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Abstract and Keywords 

 

 Cyclopropane 1,1-diesters have been investigated as a source of donor-acceptor 

cyclopropanes, providing an understanding of the mechanism of reaction between these 

cyclopropanes and nitrosoarenes, as well as azo dicarboxylates. Cross-over experiments have been 

utilized to provide key pieces of experimental evidence that help generate a theoretical model of 

the reactions. By understanding these reactions with precision, the avenue to expand the reaction 

scope and develop other useful reactions is opened up. This allows the chemistry to be better 

utilized, providing easier access to important molecules when needed, and contributes to 

advancing the field of synthetic organic chemistry.  

 In addition, cyclobutane 1,1-diesters were also investigated as a source of donor-acceptor 

cyclobutanes. Specifically, their use in cycloaddition reactions has been developed to include the 

reaction of cyclobutanes with cis-diazenes, providing access to hexahydropyridazines. These 

compounds are synthesized in an efficient manner and are known to contain biologically active 

properties. 

 

 

Keywords: donor-acceptor cyclopropane, donor-acceptor cyclobutane, cyclopropane, 

cyclobutane, tetrahydro-1,2-oxazine 
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Chapter 1 - General Introduction 

 

 The use of cyclopropanes and cyclobutanes in synthetic organic chemistry has received a 

considerable amount of attention over the years, with multiple applications being continually 

developed. This chapter serves as an introduction to the chemistry of donor-acceptor (DA) 

cyclopropanes and cyclobutanes, and their utilization in the synthesis of heterocyclic ring systems. 

The focus of the reactions is on the use of 1,1-cyclopropanediesters as a source of DA 

cyclopropanes. The work presented in this thesis was done entirely by me, and the information 

acquired will be published in peer-reviewed journals in the near future. 

 Chapter two investigated the reaction of DA cyclopropanes with nitrosoarenes with the use 

of a cross-over experiment to acquire key experimental data that were used to validate a potential 

reaction mechanism. The chemistry of DA cyclopropanes with nitrones is well known, but similar 

products were produced when the nitrone was switched with a nitroso functional group, so a 

complete mechanism would be valuable for not only understanding this reaction, but in the 

development of new reactions to come when utilizing DA cyclopropanes. 

 Chapter three investigated the reaction of DA cyclopropanes with both cis and trans azo 

dicarboxylates. The chemistry behind the unusual ring opening reaction of DA cyclopropanes with 

specifically cis-diazenes was a key component of this chapter. The use of cross-over experiments 

was used to gain a deeper understanding into these reactions and resulted in a new pattern of 

reactivity which showed similarities to the chemistry presented in chapter two as well. 

 Chapter four investigated the use of DA cyclobutanes in a new cycloaddition reaction with 

cis azo dicarboxylates. It was shown that DA cyclobutanes are able to react with cis-diazenes and 

form hexahydropyridazines ring systems which are a rare type of heterocycle, which have only a 

limited number of synthetic procedures available. 

 The chemistry learned throughout these chapters has shown new procedures to construct 

heterocyclic compounds from DA cyclopropanes and cyclobutanes, and answer mechanistically 

related questions into how these compounds form. These experimental observations have shown 

repeating patterns of reactivity that potentially could be adjusted to include the incorporation of 

new elements, and hopefully help in the discovery or design of new reactions. 
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1.1 Introduction 

 

Cyclopropanes and cyclobutanes have been shown to play an important and useful role in 

synthetic organic chemistry with an array of various reaction partners.1 Comparison of the 

properties of carbocycles show cyclopropane and cyclobutane to have a higher ring strain energy 

due to the distortion of the bond angles away from the ideal 109° angle of the tetrahedron. Figure 

1.1 describes the higher ring strain energy of cyclic compounds when the carbon-carbon bond 

angles in cyclopropane (1) and cyclobutane (2) are not able to adopt an ideal conformation such 

as the lower energy chair form of cyclohexane (4).2 When smaller carbocycles are prepared, their 

inherent ring strain functions as a built-in energy source which can be used as a driving force to 

produce compounds with various uses in chemical synthesis. The unique properties of 

cyclopropanes allow for a very useful activation of sp3 C-C bonds within the cycle, which has 

contributed to an array of different reaction types. These properties are also useful in biological 

settings with many cyclopropane ring-opening reactions occurring in nature. 

 

 

Figure 1.1 Strain energies of small carbocycles 

 

Cyclopropanes are found in natural products and biological settings, including lipids, 

pheromones, terpenes, and steroids.3 Examples include the anti-HIV drug Nevirapine (5), and the 

potent antibiotics Ciprofloxacin (6) and Vigamox (7) as seen in Figure 1.2. Vigamox was ranked 

in the top 200 brand-name drugs by U.S. retail dollars in 2010 with a profit that year of $0.25 

billion.4 
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Figure 1.2 Examples of biologically active compounds containing a cyclopropane ring 

 

Cyclopropanes have had many uses in synthetic chemistry, such as in total synthesis, and 

in the preparation of many useful compounds. In order to make use of the cyclopropane ring and 

control which bonds will break to undergo reaction, activating groups are strategically used. The 

cyclopropane ring is reactive due to its high ring strain, but activating groups are commonly present 

on the ring to selectively increase, and control reactivity. The effects of activating groups can also 

be enhanced or activated using thermal or catalytic conditions. 

 

1.1.1 Donor-Acceptor (DA) Cyclopropanes 

 

Increased reactivity can be achieved when donor and acceptor groups are arranged in a 

vicinal relationship on the carbocycle to activate the bond between the two groups and allow for 

different reaction types.5 Common examples of electron donating groups (EDG) include: alkoxy, 

amino, aryl, vinyl, and other groups that can stabilize carbocations. Examples of electron 

withdrawing groups (EWG) commonly include: esters, carbonyls, and other groups that can 

stabilize carbanions.6 

Activation of donor-acceptor (DA) cyclopropanes (8) and cyclobutanes with Lewis acids 

allow formation of 1,3-dipole (9) and 1,4-dipole intermediates, respectively. Scheme 1.1 shows 

how DA cyclopropanes are able to react with various electrophiles, nucleophiles, or dipolarophiles. 
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Scheme 1.1 General reactions of DA cyclopropanes 

 

DA cyclopropanes have been extensively studied over the last 50 years and serve as a 

synthetically useful 1,3 carbon dipolarophile. This allows for multiple applications such as serving 

as starting materials for the synthesis of highly substituted 5- and 6-membered carbocycles and 

heterocycles via annulation (cycloaddition) reactions. 

 

1.1.2 Cycloadditions of DA Cyclopropanes 

 

Cycloaddition chemistry has the ability to produce a wide range of molecular architecture 

often with high levels of control and efficiency.7 Cycloadditions have also proven to be an effective 

method for the construction of heterocyclic compounds. The ability to efficiently access different 

heterocyclic motifs has great importance because of the interesting biological activities that are 

often associated with the systems when found in living organisms. Active heterocycles have shown 

considerable biological actions, such as antifungal, anti-inflammatory, antibacterial, 

anticonvulsant, antiallergic, herbicidal, anticancer activity.8 A main focus of this thesis is on 

cycloadditions of DA cyclopropanes with different dipolarophiles, and understanding their 

mechanism of action in the creation of heterocyclic compounds. 

Cycloadditions belong to a broader class of reactions known as pericyclic reactions. 

Pericyclic reactions are often characterized by a simultaneous event of bond breaking and bond 

creating in the reaction process. This attribute often provides a way of controlling the 
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stereochemistry for a specific reaction. In some cases, the stereochemistry of the starting material 

can control the stereochemical outcome of the product. This type of prediction is made more 

accurately when a complete understanding of the reaction mechanism and transition states are 

known. 

Typical cycloadditions often occur through tightly held or compact transition states which 

is governed my maximum orbital overlap between reaction partners.9 These so-called “closed” 

transition states are powerful tools in the asymmetric synthesis field for analyzing enantio-

selective and diastereo-selective reactions. Acquiring accurate models of transition states is 

therefore of upmost importance in the understanding of stereo-selective reactions. In addition to 

understanding transition states, it may also be of equal importance to understand the overall 

mechanism of a reaction. 

DA cyclopropanes, such as 1,1-cyclopropane diesters react in a similar way to alkenes 

substituted with an electron withdrawing group (EWG), such as α,β-unsaturated carbonyl 

systems.10 The difference is the additional carbon in the cyclopropane ring, which makes the 

reaction a one carbon homologation as seen in the [3+2], and homo [3+2] cycloaddition (Scheme 

1.2). 

 

 

Scheme 1.2 Cycloaddition of nitrones with α,β-unsaturated systems and cyclopropanes 

 

1.1.3 Cycloadditions of DA Cyclopropanes with Nitrones 

 

Nitrones (13) have been shown to react with 1,1-cyclopropane diesters (18) in the presence 

of Yb(OTf)3 to yield tetrahydro-1,2-oxazines (19) with a high degree of regio- and stereo-control, 

as seen in scheme 1.3.11 
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Scheme 1.3 Homo [3+2] cycloaddition of nitrones with DA cyclopropanes 

 

Single-crystal X-Ray analysis has shown that the observed product always forms a single 

diastereomer in which the substituents at the C3 and C6 position are always in a cis relationship. 

This type of transformation is an example of a dipolar homo [3+2] cycloaddition, but is also 

considered a 1,3-dipolar cycloaddition, and was first reported by the Kerr group in 2003. 

Mechanistic studies have been carried out with quantum chemical DFT calculations and indicate 

that two very similar, but distinct, reaction pathways may account for the transformation, and can 

be seen in Scheme 1.4.12 One pathway is an asynchronous concerted mechanism that involves an 

approximate half-chair-like transition state where the oxygen of the nitrone leads the attack on the 

cyclopropane ring (I). The second pathway is a stepwise mechanism which involves a zwitterionic 

imminium intermediate, with the oxygen of the nitrone again leading the attack on the 

cyclopropane ring (II). Understanding this transformation in detail has helped discover another 

transformation, where DA cyclopropanes are capable of reacting with nitrosoarenes. 
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Scheme 1.4 Mechanism of cycloaddition of DA cyclopropanes with nitrones 

 

In 2004 the Kerr group showed that this reaction could be carried out using a three-

component coupling strategy between an aldehyde (21) and a hydroxylamine (20) as seen in 

Scheme 1.5. In this strategy, the nitrone (13) is formed in situ, which is useful when dealing with 

nitrones that are difficult to prepare or are unstable due to oligomerization under the required Lewis 

acidic conditions.13 

 

 

Scheme 1.5 Three-component homo [3+2] cycloaddition 

 



8 
 

 
 

In order to address the issue as to whether this reaction mechanism is going through a 

concerted or step-wise pathway, extensive studies were performed using enantio-pure starting 

materials. Therefore the reaction of enantiomerically enriched 3-methyl-2-phenylcyclopropane-

1,1-dicarboxylates with nitrones was performed by Dr. Michael Kerr in 200714, as shown in 

scheme 1.6. 

 

 

 

Scheme 1.6 Mechanism studies on cycloadditions of DA cyclopropanes with nitrones 

 

A key piece of information discovered in this study is the inversion of stereochemistry at 

C2 for both cis and trans diastereomers of the starting material. The results provided experimental 

evidence that supports the idea of a step-wise pathway and not a concerted pathway. In the step-

wise pathway, there is an inversion of stereochemistry when the oxygen from the nitrone acts as a 

nucleophile and opens the cyclopropane ring. 

Experimental evidence that also helps support the mechanism proposed by Dr. Michael 

Kerr was provided when optically active cyclopropanes were reacted with nitrones in the presence 
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of a catalytic amount of Ni(ClO4)2 without a chiral ligand to give the tetrahydro-1,2-oxazine in a 

high yield with the same level of enantiomeric purity as that of the starting material.15 

 This work by Tang et al shows how understanding the proposed mechanism of a reaction 

can lead to other discoveries, in this case, applications for kinetic resolution was developed. This 

was made possible because of the diligent mechanistic studies performed by Dr. Michael Kerr to 

understand the reaction with a high level of understanding. 

 

1.1.4 Tetrahydro-1,2-Oxazines 

 

The tetrahydro-1,2-oxazine motif is rarely found in nature, appearing in only a small 

number of natural products. Examples of these natural products include FR900482 (27) and 

FR66979 (28) as seen in Figure 1.3, which exhibit antitumor and antibiotic properties.16 Both of 

these natural products are structurally similar to the mitomycins, including mitomycin C, which 

has been in widespread clinical use for more than 20 years. The biological activities of FR900482 

and FR66979 are also similar to the mitomycins, which are both reductively activated in vivo and 

covalently cross-link DNA in a fashion analogous to the mitomycins. The difference in structures 

that ultimately causes a different mechanism of bio-reductive activation between the mitomycins 

and FR900482, cause FR900482 to not exhibit oxidative strand scission of DNA and to not 

produce a superoxide radical anion during activation. The FR900482 class of compounds 

represents a compelling clinical replacement for mitomycin C, given its greatly reduced host 

toxicity and superior DNA interstrand cross-linking efficacy. 

 

 

Figure 1.3 Tetrahydro-1,2-oxazine motif in natural and synthetic compounds 
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FK317 (29) and FK973 (30) are synthetic analogs of the natural products FR900482 and 

FR66979, and also contain the tetrahydro-1,2-oxazine system. The antitumor activity of FK317 

was found to be equivalent to, or stronger than cisplatin, mitomycin C, and Taxol. Because of 

compounds such as FR900482 and FR66979 which contain the tetrahydro-1,2-oxazine system and 

show interesting biological features, new synthetic routes to the tetrahydro-1,2-oxazine core are 

useful because of the limited ways in which these systems can be created. These limitations have 

made the tetrahydro-1,2-oxazine ring difficult to synthesize in the past, so having the ability to 

form the system in a controlled manner is definitely beneficial to the synthetic community. This 

project looks at how cycloaddition chemistry can be utilized as an effective method for 

heterocyclic ring construction, and how understanding the process mechanistically may lead to the 

discovery of other reaction types. It is already know that DA cyclopropanes react with nitrones to 

form the tetrahydro-1,2-oxazine ring, and a goal of this project is to discover other partners that 

are compatible with DA cyclopropanes to form these systems as well as other interesting 

heterocycles. 

