaWeGen model analyzer program acts as an intermediary in the model 

generation pipeline, beginning by processing of input, output, and run-time-dependent 

files. This input includes the epigenetic data, and if selected, the DNAse hypersensitivity 

data set (track: EncodeRegDnaseClusteredV3). The epigenetic data was filtered by 

intersection using intersectBed, from the BEDtools package6. In this study, available 

ChIP-seq and CLIP-seq (Cross-Linking ImmunoPrecipitation) data was intersected with 

DNAse I hypersensitivity tracks for only TFs. 
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Model building is based on Bipad7, an algorithm we previously published to minimize 

entropy across a set of unaligned sites. Bipad is run with biologically-inspired 

parameters, i.e. whether the site is known to be homogenous or bipartite, if bipartite, 

allowing for defined range of gap lengths separating half sites. Each sequence may, but is 

not required, to contain one binding site. This program employs the sq framework to run 

jobs in parallel. The parts of this program that run in parallel perform the vast majority of 

computation, and are perfectly parallel. This program spawns a job for each model that it 

generates. Only one job is spawned if UII is not employed (i.e. if confined to a specific 

motif length). Each spawned job runs a single instance of Bipad, which comprises the 

vast majority of the computational load for this step. 

Epigenetic input is commonly provided as interval data, but Bipad requires input as 

sequence. PoWeMaGen converts the interval data to sequence using the reference 

genome (Encyclopedia of DNA Elements [ENCODE]8) and the BEDtools program 

fastaFromBed. Then a custom java program called Fasta2Bipad.java converts this fasta 

file to the format required by Bipad. Finally, the engine executes Bipad, with user-

selected arguments which specify, among other things, whether the model is homogenous 

or bipartite, use ZOOPS (Zero or One Occurrence Per Sequence) or OOPS (One 

Occurrence Per Sequence), whether to consider one or both reading strands, estimated 

motif length, and the number of Monte Carlo cycles required. 

In instances where the length of the site has not been well defined in published data, the 

Unit Information Increment Index heuristic, which maximizes the information density 

across the binding site as a function of binding site length9 was be used to compute the 

length. This algorithm chooses a range of motif lengths, considers DNA helical 

periodicity of 10.6 base pairs, and varies these lengths based upon the result of UII 

computations. 

Selecting TFs for Model Building 

TF ChIP-seq data (track: wgEncodeRegTfbsClusteredV2) and DNaseI Hypersensitivity 

Clusters in 125 cell types from ENCODE were downloaded and intersected using the 
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Galaxy Browser10–12, to select for DNA regions accessible to TFs for binding. We then 

extracted genomic intervals from 10 kb upstream of the transcriptional start site, up to the 

end of intron 1, for each of the 7 genes. We identified 146 TFs with evidence for binding 

to the promoters of the genes in our panel. 

Generating SNPfold Input 

A script was written to retrieve 100 nt of mRNA sequence up- and downstream of the 

variant of interest while altering the sequence based on any other variants found in the 

region during sequencing (phase was ignored). This was used as the input data for 

SNPfold. Only transcribed sequence was included (if variant was < 100 nt from start/end 

of transcription). For long-range effects, the variants were evaluated against the entire 

UTR they resided in (using the reference sequence; patient-specific variants were not 

included). 

Generation of RNA Binding Protein Models from RBPDB and CISBP-RNA 

PWMs for 156 RBPs were downloaded from the RBPDB and CISBP-RNA13–15. PWMs 

containing frequencies were converted into information weight matrices (N = 147). 

Binding sites for factors with low expression in normal breast tissues (N= 59) based on 

the GTEx database16 RPKM < 10 were removed. We also eliminated binding sites for 

factors with highly variable expression among the 57 available breast tissue samples 

(where median RPKM < 3 standard deviations; N=11). All UTR variants were then 

analyzed with models for the remaining RBPs (N=76). 

