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Abstract 

Managing biosolids, the major by-product from wastewater treatment plants (WWTPs), 

persists as a major global challenge that often constitutes the majority of WWTP operating 

costs. Self-sustained smouldering is a new approach for organic waste treatment, in which 

the waste (i.e., the fuel) is destroyed in an energy efficient manner after mixing it with sand.  

Smouldering has never been applied to biosolids. Column experiments, using biosolids 

obtained from a WWTP, were employed to identify if - and under what conditions - 

smouldering could be used for treating biosolids. The parameter space in which smouldering 

was self-sustaining was mapped as a function of key system metrics: (1) sand/biosolids mass 

fraction, (2) biosolids moisture content, and (3) forced air flux. It was found that a self-

sustaining reaction is achievable using biosolids with water content as high as 80% (with a 

biosolids lower heating value greater than 1.6 MJ/kg). Moreover, results suggest that 

operator-controlled air flux can assist in keeping the reaction self-sustaining in response to 

fluctuations in biosolids properties. An economic analysis suggests that smouldering could be 

a cost-effective management approach for WWTP biosolids in a number of scenarios by 

providing on site destruction with minimal energy input and limited preliminary dewatering. 
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Chapter 1 

Introduction 

1.1 Problem Overview 

In London, UK, 1842, the negative impacts of untreated wastewater on the surrounding 

population was explicitly addressed in Chadwick et al. (1843), a document which is 

credited for starting the first major campaign for wastewater treatment in Great Britain 

(Hamlin, 1998). Today, robust municipal wastewater treatment remains crucial in 

maintaining public health and protecting environmental quality. However, it persists as a 

major global challenge due to the expensive and complex treatment processes required to 

address evolving wastewater risks (Shannon et al., 2008). In the United States, 

wastewater treatment plants (WWTPs) are some of the most energy intensive public 

operations and, in combination with drinking water services, consume 30 – 40% of the 

total energy used by municipalities (U.S. EPA, 2014). Typically 50% of the operating 

and capital costs within WWTPs are dedicated to managing the solid by-product, 

biosolids. (U.S. EPA, 1994; Droste, 1997; Khiari et al., 2004). Compared to liquid stream 

treatment in WWTPs, biosolids management technology has advanced slower and there 

are limited options for disposal (or end use) (Metcalf and Eddy, 2003). In Canada, 90% 

of biosolids are either incinerated or land applied for agricultural purposes (Apedaile, 

2001). These methods are both expensive in terms of transportation, energy input, and 

labour (Werther and Ogada, 1999; Wang et al., 2008; Roy et al., 2011). Land application 

is also subject to limitations and uncertain risks, largely stemming from contaminants of 
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emerging concern (U.S. EPA, 1995; Hale et al., 2001; Ternes et al., 2004; Venkatesan 

and Halden, 2014).     

Self-sustaining smouldering combustion of organic wastes has been proven in the 

laboratory as a treatment option for hazardous liquid contaminants (e.g., creosote, coal 

tar, crude oil, trichloroethylene) and human faeces with moisture content as high as 70% 

(wet mass basis) (Pironi et al., 2009; Switzer et al., 2009; Pironi et al., 2011; Salman et 

al., 2015; Yermán et al., 2015). Smouldering combustion is driven by flameless 

exothermic oxidation reactions where the surface of the fuel is directly attacked by the 

oxidizer at temperatures typically between 500 – 700°C (Ohlemiller, 1985; Rein, 2009). 

By mixing the organic waste within an inert porous matrix (e.g., quartz sand), a self-

sustaining smouldering reaction can be initiated and propagated via a forced airflow 

supply, destroying the organic waste (i.e., the fuel) (Pironi et al., 2009). In this mixture 

configuration, smouldering is an energy efficient solution for mass destruction as a self-

sustaining reaction is achievable with a relatively small, one time input of energy 

(Switzer et al., 2009). The mixture’s high heat capacity mitigates heat losses away from 

the reaction, while the rigid structure promotes airflow, and the large fraction of exposed 

organic waste surface area promotes surface reactions (Pironi et al., 2009). This also 

provides a robust method for the destruction of low calorific and/or high moisture content 

organic wastes, such as human faeces, which would otherwise require continuous energy 

input to thermally degrade via alternative means (e.g., incineration) (Yermán et al., 

2015). These characteristics of smouldering combustion suggest it may be a low energy, 

cost-effective, on-site treatment alternative for WWTP biosolids. This hypothesis has 

never been tested.  
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1.2 Research Objectives 

The objective of this work is to explore the technical and economic potential of utilizing 

smouldering combustion as a novel disposal technique for WWTP biosolids. To achieve 

this, a lab scale experimental study was completed to explore the limits for smouldering 

biosolids under self-sustaining conditions by varying biosolids moisture content, sand 

content, and air flux. Biosolids obtained from a local municipal WWTP were smouldered 

using established experimental procedures and data analyses techniques to identify these 

limits, and to characterize the smouldering propagation across experiments. Upon 

understanding the smouldering limitations, a preliminary economic analysis was 

conducted to estimate the payback period and potential cost savings from replacing an 

existing biosolids disposal method with an (in development) commercial smouldering 

combustion system.     

1.3 Thesis Outline  

This thesis is written in an integrated article format in accordance with the guidelines and 

regulations stipulated by the Faculty of Graduate Studies at the University of Western 

Ontario. Each chapter in the thesis is described below. 

Chapter 2 is a review of the relevant literature and presents an overview of the 

wastewater treatment process with focus on biosolids processing and disposal, and 

economic considerations surrounding the WWTP industry. Also, an introduction to 

smouldering combustion is presented, where literature discussing the influence moisture 

has on smouldering propagation is highlighted. An overview of smouldering for mass 

destruction of hazardous liquids and human faeces is also presented. 
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Chapter 3 presents the full results from the lab scale experimental study exploring the 

smouldering limits with biosolids and a summary of the economic analysis. This chapter 

is written in a manuscript format for future submission to a peer reviewed journal.  

Chapter 4 summarizes the research conducted in this work and presents conclusions as 

well as recommendations for future work.  

Appendix A presents additional biosolids properties to supplement Chapter 3.  

Appendix B presents a brief literature review on the boiling and evaporation within 

porous media.  

Appendix C presents a comparison between virgin and re-wetted biosolids.  

Appendix D presents emissions measurements from select experiments.  

Appendix E presents data from an additional failure condition not discussed in Chapter 3. 

Appendix F presents justification regarding mass loss assumptions.  

Appendix G presents all remaining temperature, mass loss, and mass loss rate data. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Wastewater treatment plants (WWTPs) remove contaminants from sewage, allowing 

treated water to be safely discharged to the environment (Metcalf and Eddy, 2003). The 

major by-product of the treatment process is a sludge, which undergoes separate 

processing and the result is termed biosolids (U.S. EPA, 1994). Typically, the majority of 

WWTP costs are dedicated to managing biosolids, making it the most expensive 

component of the WWTP process (Droste, 1997; Metcalf and Eddy, 2003; Khiari et al., 

2004). Currently, the major biosolids disposal (or end use) methods in Canada are 

incineration, land application for agricultural purposes, and landfilling (Apedaile, 2001). 

All of these methods are expensive (high energy input, person-hours, transportation 

distance) (Werther and Ogada, 1999; Wang et al., 2008; Bellur et al., 2009). In addition, 

land application is controversial and subject to restrictions and uncertain risks stemming 

from contaminants of emerging concern (U.S. EPA, 1995; Hale et al., 2001; Giger et al., 

2003; Ternes et al., 2004; Bolong et al., 2009; Venkatesan and Halden, 2014).  

Smouldering combustion of organic wastes is a novel soil remediation method that has 

proven effective for a wide range of hazardous organic liquid contaminants and human 

faeces mixed within an inert porous medium (e.g., natural soil or homogeneous quartz 

sand) (Switzer et al., 2009; Pironi et al., 2011; Switzer et al., 2014; Salman et al., 2015; 

Yermán et al., 2015). This method operates by igniting and propagating smouldering 

combustion via forced airflow through the porous medium, effectively destroying the 
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contaminant within its pore space (Pironi et al., 2009). Originally pursued as a soil 

remediation technology for contaminated industrial sites, this method of employing 

smouldering combustion presents significant potential as a novel ex-situ waste 

management technology (Switzer et al., 2009; Switzer et al., 2014; Yermán et al., 2015). 

This chapter presents the relevant literature to provide justification and context regarding 

this technology’s extension into the WWTP industry as a new potential disposal method 

for biosolids.    

2.2 Wastewater Treatment  

2.2.1 General Overview 

Wastewater treatment broadly defines the process of treating a water supply via various 

chemical, physical, and biological processes to remove harmful constituents and mitigate 

risk to the community and surrounding environment (Metcalf and Eddy, 2003). 

Wastewater is a combination of liquid and suspended contaminants derived from various 

sources including: municipal, industrial, and commercial use. Due to municipal usage, 

wastewater generally possesses high biological and chemical oxygen demands (BOD and 

COD, respectively), elevated nitrogen and phosphorous concentrations, high pathogen 

counts, and high concentrations of suspended solids. If untreated, this wastewater may 

produce anaerobic conditions, accelerate eutrophication, disrupt natural sedimentation, 

and transmit communicable diseases in receiving bodies of water (Metcalf and Eddy, 

2003). BOD and COD are metrics for quantifying the biodegradable organics within a 

water sample (e.g., proteins, carbohydrates, and fats) and are measured as the oxygen 

needed to oxidize all organics (Hach et al., 1997; Metcalf and Eddy, 2003). Total 
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nitrogen (organic and free ammonia) and phosphorous (organic and inorganic) are 

essential plant nutrients that promote excess algae growth in receiving water bodies, 

which accelerates eutrophication (Metcalf and Eddy, 2003). However, these nutrients are 

quite valuable as agricultural fertilizer and their recovery is becoming a priority in 

WWTPs, especially phosphorous (Wang et al., 2008; CEC, 2010; Cordell et al., 2011; 

Sartorius et al., 2012; Donatello and Cheeseman, 2013). Waterborne diseases pose a 

major threat to public health and wastewater may contain a broad spectrum of pathogens 

including: Enterococcus faecalis, Escherichia coli, E. coli O157:H7, Salmonella sp., etc. 

(Shannon et al., 2007). Depending on the wastewater’s origin (i.e., industrial effluent), 

there may also be heavy metals concentrations that will persist and accumulate in the 

environment, posing a serious toxicity risk (McGrath et al., 1994; Kurniawan et al., 2006; 

Ahluwalia and Goyal, 2007). There is growing interest in the impact of contaminants of 

emerging concern (CECs) and the role WWTPs play in transporting these contaminants 

into the environment (Ternes et al., 2004; Venkatesan and Halden, 2014). Thousands of 

contaminants have been identified as CECs including pharmaceuticals, flame retardants, 

insecticides, surfactants, endocrine disruptors (e.g., hormones), and antimicrobials 

(Ternes et al., 2004; Pal et al., 2010; Venkatesan and Halden, 2014). Recent interest in 

CECs is largely attributed to the evolution of analytical instrumentation allowing the 

detection of trace CECs. Over the past twenty five years, liquid chromatography – 

tandem mass spectrometry has facilitated the detection of CECs in nanogram-per-litre 

(ng/L) quantities (Ternes et al., 2004). It is expected that CECs, even in such trace 

concentrations, present danger to the environment and human health due to their 

persistence, bioaccumulation potential, and toxicity (Venkatesan and Halden, 2014).   
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As the variety of contaminants is so wide, specific WWTP processes are required to 

target individual groups of contaminants. This necessitates a series of robust, compatible 

processes to completely address effluent risks. 

2.2.2 Liquid Stream Treatments 

Liquid stream treatments vary significantly across WWTPs as influent characteristics, 

plant site conditions, regulatory constraints, public participation, and regional norms 

differ drastically (Qasim, 1999). However, a typical treatment path summarized by 

Metcalf and Eddy (2003) includes: grit removal, primary clarification, biological 

processing, secondary clarification, and disinfection as illustrated in Figure 2.1.  

 

Figure 2.1: Basic process flow diagram of a typical wastewater treatment plant. 
(Adapted from Metcalf and Eddy (2003)). 

Grit removal and primary clarification remove large, settleable particulates that may 

interfere with downstream processes while lowering the solids loading, BOD, nitrogen 

and phosphorous (nutrient) concentrations, and pathogen counts of the wastewater. 

Biological processing, such as digesters facilitating the growth of either aerobic or 
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anaerobic microorganisms, utilizes the organic content from the wastewater as a substrate 

to lower the effluent BOD and nutrient concentration. Secondary clarification settles low 

density suspended solids that may have flocculated during previous processing, and 

microorganisms from the biological processing. Secondary clarification further reduces 

suspended solids, BOD, nutrient concentrations, and pathogen counts. Final pathogen 

reduction is typically completed via disinfection, usually with chlorine addition (Qasim, 

1999). Many more additional processes can be employed, including: additional 

clarification, nitrification, de-nitrification, attached growth digesters, coagulation, 

single/two-stage lime precipitation, ammonia stripping, ion exchange, filtration, carbon 

adsorption, reverse osmosis, electro-dialysis, etc. Qasim (1999) and Metcalf and Eddy 

(2003) present examples of combinations of these processes, suggesting the flexibility 

WWTP designers have in choosing an appropriate treatment path. In addition to these 

liquid treatments, significant effort is spent on managing the major by-product from 

WWTPs, biosolids. 

2.2.3 Biosolids Introduction 

A combination of particulate solids from the wastewater influent and/or biomass 

produced during the biological processing are settled during primary, secondary, and any 

additional clarification as sludge and sludge management persists as one of the greatest 

challenges in WWTPs (Droste, 1997; Tyagi and Lo, 2013). This sludge generally 

contains 0.25 – 12% solids by mass following clarification, where >70% of the solids are 

volatile (Metcalf and Eddy, 2003). The volatile solids are mostly composed of organic 

matter, which is measured as the dry mass lost after ignition at 550°C (U.S. EPA, 2001). 

A range of sludge physical and chemical properties are available from Metcalf and Eddy 
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(2003) and U.S. EPA (1979); and proximate, ultimate, and ash composition analyses are 

available for two samples of sludge from Cui et al. (2006). Ogada and Werther (1996) 

compared proximate and ultimate analyses between WWTP sludge and low grade coals, 

suggesting both had similar energy contents but sludge contained significantly more 

volatiles available for flaming combustion (further discussion is available in Appendix 

A). Following primary clarification, the (primary) sludge is usually transported to 

additional processing. Following secondary clarification downstream of biological 

processing, a portion of the (activated) sludge is recycled as return-activated sludge 

(RAS). As RAS contains useful microorganisms, it is re-routed upstream to raise the 

microorganism concentration and improve the biological processing efficiency (Scuras et 

al., 2001). The waste portion of this stream, or waste-activated sludge (WAS), is often 

combined with the primary sludge during additional processing steps. The final material 

is termed biosolids (U.S. EPA, 1994; Wang et al., 2008). For generalization in this text, 

the final sludge for disposal is referred to as biosolids, and all sludge processing leading 

towards biosolids production is termed biosolids processing.  

2.2.4 Biosolids Processing 

Depending on the intended disposal, the sludge undergoes various kinds of biosolids 

processing steps, including: preliminary, thickening, stabilization, conditioning, and 

dewatering (see Figure 2.2). Figure 2.2 only highlights the most popular biosolids 

processing steps, where Oleszkiewicz and Mavinic (2002) presented a more complete set 

of examples. The primary goal for biosolids processing is to lower the moisture content 

(MC) (raise the solids content) by removing water, thereby drastically reducing the total 

volume (Qasim, 1999). The resulting biosolids are easier to manage in terms of 
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transporting and handling, more valuable for land application due to the increased 

nutrient concentration, and easier to incinerate due to increased volatiles concentration 

(Werther and Ogada, 1999; Wang et al., 2008). Major processing costs are associated 

with removing the high fraction of absorbed water (i.e., interstitial, bound, and surface 

water), which necessitates multiple processing steps (Vesilind and Martel, 1990; Bellur et 

al., 2009).  

 

Figure 2.2: Basic process flow diagram of a typical biosolids processing path 
(adapted from Metcalf and Eddy (2003)).  

Preliminary processing (e.g., storage, grinding, blending, degritting, etc.) is employed to 

prepare the biosolids for subsequent processing but does not significantly decrease MC 

(Droste, 1997; Qasim, 1999). Similarly, conditioning (e.g., polymer addition) is mainly 

used to improve the sludge’s dewaterability (Christensen et al., 1993; Metcalf and Eddy, 

2003). Thickening (e.g., co-settling, gravity, flotation, centrifuge, gravity belt, rotary 

drum, etc.) removes liquid from the sludge to improve downstream processing and 

disposal (Takács et al., 1991; Metcalf and Eddy, 2003). Dewatering (e.g., centrifuge, belt-
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filter press, drying beds, lagoons, etc.) lowers sludge MC and is similar to thickening, 

however, it typically follows thickening and conditioning (Spinosa et al., 2001). 

Stabilization (e.g., lime stabilization, aerobic digestion, anaerobic digestion, etc.) 

generally lowers the pathogen count and improves the aesthetic qualities (e.g., smell) of 

the biosolids (Spinosa et al., 2001). Stabilization also lowers the volatile solids content of 

the sludge, thus lowering the total volume, and is required prior to land application to 

mitigate pathogen loading (U.S. EPA, 1995; Metcalf and Eddy, 2003).  

Following a biosolids processing path, it is important to note the changing MC. After 

following a robust processing path biosolids MC may drop from 99% to 50% (wet mass 

basis) (Metcalf and Eddy, 2003). It is also interesting to highlight the influence that both 

liquid and solid stream processes have on the dry higher heating value of the sludge 

(����
�). The ����

� is defined as the potential chemical energy within the sludge 

released through complete combustion, typically measured via bomb calorimetry 

(Washburn, 1933; Boundy et al., 2011). Given that the carbon from volatile solids is 

consumed as a substrate by microorganisms in biological processing, the increase in 

biological processing corresponds with a decline in volatile solids. For anaerobic 

digestion, Lipták (1974) presented an approximation to predict decline in volatile solids: 

�� = 13.7 ln(������	) + 18.9 (�) 

 

Here, �� is the volatile solids fraction reduction (%) and ������ is the time of digestion 

(5 to 20 days). For example, the ����
� range drops from 23 – 29 kJ/g to 9 – 14 kJ/g (dry 

mass basis) between primary to anaerobically digested sludge (WEF, 1988). In addition, 

certain stabilization and conditioning steps may change the ����
�, such as lime 
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stabilization (lower it) and polymer addition (raise it) (Metcalf and Eddy, 2003). 

Following information from Droste (1997) and Metcalf and Eddy (2003), Figure 2.3 

summarizes popular biosolids processing steps and their associated impact on the ����
�, 

solids content, and sludge lower heating value (����). The ���� was estimated by 

Boundy et al. (2011): 

 	���� = [(1 −��)�����
�] − [�����	] (�) 

 

where ��(%) is the sludge MC and �� �
��

�
� is the latent heat of vaporization of water, 

2.447 kJ/g at 25˚C.  
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Problematic sludge properties (e.g., thixotropic viscosity and large fraction of absorbed 

water) and its variability (due many factors including: plant conditions, seasonality, 

weather conditions, inflow variations, etc.) creates a considerable challenge in designing, 

operating, and maintaining robust biosolids processing (Vesilind and Martel, 1990; 

Spinosa et al., 2001; Wang et al., 2008). In combination with the large volumes produced, 

overall biosolids management is a complex task for WWTPs and the degree of processing 

is often optimized against the disposal costs (Ogada and Werther, 1996; Qasim, 1999). 