The post modification of tetrahydro-1,2-oxazines has been examined by Dr. Michael Kerr 

and has led to some interesting and important uses for the ring system. Selective N-O cleavage of 

the tetrahydro-1,2-oxazine ring has been utilized in the synthesis of amino alcohols. The amino 

alcohols have then been used to construct pyrrolidines which has applications in the total synthesis 

of Nakadomarin A for example.17 Pyrrole synthesis has also emerged as a tool made possible from 

post modification of the ring system.18 These useful applications showcase how important these 

molecules are, and how important it is to obtain these compounds in an efficient and controllable 

manner. 
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Chapter 2 - Cycloadditions of Donor-Acceptor Cyclopropanes with Nitrosoarenes 

 

2.1 Introduction 

 

 Nitrosoarenes have been coupled with DA cyclopropanes in the synthesis of various 

heterocyclic ring systems.19 Although reactions of nitrosoarenes and DA cyclopropanes have been 

reported, their potential has still yet to be reached. The discovery of new reactions utilizing the 

nitroso functional group is still ongoing and demonstrates the versatility in the construction of 

heterocyclic systems. The nitrogen-oxygen single bond that forms when nitrosoarenes are used in 

ring construction, has been shown to be a site of functionalization for the production of important 

molecules such as amino alcohols.20 

 

2.1.1 Cycloadditions of DA Cyclopropanes with Nitrosoarenes 

 

Previous research in the Studer group21 has shown DA cyclopropanes to be a compatible 

reaction partner with nitrosoarenes, which undergo a [3+2] cycloaddition forming isoxazolidines 

when catalyzed with MgBr2 as seen in scheme 2.1. The successful use of DA cyclopropanes with 

nitrosoarenes in cycloaddition reactions encouraged the Pagenkopf group to determine if these 

reaction partners were able to undergo other transformations. 

 

 

 

Scheme 2.1 [3+2] Cycloaddition of DA cyclopropanes with nitrosoarenes 
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Figure 2.1 Catalytic cycle of [3+2] cycloaddition of DA cyclopropanes with nitrosoarenes 

 

The mechanism (Figure 2.1) shows a bromide ion attacking and opening the cyclopropane 

ring, which drew my attention because of the Pagenkopf group’s interest in Yb(OTf)3 catalyzed 

DA cyclopropane cycloaddition chemistry. Under Yb(OTf)3 catalytic conditions, only the triflate 

ion would be present as a counter-ion and would presumably be less nucleophilic towards the 

cyclopropane, allowing the nitrosoarene a chance to act as the nucleophile and perhaps open the 

cyclopropane ring in a [3+2] annulation to yield an isooxazolidinine. The initial hope was in 

opening of the DA cyclopropane in a manner that would yield the opposite regio-isomer as the 

Studer group. Instead of observing an isooxazolidinine, a tetrahydro-1,2-oxazine motif was 

formed. 

 

2.2 Results and Discussion 

 

Interestingly, it was discovered that when nitrosoarenes were allowed to react with DA 

cyclopropanes, the tetrahydro-1,2-oxazine motif was formed when catalyzed with Yb(OTf)3 under 

refluxing conditions. The observed cis stereochemical outcome of the tetrahydro-1,2-oxazine ring 



13 
 

 
 

is consistent with Kerr’s reaction of DA cyclopropanes with nitrones. A nitrone intermediate may 

account for the formation of the tetrahydro-1,2-oxazine system. This assumption was backed up 

by experimental evidence when considering the yield of the reaction. When both starting materials 

were used in a 1:1 ratio of equivalents, a yield of 44% was observed (Scheme 2.2). When using a 

2:1 ratio of cyclopropane to nitrosoarene, a yield of 87% was observed. This observation shows 

how two equivalents of the cyclopropane may be combining to form a nitrone in situ, which then 

reacts with the nitrosoarene. Understanding the mechanics of this unprecedented reaction may lead 

to the discovery of other reaction types and reaction partners for DA cyclopropanes. 

 

 

 

Scheme 2.2 Reaction of DA cyclopropane with nitrosoarene 

 

The physical properties of the tetrahydro-1,2-oxazine produced by this method are an exact 

match to the tetrahydro-1,2-oxazine produced from Kerr’s methodology. The 1H NMR of 

compound 35a prepared from DA cyclopropane 34a and nitrosobenzene 32a is shown in Figure 

2.2. 

 

 

 

Figure 2.2 1H NMR of tetrahydro-1,2-oxazine 35a 
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The NMR of the product from scheme 2.2 was compared to the identical compound 

synthesized using Kerr’s three-component coupling strategy and is shown in Scheme 2.3 and 

Figure 2.3. 

 

 

Scheme 2.3 Three component synthesis of tetrahydro-1,2-oxazine 

 

 

 

Figure 2.3 1H NMR of tetrahydro-1,2-oxazine 35a prepared from Kerr’s method 

 

 The matching NMR data provided experimental evidence that both methods lead to the 

same compound and, therefore, access to tetrahydro-1,2-oxazine is possible when reacting 1,1-

cyclopropane diesters with nitrosoarene compounds. 

To find reaction conditions that produce the highest yields and come to a better 

understanding of this reaction, an optimization experiment was carried out (Table 2.1). The 

reaction of DA cyclopropanes with nitrosoarenes was performed under different conditions until 

the production of tetrahydro-1,2-oxaizine was achieved in an efficient and reproducible manner. 
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Table 2.1 Optimization of Yb(OTf)3 catalyzed reaction of DA cyclopropanes with nitrosoarene 

 

 

Entrya Cyclopropane 

(Equivalents) 

Nitrosoarene 

(Equivalents) 

Time 

(Hours) 

Yb(OTf)3 

(mol %) 

Yield 

(%)b 

1 1 2 20 10 42 

2 1 1 20 10 44 

3 2 1 18 10 87 

4 4 1 16 10 76 

5 2 1 15 5 72 

6 2 1 9 20 80 

a Typical reaction conditions: Cyclopropane and nitrosoarene were added to a solution of 

Yb(OTf)3 in 1,2-DCE (3 mL) at room temperature. Reactions were monitored by thin layer 

chromatography (TLC) until cyclopropane was consumed. b Isolated yield. 

 

 

 A cross-over experiment, which is a method used to study the mechanism of a chemical 

reaction, was used to address this reaction and the experimental evidence gained would help 

develop a rational reaction mechanism. A mechanism that would account for this overall 

transformation is shown in Scheme 2.4, and demonstrates how the nitrosoarene starts by attacking 

the first equivalent of cyclopropane, then forming a nitrone in situ. The nitrone would then react 

with the second equivalent of cyclopropane, in a known homo [3+2] cycloaddition, shown in a 

step-wise sequence. 
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Scheme 2.4 Proposed mechanism for the reaction of DA cyclopropanes with nitrosoarenes 

 

To investigate the proposed reaction mechanism, a cross-over experiment was designed to 

provide key mechanistic details. The theoretical mechanism can be analyzed by using two different 

cyclopropanes as the starting materials in a cross-over experiment with nitrosobenzene. 

 

2.2.1 Synthesis of DA cyclopropanes 

 

Cyclopropanes were prepared using a two-step procedure utilizing a Knoevenagel 

condensation followed by a Corey-Chaykovsky reaction (Table 2.2). Two different cyclopropanes 

were required for the cross-over experiment and additional cyclopropanes were also prepared to 

explore the reaction scope for compatibility with various nitrosoarenes. 
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Table 2.2 Synthesis of DA cyclopropanes 

 

 

Entrya Cyclopropane Product Yield (% over 2 

steps)b 

1 Ar = C6H5, R = Me 34a 76 

2 Ar = 4-MeC6H4, R = Me 34b 87 

3 Ar = C6H5, R = Et 34c 82 

4 

5 

Ar = 4-MeC6H4, R = Et 

Ar = 2-thienyl, R = Me 

34d 

34e 

83 

70 

 a Typical reaction conditions: L-Proline (1.88 mmol) was added to a solution of aldehyde 

(18.8 mmol) in DMSO (6 mL) followed by dialkyl malonate (37.6 mmol) and stirred for 24 

h at room temperature. NaH (1.7 mmol) was added to trimethylsulfoxonium iodide (1.7 

mmol) in DMF (3 mL) and stirred for 1 h at room temperature before adding the Knoevenagel 

product (1.4 mmol). Reactions were monitored by TLC until cyclopropane was consumed. b 

Isolated yield. 

 

 

2.2.2 Cross-Over Experiment #1 

 

Using starting material that consisted of two different DA cyclopropanes (34a, 34d) would, 

in theory, generate two different nitrone intermediates (38, 43) as seen in Scheme 2.5. Nitrone 

intermediate 38 would react with cyclopropane 34a and cyclopropane 34d giving rise to products 

35a and 35c. The other nitrone intermediate (43) would react again with cyclopropane 34a and 

cyclopropane 34d, giving rise to products 35b and 35d. Identification of all four products in the 

reaction mixture would confirm that a reaction is taking place in which there is cross-over between 

the two different cyclopropanes and the two different nitrone intermediates. 

The four expected products were synthesized individually from a three component 

coupling, homo [3+2] dipolar cycloaddition. Once each tetrahydro-1,2-oxazine product was 
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synthesized, they were used as standards and compared against the reaction mixture of the cross-

over experiment. The three component coupling reaction was performed by making a nitrone in 

situ from the respective aldehyde and hydroxylamine as seen in Table 2.3. 

 

Table 2.3 Synthesis of tetrahydro-1,2-oxazine standards 

 

 

Entrya Aldehyde Cyclopropane Product Yield (%)b 

1 Ar1 = C6H5 Ar2 = C6H5, R= Me 35a 64 

2 Ar1 = 4-MeC6H4 Ar2 = C6H5, R= Me 35b 81 

3 Ar1 = C6H5 Ar2 = 4-MeC6H4, R= Et 35c 77 

4 Ar1 = 4-MeC6H4 Ar2 = 4-MeC6H4, R= Et 35d 63 

 a Typical reaction conditions: To a solution of hydroxylamine (0.46 mmol) and 

aldehyde (0.50 mmol) in toluene (2 mL) at room temperature, were added Yb(OTf)3 

and 4Å molecular sieves. Reactions were monitored by TLC. b Isolated yield. 

 

After synthesis and characterization, the standards with their respective Rf values were 

spotted against the reaction mixture of the cross-over experiment and developed in Hexanes:Ethyl 

Acetate (3:1) on a TLC plate. All four standards in the reaction mixture were identified. All four 

tetrahydro-1,2-oxazines (35a - 35d) were isolated from the reaction mixture of cross-over 

experiment #1 to provide isolated yields as seen in Scheme 2.5. All four products in the reaction 

mixture (from cross-over experiment #1) was verified with NMR and GC-MS data, which were 

analyzed by comparison to the individual standards produced from Table 2.3 
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Scheme 2.5 Cross-over experiment for the reaction of DA cyclopropanes with nitrosoarenes 

 

2.2.3 Reaction Scope 

 

After gaining a better understanding and optimizing the reaction of DA cyclopropanes with 

nitrosoarenes, the optimal conditions were applied to other nitrosoarenes to investigate and expand 

the reactions scope, as seen in Table 2.4. 
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Table 2.4 Reaction scope with different nitrosoarenes 

 

 

Entrya Nitrosoarene Product Yield (%)b 

1 Ar = 3-BrC6H4 44a 73 

2 Ar = 4-BrC6H4 44b 75 

3 Ar = 3-CO2EtC6H4 44c 80 

4 Ar = 4-CO2EtC6H4 44d 78 

5 Ar = 3,4-Cl2C6H3 44e 91 

6 Ar = 3-C(O)MeC6H4 44f 68 

7 Ar = N-Boc-5-Indole 44g 55 

 a Typical reaction conditions: To a solution of Yb(OTf)3 in 1,2-DCE (3 mL) at room 

temperature, was added cyclopropane (0.43 mmol) and nitrosoarene (0.22 mmol). Reactions 

were monitored by TLC until cyclopropane was consumed. b Isolated yield. 

 

After expansion of the reaction scope to include different nitrosoarenes, additional DA 

cyclopropanes were explored. Table 2.5 shows different DA cyclopropanes that are compatible 

with the reaction conditions in forming tetrahydro-1,2-oxazines. 
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Table 2.5 Reaction scope with different DA cyclopropanes 

 

 

Entrya Cyclopropane Product Yield (%)b 

1 Ar = C6H5, R = Me 35a 87 

2 Ar = C6H5, R = Et 35e 62 

3 Ar = 4-MeC6H4, R = Me 35f 46 

4 

5 

Ar = 4-MeC6H4, R = Et 

Ar = 2-thienyl, R = Me 

35d 

35g 

70 

69 

 a Typical reaction conditions: To a solution of Yb(OTf)3 in 1,2-DCE (3 mL) 

at room temperature, was added cyclopropane (0.43 mmol) and nitrosoarene 

(0.22 mmol). Reactions were monitored by TLC until cyclopropane was 

consumed. b Isolated yield. 

 

 A new method of synthesizing tetrahydro-1,2-oxazines from DA cyclopropanes and 

nitrosoarenes under Yb(OTf)3 catalysis has been developed. A mechanism that accounts for this 

overall transformation has been presented and experimental data obtained from a cross-over 

experiment provided supporting evidence. The reaction scope was investigated and it was found 

that the reaction conditions were compatible with different nitrosoarenes and DA cyclopropanes. 
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2.3 Experimental 

 

All reactions were performed in an atmosphere of dry argon unless otherwise noted. Flasks 

were oven-dried at approximately 110 °C overnight and cooled in a desiccator prior to use. 

