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Abstract 
Prostate cancer (PCa) remains a leading cause of death in men, primarily due to ineffective 

treatment in the metastatic setting. During this phase of PCa, circulating tumor cells (CTCs) 

are shed into the bloodstream and their presence and number are important in patient 

prognosis. The CellSearch® system (CSS) is the only U.S. Food and Drug Administration 

(FDA) and Health Canada approved instrument for detection of CTCs, making it the current 

clinical gold standard in CTC technology. Although the CSS provides a minimally invasive 

means of patient monitoring in the metastatic setting, little is known about the role of CTCs 

in early-stage PCa. Additionally, examination of the utility of CTC molecular 

characterization in personalized patient care is an area of great interest. However, the 

underlying biology of CTCs remains poorly understood. In the present study, we 

demonstrated that CTCs are detectable in early-stage, post-surgical PCa patients undergoing 

adjuvant and salvage radiotherapy, and that in combination with other clinicopathological 

risk factors, CTCs may be useful in predicting treatment failure earlier then currently utilized 

clinical techniques. Additionally, we provide 2 technical resources outlining the FDA and 

Health Canada approved process of CTC identification and enumeration using the CSS, the 

detailed experimental process of user-defined protein molecular characterization using the 

CSS, and a comparable CTC assay for use in in vivo pre-clinical mouse models of metastasis. 

Finally, a comprehensive biological examination of the role of the epithelial-to-mesenchymal 

transition (EMT) in CTC kinetics and metastatic dissemination in PCa is presented, 

demonstrating that highly mesenchymal PCa cells shed CTCs earlier and in greater numbers 

during the metastatic cascade and have a greater metastatic capacity then PCa cells with an 

epithelial phenotype. Collectively these data improve our understanding biology of CTCs in 

PCa, including CTC kinetics, their relationship with EMT, and metastasis. These results will 
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guide future research and technology development in the identification and capture of CTCs 

with the greatest metastatic potential, and may ultimately lead to changes in patient treatment 

guidelines. 
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Chapter 1 
Introduction 

 
A version of this chapter has been published as a review paper: 
Lowes LE and Allan, AL. Recent advances in the molecular characterization of 
circulating tumor cells. Cancers (Basel). 2014; 6(1):595-624. 

 
 
 

1.1  Prostate cancer 
Prostate cancer (PCa) is the second leading cause of cancer diagnosis and the 

third leading cause of cancer-related mortalities in men in North America1. The prostate 

is located just below the bladder in the male reproductive system and is responsible for 

the production of seminal fluid which will eventually mix with sperm from the testicles to 

produce semen2. There are several pre-cancerous conditions associated with the 

development of prostate cancer including prostatic intraepithelial neoplasia (PIN) and 

proliferative inflammatory atrophy (PIA)3. Although there are several different types of 

PCa, 95% are classified as adenocarcinomas and develop from the mucus-secreting gland 

cells of the prostate4. There are currently two tests which are commonly utilized when 

screening for PCa, the digital rectal examination (DRE) and the prostate specific antigen 

(PSA) test5. DRE involves inspection of the prostate for abnormal regions using manual 

palpation of the prostate via the rectum6. The PSA test involves the collection of a blood 

sample and subsequent testing for elevated levels of the PSA protein. This protein is 

typically secreted by the prostate, however, elevated levels may indicate changes in 

prostate physiology7,8. If abnormal results are obtained during the screening process, a 

prostate biopsy may be ordered and multiple biopsy specimens will be collected for 
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pathological assessment. Following biopsy, Gleason scoring is performed by a trained 

pathologist on each biopsy specimen. The Gleason score ranks each specimen on a scale 

from 2-10 based on the sum of primary and secondary patterns (1-5) of differentiation 

when compared to normal prostate tissue, with a low number indicating more 

differentiated tissue (less aggressive disease) and a high number indicating more 

undifferentiated tissue (more aggressive disease)9. 

1.1.1 Disease staging and prognosis 

PCa is staged based on categorization of patients using the TNM classification 

system, which relies on the size and extent of the primary tumor (T), the spread of disease 

to regional lymph nodes (N), and tumor dissemination to other organs (M). The details of 

this classification system are presented in Table 1.1. Along with TNM stage, additional 

criteria such as PSA levels and Gleason score are important in determining prognosis and 

in assigning risk. Table 1.2 outlines the prognostic grouping of patients based on TNM, 

PSA, and Gleason score as defined by the Union for International Cancer Control 

(UICC). Based on these criteria, patients in group I have a better prognosis then those in 

group IV9. PCa patients may also be further categorized into low, intermediate, and high 

risk groups. To be classified as low risk, patients must have a TNM stage of T2a or 

lower, PSA ≤ 9, and a Gleason score of ≤ 6. Intermediate risk patients are those that 

present with any of the following; TNM stage of T2b-T2c, PSA of 10-20, and/or a 

Gleason score of 7. Finally patients are classified as high risk if any of the following are 

present, TNM stage of T3a or higher, PSA > 20, and/or a Gleason score of 8-1010,11.  
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Table 1.1. Clinical classifications of prostate cancer using the TNM system 

Primary Tumour (T)
TX Primary tumour cannot be assessed

T0 No evidence of primary tumour

T1 Clinically inapparant tumor neither palpable nor visible
by imaging

T1a Tumour incidental histologic finding in 5% or less of 
tissue resected

T1b Tumour incidental histologic finding in more than 5% of 
tissue resected

T1c Tumour identified by needle biopsy

T2 Tumour confined within prostate#

T2a Tumour involved one-half of one lobe or less

T2b Tumour involved more than one-half of one lobe but not 
both lobes

T2c Tumour involved both lobes

T3 Tumour extends thorough the prostate capsule##

T3a Extracapsular extension (unilateral or bilateral) including 
microscopic bladder neck involvement

T3b Tumour invades seminal vesicles

T4 Tumour is fixed or invades adjacent structures other then 
seminal vesicles: bladder neck, external sphincter, rectum, 
levator muscles, and/or pelvic wall

Regional Lymph Nodes (N)
NX Regional lymph nodes cannot be assessed

N0 No regional lymph node metastasis

N1 Regional lymph node metastasis

Distant metastasis (M)
M0 No distant metastasis

M1 Distant metastasis

#: Tumour found in one or both lobes by needle biopsy, but not palpable or reliably 
visible by imaging is classified as T1c. 

##: Invasion into the prostatic apex or into (but not beyond) the prostatic capsule is 
classified not as T3 but as T2. 

** Srigley et al., 20099
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Table 1.2. Clinical stage classification of prostate cancer based on TNM criteria, PSA, 

and Gleason score as defined by the Union for International Cancer Control (UICC) 

Group T N M PSA Gleason
I T1a-c N0 M0 PSA < 10 Gleason ≤ 6

T2a N0 M0 PSA < 10 Gleason ≤ 6

T1-2a N0 M0 PSA X Gleason X

IIA T1a-c N0 M0 PSA < 20 Gleason 7

T1a-c N0 M0 PSA ≥ 10 < 20 Gleason ≤ 6

T2a N0 M0 PSA ≥ 10 < 20 Gleason ≤ 6

T2a N0 M0 PSA < 20 Gleason 7

T2b N0 M0 PSA < 20 Gleason ≤ 7

T2b N0 M0 PSA X Gleason X

IIB T2c N0 M0 Any PSA Any Gleason

T1-2 N0 M0 PSA ≥ 20 Any Gleason

T1-2 N0 M0 Any PSA Gleason ≥ 8

III T3a-c N0 M0 Any PSA Any Gleason

IV T4 N0 M0 Any PSA Any Gleason

Any T N1 M0 Any PSA Any Gleason

Any T Any N M1 Any PSA Any Gleason

Note: When either prostate specific antigen (PSA) or Gleason is not available, grouping 
should be determined by T stage and/or whichever of either the PSA or Gleason is 
available. 

**Srigley et al., 20099
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1.1.2 Treatment options for prostate cancer  

In most cases, PCa is a slow-growing disease and when caught early it is 

highly treatable. In fact, PCa patients without distant spread show 5 year relative survival 

rates of 100%. However, the relative survival rates of patients with distant spread of this 

disease are significantly reduced, with only 31% surviving more than 5 years1. The 

treatment options available for PCa patients depend on disease stage. The poor outcomes 

observed for patients with distant disease are as a result of a lack of effective treatment 

options in this disease setting. 

1.1.2.1 Active surveillance 

Due to the slow-growing nature of PCa, active surveillance is an option that is 

often offered to men with low risk disease, older men who have a life-expectancy of less 

than 10 years, and/or men with other significant health problems11–14. During active 

surveillance, patients are routinely monitored every 3-6 months using PSA testing or/and 

physical examination, including DRE. Repeat biopsies are usually performed every 1-2 

years or as clinically indicated. 

1.1.2.2 Surgical intervention: radical prostatectomy 

Upon evidence of disease progression, PCa patients may be offered surgical 

removal of the prostate via radical prostatectomy. This treatment option is most typically 

offered to men with stage I and II disease, under the age of 75, and in good physical 

health11,12. Although less common, radical prostatectomy may also be offered as a 

treatment option for stage III patients15. Following surgical intervention, assessment of 

the pathological tissue as well as monitoring via PSA testing can assist clinicians in 
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determining if patients should be recommended for post-surgical radiation therapy 

(RT)16,17. 

1.1.2.3 Radiation therapy 

Brachytherapy is an internal radiation therapy approach often offered to 

patients with low or intermediate risk disease. This treatment option, utilized in place of 

radical prostatectomy, relies on the strategic placement of small radioactive implants, 

either permanent or temporary, into the prostate, thereby slowing killing the cancer cells 

over time11. Brachytherapy may also be utilized in combination with external beam 

radiation therapy for patients with intermediate or high risk disease18. 

If surgical intervention is chosen, patients with adverse pathological results 

(e.g., extracapsular extension [ECE], seminal vesicle invasion [SVI], and/or positive 

margins) without a detectable PSA or patients with a detectable PSA, with or without 

adverse pathology, may be recommended to undergo adjuvant or salvage external beam 

radiotherapy respectively17. Additionally, external beam radiation therapy, often given in 

combination with hormonal therapy, is often utilized for  treatment of patients with stage 

III disease19.   It can also be used in earlier stage patients who are unfit or do not desire 

surgery. 

1.1.2.4 Hormonal therapy: androgen deprivation 

In general, hormonal therapies are reserved for those individuals suffering with 

stage III and IV disease. These therapies exploit PCa's requirement for androgen 

(testosterone and dihydrotestosterone [DHT]) stimulation in promoting tumor growth. By 

depriving tumor cells of these necessary androgens, hormonal therapies are able to slow 

the growth of residual disease20,21.  
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Currently, there are 5 classes of hormonal treatments available; (1) luteinizing 

hormone-releasing hormone (LHRH) agonists, (2) LHRH antagonists, (3) anti-androgens, 

(4) estrogens, and (5) orchiectomy21. Luteinizing hormone (LH) is released by the 

pituitary gland, following stimulation by LHRH. LH then activates the testes to release 

testosterone into the bloodstream thus enhancing tumor cell growth. LHRH agonists (e.g., 

Lupron [leuprolide acetate], Zoladex [goserelin], Suprefact [buserelin acetate], and 

Trelstar [triptorelin pamoate]) result in excessive stimulation of the pituitary gland to 

release LH. Ultimately, the pituitary will stop responding to LHRH thereby preventing 

stimulation of the testes and reduced secretion of testosterone22. In contrast, LHRH 

antagonists (e.g., Firmagon [degarelix]) work by blocking the release of LH from the 

pituitary gland, again resulting in reduced testosterone secretion23. Unlike LHRH-based 

therapies which act at the level of androgen secretion, anti-androgen treatments (e.g., 

Euflex [flutamide], Casodex [bicalutamide], Anandron [nilutamide], Zytiga [abiraterone 

acetate], and Xtandi [enzalutamide]) act by blocking androgen receptors expressed by 

prostate cancer cells, thereby preventing cell stimulation24. Estrogen therapy is typically 

reserved for cases in which patients are no longer responding to androgen deprivation. 

The use of estrogens in these patients has been demonstrated to reduce androgen levels25. 

Finally, orchiectomy is a surgical procedure in which the testes are removed, thus 

eliminating the primary source of androgen secretion. However, for many men, chemical 

castration is preferred over this surgical intervention21. Unfortunately, although up to 

85% of men initially respond well to hormonal treatments, these therapies are not 

curative and patients will eventually no longer respond to androgen deprivation. This 
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lethal stage of disease is commonly referred to as castration resistant or hormone 

refractory PCa26.   

1.1.2.5 Chemotherapy 

Chemotherapy in PCa is typically only utilized during the castration resistant 

phase of disease and its use is strictly palliative. Commonly utilized chemotherapy 

regimens include treatment with Taxotere, Novantrone, or Jevtana in combination with 

Prednisone. Although not curative, these combination treatments can be utilized to 

prolong survival, reduce pain, and improve the quality of life for terminal patients21.  

More recently chemotherapy has been shown to be beneficial in select patients with 

metastatic hormone sensitive prostate cancer (NIH Trial #:NCT00309985) and in those 

with high risk disease (NIH Trial #:NCT00288080). 

1.1.3 Prognostic biomarkers in prostate cancer 

The advent of PSA screening for PCa in the early 1980s revolutionized the 

management of this disease, allowing for earlier detection and subsequently earlier 

treatment initiation for PCa patients. However, observed discrepancies between one's 

lifetime risk of prostate  cancer development (1 in 6, ~16%) and lifetime risk of death due 

to this disease (~2%) has led to controversy regarding the potential for over detection and 

over treatment of this slow-growing disease27,28. In addition to over detection and over 

treatment, there is also the potential for false-positive results during the screening 

process. As recently described in the multi-centre European Randomized Study of 

Screening for Prostate Cancer trial, the false-positive rate is largely influenced by the 

PSA threshold utilized, with 4.0 ng/ml resulting in 11.3% false-positives versus 3.0 ng/ml 

resulting in 19.8%. Unfortunately no PSA value has been described that can conclusively 
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discriminate patients with and without PCa. Therefore great controversy exists with 

regards to the widespread utilization of PSA testing, especially when considering low- or 

average- risk patients under the age of 55 or over the age of 7029.  Currently, aside from 

the standard clinicopathologic parameters utilized in assessing patient risk (TNM stage, 

PSA, and Gleason score) there are very few prognostic biomarkers available that are 

helpful in differentiating indolent disease from aggressive disease. Oncotype DX®, a 

biopsy-based genomic test, has received prospective validation as a prognostic marker in 

low-risk patients28,30,31. This test measures the expression levels of 17 genes across four 

biological pathways to assess the anticipated aggressiveness of a given tumor. The results 

are then reported as a number between 0 and 100, called the Genomic Prostate Score, in 

which smaller numbers reflect lower risk. This test along with the results of other clinical 

parameters aids clinicians in selecting better candidates for active surveillance as an 

initial management strategy. Although concerns regarding over-treatment have received 

increasing attention in recent years, under-treatment of men with aggressive disease is 

also a concern. Prolaris® is a prognostic genomic assay that assesses increases in cell 

cycle progression gene mutations that has been validated to aid in differentiating low-risk 

and high-risk patient populations when used in combination with standard 

clinicopathologic parameters28,30,32–34. Finally, Decipher®, a genomic based assay, has 

been validated for predicting the probability of metastasis following surgical intervention 

via radical prostatectomy, thus better identifying high-risk patients28,35,36. 

However, in spite of the available clinicopathologic parameters and prognostic 

biomarkers, PCa is still a highly lethal disease, claiming an estimated 4,100 lives this 

year alone in Canada1. Therefore, there is a necessity for novel prognostic biomarkers 
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that could better predict aggressive disease. Additionally, minimally invasive prognostic 

biomarkers that could be repeatedly utilized, serving as "real-time biopsies" of ongoing 

disease progression, would be especially valuable in the management of PCa.  

 

1.2  Metastasis and circulating tumor cells (CTCs) 
The majority of PCa cancer-related deaths occur as a result of metastasis. This 

lethality is largely attributable to our current lack of effective treatments in the metastatic 

setting37,38. One contributing factor to this is that metastatic lesions are highly 

heterogeneous when compared to their primary tumor counterparts39–48; however, the 

majority of treatment decision-making is currently based upon characteristics of the 

primary tumor. Although disease outcome is ultimately determined by metastatic spread, 

biopsy of metastatic lesions is often difficult to perform and can be a significant source of 

morbidity for patients. Therefore, it is currently not clinically feasible to subject patients 

to repetitive metastatic biopsies upon disease recurrence or progression, even if this 

approach could provide information that might improve treatment of metastatic disease. 

Unfortunately, this suggests that many patients are receiving sub-optimal treatment and 

therefore techniques that could better assess the characteristics of metastatic disease 

might enhance treatment efficacy and ultimately improve patient outcomes.  

Metastasis has been demonstrated to correlate with the presence of cancer cells 

in the peripheral blood circulation, hereafter referred to as circulating tumor cells 

(CTCs)49–51. The existence of CTCs has been known since the mid-1800s, when they 

were first reported by Thomas Ashworth, a resident physician at Melbourne Hospital. 

Upon autopsy of a patient with numerous (~30) subcutaneous tumors, Ashworth described 
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these cells as appearing “exactly in shape, size, and appearance” to those seen in the 

primary lesions. Ashworth postulated that these tumor-like cells were cancer cells in the 

blood and that their existence could shed light on the “mode of origin” of numerous 

tumors in one individual52. Since the work of Ashworth in 1869, it has since been 

confirmed that the blood is a major route of transport for disseminating cancer cells, and 

it has been postulated that these CTCs might act as surrogate biomarkers of disease 

spread and patient outcome49–51. However, only recently has technological advancement 

allowed for detailed investigation of these cells and their consideration for use in the 

clinic. 

1.2.1 Clinical applications of CTCs 

Thus far, the clinical uses of CTCs have focused mainly on enumeration. Due 

to the rare nature of CTCs, this process typically requires both enrichment and detection 

steps (Figure 1.1). For enrichment, approaches include size or density-based techniques 

and/or immunomagnetic separation (i.e., positive selection using epithelial-specific or 

tumor-associated markers; or negative selection using markers expressed by 

contaminating cells such as leukocytes). For detection, approaches include nucleic acid-

based techniques such as reverse transcription polymerase chain reaction (RT-PCR), 

reverse transcription quantitative-PCR (RT-qPCR), microarray, or sequencing; and/or 

protein-based techniques such as immunofluorescence or flow cytometry (FCM) using 

antibody-mediated detection. The advantages and disadvantages of each of these 

techniques have been extensively reviewed previously53–58 and therefore will not be 

discussed here.  
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Figure 1.1. An overview of the most commonly utilized techniques for the process 

of CTC enrichment and detection. In general, four approaches currently exist for 

CTC enrichment: (1) size-based; (2) density-based; (3) immunomagnetic separation; and 

(4) microfluidic-based. Using size-based enrichment techniques, diluted whole blood is 

passed through a filtration device with specific sized pores (typically 8 µm). CTCs are 

captured based on differences in cell size between CTCs (typically >8 µm) and white 

blood cells (WBCs; typically <8 µm). Density-based enrichment utilizes Ficoll (or 

similar density gradient medium) to enrich for mononuclear cells (including CTCs) 

from other blood components. Immunomagnetic separation involves the use of iron-

conjugated antibodies targeted toward CTCs (e.g., EpCAM; positive selection) or 

contaminating blood cells (e.g., CD45; negative selection) and incubation in a 

magnetic field. For microfluidic-based techniques, whole blood is slowly passed across a 

chip-based surface and isolated using either CTC targeted antibody-coated microposts 

and/or other chip surfaces (CTC Chip, Herringbone CTC Chip, iChip, graphene oxide 

chip, and the OncoBean Chip59–63), or dielectrophoresis (DEPArray64,65). Current CTC 

detection techniques use either a protein-based approach (i.e., immunofluorescence or flow 

cytometry) expressed by whole cells or secreted proteins (EPISPOT assay66–68), or 

nucleic acid-based approaches such as RT-PCR or RT-qPCR, applied at the level of 

single genes or using a multiplex approach.
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Despite the development of numerous CTC platforms using various 

combinations of the above enrichment and detection steps, capture of these cells is still 

technologically challenging due to their rare nature (~1 CTC per 105–108 white blood 

cells69–71), the potential presence of contaminating cells that can lead to false positive 

identification (i.e., non-tumor epithelial cells, circulating endothelial cells), and the lack 

of a globally accepted marker for capture of all CTCs (e.g., some CTCs may lose 

EpCAM [epithelial cell adhesion molecule]/CK [cytokeratin] expression as they enter the 

bloodstream via a process known as epithelial-to-mesenchymal transition [EMT]72). In fact, 

currently, the only U.S. Food and Drug Administration (FDA) cleared system for CTC 

detection and enumeration in the clinic is the CellSearch® system (CSS; Janssen 

Diagnostics, LLC, Raritan, NJ, USA), developed in the early 2000s. This platform 

enriches for CTCs using positive immunomagnetic selection based on EpCAM, followed 

by immunofluorescent staining for CK 8/18/19; CD45; and the DNA dye DAPI (4',6-

diamidino-2-phenylindole). Positive CTCs are identified, using semi-automated 

fluorescence microscopy, as cells with a CK+/DAPI+/CD45− phenotype73. The CSS is 

currently cleared for prognostic use in metastatic breast, prostate, and colorectal cancers, 

where the presence of ≥5 (breast73 and prostate74) or ≥3 (colorectal75) CTCs in 7.5mL of 

blood is correlated with poorer prognosis compared to patients with fewer CTCs in the 

same blood volume. Using this platform, CTC enumeration has been utilized not only to 

assess CTC number at baseline but also throughout the course of treatment and/or 

following completion of various treatment regimens. It has been demonstrated that CTCs 

are correlated with patient outcome and that the change in CTC number during treatment 

is predictive of therapy response, often sooner than currently utilized techniques such as 
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imaging74,76–78. However, as described in the following sections, simple enumeration of 

CTCs fails to capitalize on their full potential as biomarkers of metastatic disease.  