2.2.5 Biosolids Disposal Methods 

Biosolids disposal methods do not aim to produce a resource (e.g., incineration, landfill) 

while end use methods utilize the end product biosolids as a resource (e.g., land 

application, composting). However, there can be some overlap between these categories, 

for example: some incineration methods (e.g., co-combustion) may be used for energy 

production, ash resulting from incineration can be used in a variety of construction 

applications or as a phosphorous source, and the utilization of biosolids as landfill cover 

can be viewed as a resource application (Werther and Ogada, 1999; Wang et al., 2008; 

Donatello and Cheeseman, 2013). For generalization in this text, all disposal/end use 

methods are simply referred to as disposal methods. In regards to popular Canadian 

biosolids disposal methods, in 2001 47% were incinerated, 43% were land applied, and 

4% were landfilled (Apedaile, 2001). Across North America, land application and 

incineration are preferred as they both represent strong potential for meeting future 

demands (Werther and Ogada, 1999; Wang et al., 2008; Roy et al., 2011).  
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Land application implies the use of stabilized biosolids as a fertilizer for agricultural 

purposes (U.S. EPA, 1995). Some benefits of land application include: improved soil 

water retention, aggregate stability, and slow releasing nutrients, which is otherwise 

achieved by chemical manufactured fertilizer or malodorous livestock manure (U.S. 

EPA, 2000e; Singh and Agrawal, 2008). Land application is identified as the most 

effective way to completely utilize the organic carbon and nutrients within biosolids and 

is encouraged where the land is available, the biosolids are of adequate quality, and it is 

socially acceptable (Wang et al., 2008; CEC, 2010). However, stabilization, 

transportation, and handling can be expensive and there are strict heavy metal, pathogen 

loading, and use regulations (U.S. EPA, 1995; 2000e; Singh and Agrawal, 2008). In 

addition, there is a growing concern about the role of land application in facilitating a 

pathway for CECs to environmental receptors (Hale et al., 2001; Ternes et al., 2004; 

Venkatesan and Halden, 2014). Some CECs may adsorb onto the biosolids at even 

greater concentrations than is observed in liquid stream effluents and these CECs may 

enter water bodies via run-off or enter crops via plant uptake (Ternes et al., 2004). 

Venkatesan and Halden (2014) identified 123 different CECs in samples of biosolids in 

the United States (U.S.), which represented between 0.040 – 0 .15% (dry mass basis) of 

the of the biosolids. Lastly, the crop risk may be increased following improper storage 

and application of biosolids, which can lead to pathogen re-growth or recolonization, and 

increased plant uptake of toxic heavy metals, respectively (Zaleski et al., 2005; Singh and 

Agrawal, 2008). These risks need to be evaluated against the benefits land application 

provides and caution is given against full dependence on land application, as regulations 
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to mitigate these risks may change suddenly and require biosolids producers to adapt 

(Wang et al., 2008). 

Incineration is the processes of thermally degrading biosolids via flaming combustion of 

the released biosolids volatiles at temperatures near 800°C (fluidized bed incinerators) or 

500°C (multiple hearth incinerators) (Ogada and Werther, 1996; U.S. EPA, 2003b). 

Generally, fluidized bed incinerators are accepted as the more efficient option and present 

the strongest economic potential (Werther and Ogada, 1999; Dangtran et al., 2000). 

Incineration is an attractive technology for meeting future demands due to its low space 

footprint, significant waste volume reduction, and potential for energy recovery (Werther 

and Ogada, 1999; Roy et al., 2011). Furthermore, the resulting inert ash can be used for 

multiple construction applications including cement, brick filler, or subbase material for 

road construction; or treated as a source of phosphorous (U.S. EPA, 2003b; Donatello 

and Cheeseman, 2013). Major concerns surrounding incineration are largely associated 

with the emissions, notably the strict requirements regarding the production of 

particulates, NOx, SOx, and CO (U.S. EPA, 2003b). However, as emissions management 

technology has improved greatly over recent years, contemporary scrubbers alleviate 

much of the risk (Werther and Ogada, 1999).  

While incineration can be an economic option, there are major costs associated with 

dewatering the biosolids to 85 – 65% MC (wet mass basis) and the use of supplemental 

fuel for ignition and continuous addition to sustain incineration (Metcalf and Eddy, 2003; 

Murakami et al., 2009; U.S. EPA, 2003b). Given that biosolids combustion follows the 

drying of the water and release of volatile components (i.e., endothermic processes), 

significant water needs to be evaporated/boiled from the biosolids prior to combustion 
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(Cui et al., 2006). Depending on the biosolids energy content, biosolids with MC greater 

than 70% typically require a continuous addition of supplemental fuel to balance against 

the heat sink from boiling/evaporating water. Conversely, biosolids with MC less than 

70% may be able to incinerate in a self-sustaining manner (i.e., without the continuous 

addition of supplemental fuel). Furthermore, in comparison to other disposals/end uses 

like land application or landfilling, incineration requires significant capital, which can be 

a major deterrent in constructing new incinerators (Wang et al., 2008).   

Across WWTPs, biosolids processing and disposal method combinations vary as greatly 

as liquid stream process combinations (King and Painter, 1986). However, a consistency 

between WWTPs is the high cost to manage biosolids, where nearly 50% of a WWTP’s 

capital and operating costs are dedicated to processing biosolids (Khiari et al., 2004).  

2.2.6 Economic Considerations 

Municipal wastewater treatment is an energy intensive and operationally demanding 

public operation that requires enormous capital and elaborate infrastructure (Shannon et 

al., 2008). In the U.S., municipal WWTPs and drinking water services account for 3 – 4% 

of all energy consumption and 30 – 40% of total energy consumed by municipalities, 

costing $4 billion/year (U.S. EPA, 2014). The scenario is quite similar in Canada, as both 

countries experience similar per capita water usage in comparable economic 

environments and social norms. Canadians on average pay $0.31/litre of water and use 

343 litres/person with a gross domestic product (GDP) of $44 500/person; Americans on 

average pay $0.4 – 0.8/litre of water and use 382 litres/person with a GDP of $54 

800/person (Environment Canada, 2013a; CIA, 2014). Furthermore, as much of North 
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America’s WWTP infrastructure approaches the end of its design life, an estimated $298 

billion and $39 billion is required in the U.S. and Canada, respectively, to repair and 

upgrade WWTP infrastructure to good working condition (Félio et al., 2012; ASCE, 

2013). These costs represent 1.7% and 2.6% of the U.S. and Canadian 2014 GDP, 

respectively. It is important to note that these costs do not consider upgrades due to 

evolving regulations that could result from emerging contaminants.  

This presents a significant financial burden for North American municipalities, which are 

already in debt. A 2007 survey conducted collaboratively by The Federation for Canadian 

Municipalities and McGill University found that Canada’s municipal deficit was $123 

billion, where all water supply systems (i.e., drinking water, wastewater, and storm 

water) constituted 25% of the deficit (Mirza S, 2007). Optimistically, the resulting 

benefits from improved WWTP infrastructure are expected to greatly outweigh these 

costs. Environment Canada (2013b) estimated that $5.5 billion is required for Canadian 

WWTPs over the next 54 years to meet established regulations ($3 billion for capital, 

$1.7 billion for operation and maintenance, and $0.75 billion for reporting and 

monitoring). These costs were anticipated to provide $16.5 billion in benefits estimated 

from numerous projections including increased land value, greater recreational use of 

water bodies, increased commercial fishing, and reduced water supply costs 

(Environment Canada, 2013b). In addition, these costs are probably conservative as many 

environmental and social benefits are extremely difficult to quantify and are often 

undervalued (Hanley et al., 1998). In another sense, poor WWTP infrastructure could 

cause some insidious environmental damage, where the ramifications from such damage 

is not fully understood or even conceived in most cost-benefit analyses (Abdalla et al., 
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1992). The above information considers WWTP infrastructure holistically to present 

justification for the advancement of WWTP technology. It is equally worthwhile to 

identify the operations that are currently driving the high costs. As previously mentioned, 

the highest costs in WWTPs are associated with biosolids management.   

Following technical documents on biosolids management from the U.S. Environmental 

Protection Agency (U.S. EPA), operating and capital cost ranges for popular biosolids 

processing and disposal methods have been compiled in Figure 2.4 (U.S. EPA, 2000a; 

2000b; 2000c; 2000d; 2000e; 2000f; 2000g; 2002; 2003a; 2003b; 2003c; 2006a; 2006b). 

It is important to caution that these approximations may not fully represent current 

technology as the technical documents were published from 2000 to 2006, with some cost 

information dating as far back as 1987 (U.S. EPA, 2000b). However, this information is 

assumed sufficient to understand the relative cost differences within biosolids 

management. All values have been converted to $2014 USD following historical U.S. 

inflation rates from The World Bank (2015). It is interesting to highlight the high 

variability in capital and operating/maintenance costs. For example, gravity thickening 

capital costs vary between $275 000 and $4.40 million, and alkaline stabilization 

operation and maintenance costs vary from $59 and $471/dry ton of sludge processed 

(U.S. EPA, 2000f). Comparing new biosolids management technologies’ expected costs 

with these current costs presents the opportunity to explore the economic feasibility and 

identify what kind of WWTPs the new technologies may best fit into, from a financial 

perspective.  
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2.3 Smouldering Combustion 

2.3.1 Definition of Smouldering Combustion 

Smouldering is a flameless form of combustion driven by exothermic, heterogeneous 

oxidation reactions in which an oxidizer, typically oxygen within air, directly attacks the 

surface of a solid or liquid phase fuel (Ohlemiller, 1985; Switzer et al., 2009). Very 

generally, the rate of oxidation must overcome the heat losses for smouldering to be self-

sustaining (Ohlemiller, 1985). Self-sustaining smouldering requires a porous fuel, or a 

fuel spread within a porous structure, to provide the required fuel surface area for 

oxidation and adequate oxidizer permeability (Pironi et al., 2009; Drysdale, 2011). An 

oxidizer supplied via convective and/or diffusive means is transported through the porous 

structure and diffuses directly into the surface of a condensed phase fuel (Ohlemiller, 

1985). Smouldering may include a large number of elementary chemical reactions, 

including competing reactions, but the process can be generalized by considering the two 

most important reaction pathways (Ohlemiller, 1985; Rein, 2013): 

	Pyrolysis: 

����	(�����) + ���� → ����������	(���) + �ℎ��(�����) + ��ℎ(�����) (�) 
 

Char	Oxidation: 

�ℎ��(�����) + �� → ���� + ��� + ��� + ��ℎ(�����) + ��ℎ��	��������� (�) 

  
Pyrolysis is the thermal degradation of a fuel into smaller volatile molecules in response 

to heat and in the absence of oxidation (Sinha et al., 2000). In smouldering, pyrolysis is 

limited by the heat evolved from char oxidation and produces carbon rich material (char) 

and pyrolysate gas (Sinha et al., 2000; Rein, 2013). Char oxidation, the principal heat 
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source that drives smouldering (Ohlemiller et al., 2008), is a heterogeneous gas-solid 

oxidation reaction between carbon in the char, produced from pyrolysis, and the oxygen 

in the air (Ohlemiller et al., 2008; Tillman, 2012). Char oxidation is limited by the 

diffusion of oxygen into the surface of the char and produces heat, water vapour, carbon 

dioxide, ash, and other by-products (i.e., incomplete combustion products including: 

carbon monoxide, volatile organic compounds (VOCs), hydrocarbons, polyaromatic 

hydrocarbons (PAHs), and particulate matter) (Tillman, 2012; Rein, 2013).     

Compared to flaming combustion, which is a homogeneous gas phase combustion 

surrounding a fuel that favours the oxidation of pyrolysate as opposed to char, 

smouldering produces much lower peak temperatures and heat of reactions (Rein, 2009; 

2013). Flaming is a more complete combustion, where a complete combustion is a 

chemical reaction where certain elements of a fuel completely combine with oxygen, 

releasing energy in the form of heat (Ganesan, 1994). For example, when hydrocarbons 

undergo complete combustion in oxygen they will exclusively produce water vapour and 

carbon dioxide. Smouldering’s characteristics result the formation of more incomplete 

combustion products and much slower propagation, roughly two orders of magnitude 

slower than flaming (Rein, 2009). Given that smouldering operates within a well 

insulated porous medium, heat energy is efficiently transferred from the oxidation zone to 

unburned fuel in the pyrolysis and preheating zones (Ohlemiller et al., 2008). In 

comparison to flaming, smouldering is much less susceptible to heat losses and 

quenching, the suppression of chemical processes driving combustion (Hadden and Rein, 

2009; Yermán et al., 2015).  



26 

 

As smouldering propagation is controlled by the oxygen supply and heat losses, the 

combustion can vary greatly with an increased oxygen supply, affecting the products, 

peak temperature, and propagation velocity (Ohlemiller, 1985; Rein et al., 2006). 

Reflecting this, two major conclusions from an early analytical model describing one-

dimensional, adiabatic, steady smouldering by Dosanjh et al. (1987) were: 1) The 

smouldering peak temperatures for a given fuel were only dependant on the initial 

oxygen mass flux and increased logarithmically with increasing oxygen mass flux. 2) The 

smouldering propagation velocity was linearly dependant on the oxygen mass flux, and 

also increased with increasing oxygen concentration.  

Smouldering propagation can be idealized in two distinct one-dimensional scenarios: 

forward or reverse (opposed) smouldering, which defines the reaction and oxidizer 

propagate in the same or opposite directions, respectively (see Figure 2.5) (Ohlemiller 

and Lucca, 1983). Forward smouldering is often considered a more complete combustion 

than reverse smouldering (Ohlemiller, 1985; Schult et al., 1996; Rein, 2009). Upwards 

and downward smouldering denote if the reaction propagates against or with the direction 

of gravity, respectively (Drysdale, 2011). In upwards forward smouldering, buoyant 

forces from the hot combustion gases promote heat transfer ahead of the reaction, 

resulting in faster propagation compared to downward forward smouldering (Torero and 

Fernandez-Pello, 1996; Drysdale, 2011). Forced smouldering implies an external pressure 

gradient drives the oxidizer into the reaction zone, where the oxidizer movement in 

natural smouldering only results from the reaction, natural convection, and diffusion (He 

and Behrendt, 2009).  
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Figure 2.5: Conceptual diagram outlining the airflow and reaction propagation 
directions for forward and opposed smouldering (Rein, 2009). 

 
2.3.2 Forward Smoldering Propagation 

Forward smouldering combustion can be characterized by four zones: preheating, 

pyrolysis, oxidation, and cooling. A very common example of forward smouldering is 

cigarette burning, as illustrated in Figure 2.6.  

 

Figure 2.6: Steady forward smouldering along a cigarette illustrating key 
smouldering zones (adapted from Moussa et al. (1977)).  
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These zones may propagate at varying rates and dynamic thicknesses in response to heat 

losses and oxygen supply (Ohlemiller and Lucca, 1983; Rein et al., 2009; Hadden et al., 

2013). For generalization in this text, the leading edge of these zones is simply called the 

smouldering front. The preheating zone boils/evaporates moisture ahead of the pyrolysis 

and oxidation zones and the pyrolysis zone thermally degrades the fuel in the absence of 

combustion. The preheating and pyrolysis zones are endothermic and are limited by the 

heat energy evolved from the oxidation zone (Ohlemiller, 1985; Rein, 2009). The 

oxidation zone is dominated by exothermic reactions where the condensed phased fuel, 

either virgin or char from pyrolysis, is directly destroyed by the oxidizer. The released 

heat energy is transported ahead to the preheating and pyrolysis via conduction, radiation, 

and convection (Ohlemiller et al., 2008; Switzer et al., 2014). The trailing cooling zone is 

where smouldering has ceased and the remaining material, largely inert, cools to ambient 

temperature (Rein, 2009). Torero and Fernandez-Pello (1996) presented temperature 

histories and temperature profiles at various times from forced forward smouldering in 

polyurethane foam. From this temperature data, the key smouldering zones were 

delineated using the temperature plateaus and peaks. The governing heat transfer 

mechanisms were identified at multiple airflow rates, where convection was considered 

secondary at airflow velocities <1.0 mm/s. At these low air flows, heat transfer was 

dominated by radiation, justified by the slow smouldering propagation and poor thermal 

conductivity of polyurethane foam (Torero and Fernandez-Pello, 1996). Torero and 

Fernandez-Pello (1996) found that forward smouldering quenching limits and peak 

temperatures were governed by complex interactions between oxygen supply, fuel 

thermal properties, and convective heat transfer ahead out of the oxidation zone.  



29 

 

In theory, forced forward smouldering propagation can be limited by either oxygen 

supply rate or reaction kinetics, where the transition between these limiting conditions is 

expected to occur at high air flows (Schult et al., 1996; Leach et al., 2000; Ohlemiller et 

al., 2008). Though nearly all examples of smouldering in the literature are oxygen 

limited, from modelling efforts, Schult et al. (1996) showed that the kinetically controlled 

propagation could be characterized by a significant fraction of trailing char. This was due 

to rapid cooling from the incoming gas resulting in incomplete combustion (Schult et al., 

1996). Similar to that presented by Dosanjh et al. (1987), Torero et al. (1993) developed a 

simplified heat transfer based expression to estimate the forced forward propagation 

velocity: 

���� =
���,��������� − �̇����

�� (��/��)

�(1 − �)����,� + �����,��(�� − ��) − (1 − �)���� + ���,�������

 (�) 

 

where, ���� and ��	(��/�) are the velocities of the smouldering propagation and forced 

airflow, respectively, ���,�	(�
�/��) is the volume fraction of oxygen in the air,	�� and 

��	(��/�
�) are the densities of the air and solid, respectively, ���� and ��	(��/��) are 

the heats of smouldering and pyrolysis, respectively, �̇����
�� (��/��)	(�/��) is the radial 

heat loss, �	(��/��) is the porosity of the solid,	��,� and ��,�	(��/���)	are the specific 

heat capacities of the air and solid, respectively,	�� and ��	(�) is the peak smouldering 

temperature and ambient temperature, respectively. This assumes two-step pyrolysis and 

combined oxidative and char reactions far from quenching, where the oxidation and 

pyrolysis fronts move at the same velocity. Torero and Fernandez-Pello (1996) found this 
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expression correlated well with forced upwards and downward forward smouldering in 

polyurethane foam with air flow velocities between 0.0 to 4.1 mm/s and 1.7 to 4.1 mm/s, 

respectively. This validated that the observed forward smouldering propagation was 

controlled by the heat released and absorbed by oxidation and pyrolysis reactions, 

respectively. Bar-Ilan et al. (2004) conducted preliminary experiments that validated this 

expression in a microgravity environment using polyurethane foam with forced air flow 

velocities from 2.0 to 6.0 mm/s. However, it was acknowledged that buoyancy and char 

oxidation effects were not accounted for. Consequently, this expression only qualitatively 

described upwards forward smouldering experiments under the same conditions in 

normal gravity. 

Significant work has also been completed using a free-stream of air flowing over a 

smouldering sample. Ohlemiller (1990) and Palmer (1957) found that the forward 

smouldering propagation velocity in cellulosic powder and dust indefinitely increased 

with increasing airflow rate. Ohlemiller (1990) observed flaming at a free-stream air 

velocity >2.5 m/s over a sample of cellulose undergoing forward smouldering. Sato and 

Sega (1989) detailed more complicated behaviour where a maximum smoulder 

propagation velocity of 8.0x10-3cm/s was reached at a free-stream air velocity of 3.25 m/s 

over cellulosic powder. At a free-stream air velocity greater than 6.00 m/s, heat losses 

away from the smouldering front and instability in the front structure led to quenching. 