Solvents and reagents were purified according to standard procedures. Dichloromethane was 

purified by passing the solvent through a column of activated alumina. 1,2-Dichloroethane was 

dried by stirring with CaH2 for one hour prior to distillation. All other chemicals were of reagent 

quality and used as obtained from commercial sources unless otherwise noted. The progress of 

reactions was monitored by TLC performed on F254 silica gel plates. The plates were visualized 

using UV light (254 nm) or by staining with ceric ammonium molybdate (CAM) or KMnO4. 

Column chromatography was performed with Silica Flash P60 60 Å silica gel (purchased from 

Silicycle) using flash column chromatography techniques. 

1H and 13C NMR data were obtained on Mercury 400 or Inova 600 MHz spectrometers and 

chemical shifts were reported in parts per million (ppm). All spectra were obtained in deuterated 

chloroform and referenced to residual chloroform at δ 7.26 ppm for 1H spectra and the center peak 

of the triplet at δ 77.0 ppm for 13C spectra. When peak multiplicities are given, abbreviations are 

as follows: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; dt, doublet of triplets; 

m, multiplet. EI high-resolution mass spectra (HRMS) were recorded on a Finnigan MAT 8200 

mass spectrometer at an ionizing voltage of 70 eV. 
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2.4 Supporting Information 

 

General Three Component Coupling Procedure 

 To a solution of hydroxylamine (0.46 mmol, 1.3 equiv) and aldehyde (0.50 mmol, 1.4 

equiv), in toluene (2 mL) was added 4Å molecular sieves and Yb(OTf)3 (0.04 mmol, 0.1 equiv) 

and stirred for 30 min. Cyclopropane (0.36 mmol, 1.0 equiv) was then added and stirred for 20 h 

at rt, then directly loaded onto a packed SiO2 column. Product was purified by flash 

chromatography (9:1 hexanes/EtOAc) to afford the corresponding cycloadducts. 

 

 

Dimethyl 2,3,6-triphenyl-1,2-oxazinane-4,4-dicarboxylate (35a) 

The general three component coupling procedure was followed using hydroxylamine (50 mg, 0.46 

mmol), aldehyde (0.05 mL, 0.50 mmol), Yb(OTf)3 (22 mg, 0.036 mmol) and cyclopropane 34a 

(84 mg, 0.36 mmol) to yield the compound as a yellow oil. The yellow oil was recrystallized with 

CH2Cl2/Hexane to give a white solid (100 mg, 64%). Rf 0.40 (3:1 Hexanes:EtOAc); 1H NMR (400 

MHz, CDCl3) 7.56 - 7.60 (m, 4 H), 7.47 (app t, J = 7.4 Hz, 2 H), 7.38 - 7.42 (m, 1 H), 7.09 - 7.22 

(m, 7 H), 6.81 (app t, J = 7.0 Hz, 1 H), 5.80 (s, 1 H), 5.03 (dd, J = 12.1, 2.3 Hz, 1 H), 3.93 (s, 3 H), 

3.48 (s, 3 H), 2.86 (dd, J = 14.5, 12.1 Hz, 1 H), 2.78 (dd, J = 14.5, 2.3 Hz, 1 H); 13C NMR (100 

MHz, CDCl3) 170.1, 168.3, 148.5, 139.4, 135.0, 130.4, 128.6, 128.5, 128.3, 128.1, 128.0, 126.5, 

121.6, 115.8, 78.8, 65.7, 59.5, 53.5, 52.6, 31.6; HRMS C26H25NO5 Calculated = 431.1733, Found 

= 431.1736 

 

 

 

 



24 
 

 
 

 

Dimethyl 2,6-diphenyl-3-(p-tolyl)-1,2-oxazinane-4,4-dicarboxylate (35b) 

The general three component coupling procedure was followed using hydroxylamine (60 mg, 0.55 

mmol), aldehyde (0.07 mL, 0.60 mmol), Yb(OTf)3 (27 mg, 0.043 mmol) and cyclopropane 34a 

(100 mg, 0.43 mmol) to yield the compound as a yellow oil. The yellow oil was recrystallized with 

CH2Cl2/Hexane to give a white solid (155 mg, 81%). Rf 0.45 (3:1 Hexanes:EtOAc); 1H NMR (400 

MHz, CDCl3) 7.57 (app d, J = 7.4 Hz, 2 H), 7.45 - 7.49 (m, 4 H), 7.38 - 7.42 (m, 1 H), 7.09 - 7.17 

(m, 4 H), 7.00 (app d, J = 7.8 Hz, 2 H), 6.79 - 6.83 (m, 1 H), 5.78 (s, 1 H), 5.03 (dd, J = 12.1, 2.3 

Hz, 1 H), 3.92 (s, 3 H), 3.51 (s, 3 H), 2.87 (dd, J = 14.5, 12.1 Hz, 1 H), 2.78 (dd, J = 14.5, 2.3 Hz, 

1 H), 2.23 (s, 3 H); 13C NMR (100 MHz, CDCl3) 170.1, 168.3, 148.6, 139.5, 137.6, 131.9, 130.3, 

121.5, 115.7, 78.8, 77.3, 76.7, 65.4, 59.6, 53.5, 52.7, 31.6, 21.1; HRMS C27H27NO5 Calculated = 

445.1889, Found = 445.1882 

 

 Diethyl 2,3-diphenyl-6-(p-tolyl)-1,2-oxazinane-4,4-dicarboxylate (35c) 

The general three component coupling procedure was followed using hydroxylamine (50 mg, 0.46 

mmol), aldehyde (0.05 mL, 0.50 mmol), Yb(OTf)3 (22 mg, 0.036 mmol) and cyclopropane 34d 

(100 mg, 0.36 mmol) to yield the compound as a yellow oil. The yellow oil was recrystallized with 

CH2Cl2/Hexane to give a white solid (132 mg, 77%). Rf 0.55 (3:1 Hexanes:EtOAc); 1H NMR (400 

MHz, CDCl3) 7.57 - 7.59 (m, 2 H), 7.45 (app d, J = 8.2 Hz, 2 H), 7.28 (s, 1 H), 7.08 - 7.17 (m, 7 

H), 6.80 (app t, J = 7.0 Hz, 1 H), 5.78 (s, 1 H), 5.00 (dd, J = 12.1, 2.3 Hz, 1 H), 4.38 (q, J = 7.0 Hz, 

2 H), 3.87 - 3.94 (dddd, J = 7.0, 7.0, 7.0, 10.5 Hz, 2 H), 2.87 (dd, J = 14.5, 12.1 Hz, 1 H), 2.76 (dd, 

J = 14.5, 2.3 Hz, 1 H), 2.41 (s, 3 H), 1.36 (t, J = 7.2 Hz, 3 H), 1.03 (t, J = 7.0 Hz, 3 H); 13C NMR 

(100 MHz, CDCl3) 169.6, 168.0, 148.7, 138.1, 136.6, 135.1, 130.6, 129.3, 128.5, 128.0, 127.9, 

126.5, 121.4, 115.8, 78.7, 65.7, 62.3, 61.8, 59.4, 31.7, 21.3, 14.2, 13.7; HRMS C29H31NO5 

Calculated = 473.2202, Found = 473.2195 
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Diethyl 2-phenyl-3,6-di-p-tolyl-1,2-oxazinane-4,4-dicarboxylate (35d) 

The general three component coupling procedure was followed using hydroxylamine (50 mg, 0.46 

mmol), aldehyde (0.05 mL, 0.50 mmol), Yb(OTf)3 (22 mg, 0.036 mmol) and cyclopropane 34d 

(100 mg, 0.36 mmol) to yield the compound as a yellow oil. The yellow oil was recrystallized with 

CH2Cl2/Hexane to give a white solid (190 mg, 63%). Rf 0.58 (3:1 Hexanes:EtOAc); 1H NMR (400 

MHz, CDCl3) 7.44 - 7.47 (app dd, J = 8.2, 6.6 Hz, 4 H), 7.27 (app d, J = 8.2 Hz, 2 H), 7.08 - 7.16 

(m, 4 H), 6.97 (app d, J = 8.2 Hz, 2 H), 6.79 (app tt, J = 7.0, 1.6 Hz, 1 H), 5.75 (s, 1 H), 4.98 (dd, 

J = 14.5, 2.3 Hz, 1 H), 4.38 (q, J = 7.0 Hz, 2 H), 3.85 - 3.99 (dddd, J = 7.0, 7.0, 7.0, 10.5 Hz, 2 H), 

2.86 (dd, J = 14.5, 12.5 Hz, 1 H), 2.74 (dd, J = 14.5, 2.3 Hz, 1 H), 2.41 (s, 3 H), 2.21 (s, 3 H), 1.35 

(t, J = 7.0 Hz, 3 H), 1.06 (t, J = 7.0 Hz, 3 H); 13C NMR (100 MHz, CDCl3) 169.7, 168.0, 148.7, 

138.1, 137.5, 136.6, 131.9, 130.5, 129.3, 128.6, 128.5, 126.5, 121.3, 115.7, 78.7, 65.4, 62.2, 61.7, 

59.4, 31.7, 21.2, 21.0, 14.2, 13.7; HRMS C30H33NO5 Calculated = 487.2359, Found = 487.2348 

 

General Lewis Acid Catalyzed Cycloaddition Procedure   

 

To a solution of cyclopropane (0.43 mmol, 2.1 equiv) and nitrosoarene (0.20 mmol, 1.0 

equiv) in DCE (3 mL) was added Yb(OTf)3 (0.02 mmol, 0.1 equiv) and stirred for 15 min. The 

mixture was heated to reflux for 3 h then concentrated after consumption of cyclopropane (as 

indicated by TLC) and directly loaded onto a packed SiO2 column. Product was purified by flash 

chromatography (9:1 hexanes/EtOAc) to afford the corresponding cycloadducts. 
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Dimethyl 2,3,6-triphenyl-1,2-oxazinane-4,4-dicarboxylate (35a) 

The general Lewis acid cycloaddition procedure was followed using cyclopropane 34a (100 mg, 

0.43 mmol), nitrosobenzene (21 mg, 0.20 mmol) and Yb(OTf)3 (12 mg, 0.020 mmol) to yield the 

compound as a yellow oil, which was recrystallized with CH2Cl2/Hexane to give a white solid (75 

mg, 87%). Rf 0.40 (3:1 Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3) 7.56 - 7.60 (m, 4 H), 7.47 

(app t, J = 7.4 Hz, 2 H), 7.38 - 7.42 (m, 1 H), 7.09 - 7.22 (m, 7 H), 6.81 (app t, J = 7.0 Hz, 1 H), 

5.80 (s, 1 H), 5.03 (dd, J = 12.1, 2.3 Hz, 1 H), 3.93 (s, 3 H), 3.48 (s, 3 H), 2.86 (dd, J = 14.5, 12.1 

Hz, 1 H), 2.78 (dd, J = 14.5, 2.3 Hz, 1 H); 13C NMR (100 MHz, CDCl3) 170.1, 168.3, 148.5, 139.4, 

135.0, 130.4, 128.6, 128.5, 128.3, 128.1, 128.0, 126.5, 121.6, 115.8, 78.8, 65.7, 59.5, 53.5, 52.6, 

31.6; HRMS C26H25NO5 Calculated = 431.1733, Found = 431.1736 

 

 

Diethyl 2,3,6-triphenyl-1,2-oxazinane-4,4-dicarboxylate (35e) 

The general Lewis acid cycloaddition procedure was followed using cyclopropane 34c (50 mg, 

0.19 mmol), nitrosobenzene (10 mg, 0.095 mmol) and Yb(OTf)3 (12 mg, 0.019 mmol) to yield the 

compound as a yellow oil, which was recrystallized with CH2Cl2/Hexane to give a white solid (28 

mg, 62%). Rf 0.46 (3:1 Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3) 7.55 - 7.60 (m, 4 H), 7.47 

(app t, J = 7.2 Hz, 2 H), 7.38 - 7.41 (m, 1 H), 7.09 - 7.20 (m, 7 H), 6.81 (app tt, J = 7.0, 1.6 Hz, 1 

H), 5.79 (s, 1 H), 5.03 (dd, J = 12.1, 2.3 Hz, 1 H), 4.40 (q, J = 7.0 Hz, 2 H), 3.83 - 3.99 (dddd, J = 

7.0, 7.0, 7.0, 10.5 Hz, 2 H), 2.87 (dd, J = 14.5, 12.1 Hz, 1 H), 2.79 (dd, J = 14.5, 2.3 Hz, 1 H), 1.37 

(t, J = 7.2 Hz, 3 H), 1.03 (t, J = 7.2 Hz, 3 H); 13C NMR (100 MHz, CDCl3) 169.6, 167.9, 148.6, 

139.6, 135.0, 130.6, 128.6, 128.5, 128.2, 128.0, 127.9, 126.4, 121.5, 115.8, 78.8, 65.8, 62.3, 61.8, 

59.3, 31.9, 14.2, 13.7; HRMS C28H29NO5 Calculated = 459.2046, Found = 459.2027 
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Dimethyl 2-phenyl-3,6-di-p-tolyl-1,2-oxazinane-4,4-dicarboxylate (35f) 

The general Lewis acid cycloaddition procedure was followed using cyclopropane 34b (50 mg, 

0.20 mmol), nitrosobenzene (11 mg, 0.10 mmol) and Yb(OTf)3 (12 mg, 0.020 mmol) to yield the 

compound as a yellow oil, which was recrystallized with CH2Cl2/Hexane to give a white solid (21 

mg, 46%). Rf  0.60 (3:1 Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3) 7.45 - 7.48 (m, 4 H), 7.27 

(app d, J = 8.2 Hz, 2 H), 7.07 - 7.14 (m, 4 H), 6.99 (app d, J = 7.8 Hz, 2 H), 6.80 (app tt, J = 8.2, 

1.2 Hz, 1 H), 5.76 (s, 1 H), 4.98 (dd, J = 12.1, 2.3 Hz, 1 H), 3.91 (s, 3 H), 3.50 (s, 3 H), 2.86 (dd, 

J = 14.5, 12.1 Hz, 1 H), 2.74 (dd, J = 14.5, 2.3 Hz, 1 H), 2.41 (s, 3 H), 2.22 (s, 3 H); 13C NMR (100 