1.2.2 CTCs as surrogate biomarkers of metastatic biopsy 

As previously mentioned, although the biopsy and subsequent molecular 

profiling of metastatic tissue would be ideal for determining appropriate interventional 

treatments for cancer patients upon disease recurrence or progression, this approach is 

typically not routinely feasible in the clinic. Therefore, molecular characterization of the 

cells that seed these metastatic lesions has been proposed as a surrogate for metastatic 

biopsy. For patients who have been heavily pre-treated with numerous lines of therapy, it 

is highly likely that the cancer cells that persist in the body are significantly different 

from those that originally existed in their primary tumor counterpart39–48. In addition, 

outside of the metastatic setting, CTCs may also demonstrate utility in circumstances 

where no primary tumor is available for characterization, or where the collected tissue is 

of poor quality and/or insufficient quantity. The molecular characterization of CTCs 

therefore holds great promise in terms of assessing disease status and will likely better 

represent the overall heterogeneity of disease at the time of necessary intervention. 

Moving forward, molecular characterization of CTCs could provide an 

attractive and powerful alternative to metastatic biopsies; acting as a minimally invasive 

“real-time liquid biopsy” that can be repeatedly performed to allow assessment of genetic 

drift, investigation of molecular disease evolution, and identification of actionable 

genomic characteristics.  
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1.3  Current CTC molecular characterization 
approaches 

1.3.1 Protein-based CTC characterization techniques 

1.3.1.1 Immunofluorescence 

Immunofluorescence is the primary means by which CTCs have been 

interrogated at the protein level, using specifically targeted antibodies. A number of CTC 

enrichment techniques have been employed prior to immunofluorescent staining 

including immunomagnetic approaches (both positive and negative selection)79–91, 

density gradient centrifugation86, and microfluidic chip-based approaches59. Using 

immunofluorescence, CTCs have been characterized for expression of many markers 

including HER262,79,80,82–93, EGFR (epidermal growth factor receptor)79,94,95, androgen 

receptor (AR)96,97, PSA59, estrogen receptor (ER)87,94, and progesterone receptor (PR)94.  

Thus far in the literature, the gold standard CSS is the most highly utilized 

system for CTC characterization at the protein level, using a single fluorescein 

isothiocyanate (FITC) fluorescence channel not required for CTC identification. 

Currently the CSS has three commercially available markers that can be used on-system 

in combination with this platform to examine HER2, EGFR, or insulin-like growth factor 

1 receptor (IGF-1R) expression on CTCs. In addition, the CSS is amenable to the 

development of user-defined protein marker protocols for CTC characterization. 

However, the CSS is a “closed” platform, with little flexibility in terms of fluorophore 

selection and fluorescent channel availability, and on-system characterization is currently 

limited to one additional marker. While this limitation in fluorophore availability is a 

hurdle that must be overcome by all protein-based platforms, several groups have 
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developed systems that are more “open” in nature and therefore more amenable to 

extensive multi-marker CTC characterization.  

A microfluidic chip-based assay known as the CTC Chip platform59, the next 

generation CTC Chip platform, the iChip which combines microfluidic and magnetic cell 

sorting technologies60, and a portable microfiltration platform98 developed recently are 

excellent examples of “research-friendly” immunofluorescent techniques that allow 

flexibility in CTC characterization. These two platforms utilize different CTC enrichment 

methodologies to capture these rare cells, with the CTC Chip system relying on positive 

selection using anti-EpCAM coated microposts as blood is passed over the chip surface, 

versus the microfiltration system which utilizes size-based capture of CTCs. Thus far in 

the literature these two platforms have been exploited for CTC characterization, 

examining a variety of markers including PSA, M-30, thyroid transcription factor 1 

(TTF1), Ki-67, and HER256,59,61,98.  

The advantages of utilizing immunofluorescence for CTC characterization 

include: (1) the ability to examine the presence or absence of expression, as well as 

protein localization and co-localization with additional proteins; (2) the ability to 

examine many proteins of interest simultaneously, limited only by the filter capacity of 

the investigators’ microscope; (3) the ability to visually confirm that expression is in 

CTCs and not contaminating cells; and (4) the ability to visualize variations in protein 

expression levels (it is important to note that this may also be seen as a disadvantage if 

not properly standardized). Several disadvantages also exist with regards to 

immunofluorescence techniques including: (1) limitations in assay sensitivity (i.e., 

enough antigens need to be present to display a visible signal); (2) bleed-through from 
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additional fluorescent channels can make interpretation of results confusing; and (3) 

using this approach, result interpretation can be more difficult to standardize (i.e., what 

constitutes a true positive or negative signal), although automated CTC analysis 

approaches are evolving to help address this issue86,92.  

In the clinic, the primary benefit of immunofluorescence-based CTC 

characterization is the ability to identify the presence or absence of particular therapeutic 

target molecules, thereby expanding the availability of targeted therapies to patients who 

would previously be considered ineligible based solely upon the characteristics on their 

primary tumor. An excellent example of a setting in which CTC characterization could 

augment patient care is illustrated by the limited availability of HER2 targeted therapies 

to breast cancer patients with HER2− primary tumors who may have HER2+ disease in 

sites distant from the primary tumor (i.e., metastases). In particular, the detection of 

HER2+ CTCs in a patient with a HER2− primary tumor could predict response to HER2 

targeting agents and increase the availability of these personalized treatment options to 

patients. In the future, we envision serial CTC assessment at the protein level as a tool for 

predicting therapy response to specific targeting agents and facilitating evaluation of 

emerging drug resistance based upon the loss/downregulation of target molecules. 

1.3.1.2 Flow cytometry  

Although immunofluorescence is a powerful tool for CTC characterization at 

the protein level, its primary limitation is that the data obtained using this approach is 

largely qualitative. Due to the highly heterogeneous nature of CTCs, quantitative analysis 

of these rare cells may be advantageous. Quantifiable flow cytometry assays are therefore 

an attractive alternative for protein-based characterization. In the clinic, FCM has been 
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proven to be an extremely powerful technology, with clinical FCM being utilized in a 

number of disciplines, including hematology and oncology99,100. In general, FCM has 

primarily been utilized for CTC enumeration; however, this technique is also an attractive 

method for multi-marker, on-system, molecular characterization of CTCs. Thus far in the 

literature, this technology has been utilized to examine the expression of EGFR and its 

phosphorylated counterpart, ALDH1 (aldehyde dehydrogenase 1), CD44, CD47, MET, 

and heparanase (HPSE)101–104. Simultaneous to on-system characterization, FCM offers 

the ability to easily sort and collect characterized CTCs using fluorescence activated 

cell sorting (FACS) technology102,103. Additional advantages offered by flow cytometric 

methods include: (1) the ability to examine not only the presence or absence of marker 

expression but also to examine the level of expression in a measurable and quantifiable 

fashion; (2) the ability to easily perform multi-marker analysis on a single sample, limited 

only by laser and fluorescent filter set availability; and (3) ease of sorted sample collection 

and downstream characterization using other approaches. However, disadvantages also exist 

including: (1) limitations with regards to assay sensitivity even when combined with pre-

enrichment steps105,106; and (2) the inability to visually confirm that results are from 

CTCs and not due to leukocyte contamination. 

Moving forward, the use of FCM for CTC characterization in the clinic could 

provide similar benefits as those recognized for immunofluorescent techniques. In brief, 

these techniques could provide valuable information regarding the expression of protein 

markers for targeted therapies and the detection of drug resistant phenotypes, as well as 

the added potential for performing multi-marker protein analysis with a quantifiable 

readout. When utilized clinically, this approach would be better equipped (relative to 
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immunofluorescence) for assessing overall CTC heterogeneity and for identifying distinct 

CTC subpopulations. An example of this has recently been elegantly demonstrated by 

Baccelli et al. (2013), who identified a CD44+CD47+MET+/− CTC subpopulation that is 

enriched for metastasis-initiating cells102. In addition, FCM would also allow for these 

subpopulations to be quantified, potentially providing information regarding patient 

prognosis102. However it is important to highlight that current limitations with regards to 

assay sensitivity restrict the use of this technique as a clinical assay at present, and 

advances in technology are needed to address this. 

1.3.2 Nucleic acid-based CTC characterization techniques 

1.3.2.1 Fluorescence in situ hybridization 

At the genomic level, fluorescence in situ hybridization (FISH) has been 

utilized to interrogate CTCs for changes in individual genes, including gene copy 

number, gene rearrangement, and/or gene deletion; as well as chromosomal changes, 

such as select arm deletion or amplification79–81,92,93,107–113. Prior to FISH analysis, CTCs 

are typically enriched from whole blood, with the exception of one group that 

demonstrated FISH analysis of CTCs without prior enrichment114. In the literature several 

enrichment techniques have been employed, including the CSS79–81,93,110,111,113, isolation 

by size of epithelial tumor cells (ISET)107,109, density gradient centrifugation79,108,113,115, 

OncoQuick112, and microfluidic chip-based assays79,108,115. Following enrichment, 

isolated CTCs from metastatic breast, prostate, and lung cancers have been examined by 

FISH (either on-platform or after being cytospun onto charged glass slides) for several 

common genomic aberrations and amplifications including HER279,80,92,93,108,110,115, 

anaplastic lymphoma kinase (ALK)107,109, phosphatase and tensin homolog (PTEN)113, 
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AR81,111,113, EGFR79,81, and TMPRSS2:ERG (transmembrane protease serine 2:ETS-

related gene) fusions112. FISH has previously been demonstrated to be a powerful tool in 

assessing genomic aberrations in the clinic in primary and metastatic lesions116. Therefore 

it is not surprising that this technique has several advantages with regards to CTC 

characterization, including: (1) the ability to assess the genomic characteristics of 

individual CTCs with visual confirmation; (2) the ability to assign easily defined cut-

off/threshold values based on quantifiable ratios of mutation to parent chromosome; and 

(3) the availability of automated FISH enumeration systems. As with all techniques, 

FISH does present several limitations as well, including: (1) the underlying fact that FISH 

interrogates CTCs at the genomic level and therefore results may not truly reflect CTC 

phenotype at the functional protein level; and (2) FISH assessment does not provide 

information regarding markers whose regulation and/or function rely on epigenetic 

changes, phosphorylation, or appropriate protein localization. 

Since the results of FISH analysis are not necessarily representative of cellular 

phenotype and/or target molecule expression at the protein level, it is likely that FISH 

technologies will demonstrate their greatest clinical benefit at the level of disease 

prognosis. An example of this is illustrated by Attard et al. (2009), in their 

characterization of CTCs for hetero- or homozygous deletion of PTEN113. PTEN is 

involved in the phosphoinositide 3-kinase (PI3K) pathway, and inadequate inhibition of 

this pathway is associated with high Gleason score and tumor progression in prostate 

cancer117,118. Retrospective analysis has demonstrated that PTEN deletion in primary 

tumors could stratify patients into different prognostic groups, with hetero- or 

homozygous PTEN deletion resulting in shorter time to biochemical relapse following 
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surgery and earlier recurrence of disease when compared to those patients without 

deletion119. Although not investigated by Attard et al., presumably PTEN status on CTCs 

could be utilized in the future for assessing disease progression throughout the course of 

disease. By assessing PTEN deletion status in CTCs at baseline or changes in PTEN 

status with repeated sampling, patients deemed at high risk of progression could be 

recommended for more aggressive treatment options earlier, thereby sparing patients the 

morbidity associated with ineffective therapies. 

1.3.2.2 Reverse transcription polymerase chain reaction (RT-
PCR) and reverse transcription quantitative PCR (RT-
qPCR) 

With regards to CTC analysis, RT-PCR has been utilized as a means to both 

detect the presence or absence of CTCs as well as a means for specific molecular 

characterization. The target transcripts or combinations of transcripts utilized for CTC 

detection are predominantly of either epithelial- or tissue-specific origin (i.e., EpCAM, 

prostate specific membrane antigen [PSMA], mucin-1 [MUC-1]), and therefore 

presumably not transcribed by contaminating leukocytes. However, several groups in the 

literature have also published the use of RT-PCR for additional molecular 

characterization of these rare cells following CTC enrichment using the immunomagnetic 

AdnaTest, including assessment of HER2120, ER120,121, and/or PR120,121, and the CTC chip 

and herringbone CTC chip platforms for assessment of TMPRSS2:ERG gene 

fusions61,122. One major disadvantage that limits the use of RT-PCR in the 

characterization of CTCs is that, although assay sensitivity is high, specificity can be 

reduced as a result of illegitimate transcription and false positives. It is because of this 

limitation that many have chosen to utilize RT-qPCR in place of traditional RT-PCR for 
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CTC characterization. The major advantage that RT-qPCR has over RT-PCR is the 

ability to set defined cut-offs, in the form of Cq values, to reduce false positives based on 

levels of illegitimate transcription observed in healthy donor blood samples. Utilizing this 

approach results in an assay that is not only highly sensitive but also highly specific. As 

with RT-PCR, this technique requires prior enrichment for CTCs, with the majority of 

studies utilizing the CSS’s Profile Kit123,124 or a similar immunomagnetic approach125,126 

for this task, examining a multitude of prognostic markers including (but not limited to) 

HER2, TWIST1, CD133, EGFR, MET and VEGFR2 (vascular endothelial growth factor 

receptor 2)112,120,121,123–127. The ability to multiplex this approach and examine multiple 

genes at once from a very small initial sample volume is a significant advantage that this 

technique offers. In addition, very recent studies have demonstrated that novel PCR 

approaches may also be useful in examining microRNA (miRNA) expression, 

methylation status, and single nucleotide mutations on CTCs124127,128. However, RT-PCR 

and RT-qPCR also have several well recognized disadvantages, including: (1) the 

inability to visually confirm that signals obtained are from CTCs and not due to leukocyte 

contamination; and (2) analysis of single CTCs is still technologically challenging using 

this approach with few studies having published results from patient samples125. 

Therefore the majority of studies in the literature rely on pooled samples, which limits the 

ability to examine heterogeneity in marker expression across multiple CTCs in a single 

sample.  

Although both RT-PCR and RT-qPCR have been routinely employed for CTC 

detection and characterization112,120,121,123–127, their widespread utility, especially with 

regards to detailed molecular characterization of heterogeneous CTC populations, is 
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currently restricted by their limited capacity for single-cell analysis. Based on this current 

limitation and the availability of a number of other excellent single-cell analysis 

techniques, at present we do not foresee this technique to be the primary CTC 

characterization choice for predicting targeted therapy response, drug resistance 

development, or prognosis in the metastatic setting. However one area in which we 

anticipate that these approaches will be very advantageous is the clinical setting of 

primary disease. In this clinical setting, blood analysis can yield very low numbers of 

CTCs129, with the only way to combat this issue being the collection of larger blood 

volumes. Therefore characterization of CTCs in patients with primary disease is 

extremely challenging and extra care must be taken in obtaining the greatest amount of 

information from this small sample size. PCR approaches are beneficial in this regard as 

they allow for the amplification of these small samples and for multi-marker analysis 

allowing for the assessment of many potential targets at once. For example, using this 

approach, a pooled sample with isolated CTCs from a primary breast cancer patient could 

be assessed for expression of HER2, EGFR, ER, PR, and cancer stem cell (CSC) markers 

simultaneously, thereby increasing the likelihood of obtaining useful CTC 

characterization information that could help direct patient care. Therefore, in the future 

we anticipate that RT-PCR and RT-qPCR approaches will demonstrate their greatest 

clinical benefit in the setting of early-stage/primary disease, with the potential for 

widespread utilization in the metastatic setting based upon the optimization of single-cell 

analysis protocols. 
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1.3.2.3 Microarrays 

Both gene expression arrays and comparative genomic hybridization arrays 

(aCGH) have been used to characterize CTCs. Gene expression arrays provide 

information about samples at the RNA level, in particular the up/down regulation of 

suspected and novel transcripts; while aCGH provides information about samples at the 

DNA level, including copy number variations, specific mutational variants, or global 

genomic changes. Both techniques require that experimental samples be compared to 

appropriate control samples. Depending upon the information that one wishes to obtain, 

these controls will vary. For example, to obtain information regarding differences 

between CTCs (experimental) and primary/metastatic lesions (control), samples of each 

must be obtained and analyzed for differences using pre-determined cut-off values (i.e., 

1.5 fold change). Immunomagnetic enrichment130–132 and density gradient 

centrifugation133 have been the primary means utilized as upstream CTC enrichment 

techniques prior to microarray analysis. In the literature, microarrays have been primarily 

utilized to look for genetic signatures of aggressive disease and/or the identification of 

prognostic/diagnostic biomarkers of disease131–133. In addition, gene or copy number 

aberrations have been examined in CTCs130,131,134. The obvious advantages of array-based 

analysis include: (1) automated analysis; (2) the ability to set pre-determined cut-off 

values, thereby standardizing interpretation; (3) direct comparison of a multitude of 

disease settings (e.g., CTCs to primary/metastatic tumors, CTCs in treatment responders 

versus non-responders, CTCs at baseline versus following systemic treatment, etc.); and 

(4) the potential for novel biomarker identification and/or CTC gene signatures. In 

addition to the many advantages that this approach offers, several limitations also exist, 
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including: (1) the necessity for specialized bioinformatics personnel for the analysis and 

interpretation of the massive amount of data that can be generated using this approach; 

(2) the necessity for validation of individually identified genes (gene expression arrays) 

using RT-qPCR; (3) cost; (4) difficulty in assessing sample purity to determine if results 

are from CTCs or contaminating leukocytes; and (5) limitations with regards to 

sensitivity that can make single cell analysis difficult, with few studies reporting on 

arrays using individual CTCs134. 

In the future, we anticipate that the most useful application of microarray-

based approaches for CTC analysis may be in the area of prognosis and patient treatment 

stratification using CTC gene signatures. This approach has previously been 

demonstrated to be feasible when examining primary tumor tissue in breast cancer using 

the FDA approved MammaPrint® Breast Cancer Test by Agendia (Irvine, CA, 

USA)135,136. Using this assay, primary tumor tissue is collected and subjected to array 

analysis to stratify patients into poor or good prognosis groups, and recommendations for 

aggressive (hormone therapy plus chemotherapy with or without trastuzumab) or less 

aggressive (hormone therapy alone) treatment, respectively, can be made based upon the 

results. Although this level of personalized care has not yet been met using microarrays 

on isolated CTCs, moving forward, microarray approaches may hold similar potential in 

this regard.  

1.3.2.4 Sequencing 

Until recently, the use of sequencing in clinical cancer genomics has presented 

significant logistical and economic challenges, due to the slow speed of sample 

processing and the high cost of sequencing. However the development of novel, next-
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generation sequencing technologies has renewed enthusiasm in the field of clinical cancer 

genomics137–140. Sequencing is an umbrella term that encompasses a number of different 

methodologies including traditional gene sequencing approaches (Sanger sequencing; 

pyrosequencing; MALDI-TOF sequencing; and targeted sequencing approaches such as 

allele-specific RT-PCR and RT-qPCR melting curve analysis) and next-generation 

sequencing platforms (Roche 454™ pyrosequncing, Life Technologies SOLiD™ 

sequencing and Ion Torrent™ sequencing, the Illumina HiSeq™, the Helicos 

Heliscope™, Pacific Biosciences PacBioRS™, and Complete Genomics CGA™ 

platform), all of which have been reviewed previously138–145. Each technique has specific 

advantages and disadvantages, with all resulting in the acquisition of the base-by-base 

sequence information for a particular genome or target region within that genome. 

Sequencing technology is a powerful tool for the analysis of specific genomic 

aberrations, especially in the setting of cancer. It is important to note that this technique 

can be applied to both genomic DNA and transcribed RNA sequences in the form of 

cDNA (complementary DNA). With regards to CTC analysis, sequencing tends to be 

applied more frequently at the level of RNA; however several studies have also 

interrogated CTCs at the DNA level128,146–148. In general, for processing at the RNA level, 

total RNA or mRNA is extracted from CTCs following enrichment using either 

immunomagnetic methods149 including the CSS128,150, density gradient centrifugation151, 

or microfluidic chip-based152 approaches. Isolated RNA is then reverse transcribed into 

cDNA and PCR amplified using primers that are specific to the mutant/target region. 

Amplified mutations can be detected using either gel electrophoresis for known length 

transcripts, and/or analyzed with one of the several commercially available sequencing 
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platforms mentioned above. For processing at the DNA level instead, total DNA is 

extracted from CTCs, whole genome amplified using commercially available kits, and 

subsequently amplified via PCR using primers that are specific to the mutant/target 

region. As with RNA, the PCR product is then analyzed using either gel electrophoresis 

or a sequencing platform. Many studies in the literature have utilized these approaches to 

interrogate CTCs for a variety of single nucleotide changes in KRAS128, BRAF128, p53149, 

AR152, TMPRSS2:ERG152, PI3KCA (phosphatidylinositol-3-kinase, catalytic subunit 

α)148, and EGFR146,147.  