Pironi et al. (2009) conducted forced forward smouldering experiments using coal tar 

within coarse sand and appeared to approach a similar maximum propagation velocity at 

an inlet air flux of 15 cm/s. However, as these experiments used forced air through the 
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porous medium, as opposed to free flow above the porous medium, quenching resulting 

from high air flux may be significantly different and was never observed. 

2.3.3 Effects of Moisture on Smouldering Propagation 

Due to smouldering’s resilience to quenching, self-sustaining smouldering is possible in 

fuels with low effective calorific values and/or high MC (Yermán et al., 2015). However, 

beyond some MC limitation, the heat losses from evaporating/boiling water out of wet 

fuels will shift the energy balance and quench the reaction. In addition, the redistribution 

of water ahead of a propagating smouldering front due to condensation in cooler zones 

may accumulate and limit the extent of propagation (Ohlemiller, 1985).  

Hadden and Rein (2009) approximated the water required to quench a coal smouldering 

fire based on the thermal properties of coal and water. This approximation yielded results 

on the same order of magnitude as the actual water required to extinguish laboratory scale 

coal smouldering fires: 

�� =
����,�∆��

��,�(100 − ��) + ��
 (�) 

 

Here, �� and ��	(��) are the masses of coal and water, respectively,	��,�	and    

��,�	(��/���) are the specific heat capacities of coal and water, respectively, ∆��	(�) is 

difference between average smouldering and extinguished temperatures, ��	(��/��) is 

latent heat of vaporization of water, and ��	(�) is the initial water temperature.   

From a wildfire context, there are numerous studies exploring smouldering limitations in 

wet peat. Frandsen (1987) and Rein et al. (2008) explored the effects of inorganic and 
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moisture content on smouldering ignition of peat, and Prat et al. (2014) explored the 

smouldering propagation velocity in response to increasing MC. Frandsen (1987) detailed 

the impact that moisture and inorganic contents had on self-sustaining smouldering of 

peat moss between 0 to 1 moisture/organic ratio and 0 to 5 inorganic/organic ratio. It was 

found that the moisture/organic ratio limit that permitted self-sustaining smouldering 

linearly declined with increasing inorganic/organic ratio. This was expected to result 

from decreasing the energy per unit volume of mixture and producing less favourable 

thermodynamic conditions that promoted heat losses. A comparison between 

smouldering Douglas-fir duff and peat moss suggested that the heat production rate, the 

product of the mass loss rate ratio and heat of combustion ratio between the fuels, 

explained the shifted smoulder boundary. The Douglas-fir experienced lower 

smouldering limits and a lower heat production rate. The scatter in the experimental 

results was expected to mainly result from heterogeneous moisture distribution within the 

peat samples, which was partly due to a condensate zone formed ahead of the 

smouldering front. Following the experimental work of Frandsen (1987) and Frandsen 

(1997), Rein et al. (2008) used an ignition protocol roughly equivalent to the heating 

from a flaming stump, 100W for 30 min, and found that MC governed the smouldering 

ignition in peat with 8% inorganic content (dry mass basis). The critical MC for 

smouldering ignition was 55±2% (wet mass basis). Prat et al. (2014) found a dramatic 

drop in smouldering propagation velocity in peat with MC above 25% (dry mass basis).   

Reversibly condensable compounds are driven ahead of the smouldering front by 

convection and/or diffusion and condense in cooler regions ahead of the preheating zone, 

which produces a heat sink (condensate zone) that grows as the smoulder front progresses 
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(Ohlemiller, 1985). These compounds may be in the fuel (e.g., water) and transition into 

the gas phase via boiling/evaporation, or are produced during oxidation and/or pyrolysis. 

This condensate zone is also referred to as the “sweat zone” (Uggla, 1974) and the net 

heat sink across this condensation zone is equal to the rate of sensible enthalpy 

accumulation (DeRis, 1970). Further insight into the boiling/evaporation and 

condensation within porous media and suggestions regarding the modelling of these 

linked phenomena are provided in Appendix B. 

2.3.4 Applications of Smouldering 

Only 2% of all combustion research was focused on smouldering in 2009 (Rein, 2009), 

where this research largely focused on residential fires, wildfires, emissions hazards, long 

term coal seam fires, and aerospace safety (Quintiere et al., 1982; Kaufman et al., 2002; 

Bar-Ilan et al., 2004; Kuenzer et al., 2007; Rein, 2009; 2013). Similarly, the literature 

related to smouldering biosolids, or materials similar to biosolids, is almost entirely 

limited to understanding the self-heating and fire hazards associated with their storage 

(Chirag et al., 2011; Della Zassa et al., 2013; He et al., 2014). Recently, there are a few 

studies related to engineering applications of smouldering combustion including: 

remediation of contaminated soils, production of biochar for carbon storage, enhanced oil 

extraction, in-situ coal gasification, and smouldering human faeces for sanitation 

purposes (Akkutlu and Yortsos, 2003; Renner, 2007; Blinderman et al., 2008; Rein, 

2009; Switzer et al., 2009; Yermán et al., 2015).  

In comparison to flaming, smouldering presents some interesting advantages for 

application: (1) Lower heat fluxes required to initiate smouldering reactions (Ohlemiller 
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et al., 2008; Rein, 2009); (2) Minimal atmospheric heat losses (Drysdale, 2011); and (3) 

As smouldering is slow and oxygen diffusion limited, smouldering combustion 

experiences comparable time scales between combustion and heat transfer. This promotes 

efficient heat transfer to unburned fuel and provides greater resistance to quenching 

(Ohlemiller, 1985; Howell et al., 1996; Ohlemiller et al., 2008; Switzer et al., 2009; 

Switzer et al., 2014; Yermán et al., 2015). These advantages suggest there is strong 

potential in utilizing smouldering for a variety of engineering applications and, in 

particular, there is growing interest in pursuing smouldering as a low-energy waste 

management technique (Yermán et al., 2015). 

2.4 Smouldering as a Waste Management Technique 

2.4.1 Introduction 

Self-sustaining Treatment for Active Remediation (STAR) is a patented technology that 

employs smouldering combustion to destroy liquid hydrocarbons and was originally 

developed as an in-situ soil remediation technique (Switzer et al., 2009). As the organic 

contaminant (i.e., the fuel) is spread within a porous and largely inert soil medium, a 

smouldering reaction can be ignited and propagated to effectively clean the soil (see 

Figure 2.7) (Pironi et al., 2009). 
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Figure 2.7: Coarse grain sand (a) without coal tar, (b) with coal tar, (c) after STAR 
remediation (Pironi et al., 2009). 

The porous medium increases the fuel surface area for reaction, provides porosity to 

permit air (oxidizer) flow, and supports the efficient storage, transfer, and recycling of the 

released reaction energy. A key advantage is that this configuration facilitates a self-

sustaining reaction, meaning no additional energy input is required after ignition (Switzer 

et al., 2009). Smouldering in STAR typically reaches temperatures between 500 – 800°C 

for many minutes in one location resulting in upwards of 99% consumption of fuel, 

effectively producing clean soil (Pironi et al., 2011). 

STAR was first intended for recalcitrant, dense non-aqueous phase liquids (DNAPLs), 

such as coal tar (Switzer et al., 2009). Recently, STAR has shown potential for treating 

more volatile DNAPLS mixed with fatty oils through a combination of volatilization and 

combustion (e.g., Trichloroethylene mixed with vegetable oil or emulsified vegetable oil) 

(Salman et al., 2015). Pironi et al. (2011) demonstrated resilience to quenching in 

experiments using coarse grain sand in a 15 cm tall column with 25% of pore space 

occupied by coal tar and up to 75% of pore space occupied by water. Though peak 

temperatures and propagation velocities dropped with increasing water contents, a self-
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sustaining reaction was achieved in all cases, showing strong potential for the application 

of STAR below the ground water table. Sand grain size, which directly affects the pore 

size, and initial contaminant concentration were found to be the key parameters affecting 

the smoulder self-sustainability. Non-self-sustaining reactions resulted from average 

grain sizes greater than 10 mm and initial concentrations lower than 28 400 mg/kg for 

coal tar and 31 200 mg/kg for crude oil.  

A phenomenological model was developed by MacPhee et al. (2012) to predict the 

smouldering propagation velocity and extent of soil remediation achieved during STAR 

application. The resultant two-dimensional “In Situ Smouldering Model” (ISSM) is a 

practical tool designed to simulate large scale engineered and natural environments. The 

ISSM couples a three-dimensional multiphase flow model (DNAPL3D) and a 

combustion front expansion model (based on Huygen’s Principle) with an analytical 

expression for the forward smouldering velocity (from Pironi (2009) and similar to 

Equation 4) (Kueper and Frind, 1991; Torero et al., 1993; Richards and Bryce, 1995; 

Gerhard et al., 1998; Gerhard and Kueper, 2003a; 2003b; Grant et al., 2007; MacPhee et 

al., 2012). The ISSM has successfully predicted the one-dimensional and two-

dimensional spreads and velocities of forward smouldering from lab scale smouldering 

experiments using coal tar within homogeneous coarse grain sand (MacPhee et al., 2012; 

Hasan et al., 2015).  

Switzer et al. (2014) demonstrated the scalability of STAR over a series of experiments 

where the scale was increased 1000 fold from 0.003 to 3 m3. The smouldering limits were 

found to increase with increasing scale due to lower heat losses from free surfaces. At the 

drum scale (0.3 m3), an initial concentration of 12 000±4000 mg/kg mixed oil waste 



37 

 

(including waste from crude oil, petroleum refining, and some soil) achieved a self-

sustaining smoulder. This initial concentration was less than half of the limiting 

concentration for coal tar or crude oil from lab experiments (0.003 m3) (Pironi et al., 

2011). Furthermore, propagation of the smouldering front in response to increasing air 

fluxes was consistent across scales, verifying that the controllability of the process via 

supplied air was maintained at larger scales. Additional work detailing the effectiveness 

of STAR in-situ was completed by Scholes (2013) and, following successful pilot trials, a 

field scale implementation of STAR is currently underway at a 38 acre site contaminated 

with coal tar in Newark, New Jersey.  

2.4.2 Ex-situ Application 

An extension to this technology is a patented and patent pending ex-situ application 

(STARx) that is commercialized by Savron (www.savronsolutions.com). STARx was 

originally developed for treating hazardous organic liquid wastes, similar to the STAR in-

situ application (Pironi et al., 2011). The concept involves mixing these wastes within an 

inert porous medium (i.e., quartz sand) to form a fixed bed, facilitating the same 

conditions experienced in STAR. The controllability of this process, via airflow and 

selected properties of the porous medium, makes STARx an appropriate technology for 

materials with limited disposal options (Pironi et al., 2011; Switzer et al., 2014).  

Recently, the application of smouldering in this configuration has extended to managing 

faeces, which have a much lower energy content and higher MC than previously studied 

wastes. Yermán et al. (2015) explored the self-sustainability of upwards forward 

smouldering using surrogate-human faeces mixed with sand as a function of faeces MC, 
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sand/faeces ratio (S/F), contaminant pack height, and airflow rate. The results were 

confirmed with an additional set of experiments using dog faeces. At a given scale, a 

boundary between self-sustaining (SS) and non-self-sustaining (NSS) smouldering 

depends on complex interactions between heat generation (e.g., fuel energy content, 

oxygen supply), heat retention (e.g., sand and fuel heat capacities) and heat loss (e.g., 

volatile compounds, water) and thus needs to be determined experimentally (Torero and 

Fernandez-Pello, 1996; Yermán et al., 2015). To identify the conditions that lead to SS 

smouldering, Yermán et al. (2015) mapped a parameter space over a fixed set of variables 

that identified the quenching limits. This study showed that, in a 98 cm tall and 16 cm 

diameter fixed bed using 108 g/min (5.7 cm/s) airflow, increasing the sand dilution from 

3.25 to 4.25 g/g S/F linearly increased the limiting faeces MC that permitted a SS 

smoulder from 60 to 70% MC (wet mass basis). This result was hypothesized to be 

governed by the downward water migration into the smouldering front, where the S/F 

mixture’s capacity for retaining condensed moisture increased with increasing S/F, thus 

decreasing the amount downward water migration and facilitating SS smouldering with 

higher MC faeces. Using a 50 cm tall pack and 65% faeces MC, the minimum air flux for 

SS smouldering was found to decrease from 5.8 cm/s to 0.74 cm/s when increasing the 

S/F from 2.75 to 3.75 g/g. This was due to increasing the fuel surface area available for 

oxygen diffusion in higher S/F systems. This means a lower oxygen gradient was needed 

from the pore space to the surface of the fuel to maintain a SS reaction and resulted in a 

lower minimum air flux (Leach et al., 2000; Yermán et al., 2015). For comparison, Pironi 

et al. (2011) found SS smouldering achievable in coal tar mixed with sand using an air 

flux at least 0.5 cm/s. As previously discussed in Section 2.3.3, the cooler porous medium 
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ahead of the smouldering front facilitates a condensation zone, which can limit the 

smouldering propagation (Ohlemiller, 1985). Indeed, accumulated condensation ahead of 

the smouldering zone, resulting from evaporated/boiled water and water produced during 

oxidation, was shown to limit the faeces MC for a SS reaction from 75 to 65% as the 

pack height increased from 20 to 98 cm (Yermán et al., 2015). This also agrees with 

Frandsen (1987), who recognized this redistribution of moisture can significantly affect 

the smouldering propagation and cause large moisture gradients that could quench the 

reaction. In summary, smouldering faeces was identified as a viable, controllable disposal 

technique, where a SS reaction was achieved at fuel MC higher than flaming combustion 

could permit.  

2.5 Summary 

Municipal wastewater treatment is an increasingly complex issue where managing the 

major by-product, biosolids, persists as the most expensive and challenging component 

(Droste, 1997; Shannon et al., 2008). With $298 and $39 billion expected in upgrading 

U.S. and Canadian WWTP infrastructure, respectively, there is strong incentive to pursue 

innovative, cost-effective, and energy efficient WWTP solutions (Félio et al., 2012; 

ASCE, 2013).  

Smouldering combustion presents an interesting opportunity as a novel approach to 

biosolids management. Due to the efficient heat transfer to unburned fuel, self-sustaining 

smouldering is much more resilient to quenching than flaming combustion (Ohlemiller, 

1985; Yermán et al., 2015). This means that low calorific and/or high moisture content 

fuels, such as biosolids, may be smouldered in an energy efficient and cost-effective 
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manner. STARx is a patented and patent pending technology that may be employed to 

achieve self-sustaining smouldering by intentionally mixing sand and biosolids to 

facilitate the necessary thermodynamic properties, fuel surface area, and permeability for 

air flow (Switzer et al., 2009).  

The potential of WWTP biosolids to smoulder has never been studied. If they were 

susceptible to smouldering, key unknowns include: (1) What maximum moisture content 

could be smouldered, since this would dictate the degree of biosolids processing; (2) 

What minimum sand dilution would be required, as this would affect the mass destruction 

rate; (3) How would air flux impact the smouldering propagation, as this could be 

considered a key operator control; and (4) What would be the economic return for a full-

scale smouldering system in a WWTP.  
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Chapter 3 

Self-sustaining Smouldering Combustion as a Novel Destruction Method for 

Biosolids 

3.1 Introduction 

Wastewater treatment plants (WWTPs) treat sewage via various chemical, physical, and 

biological processes to remove harmful constituents and mitigate risk to the community 

and surrounding environment (Metcalf and Eddy, 2003). Municipal WWTPs are energy 

intensive operations which, combined with drinking water services, account for 3 – 4% of 

all energy consumption in the United States and 30 – 40% of total energy consumed by 

municipalities, costing $4 billion/year (U.S. EPA, 2014). Furthermore, as much of North 

America’s WWTP infrastructure approaches the end of its design life, an estimated $298 

billion is required in the United States (and $39 billion in Canada) to expand and upgrade 

WWTP infrastructure (Félio et al., 2012; ASCE, 2013). The major by-product from 

WWTPs is biosolids and approximately 50% of WWTPs capital and operating costs are 

dedicated to processing biosolids, making it the most expensive component of the 

WWTP process (Khiari et al., 2004).  

Biosolids are defined as the separated solids from WWTPs that undergo additional 

treatment for beneficial end use (U.S. EPA, 1994). These separated solids, largely 

organic, are first settled out from the liquid stream either before treatment (primary 

sludge) or after biological processing (waste activated sludge). The resulting sludge 

contains 88.00 – 99.75% moisture content (wet mass basis) (Droste, 1997; Metcalf and 

Eddy, 2003). This sludge undergoes various processing steps (e.g., dewatering, 

thickening, conditioning) to reduce its volume and improve aesthetic qualities for easier 
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management, or undergoes stabilization to permit safe land application (Droste, 1997). 

The major disposal (or end use) methods for biosolids in Canada include incineration, 

land application for agricultural purposes, and landfilling (Apedaile, 2001). All of these 

methods are expensive in that they require high energy input, many person-hours, and/or 

large transportation distances (Werther and Ogada, 1999; Wang et al., 2008; Bellur et al., 

2009). In addition, land application is controversial and subject to restrictions and 

uncertain risks stemming from contaminants of emerging concern (U.S. EPA, 1995; Hale 

et al., 2001; Giger et al., 2003; Ternes et al., 2004; Bolong et al., 2009; Venkatesan and 

Halden, 2014). In general, managing biosolids is a major challenge for WWTPs and there 

is a strong need to provide novel alternatives (Tyagi and Lo, 2013). 

This chapter explores, for the first time, the possibility of using smouldering combustion 

as a new method for biosolids management. STARx (Self-sustaining Treatment for 

Active Remediation applied ex-situ) refers to the commercial technology that uses 

smouldering combustion to destroy organic wastes; to date it has been shown to be 

promising for a variety of organic industrial liquid wastes including coal tar, crude oil, 

and mixed hydrocarbons (Switzer et al., 2009; Pironi et al., 2011; Switzer et al., 2014). 

As explained below, smouldering has the potential to treat organic wastes in an energy 

efficient and cost-effective manner. 

3.1.1 Smouldering Combustion 

Smouldering combustion is a flameless, heterogeneous (i.e., fuel and oxidant in different 

phases) oxidation reaction limited by the rate at which oxygen diffuses into the surface of 

a solid or liquid fuel (Ohlemiller, 1985; Switzer et al., 2009). Smouldering is self-
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sustaining when, after a short and localized energy input for ignition, the reaction 

propagates using only the heat produced by the fuel’s oxidation (Switzer et al., 2009). 

Self-sustained smouldering requires a porous material, which provides a high surface area 

for reaction and adequate permeability for air flow (Drysdale, 2011). The majority of 

smouldering research has been performed in the context of fire prevention, and thus has 

focused on solid fuels such as polyurethane foam or stored biomass under natural air flow 

(e.g., He and Behrendt (2009), Palmer (1957), Quintiere et al. (1982), Rein et al. (2006)). 

STARx accelerates the reaction by using forced air flow and, taking advantage of the 

buoyant hot combustion gases, utilizing upwards forward smouldering. In this 

configuration, the reaction propagation and oxidizer flow are both in the upward direction 

against gravity (Torero and Fernandez-Pello, 1996).  

Upwards forward smouldering promotes efficient heat transfer ahead to unburned fuel, 

which extends the fuel’s limits with respect to quenching (i.e., the suppression of 

chemical processes driving combustion) relative to those for flaming combustion 

(Ohlemiller, 1985; Howell et al., 1996; Hadden and Rein, 2009; Yermán et al., 2015). 

This means that smouldering is much less susceptible to extinction than flaming and can 

achieve a self-sustaining reaction using fuels with very low effective calorific values 

and/or significant moisture content (Hadden and Rein, 2009; Yermán et al., 2015). 