MHz, CDCl3) 170.2, 168.4, 148.6, 143.0, 138.2, 137.6, 136.4, 131.9, 130.3, 129.7, 129.5, 129.3, 

129.2, 128.7, 128.5, 126.6, 126.5, 121.4, 115.7, 78.7, 65.3, 59.6, 53.4, 52.6, 31.4, 21.3, 21.1; 

HRMS C28H29NO5 Calculated = 459.2046, Found = 459.2027 

 

Dimethyl 2-phenyl-3,6-di(thiophen-2-yl)-1,2-oxazinane-4,4-dicarboxylate (35g) 

The general Lewis acid cycloaddition procedure was followed using cyclopropane 34e (100 mg, 

0.42 mmol), nitrosobenzene (121 mg, 0.20 mmol) and Yb(OTf)3 (12 mg, 0.020 mmol) to yield the 

compound as a yellow oil, which was recrystallized with CH2Cl2/Hexane to give a white solid (61 

mg, 69%). Rf  0.39 (3:1 Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3) 7.40 (app d, J = 5.1 Hz, 1 

H), 7.25 (app d, J = 3.9 Hz, 1 H), 7.15 - 7.20 (m, 3 H), 7.06 - 7.13 (m, 3 H), 6.95 (app d, J = 3.5 

Hz, 1 H), 6.88 (app t, J = 7.4 Hz, 1 H), 6.80 - 6.84 (m, 1 H), 6.09 (s, 1 H), 5.27 (dd, J = 12.1, 2.3 

Hz, 1 H), 3.92 (s, 3 H), 3.59 (s, 3 H), 2.99 (dd, J = 14.5, 12.1 Hz, 1 H), 2.88 (dd, J = 14.5, 2.3 Hz, 

1 H); 13C NMR (100 MHz, CDCl3) 169.3, 167.7, 148.1, 141.5, 133.8, 129.2, 128.5, 127.2, 126.7, 

126.0, 125.8, 125.4, 122.4, 116.3, 75.0, 64.3, 59.7, 53.6, 52.9, 32.3; HRMS C22H21NO5S2 

Calculated = 443.0861, Found = 443.0864 
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Dimethyl 2-(3-bromophenyl)-3,6-diphenyl-1,2-oxazinane-4,4-dicarboxylate (44a) 

The general Lewis acid cycloaddition procedure was followed using cyclopropane 34a (100 mg, 

0.43 mmol), nitrosoarene (20 mg, 0.11 mmol) and Yb(OTf)3 (6 mg, 0.010 mmol) to yield the 

compound as a yellow oil, which was recrystallized with CH2Cl2/Hexane to give a white solid (41 

mg, 73%). Rf  0.38 (3:1 Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3) 7.54 - 7.60 (m, 4 H), 7.46 

- 7.50 (m, 2 H), 7.40 - 7.43 (m, 1 H), 7.22 - 7.24 (m, 3 H), 6.99 - 7.01 (m, 2 H), 6.91 - 6.94 (m, 1 

H), 5.76 (s, 1 H), 4.99 (dd, J = 12.1, 2.3 Hz, 1 H), 3.92 (s, 3 H), 3.49 (s, 3 H), 2.87 (dd, J = 14.5, 

12.1 Hz, 1 H), 2.76 (dd, J = 14.5, 2.3 Hz, 1 H); 13C NMR (100 MHz, CDCl3) 169.9, 168.0, 138.9, 

134.5, 130.2, 129.9, 128.7, 128.5, 128.3, 128.2, 126.6, 124.4, 122.7, 118.6, 114.0, 79.1, 59.4, 53.6, 

52.7; HRMS C26H24BrNO5 Calculated = 509.0838, Found = 509.0823 

 

 

Dimethyl 2-(4-bromophenyl)-3,6-diphenyl-1,2-oxazinane-4,4-dicarboxylate (44b) 

The general Lewis acid cycloaddition procedure was followed using cyclopropane 34a (100 mg, 

0.43 mmol), nitrosoarene (37 mg, 0.20 mmol) and Yb(OTf)3 (12 mg, 0.020 mmol) to yield the 

compound as a yellow oil, which was recrystallized with CH2Cl2/Hexane to give a white solid (75 

mg, 75%). Rf  0.34 (3:1 Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3) 7.53 - 7.57 (m, 4 H), 7.45 

- 7.47 (m, 2 H), 7.38 - 7.42 (m, 1 H), 7.18 - 7.20 (m, 5 H), 6.96 - 6.98 (m, 2 H), 5.73 (s, 1 H), 5.00 

(dd, J = 12.1, 2.7 Hz, 1 H), 3.92 (s, 3 H), 3.48 (s, 3 H), 2.87 (dd, J = 14.5, 12.1 Hz, 1 H), 2.76 (dd, 

J = 14.5, 2.7 Hz, 1 H); 13C NMR (100 MHz, CDCl3) 168.1, 147.6, 139.0, 134.6, 131.4, 130.3, 

128.7, 128.5, 128.3, 128.1, 126.5, 117.5, 114.1, 79.0, 65.6, 59.4, 53.6, 52.7, 31.5; HRMS 

C26H24BrNO5 Calculated = 509.0838, Found = 509.0830 
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Dimethyl 2-(3-(ethoxycarbonyl)phenyl)-3,6-diphenyl-1,2-oxazinane-4,4-dicarboxylate (44c) 

The general Lewis acid cycloaddition procedure was followed using cyclopropane 34a (100 mg, 

0.43 mmol), nitrosoarene (39 mg, 0.22 mmol) and Yb(OTf)3 (12 mg, 0.020 mmol) to yield the 

compound as a yellow oil, which was recrystallized with CH2Cl2/Hexane to give a white solid (88 

mg, 80%). Rf 0.29 (3:1 Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3) 7.75 (app t, J = 1.6 Hz, 1 

H), 7.55 - 7.62 (m, 4 H), 7.45 - 7.51 (m, 3 H), 7.39 - 7.43 (m, 1 H), 7.27 - 7.32 (m, 1 H), 7.17 - 

7.22 (m, 4 H), 5.85 (s, 1 H), 5.02 (dd, J = 12.1, 2.3 Hz, 1 H), 4.32 (q, J = 7.0 Hz, 2 H), 3.93 (s, 3 

H), 3.49 (s, 3 H), 2.90 (dd, J = 14.5, 12.1 Hz, 1 H), 2.77 (dd, J = 14.5, 2.3 Hz, 1 H), 1.35 (t, J = 7.2 

Hz, 3 H); 13C NMR (100 MHz, CDCl3) 170.0, 168.1, 166.6, 148.6, 139.1, 134.6, 130.4, 128.7, 

128.6, 128.4, 128.2, 128.1, 126.5, 122.6, 120.1, 116.6, 79.0, 65.3, 60.9, 59.4, 53.6, 52.7, 31.6, 14.3; 

HRMS C29H29NO7 Calculated = 503.1944, Found = 503.1943 

 

 

Dimethyl 2-(4-(ethoxycarbonyl)phenyl)-3,6-diphenyl-1,2-oxazinane-4,4-dicarboxylate (44d) 

The general Lewis acid cycloaddition procedure was followed using cyclopropane 34a (106 mg, 

0.45 mmol), nitrosoarene (36 mg, 0.20 mmol) and Yb(OTf)3 (17 mg, 0.027 mmol) to yield the 

compound as a yellow oil, which was recrystallized to give a white solid (78 mg, 78%). Rf  0.28 

(3:1 Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3) 7.82 - 7.86 (m, 2 H), 7.54 - 7.61 (m, 4 H), 7.46 

- 7.51 (m, 2 H), 7.40 - 7.45 (m, 1 H), 7.19 - 7.24 (m, 3 H), 7.09 - 7.13 (m, 2 H), 5.91 (s, 1 H), 5.00 

(dd, J = 12.1, 2.3 Hz, 1 H), 4.27 (q, J = 7.0 Hz, 2 H), 3.92 (s, 3 H), 3.50 (s, 3 H), 2.90 (dd, J = 14.5, 

12.1 Hz, 1 H), 2.77 (dd, J = 14.5, 2.3 Hz, 1 H), 1.32 (t, J = 7.2 Hz, 3 H); 13C NMR (100 MHz, 

CDCl3) 169.9, 168.0, 166.4, 151.9, 138.7, 134.7, 130.6, 130.0, 128.8, 128.6, 128.4, 128.2, 126.6, 
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122.8, 114.2, 79.1, 64.4, 60.5, 53.6, 52.8, 31.5, 14.3; HRMS C29H29NO7 Calculated = 503.1944, 

Found = 503.1943 

 

Dimethyl 2-(3,4-dichlorophenyl)-3,6-diphenyl-1,2-oxazinane-4,4-dicarboxylate (44e) 

The general Lewis acid cycloaddition procedure was followed using cyclopropane 34a (57 mg, 

0.24 mmol), nitrosoarene (19 mg, 0.11 mmol) and Yb(OTf)3 (6 mg, 0.010 mmol) to yield the 

compound as a yellow oil, which was recrystallized with CH2Cl2/Hexane to give a white solid (50 

mg, 91%). Rf  0.55 (3:1 Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3) 7.53 - 7.58 (m, 4 H), 7.46 

- 7.50 (m, 2 H), 7.40 - 7.44 (m, 1 H), 7.22 - 7.25 (m, 3 H), 7.17 - 7.19 (m, 2 H), 6.89 - 6.92 (app 

dd, J = 9.0, 2.7 Hz, 1 H), 5.72 (s, 1 H), 4.98 (dd, J = 12.3, 2.4 Hz, 1 H), 3.92 (s, 3 H), 3.48 (s, 3 H), 

2.87 (dd, J = 14.7, 12.3 Hz, 1 H), 2.74 (dd, J = 14.7, 2.4 Hz, 1 H); 13C NMR (100 MHz, CDCl3) 

167.9, 147.9, 138.7, 134.3, 132.5, 130.2, 130.1, 128.8, 128.7, 128.5, 128.3, 126.6, 124.5, 117.5, 

114.9, 79.3, 65.3, 59.2, 53.6, 52.8, 31.4; HRMS C26H23Cl2NO5 Calculated = 499.0953, Found = 

499.0952 

 

Dimethyl 2-(3-acetylphenyl)-3,6-diphenyl-1,2-oxazinane-4,4-dicarboxylate (44f) 

The general Lewis acid cycloaddition procedure was followed using cyclopropane 34a (100 mg, 

0.43 mmol), nitrosoarene (32 mg, 0.21 mmol) and Yb(OTf)3 (12 mg, 0.020 mmol) to yield the 

compound as a yellow oil, which was recrystallized with CH2Cl2/Hexane to give a white solid (68 

mg, 68%). Rf  0.25 (3:1 Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3) 7.64 - 7.67 (m, 1 H), 7.55 

- 7.62 (m, 4 H), 7.46 - 7.50 (m, 2 H), 7.39 - 7.43 (m, 2 H), 7.30 - 7.34 (m, 1 H), 7.24 - 7.26 (m, 1 

H), 7.18 - 7.22 (m, 3 H), 5.85 (s, 1 H), 5.03 (dd, J = 12.1, 2.3 Hz, 1 H), 3.93 (s, 3 H), 3.49 (s, 3 H), 

2.89 (dd, J = 14.5, 12.1 Hz, 1 H), 2.79 (dd, J = 14.5, 2.3 Hz, 1 H), 2.50 (s, 3 H); 13C NMR (100 
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MHz, CDCl3) 170.0, 168.1, 148.8, 137.5, 134.6, 130.3, 128.8, 128.7, 128.5, 128.3, 128.1, 126.5, 

121.7, 120.5, 115.1, 79.1, 65.3, 59.4, 53.6, 52.7, 31.6, 26.7; HRMS C28H27NO6 Calculated = 

473.1838, Found = 473.1829 

 

Dimethyl 2-(1-(tert-butoxycarbonyl)-1H-indol-5-yl)-3,6-diphenyl-1,2-oxazinane-4,4-

dicarboxylate (44g) 

The general Lewis acid cycloaddition procedure was followed using cyclopropane 34a (50 mg, 

0.21 mmol), nitrosoarene (27 mg, 0.11 mmol) and Yb(OTf)3 (12 mg, 0.020 mmol) to yield the 

compound as a yellow oil, which was recrystallized with CH2Cl2/Hexane to give a white solid (35 

mg, 55%). Rf  0.40 (3:1 Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3) 8.04 - 8.06 (m, 1 H), 7.56 

- 7.61 (m, 4 H), 7.46 - 7.50 (m, 4 H), 7.39 - 7.42 (m, 1 H), 7.26 - 7.27 (m, 1 H), 7.14 - 7.18 (m, 2 

H), 7.10 - 7.13 (app dd, J = 9.0, 2.3 Hz, 1 H), 6.38 (app d, J = 3.5 Hz, 1 H), 5.78 (s, 1 H), 5.10 (dd, 

J = 12.1, 2.3 Hz, 1 H), 3.96 (s, 3 H), 3.47 (s, 3 H), 2.90 (dd, J = 14.5, 12.1 Hz, 1 H), 2.80 (dd, J = 

14.5, 2.3 Hz, 1 H), 1.61 (s, 9 H); 13C NMR (100 MHz, CDCl3) 170.2, 168.3, 166.2, 144.5, 139.6, 

134.9, 131.0, 130.5, 128.8, 128.6, 128.4, 128.3, 128.0, 127.9, 126.6, 114.9, 107.4, 78.8, 67.3, 59.6, 

53.8, 53.5, 52.6, 31.7, 28.2; HRMS C33H34N2O7 Calculated = 570.2366, Found = 570.2347 

 

General Lewis Acid Catalyzed Cross-Over Experiment Procedure 

 

To a solution of cyclopropane 34a (0.43 mmol, 1.0 equiv) and cyclopropane 34d (0.43 

mmol, 1.0 equiv) and nitrosobenzene 32a (0.43 mmol, 1.0 equiv) in DCE (3 mL) was added 

Yb(OTf)3 (0.043 mmol, 0.1 equiv) and stirred for 15 min. The mixture was heated to reflux for 3 

h then concentrated after consumption of cyclopropane (as indicated by TLC) and directly loaded 

onto a packed SiO2 column. The products were purified by flash chromatography (9:1 

hexanes/EtOAc). 
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Chapter 3 - Cycloadditions of Donor-Acceptor Cyclopropanes with Azo Dicarboxylates 

 

3.1 Introduction 

 

In 2007, Armin de Meijer reported the successful reaction between cyclopropanes and azo 

dicarboxylates, which give rise to pyrazolidine derivatives (Scheme 3.1).  After testing several 

Lewis acids, GaCl3 was found to catalyze the reaction, and only trace amounts of product were 

formed using Yb(OTf)3. When trans-configured diazenes are used, insertion into the cyclopropane 

ring proceeds with complete regioselectivity to produce the expected 5-arylpyrazolidine-1,2,3,3-

tetracarboxylates. The trans-configured diazenes used were naturally existing mixtures of minor 

amounts of cis- and major amounts of the thermodynamically favoured trans-diastereomers. The 

reactivity of cyclopropanes towards a fixed cis-configuration of the N,N double bond was also 

investigated. Interestingly, when 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was used as a cis-

configured diazene, two possible regioisomeric pyrazolidine derivatives were formed in ratios 

varying from 1:1.5 to 1:3.22 

 

Scheme 3.1 Cycloaddition of DA cyclopropanes with azo dicarboxylates 

 

3.2 Cycloadditions of DA Cyclopropanes with trans-Diazenes 

 

The [3+2] cycloaddition reaction of cyclopropanes with trans-configured diazenes as seen 

in Scheme 3.2 was examined in order to investigate the mechanism and hopefully provide a deeper 

understanding of how cyclopropanes react with nitrogen-heteroatom double bonded compounds. 

