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Abstract
Background: Many landscapes, both natural and anthropogenic, are dominated by degraded soils that have low phosphorus availability due to 
low overall phosphorus concentration or to phosphorus sequestration by iron-rich minerals. 
Questions and / or Hypotheses: Does the application of low molecular weight organic acids improve phosphorus availability and plant growth 
in phosphorus-poor soils, and is this effect modulated by ectomycorrhizal fungi?
Studied species / data description /Mathematical model: Pinus pseudostrobus and its ectomycorrhiza Pisolithus arhizus, in addition to six 
sodium salts of organic acids.
Study site and dates: The experiment was carried out in a shade house (35 % shade) in Morelia, Michoacán in 2015.
Methods: We conducted experiments with Pinus pseudostrobus and its ectomycorrhiza Pisolithus arhizus in addition to six sodium salts of 
organic acids. Sodium salts of citrate, oxalate, acetate, tartrate, succinate and malate were added to the soil at 0, 4, 8, 16, 32 and 64 micromolar 
concentrations. 
Results: The salts of the organic acids—particularly tartrate and malate-solubilized phosphorus and improved plant growth after 12 months in 
the absence of P. arhizus. When plants were inoculated with P. arhizus, the effect of most organic acids was either detrimental or non-significant. 
However, citrate, tartrate and succinate improved biomass and morphological parameters. 
Conclusions: These results suggest that adding appropriate organic acids to heavily degraded soils can aid P. pseudostrobus establishment and 
its benefits are higher than the association with mycorrhiza for young plants during the initial stages of fungal colonization.
Key words:  mycorrhizal, phosphorus, pine, soil restoration.

Resumen
Antecedentes: Actualmente muchos paisajes están dominados por suelos degradados con baja disponibildiad de fósforo, debido a una baja 
concentración en el suelo o al secuestro del fósforo por minerales ricos en hierro. 
Preguntas: ¿Los ácidos orgánicos pueden aumentar la disponibilidad de fósforo y el crecimiento de plantas en suelos bajos en fósforo? De ser 
así, ¿estos efectos están modulados por hongos ectomicorrícicos? 
Especies de estudio: Pinus pseudostrobus y su hongo ectomicorrícico Pisolithus arhizus.
Sitio y años de estudio: El experimento se realizó en una casa de sombra (35 % de sombra) en Morelia Michoacán en 2015. 
Métodos: Realizamos dos experimentos con Pinus pseudostrobus y su hongo ectomicorrícico Pisolithus arhizus adicionando seis sales de 
ácidos orgánicos. Las sales de citrato de sodio, oxalato de sodio, acetato de sodio, tartrato de sodio, succinato de sodio y malato de sodio se 
añadieron en las siguientes concentraciones 0, 4, 8, 16, 32 y 64 micromolar. 
Resultados: Las sales orgánicas, particularmente tartrato y malato, solubilizaron el fósforo e incrementaron el crecmiento de las plantas después 
de 12 meses en ausencia de P. arhizus. En los pinos inoculados con P. arhizus, solamente el citrato, tartrato y succionato aumentaron la biomasa 
y algunos caracteres morfológicos. 
Conclusiones: Nuestros resultados sugieren que añadir los ácidos orgánicos apropiados a suelos severamente degradados, pueden ayudar en el 
establecimiento de los pinos y sus efectos positivos fueron mayores que la asociación con micorrizas para plantas durante las etapas iniciales de 
colonización por los hongos. 
Palabras clave: fósforo, micorrizas, pinos, restauración de suelos.
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Phosphorus is the limiting macronutrient in most continental soils, mainly because of its mineral origin and 
poor diffusion in soils (Johan et al. 2021). Unlike nitrogen, the processes that regulate the phosphorus cycle 
are mostly abiotic. Some of the key factors that limit phosphorus availability to plants are those that deter-
mine phosphorus adsorption and desorption from the mineral matrix, particularly in the presence of iron and 