Several studies have explored the self-sustained smouldering of peat in the context of 

forest fires. Frandsen (1987) detailed the impact that moisture and inorganic contents had 

on self-sustaining smouldering of peat moss between 0 to 1 moisture/organic ratio and 0 

to 5 inorganic/organic ratio. It was found that the moisture/organic ratio limit that 

permitted self-sustaining smouldering linearly declined with increasing inorganic/organic 
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ratio. Using an ignition protocol roughly equivalent to the heating from a flaming stump, 

100W for 30 min, Rein et al. (2008) found the critical moisture content for smouldering 

ignition to be 55±2% (wet mass basis). Prat et al. (2014) found a dramatic drop in 

smouldering propagation velocity above 25% moisture content (dry mass basis).   

3.1.2 Application of Smouldering for Waste Management 

Intentional smouldering for mass destruction was first developed for remediation of soil 

contaminated by organic industrial liquid wastes (Pironi et al., 2009; Switzer et al., 2009; 

Pironi et al., 2011; Salman et al., 2015). In this case, the fuel (i.e., contaminant) occupies 

a fraction of the pore space of an inert porous medium (i.e., soil). STARx extends this 

concept to intentionally mixing liquid wastes, which may be recently produced by 

industrial operations or were historically disposed in lagoons, with sand to form a 

smoulderable mixture. In addition to providing increased surface area for reaction and 

permeability for air (oxidant) flow, the sand promotes the efficient storage, transfer, and 

recycling of the released reaction energy (Switzer et al., 2014). Smouldering of organic 

liquids in sand typically achieves peak temperatures between 500 – 800°C for many 

minutes in one location resulting in upwards of 99% consumption of fuel, effectively 

producing clean, sterile sand that can be reused (Switzer et al., 2009).  

In examining the sensitivity of a smouldering reaction, of interest is the effect of a 

variable on peak temperatures and reaction propagation rates in the self-sustaining 

regime, and the boundary between self-sustaining and non-self-sustaining reactions. 

Pironi et al. (2011) studied the influence of the fraction of pore space occupied by water 

on the smouldering of coal tar in sand. Though increasing water content reduced the peak 
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temperature and propagation velocity, a self-sustaining reaction was achieved in all cases 

from 0.0 to 75% water-filled porosity and 25% coal tar-filled porosity. This demonstrated 

the ability of an exothermic smouldering reaction to propagate itself and, with the excess 

energy generated, to sustain a water boiling front ahead of the reaction. The propagation 

rate of the reaction (and thus the waste destruction rate) was shown to be linearly 

dependent on air injection rate, which is expected for an oxygen-limited reaction 

(Dosanjh et al., 1987; Schult et al., 1996; Pironi et al., 2009). Smouldering was also 

shown to be sensitive to sand grain size and initial contaminant concentration; the 

reaction was non-self-sustaining for sands with average grain sizes greater than 10 mm 

and initial coal tar concentration lower than 25 000 mg/kg. These specific numbers are 

expected to be a function of experimental scale, with larger grain sizes and lower initial 

concentrations likely self-sustaining at larger scales (Switzer et al., 2014). This is because 

self-sustainability depends on a positive energy balance (heat generation minus heat 

losses) and increased scale means less relative heat loss to the external boundary due to 

lower surface area/volume ratio (Switzer et al., 2014). At a given scale, a boundary 

between self-sustaining and non-self-sustaining smouldering behaviour depends on 

complex interactions between variables that affect heat generation (e.g., fuel energy 

content, oxygen supply), heat retention (e.g., sand and fuel heat capacities) and heat loss 

(e.g., volatile compounds, moisture content) and thus needs to be determined 

experimentally (Torero and Fernandez-Pello, 1996). 

Smouldering research on materials similar to biosolids is largely limited to understanding 

the self-heating and fire hazards associated with their storage (e.g., Chirag et al. (2011), 

Della Zassa et al. (2013), He et al. (2014)). The exception is a study on smouldering 
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faeces for international development purposes by Yermán et al. (2015). That work 

explored the self-sustainability of upwards forward smouldering using surrogate-human 

faeces and dog faeces mixed with sand as a function of faeces moisture content, 

sand/faeces mass ratio, contaminant pack height, and airflow rate. This study showed that 

faeces with moisture content as high as 70% (wet mass basis) could achieve a self-

sustaining smoulder in a 98 cm tall and 16 cm diameter fixed bed using 108 g/min 

airflow and a sand/faeces mass ratio of 4.25. The cool porous medium ahead of the 

reaction provides a condensation zone, which can be problematic for very wet fuels 

(Ohlemiller, 1985). Indeed, accumulated condensation ahead of the smouldering zone, 

resulting from evaporated/boiled water and water produced during oxidation, was shown 

to limit the pack height for a self-sustaining reaction as faeces moisture content increased 

(Yermán et al., 2015).  

These findings suggest that self-sustaining smouldering may provide an attractive 

biosolids destruction option for WWTPs, as it may minimize energy input and biosolids 

processing (e.g., reducing the need for dewatering). Thirty experiments were completed 

to (i) demonstrate, for the first time, the potential for WWTP biosolids to be smouldered, 

(ii) map the parameter space in which biosolids will permit self-sustained smouldering, 

and (iii) understand the sensitivity of the reaction to system energy content and air flux, a 

key operator parameter. This work aims to provide basic design information for 

considering STARx as an alternative biosolids disposal option. A coarse economic 

analysis was also conducted to provide a preliminary evaluation of the potential payback 

period large WWTPs may find from replacing typical biosolids disposal (i.e., land 

application or incineration) with STARx.  
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3.2 Materials and Methodology 

3.2.1 Experimental Setup and Procedure 

Biosolids were obtained from Greenway Pollution Control Centre (Greenway) in 

London, Ontario, Canada. Greenway utilizes a typical wastewater treatment path, where 

primary clarification initially removes settleable solids (primary sludge). The waste 

activated sludge is settled out in secondary clarification following aerobic digestion, and 

is thickened in either dissolved air flotation units or rotating drum thickeners. The 

combined primary and waste activated sludge is dewatered via centrifugation with 

polymer addition, and the sampling point for all biosolids used in this study was located 

after this final processing step.  

Biosolids initial moisture content (MC) and ash content, measured by EPA Method 1684 

(U.S. EPA, 2001), and biosolids dry higher heating value �����
��	�

��

�
�, measured using 

a bomb calorimeter, are summarized in Table 3.1 (see Appendix A for full results). The 

presented values represent the minimum and maximum average properties measured 

from four batches (19 – 120 L) gathered 10 months apart. Each value in the first row of 

Table 3.1 is an average of at least three measurements from a batch that were all within 

10% of the average. Note that the ash content represents (���	������ − ��������	������). 

Table 3.1 further demonstrates that the measured values compare well against values 

from literature. However, since the measured ����
� range was slightly lower than 

typical, this suggests that the employed biosolids provided a conservative sample with 

respect to biosolids energy content (WEF, 1988; Metcalf and Eddy, 2003).  
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Table 3.1: Biosolids Key Properties 

 Initial Moisture Content 
% 

(gwater/gtotal) 

Ash Content 
% 

(gash/gdry) 

Dry Higher Heating 
Value 

(kJ/gdry) 
Measured on  

Greenway 
Samples 

72.2, 79.9 18.6, 22.8 17.2, 18.1 

Literature 
Comparison 

70.0 –90.0a 17.8, 27.5b 23.0 – 29.0c  
20.0 – 23.0c 

a Biosolids moisture content range following dewatering via centrifugation (Metcalf and Eddy, 2003) 
b Ash content range from two samples of raw sewage sludge (Cui et al., 2006)  
c Primary (high range) and activated sludge (low range) higher heating value ranges (WEF, 1988; 
Metcalf and Eddy, 2003) 

 

To preserve the biosolids between the time of collection and experimentation, the 

biosolids were dried to <1% MC and stored in a 5°C cold room. When preparing an 

experiment, the stored biosolids were manually crushed to a particle diameter near 1 cm 

and mechanically mixed (KSM7581MS, KitchenAid) with water to reach the desired 

biosolids MC. The biosolids re-wetted to the initial MC exhibited some qualitative 

differences from the virgin biosolids, such as less absorbed (i.e., interstitial, bound) water 

(Vesilind and Martel, 1990). This is likely due to irreversible changes in the biosolids 

particles’ structures upon drying and rewetting (Vesilind and Martel, 1990). Several 

smouldering experiments were conducted with virgin biosolids to confirm that, despite 

any qualitative differences in the appearance of the fuel, the rewetted biosolids provided 

indistinguishable quantitative smouldering data as detailed in Section 3.3.2 (further 

details in Appendix C).  

Column smouldering experiments followed established experimental procedures (Switzer 

et al., 2009; Pironi et al., 2011; Yermán et al., 2015), which are briefly reviewed here. 

Figure 3.1 illustrates the experimental setup and data collection equipment. A 60 cm tall 

and 15 cm diameter stainless steel column rested upon a base component that housed a 



56 

 

coiled resistive heater (450 W, 120 V, Watlow Ltd.) and an air injection manifold. 

Sixteen thermocouples (Type K, Omega Ltd.) inserted horizontally into the centre of the 

column at 3.5 cm intervals along the column height were employed to track temperatures. 

The heater was connected to a 120 V AC, single-phase variable power supply (STACO 

Energy Products) and the entire column was wrapped in insulation (5 cm thick mineral 

wool, McMaster Carr) as is typical in smouldering studies to mimic larger scale systems 

where external heat losses are less prevalent (Switzer et al., 2009). The apparatus rested 

on a mass balance (KCC150, Metler Toledo) to provide real time mass loss. The 

emissions from a select number of experiments (presented in Appendix D and noted in 

Table 3.2) were analyzed for volume fractions of carbon monoxide, carbon dioxide, and 

oxygen using a gas analyzer (MGA3000C, ADC). The mass balance, thermocouples, and 

gas analyzer were connected to a data logger (Multifunction Switch/Measure Unit 

34980A, Agilent Technologies) and personal computer, which logged all readings every 

two seconds.  

Clean sand was packed into the apparatus base until just covering the heater and air 

manifold. Coarse sand (Number 12, Bell & Mackenzie Co., mean grain diameter = 0.88 

mm, coefficient of uniformity = 1.6) and biosolids, mechanically mixed in three batches, 

was packed in the column above the base to a height of 40 cm in 10 cm lifts. This was 

topped with 15 cm of clean sand. All experiments were subjected to a uniform ignition 

procedure with the heater on until the first thermocouple, 2 cm above the heating 

element, reached 200˚C. Air injection was then initiated, achieved by a mass flow 

controller (FMA5400/5500 Series, Omega Ltd.) connected to laboratory compressed air. 

The heater was turned off after the first thermocouple reached its peak temperature, and 
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the subsequent combustion was sustained by the energy released by the biosolids during 

upwards forward smouldering. Excluding heater inefficiency, the resistance heater 

provided a constant heat flux of approximately 408 W (3.4	�	�	120	�). The length of the 

preheating phase varied between 1 and 4 hours depending on the biosolids MC and 

sand/biosolids mass ratio (S/B). The air remained on until the reaction extinguished and 

the entire column cooled to ambient temperatures. 

 

Figure 3.1: Illustration of the experimental set up. 

Table 3.2 summarizes the twenty-three experiments (Experiments No. 0 to 23, excluding 

10) performed to map the self-sustaining smouldering parameter space using biosolids 

with initial MCs ranging from 74 to 85% and S/Bs from 1.5 to 23 g/g. The focus was on 

the most economical condition for biosolids treatment, where the least processed (i.e., the 

wettest) biosolids can be destroyed at the maximum organic destruction rate (i.e., using 

the least amount of sand). All experiments were classified as self-sustaining (SS), non-

self-sustaining (NSS), or borderline self-sustaining (BSS) (further defined in Section 

3.3.1). These experiments also served to quantify the changes in key combustion metrics 
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(peak temperature, propagation velocity, and mass loss rate) within this parameter space. 

These experiments all used the same sand and an air flux of 3.3 cm/s (volume of air per 

unit cross-sectional area of column per time, i.e., Darcy flux). Seven experiments 

(Experiments No. 10 and 24 to 29) were performed to examine the sensitivity of the 

process to air fluxes between 1.6 and 8.1 cm/s for self-sustaining experiments with 

biosolids at both 73% and 79% MC and a non-self-sustaining experiment with 80% MC 

biosolids. In all cases, the reported combustion metrics were measured from the 

smouldering front passing through the middle 50% of the contaminant pack, between 

thermocouples (TCs) 3 and 9, as this region was unaffected by boundary effects (further 

discussed in Section 3.3.1). The smouldering front propagation velocities were calculated 

by averaging all local velocities (i.e., distance between successive thermocouples divided 

by time of arrival of the front), following the method of Pironi et al. (2009). A moving 

average of 2.7 and 1.7 min was applied to the mass loss data and the calculated mass loss 

rate, respectively, to reduce minor random noise in the mass balance data.  

Additional experiments at very low S/Bs are excluded from Table 3.2 because they 

represent a failure condition that is expected to be unique to this experimental scale (see 

Appendix E). 
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The energy content of the biosolids is a function of MC. The biosolids lower heating 

value (����)	�
��

�
� was estimated (Boundy et al., 2011):  

 	���� = �(1 −��)�����
�� − [�����	] (�) 

where ��(%) is the biosolids MC and �� �
��

�
� is the latent heat of vaporization of water, 

2.447 kJ/g at 25˚C. The equation demonstrates that as the MC of the fuel increases, the 

energy content linearly decreases. The ��� calculation assumes: (1) complete 

combustion (i.e., full oxidation of carbon compounds to carbon dioxide and water 

vapour) (Washburn, 1933), and (2) none of the energy lost during water 

evaporation/boiling is recovered (Boundy et al., 2011). Neither of these assumptions is 

true for smouldering; some incomplete combustion is expected (Ohlemiller, 1985; 

Yermán et al., 2015) and some heat recovery from steam is achieved. Therefore, these 

values are qualitative, presented to explain the relative change in energy content as 

biosolids MC changes.  

The energy content of a unit mass of sand and biosolids mixture depends on the S/B in 

addition to the MC of the biosolids. The effective system lower heating value (����
�) is 

here estimated: 

 
	����

� = 	
����

�1 +
�
��

 
(�) 

The equation reveals that as the amount of fuel dilution by sand increases, the effective 

energy content of the mixture linearly decreases. Note that ���� and ����
� are bulk 

metrics considering each batch column experiment as a whole. However, it is 
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acknowledged that individual smouldering column experiments are dynamic systems in 

which local properties such as MC, S/B, and reaction and condensation zone thicknesses 

vary in space and in time. Nevertheless, ���� and ����
� are considered suitable simple 

metrics for the purpose of categorizing the differences in the bulk, static energy balance 

between batches. 

The ‘initial’ and ‘final’ values provided in Table 3.2 quantify the loss of moisture from 

the reaction zone prior to ignition during the preheating phase. There were two main 

sources of losses: (1) evaporation/boiling out of the column top, and (2) downwards 

water migration into the base of the apparatus and below the heater. These quantities 

were estimated with the mass loss data: the mass loss observed during preheating was 

assumed to be water boiling, while the mass remaining after the reaction reached the top 

of the column (TC13) was assumed to be water remaining below the heater due to early 

downwards mobilization. A mass balance analysis (Appendix F) indicates that these 

assumptions are robust and provide a conservative (i.e., low) estimate of the MC in the 

reaction zone as the front progresses. Table 3.2 reveals that overall the decrease in MC in 

the biosolids to be treated was 0 – 5%, with the higher values in the wettest 

biosolids/sand mixtures. It is noted that the mass of water below the heater could not be 

estimated by this method for the NSS and BSS experiments, so only evaporation/boiling 

was accounted for in those cases. In the Results and Discussion, all reported biosolids 

MC and S/B values are ‘final’ values (i.e., corrected for moisture changes occurring after 

packing) unless specified as ‘initial’. In Table 3.2, every ���� and ����
� is computed 

for ‘final’ conditions. 
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3.3 Results and Discussion 

3.3.1 Definition of Self-sustaining and Non-Self-sustaining Experiments 

Figures 3.2 and 3.3 illustrate the temperature profile and mass loss rate over time from a 

SS and NSS experiment, respectively. Figure 3.2 shows smouldering Experiment No. 4 

(Table 3.2) with 74% MC biosolids mixed at 4.6 g/g S/B. Until 34 minutes, the data 

illustrates the boiling of water out of the 2 cm region closest to the heater (TC1). The 

boiling region lengthens until 90 minutes when the bottom 2 cm region dried and the 

temperature rose above 100°C; when it reached 200°C (162 min), the airflow was turned 

on. In this case, the water boiled during preheating did not leave the column but 

condensed in upper, cooler regions of the column; this is inferred from the negligible rate 

of mass loss during the preheating period. The forced airflow ignited the biosolids nearest 

to the heater, as seen in TC1’s sharp increase to 657°C at 167 minutes, at which time the 

heater was turned off. The smouldering behaviour in Figure 3.2 is identified as SS due to 

(1) the consistent peak temperatures, here 548°C, as the smouldering front propagates the 

full length of the column, and (2) the steady rate of mass loss, here 18 g/min in the central 

portion of the column. This represents the first demonstration of the self-sustaining 

smouldering of WWTP biosolids. 

Consistent boundary effects hold for all SS smouldering experiments. First, an atypically 

high peak temperature observed at TC1 (and corresponding high mass loss rate) due to 

excess energy supplied from the heater. Second, a declining mass loss rate as the front 

thickness shrinks as it approaches the top of the contaminant pack. Thus, only the data 

between TC3 and TC9 was considered when quantifying the combustion metrics for all 
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SS experiments. The minimal mass loss from boiling and water migration below the 

heater in this case, means that the ‘final’ MC is unchanged from 74% (see Table 3.2). 

The total mass loss indicated that 98% of the biosolids volatile solids and water within 

the system was removed over the experiment’s duration. The remaining mass is primarily 

trapped condensed pyrolysate in the top sand cap, and char remaining in a thin layer 

around the inside wall of the column due to edge effects; it is not associated with 

remaining biosolids as the sand in the reaction zone was found to be completely clean 

and dry upon excavation (see Appendix F). The smouldering front propagation velocity 

was constant at 0.38 cm/min. TC12 and TC13 are in the clean sand cap and TC13 and 

TC14 are in the air above the column; their low temperatures during the smouldering 

phase show the extent of energy capture and recycling within the unburned fuel. After the 

biosolids are destroyed, TC12 and TC13 reveal the forward propagation of the heat wave 

and convective cooling of the clean, hot sand by forced air. 

In contrast, Figure 3.3 illustrates a NSS reaction for Experiment No. 6 (Table 3.2) with 

83% MC biosolids mixed at 5.8 g/g S/B. The preheating and ignition characteristics are 

similar to Figure 3.2. The subsequent declining peak temperatures of 465°C to 319°C 

from TC3 to TC9 reveals insufficient energy released relative to the heat losses; here the 

heat losses are considerably increased due to almost doubling the water/dry biosolids 

mass ratio relative to the SS 74% MC case discussed above. The mass loss rate 

correspondingly linearly declines from 9 – 5 g/min over this same region, providing 

additional evidence that the smouldering reaction is dying after ignition. Clearly, 

biosolids can be smouldered in a self-sustaining manner under some conditions and not 

others; this parameter space is mapped out in Section 3.3.5 below. 
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Figure 3.2: Temperature and mass loss rate for Experiment No. 4, a self-sustaining 

smouldering experiment with 74% moisture content re-wetted biosolids in a fixed 

bed at a 4.6 g/g sand/biosolids mass ratio. The solid lines represent thermocouples 

within the contaminant pack.  