This mode of reactivity may show resemblance to the opening of cyclopropanes with 

nitrosoarenes, so a cross-over experiment was performed in order to probe the mechanism of the 

following reaction. 
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Scheme 3.2 Cycloaddition of DA cyclopropanes with trans-diazenes 

 

3.2.1 Cross-Over Experiment #2 

 

To obtain experimental evidence that trans-configured diazenes open the cyclopropane 

ring in a nucleophilic manner, paralleling what happens with nitrosoarenes, a cross-over 

experiment would have to contain two different cyclopropanes in order to show that a cross-over 

event occurred. For this cross-over experiment, four different cyclopropanes were used so that four 

different pyrazolidine standards could be generated, accounting for the possible cross-over based 

products (Table 3.1). After obtaining the four pyrazolidine standards, the cross-over experiment 

was performed and the reaction mixture was analyzed. 

 

Table 3.1 Cycloaddition of DA cyclopropanes with trans-diazenes 

 

Entrya Cyclopropane Product Yield (%)b 

1 Ar = C6H5, R = Me 48a 58 

2 Ar = 4-MeC6H4, R = Me 48b 50 

3 Ar = C6H5, R = Et 48c 23 

4 Ar = 4-MeC6H4, R = Et 48d 52 

 a Typical reaction conditions: To a solution of GaCl3 in CH2Cl2 (0.8 mL) at room 

temperature, was added cyclopropane (0.21 mmol) and trans-diazene (0.29 mmol). 

Reactions were monitored by TLC until cyclopropane was consumed. b Isolated 

yield. 
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Separation of the reaction mixture was performed using column chromatography and only 

two products had formed, as seen in Scheme 3.3. 

 

Scheme 3.3 Cross-over experiment of DA cyclopropanes with trans-diazenes 

 

The expected [3+2] cycloaddition products were observed with no cross-over. This 

provides evidence of a straight forward [3+2] cycloaddition with nothing unusual observed with 

trans-diazenes. 

 

3.3 Cycloadditions of DA Cyclopropanes with cis-Diazenes 

 

The cycloaddition product from DA cyclopropane and cis-configured diazene PTAD 

produces an unusual pyrazolidine derivative, which may have arisen from insertion into the C(2)-

C(3) bond of the cyclopropane (Scheme 3.4). Because of this surprisingly different mode of 

cyclopropane reactivity, the reaction of DA cyclopropanes with trans-diazenes must operate 

through a different type of mechanism than cis-diazenes. A cross-over experiment was performed 

to investigate how this unusual pyrazolidine derivative product was formed. Understanding how 

cyclopropanes can undergo this rare insertion into the C(2)-C(3) bond would be useful for its 

application in synthesis. 

 

Scheme 3.4 Cycloaddition of DA cyclopropanes with cis-diazenes 
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 A mechanism was proposed by de Meijer to account for the unusual reactivity of the DA 

cyclopropane when it encounters the Lewis activated cis-diazene (Figure 3.1). It would be very 

difficult to prove how this reaction proceeds without the use of a cross-over experiment. 

 

 

 

Figure 3.1 Proposed mechanism for the cycloaddition of DA cyclopropane with cis-diazene 

 

PTAD was synthesized according to Scheme 3.5 for use in a cross-over experiment and 

also to generating standards used to analyze the reaction mixture. 

 

 

 

Scheme 3.5 Synthesis of PTAD 

 

The cycloaddition of DA cyclopropanes with cis-diazenes was investigated so that it may 

be applied to understanding and advancing the nitrosoarene chemistry if experimental evidence 

suggests similarities. Possible reaction mechanisms that accounts for both products are shown in 

Scheme 3.6 and 3.7, demonstrating a possible resemblance to the cycloaddition of DA 

cyclopropanes with nitrosoarene mechanism. The first mechanism shows the cycloaddition leading 

to the minor product operating through a step-wise sequence. 
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Scheme 3.6 Proposed mechanism for the formation of minor product 50a 

 

 

 

Scheme 3.7 Proposed mechanism for the formation of major product 51a 

 

Co-ordination of Yb(OTf)3 to the di-ester group on the cyclopropane may allow for a 

nucleophilic ring opening attack from a nitrogen in PTAD. The mechanism in scheme 3.6 shows 

formation of the minor product going through a step-wise cyclization, once the acyclic zwitterionic 

intermediate is formed. Because the presented cyclization is going through a 5-Endo-Trig reaction, 
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which is disallowed according to Baldwin’s rules, the cyclization may be going through a 

concerted cycloaddition. Scheme 3.7 and 3.8 illustrate that production of the major product may 

occur through the formation of an azomethine imine intermediate (57).  

The formation of azomethine imines through the reaction of DA cyclopropanes with cis-

diazenes has been of interest in the Pagenkopf group and experimental evidence supporting this 

theory would be of interest not only for understanding the reaction, but in the future development 

of new reaction types and reaction partners with DA cyclopropanes. 

 

 

 

Scheme 3.8 Formation of the two different pyrazolidine regio-isomers 

 

Major product 51a must be coming from azomethine imine 57, which would have a slightly 

higher degree of stability or population in comparison to the resonance structure 57a (Scheme 3.8). 

The resonance structure, in which the negative charge ends up on nitrogen instead of carbon, would 

be the more favoured intermediate (57) and would therefore contribute to the major product, which 

is observed to be the case. A resonance structure that places a negative charge on carbon of the 

azomethine imine (57a) is possible, but is not considered to be a nucleophilic centre based on the 

regio-selectivity of other observed azomethine imine reactions. It is therefore highly unlikely that 

the minor product would be occurring through this type of pathway, and is most likely the result 

of a formal [3+2] cycloaddition with azomethine imine 57. 

This mode of reactivity would require only one equivalent of DA cyclopropane to one 

equivalent of the cis-diazene because the α,β-unsaturated di-ester may be incorporated into the 

product. This is slightly different than the nitrosoarene reaction with DA cyclopropanes, because 

the α,β-unsaturated di-ester is just a by-product and is not incorporated into the tetrahydro-1,2-

oxazine product. It is worth determining if the minor product is formed from incorporation of the 

α,β-unsaturated di-ester unit, or if it is simply a straight-forward cyclization as presented in scheme 
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2.6. The use of a cross-over experiment would be of great benefit in helping to answer how the 

two different regio-isomers are formed. 

Understanding the different ways that DA cyclopropanes react with various dipolarophiles 

has been undertaken with the hope of developing better and more efficient methods of generating 

diverse heterocycles. Developing reactions than are able to insert different functional groups into 

the C(2)-C(3) bond of the cyclopropane ring would have many advantages, and understanding this 

rare type of reactivity is currently being investigated with the use of cross-over experiments. Being 

able to open the cyclopropane ring in a controlled manner that allows for different regio-isomers 

to from is attractive and expands the use of DA cyclopropanes in synthetic chemistry. 

 

3.3.1 Cross-over Experiment #3 

 

Two different cyclopropanes were used as starting material and reacted with PTAD under 

GaCl3 catalytic conditions (Scheme 3.9). The production of a cross-over based pyrazolidine 

product would give information about how this reaction mechanism is happening. If results show 

the presence of a pyrazolidine product, in which cross-over has occurred, then the reaction may be 

taking place in a way that is similar to the cycloaddition of DA cyclopropanes with nitrosoarenes 

reaction. 

 

 

 

Scheme 3.9 Cross-over experiment of DA cyclopropanes with cis-diazenes 

 

The four products shown in Figure 3.2 are expected to be in the reaction mixture of the 

cross-over experiment. These products would arise from the known reactivity of the two DA 

cyclopropanes reacting with PTAD, and show no crossing-over. 
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Figure 3.2 Expected products from the cross-over experiment 

 

If additional products are formed, showing that cross-over had occurred, then this provides 

mechanistic information that would be helpful in generating a theoretical mechanism with 

supporting evidence. Formation of any of the products shown in Figure 3.3 would be the result of 

a cross-over event happening in the reaction. 

 

 

 

Figure 3.3 Proposed cross-over based products from the cross-over experiment 

 

If DA cyclopropanes react with nitrosoarenes and cis-diazenes in a similar fashion, in 

which a nitrogen-heteroatom double bond opens up the cyclopropane ring, and can be reinforced 

with experimental evidence, then other reaction types may be discovered by investigating this 

mode of reactivity. I synthesized the required pyrazolidine standards individually using the 

methodology presented in de Meijer’s study. Table 3.2 shows the synthesis of 8 pyrazolidine 

standards, which were then used as authentic standards in cross-over experiment #3. 
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Table 3.2 Synthesis of pyrazolidine standards 

 

 

 

Entrya Cyclopropane Product Yield (%)b 

1 Ar = C6H5, R = Me 50a 13 

2 Ar = C6H5, R = Me 51a 20 

3 Ar = C6H5, R = Et 50b 19 

4 Ar = C6H5, R = Et 51b 22 

5 Ar = 4-MeC6H4, R = Me 50c 21 

6 Ar = 4-MeC6H4, R = Me 51c 12 

7 Ar = 4-MeC6H4, R = Et 50d 12 

8 Ar = 4-MeC6H4, R = Et 51d 12 

a Typical reaction conditions: GaCl3 was added to a solution of cyclopropane 

(0.21 mmol) and PTAD (0.21 mmol) in CH2Cl2 (0.2 mL). Reactions were 

monitored by TLC. b Isolated yield. 

 

 

 A detailed analysis of the products from cross-over experiment #3, as seen in Figure 3.4, 

was achieved with the use of NMR and GC-MS. After carefully analyzing the reaction mixture of 

the cross-over experiment, it was revealed that all four expected products were formed and, in 

addition, two of the cross-over products were also formed, yielding six products in total. 
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Figure 3.4 Results of cross-over experiment #3 

 

 Formation of the cross-over based products provide key mechanistic information that is in 

agreement with the reaction proceeding via an azomethine imine as illustrated in Scheme 3.7. The 

azomethine imine can react with either the dimethyl or diethyl α,β-unsaturated ester to yield 51c 

or 51b, respectively. The absence of the other cross-over based products from the reaction mixture 

is in agreement with the proposed mechanism. 

 

3.3.2 Cross-over Experiment #3 Reversed 

 

 To achieve additional supporting evidence, the reaction was run in reverse, starting with 

cross-over based cyclopropanes (Scheme 3.10) and observing the reaction mixture to see if cross-

over was happening in a reproducible event. The reverse cross-over experiment was repeated three 

times to provide reinforcing data, as seen in Figure 3.5. This generated reproducible results that 

are in agreement with the original proposed mechanism. 
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Scheme 3.10 Reversed cross-over experiment of DA cyclopropanes with cis-diazenes 

 

 

Figure 3.5 Results of reversed cross-over experiment #3 

 

 The results from cross-over experiments 1 and 3 (Scheme 3.11 and 3.12) show similarities 

in the reaction of 1,1-cyclopropane diesters with nitrosoarenes and cis-diazenes. The overall 

pattern of reactivity is the same as both reactions led to the production of a 1,3-dipole intermediate. 

In the case of nitrosoarenes, a nitrone was produced. In the case of cis-diazenes, an azomethine 

imine was produced. In both cases the functional group is a nitrogen-heteroatom double bond, with 

a lone pair on nitrogen attacking as a nucleophile to open up the activated DA cyclopropane. The 
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resulting intermediate undergoes fragmentation forming a 1,3-dipole and an α,β-unsaturated 

diester. 

 

Scheme 3.11 Reaction of nitrosoarenes and cis-diazenes with DA cyclopropanes 

 

 

Scheme 3.12 Mechanistic formation of 1,3-dipoles 

Additional experimentation may show that other heteroatoms could react in a similar 

fashion, paving the way for new reactions and other reaction partners for DA cyclopropanes. In 

the case of nitrogen, which is a Group 5 element, trying elements in the same column such as 

phosphorus, may lead to new reactions because of similarities in the electronic structure of the two 

elements. 