Models for the following factors were used to determine variant effect on RBP binding 

sites: A2BP1, ANKHD1, ANKRD17, BRUNOL4, BRUNOL5, BRUNOL6, 

BX511012.1, CIRBP, CSDA, DAZAP1, EIF4B, ELAVL1, FMR1, FUS, FXR1, FXR2, 

G3BP2, HNRNPA1, HNRNPA2B1, HNRNPA3, HNRNPC, HNRNPF, HNRNPH1, 

hnRNPK, HNRNPL, hnRNPLL, HNRNPR, HNRPDL, KHDRBS1, KHSRP, MATR3, 

MBNL1, NCL, NONO, NOVA2, PABPC1, PABPC4, PABPN1, PCBP1, PCBP2, 

PCBP4, PSPC1, PTBP1, PTBP2, PUM2, RALY, RBFOX2, RBM28, RBM42, RBM5, 

RBM6, RBM8A, RBMS1, RBMX, ROD1, SAMD4B, SART3, SF3B4, SFPQ, 
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SNRNP70, SNRPA, SNRPB2, SRSF1, SRSF10, SRSF2, SRSF4, SRSF6, SRSF7, 

SRSF9, SYNCRIP, TAF15, TARDBP, TIA1, U2AF1, U2AF2, ZCRB1, ZNF638. 

Models were not built for the following models because only blank files were provided 

by CISBP-RNA (N=9): ELAVL4, FUBP1, G3BP1, HNRNPAB, KHSRP, NOVA1, 

PUM1, PUM2, SRSF5, TRA2B, ZRANB2 (KHSRP and PUM2 models present in 

RBPDB, therefore not included in count). 

Models were not built for the following factors due to variable expression between the 57 

available breast tissue samples (where median RPKM < 3 standard deviations) (N=11): 

ACO1, MBNL2, PABPC1L, RBM3, RBM38, SRSF3, YBX1, YTHDC1, ZFP36, 

ZFP36L1, ZFP36L2. 

Models were not built for the following factors due to low or extremely variable 

expression in normal breast tissue (N=59): A1CF, CELF3, CNOT4, CPEB2, CPEB3, 

CPEB4, EIF2S1, ELAVL2, ELAVL3, ENOX1, ENOX2, ESRP1, ESRP2, HNRNPA1L2, 

HNRNPCL1, HNRNPH2, IGF2BP1, IGF2BP2, IGF2BP3, KHDRBS2, KHDRBS3, 

LIN28A, LIN28B, MBNL3, MEX3B, MEX3C, MEX3D, MSI1, MSI2, PABPC3, 

PABPC5, PABPN1L, PCBP3, PPRC1, QKI, RBFOX3, RBM24, RBM4, RBM41, 

RBM45, RBM46, RBM47, RBM4B, RBMS2, RBMS3, RBMXL1, RBMXL2, 

RBMXL3, RBMY1A1, RBMY1B, RBMY1D, RBMY1E, RBMY1F, RBMY1J, 

SAMD4A, SRSF12, STAR, YBX2, ZC3H10, ZFP36. 
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Figure SM1. Diagram of the PWM Generator 

UML Diagram of the distributed processing system. The modules shown call the Bipad 

and Shannon pipeline C++ engines to perform entropy minimization and genome 

scanning. Solid arrows indicate embedded capabilities called by the preceding software 

module; discontinuous arrows indicate separate programs with compatible input/outputs. 

Ancillary utilities are used for post-processing of output from main programs to compare 

different models and sort results from GenomeScan output. 
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Appendix F: Ethics Approval and Amendments for Patient Recruitment 
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Appendix G: Letter of Invitation for 7 Genes 
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Sequence analysis for HBC 
Consent Form Version 2, Sept 12, 2013  Initials  _______ 

Page 2 of 4 
 
update your personal and family history of cancer, explain the research study and facilitate your 
provision of  
informed consent, and arrange for a sample of your blood (15  ml or 3 teaspoons) to be drawn. You 
will have every opportunity to ask questions prior to signing this consent form. Should you require 
further information related to your personal and/or family cancer risks and available cancer screening, 
arrangements can be made for you to speak or meet with a Genetic Counsellor at a later time. It is 
estimated that it will take up to 30 minutes of your time to review your personal/family history of 
cancer and provide informed consent. It is estimated that it will take approximately 6 months for your 
research test results to be complete.  
 
At the conclusion of your genetic analysis, you will be contacted by telephone to review your test 
results. Only participants whose research test results reveal clinical importance (i.e. are believed to be 
responsible for your personal and family history of cancer) will be invited to return to the Genetics 
clinic for further genetic counselling and clinical validation testing. If you decide not to receive your 
research test results from this study, you will not be contacted again in regards to your personal 
involvement in this study. In the event that you are unavailable at the time when your research test 
results are complete, you will be asked to provide an additional contact name (next of kin) and 
telephone number so that the research team can ensure that your genetic research results are 
communicated.  
 