One of the first reported studies examining the utility of CTC sequencing was 

reported by Maheswaran et al. (2008), in their examination of EGFR activating and drug-

resistant mutants in non-small-cell lung cancer patients153. Throughout the study this 

group not only demonstrated the presence of the primary EGFR activating mutation in 

CTCs but also the presence of a T790M mutation known to confer resistance to EGFR-

targeted therapies. Using serial CTC analysis, it was additionally observed that the 

genotype of captured CTCs evolved throughout treatment and that the prevalence of the 

T790M resistance genotype increased throughout the course of therapy, suggesting that 

CTCs may be representative of the current state of disease. In a recent report by Heitzer 

et al. (2013), single CTCs from metastatic colorectal cancer patients were assessed for a 

panel of 68 colorectal cancer-associated genes148. Using this approach, CTCs were 

shown to harbor mutations found in both the primary and metastatic lesions, metastatic 

lesions alone, and novel mutations not previously observed in either the primary or 

metastatic sites (termed private mutations). Subsequent ultra-deep sequencing of primary 

and metastatic sites often revealed the presence of these private mutations, previously 
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missed by sequencing but captured by CTC analysis. In addition, many of the identified 

mutations were for actionable targets, with FDA-approved drugs currently available or 

being assessed for targeted treatment in ongoing clinical trials.  

The utilization of sequencing for CTC analysis has several advantages over 

other characterization techniques including: (1) the ability to identify single nucleotide 

alterations, since minor aberrations such as these can result in significant phenotypic 

changes and may be important for predicting response to select therapies; (2) results from 

sequencing are presented as either positive or negative and do not appear as gradations as 

with immunofluorescence; and (3) analysis can be automated to reduce interpreter bias. 

Sequencing techniques also have several marked disadvantages including: (1) limitations 

with regards to sensitivity that make single cell analysis difficult, with many groups 

reporting the need for a minimum of 50 or more CTCs for adequate results128,149; and (2) 

leukocyte contamination and the inability to visually confirm the source of amplified 

transcripts can lead to false positive/negative results. However, several groups have 

attempted to utilize single cell micromanipulation (selecting for CTCs based on 

immunofluorescent staining prior to the collection of DNA/RNA)146 and/or adapted PCR 

protocols (e.g., nested PCR)128 to combat these issues with promising results. 

When considering clinical cancer genomics moving forward, care must be 

taken in discriminating driver mutations from so-called passenger mutations. As genomic 

instability is an underlying characteristic of cancer154,155 one cannot assume that all 

mutations in a given sample are of equal importance. This is well exemplified by the 

great clinical benefit of trastuzumab for HER2-amplication in breast and gastric cancers 

but the lack of this benefit in ovarian and endometrial cancers137,156–158. In addition, the 
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identification of actionable/druggable targets must be at the forefront of clinical cancer 

genomics. There is concern in this field that the genotyping of tumor tissue biopsies 

and/or CTCs may not be capturing functionally relevant information159,160. The reason for 

this concern centers on the fact that the cellular genotype is not necessarily reflective of 

the cellular phenotype and that sample contamination with normal tissue can lead to false 

negative results. We anticipate that the molecular characterization of CTCs will help to 

alleviate some of these concerns. Firstly, Heitzer et al. (2013), have described a CTC 

sequencing approach for single-cell analysis, suggesting that contamination with normal 

cells may be reduced. Secondly, although the sequencing of CTCs does not change the 

fact that the readout is still at the level of the genome, we anticipate that, especially in 

cases in which metastatic lesions are inaccessible, that CTC sequencing will strengthen 

conclusions regarding mutations that are drivers versus those that are passengers as they 

may be present not only in the primary/metastatic lesion but also in the cells that were 

able to escape into the circulation. The conserved nature of these mutations may suggest 

an important functional contribution to disease progression. In addition, as demonstrated 

by Heitzer et al., the sequencing of CTCs may identify relevant private mutations, present 

but not detected in tumor tissue148.  

In the future we anticipate that the greatest clinical benefit of the genomic 

sequencing of CTCs will be achieved when this approach is utilized to assess the 

genomic evolution of disease within a patient over time, and to quickly identify 

actionable target mutations that would make patients eligible for ongoing clinical trials, 

as demonstrated by Heitzer et al.148. As it is still unclear if genomic sequencing will 

provide functionally relevant information that can be applied for predicting targeted 
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treatment response and overall patient outcomes, we foresee that this approach, at least in 

the near future, will likely not be utilized in isolation and instead used in combination 

with other phenotyping platforms such that firm conclusions can be drawn regarding 

clinical treatment decision-making. 

1.3.3 General considerations for CTC characterization 

Although there are currently a number of exciting methodologies available for 

CTC characterization and even more in development, careful consideration needs to be 

placed on which technique will produce optimal results for the molecular characteristic(s) 

under investigation, as it is likely that different aberrations will require different 

approaches. For example, the presence or absence of a particular marker may be 

sufficient for some targets, (e.g., estrogen/progesterone receptors)161, however others may 

require the presence of particular single nucleotide substitutions (e.g., BCR-ABL 

mutations which confer drug resistance)162, copy-number alterations (e.g., AR 

amplification)163, aberrant localization (e.g., BRCA1 absent/reduced nuclear expression and 

association with aggressive phenotypes)164, or specific functional activation (AKT 

phosphorylation)165,166 in order to draw any conclusions regarding novel treatment 

options or patient outcomes. As not all approaches can provide this information, care 

must be taken in choosing the appropriate molecular characterization technique or 

combinations of techniques for each target. In addition, once chosen, the appropriate 

technique(s) needs to be validated and standardized before it can be considered for 

routine use in the clinic. This standardization needs to be implemented at both the level of 

procedure as well as at the level of interpretation. For example, data must be interpreted 

to determine if analysis of single cells is necessary or if a pooled result from all CTCs in 
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an individual will suffice. If a single cell approach is chosen, clear-cut criteria must be set 

with regards to how many cells should be characterized with appropriate minimum or 

maximum values set. In addition, what constitutes a positive or negative signal must be 

appropriately defined; if the system is more graduated in nature (i.e., low, medium, or 

high expression) these gradations need to be specifically defined, and if necessary 

automated systems need to be implemented to ensure that results are the same across 

laboratories. The considerations discussed in this section can all have a dramatic impact 

on the results obtained from individual studies and clinical trials. Therefore when 

comparing the current literature one must take into account the variety of approaches 

utilized and the effect these approaches may have on the reported results. These 

considerations and others have been extensively reviewed previously55,167–169.  

1.3.4 Current limitations of CTC molecular characterization  

The most prominent limitation that currently exists in the molecular 

characterization of CTCs is the low number of CTCs collected, especially from those 

patients with early-stage disease. These cells appear to be very delicate in nature and can 

be easily lost or destroyed during processing110. Considering that CTC populations tend 

to be quite heterogeneous, it is very difficult to draw conclusions about treatment if only 

a small population of cells are available for analysis. To combat this issue, research has 

begun to focus on the development of novel technologies for enhanced CTC capture as 

well as focusing on CTC characterization on-system, thereby reducing CTC loss when 

switching techniques. However, thus far the CSS continues to be the only platform that is 

FDA-approved for use in the clinic. 
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1.3.5 Clinical significance of CTC molecular characterization  

Although a number of different molecular characteristics have been 

investigated on CTCs across numerous epithelial cancers, the aberration that has been 

most widely examined is HER2, an EGFR, known to be over-expressed in a subset of 

cancer patients. Currently the expression of HER2 can be investigated on individual 

CTCs captured by the CSS. Based on the results of such an investigation, it may be 

possible for patients to get access to HER2 targeting therapies (e.g., Herceptin) that are 

currently reserved for patients whose primary tumors express this protein170. In this way, 

CTCs could act as a liquid biopsy, informing physicians of disease evolution earlier then 

currently utilized methods, and thereby ultimately improving patient care (Figure 1.2). In 

addition, the characterization of CTCs could identify new targets for novel therapies and 

enable a better understanding of the mechanisms that allow these cells to escape into the 

circulation, extravasate into distant tissue and form clinically relevant secondary 

metastases.  

Although promising from a research perspective, thus far data supporting the 

clinical significance of the molecular characterization of CTCs is inconclusive. Several 

retrospective studies examining treatment outcomes in patients with HER2- primary 

tumors but with HER2+ CTCs who have received Her2-targeting agents have 

demonstrated mixed results82,88,171,172. Thus far, only one prospective clinical trial 

examining the utility of treatment stratification based on the HER2 status of CTCs has 

been completed89. This multicentre phase II trial aimed to evaluate the use of single-agent 

lapatinib (targeting both HER2 and EGFR) in metastatic breast cancer patients with 

HER2− primary tumors and HER2+ CTCs. Of the seven patients enrolled, one 
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experienced an adverse event during the treatment period and discontinued treatment. 

The other six patients demonstrated signs of progressive disease and therefore also 

discontinued treatment. Following these results the study was terminated. However,  

several upcoming trials are set to continue to investigate the HER2 status of CTCs and 

the use of CTCs as a liquid biopsy, including the TREAT CTC173, DETECT III174, 

CirCé01175, and the COMETI P2176 trials177.  

The inconclusive results described here raise questions about our current 

understanding of the biology of these rare cells. CTC research is unique in that it has 

largely utilized a bedside-to-benchtop approach. This method, unlike benchtop-to-bedside 

research, which can often take years to impact patient care, has allowed CTCs quick entry 

into the clinical setting. However, physicians are hesitant to use results from CTC 

analysis in patient treatment decision-making due to a lack of understanding of their 

underlying biology. Therefore appropriate pre-clinical mouse models of metastasis and 

complementary CTC analysis techniques must be utilized in order to properly identify the 

current limitations that exist with CTC detection, enumeration, and characterization 

technologies and to further investigate these outstanding biological questions. In addition, 

a better understanding of CTC biology may shed light on which CTCs are the most 

important to study and characterize and therefore guide strategies on how to utilize CTCs 

most effectively in a clinical setting. 

 

1.4  Epithelial-to-mesenchymal transition (EMT) 
It is curious to note that in up to 35% of patients with various metastatic 

cancers, CTCs are undetectable despite the presence of widespread systemic disease178. 
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 Figure 1.2. An overview of the current and potential patient outcomes following 

the incorporation of CTC molecular characterization into the clinic. The majority of 

cancer-related deaths result from the development of metastatic disease. Although 

metastatic lesions can be highly heterogeneous compared to their primary tumor 

counterparts, current treatment decision making is typically based on characteristics of 

the primary tumor, as routine metastatic biopsy is not clinically feasible. CTCs have 

been suggested as a surrogate to metastatic biopsy. Characterization of therapeutic 

target molecules such as HER2 on CTCs may increase the availability of targeted 

therapies (i.e., the HER2 targeting agent Herceptin) to patients previously considered 

ineligible based upon the characteristics of their primary tumor. Ultimately, utilization 

of CTC analysis and characterization in the clinic may predict response to targeted 

therapies and improve patient outcomes.
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 This lack of detection has been proposed to be a result of the epithelial-to-mesenchymal 

transition (EMT), a process first described for its essential role in embryo 

development179.  The process of EMT involves the conversion of epithelial cells to 

mesenchymal cells via significant phenotypic changes resulting in the loss of cell-cell 

adhesion, loss of cell polarity, and the acquisition of a highly invasive and motile 

phenotype necessary for appropriate embryogenesis180–182. The acquisition of this 

phenotype is only accomplished through significant remodeling of epithelial cells, 

specifically via reduced expression of various epithelial markers (i.e., E-cadherin and 

EpCAM) and a corresponding increase in mesenchymal markers (i.e., N-cadherin and 

vimentin)72,182–185. This developmental process is thought to be reactivated in some 

epithelial cancers, thus allowing for enhanced tumor motility and an increased ability to 

invade and metastasize to distant organs (Figure 1.3)186,187. Once reaching a suitable 

secondary site, it is believed that the reverse process, mesenchymal-to-epithelial 

transition (MET), may be required to initiate tumor growth. In addition to this enhanced 

migratory phenotype, EMT has also been associated with increased therapy resistance188–

190. 

The mechanisms of EMT in cancer are extremely complex and involve a 

number of identified and yet unidentified molecular players. In brief, it is believed that 

the process of EMT can be greatly influenced by EMT-inducers in the tumor 

microenvironment, including a number of growth factors such as epidermal growth factor 

(EGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), platelet-

derived growth factor (PDGF), fibroblast growth factor (FGF), and transforming growth 

factor β (TGF-β)191–195. These paracrine (and sometimes autocrine) signals are then 
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converted into intracellular signals that will eventually result in specific EMT-related 

phenotypic changes (i.e., enhanced cellular migration, invasion, and cell survival). In 

general, thus far three intracellular mechanisms have been recognized as controllers that  

respond to EMT-inductive stimuli. Specifically, (1) signal transduction cascades (i.e., 

Wnt signaling pathway and AR signaling), (2) EMT-related transcription factors (i.e., 

Snail, Twist, and ZEB family members), and (3) epigenetic mechanisms (i.e., chromatin 

remodeling, DNA methylation, and miRNA)191. 

1.4.1 Clinical evidence and implications of EMT in prostate 
cancer 

Although EMT has been extensively recognized in in vitro and in vivo model 

systems, due to the plastic nature of this process, it has been difficult to validate in 

clinical samples. Evidence of EMT in PCa, however, has been demonstrated in a number 

of studies. The aberrant expression and/or downregulation of the epithelial marker E-

cadherin has been the most extensively studied and demonstrated to correlate with 

advanced Gleason score, tumor grade, disease stage, and N-cadherin 

overexpression191,196–200. In addition, reduction/aberrant expression of this marker is 

prognostic, predicting for progression following radical prostatectomy, the presence of 

metastases, and shorter overall survival199. Expression changes in various mesenchymal 

markers and EMT transcription factors, such as N-cadherin, vimentin, Twist, Zeb1, have 

also been demonstrated in clinical samples. Specifically, overexpression of N-cadherin, 

Twist, and Zeb1 have been associated with increasing Gleason scores and shown to be 

absent or reduced in normal and/or benign disease194,197,201,202. Additionally, vimentin has 

been shown to be prognostic in primary PCa, predicting for shorter time to biochemical 
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Figure 1.3. Contribution of the epithelial-to-mesenchymal transition (EMT) to 

prostate cancer progression and metastasis. The developmental process of epithelial-

to-mesenchymal transition (EMT) has been proposed to be reactivated during cancer 

progression and required for the intravasation of tumour cells through a basement 

membrane into the circulation. The enhanced invasive phenotype exhibited by cells that 

have undergone EMT is due, in part, to significant remodelling of the cytoskeleton, 

including downregulation of various epithelial proteins (i.e., E-cadherin and EpCAM) and 

upregulation of various mesenchymal proteins (i.e., N-cadherin and vimentin). This 

process exists on a continuum from purely epithelial --> hybrid expression --> purely 

mesenchymal, thereby potentially generating circulating tumour cells (CTCs) with highly 

heterogeneous EMT phenotypes. Upon reaching an appropriate secondary site, CTCs may 

extravasate from the bloodstream into the surrounding tissue. However it has been 

proposed that disseminated tumour cells must undergo the reverse process of 

mesenchymal-to-epithelial transition (MET) in order to establish micro- and macro-

metastases at secondary sites, during which cells downregulate expression of 

mesenchymal proteins and upregulate expression of epithelial proteins.
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 recurrence and has also been associated with the presence of bone metastases and poorly 

differentiated tumors203,204.  

1.4.2 Clinical evidence and implications of EMT in CTCs 

Thus far the majority of EMT characterization in CTCs has been performed in 

cells that have been enriched for, or detected using, epithelial-based strategies, likely due 

to a lack of appropriate technologies for selecting highly mesenchymal CTCs. With this 

in mind, several studies (especially in breast cancer) have detected the expression of 

various mesenchymal markers in both early-stage (I-III) and metastatic disease.  

Specifically, the expression (mRNA and/or protein) of vimentin205–209, fibronectin205,207, 

Twist1206,210–214, AKT2211,212, PI3K211,212, Slug213, FoxC2213, Snail1214, Zeb162,214, E-

cadherin215, N-cadherin209, and many others have been assessed in these patient cohorts. 

A general trend that exists in the current literature is that CTCs with a hybrid EMT 

phenotype are more likely to be detected in patients with metastatic disease and/or show 

higher expression of mesenchymal markers compared to those in early-stage 

disease205,206,210. Additionally, it has been demonstrated that in both early-stage and 

metastatic patients that these hybrid CTCs are not rare, and represent a significant portion 

of the detectable CTCs within an individual patients205–207,209–212,214–216. These hybrid 

CTCs are also often co-expressed with various stem cell markers including 

ALDH1205,210,211,214, CD44211, and CD133209,214,215. A small number of published studies 

have also attempted to characterize CTCs that are undetectable by current epithelial-

based capture techniques, by examining patients with CTC-negative disease205,207,214. 

Although several studies have reported the detection of various mesenchymal markers in 
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these patients, without reliable mesenchymal CTC markers, these results are difficult to 

interpret as they may represent false positives.  

Of particular interest with regards to EMT characterization of CTCs is the 

prognostic value of cells with a hybrid epithelial-mesenchymal phenotype. Thus far, only 

a small number of studies have reported such information. Specifically, Gradilone et al. 

(2011) noted that metastatic breast cancer patients with CTCs positive for the expression 

of either vimentin and/or fibronectin (EMT+) showed worse prognosis compared to those 

that did not (EMT-), and compared to patients with CK+EMT- disease207. Interestingly, 

this study did not report differences in prognosis between patients with CK-EMT+ and 

CK+EMT+ CTCs. In contrast, Pal et al. (2014), have reported that CTC fragments 

(CK+DAPI+/-CD45- events) in a small group of high-risk localized prostate cancer 

patients (n=35) isolated using the CSS and characterized for E-cadherin and/or CD133 

positivity were prognostic of BCF at 1 year following radical prostatectomy215. Finally, 

the relationship of EMT+ CTCs and treatment resistance is a growing area of research, 

however thus far the results are only correlative in nature, with EMT phenotypes 

appearing to be associated with disease progression and treatment response216. 

 

1.5  Overall Rationale 
The CSS not only provides a minimally invasive means of patient sample 

collection and CTC enumeration but  also allows for limited molecular characterization 

of CTCs. Characterization of isolated CTCs could lead to a better understanding of the 

biological mechanisms that underlie metastasis, aid in the identification of novel targets 

for new therapies, and ultimately help to direct patient care. In addition to exploring the 
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molecular characteristics of CTCs, we also aim to investigate several areas of research 

that have been largely unexplored, including the potential role of CTCs in early-stage 

disease and therapy response, as well as exploiting an in vivo model system to gain a 

better understanding of the biology of CTCs and their contribution to the metastatic 

cascade. 

 

1.6  Overall Goal and Objectives 
The overall goal of this thesis is to address the need for improved 

understanding of the significance of CTCs in early stage prostate cancer, provide novel 

tools for assessing CTC characteristics in the clinic, and develop a better understanding 

of CTC biology and its contribution to metastasis.  

 

In order to assess this goal, the specific objectives of this thesis are: 

1. To investigate CTCs in post-surgery prostate cancer patients receiving adjuvant 

and salvage radiotherapy. 

2. To develop and optimize new techniques that would allow for molecular 

characterization of CTCs on the regulatory-approved CSS. 

3. To investigate the effects of epithelial-to-mesenchymal (EMT) on CTC 

generation and metastasis. 
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Abstract 
Within 10 years of radical prostatectomy (RP), up to 30% of prostate cancer 

(PCa) patients will have a rise in prostate-specific antigen (PSA), requiring radiation 

therapy (RT). However, with current technology, distinction between local and distant 

recurrent PCa is not possible. This lack of an accurate test constrains the decision 

whether to offer systemic versus local treatment. We hypothesize tests for detecting 

circulating tumor cells (CTCs) within the blood may assist with clinical decision-making 

and in this pilot study we investigated whether CTCs could be detected in this patient 

population using the CellSearch® system (CSS). Blood samples were collected from PCa 

patients (n=26) prior to RT and 3 months following completion of RT. Samples were 

analyzed for PSA level via immunoassay and CTC number using the CSS. CTCs could 

be detected in this patient population and following RT CTCs appeared to decrease. 

However, no association was observed between a higher PSA and an increased number of 

CTCs pre- or post-RT. Interestingly, patients who failed RT trended toward an 

increased/unchanged number of CTCs following RT versus a decreased number in 

patients with RT response. Our results demonstrate that CTCs can be detected in early-

stage PCa, and suggest the possibility that post-treatment reduction in CTC levels may be 

indicative of RT response . Future studies are aimed at evaluating CTCs in a larger cohort 

of patients to validate our preliminary findings and further investigate the prognostic 

value of CTCs in this patient population. 
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2.1  Introduction 
Prostate cancer (PCa) is the second most commonly diagnosed cancer and the 

third leading cause of cancer-related death in men in Canada1. Upon diagnosis, one 

common treatment option for men under the age of 70 with early-stage, localized disease 

is surgical removal of the prostate via radical prostatectomy (RP)2. Following this 

surgical intervention, prostate-specific antigen (PSA) testing is utilized to monitor 

patients for signs of recurrence. Up to 30% of these early-stage patients will have a rise in 

PSA within 10 years of surgery and require treatment for residual disease3,4. Based on 

patient factors and tumor characteristics such as Gleason score, PSA doubling time 

(PSADT), and time to biochemical recurrence following RP, patients are recommended 

for surveillance, potentially curative radiation therapy (RT), or palliative hormonal 

therapy5. Patients who experience a PSA recurrence following RP present a unique 

problem to physicians, as current imaging technologies are unable to determine precisely 

where recurrent PCa is located. If the recurrent disease is localized to the prostate bed, 

salvage RT could potentially cure these patients. However, if the disease has spread 

beyond the prostate bed and become systemic, local prostate bed radiation may not be 

sufficient and systemic therapy, such as hormonal treatment may be warranted5. 