aluminum compounds that limit the presence of this element in soluble forms (Hekstra 1996). Phosphorus deficiency 
can also be exacerbated by some management practices. For example, nitrogen fertilizers can increase soil acidity, 
which favors insoluble forms of phosphorus (García-Oliva 2005) and inhibits symbiotic relationships (Grant et al. 
2005). At the same time, mycorrhizal fungi can establish symbiotic relationships with many different plant species, 
van der Heijden et al. (2015) estimate that there are close to 50,000 fungal species that form mycorrhizal associations 
with up to 250,000 plant species. Several studies have shown that arbuscular mycorrhiza fungi contribute up to 90 % 
of plant P uptake (van der Heijden et al. 2015, Strullu-Derrien et al. 2018). Additionally, mycorrhizae improve the 
formation and stabilization of soil aggregates (Tisdall 1994, Bearden 2001). This in turn leads to major changes in 
plants’ physiology and responses to the environment (Ferrera Cerrato & Alarcón 2001) and increases soil bacterial 
diversity (Álvarez 2009). However, there is apparently some initial cost to plants of establishing these symbiotic 
relationships, as plants have been repeatedly shown to exhibit early growth depression during the initial stages of 
colonization by mycorrhizae (Bethlenfalvay 1982, Li et al. 2005, Choi et al. 2005, Smith & Read 2008, Barroetaveña 
et al. 2012, Gómez-Romero et al. 2013). Plants found in soils with low phosphorus content may have a mycorrhizal 
dependency. Even though has been documented with arbuscular mycorrhizal fungi, that colonization will be variable, 
depending on phosphorus concentrations in the soil. In this sense, the application of phosphorus can reduce mycor-
rhizal colonization. In general, plant species with a lower ability to take up phosphorus are recognized as dependent 
on mycorrhiza. This is why when phosphorus levels in the soil increase, mycorrhizae may not benefit (Graham et al. 
1991, Janos 2007).

Organic acids are part of the soluble fraction of the rhizosphere and influence the availability of nutrients, includ-
ing phosphorus (Adeleke et al. 2017, Baltazar et al. 2021). Plant roots can exude some organic compounds that favor 
the solubilization of phosphorus from iron or aluminum minerals, thus increasing phosphorus availability (Adeleke 
et al. 2017). Plants can release organic acids that can bind to cations and in the process release phosphorus into 
the soil without ectomycorrhizal symbiosis (Ae et al. 1990, 1991). However, when ectomycorrhizal symbionts are 
present, their mycelium increases plants’ phosphorus uptake considerably (Chuyong et al. 2000) through several 
mechanisms: 1) an increase in the absorption surface, which allows more efficient exploration of the soil volume; 2) 
increased surface area of contact with soil particles; 3) formation of polyphosphates; and 4) release of organic acids 
and phosphatases that solubilize phosphorus by binding to cations in the soil  (Marschner & Dell 1994, Bücking 
2004). After a thorough review of the knowledge on mycorrhizal ecology and evolution, van der Heijden et al. (2015) 
conclude that paleontological and phylogenetic evidence indicate that the mutualistic relationship is very old (ca. 450 
million-yr-old), and that it probably allowed plant transition from water to land. 