 

Figure 3.3: Temperature and mass loss rate for Experiment No. 6, a self-sustaining 

smouldering experiment with 83% moisture content re-wetted biosolids in a fixed 

bed at a 5.8 g/g sand/biosolids mass ratio. The solid lines represent thermocouples 

within the contaminant pack. 
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3.3.2 Comparison between Rewetted Biosolids and Virgin Biosolids 

Comparing re-wetted to virgin biosolids experiments indicates that the employed method 

of re-wetting biosolids does not significantly affect the propagation of a SS reaction, as 

all of the combustion metrics differed less than 6% (see Experiments No. 0, 1, and 4 in 

Table 3.2; also see Appendix C for full results). However, when comparing conditions 

that result in NSS reactions, re-wetted biosolids led to more rapid quenching of the 

reaction than did virgin biosolids. This is expected to result from the increased downward 

migration of water towards the smouldering front; recall that re-wetted biosolids had a 

much higher fraction of free (i.e., mobile) water. Therefore, using re-wetted biosolids in 

place of virgin biosolids provides meaningful results that are nearly identical to those 

obtained from virgin biosolids, though re-wetted biosolids likely provide a conservative 

(i.e., lower MC) estimate of the smouldering quenching limits.   

3.3.3 Repeatability of Self-sustaining Experiments 

Table 3.3 presents six experiments that explored the repeatability for two SS scenarios: 

(1) 73% MC biosolids at 4.7 g/g S/B, which is far from the quenching limit, and (2) 79% 

MC biosolids at 4.4 g/g S/B, which is close to the quenching limit. As these S/Bs were 

quite similar, the differences between these scenarios are mainly attributed to the 

increased biosolids MC, which shifted the overall energy balance.  
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Table 3.3: Combustion Metrics’ Variability Far From Quenching (73% Biosolids 

Moisture Content, 4.7 g/g Sand/Biosolids Mass Ratio) and Near Quenching (79% 

Biosolids Moisture Content, 4.4 g/g Sand/Biosolids Mass Ratio) 

Experiment 
No. 

Quenching 
Limit 

Proximity 

Average Propagation 
Velocity 
(cm/min) 

Average Peak 
Temperature  

(˚C) 

Average Mass 
Loss Rate 
(g/min) 

0a 

Far 
0.41 529 17 

1 0.47 555 - 
4 0.38 548 18 

Average of 
3 Repeats1  0.42±12% 544±2.8% - 

31 
Near 

0.28 482 12 
32 0.26 441 10 
18 0.20 456 8.6 

Average of 
3 Repeats1  0.25±19% 460±5.1% 10±19% 

aVirgin biosolids were employed and, due to its strong similarity to the re-wetted biosolids results, it has 
been included as a repeat. 
1 The 95% confidence intervals between experiments were assumed normally distributed. 

The small variability in key combustion metrics suggests the experimental methodology 

is reproducible. It is noted that the relative variability generally increased slightly with 

increasing biosolids MC. Overall, it can be concluded that results with greater than 20% 

change in average propagation velocity and average mass loss rate, and greater than 6% 

change in average peak temperature, are due to intentionally varied experimental 

parameters.    

3.3.4 Smouldering Propagation Velocity Sensitivity to Air Flux 

The smouldering combustion’s sensitivity to varying air flux was explored as it can be 

considered a key operator control parameter for the mass destruction rate and will aid in 

full scale system design. Figure 3.4 presents the smouldering propagation velocity as a 

function of air flux far from the quenching limits (73% MC biosolids, 4.7 g/g S/B) and 

near the quenching limits (79% MC biosolids, 4.4 g/g S/B). The smouldering front 
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velocity in the 73% MC experiments increased from 0.23 to 0.62 cm/min (2.7 times 

increase) resulting from increasing the air flux from 1.6 to 6.5 cm/s (4.1 times increase). 

The 79% MC experiments exhibited slower front velocities from 0.18 to 0.45 cm/min 

(2.5 times increase) over the same increase in air flux. A linear relationship between the 

two agrees with smouldering of contaminated soil over a similar range of air fluxes at a 

comparable scale (Pironi et al., 2009). This suggests that the reaction is oxygen limited 

over the employed air flux range (Dosanjh et al., 1987; Schult et al., 1996).  

 

Figure 3.4: Average smouldering propagation velocity as a function of air flux for 

73% moisture content biosolids in a fixed bed at a 4.7 g/g sand/biosolids mass ratio 

(black triangles) and for 79% moisture content biosolids in a fixed bed at a 4.4 g/g 

sand/biosolids mass ratio (white triangles). The error bars indicate the 95% 

confidence intervals from three repeat experiments.  

3.3.5 Mapping the Self-sustaining Smouldering Parameter Space 

Mapping the parameter space in which biosolids facilitate a SS smouldering reaction is 

important for determining the maximum destruction rate possible and minimum amount 
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of sludge pre-drying necessary. In Figure 3.5, the vertical axis plots biosolids MC while 

the horizontal axis considers S/B, as these represent two key system metrics to be 

optimized. The parameter space map distinguishes between SS (green, square symbols) 

and NSS (red, triangle symbols) experiments, with a black dashed line approximating the 

biosolids quenching limits at the column scale. Figure 3.5 reveals first that biosolids with 

a MC above 70% and up to 80% can be successfully smouldered in a SS manner. This is 

a novel, important result, the consequences of which are further discussed in subsequent 

sections. Second, it is important to acknowledge that biosolids cannot be smouldered in 

the absence of mixing with sand (i.e, S/B = 0). In that case, the re-wetted biosolids lack 

the key permeability and heat retention characteristics provided by the sand. Once sand is 

added, however, Figure 3.5 reveals that SS smouldering is possible over a wide range of 

S/B ratios and that the chosen S/B influences the biosolids MC that can be smouldered.  

To aid analysis and discussion, the parameter space is divided into three regions. In 

Region I, where there is minimal dilution of the fuel with sand (S/B<3.5 g/g), a linear 

increase in the MC of the biosolids that can be smouldered is achieved with increasing 

S/B. Three likely reasons for this are: 1) higher S/B means less biosolids filling the sand 

pore space, which increases the surface area available for smouldering combustion; (2) 

increased permeability to air, which decreases the pressure drop across the column and 

decreases air pore velocities thus increasing the oxygen residence time through the 

reaction zone; and (3) increased effective heat capacity (sand plus biosolids) in the drying 

zone, which promotes heat retention and mitigates heat losses ahead of the smouldering 

front. 
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In Region II, where fuel dilution by sand is intermediate (3.5 g/g<S/B<11 g/g), a plateau 

at approximately 80% biosolids MC is observed above which SS smouldering is not 

possible regardless of further increases in the amount of sand (Figure 3.5). The ���� – 

which is constant for a given MC and independent of S/B (see Equation 1) – governs the 

SS/NSS divide in this region. The ���� above 80% MC is less than 1.6 kJ/g; for 

comparison purposes, the ��� of wood with 10 – 60% MC is 17 – 8.4 kJ/g, respectively, 

and for charcoal with 1 – 10% MC is 32 – 25 kJ/g, respectively (Quaak et al., 1999). It is 

expected that the heat losses in the system, primarily due to the large fraction of water 

when biosolids MC>80%, exceeds the energy produced during smouldering. However, 

Figure 3.5 reveals that SS smouldering is possible over a large range in this region for 

MC<80%, with S/B as high as 11 g/g. 

Region III, characterized by high fuel dilution by sand (S/B>11 g/g), was explored with 

only two experiments – Experiments 7 and 8 (Table 3.2) – since it is far from the optimal 

region for commercial treatment of biosolids. For 72% MC biosolids, it was found that 

increasing the S/B from 11 to 25 g/g shifted from SS to NSS smouldering, corresponding 

to a drop in ����
� from 0.28 to 0.12 kJ/g, respectively. The high S/B limit is likely 

governed by a minimum system energy content value in this range, which is probably a 

function of the heat losses at a given scale of experimentation (Switzer et al., 2014; 

Yermán et al., 2015). It is important to note that the ����
� and ����, which provide 

critical thresholds of SS smouldering in Regions II and III, are not alone able to predict 

the SS/NNS divide in Region I, as neither account for the complexity of interrelated 

factors discussed above that cause quenching when the dilution by sand is minimal. 
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Two BSS (borderline SS) experiments are included on the SS boundary in Region I. 

These experiments exhibited SS smouldering through 65% of the contaminant pack, but 

abruptly extinguished leaving un-burnt, wet biosolids above the corresponding height 

(See Appendix G). It is suspected that these BSS experiments were sensitive to moisture 

accumulation ahead of the smouldering front due to condensation as observed for 

smouldering of wet faeces in tall columns (Yermán et al., 2015). This means the lower 

part of the column was in the SS region but the MC conditions were changing in the 

upper part of the column so as to leave the SS region, leading to quenching. It is 

interesting to note the close proximity of SS and BSS Experiments No. 3 and 2, 

respectively. This suggests that due to experimental variability (e.g., column packing, 

water redistribution, preheating time, etc.) some slight perturbation on SS reactions near 

the quenching limits could result in poorly repeatable quenching behaviour.  
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Figure 3.5: Parameter space illustrating the biosolids moisture content and 

sand/biosolids mass ratio combinations that facilitate self-sustained smouldering at 

a Darcy air flux of 3.3 cm/s. The error bars denote 95% confidence intervals 

obtained from three repeat experiments. All relevant experiments are numbered 

(see Table 3.2) and the three key self-sustaining regions (I, II, and III) are identified 

in darkening shades of gray for further discussion in the text. The biosolids lower 

heating value (����) defining the self-sustaining boundary in Region II is labelled, 

as well as the effective system heating values (����
�) for Experiments No. 8 and 7, 

which define the self-sustaining boundary in Region III.    

A potential optimum for operating a biosolids smouldering system is observed at the 

intersection of the dashed black lines between Regions I and II in Figure 3.5: biosolids 

with a MC of 80% within a S/B of the mixture of 3.5 g/g (i.e., in the vicinity of 

Experiment No. 3). This is significant because such high MC biosolids would otherwise 

require (i) extensive processing (e.g., dewatering, thickening, pre-drying) or (ii) 

supplemental fuel for disposal in incinerators, and it is these costs that often dominate the 

disposal operating cost (Werther and Ogada, 1999). 
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It is noted that this optimal location in Figure 3.5, as well as the region boundaries 

identified in the figure, are not absolute.  These limits are specific to the system variables 

employed (i.e., scale of experiment, sand grain size and distribution, airflow injection 

rate, biosolids properties). It is expected that the limits would shift in response to 

changing system variables. For example, it is known that larger scale systems are more 

energy efficient because the surface area-to-volume ratio of the reactor is reduced 

(Switzer et al., 2014). Thus a larger smouldering system may shift the boundary between 

Region I and II upwards and to the left, since reduced heat losses would allow wetter 

biosolids to smoulder for the same energy content. The most representative process limits 

and optimal system conditions should be determined at the pilot scale for a given 

application (biosolids, sand). Furthermore, it is noted that the boundary between Regions 

I and II represents both a theoretical and a practical limit on smouldering, since as MC is 

increased the energy balance is shifted further towards quenching and the boundary 

identifies where this balance tips. However, the boundary between Regions II and Region 

III is only a practical limit and not a theoretical limit; theoretically, there is no limit on 

how much sand dilution can occur since the energy dilution could be compensated for by 

other factors (e.g., increased airflow rate). Despite all these qualifications, we expect that 

the optimal location and boundary limits identified in Figure 3.5 are (a) conservative, 

because this small scale exhibits maximum heat losses, and (b) broadly representative of 

those expected for smouldering of biosolids; thus, overall it provides an important 

starting place to support further research and up-scaling. 
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3.3.6 Smouldering Robustness among Self-sustaining Experiments 

Section 3.3.5 had separated all experiments into SS, BSS, and NSS cases; here we discuss 

the sensitivity of the robustness of the smouldering reaction amongst the SS experiments. 

This is explored by comparing the mass loss rate and average peak temperatures as a 

function of both ����
� and air flux in Figures 3.6 and 3.7, respectively. The SS reactions 

that are most robust, or least sensitive to quenching, are expected to exhibit the highest 

average peak temperatures and highest mass loss rates (Yermán et al., 2015). 

 

Figure 3.6: The average peak temperatures (downward triangles) and average mass 

loss rate (circles) from self-sustaining experiments versus effective system lower 

heating value. All experiments were completed with a Darcy air flux of 3.3 cm/s. The 

error bars indicate the 95% confidence intervals from three repeat experiments and 

all experiments are numbered (see Table 3.2) for further discussion in the text. 
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Figure 3.7: The average peak temperatures (downward triangles) and average mass 

loss rate (circles) from self-sustaining experiments far from the quenching limits 

(73% MC biosolids, 4.7 g/g S/B) (black) and near the quenching limits (79% MC 

biosolids, 4.4 g/g S/B) (white) resulting from increasing Darcy air flux. The error 

bars indicate the 95% confidence intervals from three repeat experiments.      

Recall that ����
� is a measure of the energy content of the fuel/sand mixture and depends 

on both biosolids MC and S/B. Figure 3.6 shows that increasing the ����
�, by decreasing 

biosolids MC and/or decreasing S/B, linearly increased the average peak temperatures 

and logarithmically increased mass loss rates for SS experiments. This is due to excess 

energy driving hotter reactions that, in turn, support faster reaction kinetics. These trends 

are clearest amongst the SS experiments that lie furthest from the low S/B quenching 

limits, as defined in Figure 3.5 and Section 3.3.5 above (i.e., Experiments No. 0, 1, 4, 8, 

15, and 16). The remaining SS experiments (i.e., Experiments No. 3, 5, 17, 19, 28, and 

29) are near the low S/B quenching limits (i.e., near the black dashed lines from Region I 

and II in Figure 3.5) and exhibit some scatter around the trends in Figure 3.6. In 
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particular, Experiment No. 19 experienced a unique ‘U’ shaped peak temperature and 

mass loss rate profile as the smouldering robustness dropped considerably through the 

middle 30% of the contaminant pack, which lowered its average peak temperature and 

mass loss rate (see Appendix G). Overall, it is observed that within the SS set of 

experiments, there is considerable variability in smouldering metrics. Nearly a four-fold 

increase in biosolids mass destruction rate is possible, all other operational factors being 

equal, by maximizing the ����
� of the biosolids/sand mixture. 

In Figure 3.7, an increase in smouldering robustness as a function of air flux is observed 

for the two SS cases, one far from the quenching limits (Experiments No. 0, 1 ,4, 24, 25; 

Table 3.2) and one near the quenching limits (Experiments No. 17, 26, 27, 28, 29; Table 

3.2). For the 73% MC experiments (far from the quenching limits), increasing the air flux 

from 1.6 to 6.5 cm/s increased the average mass loss rate and average peak temperature 

from 11 g/min and 481°C to 25 g/min and 569°C, respectively. For the 79% MC 

experiments (near the quenching limits), the same increase in air flux produced lower 

mass loss rates and average peak temperatures from 6.4 g/min and 391°C to 17 g/min and 

495°C, respectively. The increase in robustness with air flux, especially the logarithmic 

increase in temperature, is largely due to the increase in the oxygen concentration in the 

bulk pore space in the reaction zone and associated increase in oxygen flux diffusing into 

the smouldering fuel surface (Dosanjh et al., 1987; Leach et al., 2000; Yermán et al., 

2015). For both cases, the emissions’ carbon monoxide/carbon dioxide volume ratio was 

found to decrease with increasing air flux, indicating a lower fraction of incomplete 

combustion and providing further evidence of increased robustness (for details see 

Appendix D) . 
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This raises the question of to what degree the SS/NSS distinctions identified in Figure 3.5 

are a function of the fixed air flux of 3.3 cm/s used in those experiments. Increasing the 

air flux from 3.3 to 8.1 cm/s did not affect the NSS result in Experiments No. 9 and 10 

(80% biosolids MC and 2.6 g/g S/B, Table 3.2) (see Appendix C). As these experiments 

were quite close to the low S/B quenching limits in Figure 3.5, it is concluded that 

increasing the air flux will likely not overcome the heat losses in many NSS smouldering 

cases limiting the ability to significantly stretch the SS parameter space towards the left 

(i.e., further into the more economical S/B region). Conversely, there is a minimum air 

flux required for SS smouldering, which, from the SS results in Figure 3.7, is lower than 

1.6 cm/s for mixtures either near or far from the quenching limits identified in Figure 3.5. 

For comparison, Pironi et al. (2011) found SS smouldering achievable in coal tar and 

sand using an air flux at least 0.5 cm/s and Yermán et al. (2015) found the minimum air 

flux was a function of sand/faeces mass ratio (S/F), where a SS reaction was achieved 

with 0.74cm/s when the S/F was at least 3.75 g/g. The minimum air flux has not been 

explored in this study as it represents an uneconomical condition (i.e., minimum mass 

destruction rate from Figure 3.7).  

This gradation in SS smouldering robustness has important implications when 

considering the applicability of smouldering as a practical process for WWTPs. 

Generally, biosolids experience temporal variability in properties due to plant conditions, 

seasonality, weather conditions, etc. (King and Painter, 1986). This variability is expected 

to shift the sand/biosolids mixture properties (i.e., ���� and	����
�) with respect to the 

quenching limits. Regular monitoring of biosolids key properties (e.g., Table 3.1) would 

assist in (a) ensuring the system is in the SS region where it is sufficiently robust and can 
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withstand variations, and (b) balancing proximity to the quenching limits, where the 

system is most economical (minimum sand, maximum destruction rate). Manipulating the 

S/B or the amount of biosolids pre-drying would be cumbersome in response to property 

changes. Manipulating the air flux may be the most straightforward tool for increasing 

the smouldering’s robustness near the quenching limits. However, the limits of this 

approach need to be fully understood (Sato and Sega, 1985). It is noted that the column 

scale is the most challenging for testing smouldering, since the surface area to volume 

ratio – and thus heat losses – are maximized (Switzer et al., 2014). This means the results 

presented are likely highly conservative relative to a full scale application. In other 

words, the SS/NSS boundary identified in Figure 3.5 may represent robust smouldering 

conditions at full scale application where heat losses are minimized. For these reasons, 

optimization of the system operation and boundaries of the parameter space for treatment 

at a WWTP should be done at the pilot or full field scale. 

3.3.7 Economic Considerations 

An economic analysis has been completed to estimate the expected payback period and 

cost savings for considering STARx as a biosolids treatment retrofit in an existing 

WWTP. 80% MC biosolids in a 3.5 g/g S/B fixed sand bed was assumed as the most 

economical condition for STARx, as identified in Section 3.3.5. Operating costs were 

assumed for a large WWTP similar to Greenway, a high capacity plant rated at 150 000 

m3/day influent that produced 45 dry tons/day of biosolids in 2013 (City of London, 

2014). Cost savings associated with replacing either land application or incineration were 

considered, as these are the most popular disposal methods practiced in Canada 

(Apedaile, 2001). 
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Each biosolids disposal option requires a specific sequence of sludge processing steps, or 

‘processing path’, to ensure the waste is in a suitable condition. The biosolids processing 

path assumed for land application, incineration, and STARx are summarized in Table 3.4 

(see Chapter 2 for further discussion on the assumed paths). Land application requires 

some degree of sludge stabilization to achieve either Class A or Class B biosolids for safe 

use and, depending on the desired biosolids MC, may also require rigorous thickening 

and dewatering with polymer addition (U.S. EPA, 1995). Biosolids for incineration do 

not usually require stabilization but need dewatering and thickening (usually with 

polymer addition) to reach a final MC between 60 – 85% (U.S. EPA, 2003b). An 

economical processing path, following the anticipated changes in biosolids properties, 

was chosen for the biosolids to reach 80% MC biosolids with a ���� greater than 1.6 

kJ/g, such that it is suitable for treatment by smouldering with the STARx process. This 

processing path only requires minimal biosolids dewatering and thickening, without 

polymer addition. Each step in a processing path has a range of reported costs, which 

depends on many factors including: local equipment, available infrastructure, prior 

processing, influent characteristics, and plant size (Metcalf and Eddy, 2003). For a given 

processing path, summing the lowest cost estimates for all steps provides a low-end 

estimate of the processing path cost, while summing the highest cost estimates provides a 

high-end processing path cost. Ranges also exist for estimates of the disposal costs per 

dry ton of biosolids, from which the highest and lowest reported values provide the end-

points. Taken together, it is possible to define the envelope of expected costs, from the 

highest possible processing and disposal costs (high/high), through intermediate cases 

(high/low, low/high) to the lowest possible total cost for both steps (low/low). The range 
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of possibilities in combining processing/disposal endpoint costs to define the members of 

the sensitivity analysis presented below is summarized in Table 3.4. 