Therefore the ability to discriminate between these 2 patient cohorts is essential in order 

to aid physicians in the effective treatment of patients who will benefit from RT, and 

avoid unnecessary RT-associated morbidities in those patients for which treatment would 

likely not provide benefit6.   

Systemic metastatic disease has been shown to correlate with the presence of 

circulating tumor cells (CTCs) in the blood7. In metastatic PCa, de Bono et al. (2008) 
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have shown that the presence of five or more CTCs in 7.5mL of blood correlates with a 

significantly lower rate of overall survival, compared to those individuals who have less 

than five CTCs in the same blood volume8. Several methods have been utilized to detect 

CTCs, including polymerase chain reaction (PCR)-based assays, density-gradient 

centrifugation, flow cytometry (FCM), and microchip techniques9. All of these 

techniques have unique advantages and disadvantages, however one commonality they 

all share is a lack of standardization; a necessity for use in the clinical setting. The 

development of the the CellSearch® system (CSS; Janssen Diagnostics, Raritan, NJ) 

provides a standardized method for the sensitive detection and quantification of these rare 

CTCs in human blood using fluorescence microscopy and immunology based 

techniques8,10,11. 

The CSS has been approved by the U.S. Food and Drug Administration (FDA) 

and Health Canada for diagnostic and/or prognostic use in metastatic breast, prostate, and 

colorectal cancer. However, the role of CTCs and the use of the CSS in non-metastatic 

PCa remains unclear. A study by Tombal et al. (2003) using a reverse transcription-

polymerase chain reaction (RT-PCR) approach suggests that the presence of CTCs in the 

blood of patients following RP is an indication of micrometastatic disease and may 

predict a less favourable response to salvage RT12. We hypothesize the use of the 

clinically approved, standardized CSS to detect CTCs within the blood may act as a 

clinically meaningful endpoint and be helpful for assisting with clinical decision-making 

in this patient population. In the current pilot study, we utilized the CSS to determine if 

CTCs are detectable in PCa patients with rising PSA levels post-prostatectomy, who have 

consented to salvage RT.  
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2.2  Materials and methods 

2.2.1 Patient and control population 

Studies were carried out under protocol # 15569E approved by the University 

of Western Ontario’s Health Sciences Research Ethics Board (Appendix 1). Twenty-six 

PCa patients with a rising PSA following RP who consented to salvage RT were enrolled 

in this study following informed consent. To be included in this study, patients were 

required to have a PSA value > 0.1 ng/mL and a minimum of three PSA values taken one 

month apart, in order to calculate doubling time. Pre-RT bone scan and CT scan were 

performed at the treating physicians’ discretion. Blood was drawn before radiation and 

baseline PSA and CTC levels were determined using standard clinical immunoassay for 

PSA and the CSS for CTC analysis as described below. Baseline characteristics of each 

patient were noted, including pre-radiation PSA, Gleason score, pathologic T (pT) stage, 

presence of extracapsular extension (ECE), presence of seminal vesicle invasion (SVI), 

margin status, lymph node status, months free from relapse, and PSADT. All patients 

were treated with radiation to the prostate bed as per Radiation Therapy Oncology Group 

(RTOG) guidelines with 6600 cGy in 33 fractions using a 5 field intensity modulated 

radiation therapy (IMRT) technique. Three months following the completion of RT, a 

second set of blood samples were drawn and follow-up PSA and CTC levels were 

determined.  

Blood from 7 healthy individuals was also collected following informed 

consent and analyzed for CTCs as a negative control. In addition, blood from 4 

biochemically controlled patients with undetectable PSA for a minimum of 3 years was 

collected following informed consent and assessed for PSA and CTC levels. This cohort 
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consisted of two post-RP patients and two post-salvage RT patients. Blood was collected 

at enrolment and at a 3 month follow-up visit for PSA and CTC analysis.   

2.2.2 PSA determination 

Blood samples were collected into a 6mL red topped Vacutainer® venous blood 

collection tube and analyzed for total PSA concentration by the London Health Sciences 

Centre Endocrinology Laboratory on the AutoDelfia using a time resolved 

fluorimmunoassay from Perkin Elmer. 

2.2.3 Circulating tumor cell enumeration 

Blood samples were collected into CellSave Preservative tubes (Janssen 

Diagnostics) and CTCs were enumerated using the CSS as per the manufacturer’s 

directions within 96 hours of sample collection13. The CSS consists of two components, 

(1) the CellTracks™ AutoPrep system, which automates the blood sample preparation, 

and (2) the CellTracks™ Analyzer II, which scans the prepared samples. The AutoPrep 

system uses an antibody mediated, ferrofluid-based magnetic separation technique and 

differential staining with fluorescent particles to distinguish CTCs from contaminating 

leukocytes in blood samples  (Figure 2.1). Initially, an EpCAM (epithelial cell adhesion 

molecule) selection is performed using anti-EpCAM antibodies conjugated to iron 

nanoparticles incubated in a magnet. The only EpCAM+ cells in the blood should be the 

tumor cells. The remainder of the fluid is then aspirated from the sample, selected tumor 

cells are resuspended, and differential staining antibodies are added to the samples. 

Samples are then incubated in a magnetic cartridge called a MagNest™ and scanned 

using the CellTracks™ Analyzer II. Samples are scanned using three different filters, 

each with the exposure time optimized to the appropriate fluorescent particle. CTCs are  
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Figure 2.1. Schematic overview of the step-by-step processing of CTC blood 

samples using the CellSearch® system (Source: Immunicon [adapted]). Following 

sample collection into a CellSave tube, 7.5ml of blood is mixed with dilution buffer and 

centrifuged (800g x 10 min) to collect blood and tumour cells. The centrifuged sample is 

then loaded onto the CellSearch® AutoPrep, the plasma is aspirated, and anti-EpCAM 

ferrofluid is added. Following a magnetic incubation, unlabelled cells are aspirated and the 

remaining sample is permeabilized and incubated with the appropriate staining reagents 

(CK/CD45/DAPI). The completed sample is then transferred to a MagNest® and 

incubated for a minimum of 20 min (up to 24 hours). The MagNest device is then loaded 

onto the CellSearch Analyzer for sample scanning and subsequent qualitative examination 

by a trained operator (bottom panel).
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identified as events bound by anti-EpCAM and stained with anti-pan-cytokeratin (CK)-

phycoerythrin (PE) (CK 8, 18 and 19 are characteristic of epithelial cells), and the DNA 

stain 4’, 6-diamidino-2-phenylindole (DAPI). Leukocytes are identified as events bound 

by anti-CD45-allophycocyanin (APC) and DAPI. After the scan is complete, a gallery of 

computer-defined, potential tumor cells is presented. These galleries were reviewed by 3 

independent and blinded observers, and CTCs were confirmed via qualitative analysis 

based on the differential staining criteria discussed above. If any discrepancies in the 

number of selected events were noted between observers, these events were discussed 

until a consensus was reached. 

2.2.4 Statistical analysis 

Mean and standard deviations were calculated for the following variables: age, 

PSA, PSADT and Gleason score.  The mean and standard deviations were compared with 

CTC count (0 vs >0 and <2 vs ≥2) using the Independent-Samples t-test procedure. 

Fisher’s Exact test was used to compare CTC count (0 vs >0 and <2 vs ≥2) with pT stage, 

presence of ECE, SVI and margin status. In addition, the Pearson Correlation Coefficient 

and the Spearman Correlation Coefficient were used to look for associations between 

age, PSADT, Gleason score, change in PSA (pre-RT vs post-RT) and change in CTC 

number (pre-RT vs post-RT). CTC cut-off values were chosen based on results 

suggesting that CTC levels in early-stage PCa patients appear to be lower than those 

observed in metastatic populations14. 
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2.3  Results 
Blood samples from 7 healthy control donors and 4 biochemically controlled 

patients were processed for CTCs using the CSS. These biochemically controlled patients 

all underwent a RP, 2 received RT a minimum of 3 years prior to study entry, and all had 

undetectable PSA values for at least 3 years. Characteristics of these patients are 

summarized in Table 2.1. All biochemically controlled patients had pT2 disease and the 

two patients who received RT had positive margins.  Blood sample analysis showed that 

CTCs were not present in the circulation of healthy control donors. However, 

interestingly, CTCs were detected in PCa patients with undetectable PSA, and CTC 

levels appeared to fluctuate over time (Figure 2.2A).  

Twenty-six PCa patients were enrolled in this pilot study with characteristics as 

shown in Table 2.2. Sample analysis showed that CTCs could be detected in 73% of 

patients in this population pre-RT (Figure 2.2B). pT stage, Gleason grade, ECE, SVI, 

margin status, and PSADT did not appear to be statistically different between pre-RT 

patients with negative (0 CTC) versus positive (≥1 CTC) CTC status (Table 2.3; p values 

= 0.56, 0.51, 0.67, 0.63, 0.41, and 0.79 respectively).   

Following RT there appeared to be a trend toward decreased CTCs, although 

the difference from baseline was not statistically significant (Figure 2.2B). As seen with 

pre-RT characteristics, pT stage, Gleason grade, ECE, SVI, margin status, and PSADT 

were not statistically different between patients with negative versus positive CTC status 

post-RT (Table 2.4; p values = 0.15, 1.0, 1.0, 0.08, 0.71, and 0.78 respectively). 

 Patients were subsequently divided into two groups, those who demonstrated 

biochemical response to therapy (i.e. a decreasing or unchanged PSA value post-RT) and  
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Table 2.1. Biochemically controlled population characteristics. 

N (%)
pT Stage:

T2
T3a
T3b

   4 (100)
0 (0)
0 (0)    

Gleason Score:
6 (3+3)
7 (3+4)
7 (4+3)
8 (4+4)
8 (5+3)
9 (4+5)

2 (50)
1 (25)
0 (0)
0 (0)
1 (25)
0 (0)

Extracapsular Extension:
Negative
Positive

   4 (100)
0 (0)

Seminal Vesicle Invasion:
Negative
Positive

   4 (100)
0 (0)

Margins:
Negative (RP only)
Positive (RP and RT)

2 (50)
2 (50)

PSA Doubling Time1:
≤ 10 Months
> 10 Months

0 (0)
    1 (100)

CTC Detection Rate:
Day 0
Day 90

    4 (100)
    4 (100)

1: Only one patient's PSADT was measured as the rest of the patients were either in the  

    adjuvant setting or did not receive RT. 
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Figure 2.2. CTC distribution in control donors and patient blood samples. (A)

CTC distribution of healthy donors at day 0 (n=7) and biochemically controlled 

donors (n=4), at day 0 and 90. (B) CTC distribution of patients pre- and post-RT. 

Circles and horizontal lines represent individual donors and medians respectively.  
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Table 2.2. Study population characteristics. 

N (%)
pT Stage:

T2
T3a
T3b

11 (42)
8 (31)
7 (27)    

Gleason Score1:
6 (3+3)
7 (3+4)
7 (4+3)
8 (4+4)
8 (5+3)
9 (4+5)

4 (16)
10 (40)

8 (32)
1 (4)
1 (4)
1 (4)

Extracapsular Extension:
Negative
Positive

14 (54)
12 (46)

Seminal Vesicle Invasion:
Negative
Positive

20 (77)
6 (23)

Margins:
Negative
Positive

14 (54)
12 (46)

PSA Doubling Time:
≤ 10 Months
> 10 Months

13 (50)
13 (50)

CTC Detection Rate:
Pre-RT2

Post-RT3
19 (73)
14 (54)

1: One patient had a Gleason score of 7 with unknown primary and secondary scores and  

    therefore was not included in Gleason score percentage calculation. 

2 :Due to poor blood draw 1 patient had 6.7 mL of blood for CTC  

analysis. 

3: Due to poor blood draw 2 patients had 4.6 mL or 7.1 mL of  

blood for CTC analysis. 
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Table 2.3. Patient characteristics pre-radiation therapy. 

Pre-RT CTC Status

Negative
(0 CTC)
N (%)

Positive
(≥1 CTC)

N (%)
p value

pT Stage:
T2
T3a
T3b

2 (29)
2 (29)
3 (43)    

9 (47)
6 (32)
4 (21)    

0.56

Gleason Score1:
6 (3+3)
7 (3+4)
7 (4+3)
8 (4+4)
8 (5+3)
9 (4+5)

0 (0)
3 (43)
3 (43)
1 (14)
0 (0)
0 (0)

4 (22)
7 (39)
5 (28)
0 (0)
1 (6)
1 (6)

0.512

Extracapsular Extension:
Negative
Positive

4 (57)
3 (43)

10 (53)
9 (47)

0.67

Seminal Vesicle Invasion:
Negative
Positive

5 (71)
2 (29)

15 (79)
4 (21)

0.63

Margins:
Negative (RP only)
Positive (RP and RT)

2 (29)
5 (71)

12 (63)
7 (37)

0.41

PSA Doubling Time:
≤ 10 Months
> 10 Months

5 (71)
2 (29)

8 (42)
11 (58)

0.79

Statistical analysis were performed using a t test (Gleason score and PSADT) or Fisher's 

exact test (pT stage, ECE, SVI, Margins, CTC detection rate). 

1: One patient (positive for CTCs pre-RT) had a Gleason score of 7 with unknown 

primary and secondary scores and therefore was not included in Gleason score 

percentage calculation. 

2 :Analyzed as continuous variable. 
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Table 2.4. Patient characteristics post-radiation therapy. 

Post-RT CTC Status

Negative
(0 CTC)
N (%)

Positive
(≥1 CTC)

N (%)
p value

pT Stage:
T2
T3a
T3b

6 (59)
5 (42)
1 (8)    

5 (36)
3 (21)
6 (43)    

0.15

Gleason Score1:
6 (3+3)
7 (3+4)
7 (4+3)
8 (4+4)
8 (5+3)
9 (4+5)

2 (18)
4 (36)
4 (36)
0 (0)
0 (0)
1 (9)

2 (14)
6 (43)
4 (29)
1 (7)
1 (7)
0 (0)

1.02

Extracapsular Extension:
Negative
Positive

6 (50)
6 (50)

8 (57)
6 (43)

1.0

Seminal Vesicle Invasion:
Negative
Positive

11 (92)
1 (8)

9 (64)
5 (36)

0.08

Margins:
Negative
Positive

7 (58)
5 (42)

7 (50)
7 (50)

0.71

PSA Doubling Time:
≤ 10 Months
> 10 Months

5 (42)
7 (58)

8 (57)
6 (43)

0.78

Statistical analysis were performed using a t test (Gleason score and PSADT) or Fisher's 

exact test (pT stage, ECE, SVI, Margins, CTC detection rate). 

1: One patient (negative for CTCs post-RT) had a Gleason score of 7 with unknown 

primary and secondary scores and therefore was not included in Gleason score 

percentage calculation. 

2: Analyzed as continuous variable. 



 

71 

those who demonstrated biochemical failure (BCF) to therapy (i.e. an increasing PSA 

post-RT). Patients with biochemical response to therapy (n=21) were more likely to have 

a decrease in CTC number following RT versus patients with BCF (n=5) who were more 

likely to have an increase or no change in CTC number following RT (Figure 2.3), 

although the differences did not reach statistical significance. Interestingly, of the patients 

that demonstrated BCF following RT, 80% had a short PSADT (≤ 10 months) and/or 

negative surgical margins, both of which are well established risk factors for systemic 

failure and predict for failure post-RT. Furthermore, the pre-RT PSA did not appear to 

predict for failure as the mean PSA value (0.43 ng/mL) was similar to that of the patients 

who responded to radiation (0.53 ng/mL; Table 2.5)15. 

 

2.4  Discussion 
Current imaging technologies are unable to differentiate local from systemic 

failure following RP. Regardless, these patients often receive RT because we currently 

lack technology that can distinguish those who will benefit from this therapy versus those 

who will not. However, in up to 30% of these patients the cancer will have spread beyond 

the prostate bed and RT will not be beneficial. Therefore the ability to distinguish these 

patient groups before the initiation of RT is essential. In this pilot study we sought to 

investigate whether CTCs could be detected in this patient population prior to the 

initiation of RT using the CSS.  

Although this patient population had low pre-RT PSA values, we were 

successful in detecting CTCs in over 70% of patients sampled and in all of our control 

patients with undetectable PSA values. This indicated that the CSS is sensitive enough to  
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 Figure 2.3. Change in CTCs following radiation therapy in relation to treatment 

response. Comparison of the change in CTCs following RT in patients with 

biochemical response (decreasing or unchanged PSA following RT; n=21) and 

biochemical failure (a rising PSA following RT; n=5). 
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Table 2.5. Characteristics of patients with evidence of biochemical failure 

N (%)
pT Stage:

T2
T3a
T3b

2 (40)
2 (40)
1 (20)    

Gleason Score:
6 (3+3)
7 (3+4)
7 (4+3)
8 (4+4)
8 (5+3)
9 (4+5)

0 (0)
3 (60)
2 (40)
0 (0)
0 (0)
0 (0)

Extracapsular Extension:
Negative
Positive

3 (60)
2 (40)

Seminal Vesicle Invasion:
Negative
Positive

4 (80)
1 (20)

Margins:
Negative
Positive

4 (80)
1 (20)

PSA Doubling Time:
≤ 10 Months
> 10 Months

4 (80)
1 (20)

CTC Detection Rate:
Pre-RT
Post-RT

3 (60)
3 (60)
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detect very small numbers of CTCs, is more sensitive than PSA and could conceivably be 

used as a prognostic tool and/or a clinically meaningful surrogate endpoint in PCa 

patients with early recurrence or in patients with localized early disease. Tombal et al. 

(2003) were also able to detect CTCs in a similar patient cohort using an RT-PCR 

approach to analyze PSA mRNA as a marker of circulating prostate cells, although at a 

lower frequency (34%) than that observed in our study12. This suggests that detection of 

PSA mRNA may not be as sensitive and/or as accurate as detection with the CSS. 

Although the CSS is able to detect 1 CTC in 7.5mL of blood, the majority of patients on 

our study (73%) had 2 or less CTCs. Variability of CTC number between samples 

increases significantly as the number of CTCs approaches zero, therefore larger patient 

numbers or sample sizes may be required in order to properly enumerate CTCs in 

samples with low CTC yields16. The presence of CTCs in patients with no clinical or 

biochemical evidence of disease, as evidenced in our biochemically controlled patients, 

makes one wonder about the biology of these CTCs and their metastatic potential. It is 

also important to note that due to the epithelial-to-mesenchymal transition that often 

occurs in invasive carcinomas17, it is highly likely that due to a lack of EpCAM 

expression some tumor cells, potentially those with a more aggressive phenotype, will be 

missed during CTC analysis using the CSS. 

 We were also interested in investigating if any associations existed between 

CTC number and various patient and tumor factors. Unfortunately, we did not observe 

any significant associations with pre-RT PSA, pT stage, ECE, SVI, margin status, 

Gleason score or PSADT. However, Tombal et al. (2003) did observe a statistically 

significant difference in therapy response between patients with and without CTCs prior 
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to RT using RT-PCR12. This discrepancy could be explained by a number of factors in 

this study including sampling variability, low patient numbers, patient characteristics, and 

follow-up limited to one time point post-RT. These results however suggest the 

possibility that with larger patient numbers and continued follow-up, similarly significant 

results may be observed in our patient population.  

Stephenson et al. (2007) described stratification of patients according to PSA 

level at the time of salvage radiotherapy as well as Gleason score, margin status and 

PSADT and noted rates of successful salvage radiotherapy ranging from 20-60% 

depending on these factors15. Larger patient cohorts would allow evaluation of the 

incremental prognostic significance (if any) of CTCs above the clinical factors noted by 

Stephenson et al. We have undertaken a follow-up study (Chapter 3), which includes 

patients not only from the salvage setting but also from the adjuvant setting. From these 

patients we have collected serial PSA and CTC samples at baseline, and 6 months, 12 

months, 18 months, and 24 months following the completion of RT. CTC values were 

then correlated with response to RT, and overall survival. This study is aimed at 

increasing statistical power in order to detect associations between variables.  

 Primarily the CSS has been utilized for the detection and enumeration of 

CTCs8,10,11. However the system does allow for additional molecular characterization of 

CTCs based on molecular markers of interest to researchers and physicians, via 

differential staining. In prostate cancer, molecular markers such as PSA18, androgen 

receptor (AR)19, PTEN deletion20, and TMPRSS2:ERG21 gene fusion have been shown to 

be associated with poor prognosis and metastatic disease. Since CTC analysis represents 

the opportunity to do a “real time” biopsy using a minimally-invasive blood test, 
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examination of the molecular characteristics of these markers on prostate CTCs could 

therefore enable a better understanding of the mechanisms that allow these cells to escape 

into the circulation, extravasate into distant tissue and form clinically relevant secondary 

metastases. These studies may also help us determine whether the CTCs being detected in 

these assays are capable of metastasizing and thus allow for more individualized 

treatment.  

In summary, the novel results presented in this pilot study are the first to 

suggest the possibility that CTC enumeration using the CSS could be utilized in clinical-

decision-making to determine who should receive salvage RT and who would benefit 

more from palliative hormonal therapy. Validation studies examining the role of CTCs as 

an independent predictive biomarker among larger cohorts of men with BCF post RP are 

necessary and seem justified based on our preliminary results. 
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 Chapter 3 
The significance of circulating tumor cells in prostate 
cancer patients undergoing adjuvant or salvage 
radiation therapy 

 
A version of this chapter has been published: 
Lowes LE, Lock M, Rodrigues G, D'Souza D, Bauman G, Ahmad B, Venkatesan V, 
Allan AL, and Sexton T. In press, Prostate Cancer and Prostatic Diseases. 