The mutualism between gymnosperms and ectomycorrhizal fungi have been thoroughly studied, and many fungal 
genera are commonly used to improve gymnosperm growth (Pera & Parladé 2005). Pisolithus arhizus (previously 
known as Pisolithus tinctorius) is a gasteroid, globose, ectomycorrhiza that has been used with different trees and 
shrubs to increase their overall growth and root length and volume, as well as phosphorus nutrition, especially in soils 
with phosphorus deficiency (Gómez-Romero et al. 2015, Becerril-Navarrete et al. 2022).  The inoculation with P. 
arhizus has been reported with forest plants from the five continents (Cairney & Chambers 1997) including Pinaceae 
family (Pérez-Moreno & Read 2004). Pisolithus arhizus is a cosmopolitan species, distributed in all regions of the 
country. Widely cited in the states of north, center and south (Chihuahua, Coahuila, State of Mexico, Hidalgo, Jalis-
co, Nuevo León, Oaxaca, Sonora and Veracruz; Bautista-Hernández et al. 2018). On the other hand, this species of 
ectomycorrhiza provides resistance to water stress in Pinus pseudostobus. The conditions at the substrate collection 
site are a highly degraded site with serious drought problems, so P. arhizus is of vital importance at the site (Gómez-
Romero et al. 2015). The objective of the present study was therefore to explore the effect of different organic acids, 
in non-inoculated and inoculated (with Pisolithus arhuizus) Pinus pseudostrobus plants under controlled conditions. 
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We hypothesized that organic acids would improve plant performance for both non-inoculated and inoculated plants, 
and that adding organic acids would reduce the initial cost of the ectomycorrhizal symbiosis in small plants.

Materials and methods

Locally collected seeds (Nuevo San Juan Parangaricutiro, Michoacán) of Pinus pseudostrobus were cold stratified 
for 15 days at 4 °C in Petri dishes lined with moistened Whatman filter paper (No. 1), after being superficially steril-
ized with 20 % sodium hypochlorite (NaClO 1:5 H2O). The seeds were then placed in a growth chamber at 25 °C with 
a 12:12 hour photoperiod until they germinated. The germinated seeds were planted in plastic containers with 50 cm3 

of a substrate composed of a 1:1 mixture of commercial peat moss and agrolite and kept in the growth chamber for 
another two weeks. The substrate was previously sterilized in an autoclave at 100 °C for two periods of 20 minutes. 
The seedlings were then transplanted into 375 cm3/ 600 g containers with sterilized degraded acrisol-like substrate. 
The substrate used comes from a deforested site that is mostly vegetation devoid, with the presence of numerous 
gullies. The place is severely eroded, with presence of acrisols. Soil analyzes indicate that the phosphorus content is 
extremely poor (Table 1).
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Clay-silt-sand 71.80 -16 -12.20
Clase textural Heavy clay
Apparent density 1.20
Field capacity 43.16
Permanent wilting point 23.45
Usable moisture 19.54
Saturation humidity 56
Porosity (%) 45.6
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pH in water 5.4 Moderately acidic

pHCaCl2 4.9 Acid
C.E. milimohos 0.06 Deficient in salts
% O.M. 0.83 Poor
Organic Nitrogen kg/ha 20.88  Poor
Ammoniacal nitrogen (ppm) 8.4 Very poor
Phosphorus kg/ha Traces Extremely poor
Potassium kg/ha 36.88 Very poor
Calcium kg/ha 1148 Very poor
Magnesium kg/ha 133 Medium
C.E.C. 28.40

Table 1. Description of the physical and chemical characteristics of the substrate used in the experiments.

In our first series of experiments, we tested the effect of organic acids salts on the performance of P. pseudostrobus 
plants, with and without inoculation with Pisolithus arhizus. Each experiment consisted of six replicates of each of 
six dilutions (0, 4, 8, 16, 32 and 64 micromolar) of the sodium salts of citrate, oxalate, acetate, tartrate, succinate, 
and malate, we used these concentrations as that is has been reported that across a broad range of ecosystems, the 
concentration of organic acids in soil range from ranges from 0 to 50 μM (Adeleke et al. 2017). To provide macro- 
and micronutrients, we prepared a hydroponic solution consisting of the aqueous solution of the following salts: 
KNO3 (202 mg/l), Ca(NO3)2 (236 mg/l), MgSO4 (493 mg/l), NH4NO3 (80 mg/l), H3BO3 (2.8 mg/l), MnSO4 (2.07 mg/l), 
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ZnSO4 (0.22 mg/l), CuSO4 (0.051mg/l) and (NH4)6MO7O24 (0.09 mg/l). (Modified from Salisbury & Ross 1994). The 
source of phosphorus was Iron (III) phosphate dihydrate, an insoluble form of this element; 1 g was mixed into the 
substrate of each plant. The organic acid salts were added twice per week and the hydroponic solution three times 
per week. Lixiviates were collected and analyzed using the molybdenum blue method (Frank et al. 1998). For the 
inoculation of experimental plants with the mycorrhiza, each plant was treated with ca. 500,000 spores of Pisolithus 
arhizus obtained from the company Biosyneterra Solutions Inc. (L’Assomption, Quebec, Canada). The spores were 
added to 0.5 g of micronized peat as a vehicle, which was applied directly to a portion of root that had been exposed 
by moving the substrate. Height, stem diameter and canopy cover were measured every month for six months. Dur-
ing the seventh month, many of the plants were destroyed by insect herbivores, therefore only six-month data was 
analyzed as early performance response of the plants. A second set of experiments was conducted as described above, 
but using only non-inoculated plants and quantifying height, stem diameter, canopy cover, shoot biomass and root 
biomass for a longer period: 12 months.