The expected costs, both the low and the high ends of the reported ranges, for all 

biosolids processing steps and disposal options are summarized in Table 3.5; here all 

costs are independent of previous processing steps. These estimates of operating and 

capital costs were obtained primarily from United States Environmental Protection 

Agency technical documents (U.S. EPA, 2000a; 2000b; 2000c; 2000d; 2000e; 2000f; 

2000g; 2002; 2003a; 2003b; 2003c; 2006a; 2006b). All costs acquired from older 

publications were converted to present value using standard US inflation (The World 

Bank, 2015). Chapter 2 presents a summary of these costs mapped onto a WWTP 

biosolids processing flow diagram. The STARx operating and capital cost estimates were 

provided by Savron, the company implementing the technology commercially (G. Grant, 

Personal Communication, January, 2015). An initial investment of $7.5 million is 

expected to implement STARx in a WWTP to handle a high biosolids loading and a 

conservative minimum acceptable rate of return of 15% was used to calculate all 

discounted payback periods. The capital associated with an incinerator or equipment for 

land application is neglected since this analysis only considers a WWTP retrofit. 

Table 3.4: Processing Pathways and Cost End-Points for Considered Disposal Options 

Disposal  Expected Processing Path 
Processing Cost 

Range 
Disposal 

Cost Range 
Land 

Application 
Thickening, Polymer Addition, 
Stabilization, and Dewatering 

High / Low High / Low 

Incineration 
Thickening, Polymer Addition, 

and Dewatering 
High / Low High / Low 

STARx 
Minimal Thickening and 

Dewatering 
Low Fixed 
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Table 3.5: Estimated Biosolids Processing and Disposal Cost Ranges 

Processing | Disposal 
Cost Range ($/dry ton of 

biosolids) 
Low High 

Thickening 4.0 0.40 
Dewatering 94 260 

Polymer Addition  0.0 27.0 
Stabilization 14 470 

1 Land Application  91 440 

Incineration 100 330 
STARx 307 

1 
Land Application costs may be offset up to $80 /wet ton by selling the material as fertilizer (U.S. EPA, 2002), but these savings 

were neglected due to infrequent practice 

 

Figure 3.8 presents the potential cost savings and losses per day resulting from replacing 

incineration or land application at a plant with STARx. A sensitivity has been performed 

on the existing operating costs for each comparison, where high and low costs were 

assumed for each biosolids processing path and disposal option; the exception is STARx 

costs (i.e., capital, processing, and disposal) which remained fixed (see Table 3.4 for all 

cost range assumptions). The discounted payback periods on the initial STARx capital 

have been included for the profitable cases.  

The results in Figure 3.8 suggest that in some cases it may be economical to replace 

existing disposal methods with STARx. In particular, replacing land application appeared 

profitable in all cases except where low land application costs and low biosolids 

processing costs exist. Otherwise, the estimated cost savings using SS smouldering varied 

from $5 000 to $30 000/ day. Furthermore, the analysis suggests that for large WWTPs 

experiencing high costs for both land application and biosolids processing, payback for 

implementing STARx might be on the order of 1 year. This is significant as it suggests 

STARx may be a profitable retrofit with a very short payback period for a wide spectrum 
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of WWTPs that currently practice land application. These high savings mainly result 

from removing sludge stabilization, which is generally quite expensive (Table 3.5).  

Replacing incineration with STARx presents opportunity for savings in only one of the 

four cases: $8 000/day of savings with a discounted payback period of 3 years for a large 

WWTP currently experiencing high incineration costs with high biosolids processing 

costs. This suggests STARx may be a profitable retrofit for a much narrower spectrum of 

WWTPs that currently practice incineration.  

 

Figure 3.8: Summary of cost/benefit for replacing land application and incineration 

with STARx in a high capacity WWTP. The figure considers the four cases of 

whether existing processing and disposal costs are at the high or low end of 

estimated ranges in Table 3.5. Savings from implementing STARx are graphically 

represented with a circle, the size of which indicates the magnitude of savings, and 

the associated text quantifies the savings and discounted payback period on the 

investment. Losses from implementing STARx are graphically represented with a 

triangle, the size of which indicates the magnitude of losses, and the associated text 

quantifies the losses (negative savings).   
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This economic analysis represents only an initial approximation. Important factors not 

considered include: (1) Many WWTPs that employ incineration or land application are 

susceptible to high operating cost variability due to oil and gas price fluctuations. Many 

incinerators are energy intensive and require fuel for start-up or continuous operation, 

while land application costs fluctuate due to transportation costs (Wang et al., 2008; 

Bellur et al., 2009). As STARx employs a SS reaction requiring minimal energy input, its 

operating costs are much less influenced by fuel price fluctuations; (2) STARx is new and 

not yet in full scale operation for any waste treatment, therefore costs are only estimates, 

likely conservative, and are expected to decrease as the technology matures; (3) STARx 

shows a strong potential for heat energy recovery, either from hot sand or the emissions, 

which may further offset biosolids processing and operating costs (Yermán et al., 2015); 

(4) The emissions from smouldering biosolids have not been characterized so the 

emissions treatment system assumed in STARx’s capital and operating cost estimates 

were taken from a STARx system designed to smoulder liquid hydrocarbon wastes. This 

assumption may affect the approximated costs either negatively or positively. WWTPs 

currently practicing incineration may be able to retrofit existing emissions management 

systems, which would lower STARx’s capital cost. Alternatively, the incomplete gaseous 

products produced from smouldering biosolids may necessitate a more robust/expensive 

system than that assumed; (5) STARx’s quenching limitations are expected to extend at 

larger scales, which means that higher biosolids MC or lower S/B could be employed. 

Currently, the analysis assumes an optimized set of conditions taken from column 

experiments, and these conditions are assumed robust enough to permit normal variation 

in daily/seasonal plant conditions; (6) The ash management resulting from STARx has 



83 

 

not been considered; this material needs to be characterized and assessed if there is any 

opportunity for offsetting costs (e.g., fertilizer potential from remaining nitrogen or 

phosphorous, potential for cement and other construction applications, etc.). Otherwise it 

will most likely require landfill disposal and increase operating costs (Donatello and 

Cheeseman, 2013); (7) The maintenance costs have not been fully considered. As there 

are no examples of full scale implementation of STARx, these costs are difficult to 

quantify. (8) No salvage or demolition costs were incorporated in the incineration cases. 

3.4 Summary and Conclusions 

Experimental results indicate that biosolids with MC as high as 80%, with a lower 

heating value greater than 1.6 kJ/kg, may be successfully smouldered in a self-sustaining 

manner. This is significant as WWTP disposal methods often require expensive 

dewatering, thickening, and conditioning processes to reduce the biosolids MC 

significantly below this value prior to disposal. The biosolids need to be mixed within a 

fixed sand bed, where sand/biosolids mass ratios from 1.7 to 11 g/g lead to self-sustaining 

smouldering, even with effective energy contents of the sand/biomass mixtures as low as 

0.28 kJ/g. With a sand/biosolids mass ratio between 1.7 and 4 g/g, increasing biosolids 

MC from 73% to 80% was possible by linearly increasing the amount of diluting sand. 

Above a sand/biosolids ratio of 4 g/g, the upper biosolids MC limit for smouldering 

(80%) was independent of the amount of sand added. The exception was an upper limit 

on the amount of sand that can be added, with smouldering dying when the overall 

energy of the sand/fuel mixture was diluted to 0.12 kJ/g at a sand/biosolids mass ratio of 

25 g/g. These limits are specific to the employed experimental system but are expected to 

be conservative and broadly representative.   
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The robustness of the self-sustaining smouldering reaction, as identified by peak 

temperatures and mass destruction rates, is lowest near the identified quenching limits. 

However, increasing the effective energy content of the sand/fuel mixtures (e.g., by 

lowering biosolids MC) and/or increasing the applied air flux both improve smouldering 

robustness. Increasing air flux also proportionally increased the smouldering front 

propagation velocity. As air flux can be easily varied by the system operator, this presents 

a means for controlling the mass destruction rate.   

An economic analysis shows that there is significant potential for cost savings from 

replacing either incineration or land application disposal methods with STARx. The 

greatest potential was found with replacing land application in a large capacity WWTP 

that experiences high biosolids processing and land application costs. This resulted in an 

estimated payback period on the order of 1 year. The least potential was found for 

replacing incineration, which under the same biosolids processing cost assumptions and 

high incineration costs resulted in an estimated payback period of 7 years.   

This work suggests that smouldering destruction presents significant potential as a new, 

low energy, on-site alternative method for biosolids management that may provide 

significant WWTP operating cost savings resulting from minimized biosolids processing 

and low-end disposal costs. This is a new, beneficial environmental application of 

smouldering in addition to destroying liquid industrial waste and faeces treatment for 

sanitation as previously reported. However, further study is required before it can be fully 

exploited. For example, exploration into the characteristics of the resulting ash, emissions 

analysis, and examining how smouldering is affected by scale of the reactor would be 

beneficial. Additional research into energy recovery (e.g. from the emissions, from the 
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hot sand) may provide additional value. Most of these issues would be best addressed in 

the implentation of a pilot scale smouldering reactor operated on site at a WWTP. 
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Chapter 4 

Conclusions and Recommendations 

4.1 Conclusions  

This thesis explored the potential in using self-sustaining (SS) smouldering as a new 

method for mass destruction of biosolids from a wastewater treatment plant (WWTP). A 

suite of lab scale column experiments varied biosolids moisture content (MC), 

sand/biosolids mass ratio (S/B), and air flux to determine the conditions that cause 

quenching, and to characterize SS reactions. These experiments were quantified in terms 

of mass loss rate, peak temperature, and propagation velocity, where a limited number of 

experiments also quantified the emissions’ carbon monoxide/carbon dioxide volume 

ratio. Following these experimental results, optimal biosolids conditions were assumed 

for a hypothetical full scale implementation of a smouldering combustion system in a 

WWTP via Self-sustaining Treatment for Active Remediation applied ex-situ (STARx). 

The operating and capital costs for this application of STARx were estimated and 

compared against a range of existing WWTP costs in a rough economic analysis. This 

analysis approximated the potential payback period and cost savings for replacing an 

existing WWTP biosolids disposal with a STARx system.  

Results suggest that:  

 SS smouldering was achieved with biosolids having a MC as high as 80% and an 

associated lower heating value (LHV�) greater than 1.6 kJ/g. 
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 S/Bs between 1.7 and 11 g/g supported SS smouldering, where three distinct 

regions were identified that caused quenching. Region I (S/Bs lower than 3.5 g/g) 

was limited by a combination of reaction surface area, air permeability, and heat 

capacity of the drying front ahead of the smouldering front. Region II (S/Bs 

higher than 3.5 g/g and lower than 11 g/g) was limited by a LHV� of 1.6 kJ/g. 

Region III (S/Bs higher than 11 g/g) was limited by the system energy content, 

which may be approximated using the effective system lower heating value 

(LHV�
�), as quenching was observed from a LHV�

� drop from 0.28 to 0.12 kJ/g. 

The LHV� and LHV�
� are bulk metrics used to explain changes in the static energy 

balance between differing S/B mixtures and do not account for dynamic changes 

in the systems. Furthermore, Regions I and II represent both theoretical and 

practical limits, where Region III is only a practical limit. These limits are broadly 

representative of smouldering in this configuration but are specific to the system 

variables (e.g., scale, sand grain size, airflow) and can be pushed, to a limited 

extent, in various directions by changing system variables. 

 To maximize the biosolids destruction rate and minimize biosolids processing, a 

potential optimum condition for smouldering biosolids in a WWTP may be near 

80% MC biosolids using a S/B of 3.5 g/g (i.e., smouldering the wettest biosolids 

with the least amount of sand).   

 SS smouldering was most sensitive near the quenching limits. However, 

increasing the LHV�
� and air flux increased the reaction robustness (i.e., increased 

the peak temperatures and associated mass loss rate), where the increasing air flux 

also linearly increased the propagation velocity. As air flux is an easily 
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manipulated parameter, it may be an appropriate means for controlling the 

smouldering sensitivity and mass destruction rate.  

 There is potential for cost savings in replacing either land application or 

incineration with STARx in a large capacity WWTP. A sensitivity on the cost 

ranges suggested STARx was a profitable replacement for land application, 

except when replacing low cost land application that required low cost biosolids 

processing. Conversely, in regards to replacing incineration, STARx was only 

profitable when replacing high cost incineration that required high cost biosolids 

processing. The greatest savings potential was found when replacing high cost 

land application that required high biosolids processing costs, which resulted in a 

payback on the order of one year.    

In summary, SS smouldering presents strong potential as a new, low energy, on-site 

alternative method for biosolids destruction, which may provide significant WWTP 

operating cost savings due to minimized biosolids processing and low-end disposal costs. 

In a broader context, this suggests the exciting usefulness smouldering may provide as a 

novel waste management technique for many other low calorific/high moisture content 

organic wastes.  

4.2 Recommendations 

As this study serves as an initial investigation in introducing SS smouldering as a new 

biosolids disposal technique in a WWTP, there are many intriguing avenues left for 

further research.  
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The following is recommended: 

 Characterizing the emissions would be valuable prior to full scale 

implementation. As smouldering includes some incomplete combustion, the 

resulting emissions need to be characterized so that proper management is 

implemented.  

 Characterizing the ash may reveal some additional value resulting from 

smouldering biosolids. For example, the ash may have suitable properties as a 

fertilizer due to the bioavailability of the phosphorous and possible presence of 

nitrogen, or value as a concrete additive for construction purposes. Alternatively, 

this ash will otherwise require disposal and increase operating costs.  

 Additional research into energy recovery, either from the hot combustion gases or 

hot sand, would be very beneficial. For example, this may present a source of heat 

for partial drying for biosolids and decrease the operating costs.  

 Finally, the effect of scale needs to be investigated. The quenching limits 

identified in this work are strongly influenced by the scale (e.g., significant heat 

losses out of the column boundaries). Increasing the scale may also increase the 

robustness of the reaction and shift the quenching limits. A pilot scale study 

would be most appropriate to investigate this.    
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Appendices 

Appendix A: Supplemental Biosolids Property Measurements 

In addition to biosolids ash content, moisture content (MC), and dry higher heating value 

(����
�), effective conductivity (Ke) and effective specific heat capacity (Cve) have been 

measured using a handheld thermal analyser (KD2 PRO, Decagon Devices) in Tables A1 

to A4. Further details on experimental conditions are available in Table 3.2 (Chapter 3).         

Table A1: Various Batches of Biosolids Key Properties  

Batch 
Number1,2 

Date batch 
Collected 

Relevant 
Experiments 

No. 

Moisture 
Content % 
(gwater/gtotal) 

Ash Content 
% 

(gash/gdry) 

Dry Higher Heating 
Value (����

�) 
(kJ/gdry) 

1a 06/02/2014 2 to 8, 12 to18 

73.2 18.8 17953 
73.0 18.4 18409 
73.0 18.6 18537 

 

19937 
17953 
18122 
17307 
16863 
18409 
18075 

2b 04/06/2014 0,1 

73.6 

NA 

17342 
73.9 16280 
73.8 18071 
74.1  

3 23/10/2014 9 to 11 

79.8 

NA 

17134 
79.6 17205 
79.7 17188 
80.3  

4c 16/12/2014 19 to 32 

71.9 22.7 

NA 

72.0 22.8 
71.9 22.8 
71.9 22.9 
73.0 22.6 
72.4 22.9 
72.5 22.8 

1 All analyses were performed independent of one another and only correspond to the batch number.  
2 A “batch” refers to a large sample (19-120 L) of biosolids collected over the course of a 30 minute period at 
Greenway Pollution Control Centre.  
a Multiple	����

� were measured over the course of 20 days from the date of acquisition.  
b Ash contents measured from Batch 1 were assumed for approximating the migration in self-sustaining  
c No ����

�was measured, as the range measured from Batches 1 to 4 is assumed representative of the  
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Table A2: Verification of Thermal Properties and Equipment Comparison  

Material 
 KD2 
PRO 

Sensor 
Temp °C 

Ke  
(effective 

conductivity) 
W/(m·K) 

Cve  
(effective specific 

heat capacity) 
MJ/(m³·K) 

Error 
% 

Dry biosolids SH-1 24.45 0.105 0.843 0.0007 
Clean sand SH-1 23.53 0.232 1.196 0.0022 
Clean sand SH-1 23.49 0.233 1.207 0.0021 
Clean sand SH-1 23.16 0.232 1.203 0.0022 
Clean sand SH-1 22.96 0.233 1.204 0.0021 
Clean sand SH-1 22.86 0.232 1.199 0.0021 

Dry sand and biosolids SH-1 23.01 0.217 0.818 0.0027 
Dry sand and biosolids SH-1 23.04 0.220 0.821 0.0027 
Dry sand and biosolids SH-1 22.98 0.220 0.821 0.0027 
Dry sand and biosolids SH-1 22.90 0.221 0.822 0.0027 
Dry sand and biosolids KS-1 22.47 0.188 NA 0.0016 
Wet sand and biosolids SH-1 19.83 1.142 1.690 0.0073 
Wet sand and biosolids SH-1 20.40 1.138 1.689 0.0075 
Wet sand and biosolids SH-1 20.71 1.133 1.686 0.0074 
Wet sand and biosolids SH-1 20.92 1.127 1.680 0.0073 
Wet sand and biosolids SH-1 21.06 1.124 1.677 0.0073 
Wet sand and biosolids KS-1 21.26 0.851 NA 0.0169 
Wet sand and biosolids KS-1 21.33 0.817 NA 0.0179 
Wet sand and biosolids KS-1 21.32 0.812 NA 0.0171 

 

Table A3: Comparison between Measured Thermal Properties and Literature Values  

Material Measured 
Cve  

MJ/(m³·K) 
Ke  

W/(m·K) 
Cve from literature 

[MJ/m³·K] 

Ke from 
literature 
[W/m·K] 

Sand 1.2 0.23 
1.2-1.4 

(for 0.4-0.3 porosity, 
respectively)1 

0.30            
(dry sand)2 

biosolids (dry) 0.84 0.1 2 (assuming wet (75% 
MC), density =1g/cm3)3 

0.69-3.1 (dry to 75% MC)4 

0.30-0.355 

biosolids (75% MC) NA NA 
0.50-0.62 

[extrapolated]5 

biosolids (dry) and 
sand following Experiment 

No. 4 conditions 
0.82 0.22 

>1.2 (assuming fixed 
porosity of 0.4)1,4 NA 

Biosolids (75% MC) 
and sand following 

Experiment No. 4 conditions 
1.7 1.1 

1.8 (assuming 75% filled 
pore space from 0.4)1,3 NA 

1(Koorevaar et al., 1983), 2(Oke, 2002), 3(Kim and Parker, 2008), 4(Moffet, 1997), 5(Dewil et al., 2007) 
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Table A4: Effective Specific Heat Capacity for Multiple Experiments 

Experiment No. 