 
 

 
Abstract 

Following radical prostatectomy, success of adjuvant and salvage radiation 

therapy (RT) is dependent on the absence of micrometastatic disease. However, reliable 

prognostic/predictive factors for determining this are lacking. Therefore, novel 

biomarkers are needed to assist with clinical decision-making in this setting. Enumeration 

of circulating tumor cells (CTCs) using the regulatory-approved CellSearch® System 

(CSS) is prognostic in metastatic prostate cancer (PCa). We hypothesize that CTCs may 

also be prognostic in the post-prostatectomy setting. Patient blood samples (n=55) were 

processed on the CSS to enumerate CTCs at 0, 6, 12, and 24 months after completion of 

RT. CTC values were correlated with predictive/prognostic factors and progression free 

survival. CTC status (presence/absence) correlated significantly with margin status, and 

trended toward significance with seminal vesicle invasion (SVI) and extracapsular 

extension (ECE). CTC positive status at any point appears to be indicative of 

disseminated disease, and in combination with other risk factors (margin+/SVI/ECE) 

predicts for time to biochemical failure (BCF). Assessment of CTCs during RT may be 

helpful in clinical decision-making to determine which patients may benefit from RT 

versus those who may benefit more from systemic treatments. 
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3.1  Introduction 
In the United States in 2014, it is estimated that there will be 233,000 new 

cases of prostate cancer (PCa) diagnosed and 29,480 deaths from this disease1. Upon 

diagnosis, one commonly recommended treatment option is surgical resection of the 

prostate via radical prostatectomy (RP)2. Following surgical intervention, patients are 

monitored using prostate-specific antigen (PSA) testing. However, within 10 years of RP, 

up to 30% of early-stage patients will experience a rise in PSA levels and require 

additional treatment for residual/recurrent disease3,4. Following relapse, evaluation of 

time to biochemical recurrence, PSA doubling time, and pathological features (Gleason 

score, margin status, seminal vesicle invasion [SVI], extracapsular extension [ECE]) can 

assess the risk of PCa-specific mortality. Patients will then be recommended for either 

surveillance, potentially curative radiation therapy (RT), or palliative hormonal therapy5. 

Although these parameters provide a measure of disease aggressiveness, neither they, nor 

available imaging technologies, can determine the precise location of recurrent PCa, 

thereby presenting a unique problem. If recurrent disease is localized to the prostate bed, 

RT could be curative. However, if the disease has become systemic, local radiation will 

be insufficient and systemic therapy may be necessary. Therefore, novel biomarkers that 

could discriminate patients with local recurrence versus those with systemic disease 

would be of clinical benefit.  

The presence of circulating tumor cells (CTCs) in the bloodstream of PCa 

patients has been correlated with metastatic disease6. Additionally, CTC detection in the 

metastatic setting is prognostic, correlating with significantly reduced progression free- 

and overall survival6. However, given that CTCs are rare and present in a high 
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background of contaminating blood cells, detection and enumeration of CTCs requires 

highly sensitive and clinically reproducible assays. Currently, the only CTC analysis 

platform cleared by the U.S. Food and Drug Administration (FDA) and Health Canada 

for prognostic use in metastatic breast, prostate and colorectal cancer is the CellSearch® 

system (CSS) by Janssen Diagnostics7,  thereby making it the current gold standard in 

CTC technology in the metastatic setting for these disease sites.  

Using this platform, the clinical value of CTCs in metastatic PCa has been 

extensively explored6,8,9. Studies demonstrate that patients with ≥5 CTCs/7.5mL of blood 

have significantly reduced progression free- and overall survival compared to patients 

with <5 CTCs6. In addition, changes in CTC number throughout therapy may be a 

surrogate endpoint for treatment efficacy in the metastatic setting8. However, the clinical 

value of CTCs in patients with localized PCa is less well described, with the majority of 

studies focusing on the utility of CTCs in determining biochemical failure (BCF) 

following RP. However few have explored the utility of CTCs in determining response to 

intervention to treat residual disease (i.e. RT)10–12.  

Based on these initial reports we hypothesized that the presence of CTCs in the 

blood of PCa patients undergoing adjuvant or salvage radiation may be an indicator of 

disseminated disease and may ultimately assist with clinical decision-making in this 

patient cohort. In this study, we specifically assessed whether the presence of CTCs 

either before or following completion of RT (measured at baseline and 6, 12, and 24 

months post-treatment) is indicative of treatment response. To our knowledge this is the 

most extensive report in the literature examining the value of CTCs in this uniquely 

challenging patient population, including serial CTC sampling following treatment 
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completion and the longest period of follow-up to date (up to 3 years in some patients). 

Additionally, we are the first to describe the utility of CTCs in adjuvant patients 

undergoing RT. 

 

3.2  Materials and methods 

3.2.1 Patient population 

All studies were carried out under protocol #16904E approved by Western 

University's Health Sciences Research Ethics Board (Appendix 2). All patients were 

enrolled following informed consent. Fifty-five PCa patients who had consented to 

adjuvant or salvage RT following RP were enrolled. Inclusion criteria for adjuvant 

patients included presence of any adverse pathological finding such as ECE, positive 

margins, and/or SVI without the presence of a detectable PSA (<0.1ng/mL). Patients who 

were enrolled with the intent of adjuvant radiation but who had detectable PSA levels 

pre-radiation were categorized as adjuvant/salvage and analyzed separately. Inclusion 

criteria for salvage patients included PSA value of >0.1 ng/mL13 and a minimum of three 

PSA values taken one month apart, in order to calculate doubling time. Pre-RT bone scan 

and CT scan were performed at the discretion of the physician. Blood was drawn before 

the initiation of RT to determine baseline PSA and CTC levels. Additional baseline 

characteristics were noted, including Gleason score, pathologic T (pT) stage, margin 

status, lymph node status, presence of ECE, presence of SVI, months free from relapse, 

mean PSA, and mean PSA doubling time (PSADT) where appropriate. All patients were 

treated with radiation to the prostate bed as per Radiation Therapy Oncology Group 

(RTOG) guidelines with 6600 cGy in 33 fractions using a 5 field intensity modulated 
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radiation therapy (IMRT) technique14. Following completion of RT, PSA levels were 

determined at 3, 6, 12, 18, 24, 30, and 36 months, while CTC levels were determined at 

6, 12, and 24 months post-RT.   

3.2.2 PSA determination and biochemical failure 

Blood samples for PSA determination were analyzed by the London Health 

Sciences Centre Endocrinology Laboratory on the AutoDelfia automatic immunoassay 

system (Perkin Elmer) using a time resolved fluoroimmunoassay. BCF following RT was 

defined as 3 consecutive rises in PSA during follow-up. 

3.2.3 Circulating tumor cell enumeration 

All blood samples for CTC analysis were drawn into CellSave tubes (Janssen) 

and analyzed within 96 hours15. CTCs were identified as being selected by anti-EpCAM 

(epithelial cell adhesion molecule), positive for cytokeratin (CK; 8/18/19) and the DNA 

stain 4’, 6-diamidino-2-phenylindole (DAPI), >4 µm diameter, and with an intact cell 

membrane. CTCs results were analyzed by 2 independent and blinded observers and 

enumerated using the criteria described above. A positive CTC result was defined was ≥1 

CTCs/7.5mL of blood. 

3.2.4 Statistical analysis 

Comparisons were made between patients with CTCs at baseline (CTCpos), 

versus those without CTCs (CTCneg). A two-tailed Fisher's exact test was used to analyze 

differences between CTCpos and CTCneg groups relative to Gleason score (>7), SVI, 

margin status, ECE, radiation type (salvage, adjuvant, or adjuvant/salvage), and BCF at 2 

years. Unpaired t-tests were used to assess age differences between CTCpos and CTCneg 

groups. Log-rank tests were utilized to examine time to BCF. 
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3.3  Results 
Fifty-five PCa patients from the adjuvant or salvage settings were enrolled in 

the study. Of these, 19 (34.5%) were classified as adjuvant, 33 (60%) as salvage, and 3 

(5.5%) as adjuvant/salvage. The clinicopathological risk factors (CRFs) of study patients 

are presented in Table 3.1. Mean pre-radiation PSA (and range) was observed to be 0.33 

(0.11-1.37) (salvage setting) and 0.42 (0.11-1.0) (adjuvant/salvage setting). Mean PSA 

doubling time (and range) was 16.4 (2-78) months (only measured in salvage patients). 

No correlation was observed between PSA levels and CTC status (presence/absence). 

To determine the relationship between CTCs at baseline and CRFs, patients 

were characterized as either CTCneg (0 CTCs; [n=46]) or CTCpos (≥1 CTCs; [n=9]) 

(Figure 3.1 and Table 3.2). No significant differences were observed for patients with a 

Gleason score of >7 and CTCneg (n=3) versus CTCpos (n=1) status at baseline (p>0.05). A 

statistically significant difference was observed in relation to margin status (p=0.032), 

with 63.0% of CTCneg patients presenting with positive margins (n=29) versus 22.2% of 

CTCpos patients (n=2).  

In addition to CTC status at baseline, analysis was also performed to determine 

the relationship between detectable CTCs at any time point and CRFs. Patients were 

characterized as either CTCneg (n=39) at all time points or CTCpos (n=16) at any time 

point, including at baseline (Figure 3.2 and Table 3.3). No significant differences were 

observed when considering ECE, SVI, or Gleason score of >7 and CTCneg (n=29, 4, and 

3, respectively) versus CTCpos (n=9, 4, and 1, respectively) status (p>0.05). However, a 

trend towards statistical significance was observed when considering margin status 

(p=0.083). For CTCneg patients, there was a trend toward the presence of positive 
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Table 3.1. Comparison of the clinicopathologic factors and CTC status of adjuvant, 

salvage, and adjuvant/salvage patient populations. 

Adjuvant
N (%)

Salvage
N (%)

Adjuvant
/Salvage

N (%)

Total
N (%)

Total 19 (34.5) 33 (60) 3 (5.5) 55 (100)

pT Stage:
T2
T3a
T3b

2 (11)
15 (79)
2 (11)

15 (45)
14 (42)
4 (12)

0 (0)
    3 (100)

0 (0)

17 (31)
32 (58)
6 (11)

Gleason Score:
6
7
8-10

1 (5)
17 (89)
1 (5)

6 (18)
25 (76)

2 (6)

0 (0)
2 (67)
1 (33)

7 (13)
44 (80)

4 (7)

ECEpos: 17 (89) 18 (55)     3 (100) 38 (69)

SVIpos: 2 (11) 5 (15) 1 (33) 8 (15)

Marginspos: 12 (63) 17 (52) 2 (67) 31 (56)

CTCpos (Baseline): 3 (16) 4 (12) 2 (67) 9 (16)

CTCpos (Anytime)1: 5 (26) 9 (27) 2 (67) 16 (29)

1: The number of CTCs detected in patients within each patient population are as follows, 

1 (n=4) and 3 (n=1) [adjuvant]; 1 (n=6), 2 (n=1), 4 (n=1), and 5 (n=1) [salvage, with 

one patients having CTCs at baseline (4 CTCs) and 12 months (1 CTC)]; 1 (n=1) and 2 

(n=1) [adjuvant/salvage]. 
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Figure 3.1. CTC status at baseline correlates with previously recognized patterns 

of disease recurrence of the clinicopathologic risk factors, extracapsular 

extension, seminal vesicle invasion, and margin status. (A) Percentage of patients 

with CTCs absent (CTCneg/-; n=34) versus CTCs present (CTCpos/+; n=4) at baseline 

that presented with extracapsular extension. (B) Percentage of patients with CTCneg

(n=29) versus CTCpos (n=2) at baseline that presented with positive margins. (C)

Percentage of patients with CTCneg (n=5) versus CTCpos (n=3) at baseline that 

presented with seminal vesicle invasion. (D) Percentage of patients with CTCneg (n=3) 

versus CTCpos (n=1) at baseline that presented with a Gleason score of greater than 7.

* = significantly different (p ≤ 0.05). 
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Table 3.2. Relationship of CTCs prior to radiation therapy with known clinicopathologic 

risk factors and biochemical failure. 

CTC Present

No
N = 46
N (%)

Yes
N = 9
N (%)

p value

Gleason score >7 3 (6.5) 1 (11.1) 0.522

Seminal Vesicle Invasion 5 (10.8) 3 (33.3) 0.113

Positive Margins 29 (63.0) 2 (22.2) 0.032

Extracapsular Extension 34 (73.9) 4 (44.4) 0.116

Biochemical Failure at 2 yrs 7 (15.6)1 3 (33.3) 0.343

Time to Biochemical Failure: 0.176

One year 13.3% 22.2%

Two years 15.6% 33.3%

Three years 22.2% 46.7%

1: n=45; 1 patient was lost to follow-up and BCF could not be assessed at 2 years. 
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margins, with 64.1% of CTCneg patients presenting with positive margins (n=25) versus 

37.5% of CTCpos patients (n=6), similar to that observed for CTC status at baseline. 

Ultimately, the usefulness of CTCs in this patient cohort depends on their 

ability to determine who will experience BCF and who will not. Therefore, patients were 

divided into those with CTCs absent (n=45) or present (n=9) at baseline and log rank 

analysis was utilized to assess differences time to BCF in these patient subgroups (Figure 

3.3A). Although there was a trend toward a decreased time to BCF in baseline CTCpos 

patients, this trend was not significant (p=0.166). Similar analysis was then performed on 

patients subdivided as CTCneg at all time points (n=38) versus those who were CTCpos at 

any time point (n=16). The results demonstrated a significantly decreased time to BCF in 

CTCpos patients (p=0.043; Figure 3.3B). No significant difference was observed in BCF 

at 2 years in patients with CTCneg versus CTCpos disease at baseline (Table 3.2). 

However, a significant difference was observed in BCF at 2 years when considering 

patients with CTCneg versus CTCpos disease at any time point (p=0.049; Table 3.3). No 

significant difference was observed in BCF at 2 years or time to BCF between adjuvant 

and salvage patient groups (Table 3.4). 

 Although CTCs alone at baseline were not an independent predictor of time to 

BCF, we investigated if combination with one or more of the known CRFs would  

enhance this ability. This approach demonstrated that patients with the presence of ECE 

(Figure 3.4A) or SVI (Figure 3.4C) in combination with a CTCpos status at baseline had a 

decreased time to BCF (p=0.027 and p=0.043, respectively) versus those with the 

presence of ECE or SVI alone. However, a significant difference was not observed when 

comparing patients with the presence of positive margins and a CTCpos status versus  
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Figure 3.2. CTC status at any time point correlates with previously recognized 

patterns of disease recurrence of the clinicopathologic risk factor, margin status.

(A) Percentage of patients with CTCs absent (CTCneg/- ; n=29) at all time points versus 

CTCs present (CTCpos/+; n=9) at any time point that presented with extracapsular 

extension. (B) Percentage of patients with CTCneg (n=25) at all time points versus 

CTCpos (n=6) at any time point that presented with positive margins. (C) Percentage of 

patients with CTCneg (n=4) at all time points versus CTCpos (n=4) at any time point that 

presented with seminal vesicle invasion. (D) Percentage of patients with CTCneg (n=3) 

at all time points versus CTCpos (n=1) at any time point that presented with a Gleason 

score of greater than 7. 



90 

Table 3.3. Relationship of CTCs at any time point with known clinicopathologic risk 

factors and biochemical failure. 

CTC Present

No
N = 39
N (%)

Yes
N = 16
N (%)

p value

Gleason score >7 3 (7.7) 1 (6.3) 1.000

Seminal Vesicle Invasion 4 (10.3) 4 (25.0) 0.212

Positive Margins 25 (64.1) 6 (37.5) 0.083

Extracapsular Extension 29 (74.3) 9 (56.3) 0.213

Biochemical Failure at 2 yrs 4 (10.5)1 6 (37.5) 0.049

Time to Biochemical Failure: 0.043

One year 7.9% 31.3%

Two years 10.5% 37.5%

Three years 18.4% 43.8%

1: n=38; 1 patient was lost to follow-up and BCF could not be assessed at 2 years. 
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Figure 3.3. CTCpos status at baseline and at any time point correlates with a 

decrease in time to biochemical failure following adjuvant or salvage 

radiotherapy. (A) Percentage of patients with CTCs absent (CTCneg/- ; n=45) versus 

CTCs present (CTCpos/+; n=9) at baseline that are biochemical failure free over a 36 

month period. (B) Percentage of patients with CTCneg (n=38) at all time points versus 

CTCpos (n=16) at any time point that are biochemical failure free over a 36 month 

period. 
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Table 3.4. Observed differences in biochemical failure at 2 years and time to biochemical 

failure in adjuvant versus salvage patient populations. 

Disease Setting

Adjuvant
N = 19
N (%)

Salvage
N = 32
N (%)

p value

Biochemical Failure at 2 yrs 1 (5.3) 7 (21.9) 0.230

Time to Biochemical Failure: 0.213

One year 5.3% 18.8%

Two years 5.3% 21.9%

Three years 21.1% 25.0%
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those with the presence of positive margins alone (p=0.250; Figure 3.4B). Since the 

presence of negative margins in this patient population suggests that patient’s disease 

may no longer be confined to the prostate bed, time to BCF analysis was performed to 

determine if a relationship existed between CTC status at baseline and negative margins. 

Based on this analysis no significant difference was observed between patients with 

CTCneg marginneg disease and those with CTCpos marginneg disease (data not shown). 

Similar analysis was then performed on the ability CTC status at any time point 

in combination with one or more of the known CRFs to determine time to BCF. Patients 

that presented with of one or more CRFs were subdivided into those who were either 

CTCpos versus CTCneg at any time point. This further demonstrated the relationship 

between the ability of CTCs to determine time to BCF in patients in combination with the 

presence of ECE (p=0.025; Figure 3.5A), although the same was not observed in 

combination with the presence of SVI (p=0.128; Figure 3.4C). However, a significant 

relationship was observed when comparing patients with the presence of positive margins 

and CTCpos status at any timepoint versus those with the presence of positive margins 

alone (p=0.001; Figure 3.5B). Additionally, a very strong relationship was observed with 

the combination of presence of positive margins and ECE and CTCpos status at any time  

point versus those with the presence of positive margins and ECE alone (p<0.0001; 

Figure 3.5D). 

 

3.4  Discussion 
Current imaging technologies cannot differentiate local from systemic failure 

following RP. Regardless, RT is a common treatment option, as biomarkers that can  
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Figure 3.4. Combination of CTC status at baseline and known clinicopathologic 

risk factors, extracapsular extension or seminal vesicle invasion, can predict for 

time to biochemical failure following adjuvant or salvage radiotherapy. (A)

Percentage of patients that are biochemical failure free over a 36 month period that 

presented with extracapsular extension (ECE), but without CTCs (CTCneg/-; n=34) 

versus patients with ECE, but with CTCs (CTCpos/+; n=4) at baseline (p=0.027). (B)

Percentage of patients that are biochemical failure free over a 36 month period that 

presented with positive margins (margins), but CTCneg (n=29) versus patients with 

positive margins, but CTCpos (n=2) at baseline (p>0.05). (C) Percentage of patients 

that are biochemical failure free over a 36 month period that presented with seminal 

vesicle invasion (SVI), but CTCneg (n=5) versus patients with SVI, but CTCpos (n=3) at 

baseline (p=0.043). 
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 Figure 3.5. Combination of CTC status at any time point and known 

clinicopathologic risk factors, extracapsular extension and/or margin status, can 

predict for time to biochemical failure following adjuvant or salvage 

radiotherapy. (A) Percentage of patients that are biochemical failure free over a 36 

month period that presented with extracapsular extension (ECE), but without CTCs 

(CTCneg/-; n=29) at all time points versus patients with ECE, but with CTCs (CTCpos/+;

n=9) at any time point (p=0.025). (B) Percentage of patients that are biochemical 

failure free over a 36 month period that presented with positive margins (margins), but 

CTCneg (n=25) at all time points versus patients with positive margins, but CTCpos 

(n=6) at any time point (p=0.001). (C) Percentage of patients that are biochemical 

failure free over a 36 month period that presented with seminal vesicle invasion (SVI), 

but CTCneg (n=4) at all time points versus patients with SVI, but CTCpos (n=4) at any 

time point (p=0.128). (D) The percentage of patients that are biochemical failure free 

over a 36 month period that presented with positive margins and ECE, but CTCneg 

(n=15) at all time points versus patients with positive margins and ECE, but CTCpos 

(n=2) at any time point (p<0.0001). 
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distinguish those who will benefit from RT versus those who will not are unavailable. 

Unfortunately, for patients whose cancer has become systemic, RT will not provide 

benefit, resulting in up to 30% of patients experiencing disease recurrence. Therefore, 

novel biomarkers that could distinguish these patient groups before initiation of RT are 

essential. To the best of our knowledge, only two published studies have explored CTCs 

in this patient population. The first was performed in a small number of patients (n=15) 

using a non-standardized reverse-transcription polymerase chain reaction (RT-PCR) 

approach examining the detection of PSA mRNA in the blood12. This study suggested 

that the presence of PSA mRNA following RP was indicative of micrometastatic disease 

and may predict poor response to salvage RT. The second study, published by our group, 

was the first to explore the detection and enumeration of CTCs using the U.S. FDA and 

Health Canada-cleared CSS15. This study demonstrated that CTCs were detectable in 

salvage patients (n=26) using the CSS, and that, similar to metastatic disease, changes in 

CTC number following RT may be indicative of treatment response. In the current study 

we sought to determine if detection of CTCs before initiation of RT could be utilized as a 

surrogate biomarker for disseminated disease and therefore an indicator of treatment 

failure in this patient cohort.    