Experiments were performed in a shade house (35 % shade) whose conditions were very similar to those in the 
habitat where seeds were collected. The temperature in the shade house ranged between 13 and 29 °C depending on 
the month, humidity was not controlled since the shade house is open, but all plants were subject to the same irriga-
tion regimes during both experiments. For statistical analyses of the first experiment, we used ANOVA to test effects 
of presence-absence of mycorrhiza and organic acid salt identity. For both experiments we used linear models to test 
the effects of the organic acid salts concentration on plant response variables. For all tests we verified the fulfillment 
of the assumptions of the procedures. We included both linear and polynomial fits and retained quadratic polynomial 
variables whenever this improved the overall fit of the model (i.e., increased the model’s adjusted R2 value). All sta-
tistical analyses were done in R (R Core Team 2020).

Results

The results of the first set of trials after 6 months showed significant differences on plant performance for the pres-
ence or absence of mycorrhiza, for: height (F(1,636) = 89.7; P < 0.0001), stem diameter (F(1,635) = 105.9; P < 0.0001) and 
canopy cover (F(1,635) = 4.8; P = 0.03). For height, plants without mycorrhiza were taller than plants with mycorrhiza 
(7.06 ± 1.7 and 5.9 ± 1.3 cm, respectively), stem diameter was larger for plants without mycorrhiza than for plants 
with it (0.9 ± 0.2 and 1.2 ± 0.4 mm, respectively), and for canopy cover plants had greater cover without mycorrhiza 
than for plants with it (22.6 ± 8.3 and 21.0 ± 9.3 mm2, respectively). The effect of organic acid salt identity was sig-
nificant for stem diameter (F(5,635) = 27.1; P < 0.001), and canopy cover  (F(5,635) = 4.3; P < 0.001). 

When considering the effect of each organic salt concentration in the first experiment, for plants without mycor-
rhizal inoculation (Table 2), increasing concentration of organic acid salts had non-significant or negative effect on 
response variables. This was the case of citrate (for height, stem diameter, and canopy cover), of tartrate (for height 
and stem diameter) and for oxalate and succinate (both for canopy cover). In plants inoculated with mycorrhizae, 
there were negative effects of acid concentration of citrate on stem diameter, tartrate on stem diameter and malate 
on canopy cover. 

For the second set of trials, in non-inoculated plants, the results after 12 months were different. In this case, when 
organic acids showed a significant effect, those effects were positive (Figure 1). Stem diameter increased as the con-
centration of citrate, oxalate, succinate, or tartrate salts were increased, the best fit being linear for all (Figure 1A-D). 
All organic acid salts significantly increased canopy cover as their concentration increased; for acetate and tartrate 
the best fit was linear, while for the rest of the salts the best fit was quadratic polynomial (Figure 1E-J). Interest-
ingly, when the best fit was a curve, the inflection point of the curve was around the concentration of 40 micromolar. 
Citrate, oxalate, and succinate salts had a positive effect on shoot biomass, in all cases being the best fit polynomial 
(Figure 1K-M), with an inflection point close to the concentration of 40 micromolar. Oxalate, succinate and tartrate 
salts had a positive effect on root biomass, and the best fit was polynomial in all cases (Figure 1N-P). For oxalate and 
tartrate salts, the inflection point is near 40 micromolar, though this was not the case for succinate.
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Organic Acid Response Variable Experiment 1 Experiment 2