Initial Conditions 

Sand/Biosolids 

(g/g) 

Biosolids Moisture 

Content (%) 

Cve  

MJ/(m³·K) 

1 4.5 74 1.557 
2 3.5 80 1.859 
3 2.6 85 2.217 
4 4.5 74 1.557 
5 4.9 80 1.704 
6 5.2 83 1.575 
7 23 74 1.210 
8 9.9 74 1.293 

 

Thermogravimetric analysis (SDT Q600, TA instruments) was conducted on dry and 

75% MC biosolids in Figures A1 and A2, respectively.   

 

Figure A1: Thermogravimetric data using dry biosolids (>1% MC) in air at 
50K/min.  
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Figure A2: Thermogravimetric data using wet biosolids (74% MC) in air at 
80K/min.  
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Appendix B: Phase Change within Porous Media: A Brief Review 

There is a considerable body of research dedicated to observing the movement of 

moisture via phase change within porous media and its effect on heat transfer 

mechanisms. Much of the liquid-gas phase change research is separated into either 

boiling and evaporation applications or condensation applications.  

Boiling and Evaporation 

Bejan (2004) described the coupling between mass and heat transfer required to quantify 

the effect of evaporation. The drying rate is related to the vapour pressure and a 

connection is drawn between heat transfer and drying rates, assuming that the surface of 

the drying material is saturated: 

 
��

��
= −ℎ��(�� − ��) (�) 

 
��

��
= ℎ�(�� − ��) (�) 

 
��

��
� = −
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Here, ��/��	is the drying rate, ℎ�	is the moisture transfer coefficient, � is the drying 

surface area, ��	and ��	are the vapour pressures at the surface and in the atmosphere, 

respectively, �� and ��  are the temperatures on the surface and in the atmosphere, 

respectively, ��/�� is the heating rate, ℎ is the convective heat transfer coefficient, and � 

is the latent heat of evaporation.  
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Moise and Tudose (1998) expanded upon this connection between heat transfer and 

drying rate to develop the “plug flow and external transfer” model for packed bed of 

granular materials. Bejan (2013) discussed the heat transfer during nucleate boiling, 

where nucleate boiling defines the first stage in the boiling process where the temperature 

difference between ���� and �������� is 5.0 – 30°C (Incropera, 2011). It is suggested that 

approximating the heat transfer coefficient here is most reliably executed using the 

correlation presented by Rohsenow (1951): 

�� − ���� =
ℎ��

��,�
���

���� �
�”�
μ�ℎ��

�
�

�(�� − ��)
�

�
�
�

�
�

 (�) 

where all fluid properties are at the saturated temperature, ℎ�� is the heat transfer 

coefficient during nucleate boiling, �� and ���� are the wall and saturated temperatures, 

respectively, ��,�	is the liquid specific heat capacity, ���
� is the Prandtl number of the 

liquid phase, �”� is the heat transferred to drive the phase change, �� is the liquid phase 

viscosity, � is the liquid/gas interfacial surface tension, � is gravity and �� − �� is the 

density difference between the two phases, and ��� is a calibration coefficient and 

depends on the nature of the heating surface-liquid combination.     

Nield and Bejan (2006) summarized a wide body of research regarding the differences 

between evaporation and boiling driving phase change. Within this summary, an 

important effect is the boiling process driving convective heat transfer within a porous 

medium. This phenomenon is mapped by Ramesh and Torrance (1990) as a function of 

Raleigh Number (Ra) and the dimensionless heat flux at the wall boundary (Qb) and was 

found to be predominantly observed in highly conductive systems. Najjari and Ben 
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Nasrallah (2002) expanded upon this with a numerical study on the boiling with mixed 

convection in a vertical porous layer. Ruffino and DiMarzo (2004) suggested a simplified 

approach in describing the impact that evaporative cooling has on a heated surface by 

using a single heat sink term. This was developed for predicting the effectiveness of fire 

sprinklers in cooling a hot surface and the heat sink term is presented: 

������
���

�

��
= ℎ����

� − ��
�� − �������ℎ (�) 

where ��  is the specific heat of the sprinkler link, �� is the volume of the sprinkler link, ��  

is the density of the sprinkler link, ��
� − ��

� is the difference between the gas phase and 

the wetted sprinkler link temperature, ℎ is the convective heat transfer coefficient, � is the 

sprinkler link surface area, ��  is the liquid density, � is the gas velocity, � is the sprinkler 

link area orthogonal to airflow, � is the water volumetric fraction, � is the collection 

efficiency, and �ℎ is the latent heat of vaporization.      

Condensation 

Vafai and Sarkar (1986, 1987) observed the condensation within a porous medium and its 

effects on heat transfer using a 1 dimensional numerical model. Sözen and Vafai (1990) 

explored the thermal charging of a packed bed via forced convection of a condensing gas 

undergoing phase change. The model had assumed thermal non-equilibrium with the 

vapour and water constituting the fluid phase, and the heat transfer due to the changing 

fluid phase was proportional to the mass transfer of the vapour to liquid. Al-Nimr and 

Alkam (1997) also considered a similar mass and heat transfer relation. However, the 
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mass transfer was a function of Tsat and Ts, opposed to vapour pressures, and the method 

was employed to predict a condensed film’s thickness:  

ℎ��
��̇

��
= ���

�� = �
��,���(���� − ��)

�
 (�) 

Here, ��̇/�� is the mass flow rate along the vertical wall, ℎ��	is the latent heat of 

condensation, � is the liquid film width, ��,��� is the effective thermal conductivity 

through the liquid region, �”� is the surface heat flux, ���� − �� is the difference between 

the surface and saturated temperature, and � is the liquid film thickness.    

Practical Approach to Evaporating and Condensation within Porous Media 

Packed bed dryers and condensers for food drying, evaporative cooling, air striping, and 

distillation purposes are major drivers for research surrounding moisture movement and 

its impact on heat transfer in porous media (Bejan, 2004; Li et al., 2006; Hemis et al., 

2011). In particular, it is interesting to contrast the approach that ElGamal et al. (2013) 

employed against Alnaimat et al. (2011). ElGamal et al. (2013) observed the drying of 

grains of rice and had established a local thermal non-equilibrium model within the 

COMSOL environment describing the moisture movement between the solid grains of 

rice to the gas phase. The model’s governing equations were greatly simplified and 

functions of the relative humidity (H) and rice grain moisture content (M). In addition, 

validated empirical coefficients dependant on airflow rate for the heat transfer and mass 

transfer coefficients were employed. Alnaimat et al. (2011) took more classical and 

rigorous approach to develop a local thermal non-equilibrium model for evaporation and 

condensation. Here, the heat transfer from evaporation was proportional to the mass 
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transfer term and dependant on the saturation pressure Psat. An interesting assumption in 

this model was the constant water saturation term in the evaporation model as it was 

assumed that the evaporated mass was instantly replaced by trickling liquid into the 

packed bed. Additionally, the COMSOL literature has also provided significant insight 

into this problem and suggests solved problems to account for evaporation/boiling and 

condensation within its environment (Guides; Multiphysics, 2012). In particular, a solved 

example describing a method to account for property changes and the heat of fusion 

during the melting of a rod of ice to water provided a very interesting approach to solving 

phase change problems (COMSOL Multiphysics, 2012). This is completed via simulating 

the ice as a porous structure where the porosity is filled with water and undergoes 

0 ≤ � ≤ 1 during phase change. Thermodynamic properties such as keff, Cpeff, and ρeff are 

proportionally affected by this change as they are solved using the volume averaging 

between the solid and liquid phases. The heat of fusion is accounted for via a step 

function H(T) from 0 – 1 that is centered on Tmelt (0°C) and the 
��

��
 is used to describe the 

pulse of the phase change (see Figure B1). This method presents a very simple and 

abbreviated option for modelling phase change as a function of temperature without 

simultaneously modelling mass transfer, as the function H(T) accounts for the change. 

Though this approach has only been validated for ice-water, where the aforementioned 

properties do not undergo drastic differences, it is worthwhile to consider its utility as a 

straightforward approach to modelling liquid-gas phase change.  
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Figure B1: Ice thermodynamic property changes upon melting (COMSOL, 2012). 
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Appendix C: Re-wetted and Virgin Biosolids Comparison 

Virgin vs. Rewetted for Self-sustaining Experiments 

Figure C1 presents photos contrasting the visual difference between re-wetted and virgin 

biosolids. Two main differences are the lower fraction of free water (Vesilind and Martel, 

1990) and the presence of porosity within the virgin biosolids, where the free water 

fraction greatly increases and the porosity is completely lost upon re-wetting. Figures C2 

and C3 illustrate the temperature, mass loss, and mass loss rate profiles from self-

sustaining (SS) smouldering experiments using virgin and re-wetted biosolids, 

respectively, initially at 74% moisture content (MC) and 4.5 g/g sand/biosolids mass ratio 

(S/B). Note, that due to preheating and packing process, the biosolids MC and S/B upon 

ignition vary slightly (see Table 3.2, Chapter 3). For SS experiments, the smouldering 

propagation is nearly identical between re-wetted and virgin biosolids, suggesting that 

this method of re-wetting provides analogous results to those expected from using virgin 

biosolids under the same MC and S/B conditions (see Table C1).   

 

Figure C1: Visual comparison between (1) virgin biosolids resting on top of clean 
sand and (2) re-wetted biosolids. 

2 1 
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Figure C2: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
0, a self-sustaining smouldering experiment with 73% moisture content virgin 
biosolids in a fixed bed at a 4.7 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
1784 g.    

 

Figure C3: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
4, a self-sustaining smouldering experiment with 74% moisture content virgin 
biosolids in a fixed bed at a 4.6 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
2096 g.    
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Table C1: Combustion Metric Comparison between Virgin and Re-Wetted Biosolids 

Experiment No. 
Virgin or 

Re-wetted? 

Average 
Propagation 

Velocity 
(cm/min) 

Average Peak 
Temperature 

(˚C) 

Average Mass 
Loss Rate 
(g/min) 

0 Virgin 0.41±25% 529±1.9% 17±0.47% 
1 Re-wetted 0.47±9.3% 555±2.2% - 
4 Re-wetted 0.38±14% 548±3.2% 18±0.19% 

 

Virgin vs. Rewetted for Non-Self-sustaining Experiments 

Figures C4 and C5 illustrate the temperature, mass loss, and mass loss rate profiles from 

non-self-sustaining (NSS) smouldering experiments using virgin and re-wetted biosolids, 

respectively, at 80% moisture content (MC) and 2.6 g/g sand/biosolids mass ratio (S/B). 

For NSS experiments, the peak temperature and mass loss rate declines are similar 

between re-wetted and virgin biosolids. However, extinction appears to occur slowest 

with the virgin biosolids in Figure C5. This is expected to be due to the two main 

differences identified in Figure C1: (1) the lower fraction of free water caused less water 

to flow down into the oncoming smouldering front and (2) the presence of biosolids 

porosity provided greater surface area for reaction and higher air permeability. In support 

of (1), Figure C4 represents a very short, almost non-discernible temperature plateau just 

below 100°C at 19 – 20 min at TC16 (-5.5 cm below the heater, see Appendix G for 

experimental set-up), where Figure C5 has a long temperature plateau at 24 min in TC16 

that lasts for 32 minutes. This temperature plateau is due to the water boiling out of this 

initially dry region, which had migrated down approximately 6 cm from the contaminant 

pack. As Figure C5 has a much longer temperature plateau than Figure C4, it shows that 

much more water had migrated downward in this experiment. In summary, this suggests 
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that using re-wetted biosolids in place of virgin biosolids provides a low estimate of the 

quenching limits, as virgin biosolids appear to be more resilient to quenching.     

 

Figure C4: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
9, a non-self-sustaining smouldering experiment with 80% moisture content virgin 
biosolids in a fixed bed at a 2.6 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
3676 g.    
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Figure C5: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
11, a non-self-sustaining smouldering experiment with 80% moisture content re-
wetted biosolids in a fixed bed at a 2.6 g/g sand/biosolids mass ratio and an air flux 
of 3.3 cm/s. The solid lines represent thermocouples within the contaminant pack. 
The sum of the masses of volatile solids and water added into the column is noted as 
the lower boundary on the top second y axis (blue), 3676 g. The disturbance in the 
mass data at 43 minutes is due to rearranging equipment.  

Virgin Non-Self-sustaining Experiment Response to Increased Air Flux 

Figure C6 illustrates the temperature, mass loss, and mass loss rate profiles for 

Experiment No. 10, 80% MC virgin biosolids in a S/B of 2.6 g/g with an air flux of 8.1 

cm/s (i.e., the same biosolids MC and S/B as Figure C4, but with a 2.5 times increase in 

air flux). As Experiment No. 9 in Figure C4 was very near to the quenching limits 

defined in Chapter 3 (Figure 3.5), it offered an ideal condition to identify if increasing air 

flux would produce a SS reaction that was otherwise NSS. However, Figure C6 appears 

to extinguish quicker than Figure C4. This is expected to result from the increased air 

flux promoting heat transfer away from the smouldering front, opposed to overcoming 

the heat losses with the increased the oxygen supply (Sato and Sega, 1985). This suggests 

that increasing the air flux will not significantly extend the smouldering quenching limits 
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and may actually promote heat transfer away from smouldering front for experiments just 

beyond the quenching limits.       

 

Figure C6: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
10, a non-self-sustaining smouldering experiment with 80% moisture content virgin 
biosolids in a fixed bed at a 2.6 g/g sand/biosolids mass ratio and an air flux of 8.1 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
3676 g.    
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 Appendix D: Emissions Measurements from Select Experiments 

Experiments No. 24 to 29 had measured emissions (i.e., volume % of carbon dioxide 

(CO2), carbon monoxide (CO), and oxygen (O2)) and their profiles are presented in 

Figures D1 to D6, respectively (details in Experimental Set up and Procedure in Chapter 

3). The CO+CO2+O2 is presented to suggest the % of oxidized emissions that are not 

accounted for, possibly nitrous oxide (N2O) (Barton and Atwater, 2002). Table D1 

presents the CO/CO2 results, measured during combustion, where the ascending trend in 

Experiments No. 24 to 25 and 26 to 27 agrees with the decreasing smouldering 

robustness discussed in the Results and Discussion section in Chapter 3. There is a lag in 

the data when the emissions respond to the forced airflow due to the time it took for the 

emissions to travel through the sampling line. It is important to note that Figures D5 and 

D6 had used a new batch of drying material to condense potentially damaging 

constituents within the emissions prior to analysis (98% calcium sulphate and 2% cobalt 

chloride, Drierite). It is suspected that this new match of material may have tampered the 

emissions measured in Figures D5 and D6, resulting in a very unsteady CO+CO2+O2. 

This has not been explored in detail and Figures D5 and D6 should be viewed cautiously; 

they are primarily presented to suggest a possible failure in emissions analysis.  
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Figure D1: The carbon dioxide (CO2) (solid green), carbon monoxide (CO) (dashed 
blue), and oxygen (O2) (solid red) volume % for Experiment No. 24. The upper CO2 
detection was limited to 3%, which cut off peaks and resulted in the false drops in 
CO+CO2+O2 (dotted light blue).  

 

Figure D2: The carbon dioxide (CO2) (solid green), carbon monoxide (CO) (dashed 
blue), oxygen (O2) (solid red), and CO+CO2+O2 (dotted light blue) volume % for 
Experiment No. 25.  
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Figure D3: The carbon dioxide (CO2) (solid green), carbon monoxide (CO) (dashed 
blue), oxygen (O2) (solid red), and CO+CO2+O2 (dotted light blue) volume % for 
Experiment No. 26.  

 

Figure D4: The carbon dioxide (CO2) (solid green), carbon monoxide (CO) (dashed 
blue), oxygen (O2) (solid red), and CO+CO2+O2 (dotted light blue) volume % for 
Experiment No. 27.  
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Figure D5: The carbon dioxide (CO2) (solid green), carbon monoxide (CO) (dashed 
blue), oxygen (O2) (solid red), and CO+CO2+O2 (dotted light blue) volume % for 
Experiment No. 28. New drying material was used to dry the emissions prior to 
analysis, which may have tampered with the emissions measurement 

 

Figure D6: The carbon dioxide (CO2) (solid green), carbon monoxide (CO) (dashed 
blue), oxygen (O2) (solid red), and CO+CO2+O2 (dotted light blue) volume % for 
Experiment No. 29. New drying material was used to dry the emissions prior to 
analysis, which may have tampered with the emissions measurement.  
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 Table D1: Carbon Monoxide/Carbon Dioxide Measured for Select Experiments 
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Experiment No. 
carbon monoxide / 

carbon dioxide  
(% / %)  

24 0.010 
25 0.013 
26 0.028 
27 0.031 
28a 0.025 
29a 0.017 

a Values may be unreliable. 
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Appendix E: Additional Failure Considerations 

Figures E1 to E3 illustrate the temperature profile, mass loss, and mass loss rate profiles 

from Experiments No. E1 to E3, respectively, which all represent a failure condition, 

“blow out”. Following preheating conditions, the forced air flux was initiated and 

approximately 50% of the sand and biosolids in Figures E1 and E2 and approximately 

30% in Figure E3 were ejected. This is expected to result from the pyrolyzed material 

formed near the heater clogging the sand pore space and significantly reducing the air 

permeability (see Figure E4). When the forced air flux was initiated this low permeability 

caused a pressure build up near the heater that was greater than the weight of the column 

contents and resulted in a blow out (note the sharp rise in mass and mass loss rate upon 

air initiation). Initial and corrected biosolids moisture contents (MC) and sand/biosolids 

mass ratios (S/B) for Experiments No. E1 to E3 are presented in Table E1 and the 

corrected values are superimposed on the parameter space from Figure 3.5 (Chapter 3) in 

Appendix F. Lastly, Experiment No. E1 had used slightly finer grained sand (Number 

1240S, Bell & Mackenzie Co., mean grain diameter = 0.50 mm, coefficient of uniformity 

less than 1.50) around the air sparger to promote more uniform air flow. Experiment No. 

18 had the same initial conditions as E1, but with coarser grained sand (described in 

Experimental Conditions in Chapter 3) around the air sparger and resulted in a non-self-

sustaining reaction without a blow out. This suggests that the grain size, which is related 

to the pore size, is involved in the blow out failure condition.  
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Figure E1: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
E1, a blow out smouldering experiment with 81% moisture content re-wetted 
biosolids in a fixed bed at a 3.4 g/g sand/biosolids mass ratio. The solid lines 
represent thermocouples within the contaminant pack, and the red lines represent 
when the data logger was turned off in response to the blow out. The left hand main 
axis shows the initial volatile solids and water mass in the column, 3180 g.   

 
Figure E2: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
E2, a blow out smouldering experiment with 83% moisture content re-wetted 
biosolids in a fixed bed at a 2.7 g/g sand/biosolids mass ratio. The solid lines 
represent thermocouples within the contaminant pack. The left hand main axis 
shows the initial volatile solids and water mass in the column, 3928 g. The 
disturbance in the mass data at 20 minutes is due to rearranging equipment. 
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Figure E3: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
E3, a blow out smouldering experiment with 80% moisture content re-wetted 
biosolids in a fixed bed at a 2.0 g/g sand/biosolids mass ratio. The solid lines 
represent thermocouples within the contaminant pack. The left hand main axis 
shows the initial volatile solids and water mass in the column, 4594 g. 

 

 

Figure E4: Example photo of the low air permeability crust formed during 
preheating in Experiment No. 19, which had a very low sand-to biosolids mass ratio 
but did not blow out. 