Despite having only a small number of CTCpos patients prior to RT, strong 

correlations were observed with regards to CTC status at baseline and known CRFs. 

Interestingly, CTCneg disease was most highly correlated with CRFs associated with local 

recurrence, including ECE and positive margins16. However, when considering SVI, a 

CRF associated with systemic relapse16, a correlation with CTCpos disease was observed. 

These correlations, although in opposite directions, are consistent with the clinical 
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observations of local versus systemic relapse associated with these CRFs. Based on the 

propensity for local relapse in ECE+ and margin+ patients, we would anticipate that these 

patients would exhibit a tendency toward non-disseminated and therefore CTCneg disease 

versus SVI+ patients, known to have a propensity for systemic relapse, whom we would 

anticipate would exhibit a tendency toward disseminated and therefore CTCpos disease. 

Therefore, CTC status appears to be in agreement with existing CRFs, suggesting that 

CTCs may relate to disease localization in these patients.  

Although these associations suggest a relationship between CTCs and disease 

spread, the value of CTCs in this patient cohort will depend on their ability to predict RT 

success. Upon examination of BCF at 2 years and time to BCF, we noted a strong trend 

toward reduced time to BCF in CTCpos versus CTCneg patients at baseline. However, this 

trend was statistical significant when considering patients with CTCs at any time point 

for both measures (BCF at 2 years and time to BCF) . These promising results suggest 

that the detection of CTCs at any time may be a surrogate biomarker of metastatic 

disease, and support a recommendation for early initiation of systemic treatment in this 

patient cohort.  

However, this study also aimed to determine if CTCs could predict the 

outcome of RT before treatment initiation, thereby reducing radiation-induced morbidity 

in patients for which benefit would not be achieved. Therefore CTC status at baseline 

was examined in combination with known CRFs to determine if this approach could 

improve our ability to discriminate these patient subsets. We have demonstrated that the 

presence of ECE or SVI in association with CTCpos status at baseline is predictive of 

poorer response to RT. However, as this study was not powered appropriately to 
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determine definitive associations between combinations of CRFs and CTCs, not all 

significant associations observed at baseline were significant when considering CTC 

status at any time point and vice versa. Additionally, not all CRF combinations, 

especially multiple CRFs (e.g., ECE + SVI + CTC), could be effectively examined. 

However, the results presented here, specifically with regards to ECE and CTC status, 

demonstrate consistently poorer outcomes following RT, further strengthening the 

existence of a relationship between the presence of CTCs and disease spread. This 

suggests that the addition of CTCs to a patient’s clinicopathologic "risk profile" (ECE, 

SVI, and margin status) may further enhance our ability to discriminate patients with 

localized versus systemic recurrence. Further studies that could elucidate such risk 

profiles are justified.   

The sample size for this study was chosen based on our pilot studies, which 

demonstrated that over 70% of salvage patients presented with CTCs at baseline using 

the CSS15. Unfortunately, in the current study only 16% of salvage patients and 12% of 

adjuvant patients presented with CTCs. Interestingly, for patients in the adjuvant/salvage 

group, 67% had detectable CTCs at baseline and all demonstrated treatment failure 

within 18 months, suggesting that CTCs may be more readily detectable and particularly 

valuable in these rapidly progressing patients. However, these results would require 

confirmation in a larger follow-up study. In agreement with our pilot analysis15, the 

majority of patients with detectable CTCs at baseline presented with <2 CTCs (67%), and 

no patient had >5 CTCs at any point. Although the CSS can detect as few as 1 

CTC/7.5mL of blood, variability increases significantly as the number of CTCs 

approaches 0, and with such low rates of detection the potential for false 
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negative/positive results cannot be discounted as a confounding factor of this study. 

Therefore proper enumeration of CTCs in these patients may be difficult and likely 

contributed to the high number of CTCneg patients at baseline that failed RT (66%). The 

low number of CTCs observed throughout the course of this study presents a statistical 

challenge that can be overcome by either increasing sample size, increasing CTC capture 

by collecting additional blood for analysis (>7.5mL), or utilizing new emerging CTC 

technologies with increased sensitivity17. In doing so analysis of changes in CTC number 

at baseline compared to a subsequent post-treatment time points may be possible. This 

measure may also be valuable in determining the origin of disseminating disease (i.e., 

CTCs). For example, if CTCs number decrease following RT this may indicate that the 

residual disease was localized to the prostate bed and effectively treated using RT. 

However, should CTC numbers remain unchanged or increase following RT this may be 

an indicator of metastatic disease.  

In summary, the results presented here are the first to demonstrate that CTC 

enumeration using the clinical gold standard CTC analysis CSS platform may be valuable 

in clinical decision-making to determine which patients should receive RT versus those 

who would benefit more from systemic therapy. Validation studies using larger patient 

cohorts to examine the clinicopathologic "risk profiles" outlined in this manuscript are 

necessary and justified based on these novel results. 
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Abstract 
The majority of cancer-related deaths result from metastasis, which has been 

associated with the presence of circulating tumor cells (CTCs). It has been shown that 

CTC cut-off values exist that predict for poorer overall survival in metastatic breast (≥5), 

prostate (≥5), and colorectal (≥3) cancer based on assessment of 7.5mL of blood. 

Development of the CellSearch® system (CSS; Janssen Diagnostics) has allowed for 

sensitive enumeration of CTCs. In the current study, protocols were developed and 

optimized for use with the CSS to characterize CTCs with respect to user-defined protein 

markers of interest in human blood samples, including the cancer stem cell (CSC) marker 

CD44 and the apoptosis marker M-30. Flow cytometry (FCM) experiments were initially 

carried out to assess expression of CD44 and M-30 on MDA-MB-468 human tumor cells. 

Human blood samples were then spiked with MDA-MB-468 cells and processed with the 

appropriate antibody (CD44/M-30) on the CSS. Detailed optimization of CD44 was 

carried out on the CSS using various antibody concentrations, exposure times, and cell 

lines with varying CD44 expression. Troubleshooting experiments were undertaken to 

explain observed discrepancies between FCM and the CSS results for the M-30 marker. 

After extensive optimization, the best CD44/M-30 concentrations and exposure times 

were determined to be 1.5/3.5 μg/mL and 0.2/0.8 s, respectively. The percentage of 

CD44+ tumor cells was 99.5 ± 0.39% by FCM and 98.8 ± 0.51% by the CSS. The 

percentage of M-30+ tumor cells following paclitaxel treatment was 17.6 ± 1.18% by 

FCM and 10.9 ± 2.41% by the CSS. Proper optimization of the CD44 marker was 

achieved; however, M-30 does not appear to be a suitable marker for use in this platform. 

Taken together, the current study provides a detailed description of the process of user-

defined protein marker development and optimization using the CSS, and will be an 

important resource for the future development of protein marker assays by users of this 

platform.  
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4.1  Introduction 
It has been estimated that 1,658,370 new cases of cancer will be diagnosed in 

the United States and  589,430 individuals will die from this disease in 20151. The 

majority of these deaths are as a result of the development of metastases2. These deaths 

are due mainly to the ineffectiveness of current therapies in treating metastatic disease 

and a general lack of understanding of the metastatic cascade. Metastatic disease has been 

correlated with the presence of circulating tumor cells (CTCs) in the blood3. Detection of 

very small numbers of these rare cells has been shown to be predictive of overall survival 

in metastatic breast4, prostate5, and colorectal6 cancer, where patients with ≥5 (breast and 

prostate) or ≥3 (colorectal) CTCs in 7.5mL of blood have a poorer prognosis then those 

with fewer or no detectable CTCs.  

Several methods have been utilized to enrich and detect CTCs, including 

density-gradient centrifugation7,8, immunomagnetic selection9,10, polymerase chain 

reaction (PCR)-based assays11,12, and flow cytometry (FCM)13,14 techniques. All of these 

approaches have unique advantages and disadvantages; however, one commonality they 

all share is a lack of standardization; a necessity for use in the clinical setting. The 

development of the U.S. Food and Drug Administration (FDA) and Health Canada 

cleared CellSearch® system (CSS) by Janssen Diagnostics provides a standardized 

method for the sensitive detection and quantification of these rare CTCs in human blood 

using fluorescence microscopy and immunology based techniques4–6. This system is 

currently considered the gold standard in CTC enumeration and is the only CTC platform 

approved for in vitro diagnostic (IVD) use in the clinic at the present time. The CSS 

consists of two components, (1) the CellTracks™ AutoPrep system, which automates the 
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blood sample preparation, and (2) the CellTracks™ Analyzer II, which scans the 

prepared samples (described in Chapter 2 and Figure 2.1). The CellTracks™ Analyzer 

II® utilizes a 10X objective lens to scan samples using different filters, each with the 

exposure time optimized to the appropriate fluorescent particle. The CSS has been 

primarily utilized for the detection and enumeration of these rare cells. However, this 

platform does allow for single-cell characterization of CTCs for user-defined markers of 

interest, using an additional fluorescein isothiocyanate (FITC) fluorescence channel not 

required for CTC identification and enumeration15. However, the detailed process for 

user-defined protein marker assay development and optimization using this platform is 

not well-defined.  

Tumor profiling of metastatic lesions is not routine practice in the clinic. In 

fact, this profiling is often impractical or even impossible depending on the location and 

size of the metastatic tumors. Therefore CTCs could act as a real-time, minimally 

invasive liquid biopsy, and the characterization of these rare cells could inform clinical 

decision-making. For example, human epidermal growth factor receptor 2 (HER2) is 

over-expressed in a subset of breast cancer patients, and has been exploited as a marker 

for targeted therapy using the HER2 receptor interfering monoclonal-antibody 

Herceptin®16. However, this therapy has only been shown to be effective in patients 

whose primary tumor expresses sufficient levels of HER2. Fehm et al., demonstrated that 

approximately one third of breast cancer patients with metastases whose primary tumors 

were HER2- had HER2+ CTCs17,18. Whether or not these patients with HER2+ CTCs 

would benefit from treatment with Herceptin® still requires investigation; however, CTCs 

hold great promise for improving personalized cancer treatment. 
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Two general categories of protein markers are available for exploration on 

CTCs; markers that reflect tumor biology (tumor phenotyping) and may act as target 

molecules for therapy, and those that reflect cellular response to therapy. Currently, 

Janssen Diagnostics has developed and optimized three tumor phenotyping reagents for 

assessing well characterized therapeutic targets, and these are commercially available for 

research use only (RUO) applications on the CSS. Using these reagents, CTCs can be 

analyzed for expression of either HER2/neu, epidermal growth factor receptor (EGFR), 

or insulin-like growth factor 1 receptor (IGF-1R). The development and optimization of 

CSS assays for other user-defined markers of interest on tumor cells could identify new 

targets for novel therapies and enable a better understanding of the mechanisms that 

allow these cells to escape into the circulation, extravasate into distant tissue and form 

clinically relevant macrometastases.  

The aim of this study was therefore to develop and optimize protocols for 

characterization of CTCs on the CCS for two proteins of interest, CD44 and M-30. CD44 

has been associated with metastasis and has shown to be expressed by “cancer stem cells” 

(CSCs), a subpopulation of tumor cells that are believed to be the cells responsible for 

tumor initiation and metastasis19. The ability to characterize and track CD44+ cells would 

therefore be an important tool for understanding the metastatic cascade. The M-30 

CytoDeath antibody recognizes a neoepitope of CK18 that is exposed following caspase 

cleavage at residue 396 during the early events of apoptosis20. This marker could be 

utilized as a measure of therapy effectiveness, and potentially indicate the necessity for a 

change in treatment much earlier than standard clinical evaluation techniques such as 

imaging. For the first time in the literature, the current study provides a detailed 
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description of the process of user-defined protein marker development and optimization 

using the CSS, and will be an important resource for the future development of protein 

marker assays by users of this platform. 

 

4.2  Materials and methods 

4.2.1 Cell culture and reagents 

The MDA-MB-468 human breast cancer cell line was obtained from Dr. Janet 

Price (M.D. Anderson Cancer Center, Houston, TX, USA21). The 21NT human breast 

cancer cell line was obtained from Dr. Vimla Band (Dana Farber Cancer Institute, 

Boston, MA22). The LNCaP human prostate cancer cell line was obtained from Dr. John 

Lewis (London Regional Cancer Program, London, ON, Canada23). MDA-MB-468 cells 

were maintained in αMEM + 10% FBS. 21NT cells were maintained in αMEM + 10% 

FBS, 3.32µg/mL of HEPES, 1% non-essential amino acids (10mM), 96.02µg/mL of 

sodium pyruvate, 0.25mg/mL of L-glutamine, 43.63µg/mL of gentamicin, and 

0.87µg/mL of insulin (Sigma-Aldrich, St. Louis, MO, USA). LNCaP cells were 

maintained in RPMI-1640 + 10% FBS. All growth media and supplements were obtained 

from Invitrogen (Carlsbad, CA, USA). FBS was obtained from Sigma-Aldrich (St. Louis, 

MO, USA). For induction of apoptosis, MDA-MB-468 human breast cancer cells were 

grown to ~65% confluency at which time cells were treated with fresh growth media 

(αMEM + 10% FBS) or 0.1μg/mL of paclitaxel (Biolyse Pharma Corporation, St. 

Catherines, ON, CAN) in αMEM + 10% FBS. Both the treated and untreated cells were 

then grown for an additional 48 hours before they were harvested and analyzed as 

described below. 
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4.2.2 Flow cytometry sample preparation 

For comparison of FITC mean fluorescence intensity (MFI), measured on a 4 

decade log scale, MDA-MB-468 cells were spiked into whole blood at a concentration of 

~0.01%  (equivalent to ~200 MDA-MB-468 cells) of the total white blood cell (WBC) 

count determined by analysis of whole blood using an LH 780 hematology analyzer 

(Beckman Coulter, Hialeah, FL, USA). The 0.01% spiked solution was then incubated 

with fluorescently conjugated antibodies for 20 min at room temperature, including 5µL 

of anti-CD45-PC5 (clone J33; Beckman Coulter/Immunotech, Marseille, France) and 

either 150µL of anti-EGFR (epidermal growth factor receptor)-FITC (Janssen 

Diagnostics, Raritan, NJ, USA) or various amounts (0.05µg – 0.5µg) of anti-CD44-FITC 

(clone G44-26; BD Biosciences). Following incubation, red blood cells were lysed using 

1x ammonium chloride (NH4Cl) lysing solution (Beckman Coulter/Immunotech) for 10 

min at room temperature. Samples were then analyzed using a Beckman Coulter EPICS 

XL-MCL flow cytometer.       

For analysis of differential CD44, EpCAM, and CK expression in the three cell 

lines, MDA-MB-468, 21NT, and LNCaP tumor cells (5x105) were resuspended in flow 

buffer (PBS + 2% FBS), fixed and permeabilized, as necessary (CK), using the 

IntraPrep™ Fix/Perm kit (Beckman Coulter, Fullerton, CA, USA), and incubated with  

either 150µL of anti-EGFR-FITC (Veridex; 20 min), 0.5µg of anti-CD44-FITC (clone 

G44-26; BD Biosciences; 20 min), 0.0075µg of anti-EpCAM-PE (clone EBA-1; BD 

Biosciences; 20 min), or 25µL of anti-CK-8/18/19-PE (Veridex; 30 min). Following two 

washes with an excess volume (≥2ml) of flow buffer, samples were analyzed using a 

Beckman Coulter EPICS XL-MCL flow cytometer. PBS and 5.0µg of FITC-conjugated 
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mouse IgG2bĸ (clone MPC-11; BD Biosciences) or 0.0625µg of PE conjugated mouse 

IgG2bĸ (clone 27-35; BD Biosciences) were used as negative controls. 

For analysis of M-30, paclitaxel-treated and untreated MDA-MB-468 cells 

(5x105) diluted in flow buffer were fixed and permeabilized using the IntraPrep™ 

Fix/Perm kit (Beckman Coulter) and subsequently incubated with 0.1µg of anti-M-30-

FITC (Alexis Biochemicals, Lausen, Switzerland; 30 min) and either 0.0075µg of anti-

EpCAM-PE (clone EBA-1; BD Biosciences; 20 min), 25µL of anti-CK-8/18/19-FITC 

(Veridex; 30 min), or 0.07µg of DAPI (Sigma-Aldrich; 15 min). Following 2 washes 

with an excess volume (≥2ml) of flow buffer, samples were analyzed using either a 

Beckman Coulter EPICS XL-MCL flow cytometer (EPCAM/CK) or a Beckman Coulter 

Navios flow cytometer (DAPI). 

It is important to note that FCM was used throughout this study as a method to 

determine the percentage of cells within any given cell population that were positive for 

our marker of interest (i.e., EGFR, CD44, M-30) and not as a method by which to 

compare the CSS. Although FCM would seem like an ideal method for CTC 

characterization based on the results presented in this study, its lower sensitivity for rare-

event detection make it less ideal for use in a clinical setting, which further highlights the 

need to optimize appropriate protocols for CTC characterization on the gold standard 

CSS. 

4.2.3 Flow cytometry analysis and gating strategy 

The flow procedures were performed on either a single laser (488nm Argon 

Laser) four-color Beckman Coulter XL-MCL flow cytometer or a three laser (405 Violet, 

488 Argon, 633 Helium-Neon Laser) 10 colour Beckman Coulter Navios flow cytometer. 
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Alignment and calibration checks were performed daily on both flow cytometers using 

FlowCheck/FlowSet (for XL-MCL flow cytometer) and FlowCheckPro/FlowSetPro 

(Beckman Coulter Navios flow cytometer). Fluorochrome emission on the Beckman 

Coulter XL-MCL was captured for FITC conjugates using a 525/40nm Band Pass (BP) 

filter and for PE conjugates using 575/25 nm BP filter. Emissions on the Beckman 

Coulter Navios cytometer for FITC, PE and DAPI were collected using 525/40nm, 

575/30nm, and 450/40nm BP filters (respectively). Antibody combinations are detailed 

elsewhere in the Materials and Methods.  

For all assays, forward and side scatter was used for gating to eliminate cellular 

debris and cell doublets from analysis. A minimum of 10,000 events were acquired for all 

analyses. For single-colour assays, gates were set based on either FMO (fluorescence 

minus one) or appropriate IgG controls. For 2 colour assays, an FMO strategy was used 

to determine compensation coefficients. Gating for blood samples spiked with tumor cells 

was set up using 10% tumor cell spiked samples (compared to WBC count). Tumor cells 

were defined as CK+CD45- and/or EGFR+/CD44+, whereas WBCs were defined as CK-

CD45+ and/or CD44-/EGFR-. Relative MFI was determined based on IgG isotype or 

FMO controls (as appropriate) in order to demonstrate changes in expression of the 

specific marker in question. Populations of interest were observed to be single 

populations (i.e. similar to what is seen in Figure 4.1A), and means were observed to be 

comparable to medians. Therefore the mean was taken as the value for determining MFI. 

All data were analyzed offline using the Kaluza™ Beckman Coulter analysis software. 
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 Figure 4.1. Initial validation of the CellSearch® system using EGFR. (A) FCM 

analysis of MDA-MB-468 human breast cancer cells incubated with anti-EGFR-FITC 

(red) and an IgG isotype control sample (blue). (B) Representative CellSearch®

system gallery images of 7.5ml of healthy donor blood spiked with 1000 MDA-MB-

468 human breast cancer cells, incubated with 450µl of anti-EGFR-FITC and standard 

Veridex CTC reagents (CK-PE, CD45-APC, DAPI), and analyzed at an exposure time 

of 0.8s as recommended by the manufacturer. Orange squares indicate EGFR+ CTCs, 

identified as CK+/DAPI+/CD45–/EGFR+. Images acquired at 10x objective 

magnification. (C) Percentage recovery of EGFR+ cells as determined by FCM and the 

CellSearch® system (n=3). Data are presented as the mean ± SEM. 
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4.2.4 CellSearch analysis 

Blood from healthy volunteer donors was drawn into 10ml CellSave 

preservative tubes (Janssen Diagnostics) containing EDTA (ethylenediaminetetraacetic 

acid) and a proprietary cellular preservative. Blood in excess of 7.5ml (the standard blood 

volume for use with the CSS) was removed from each CellSave preservative tube and 

discarded. One thousand (EGFR/CD44) or 4000 (M-30) cultured human tumor cells from 

the appropriate cell line, diluted in 100µL of flow buffer, were spiked into each CellSave 

preservative tube. To avoid sample degradation, spiked blood was processed on the CSS 

within 96 hours of blood collection as per the manufacturer’s guidelines. Following 

thorough mixture by inversion, 7.5mL of spiked blood was collected from each CellSave 

preservative tube and mixed with 6.5mL of dilution buffer (Janssen Diagnostics). Spiked 

blood samples were mixed by inversion 5 times and then centrifuged at 800xg with the 

brake off for 10 minutes at room temperature. Prepared blood samples were loaded into 

the CellTracks™ AutoPrep system as per the manufacturer’s guidelines and processed 

using the CellSearch CTC kit as described in the introduction.  