Without mycorrhiza With mycorrhiza Without mycorrhiza

Sodium citrate Height ** (-) 

R2 = 0.16
Sodium tartrate Height * (-)

R2 = 0.12

Sodium citrate Stem diameter ** (-)

R2 = 0.15

* (-)

R2 = 0.08

 * (+)

R2 =0.12
Sodium oxalate Stem diameter ** (+)

R2 = 0.25 

Sodium succinate Stem diameter *** (+)

R2 = 0.28

Sodium tartrate Stem diameter * (-)

R2 = 0.08

* (+)

R2 = 0.13
Sodium acetate Canopy cover * (+)

R2 = 0.27
Sodium citrate Canopy cover *** (-)

R2 = 0.42

* (-)

R2 = 0.12

** (polynomial)

R2 = 0.29 
Sodium malate Canopy cover *** (-)

R2 = 0.19

** (polynomial)

R2 = 0.44
Sodium oxalate Canopy cover ** (-)

R2 = 0.14

** (polynomial)

R2 = 0.26
Sodium succinate Canopy cover * (-)

R2 = 0.07

** (polynomial)

R2 = 0.36
Sodium tartrate Canopy cover ** (+)

R2 = 0.15
Sodium citrate Shoot biomass N/E N/E *** (polynomial)

R2 = 0.45
Sodium succinate Shoot biomass N/E N/E * (polynomial)

R2 = 0.24
Sodium tartrate Shoot biomass N/E N/E ** (polynomial)

R2 = 0.30
Sodium oxalate Root biomass N/E N/E ** (polynomial)

R2 = 0.35
Sodium succinate Root biomass N/E N/E *** (polynomial)

R2 = 0.89
Sodium tartrate Root biomass N/E N/E ** (polynomial)

R2 = 0.18

Table 2. Effect of organic acid addition on different Pinus pseudostrobus performance variables in experiments with and without the ecto-
mycorrhiza Pisolithus arhuizus. Experiment 1 had only un-inoculated plants. Only significant effects are shown. Significance codes:  0 ‘***’, 
0.001 ‘**’, 0.01 ‘*’ specifying when the relationship was significantly positive (+), negative (-) or polynomial (polynomial). N/E: not evaluated.
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Discussion 

The process of phosphorus absorption by roots is directly related to aspects of root morphology, which determine the 
efficiency with which the root system explores the soil. It also depends on chemical processes involving proton and 
low-molecular-weight organic acid excretion (Junk et al. 1993). Our results indicate that when added directly to the 
growing medium, organic acids have positive effects on plant performance, but the magnitude and specific growth 