Your participation in this study is voluntary. If you are interested in participating in this study, please 
contact the Research Assistant at 519-685-8500 ext.74996, to schedule an appointment. If you are not 
interested in participating in this study, please complete the enclosed Response Card that indicates 
your wishes to not be involved, and return it and all of the enclosed items to us in the envelope 
provided. You may refuse to participate, refuse to answer any questions, or withdraw from this study at 
any time with no effect on your current or future care (i.e. choice of, or access to, cancer treatment or 
cancer screening). In addition, your participation in this study may be terminated at any time by the 
research team, with or without your consent. 
 
PRIVACY & CONFIDENTIALITY: 
Your personal contact information, date of birth, personal and/or family history of cancer, and genetic 
test results will be kept strictly confidential. All participants will be entered into a clinical research 
database that is located on the hospital network, and is therefore password-protected and behind the 
hospital firewall. Your signed consent form and any other hard copies of your personal information 
(i.e. pathology reports, family pedigree) will be kept in a locked filing cabinet in the Senior Genetic 
Counsellor, Ms. Karen Panabaker’s office. Your blood sample will not be used for commercial 
purposes. Your sample will be stored in specified storage facility in   the   investigator’s   laboratory.  
Laboratory safeguards to protect your privacy and confidentiality include removal of identifiers from 
the specimen samples and replacement with numeric codes.  
 
Any information generated by this study will not become part of your personal medical record, unless 
you provide consent to learn more about potentially important research findings. All study information 
will be available to the study research team only, and will not be released to any other party, except 
upon your expressed written consent. Representatives of the Western University Health Sciences 
Research Ethics Board may contact you or require access to your study-related records to monitor the 
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Sequence analysis for HBC 
Consent Form Version 2, Sept 12, 2013  Initials  _______ 

Page 4 of 4 
 

HEREDITARY CANCER GENE IDENTIFICATION 
CONSENT FORM 

 
I have read the letter of information, have had the nature of the study explained to me, and I agree to 
participate. All questions have been answered to my satisfaction. 
 
 
At the conclusion of my genetic analysis, please contact me at either of the following numbers: 
 
 Home number: __________________________________________ 
 
 Cell number:  ___________________________________________ 
 
 
If I am not available in the future when my research test results become available, please contact: 
 
 Full name: ______________________________________________ 
 
 Relationship to me: _______________________________________ 
 
 Telephone contact number:  (h) _______________________  (c) ___________________________ 
 
 
I have received a signed copy of this consent form for my own records. 
 
 
 
__________________________________________________________________________________ 
Subject’s  Signature      Printed name      Date 
 
 
__________________________________________________________________________________ 
Signature of     Printed name/Study Role     Date 
Person Obtaining Consent 
 
 
 

  

South Street Hospital - University Hospital - Victoria Hospital and Children's Hospital  
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Appendix H: Response Card 

Sequencing and functional analysis of genetic variants of unknown significance 
in women with inherited breast and/or ovarian cancer study. 

 
RESPONSE CARD 

 
 I am NOT interested in participating in the above mentioned study. 

 
 
 
_____________________________  ______________________________ 
Printed Name     Signature 
 
 
____________________ 
Date 
 
 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
 
 
Sequencing and functional analysis of genetic variants of unknown significance 

in women with inherited breast and/or ovarian cancer study. 
 

RESPONSE CARD 
 

 I am NOT interested in participating in the above mentioned study. 
 
 
 
_____________________________  ______________________________ 
Printed Name     Signature 
 
 
____________________ 
Date 
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Appendix I: Letter of Invitation for 23 Genes 
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Sequence analysis for HBC 
Consent Form Version 3, Mar 6, 2014  Initials  _______ 

Page 4 of 4 
 

HEREDITARY CANCER GENE IDENTIFICATION 
CONSENT FORM 

 
I have read the letter of information, have had the nature of the study explained to me, and I agree to 
participate. All questions have been answered to my satisfaction. 
 