Undiluted anti-EGFR-FITC (Janssen Diagnostics) was added to manufacturer-

supplied reagent cups in the CellSearch kit cartridge for processing on the CellTracks™ 

AutoPrep system. Anti-CD44 antibodies conjugated to either FITC (clone G44-26; BD 

Biosciences) or PE (clone G44-26; BD Biosciences) and FITC-conjugated M-30 

CytoDeath antibodies (Alexis Biochemicals) were diluted according to Janssen 

Diagnostics recommendations24 in 1X ultrapure PBS (Invitrogen) to obtain the desired 

working concentration. Ultrapure PBS and PE conjugated mouse IgG2bκ (clone 27-35; 

BD Biosciences) diluted in ultrapure PBS at the corresponding working concentration of 
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anti-CD44-PE were used as negative controls. For optimization, two variables were 

altered: the antibody concentration utilized on the CellTracks™ AutoPrep, and the length 

of time the FITC/PE fluorophore was exposed to the laser (altered using the “Research 

Protocol” option under the “Set Up” tab, on the CellTracks™ Analyzer II).  

4.2.5 Statistical analysis 

Statistical analysis was performed using GraphPad Prism© 5.0 (La Jolla, CA, 

USA). When analyzing two groups of data, the differences between the means was 

determined using a Student’s t test. M-30 samples run in parallel were analyzed using a 

paired Student’s t test. When analyzing three or more groups of data, two-way ANOVA 

followed by a Bonferroni post-test was used. In all cases P<0.05 was considered to be 

statistically significant. 

 

4.3  Results 

4.3.1 Initial CellSearch® system validation with a commercially 
available optimized marker 

To first determine the sensitivity and specificity of the CSS to detect an 

optimized marker in the FITC channel, a commercially available marker from Janssen 

Diagnostics, anti-EGFR-FITC, was processed with blood spiked with MDA-MB-468 

human breast cancer cells on the CSS. MDA-MB-468 cells alone were first analyzed by 

FCM to determine the percentage of the cell population that was EGFR+. These cells 

were found to be highly EGFR+, with >99.9±0.03% of cells expressing EGFR (Figure 

4.1A,C).  Blood from a healthy volunteer donor was then spiked with MDA-MB-468 

cells and processed on the CSS with the commercially available anti-EGFR-FITC 

antibody. The CSS was able to characterize 95.1±2.34% of spiked cells as EGFR+ 



 

115 

(Figure 4.1B,C). Comparison of the ability of these two techniques for analyzing the 

percentage of the cell population that was EGFR+ demonstrated that markers that have 

been properly optimized for use with the CSS are not significantly different from results 

obtained by FCM (Figure 4.1C). 

4.3.2 CD44 protocol development for use with the CellSearch® 
system 

FCM experiments were next performed to determine the optimal concentration 

of anti-CD44-FITC required for initial testing on the CSS. Blood samples spiked with 

MDA-MB-468 cells at a concentration equivalent to equivalent to ~0.01% of the WBC 

count (equivalent to ~200 MDA-MB-468 cells) were incubated with anti-EGFR-FITC 

and analyzed by FCM. To ensure appropriate gating of tumor cells, 1% (compared to 

WBC count) spiked samples were utilized. The sample showed a signal-to-noise ratio of 

268.5. Several concentrations of anti-CD44-FITC were then analyzed, and based on the 

FITC MFI values, the anti-CD44-FITC concentration that gave the closest signal-to-noise 

ratio to that of the anti-EGFR-FITC was 3.5µg/mL, with a signal-to-noise ratio of 257.5 

(Table 4.1 and Figure 4.2).  

Based on these results, anti-CD44-FITC diluted in 1x ultrapure PBS at a 

working concentration of 3.5µg/mL was chosen as the initial concentration to use with 

the CSS. As in Figure 4.1, MDA-MB-468 cells were first analyzed by FCM to determine 

the percentage of the cell population that were CD44+. These cells were found to be 

highly CD44+ with 98.4±0.90% of cells expressing CD44 (Figure 4.3A,C). Blood 

samples spiked with MDA-MB-468 cells were then analyzed using various exposure 

times and increasing amounts of anti-CD44-FITC on the CSS using the CTC kit. After 

extensive optimization, the highest percentage of CD44+ cells that could be obtained on  
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Table 4.1. Optimization of CD44 antibody concentration by flow cytometry. 

µg/ml of CD44-FITC µl of EGFR-FITC Signal to Noise Ratio

5.0 - 310.5

3.5 - 257.5

2.0 - 211.5

0.5 - 178.5

- 150 268.5
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Figure 4.2. Flow cytometry analysis of CD44-FITC titration. MDA-MB-468 tumor 

cell spiked blood samples (equivalent to 1% of the white blood cell count) were 

utilized to ensure appropriate tumor cell gating. MDA-MB-468 tumor cells spiked at a 

concentration equivalent to 0.01% white blood cells ( 200 MDA-MB-468 cells) 

were then incubated with various CD44-FITC volumes to MDA-MB-468 tumor cells 

incubated with 150μl of EGFR-FITC to determine the FITC mean fluorescence 

intensity, measured on a 4 decade log scale, signal-to-noise ratio that best matched that 

observed when analyzing 150μl of EGFR-FITC. Tumor cells were defined as 

CD44+CD45- or EGFR+CD45-.
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 Figure 4.3. Protocol development for the CD44 marker using the CellSearch®

CTC and CXC kits. (A) FCM analysis of MDA-MB-468 human breast cancer cells 

incubated with anti-CD44-FITC (red) and an IgG isotype control sample (blue). (B)

Representative CellSearch® gallery images of 7.5ml of blood from a healthy volunteer 

donor, spiked with 1000 MDA-MB-468 human breast cancer cells, incubated with 

4.0µg/ml of anti-CD44-FITC and standard Veridex CTC reagents (CK-PE, CD45-

APC, DAPI), and analyzed with the CellSearch® CTC kit and an exposure time of 

0.5s. Orange squares indicate CD44+ CTCs, identified as CK+/DAPI+/CD45–/CD44-

FITC+. Images acquired at 10x objective magnification. (C) Percentage recovery of 

CD44+ cells as determined by FCM and the CellSearch® system using the CTC kit 

(n=3). Data are presented as the mean ± SEM. *** = significantly different than 

respective FCM control (P < 0.0005). (D) FCM analysis of MDA-MB-468 human 

breast cancer cells incubated with anti-CD44-PE (red) and an IgG isotype control 

sample (blue). (E) CellSearch® gallery image of 7.5ml of blood from a healthy 

volunteer donor, spiked with 1000 MDA-MB-468 human breast cancer cells, 

incubated with 1.0µg/ml of anti-CD44-PE and standard Veridex CXC reagents (CK-

FITC, CD45-APC, DAPI), and analyzed using the CellSearch® CXC kit and an 

exposure time of 0.6s. Orange squares indicate CD44+ CTCs, identified as 

CK+/DAPI+/CD45–/CD44-PE+. Images acquired at 10x objective magnification. (F)

Percentage recovery of CD44+ cells as determined by FCM and the CellSearch®

system using the CXC kit (n=3). Data are presented as the mean ± SEM.
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the CSS was 69.3±2.67% at a concentration of 4.0µg/mL and an exposure time of 0.5s 

(Figure 4.3B,C), and this was still significantly different (p=0.0005) than the CD44 

positivity results obtained by FCM (Figure 4.3C), and thus were not considered to be 

suitably optimized. The discrepancy observed between CD44+ cells identified by FCM 

and the CSS was thought to be a result of either (1) the FCM assay not taking into 

account the EpCAM and CK8/18/19 expression of the cells; and/or (2) the CSS not 

detecting cells expressing lower levels of CD44. Upon analysis by FCM, lack of EpCAM 

and/or CK 8/18/19 expression did not appear to contribute to the observed discrepancy, 

since 99.5±0.47% and 99.0±0.70% of cells were EpCAM+ and CK8/18/19+, respectively 

(Figure 4.4A,C and 4.5A,C). Therefore the CellSearch® CXC kit, optimized for use with 

lower antigen density markers, was investigated. 

4.3.3 CD44 protocol optimization using the CellSearch® CXC 
kit 

The CellSearch® CXC kit differs from the U.S. FDA and Health Canada-

cleared CTC kit in that the fluorescence detection of CK8/18/19, normally represented in 

the PE channel, and the user’s marker of interest, normally represented in the FITC 

channel, are reversed. Therefore the PE channel represents the user’s marker of interest 

and the FITC channel represents CK8/18/19. This change allows for better visualization 

of lower antigen density markers, ~50,000 antigens/cell on the CXC kit versus ~100,000 

antigens/cell using the CTC kit25. MDA-MB-468 cells were analyzed by FCM for CD44 

positivity using an anti-CD44-PE antibody and were again found to be highly CD44+, 

with 99.5±0.39% positive for CD44 (Figure 4.3D,F). Blood samples spiked with MDA-

MB-468 cells were then analyzed using 1.0µg/mL of anti-CD44-PE (equivalent to the 

volume used for 4.0µg/mL of anti-CD44-FITC) and an exposure time of 0.6s, the  
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Figure 4.4. Cell line comparison of EpCAM expression by flow cytometry (FCM).

(A) EpCAM expression of the MDA-MB-468, 21NT and LNCaP cell lines (n=3). (B)

PE mean fluorescence intensity (MFI), measure on a 4 decade log scale, as an 

indicator of EpCAM antigen density, on the MDA-MB-468, 21NT and LNCaP cell 

lines (n=3). (C) FCM analysis of MDA-MB-468, 21NT and LNCaP cell lines 

incubated with anti-EpCAM-PE (red) and an IgG isotype control sample (blue).



122 

 

Figure 4.5. Cell line comparison of CK8/18/19 expression by FCM. (A) CK8/18/19 

expression of the MDA-MB-468, 21NT and LNCaP cell lines (n=3). (B) PE mean 

fluorescence intensity (MFI), measure on a 4 decade log scale, as an indicator of 

CK8/18/19 antigen density, on the MDA-MB-468, 21NT and LNCaP cell lines (n=3). 

(C) FCM analysis of MDA-MB-468, 21NT and LNCaP cell lines incubated with anti-

CK8/18/19-PE (red) and a cells only control sample (blue).



 

123 

maximum recommended by Janssen Diagnostics for the PE channel, as a starting point. 

Using these parameters, 98.8±0.51% of cells were observed to be CD44+, a value not 

significantly different from that obtained by FCM (Figure 4.3E,F).  

After demonstrating that our developed marker was capable of identifying 

CD44+ cells to an acceptable degree using the CellSearch® CXC kit, additional 

optimization was required before the assay could be considered for use in a clinical 

setting. Three cell lines with varying CD44 expression levels were chosen for this 

purpose: MDA-MB-468 human breast cancer cells (high expression), 21NT human breast 

cancer cells (low expression), and LNCaP human prostate cancer cells (no expression) 

(Figure 4.6A). As with the MDA-MB-468 cells, the 21NT cells and LNCaP cells were 

analyzed for EpCAM and CK8/18/19 positivity to ensure suitable identification by the 

CSS (Figure 4.4A,C and 4.5A,C). All three lines were highly EpCAM+ and CK8/18/19+, 

99.5±0.47%/99.0±0.70% (MDA-MB-468), 87.2±7.35%/98.6±0.67% (21NT), and 98.4± 

0.97%/99.2±0.20% (LNCaP), respectively, with varying antigen densities represented as 

EpCAM and CK8/18/19 MFI, measured on a 4 decade log scale, 24.7±4.49/69.0±19.7 

(MDA-MB-468), 11.5±3.05/70.7±15.8 (21NT), and 16.4±1.97/37.5±3.22 (LNCaP), 

respectively (Figure 4.4B and 4.5B). All three cell lines spiked into healthy volunteer 

blood samples were initially processed using the CellSearch® CXC kit along with 1X 

ultrapure PBS to determine the level of background noise at various exposure times 

(0.05–0.6s) and compared to their respective FCM results. At all exposure times tested, 

no significant differences were observed between the positivity levels obtained on the 

CSS and those obtained by FCM (Figure 4.6B-D). However, background noise does  
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 Figure 4.6. CD44 marker optimization using the CellSearch® CXC kit. (A) FCM 

analysis of MDA-MB-468 human breast cancer cells (high CD44-expression), 21NT 

human breast cancer cells (low CD44-expressing), and LNCaP human prostate cancer 

cells (CD44- cell line) incubated with anti-CD44-PE (red) and an IgG isotype control 

sample (blue). (B-D) Comparison of the percentage recovery of CD44+ cells as 

determined by FCM and the CellSearch® CXC kit incubated with either PBS, IgG-PE, 

or anti-CD44-PE at stated concentration(s) of the MDA-MB-468 (high CD44-

expressing), 21NT (low CD44-expressing), and LNCaP (CD44- cell line), respectively 

(n=3). Data are presented as the mean ± SEM. *** = significantly different than 

respective FCM control (P<0.05). Representative CellSearch® gallery images of 7.5ml 

of blood from a healthy volunteer donor, spiked with 1000 cells from the respective 

cell line, incubated with 1.5µg/ml of anti-CD44-PE, and analyzed at an exposure time 

of 0.2s are presented below their respective graph. Orange squares indicate CD44+

CTCs, identified as CK+/DAPI+/CD45–/CD44-PE+. Images acquired at 10x objective 

magnification.
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appear to increase, although not significantly, with increasing exposure time, and 

therefore exposure time should be kept to a minimum.  

As demonstrated, MDA-MB-468 cells spiked into blood and processed with 

1.0µg/mL of anti-CD44-PE on the CSS (CXC kit) at an exposure time of 0.6s resulted in 

a similar percentage of CD44+ cell detection to that observed by FCM (Figure 4.3F). 

However, with the goal of keeping exposure times to a minimum, various additional 

exposure times were investigated. Results demonstrate that 1.0µg/mL of anti-CD44-PE 

was adequate for identifying CD44 positivity in MDA-MB-468 cells (high CD44-

expressing cell line) at all exposure times except 0.05s (Figure 4.6B). However, using 

1.0µg/mL of anti-CD44-PE in 21NT cells (low CD44-expressing cell line), we observed 

that only exposure times of 0.4s and 0.6s were adequate for identifying CD44+ cells 

(Figure 4.6C). Therefore, the concentration of anti-CD44-PE was increased to 1.5µg/mL. 

Upon analysis of both the MDA-MB-468 and 21NT cells on the CSS (CXC kit) at this 

increased antibody concentration, CD44 positivity of MDA-MB-468 cells was adequate 

at all exposure times except 0.05s, and CD44 positivity of 21NT cells was now deemed 

to be adequate at 0.2s and 0.4s (Figure 4.6B, C). A higher percentage of cells were 

detected at 0.6s, however, this was accompanied by an increase in false positive cells in 

the CD44 negative LNCaP cell line control sample using 1.5µg/mL (Figure 4.6D). Based 

on these results, an antibody concentration of 1.5µg/mL was determined to be optimal for 

CD44 visualization as it allowed the use of lower exposure times, thereby minimizing 

background noise and false positive results. Finally, spiked blood samples for all three 

cell lines were processed with appropriate IgG controls on the CSS and analyzed at 

various exposure times to ensure antibody specificity (Figure 4.6B-D). Based upon these 
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results, an antibody concentration of 1.5µg/mL and an exposure time of 0.2s were chosen 

as the optimized parameters for this marker. Additional CellSearch® gallery images for 

each cell line under optimized conditions can be found in Figure 4.7. 

4.3.4 M-30 protocol development for use with the CellSearch® 

system 

Next, we chose to investigate M-30, a marker of cellular death. FCM 

experiments were initially performed to determine the optimal concentration of paclitaxel 

(0.1µg/mL) to use for apoptosis induction of the MDA-MB-468 cells (data not shown). 

Paclitaxel-treated and untreated cells were then processed in parallel on the flow 

cytometer and the CSS to control for various confounding factors (i.e., confluency of the 

cells at time of treatment, slight variations in drug dilution, etc.) that would make direct 

comparison of the M-30+ cells difficult. It should be noted that, during the development 

and optimization of the M-30 protocol, images in the FITC channel were observed to be 

clear, bright, and easily identifiable as M-30+ cells. This was not the case, however, with 

CD44, where many images showed a faint signal in the FITC channel, but appeared 

grainy in nature and were therefore not clear and bright enough to be classified as CD44+  

Based on these results, the CXC kit was not utilized in the development of the M-30 

protocol as the images generated using the CellSearch® CTC kit were of the same quality 

as those shown using the CellSearch® CXC kit for CD44 and therefore use of this kit 

would likely not have significantly increased the number of M-30+ CTC. (Figure 4.8). 

By FCM, untreated cells showed very low levels of M-30 positivity, with 

0.8±0.13% being M-30+, and a small proportion of the paclitaxel treated cells 

(17.6±1.18%) were classified as apoptotic (M-30+),  based on gates set at the outermost 

limits of  an untreated control incubated with equivalent volumes of M-30 antibody  
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Figure 4.7. Additional representative CellSearch® gallery images of optimized 

CD44-PE protocol from Figure 3. Representative CellSearch gallery images of 

7.5ml of blood from a healthy volunteer donor, spiked with 1000 cells from the 

respective cell line, incubated with 1.5μg/ml of anti-CD44-PE, standard Veridex CXC 

reagents (CK-FITC, CD45-APC, DAPI), and analyzed at an exposure time of 0.2s. 

Orange squares indicate CD44+ CTCs, identified as CK+/DAPI+/CD45–/CD44-PE+.
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Figure 4.8. Observed staining differences between CD44-FITC and M-30-FITC 

with the CellSearch® CTC kit. (A) Representative CellSearch® gallery images of 

7.5ml of blood from a healthy volunteer donor, spiked with 4000 MDA-MB-468

human breast cancer cells treated with 0.1μg/ml of paclitaxel and subsequently 

incubated with 3.5μg/ml of anti-M-30-FITC. Orange squares indicate M-30+ CTCs, 

identified as CK+/DAPI+/CD45–/M-30+. (B) Representative CellSearch gallery images 

of 7.5ml of blood from a healthy volunteer donor, spiked with 1000 MDA-MB-468

human breast cancer cells, incubated with 4.0μg/ml of anti-CD44-FITC and standard 

Veridex CTC reagents (CK-PE, CD45-APC, DAPI), and analyzed with the CellSearch 

CTC kit and an exposure time of 0.5s. Orange squares indicate CD44+ CTCs, 

identified as CK+/DAPI+/CD45–/CD44-FITC+ (C) Representative CellSearch gallery 

images of 7.5ml of blood from a healthy volunteer donor, spiked with 1000 MDA-

MB-468 human breast cancer cells, incubated with 1.5μg/ml of anti-CD44-PE and 

standard Veridex CXC reagents (CK-FITC, CD45-APC, DAPI), and analyzed with the 

CellSearch CXC kit and an exposure time of 0.2s. Orange squares indicate CD44+

CTCs, identified as CK+/DAPI+/CD45–/CD44-PE+.
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(Figure 4.9A,C). After extensive optimization on the CSS (CTC kit) 3.5µg/mL of anti-M-

30-FITC and an exposure time of 0.8s produced the highest percent of M-30+ treated 

cells, with 10.9±2.42% being M-30+. In addition, this concentration and exposure time 

when processing blood spiked with untreated cells showed M-30 positivity that was not 

significantly different from the FCM results (Figure 4.9B,C).  

In an attempt to explain this observed discrepancy, it was necessary to 

determine if paclitaxel treatment would affect the ability of the CSS to detect the treated 

CTCs by decreasing the MFI of EpCAM, CK8/18/19, and/or DAPI. Following 48 hours 

of treatment with 0.1µg/mL of paclitaxel, treated and untreated cells were incubated with 

anti-M-30-FITC and either anti-EpCAM-PE, anti-CK8/18/19-PE, or DAPI and analyzed 

by FCM. Following paclitaxel treatment, there was no significant loss of EpCAM or CK 

positivity, with 97.5±1.51% and 97.7±0.49% of cells observed to be EpCAM+ and CK+ 

respectively in untreated samples versus 89.6±5.89% and 91.5±3.88% respectively in 

paclitaxel-treated samples. In addition, following treatment the vast majority of cells that 

were apoptotic (M-30+) also appeared to be EpCAM+ (22.7±3.41% [M-30+] versus 

19.9±4.62% [M-30+EpCAM+]) and CK+ (24.6±3.13% [M-30+] versus 24.9±2.26% [M-

30+CK+]) and therefore a significant population of M-30+/EpCAM- or M-30+/CK- cells 

(that would not be captured by the CSS) was not found (Figure 4.10A,B). However, 

following paclitaxel treatment there was a significant decrease in DAPI MFI relative to 

untreated cells, 60.4±1.10% versus 96.9±0.46%, respectively, and there was a significant 

difference between the apoptotic (M-30+) cells and those that were both apoptotic (M-

30+) and DAPI+, 17.6±1.18% versus 8.7±0.79%, respectively (Figure 4.10C). It is 

important to note that this decrease in DAPI MFI did not necessarily constitute cells  
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Figure 4.9. M-30 protocol development for use with the CellSearch® CTC kit. (A)

FCM analysis of M-30 expression in untreated MDA-MB-468 human breast cancer 

cells (blue) and cells treated with 0.1µg/ml of paclitaxel (green), and a cells only 

control sample (red). (B) Representative CellSearch® gallery images of 7.5ml of blood 

from a healthy volunteer donor, spiked with 4000 MDA-MB-468 human breast cancer 

cells treated with 0.1µg/ml of paclitaxel and subsequently incubated with 3.5µg/ml of 

anti-M-30-FITC and standard Veridex CTC reagents (CK-PE, CD45-APC, DAPI). 