A potential avenue for investigation could include obtaining a compound  with a nitrogen-

phosphorus double bond and observing the ability of the sp2 hybridized nitrogen to undergo 

nucleophilic opening of a DA cyclopropane ring, followed by fragmentation into a 1,3-dipole and 

an α,β-unsaturated diester. A proper Lewis Acid would be needed to activate the DA cyclopropane, 

with the idea of undergoing a reaction similar to Scheme 3.12, except using X = phosphorus. 

Another experiment could attempt trying elements in the same column as oxygen, such as 

sulfur. Obtaining a compound with a nitrogen-sulfur double bond would allow for reactions to 

study the nucleophilicity of the sp2 hybridized nitrogen towards the opening of DA cyclopropane 

rings upon activation by Lewis Acids, similar to Scheme 2.12, except using X = sulfur. 
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3.4 Experimental 

 

 The procedures and conditions were the same as described in section 2.3. 
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3.5 Supporting Information 

 

General trans-Diazene Cycloaddition Procedure 

 To a solution of cyclopropane (0.21 mmol, 1.0 equiv) and diisopropyl azodicarboxylate 

(0.29 mmol, 1.4 equiv) in CH2Cl2 (0.2 mL) was added a solution of GaCl3 (0.04 mmol, 0.2 equiv) 

in CH2Cl2 (0.8 mL). After stirring for 3 h, the crude mixture was concentrated and directly loaded 

onto a packed SiO2 column. Product was purified by flash chromatography (8:1 hexanes/EtOAc) 

to afford the corresponding cycloadducts. 

 

 

1,2-Diisopropyl 3,3-dimethyl 5-phenylpyrazolidine-1,2,3,3-tetracarboxylate (48a) 

The general trans-diazene cycloaddition procedure was followed using cyclopropane 34a (50 mg, 

0.21 mmol), diisopropyl azodicarboxylate 47 (59 mg, 0.29 mmol) and GaCl3 (7 mg, 0.040 mmol) 

to yield the compound as a yellow oil (53 mg, 58%). Rf 0.22 (3:1 Hexanes:EtOAc); 1H NMR (400 

MHz, CDCl3) 7.39 (app d, J = 7.8 Hz, 2 H), 7.29 - 7.34 (m, 2 H), 7.22 - 7.26 (m, 1 H), 5.46 (dd, J 

= 8.2, 3.9 Hz, 1 H), 5.02 (hept, J = 6.3 Hz, 1 H), 4.97 (hept, J = 6.3 Hz, 1 H), 3.82 (s, 3 H), 3.47 

(s, 3 H), 3.30 (dd, J = 13.3, 8.2 Hz, 1 H), 2.92 (dd, J = 13.3, 3.9 Hz, 1 H), 1.24 - 1.30 (m, 12 H); 

13C NMR (100 MHz, CDCl3) 168.8, 166.5, 156.9, 153.3, 139.5, 128.3, 127.3, 125.8, 72.4, 70.8, 

70.5, 61.2, 53.4, 53.0, 44.7, 22.1, 21.9; HRMS C21H28N2O8 Calculated = 436.1846, Found = 

436.1841 
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1,2-Diisopropyl 3,3-dimethyl 5-p-tolylpyrazolidine-1,2,3,3-tetracarboxylate (48b) 

The general trans-diazene cycloaddition procedure was followed using cyclopropane 34b (55 mg, 

0.22 mmol), diisopropyl azodicarboxylate 47 (63 mg, 0.31 mmol) and GaCl3 (7 mg, 0.040 mmol) 

to yield the compound as a yellow oil (50 mg, 50%). Rf 0.25 (3:1 Hexanes:EtOAc); 1H NMR (400 

MHz, CDCl3) 7.27 (app d, J = 8.2 Hz, 2 H), 7.12 (app d, J = 8.2 Hz, 2 H), 5.40 (dd, J = 8.2, 4.3 

Hz, 1 H), 5.01 (hept, J = 6.3 Hz, 1 H), 4.98 (hept, J = 6.3 Hz, 1 H), 3.82 (s, 3 H), 3.51 (s, 3 H), 

3.27 (dd, J = 13.3, 8.2 Hz, 1 H), 2.90 (dd, J = 13.3, 4.3 Hz, 1 H), 2.32 (s, 3 H), 1.24 - 1.30 (m, 12 

H); 13C NMR (100 MHz, CDCl3) 168.8, 166.4, 156.9, 153.4, 136.9, 136.5, 129.0, 125.8, 72.5, 

70.7, 70.5, 61.0, 53.4, 53.0, 44.7, 22.1, 21.9; HRMS C22H30N2O8 Calculated = 450.2002, Found = 

450.1999 

 

 

3,3-Diethyl 1,2-diisopropyl 5-phenylpyrazolidine-1,2,3,3-tetracarboxylate (48c) 

The general trans-diazene cycloaddition procedure was followed using cyclopropane 34c (50 mg, 

0.19 mmol), diisopropyl azodicarboxylate 47 (55 mg, 0.27 mmol) and GaCl3 (7 mg, 0.040 mmol) 

to yield the compound as a yellow oil (20 mg, 23%). Rf 0.30 (3:1 Hexanes:EtOAc); 1H NMR (400 

MHz, CDCl3) 7.38 - 7.42 (m, 2 H), 7.29 - 7.33 (m, 2 H), 7.22 - 7.25 (m, 1 H), 5.50 (dd, J = 8.2, 

3.5 Hz, 1 H), 5.02 (hept, J = 6.3 Hz, 1 H), 4.98 (hept, J = 6.3 Hz, 1 H), 4.29 (dddd, J = 7.0, 7.0, 

7.0, 10.5 Hz, 2 H), 3.90 (dddd, J = 7.2, 7.2, 7.2, 10.8 Hz, 2 H), 3.33 (dd, J = 13.3, 8.6 Hz, 1 H), 

2.90 (dd, J = 13.3, 3.1 Hz, 1 H), 1.24 - 1.34 (m, 15 H), 0.91 (t, J = 7.0 Hz, 3 H); 13C NMR (100 

MHz, CDCl3) 168.2, 166.2, 156.9, 153.1, 139.7, 128.3, 127.2, 125.8, 72.3, 70.8, 70.4, 62.4, 62.1, 

61.2 44.5, 22.1, 21.9, 21.7, 14.0, 13.3; HRMS C23H32N2O8 Calculated = 464.2159, Found = 

464.2167 
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3,3-Diethyl 1,2-diisopropyl 5-(p-tolyl)pyrazolidine-1,2,3,3-tetracarboxylate (48d) 

The general trans-diazene cycloaddition procedure was followed using cyclopropane 34d (50 mg, 

0.18 mmol), diisopropyl azodicarboxylate 47 (51 mg, 0.25 mmol) and GaCl3 (6 mg, 0.036 mmol) 

to yield the compound as a yellow oil (45 mg, 52%). Rf 0.31 (3:1 Hexanes:EtOAc); 1H NMR (400 

MHz, CDCl3) 7.28 (app d, J = 8.2 Hz, 2 H), 7.11 (app d, J = 8.2 Hz, 2 H), 5.45 (dd, J = 8.2, 3.5 

Hz, 1 H), 5.01 (hept, J = 6.3 Hz, 1 H), 4.97 (hept, J = 6.3 Hz, 1 H), 4.28 (dddd, J = 7.0, 7.0, 7.0, 

10.5 Hz, 2 H), 3.93 (dddd, J = 7.2, 7.2, 7.2, 10.8 Hz, 2 H), 3.29 (dd, J = 13.3, 8.2 Hz, 1 H), 2.88 

(dd, J = 13.3, 3.5 Hz, 1 H), 2.31 (s, 3 H), 1.23 - 1.34 (m, 15 H), 0.95 (t, J = 7.0 Hz, 3 H); 13C NMR 

(100 MHz, CDCl3) 168.2, 166.2, 156.9, 153.2, 136.8, 136.7, 128.9, 125.8, 72.4, 70.7, 70.3, 62.4, 

62.2, 61.0, 44.5, 22.1, 21.9, 21.0, 14.0, 13.3; HRMS C24H34N2O8 Calculated = 478.2315, Found = 

478.2321 

 

 

(PTAD) 4-Phenyl-1,2,4-trizaoline-3,5-dione (49) 

tert-Butyl hypochlorite (130 mg, 1.2 mmol, 1.1 equiv) was added drop wise with stirring to a 

solution of 4-phenyl-1,2,4-trizaolidine-3,5-dione (200 mg, 1.1 mmol, 1.0 equiv) in 1,4-dioxane (5 

mL). After 30 min the solvent was removed under reduced pressure keeping the temp below 40°C 

to yield the product as a red solid (200 mg, 99%). 1H NMR (400 MHz, CDCl3) 7.46 - 7.59 (m, 5 

H); 13C NMR (100 MHz, CDCl3) 129.9, 129.5, 123.9 

 

 

 



48 
 

 
 

General cis-Diazene Cycloaddition Procedure 

 To a solution of cyclopropane (0.85 mmol, 1.0 equiv) and PTAD (1.7 mmol, 2.0 equiv) in 

CH2Cl2 (4.0 mL) was added a solution of GaCl3 (0.17 mmol, 0.2 equiv) in CH2Cl2 (1.0 mL). After 

stirring for 3 h, the crude mixture was concentrated and directly loaded onto a packed SiO2 column. 

Product was purified by flash chromatography (8:1 hexanes/EtOAc) to afford the corresponding 

cycloadducts. 

 

 

Dimethyl 1,3-dioxo-2,7-diphenyltetrahydropyrazolo[1,2-a][1,2,4]triazole-5,5(1H)-

dicarboxylate (50a) 

The general cis-diazene cycloaddition procedure was followed using cyclopropane 34a (200 mg, 

0.85 mmol), cis-diazene 49 (298 mg, 1.7 mmol) and GaCl3 (30 mg, 0.17 mmol) to yield the 

compound as a white solid (45 mg, 13%). Rf  0.40 (3:1 Hexanes:EtOAc); 1H NMR (400 MHz, 

CDCl3) 7.51 - 7.55 (m, 2 H), 7.33 - 7.47 (m, 8 H), 5.19 (dd, J = 9.0, 7.4 Hz, 1 H), 3.92 (s, 3 H), 

3.87 (s, 3 H), 3.28 (d, J = 3.1 Hz, 1 H), 3.25 (d, J = 5.1 Hz, 1 H); 13C NMR (100 MHz, CDCl3) 

167.0, 165.7, 153.6, 136.6, 131.5, 129.1, 128.7, 128.3, 126.2, 125.7, 70.7, 59.3, 54.4, 54.0, 46.9; 

HRMS C21H19N3O6 Calculated = 409.1274, Found = 409.1264 
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Dimethyl 1,3-dioxo-2,5-diphenyltetrahydropyrazolo[1,2-a][1,2,4]triazole-6,6(1H)-

dicarboxylate (51a) 

The general cis-diazene cycloaddition procedure was followed using cyclopropane 34a (200 mg, 

0.85 mmol), cis-diazene 49 (298 mg, 1.7 mmol) and GaCl3 (30 mg, 0.17 mmol) to yield the 

compound as a white solid (71 mg, 20%). Rf  0.45 (3:1 Hexanes:EtOAc); 1H NMR (400 MHz, 

CDCl3) 7.48 - 7.50 (m, 4 H), 7.32 - 7.42 (m, 6 H), 5.85 (s, 1 H), 4.46 (d, J = 13.3 Hz, 1 H), 4.28 

(d, J = 13.3 H, 1 H), 3.81 (s, 3 H), 3.47 (s, 3 H); 13C NMR (100 MHz, CDCl3) 169.7, 164.8, 156.6, 

156.3, 134.9, 131.6, 129.2, 129.1, 128.7, 128.5, 127.3, 126.0, 66.0, 65.3, 54.1, 52.8, 49.8; HRMS 

C21H19N3O6 Calculated = 409.1274, Found = 409.1264 

 

Diethyl 1,3-dioxo-2,7-diphenyltetrahydropyrazolo[1,2-a][1,2,4]triazole-5,5(1H)-

dicarboxylate (50b) 

The general cis-diazene cycloaddition procedure was followed using cyclopropane 34c (50 mg, 

0.19 mmol), cis-diazene 49 (67 mg, 0.38 mmol) and GaCl3 (7 mg, 0.040 mmol) to yield the 

compound as a white solid (16 mg, 19%). Rf  0.60 (1:1 Hexanes:EtOAc); 1H NMR (600 MHz, 

CDCl3) 7.51 - 7.54 (m, 2 H), 7.43 - 7.45 (m, 4 H), 7.39 - 7.41 (m, 2 H), 7.33 - 7.36 (m, 2 H), 5.16 

(dd, J = 9.4, 7.6 Hz, 1 H), 4.37 (dddd, J = 7.0, 7.0, 7.0, 10.5 Hz, 2 H), 4.33 (q, J = 7.0 Hz, 2 H), 

3.27 (dd, J = 13.5, 7.6 Hz, 1 H), 3.25 (dd, J = 13.5, 8.8 Hz, 1 H), 1.33 (t, J = 7.0 Hz, 3 H), 1.31 (t, 

J = 7.0 Hz, 3 H); 13C NMR (100 MHz, CDCl3) 166.6, 165.1, 153.5, 153.2, 136.8, 131.6, 129.1, 

129.0, 128.7, 128.2, 126.2, 125.7, 70.9, 63.8, 63.3, 59.2, 46.8, 14.0, 13.9; HRMS C23H23N3O6 

Calculated = 437.1587, Found = 437.1582 
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Diethyl 1,3-dioxo-2,5-diphenyltetrahydropyrazolo[1,2-a][1,2,4]triazole-6,6(1H)-

dicarboxylate (51b) 

The general cis-diazene cycloaddition procedure was followed using cyclopropane 34c (50 mg, 

0.19 mmol), cis-diazene 49 (67 mg, 0.38 mmol) and GaCl3 (7 mg, 0.040 mmol) to yield the 

compound as a white solid (18 mg, 22%). Rf  0.70 (1:1 Hexanes:EtOAc); 1H NMR (600 MHz, 