 



118 

 

Table E1: Blow Out Experiments Initial and After-Preheat Conditions 

No. 

Biosolids Moisture 
Content % 
(gwater/gtotal) 

Biosolids Lower 
Heating Value 
(After Preheat) 

(kJ/g) 

Sand / Biosolids 
(g/g) 

Effective 
System Lower 
Heating Value 
(After Preheat) 

(kJ/g) 

Pack 
Height 
(cm) 

Darcy 
Air 

Flux 
(cm/s) Initial 

After 
Preheat 

Initial 
After 

Preheat 
E1 83 81 1.37 3.0 3.4 0.31 38 3.3 
E2 83 82 1.17 2.5 2.7 0.32 38 3.3 
E3 80 80 1.57 2.0 2.0 0.52 40 3.3 
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Appendix F: Overview of Mass Loss Assumptions 

To estimate the corrected biosolids moisture content (MC) and sand/biosolids mass ratio 

(S/B) after preheating, the mass loss data was used to calculate the amount of water 

boiled before ignition and remaining below the heater after full combustion. It is noted 

that very little mass remained after self-sustaining experiments, as the majority of the 

mixture appeared clean (Figure F1). Figure F2 presents an example of the mass 

correction superimposed over mass loss data from Experiment No. 29. Experiments No. 

27 and 28 had initial false mass readings, so their initial water mass loss was estimated 

using a boiling mass loss rate of 3.4 g/min, which was estimated by averaging the 

preheating mass loss from experiments that had identical preheating conditions 

(Experiments No. 17,26, and 29; Appendix G). Additional details on all experiments are 

in Table 3.2 in Chapter 3. 

 

Figure F1: Comparison between (1) mixed sand and biosolids from Experiment No. 
16 and (2) a homogenized sample of sand resulting from self-sustaining smouldering 
after Experiment No. 17. Note the particles larger than the sand in (2) are the 
biosolids ash.    

2 1 
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Figure F2: Mass loss from Experiment No. 29, a self-sustaining smouldering 
experiment with 78% moisture content re-wetted biosolids in a fixed bed at a 4.5 g/g 
sand/biosolids mass ratio. The sum of the masses of volatile solids and water added 
into the column is noted as the lower boundary on the y axis, 2680g, and the water 
lost due to initial boiling and migration downwards is noted on the graph. The air 
was turned off at 454 min to prevent any water evaporation prior to excavation. 

In Figure F2, the initial linear decline in the mass from -10 to -367 g from 119 min until 

the air flow was turned on (212 min) represents the water boiling out of the column (357 

g at 3.8 g/min), driven by the resistance heater. The initial mass loss to -10g is due to 

rearranging equipment and, as some initial error was present in most experiments, the 

initial mass reading was always taken after the mass had stabilized (usually near 100 

min). The final mass loss (-2459 g) at TC13 peak, the final TC within the sand that 

denotes the end of full combustion, is 221 g less than the mass of water and volatile 

solids added to column (2680 g). This remaining 221 g is assumed to be water migrated 

below the heater during the preheating process, which remained upon excavation. Note 

the forced air flux was turned off at 454 min to prevent significant evaporation prior to 

excavation validation of the migration assumption, via a mass balance, and there is an 
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initial mass spike when the air was turned on due to some low air permeability crust 

formed around near the heater, which caused an initial increase in pressure and a false 

spike in the mass data. The initial boiling and migration reduces the biosolids MC from 

83% to 78% and raises S/B from 3.5 g/g to 4.5 g/g. It is important to note that these 

assumptions are not entirely accurate given that: (1) the boiling assumption implies that 

the early mass loss is exclusively due to boiling water, however, there may be some small 

amount of initial mass loss due to escaping pyrolysate gas produced near the heater; (2) 

the migration assumption neglects the char produced due to incomplete combustion 

around the edges of the column (see Figure F3) and some pyrolysate captured within the 

top clean sand cap (see Figure F4), which both remained after full combustion.  

 

Figure F3: Top down photo of the pyrolysis char edge formed in Experiment No. 8, 
a self-sustaining experiment.  
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Figure F4: Example picture of the top, initially clean sand cap with condensed 
pyrolysate following full combustion in Experiment No. 29.  

Figure F5 illustrates the various zones excavated for a mass balance after Experiment No. 

29 to identify where the remaining volatile solids and water persisted after full 

combustion and Figure F6 presents a photo of the zones. Table F1 presents the results 

from this mass balance, where the volatile solids and moisture contents are both relative 

to total mass (i.e., sand, biosolids inert ash, and remaining water/volatile solids). Table F1 

which suggests early water migration accounted for 70% of the remaining mass in 

Experiment No. 29. Table F2 integrates the findings from Table F1 with the mass loss 

data from Experiment No. 29. It is noted that the unaccounted mass of 1.5% may be due 

to some small amount of mass lost during sample preparation, prior to packing the 

column. This mass balance affirms that the initial water boiling and migration 

assumptions, though not entirely accurate, provide reasonable and conservative 

approximations for the initial water movement out of the column and present a 

straightforward method for correcting the biosolids MC and S/B data.   
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Figure F5: Illustration of the experimental set up with zone numbers labelled for 
reference to Table F1.  

 

 

Figure F6: Pictures of the excavated sand and remaining moisture and volatile 
solids from Experiment No. 29. Each excavated sample has its zone labelled, where 
2a represents Zone 2 far from the heater and 2b represents Zone 2 near the heater.      
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Table F1: Remaining Mass Measured from Experiment No. 29 

Section of Column 
Sample 
Initial 

Weight (g) 

Moisture 
Content 

(%) 

Volatile 
Solids 

Content (%) 

Total 
Water 

(g) 

Total 
Volatile 

Solids (g) 
Initially Clean Top Sand 

Cap (Zone 1) 
2810.6 0.02 0.53 0.7 12.0 

Main Contaminant Pack  
(Zone 2) 

10777.2 0.00 0.26 0.0 25.8 

Bottom of Contaminant 
Pack to Air Sparger 

(Zone 3) 
5266.9 0.23 0.19 12.1 8.8 

Air Sparger to the Bottom 
of the Column (Zone 4) 

2256.9 5.0 0.29 112.0 9.7 

Contaminant Pack Edges  
(Zone 5) 

774.6 0.00 0.77 0.0 4.8 

SUM 124.8 54.2 
 

Table F2: Comparing the Mass Balance Results from Table F1 with Mass Loss Date from 

Experiment No. 29  

Final 
Mass 
Loss 
(g) 

Total 
Remaining 

Water (Table 
F1) (g) 

Total Remaining 
Volatile Solids 
(Table F1) (g) 

Initial 
Water 

Mass (g) 

Initial Volatile 
Solids Mass 

(g) 

Unaccounted 
Mass (%) 

2459 124.8 54.2 2315 365 1.5 
     

The initial conditions’ (i.e., biosolids MC and S/B) variability due to early water boiling 

and migration have been quantified in Table F3 far from quenching (Experiments No. 4, 

24, 25) and near quenching (Experiments. No. 26, 29, 17) (see Results and Discussion 

and Table 3.2 in Chapter 3 for a full details).  
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Table F3: Initial Condition Variability Far From Quenching (73% Biosolids Moisture 

Content, 4.7 g/g Sand/Biosolids Mass Ratio) and Near Quenching (79% Biosolids 

Moisture Content, 4.4 g/g Sand/Biosolids Mass Ratio) 

Experiment No. 
Quenching 

Limit 
Proximity 

Initial Water 
Boiled (g) 

Inferred Water 
Migration 

(g) 
4 

Far 

0 28 
24 1 94 
25 8 126 

Average of 3 
Repeats 

3±164% 83±68% 

26 

Near 

360 260 
29 357 255 
17 129 311 

Average of 3 
Repeats 

282±53% 275±13% 

 

Though there is significant variability in the initial boiling and migration of water, the 

variability in the initial conditions is quite low. The variability is due to experimental 

error from the mixing, packing, and preheating procedures, however, it is expected to be 

largely governed by the variability in preheating conditions. This is exemplified between 

Experiments No. 17 and 26, which experienced 129 and 360 g of water boiling and 43 

and 96 min of initial preheating time where all TCs were above 98°C (full column 

boiling), respectively. This full column boiling is significant as it facilitated boiling of 

water out of the column in these experiments near quenching (see Appendix G). This 

initial full column boiling drove both the majority of initial boiling and initial migration 

variability. However, the 95% confidence interval in the biosolids MC and S/B was much 

lower at 1.1% and 3.4% (far from quenching) and 1.4% and 5.6% (near quenching), 

respectively. An important conclusion from these results is that with an increase in 
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moisture content the initial conditions’ relative uncertainty does not significantly vary. 

This means that within this experimental study, greater than 2% change in biosolids MC 

and 6% change S/B is due to intentionally varying parameters, opposed to experimental 

variability. 

Figures F7a, F7b, and F7c represent the parameter space data points changing upon 

assuming: (a) no initial boiling or migration, (b) initial boiling but no migration, and (c) 

initial boiling and migration, respectively. This sequence of figures illustrates the impact 

that initial water movement has on correctly identifying the smouldering quenching limits 

where the black dashed lines defining quenching in Regions I and II are kept fixed for 

reference between parameter space changes. The black lines defining the quenching 

limits in Regions I and II are drawn closest to the self-sustaining experiments because 

these data points are fully corrected, as migration could not be estimated for non-self-

sustaining or borderline self-sustaining experiments. This implies that the borderline self-

sustaining and non-self-sustaining points should actually lie further southeast in Figure 

F7c. See Results and Discussion in Chapter 3 and Appendix E for further discussion on 

the parameter space.       
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(a) 

 

 

(b) 

 

 

(c) 

 

 

Figure F7: Parameter space illustrating the biosolids moisture content and 
sand/biosolids mass ratio combinations that facilitates self-sustained smouldering at 
a Darcy air flux of 3.25 cm/s changing upon: (a) neglecting boiling and migration, 
(b) neglecting migration, and (c) fully corrected. The error bars denote 95% 
confidence intervals obtained from three repeat experiments. The quenching limits 
in Regions I and II (dashed lines) are kept as a reference to compare the data points 
between F7a, F7b, and F7c. Blow out Experiments No. G1 to G3 are included and 
all experiments are numbered (see Table 3.2 and Figure 3.3 from Chapter 3 for 
more details).  
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Figure G2: Temperature profile for Experiment No. 1, a self-sustaining smouldering 
experiment with 74% moisture content re-wetted biosolids in a fixed bed at a 4.5 g/g 
sand/biosolids mass ratio and an air flux of 3.3 cm/s. All lines represent 
thermocouples within the contaminant pack.  

 
Figure G3: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
2, a borderline-self-sustaining smouldering experiment with 80% moisture content 
re-wetted biosolids in a fixed bed at a 3.5 g/g sand/biosolids mass ratio and an air 
flux of 3.3 cm/s. The solid lines represent thermocouples within the contaminant 
pack. The top second y axis (blue) shows the initial volatile solids and water mass in 
the column, 2757 g, and the reaction quenched just before 30 cm up the column 
(TC9).    
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Figure G4: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
3, a self-sustaining smouldering experiment with 80% moisture content re-wetted 
biosolids in a fixed bed at a 3.5 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
3710 g.    

 
Figure G5: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
5, a self-sustaining smouldering experiment with 79% moisture content re-wetted 
biosolids in a fixed bed at a 5.1 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
1961 g. Early disturbance in the mass loss data was due to rearranging equipment. 
Due to the preheating time over 200 min and high temperature in TC16 (500°C), the 
air was turned on slightly before TC1 reached 200°C.   



131 

 

 
Figure G6: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
6, a non-self-sustaining smouldering experiment with 83% moisture content re-
wetted biosolids in a fixed bed at a 5.8 g/g sand/biosolids mass ratio and an air flux 
of 3.3 cm/s. The solid lines represent thermocouples within the contaminant pack. 
The top second y axis (blue) shows the initial volatile solids and water mass in the 
column, 1862 g.  

 

 
Figure G7: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
7, a non-self-sustaining smouldering experiment with 72% moisture content re-
wetted biosolids in a fixed bed at a 25 g/g sand/biosolids mass ratio and an air flux of 
3.3 cm/s. The solid lines represent thermocouples within the contaminant pack. The 
top second y axis (blue) shows the initial volatile solids and water mass in the 
column, 415 g.  
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Figure G8: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
8, a self-sustaining smouldering experiment with 72% moisture content re-wetted 
biosolids in a fixed bed at a 11 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
955 g.  

 
Figure G9: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
12, a non-self-sustaining smouldering experiment with 84% moisture content re-
wetted biosolids in a fixed bed at a 6.5 g/g sand/biosolids mass ratio and an air flux 
of 3.3 cm/s. The solid lines represent thermocouples within the contaminant pack. 
The top second y axis (blue) shows the initial volatile solids and water mass in the 
column, 1605 g. 
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Figure G10: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
13, a non-self-sustaining smouldering experiment with 82% moisture content re-
wetted biosolids in a fixed bed at a 7.7 g/g sand/biosolids mass ratio and an air flux 
of 3.3 cm/s. The solid lines represent thermocouples within the contaminant pack. 
The top second y axis (blue) shows the initial volatile solids and water mass in the 
column, 1481 g.  

 
Figure G11: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
14, a non-self-sustaining smouldering experiment with 83% moisture content re-
wetted biosolids in a fixed bed at a 8.3 g/g sand/biosolids mass ratio and an air flux 
of 3.3 cm/s. The solid lines represent thermocouples within the contaminant pack. 
The top second y axis (blue) shows the initial volatile solids and water mass in the 
column, 1283 g. TC1 was broken for this experiment. 
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Figure G12: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
15, a self-sustaining smouldering experiment with 72% moisture content re-wetted 
biosolids in a fixed bed at a 2.2 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
3978 g. The unsteady temperature in TC9 to TC13 is expected to have resulted from 
water dripping into the reaction front due to the low sand/biosolids mass ratio. 
TC12 was broken for this experiment.  
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Figure G13: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
16, a self-sustaining smouldering experiment with 71% moisture content re-wetted 
biosolids in a fixed bed at a 1.7 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
4827 g. The unsteady temperature in TC6 to TC10 is expected to have resulted from 
water dripping into the reaction front due to the low sand/biosolids mass ratio. 
Some top sand had been ejected upon air initiation and was corrected in the mass 
loss data. Due to the ejection, TC11 to 15 were exposed to the atmosphere and 
represent the air space temperatures above the column upon full combustion. TC12 
was broken for this experiment. 
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Figure G14: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
17, a self-sustaining smouldering experiment with 80% moisture content re-wetted 
biosolids in a fixed bed at a 4.1 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
2740 g. The initial water mass loss rate when the full column was boiling was 
estimated at 2.6 g/min, where the full column boiling period is noted from 172 to 215 
min with red triangles. TC12 was broken for this experiment. 

 
Figure G15: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
18, a non-self-sustaining smouldering experiment with 82% moisture content re-
wetted biosolids in a fixed bed at a 3.1 g/g sand/biosolids mass ratio and an air flux 
of 3.3 cm/s. The solid lines represent thermocouples within the contaminant pack. 
The top second y axis (blue) shows the initial volatile solids and water mass in the 
column, 3175 g. TC12 was broken for this experiment. 
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Figure G16: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
19, a self-sustaining smouldering experiment with 75% moisture content re-wetted 
biosolids in a fixed bed at a 2.2 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
4316 g. Note the ‘U’ shaped temperature peak and average mass loss rate profiles as 
the smouldering front passes through the middle 30% of the contaminant pack 
(TC5 to TC9). TC12 was broken for this experiment. 

 
Figure G17: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
20, a non-self-sustaining smouldering experiment with 77% moisture content re-
wetted biosolids in a fixed bed at a 1.5 g/g sand/biosolids mass ratio and an air flux 
of 3.3 cm/s. The solid lines represent thermocouples within the contaminant pack. 
The top second y axis (blue) shows the initial volatile solids and water mass in the 
column, 5058 g. TC12 was broken for this experiment. 
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Figure G18: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
21, a non-self-sustaining smouldering experiment with 83% moisture content re-
wetted biosolids in a fixed bed at a 4.0 g/g sand/biosolids mass ratio and an air flux 
of 3.3 cm/s. The solid lines represent thermocouples within the contaminant pack. 
The top second y axis (blue) shows the initial volatile solids and water mass in the 
column, 2361 g. The early mass disturbance was due to adding the clean sand cap. 
TC12 was broken for this experiment. 

 
Figure G19: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
22, a borderline-self-sustaining smouldering experiment with 77% moisture content 
re-wetted biosolids in a fixed bed at a 2.5 g/g sand/biosolids mass ratio and an air 
flux of 3.3 cm/s. The solid lines represent thermocouples within the contaminant 
pack. The top second y axis (blue) shows the initial volatile solids and water mass in 
the column, 3758 g, and the reaction quenched just before 30 cm up the column 
(TC9). TC12 was broken for this experiment. 
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Figure G20: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
23, a self-sustaining smouldering experiment with 76% moisture content re-wetted 
biosolids in a fixed bed at a 4.2 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
2734 g. The red lines denote an equipment failure where the data logging equipment 
was temporarily off. All values in between the ‘Data Off’ to ‘Data On’ labels are 
interpolated.  

 
Figure G21: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
24, a self-sustaining smouldering experiment with 73% moisture content re-wetted 
biosolids in a fixed bed at a 4.7 g/g sand/biosolids mass ratio and an air flux of 6.5 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
2055 g.  
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Figure G22: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
25, a self-sustaining smouldering experiment with 72% moisture content re-wetted 
biosolids in a fixed bed at a 4.8 g/g sand/biosolids mass ratio and an air flux of 1.6 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
2050 g. The red lines denote an equipment failure where the data logging equipment 
was temporarily off. All values in between the ‘Data Off’ to ‘Data On’ labels are 
interpolated. 
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Figure G23: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
26, a self-sustaining smouldering experiment with 78% moisture content re-wetted 
biosolids in a fixed bed at a 3.5 g/g sand/biosolids mass ratio and an air flux of 6.5 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
2704 g. The abrupt end in the data before 400 min was due to an equipment error. 
The initial water mass loss rate when the full column was boiling was estimated at 
3.7 g/min, where the full column boiling period is noted from 123 to 219 min with 
red triangles. 
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Figure G24: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
27, a self-sustaining smouldering experiment with 79% moisture content re-wetted 
biosolids in a fixed bed at a 4.3 g/g sand/biosolids mass ratio and an air flux of 1.6 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
2711 g. The initial rise in mass loss prior to the air turned on was due to an 
equipment error and so the early water mass loss rate was estimated 3.4 g/min 
during 170 to 236 min, which is when the full column was boiling (noted with red 
triangles). 
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Figure G25: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
28, a self-sustaining smouldering experiment with 80% moisture content re-wetted 
biosolids in a fixed bed at a 4.0 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
2723 g. The initial rise in mass loss prior to the air turned on was due to an 
equipment error and so the early mass loss rate was estimated 3.4 g/min during 182 
to 216 min, which is when the full column was boiling (noted with red triangles).  
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Figure G26: Temperature, mass loss, and mass loss rate profiles for Experiment No. 
29, a self-sustaining smouldering experiment with 78% moisture content re-wetted 
biosolids in a fixed bed at a 4.5 g/g sand/biosolids mass ratio and an air flux of 3.3 
cm/s. The solid lines represent thermocouples within the contaminant pack. The top 
second y axis (blue) shows the initial volatile solids and water mass in the column, 
2685 g. The air was turned off at 454 min for a mass balance verification presented 
in Appendix F. The initial water mass loss rate when the full column was boiling 
was estimated at 3.8 g/min, where the full column boiling period is noted from 119 
to 212 min with red triangles. 
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