 
At the conclusion of my genetic analysis, please contact me at either of the following numbers: 
 
 Home number: __________________________________________ 
 
 Cell number:  ___________________________________________ 
 
 
If I am not available in the future when my research test results become available, please contact: 
 
 Full name: ______________________________________________ 
 
 Relationship to me: _______________________________________ 
 
 Telephone contact number:  (h) _______________________  (c) ___________________________ 
 
 
I have received a signed copy of this consent form for my own records. 
 
 
 
__________________________________________________________________________________ 
Subject’s  Signature      Printed name      Date 
 
 
__________________________________________________________________________________ 
Signature of     Printed name/Study Role     Date 
Person Obtaining Consent 
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Appendix J: Final Letter to Patients 
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Sequence analysis for HBOC 
Consent Form Version 3, March 2015  Initials _______ 

Page 2 of 2 
 

HEREDITARY CANCER GENE IDENTIFICATION 
CONSENT FORM 

 
I have read the letter of information, have had the nature of the study explained to me, and I agree to 
participate. All questions have been answered to my satisfaction. 
 
 
At the conclusion of my genetic analysis, please contact me at either of the following numbers: 
 
 Home number: __________________________________________ 
 
 Cell number: ___________________________________________ 
 
 
If I am not available in the future when my research test results become available, please contact: 
 
 Full name: ______________________________________________ 
 
 Relationship to me: _______________________________________ 
 
 Telephone contact number: (h) _______________________ (c) ___________________________ 
 
 
I have received a signed copy of this consent form for my own records. 
 
 
 
__________________________________________________________________________________ 
Subject’s Signature     Printed name      Date 
 
 
__________________________________________________________________________________ 
Signature of     Printed name/Study Role     Date 
Person Obtaining Consent 
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Appendix K: Supplementary Information (Chapter 4) 

Probe Design 

Probes for 14 genes were designed as described in Mucaki et al., (submitted): 22,191 

sense strand oligonucleotides were synthesized, consisting of 2,828 ATP8B1 (OMIM 

602397; NM_005603.4, NP_005594.1), 2,332 BARD1 (OMIM 601593; NM_000465.3, 

NP_000456.2), 786 EPCAM (OMIM 185535; NM_002354.2, NP_002345.2), 1,580 

MLH1 (OMIM 120436; NM_000249.3, NP_000240.1), 1,986 MRE11A (OMIM 600814; 

NM_005591.3, NP_005582.1), 3,355 MSH2 (OMIM 609309; NM_000251.2, 

NP_000242.1), 723 MSH6 (OMIM 600678; NM_000179.2, NP_000170.1), 626 MUTYH 

(OMIM 604933; NM_012222.2, NP_036354.1), 1,794 NBN (OMIM 602667; 

NM_002485.4, NP_002476.2), 206 PMS2 (OMIM 600259; NM_000535.5, 

NP_000526.1), 2,599 PTEN (OMIM 601728; NM_000314.4, NP_000305.3), 1,764 

RAD51B (OMIM 602948; NM_002877.5, NP_002868), 845 STK11 (OMIM 602216; 

NM_000455.4, NP_000446.1), 568 XRCC2 (OMIM 600375; NM_005431.1, 

NP_005422.1), and repeated probes from our original tiled capture array for BRCA1 (50) 

and BRCA2 (149) where improved coverage was desired. From the antisense strand, 

21,967 oligos (2,757 ATP8B1, 2,260 BARD1, 800 EPCAM, 1,546 MLH1, 1,948 

MRE11A, 3,254 MSH2, 743 MSH6, 619 MUTYH, 1,804 NBN, 293 PMS2, 2,608 PTEN, 

1,701 RAD51B, 842 STK11, 585 XRCC2, and repeats of 44 BRCA1 and 163 BRCA2 

probes) were synthesized on two additional custom microarray chips. Genic probes for 

RAD51B were limited to 1,000 nt surrounding each exon as it contains two > 100 kb 

introns, which would have taken a exorbitant amount of space on our capture arrays 

(31,342 RAD51B probes were initially designed). 