CDCl3) 7.45 - 7.51 (m, 4 H), 7.35 - 7.40 (m, 6 H), 5.84 (s, 1 H), 4.47 (d, J = 12.9 Hz, 1 H), 4.31 

(d, J = 12.9 Hz, 1 H), 4.23 - 4.31 (m, 2 H), 3.99 (dddd, J = 7.3, 7.3, 7.3, 10.9 Hz, 1 H), 3.83 (dddd, 

J = 7.0, 7.0, 7.0, 10.5 Hz, 1 H), 1.25 (t, J = 7.0 Hz, 3 H), 1.07 (t, J = 7.0 Hz, 3 H); 13C NMR (100 

MHz, CDCl3) 164.4, 156.5, 135.1, 129.2, 129.0, 128.6, 128.4, 127.5, 125.9, 81.3, 65.9, 63.3, 62.2, 

49.8, 13.8, 13.6; HRMS C23H23N3O6 Calculated = 437.1587, Found = 437.1591 

 

Dimethyl 1,3-dioxo-2-phenyl-7-(p-tolyl)tetrahydropyrazolo[1,2-a][1,2,4]triazole-5,5(1H)-

dicarboxylate (50c) 

The general cis-diazene cycloaddition procedure was followed using cyclopropane 34b (50 mg, 

0.20 mmol), cis-diazene 49 (70 mg, 0.40 mmol) and GaCl3 (7 mg, 0.040 mmol) to yield the 

compound as a white solid (18 mg, 21%). Rf  0.65 (1:1 Hexanes:EtOAc); 1H NMR (600 MHz, 

CDCl3) 7.50 - 7.53 (m, 2 H), 7.42 - 7.45 (m, 2 H), 7.33 - 7.36 (m. 1 H), 7.32 (app d, J = 7.6 Hz, 2 

H), 7.20 (app d, J = 7.6 Hz, 2 H), 5.14 (dd, J = 8.2, 8.2 Hz, 1 H), 3.91 (s, 3 H), 3.87 (s, 3 H), 3.25 

(d, J = 8.2 Hz, 2 H), 2.35 (s, 3 H); 13C NMR (100 MHz, CDCl3) 167.0, 165.8, 153.5, 138.6, 131.6, 

129.7, 129.0, 128.2, 126.2, 125.7, 70.6, 59.2, 54.3, 54.0, 46.9, 21.1; HRMS C22H21N3O6 Calculated 

= 423.1430, Found = 423.1431 
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Dimethyl 1,3-dioxo-2-phenyl-5-(p-tolyl)tetrahydropyrazolo[1,2-a][1,2,4]triazole-6,6(1H)-

dicarboxylate (51c) 

The general cis-diazene cycloaddition procedure was followed using cyclopropane 34b (50 mg, 

0.20 mmol), cis-diazene 49 (70 mg, 0.40 mmol) and GaCl3 (7 mg, 0.040 mmol) to yield the 

compound as a white solid (10 mg, 12%). Rf  0.72 (1:1 Hexanes:EtOAc); 1H NMR (600 MHz, 

CDCl3) 7.48 - 7.49 (m, 4 H), 7.38 - 7.41 (m, 1 H), 7.17 - 7.23 (m, 4 H), 5.81 (s, 1 H), 4.46 (d, J = 

12.9 Hz, 1 H), 4.30 (d, J = 12.9 Hz, 1 H), 3.80 (s, 3 H), 3.49 (s, 3 H), 2.34 (s, 3 H); 13C NMR (100 

MHz, CDCl3) 169.7, 164.9, 156.2, 139.0, 131.9, 131.6, 129.3, 129.2, 128.4, 127.2, 125.9, 65.9, 

65.2, 54.0, 52.8, 49.8, 21.2; HRMS C22H21N3O6 Calculated = 423.1430, Found = 423.1431 

 

 

Diethyl 1,3-dioxo-2-phenyl-7-(p-tolyl)tetrahydropyrazolo[1,2-a][1,2,4]triazole-5,5(1H)-

dicarboxylate (50d) 

The general cis-diazene cycloaddition procedure was followed using cyclopropane 34d (50 mg, 

0.18 mmol), cis-diazene 49 (63 mg, 0.36 mmol) and GaCl3 (6 mg, 0.036 mmol) to yield the 

compound as a white solid (10 mg, 12%). Rf  0.60 (5:1 Et2O:Pentane); 1H NMR (400 MHz, CDCl3) 

7.50 - 7.54 (m, 2 H), 7.42 - 7.46 (m, 2 H), 7.33 - 7.37 (m, 3 H), 7.21 (app d, J = 7.8 Hz, 2 H), 5.13 

(dd, J = 8.4, 8.4 Hz, 1 H), 4.30 - 4.44 (m, 4 H), 3.24 (d, J = 8.6 Hz, 2 H), 2.35 (s, 3 H), 1.33 (t, J = 

7.0 Hz, 3 H), 1.32 (t, J = 7.0 Hz, 3 H); 13C NMR (100 MHz, CDCl3) 166.6, 165.2, 153.5, 153.2, 

138.6, 133.7, 131.6, 129.7, 129.0, 128.2, 126.2, 125.7, 70.8, 63.8, 63.3, 59.1, 46.8, 21.2, 14.0, 13.9; 

HRMS C24H25N3O6 Calculated = 451.1743, Found = 451.1733 
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Diethyl 1,3-dioxo-2-phenyl-5-(p-tolyl)tetrahydropyrazolo[1,2-a][1,2,4]triazole-6,6(1H)-

dicarboxylate (51d) 

The general cis-diazene cycloaddition procedure was followed using cyclopropane 34d (50 mg, 

0.18 mmol), cis-diazene 49 (63 mg, 0.36 mmol) and GaCl3 (6 mg, 0.036 mmol) to yield the 

compound as a white solid (10 mg, 12%). Rf 0.70 (5:1 Et2O:Pentane); 1H NMR (400 MHz, CDCl3) 

7.45 - 7.52 (m, 4 H), 7.34 - 7.41 (m, 1 H), 7.23 - 7.25 (m, 2 H), 7.16 - 7.18 (m, 2 H), 5.81 (s, 1 H), 

4.46 (d, J = 13.3 Hz, 1 H), 4.23 - 4.31 (m, 3 H), 3.98 - 4.06 (m, 1 H), 3.80 - 3.88 (m, 1 H), 2.34 (s, 

3 H), 1.25 (t, J = 7.0 Hz, 3 H), 1.10 (t, J = 7.2 Hz, 3 H); 13C NMR (100 MHz, CDCl3) 169.4, 164.5, 

156.5, 156.2, 138.9, 132.0, 131.6, 129.3, 129.2, 128.4, 127.3, 125.9, 120.7, 65.7, 65.4, 63.3, 62.2, 

49.8, 21.2, 13.9, 13.6; HRMS C24H25N3O6 Calculated = 451.1743, Found = 451.1733 
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Chapter 4 - Cycloadditions of Donor-Acceptor Cyclobutanes with cis-Diazenes 

 

4.1 Introduction 

 

Cyclobutanes have been utilized for various synthetic uses such as ring expansions,23 

metal-catalyzed activation of the carbon-carbon bonds,24 and Baeyer Villiger oxidations.25 

Because of the unique properties present in cyclobutanes, such as a highly strained ring system, 

they have been modified into Donor-Acceptor (DA) cyclobutanes in a similar way to DA 

cyclopropanes. Because the cyclobutane ring system contains four carbon atoms, a 1,4-dipole 

equivalent (59) may be generated under the appropriate conditions as seen in Scheme 4.1. 

 

 

Scheme 4.1 Reactivity of DA cyclobutanes 

 

The use of DA cyclobutanes has received less attention than DA cyclopropanes, with the 

use of DA cyclobutanes starting around 1986.26 This work later led to the application of DA 

cyclobutanes in cycloaddition chemistry with seminal work done by Saigo in 1991.27 Saigo 

reported that amino-activated cyclobutane mono-ester (60) reacted with aldehydes or ketones 

when treated with TiCl4 to furnish tetrahydropyrans (62) in moderate yields and poor 

diastereoselectivity (Scheme 4.2). 

 

 

Scheme 4.2 Cycloaddition or DA cyclobutane with aldehydes or ketones 
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4.1.1 Alkoxy-Activated Cyclobutane Diesters 

 

The Pagenkopf group began experimenting with alkoxy-activated cyclobutane diesters in 

2010 because of the similarities to DA cyclopropanes, which have been a focus of interest in the 

group.28 Reacting DA cyclobutanes with various dipolarophiles began with first with imines, 

which was followed by aldehydes. Further work included reacting DA cyclobutanes with 

acetylenes and nitrones (Scheme 4.3). 

 

 

Scheme 4.3 Pagenkopf research of DA cyclobutanes 

 

Under Yb(OTf)3 catalysis, DA cyclobutanes undergo a formal [4+2] cycloaddition with 

imines to form piperidines (64) in a stereoselective manner. A similar type of formal [4+2] 

cycloaddition is also possible when aldehydes are used as the dipolarophile, and produce 

tetrahydropyrans (63) again in a stereoselective manner.29 Both of these reactions were discovered 

in 2010 and it was quickly realized that other dipolarophiles would react in a similar way. In 2011, 

the formal [4+3] cycloaddition between DA cyclobutanes and nitrones was discovered. This 

reaction led to oxazepines (65) with stereochemistry that can be controlled based on reaction 

conditions.30 In the same year it was also discovered that terminal alkynes reacted with DA 

cyclobutanes in the presence of BF3·OEt2 as the Lewis acid to generate dihydrooxepines (66).31 
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4.1.2 Synthesis of DA Cyclobutanes 

 

 To begin exploring the possibility of cycloadditions occurring between DA cyclobutanes 

and cis-diazenes, it was necessary to work with the appropriate starting materials. The Pagenkopf 

group’s success with alkoxy-activated cyclobutane diesters in other cycloaddition reactions 

determined them to be a good choice for the DA cyclobutane. The required alkoxy-activated 

cyclobutane diester was synthesized through a two-step procedure that began with a Knoevenagel 

condensation of diethyl malonate (68) with paraformaldehyde to generate the highly reactive 

methylidene malonate (69). The malonate was then treated with dihydrofuran (70) under Zn(OTf)2 

catalyzed conditions to afford the desired DA cyclobutane (67) as seen in Scheme 4.4. 

 

 

Scheme 4.4 Two-step synthesis of DA cyclobutanes 

 

4.1.3 Cycloadditions of DA Cyclobutanes with cis-Diazenes 

 

 Because the Pagenkopf group was already performing cycloadditions with cis-diazenes for 

DA cyclopropanes, I naturally progressed to trying the same diazene (PTAD) with DA 

cyclobutanes. PTAD was selected as a desirable cis-diazene to work with because of its stability 

and long shelf-life, and it can be easily synthesized using a straightforward synthetic route. A 

common problem with other cis-diazenes is thermal instability leading to decomposition at room 

temperature. Finding alternative cis-diazenes to undergo cycloaddition reactions with DA 

cyclobutanes was made difficult due to their instability at room temperature and the limited 

commercial availability of other cis-diazenes. 
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Scheme 4.5 General cycloaddition of DA cyclobutanes with cis-diazenes 

 The general reaction is shown in scheme 4.5 and the parent molecule generated is a 

hexahydropyridazine (73). Biological assays have shown hexahydropyridazines to exhibit 

moderate levels of anesthetic, antihistaminic, and anticonvulsive activity.32 When PTAD is used 

as the cis-diazene, a 5,6,5-ring system is generated through a formal [4+2] cycloaddition with DA 

cyclobutane (67) as seen in Scheme 4.6. These products may potentially serve as a starting point 

for the synthesis of other useful compounds, and also contain functionality to undergo post-

modification. 

 

Scheme 4.6 Cycloaddition of DA cyclobutanes with PTAD 

 

4.2 Results and Discussion 

 

After some experimentation, it was discovered that cis-diazenes such as PTAD are indeed 

a compatible reaction partner for DA cyclobutanes. The [4+2] cycloaddition was achieved using a 

necessary Lewis acid, and both GaCl3 and Yb(OTf)3 were successful. Optimization of the reaction 

conditions led to GaCl3 being the better choice for a Lewis acid, with the highest yield occurring 

at 5 mol % catalytic loading (Table 4.1). 
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Table 4.1 Cycloaddition of DA cyclobutane with cis-diazene 

 

 

Entrya Cyclobutane 

(Equivalents) 

cis-Diazene 

(Equivalents) 

Lewis 

Acid 

Mol % Yield (%)b 

1 1 1 Yb(OTf)3 10 38 

2 1 1 GaCl3 10 41 

3 1.5 1 GaCl3 10 63 

4 2 1 GaCl3 10 79 

5c 2 1 GaCl3 5 92 

6d 2 1 GaCl3 2 84 

a Typical reaction conditions: To a solution of GaCl3 in 1,2-DCE (3 mL) at room temperature, 

was added cyclobutane (0.44 mmol) and nitrosoarene (0.22 mmol). Reactions were monitored 

by TLC until cyclobutane was consumed. b Isolated yield. c 20 min reaction time. d 90 min 

reaction time. 

 

The cis stereochemistry of product (74c) was deduced from analyzing a crystal structure 

as seen in Figure 4.1. 

 

 

Figure 4.1 Crystal structure of hexahydropyridazine 74c 
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4.2.1 Reaction Scope 

 

 After obtaining optimal reaction conditions for the cycloaddition, the scope was 

investigated to see if other DA cyclobutanes were compatible with PTAD. Good yields were 

obtained using various alkoxy-activated cyclobutane diesters as seen in Figure 4.2. 