Figure 1. Four plant performance variables for Pinus pseudostrobus to increasing concentrations (0, 4, 8, 16, 32 and 64 micromolar) of organic acid 
sodium salts after 12 months in plants not inoculated with mycorrhizae (Experiment 2). Effects on Stem diameter: A) citrate, B) oxalate, C) succinate, D) 
tartrate; on Canopy cover E) acetate, F) citrate, G) malate, H) oxalate, I) succinate, J) tartrate; on Shoot dry biomass: K) citrate, L) oxalate, M) tartrate; 
on Root dry biomass: N) oxalate, O) succinate and P) tartrate. Blue lines denote significant linear relations while red lines denote significant quadratic 
relations. We are only showing the variables and treatments that showed significant effects.
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variables promoted differ. Several studies have shown that plants release organic acids when available phosphorus 
concentrations in the soil are low (Peñaloza et al. 2000, Tian 2004). For example, there are a handful of studies of the 
organic acid root exudates of pines (Wang et al. 2007, Johansson et al. 2008, 2009, Meier et al. 2013), and for Pinus 
radiata, the profile of organic acid exudates has been fully characterized (Shi et al. 2011). That species produces 
mainly: formate, acetate and malate, and to a slightly lesser degree: lactate, shikimate, succinate and tartrate (Shi et 
al. 2011). It has been documented that the application of citric acid, can improve growth, biomass accumulation and 
chlorophyll content (Chen et al. 2020). On the other hand, malic acid increases plant productivity, showing greater 
growth by alleviating stress from the presence of metals (Zhang et al. 2020). This acid increases biomass in Salix 
variegata (Zhang et al. 2020) and in Oriza sativa (Sebastian & Prasad 2018). Oxalic acid also increases plant pro-
ductivity (Guo et al. 2019) and can counteract stress effects, for example in Cicer arietinum (Sakouhi et al. 2022) or 
in Sedum alfedii (Liang et al. 2021).  

Interestingly, in the literature oxalate and citrate are frequently reported as exudates by bacteria and mycorrhiza 
(Banik & Dey 1982, Gyaneshwar et al. 1998, Ahonen-Jonnarth et al. 2000, Sheng & He 2006, Eldhuset et al. 2007, 
Vyas & Gulati 2009, Sheng et al. 2011), in our study these organic acids showed a significant effect on four and three 
response variables (the only variable for which citrate had no effect was root dry biomass). A study by Ohno & Ku-
bicki (2020) on phosphorus availability in the presence of organic acids, including four of the organic acids examined 
in the current study (oxalic, citric, succinic, and malic acids), showed that phosphorus adsorption to FeOOH was 
the lowest in the presence of oxalic and citric acids; malic acid also reduced adsorption, but succinic acid did not. 
These adsorption results are consistent with ours except for succinate, which had a significant effect on 3 response 
variables suggesting that other mechanisms might be at play, including the presence of exudates by the plants them-
selves or the pH of the growing medium, that influences the deprotonation of the carboxyl group (Ohno & Kubicki 
2020). Some studies have shown that succinate is a key molecule in promoting plant growth (Iyer et al. 2017). Also, 
tartrate has been shown to play a role in phosphorus solubilization of iron-bound phosphates (Shen et al. 2002) and 
that malate plays a role in increasing phosphorus assimilation in species such as Lupinus albus (Johnson et al. 1996). 
For our results, it is interesting that the best fit for increase in plant performance under the different organic acid ad-
dition in seven cases was polynomial, with an inflection point of the curve close to 40 micromolar, suggesting that 
high concentrations of the organic acids may no longer promote plant performance after those concentrations, those 
concentrations may be detrimental. 

Mycorrhizal inoculation did not improve P. pseudostrobus performance in our short experiment, since inoculated 
plants showed negative effects when salts were added. Mycorrhizal inoculum has been shown in other studies to 
negatively affect growth when phosphorus concentrations are high (Johnson et al. 1997, Johnson 1998). In particular, 
plants with citrate and tartrate showed a decrease in stem diameter while the addition of malate, oxalate and suc-
cinate affected plant cover. Mycorrhizae impose an initial cost on young plants, reducing their performance in the 
short-term during the early stages of colonization as other studies have found, but this initial cost is compensated by 
strong benefits later on (Pera & Parladé 2005). This ontogenic transition warrants further investigation in our study 
system with P. pseudostrobus.

Addition of organic acids to heavily degraded soils might have a positive direct effect on the plants, as shown by 
the longer-term responses in our experimental non-inoculated plants. These results are significant since they could 
be a cheaper and attainable management for restoration purposes. However, the selection of which organic acid to 
apply is key to having the strongest possible positive effect on plant performance. Therefore, knowledge of the pro-
file of the exudates produced by root systems is desirable. These results could be applicable to restoration efforts in 
degraded Pinus ecosystems.
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