However, the above-mentioned probes left repeat-free gaps. For repeat-free gaps of ≥ 10 

nt (N=71), probes were designed manually for these regions (21 ATP8B1, 14 BARD1, 8 

EPCAM, 3 MLH1, 3 MRE11A, 4 MSH2, 1 MSH6, 4 NBN, 6 PMS2, 1 PTEN, 4 RAD51B, 

and 2 STK11). PMS2 had entire exons uncovered due to its homology to other regions in 

the genome. Therefore, this gene had the most handpicked probes (33 probes for 6 gaps). 
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When comparing the coverage of these “hand-picked” regions to those designed by 

Picky, we found they had an average of 6.9% lower coverage (up to a 22% deviation 

from average in one patient) than the average of all the other probes we designed (both 

those described above, and in Mucaki et al., submitted). This result is comparable to the 

difference seen between PICKY- and manually-designed probes from Mucaki et al. 

(submitted). 

Probes for ATM (OMIM 607585; NM_000051.3, NP_000042.3), BRCA1 (OMIM 

113705; NM_007294.3, NP_009225.1), BRCA2 (OMIM 600185; NM_000059.3, 

NP_000050.2), CDH1 (OMIM 192090; NM_004360.3, NP_004351.1), CHEK2 (OMIM 

604373; NM_145862.2, NP_665861.1), PALB2 (OMIM 610355; NM_024675.3, 

NP_078951.2), and TP53 (OMIM 191170; NM_000546.5, NP_000537.3) were identical 

to those described in Mucaki et al., (submitted). The combination of all sets of tiled 

capture array oligos cover a total of 1,103,029 nt across the 21 genes. 

Sample Preparation – Automation of Capture Pulldown 

Post-capture samples were transferred to a standard 96-well plate after pull-down. Post 

pull-down bead wash steps were increased (twice with Wash 1 buffer, four times with 

Wash 2 buffer) as volumes were reduced to 190 µL due to the reduced maximum volume. 

Elution and neutralization buffers were also reduced by 20% (80 µL and 112 µL, 

respectively). These changes did not seem to have any appreciable effect on capture 

efficiency. Samples were multiplex sequenced (48/run) on an Illumina Genome Analyzer 

IIx (GAIIx) using the standard Illumina indexing PCR primers (#2, 4, 5, 6, 7 and 12; 

chosen to maximize dissimilarity. 

TFBS Information Models 

As described in Mucaki et al., (submitted), we used ChIP-seq data from ENCODE 

(ENCODE Project Consortium 2012) to identify TFs that bind our sequenced genes. In 

addition to the TFs for which we previously built models, we identified 8 additional 

factors due to the expansion of our target genes: TFIIIB150 [BDP1], HD8 [HDAC8], 

Ikaros [IKZF1], PBX3 [PBX3], PGC-1-α [PPARGC1A], RPC155 [POLR3A], BRG1 
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[SMARCA4], and ZNF274 [ZNF274]. We successfully built models for TFIIIB150 

[BDP1], PBX3 [PBX3], and ZNF274 [ZNF274]. 

A model was not built for HD8 because it is a histone deacetylase. It is common for 

histone modifying proteins to result in ChIP-seq data, despite not binding DNA directly 

(Wang et al., 2012). A model for BRG1 could not be generated, as the model building 

software would only reveal models for two of its known interacting partners, AP-1 and 

GATA-1 (Xu et al., 2006; Baron et al., 2007). Attempts to mask these sequences, in 

order to reveal the BRG1 motif, only resulted in noise models. Similarly, the computed 

models for the three remaining TFs (Ikaros, PGC-1-α, and RPC155) were noise models, 

differing completely from the expected motif, and thus could not be used. 

Pedigree Analysis 

Prior to analysis, pedigrees were de-identified while retaining sex, age, disease status and 

age of onset. We generated .ped files based on the family pedigrees provided by the 

LHSC. Very large pedigrees were truncated to contain the most immediate and 

informative individuals possible, due to restrictions in the software with respect to 

pedigree size (pedigrees with more than 32 individuals tends to cause the program to 

fail). If a patient’s age was unknown, the average age for that generation was assigned (as 

recommended by Mohammadi et al., 2009). If the age of onset for a family member with 

breast and/or ovarian cancer was not indicated, the mean age of diagnosis (based on 

Supplementary Table 2 of Mohammadi et al., 2009) for breast and ovarian cancer in non-

carriers were used (72 for breast cancer and 85 for ovarian cancer). Family members 

below the age of 18 were not included. In families where breast/ovarian cancer occurred 

through two different lineages, both options were assessed separately.
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