 

 

 

Figure 4.2 Cycloadditions of different DA cyclobutanes with PTAD 

  

Reacting DA cyclobutanes with trans-diazenes was attempted but did not result in a 

cycloaddition. This came as no surprise because of the difference in reactivity between trans- 

and cis-diazenes. The difference in reactivity was also observed when working with DA 

cyclopropanes. 
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4.3 Post Modification of Hexahydropyridazine Products 

 

The methodology discovered enables easy access to the hexahydropyridazine ring system 

through an efficient cycloaddition of DA cyclobutanes with cis-diazenes. Using specific DA 

cyclobutanes, the diastereoselectivity can be controlled and can therefore be used in the 

stereoselective synthesis of hexahydropyridazine systems. These systems contain the appropriate 

functionality to undergo different post modification reactions (Scheme 4.7). This demonstrates the 

versatility of the ring system to undergo various transformations to yield different compounds from 

a single product. The post-modified products can then be potentially useful in the synthesis of 

other target molecules or serve in other applications. 

 

 

Scheme 4.7 Potential post modifications of hexahydropyridazine 74b 
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4.4 Experimental 

 The procedures and conditions were the same as described in section 2.3. 
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4.5 Supporting Information 

General Procedure for Cycloaddition of cis-Diazene with DA Cyclobutane 

To a solution of cyclobutane (0.43 mmol, 2.0 equiv) and PTAD (0.22 mmol, 1.0 equiv) in 

1,2-DCE (3 mL) was added GaCl3 (0.01 mmol, 0.05 equiv) and stirred for 30 min at rt. The mixture 

was then concentrated after consumption of cyclobutane (as indicated by TLC) and directly loaded 

onto a packed SiO2 column. Product was purified by flash chromatography (1:1 hexanes/EtOAc) 

to afford the corresponding cycloadducts. 

 

 

Diethyl 8-ethoxy-1,3-dioxo-2-phenyltetrahydro-1H-[1,2,4]triazolo[1,2-a]pyridazine-5,5(6H)-

dicarboxylate (74a) 

The general procedure for cycloaddition of cis-diazene with DA cyclobutane was followed using 

cyclobutane (142 mg, 0.58 mmol), cis-diazene 49 (50 mg, 0.29 mmol) and GaCl3 (2.6 mg, 0.015 

mmol) to yield the compound as a white solid. (109 mg, 90%). Rf 0.20 (3:1 Hexanes:EtOAc);  1H 

NMR (600 MHz, CDCl3) 7.50 (app d, J = 8.2 Hz, 2 H), 7.45 (app t, J = 7.9 Hz, 2 H), 7.34 - 7.38 

(m, 1 H), 5.54 (d, J = 1.8 Hz, 1 H), 4.25 - 4.37 (m, 4 H), 3.62 - 3.70 (m, 2 H), 2.69 (ddd, J = 14.1, 

14.1, 4.1 Hz, 1 H), 2.47 - 2.51 (m, 1 H), 2.08 (d, J = 14.1 Hz, 1 H), 1.70 (dddd, J = 14.1, 4.1, 4.1, 

4.1 Hz, 1 H), 1.27 - 1.33 (m, 6 H), 1.23 (t, J = 7.0 Hz, 3 H); 13C NMR (100 MHz, CDCl3) 166.2, 

165.8, 153.7, 151.0, 131.0, 129.1, 128.3, 125.7, 77.6, 70.4, 65.0, 63.2, 63.0, 26.5, 25.6, 15.0, 14.1, 

13.8; HRMS C20H25N3O7 Calculated = 419.1693, Found = 419.1699 
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Diethyl 7,9-dioxo-8-phenylhexahydro-2H-furo[2,3-c][1,2,4]triazolo[1,2-a]pyridazine-

5,5(3H)-dicarboxylate (74b) 

The general procedure for cycloaddition of cis-diazene with DA cyclobutane was followed using 

cyclobutane (141 mg, 0.58 mmol), cis-diazene 49 (50 mg, 0.29 mmol) and GaCl3 (2.6 mg, 0.015 

mmol) to yield the compound as a white solid. (111 mg, 92%). Rf 0.50 (1:1 Hexanes:EtOAc);  1H 

NMR (400 MHz, CDCl3) 7.45 - 7.53 (m, 4 H), 7.38 (app t, J = 7.0 Hz, 1 H), 5.78 (d, J = 4.3 Hz, 1 

H), 4.29 - 4.37 (m, 4 H), 4.18 - 4.23 (m, 2 H), 4.08 (td,  J = 9.4, 2.0 Hz, 1 H), 2.64 (dd, J = 13.3, 

5.9 Hz, 1 H), 2.40 - 2.48 (m, 1 H), 2.28 - 2.36 (m, 1 H), 2.24 (dd, J = 13.3, 12.1 Hz, 1 H), 1.90 

(ddd, J = 6.6, 6.6, 2.0 Hz, 1 H), 1.34 (t, J = 7.0 Hz, 3 H), 1.32 (t, J = 7.0 Hz, 3 H); 13C NMR (100 

MHz, CDCl3) 166.0, 165.6, 153.3, 150.5, 130.9, 129.2, 129.1, 128.4, 125.8, 80.8, 68.9, 66.2, 63.5, 

63.1, 32.3, 31.7, 30.2, 14.1, 13.8; HRMS C20H23N3O7 Calculated = 417.1536, Found = 417.1530 

 

 

Diethyl 8,10-dioxo-9-phenyloctahydropyrano[2,3-c][1,2,4]triazolo[1,2-a]pyridazine-

6,6(2H)-dicarboxylate (74c) 

The general procedure for cycloaddition of cis-diazene with DA cyclobutane was followed using 

cyclobutane (149 mg, 0.58 mmol), cis-diazene 49 (50 mg, 0.29 mmol) and GaCl3 (2.6 mg, 0.015 

mmol) to yield the compound as a white solid. (97 mg, 78%). Rf 0.48 (1:1 Hexanes:EtOAc);  1H 

NMR (400 MHz, CDCl3) 7.42 - 7.50 (m, 4 H), 7.36 (app t, J = 7.0 Hz, 1 H), 5.29 - 5.32 (m, 1 H), 

4.26 - 4.38 (m, 4 H), 4.09 - 4.14 (m, 1 H), 3.65 (td, J = 12.1, 2.3 Hz, 1 H), 2.76 (dd, J = 13.1, 13.1 

Hz, 1 H), 2.37 (dd, J = 13.1, 3.7 Hz, 1 H), 1.90 - 1.95 (m, 2 H), 1.81 - 1.88 (m, 2 H), 1.44 (d, J = 

12.5 Hz, 1 H), 1.24 - 1.34 (m, 6 H); 13C NMR (100 MHz, CDCl3) 166.3, 165.6, 152.6, 150.7, 
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131.0, 129.1, 128.3, 125.8, 78.1, 69.6, 67.9, 63.4, 63.0, 30.0, 29.9, 27.1, 19.6, 14.1, 13.8; HRMS 

C21H25N3O7 Calculated = 431.1693, Found = 431.1693 

 

 

Diethyl 10a-methoxy-1,3-dioxo-2-phenyloctahydro-1H-[1,2,4]triazolo[1,2-a]cinnoline-

5,5(6H)-dicarboxylate (74d) 

The general procedure for cycloaddition of cis-diazene with DA cyclobutane was followed using 

cyclobutane (165 mg, 0.58 mmol), cis-diazene 49 (50 mg, 0.29 mmol) and GaCl3 (2.6 mg, 0.015 

mmol) to yield the compound as a white solid. (99 mg, 75%). Rf 0.21 (3:1 Hexanes:EtOAc);  1H 

NMR (400 MHz, CDCl3) 7.41 - 7.47 (m, 4 H), 7.31 - 7.35 (app tt, J = 7.0, 1.8 Hz, 1 H), 4.89 (dd, 

J = 4.1 Hz, 1 H), 4.10 - 4.25 (m, 4 H), 3.85 (dd, J = 6.5, 4.1 Hz, 1 H), 3.45 (s, 3 H), 2.82 (dd, J = 

15.3, 6.5 Hz, 1 H), 2.78 (dd, J = 15.3, 4.1 Hz, 1 H), 2.29 - 2.33 (m, 1 H), 2.10 - 2.19 (m, 2 H), 1.91 

- 1.95 (m, 1 H), 1.66 - 1.70 (m, 2 H), 1.26 (t, J = 7.0 Hz, 3 H), 1.25 (t, J = 7.0 Hz, 3 H); 13C NMR 

(100 MHz, CDCl3) 170.1, 169.2, 153.4, 152.2, 151.7, 129.0, 128.1, 125.7, 100.2, 64.7, 61.8, 61.5, 

54.0, 48.4, 35.9, 31.9, 23.4, 19.0, 14.1; HRMS C23H29N3O7 Calculated = 459.2006, Found = 

460.2090 

 

Diethyl 11a-methoxy-1,3-dioxo-2-phenyldecahydrocyclohepta[c][1,2,4]triazolo[1,2-

a]pyridazine-5,5(1H)-dicarboxylate (74e) 

The general procedure for cycloaddition of cis-diazene with DA cyclobutane was followed using 

cyclobutane (173 mg, 0.58 mmol), cis-diazene 49 (50 mg, 0.29 mmol) and GaCl3 (2.6 mg, 0.015 

mmol) to yield the compound as a white solid. (110 mg, 80%). Rf 0.53 (1:1 Hexanes:EtOAc);  1H 
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NMR (400 MHz, CDCl3) 7.48 - 7.50 (m, 2 H), 7.45 (app t, J = 7.9 Hz, 2 H), 7.34 (app t, J = 7.6 

Hz, 1 H), 4.58 (app dd, J = 4.5, 2.3 Hz, 1 H), 4.19 - 4.23 (m, 4 H), 3.47 - 3.53 (m, 1 H), 3.34 (s, 3 

H), 3.27 (s, 3 H), 2.32 - 2.38 (m, 1 H), 2.03 - 2.08 (m, 1 H), 1.91 - 1.95 (m, 2 H), 1.78 - 1.80 (m, 

2 H), 1.53 - 1.65 (m, 5 H), 1.24 - 1.27 (m, 6 H); 13C NMR (100 MHz, CDCl3) 169.6, 169.4, 153.3, 

129.1, 128.1, 125.4, 105.0, 62.3, 61.5, 61.0, 51.3, 50.3, 48.6, 41.0, 30.3, 27.5, 25.2, 24.6, 24.5, 

21.1, 14.1; HRMS C24H31N3O7 Calculated = 473.2162, Found = 473.2165 

 

 

Diethyl 8-(4-methoxyphenyl)-1,3-dioxo-2-phenyltetrahydro-1H-[1,2,4]triazolo[1,2-

a]pyridazine-5,5(6H)-dicarboxylate (74f) 

The general procedure for cycloaddition of cis-diazene with DA cyclobutane was followed using 

cyclobutane (48 mg, 0.16 mmol), cis-diazene 49 (14 mg, 0.08 mmol) and GaCl3 (0.7 mg, 0.004 

mmol) to yield the compound as a white solid. (34 mg, 88%). Rf 0.45 (1:1 Hexanes:EtOAc);  1H 

NMR (400 MHz, CDCl3) 7.39 - 7.47 (m, 5 H), 7.34 (app d, J = 8.6 Hz, 2 H), 6.86 (app d, J = 8.6 

Hz, 2 H), 5.11 (dd, J = 11.3, 4.3 Hz, 1 H), 4.20 - 4.31 (m, 4 H), 3.79 (s, 3 H), 3.49 (dd, J = 8.4, 4.5 

Hz, 1 H), 2.09 - 2.23 (m, 2 H), 1.80 - 2.04 (m, 2 H), 1.29 (t, J = 7.0 Hz, 6 H); 13C NMR (100 MHz, 

CDCl3) 169.7, 169.4, 154.1, 129.0, 128.9, 128.1, 125.5, 114.1, 61.9, 59.7, 55.3, 50.7, 29.0, 26.6, 

25.0, 14.1; HRMS C25H27N3O7 Calculated = 481.1849, Found = 481.1837 
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Chapter 5 - Conclusions 

 

 This thesis has investigated the mechanism of reaction between DA cyclopropanes and 

nitrosoarenes.  The reaction of DA cyclopropanes with azo dicarboxylates was also investigated. 

These reactions were studied with the use of cross-over experiments. The information learned from 

these experiments could be used in the development of new reactions. The successful completion 

of these projects demonstrates the usefulness and versatility of DA cyclopropanes in synthetic 

organic chemistry. 

 A breakthrough that was discovered in this thesis included the general pattern of reactivity 

of nitrogen to open a DA cyclopropane, which undergoes fragmentation and generation of a 1,3-

dipole. This reaction type may lead to the discovery of new reactions if further exploration is 

attempted. This reaction represents a novel way of synthesizing heterocyclic compounds and 

incorporating new atoms may allow for construction of new heterocycles. 

 The reaction of DA cyclobutanes with cis-diazenes was also accomplished in a highly 

efficient cycloaddition. The generality of the reaction scope was achieved from the successful 

coupling of different DA cyclobutanes with cis-diazene, PTAD. This project showcased a novel 

approach to the synthesis of hexahydropyridazine systems. These six-membered ring heterocycles 

have limited ways to be created, and can now be efficiently synthetized, which demonstrates the 

usefulness of this chemistry. 
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Appendix 1 - NMR Data Chapter 2 
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Cross-Over Experiment #1 

 

Zoomed into key identifying region 
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Appendix 2 - NMR Data Chapter 3 
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Cross-Over Experiment #2 

Crude Reaction Mixture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 
 

 
 

Cross-Over Experiment #2 

Isolated Products 
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Appendix 3 - NMR Data Chapter 4 
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Appendix 4 - GC-MS Data Chapter 2 
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Cross-Over Experiment #1 

 

     15.692   16.586              17.871       18.602 
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Cross-Over Experiment #1 
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Appendix 5 - GC-MS Data Chapter 3 
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Cross-Over Experiment #3 Standards 

 

 

 

 

 

 

 

Cross-Over Experiment #3 Reversed (Run #1) 
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Cross-Over Experiment #3 Reversed (Run #1) 
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Cross-Over Experiment #3 Reversed (Run #1) 

Peak #1 

 

Peak #2 
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Peak #5 

 

Peak #6 
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Cross-Over Experiment #3 Reversed (Run #2) 
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Cross-Over Experiment #3 Reversed (Run #3) 
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