Orange squares indicate M-30+ CTCs, identified as CK+/DAPI+/CD45–/M-30+. (C) 

Percentage of M-30+ cells for treated and untreated samples as determined by FCM 

and the CellSearch® system (n=3). Data are presented as the mean ± SEM. * = 

significantly different than respective FCM control (P<0.05).
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Figure 4.10. Assessment of potential sources of M-30 loss using the CellSearch®

system. (A) Percentage of EpCAM+, M-30+, and dual stained M-30+/EpCAM+ cells in 

the presence or absence of paclitaxel treatment (0.1 µg/ml for 48 hours; n=3). (B) 

Percentage of CK+, M-30+, and dual stained M-30+/CK+ cells in the presence of 

absence of paclitaxel treatment (0.1 µg/ml for 48 hours; n=3). (C) Percentage of 

DAPI+, M-30+, and dual stained M-30+/DAPI+ cells in the presence or absence of 

paclitaxel treatment (0.1 µg/ml for 48 hours; n=3). Data are presented as the mean ± 

SEM. * = significantly different than respective untreated control (P < 0.05). a = 

significantly different than paclitaxel-treated M-30+ sample.
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becoming DAPI-. Instead cells that demonstrated high levels of DAPI staining (DAPIhi 

phenotype) prior to treatment appeared to exhibit decreased DAPI staining following 

treatment (DAPIlo phenotype), which could therefore affect adequate visualization of 

DAPI positivity on the CSS. This decrease in DAPI MFI lead us to further investigate the 

percentage of cells that were M-30+DAPIhi by FCM compared with those that were M-

30+DAPI+ by the CSS (since DAPI positivity is a requirement to classify an event as a 

CTC on the CSS). This comparison appeared to rectify the observed difference. 

However, to validate this observation, reanalysis of the CSS data was necessary, to 

determine if inclusion of those cells that were not originally classified as a CTC due to 

poor DAPI staining would increase the number of M-30+ cells to that originally observed 

by FCM (17.6±1.18%). However, upon reanalysis the percentage of M-30+ cells 

increased only marginally and this increased value was still significantly different (paired 

t-test) from the M-30+ data obtained by FCM (data not shown). 

 

4.4  Discussion 
The majority of cancer-related deaths are due to ineffective treatment of 

metastatic disease and an incomplete understanding of the biology of metastasis. 

Advances in the area of CTC detection and enumeration allows for investigation of the 

early-stages of metastasis that until recently was limited by technological challenges. The 

characterization of CTCs could be a powerful clinical tool, acting as a real-time, 

minimally invasive liquid biopsy that would inform clinical decision-making and help 

direct tailored, individualized therapy. In the present study, our aim was therefore to 

develop protocols that would allow for the characterization of CTCs using the U.S. FDA 



 

138 

and Health Canada-cleared CSS. To the best of our knowledge, this is the first study in 

the literature to describe the detailed process of protocol development and optimization 

using this platform. We have demonstrated the appropriate steps that must be taken for 

proper optimization of user-defined protein marker assays on this system, including 

comparison of results with a well validated protein expression technology (FCM); 

appropriate troubleshooting; and detailed optimization techniques using cell lines with 

various target marker antigen densities. In addition, we have demonstrated that not all 

markers are ideal candidates for use with the CSS. 

Although previous studies have examined CTCs for the expression of CD44, 

none of these previous studies have utilized the CSS to do so25–27. As this system is still 

the gold-standard and the only U.S. FDA and Health Canada-cleared instrument for CTC 

enumeration and clinical decision-making, the ability to characterize CTCs in 

combination with enumeration using this particular platform is more clinically applicable 

then the ability to do so using other techniques. Additionally, Rossi et al., 2010, is the 

only published study (to our knowledge) that has utilized user-defined, non-Janssen 

optimized protein markers assays (specifically M-30), on the CSS. However, this 

manuscript fails to provide details of proper optimization of the protocol for the use of 

this protein marker on the CSS28. This highlights the necessity for the current study, 

which provides a detailed description of the process of protein marker optimization in 

order for users of this instrument to develop properly optimized protein marker protocols 

that could be utilized in a clinical setting.  

The advantages of utilizing the CSS platform include system standardization; 

clearance by the U.S. FDA and Health Canada for assessment of prognosis in metastatic 
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breast, prostate, and colorectal cancer; and the ability to examine CTC heterogeneity at 

the single cell level. However, the CSS does have a number of disadvantages, including 

the use of the epithelial marker EpCAM for CTC enrichment. Others have shown that 

many of the tumor cells found in the circulation are actually mesenchymal in phenotype 

and are therefore potentially undetectable by this system due to a lack of EpCAM 

expression29–32. In addition, it has been demonstrated that the epithelial-to-mesenchymal 

transition (EMT), which may produce these undetectable CTCs, is associated with 

enhanced cancer cell aggressiveness33,34. Therefore metastatic cells that may potentially 

form metastatic lesions and are of great interest for characterization may be missed by the 

CSS. New CTC platforms are currently under development, and hold great promise for 

enhanced CTC detection and characterization35,36. However, the CSS, although not a 

perfect detection and characterization platform, is currently the clinical gold standard for 

CTC analysis, and for this reason we explored the development of additional CTC 

characterization assays using this system. 

 We initially began protocol development for the CD44 marker using the 

CellSearch® CTC kit, with limited success. We hypothesized that the low CD44 

positivity results might be due to contamination with leukocytes expressing CD44, 

thereby simulating a situation in which cells appear to have a lower than expected antigen 

density. We tested this hypothesis by utilizing the CellSearch® CXC kit, which is 

optimized for the visualization of lower antigen density markers. Utilization of this kit 

resolved this observed discrepancy, showing levels of CD44 expression that were not 

significantly different from those observed by FCM. Three cell lines with various CD44 

expression levels were then chosen to optimize this protocol. This was a necessary step in 
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the optimization process as the CD44 antigen density in patient CTCs is unknown, and 

likely to be quite variable across patient samples. As demonstrated, the 21NT cell line 

(low CD44-expressing) was unable to be adequately visualized at a low exposure time 

using 1.0µg/mL of anti-CD44-PE, and therefore the concentration had to be increased to 

1.5µg/mL to ensure adequate sensitivity. In addition, the LNCaP cell line (CD44 

negative) was utilized to ensure specificity of the assay protocol. 

As with all assays, limitations do exist when utilizing the CSS for the 

visualization of CD44. CD44 is a marker of cancer stem cells (CSCs)19, a phenotype that 

has been associated with EMT37. There is always the possibility that CTCs from patient 

samples may express CD44, but largely by those cells that are undetectable by the CSS, 

due to a lack of or low level of EpCAM expression. In addition, we have demonstrated 

that leukocytes can affect adequate CD44 visualization. Therefore this assay could be 

compromised in patients with exceptionally high levels of contaminating leukocytes. 

However, we are confident that this assay is appropriately optimized for use in future 

clinical studies of metastatic cancer patients.  

Next we investigated a different type of marker, one that measures cellular 

death in response to therapy. We attempted to optimize the integration of the early 

apoptosis marker M-30 with the CSS. However, after extensive experimentation, we have 

demonstrated that this marker is unlikely to ever capture all early apoptotic cells in 

patient samples, as these results were unachievable even under highly controlled 

conditions. The lack of optimal M-30 positivity on the CSS did not appear to be as a 

result of a decrease in either EpCAM or CK MFI in our paclitaxel-treated cells. However, 

when nuclear staining using DAPI was investigated by FCM, there did appear to be a 
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significant decrease in the percentage of overall DAPIhi and M-30+DAPIhi cells, which 

could affect adequate visualization of DAPI positivity, and therefore CTC classification, 

on the CSS. When only the M-30+DAPIhi FCM results were compared to our M-

30+DAPI+ CellSearch® data this appeared to rectify the observed difference. To validate 

this observation, re-analysis of the CellSearch® data was performed to determine if 

inclusion of those cells that were not originally classified as a CTC due to poor DAPI 

staining would increase the number of M-30+ cells to that originally observed by FCM. 

However, re-analysis only marginally increased the percentage of M-30+ cells on the 

CSS. This increased value was still significantly different from the M-30+ data obtained 

by FCM and therefore could not be a plausible explanation for why M-30 positivity using 

the CSS was lower than that observed by FCM. It is possible that spiking cells that are in 

the process of cell death could reduce CTC recovery as some of these cells may be 

damaged during the pre-spiking preparation and others during CellSearch® sample 

processing. Therefore, experiments would need to be performed to determine M-30+ CTC 

recovery, using spiked samples with high, medium, and low numbers of M-30+ CTCs, 

and to demonstrate that these recovery results are reproducible across laboratories before 

this protocol could be considered for clinical use. However, based on the results obtained 

in our study and our primary aim of demonstrating proper protocol development and 

troubleshooting, we will not be moving forward with this marker as we believe that there 

are other markers that are likely better suited to identifying therapy response. 

In previous work by Rossi et al. (2010), attempts were made to utilize the M-

30 assay on the CSS28. However, direct comparison between M-30 positivity by FCM 

and the CSS was never performed; instead CellSearch® results were compared to 
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Annexin V positivity, with somewhat discordant results. The authors attempt to explain 

this difference as a result of non-classification of some events as CTCs on the CSS; 

however experimentation was not undertaken to confirm this hypothesis. In addition, 

optimal M-30 antibody concentration (2µg/mL) and exposure time (0.4s) were chosen 

based on results from 3 patients with probable M-30+ CTCs, not in treated control spiked 

blood samples, as shown in this study. 

The M-30 assay has potential for utilization as a measure of therapy 

effectiveness and as an early indicator of the necessity for a change in treatment. 

However, this assay is only able to identify apoptosis, one of many known mechanisms 

of cellular death (necrosis, autophagy, mitotic catastrophe)20. This presents a potential 

problem when examining CTC death as a marker of therapy effectiveness, as it is likely 

that not all therapy-induced cellular death will be apoptotic38–40. Therefore the 

discrepancies observed in the visualization of this marker in the present study could be a 

result of the overall complexity and lack of a complete understanding of cellular death in 

response to therapy.  

Research in this area has led many in the field to believe that there is much 

overlap in the mechanisms that underlie these cellular death processes38–40 but that many 

different pathways exist that may result in cell death (e.g., apoptosis, necrosis, 

autophagy). Therefore many cells undergoing cellular death may be missed by relying on 

an assay that only measures apoptosis. Instead, an ideal cellular death marker would 

measure all types of cell death, however such a marker does not yet exist. The next ideal 

candidate would measure the most prevalent form of cellular death and be present for the 

longest detectable period of time. However, even this may be difficult to achieve. Others 
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have demonstrated that the relative proportion of cells that undergo apoptotic cell death 

can change quite dramatically based on the stressor applied, stressor intensity 

(concentration and/or length of application), and the cells induced to undergo apoptosis38. 

Problems therefore arise when examining patient samples as proper timing may be 

necessary to capture cell death in the appropriate state. Even if ideal conditions were 

satisfied, highly vascularized versus poorly vascularized/hypoxic tumors may respond 

differently (i.e., different cellular death pathways) to antitumor agents due to differences 

in drug concentrations received. The question then becomes whether the identification of 

all early apoptotic CTCs is necessary for prediction of therapeutic efficacy and clinical 

decision-making. Instead, could the identification of any apoptotic cells represent a 

favourable prognosis for patients? In the study by Rossi et al. (2010)28, CTC analysis was 

performed in blood from 8 breast cancer patients using the integrated M-30 assay on the 

CSS (2µg/mL and exposure time 0.4s). The change in the number of live verses dead 

(apoptotic) CTCs was determined and found to correlate with radiologic findings of 

disease status (progressive versus stable disease/partial response), as determined by 

radiology, with 100% concordance. Obviously larger follow up studies will have to be 

performed before any meaningful conclusions can be drawn from these data, but the 

results do appear promising.  

In summary, we have demonstrated the detailed process of optimization that is 

required for the development of a user-defined marker on the CSS. In addition, we have 

shown that not all markers are suitable candidates for use with this platform and the 

necessary troubleshooting that must be performed when dealing with markers that might 

alter CTC identification characteristics. This study will act as an important 
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troubleshooting guide for the future development of protein marker assays by users of 

this platform. 
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Chapter 5 
Adaptation of semi-automated circulating tumor cell 
assays for clinical and pre-clinical research applications 

 
A version of this chapter has been published: 
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Abstract 
The majority of cancer-related deaths occur subsequent to the development of 

metastatic disease. This highly lethal disease stage is associated with the presence of 

circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical 

significance in metastatic breast, prostate, and colorectal cancers. The current gold 

standard in clinical CTC detection and enumeration is the U.S. Food and Drug 

Administration (FDA) and Health Canada-cleared CellSearch® system (CSS). This 

manuscript outlines the standard protocol utilized by this platform as well as 2 additional 

adapted protocols that describe the detailed process of user-defined marker optimization 

for protein characterization of patient CTCs and a comparable protocol for CTC capture 

in very low volumes of blood, using standard CSS reagents, for studying in vivo pre-

clinical mouse models of metastasis. In addition, differences in CTC quality between 

healthy donor blood spiked with cells from tissue culture versus patient blood samples 

are highlighted. Finally, several commonly discrepant items that can lead to CTC 

misclassification errors are outlined. Taken together, these protocols will provide a useful 

resource for users of this platform interested in pre-clinical and clinical research 

pertaining to metastasis and CTCs. 
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5.1  Introduction 
In 2015 it is estimated that 589,430 individuals will die from cancer and that 

1,658,370 new cases of this disease will be diagnosed in the United States alone1. The 

majority of these deaths occur subsequent to the development of metastatic disease2. The 

current lack of effective therapies in treating metastasis and a limited understanding of 

the metastatic cascade makes this stage of disease highly lethal. The presence of 

circulating tumor cells (CTCs) within the bloodstream has been demonstrated to correlate 

with metastatic disease3. These cells are extremely rare and their detection is indicative of 

overall survival in metastatic breast4, prostate5, and colorectal6 cancer. In these patients, 

the presence of  ≥5 (breast and prostate) or ≥3 (colorectal) CTCs in 7.5mL of blood is 

indicative of poorer prognosis when compared to those patients with fewer or no 

detectable CTCs in the same blood volume. In addition, the change in CTC number 

during or after therapeutic intervention has been demonstrated to be useful as a predictor 

of treatment response, often sooner than currently utilized techniques7–10.  

It has been estimated that, in metastatic cancer patients, CTCs occur at a 

frequency of approximately 1 CTC per 105-107 blood mononuclear cells and in patients 

with localized disease, this frequency may be even lower (~1 in 108). The rare nature of 

these cells can make it difficult to accurately and reliably detect and analyze CTCs11. 

Several methods (reviewed previously12–14) have been utilized to enrich and detect these 

cells by exploiting properties that differentiate them from surrounding blood components. 

In general, CTC enumeration is a two-part process that requires both an enrichment step 

and a detection step. Traditionally, enrichment steps rely on differences in physical 

properties of CTCs (cell size, density, deformability) or on protein marker expression 
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(i.e., epithelial cell adhesion molecule [EpCAM], cytokeratin [CK]). Following 

enrichment, CTC detection can be performed in a number of different ways, the most 

common of which are nucleic acid-based assays and/or cytometric approaches. Each of 

these strategies are unique, having distinct advantages and disadvantages, however they 

all lack standardization; a necessity for entrance into the clinical setting. The CellSearch® 

system (CSS) was therefore developed to provide a standardized method for the detection 

and enumeration of rare CTCs in human blood using fluorescence microscopy and 

antibody-based techniques4–6. This platform is currently considered the gold standard in 

CTC enumeration and is the only technique approved by the U.S. Food and Drug 

Administration (FDA) and Health Canada for use in the clinic15. 

The CSS is a two component platform consisting of, (1) the CellTracks™ 

AutoPrep system (hereafter referred to as the preparation instrument), which automates 

the preparation of human blood samples, and (2) the CellTracks™ Analyzer II (hereafter 

referred to as the analysis instrument), which scans these samples following preparation. 

The CSS is described previously in Chapter 2 and Figure 2.1.  

In addition to providing a standardized method for CTC enumeration, the CSS 

allows for characterization of CTCs for protein markers that are of interest to the user. 

This interrogation can be performed at the single-cell level, using a fluorescein 

isothiocyanate (FITC) fluorescence channel not required for CTC identification16. 

Although this platform is capable of user-defined characterization, the detailed process of 

protocol development and optimization is not well-defined. Three commercially available 

markers have been developed by the manufacturer for use with the CSS, epidermal 

growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and 
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insulin-like growth factor 1 receptor (IGF-1R). HER2 analysis, in combination with the 

CSS, has been utilized by several groups to illustrate the potential for CTC 

characterization to inform clinical decision-making and to potentially change existing 

treatment guidelines. For example, Fehm et al., demonstrated that approximately one 

third of breast cancer patients with HER2- primary tumors had HER2+ CTCs17. In 

addition, Liu et al., recently reported that up to 50% of patients with HER+ metastatic 

breast cancer did not have HER2+ CTCs18. Herceptin®, a HER2 recepter interfering 

monoclonal antibody demonstrated to greatly benefit patients whose tumors express 

sufficient levels of HER2, is a commonly utilized treatment for patients with HER2+ 

primary tumors19–21. However, these studies suggest that Herceptin® may be being sub-

optimally utilized and that CTC characterization may aid in predicting treatment 

response. Ultimately, CTC characterization may have the potential to improve 

personalized care. 

CTC research is unique in that it has largely utilized a bedside-to-benchtop 

approach. This method, unlike benchtop-to-bedside research, which can often take years 

to impact patient care, has allowed CTCs quick entry into the clinical setting. However, 

physicians are hesitant to use results from CTC analysis in patient treatment decision-

making due to a lack of understanding of their underlying biology. Therefore appropriate 

pre-clinical mouse models of metastasis and complementary CTC analysis techniques 

must be utilized in order to investigate these outstanding questions. In general, there are 2 

types of pre-clinical models used to study the metastatic cascade, (1) spontaneous 

metastasis models, which allow for the study of all the steps in the metastatic cascade, 

and (2) experimental metastasis models, which only allow for the study of later steps in 
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the metastatic process such as extravasation and secondary tumor formation22. 

Spontaneous metastasis models involve tumor cell injections into appropriate orthotopic 

locations (i.e. injection of prostate cancer cells into the prostate gland for the study of 

prostate cancer). Cells are then given time to form primary tumors and spontaneously 

metastasize to secondary sites such as the bone, lung, and lymph nodes. In contrast, 

experimental metastasis models involve direct injection of tumor cells into the 

bloodstream (i.e. via tail vein or intracardiac injection to target cells to specific locations) 

and therefore skip the initial steps of intravasation and dissemination to secondary 

organs22. Thus far the majority of CTC enumeration in in vivo model systems has been 

performed using either cytometry-based23 or adapted human-based CTC techniques (i.e., 

AdnaTest)24. Although useful, none of these techniques adequately reflect CTC 

enumeration using the gold standard CSS. Based on the clinical approval, standardized 

nature, and widespread usage of the CSS, the development of a CTC capture and 

detection technique for in vivo modeling that utilizes equivalent sample preparation, 

processing, and identification criteria would be advantageous as results would be 

comparable to those obtained from patient samples. However, due to the volume 

requirements of the preparation instrument it is not possible to process small volumes of 

blood using this automated platform. In addition, previous work by Eliane et al., (2008) 

has demonstrated that contamination of samples with mouse epithelial cells (which also 

meet the standard CTC definition [EpCAM+CK+DAPI+CD45-]) can lead to 

misclassification of mouse squamous epithelial cells as CTCs25. To address these issues, 

an adapted technique that allows the utilization of the CSS CTC kit reagents combined 

with a manual isolation procedure was developed. The addition of a FITC labeled human 
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leukocyte antigen (HLA) antibody to the assay allows human tumor cells to be 

distinguished from mouse squamous epithelial cells.    

This manuscript describes the standard, commercially developed and optimized 

CSS protocol for processing patient blood samples and common pitfalls that may be 

encountered, including discrepant items that can lead to CTC misclassification errors. In 

addition, customization of the CSS assay to examine user-defined protein characteristics 

of captured CTCs and a comparable adapted CSS technique that allows for the 

enrichment and detection of CTCs from small volumes of blood in pre-clinical mouse 

models of metastasis are described.  

 

5.2  Materials and methods 

5.2.1 Standard CTC enumeration from patient blood samples 
using the CellSearch® system (CSS) 

All human studies described in this manuscript were carried out under 

protocols #15569E and #16904E approved by Western University’s Human Research 

Ethics Board (Appendices 1 and 2). Appropriate handling of human blood samples, 

including both sample collection and preparation, is critical for efficient CTC 

enumeration using the CSS. Specifically, using standard aseptic phlebotomy techniques, 

a minimum of 8.0mL of human blood must be collected into a 10mL CellSave tube 

(Janssen Diagnostics, Raritan, NJ; hereafter referred to as the CTC preservative tube), 

which contains ethylenediaminetetraacetic acid (EDTA) and a proprietary cellular 

preservative. This tube is then inverted a minimum of 5 times to prevent blood from 

clotting. Samples are then processed immediately or stored at room temperature for up to 

96 hours. Immediately prior to sample processing, CSS reagents should be removed from 
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the fridge and allowed to warm to room temperature. Using a disposable 10mL pipette 

and automated pipettor, 7.5mL of blood is collected from the CTC preservative tube and 

slowly dispensed into an appropriately labeled preparation instrument processing tube 

and 6.5mL of dilution buffer is added to each sample. All samples are then mixed by 

inversion 5 times and centrifuged at 800 x g for 10 min with the brake in the “off” 

position.  

To ensure appropriate instrument operation, a control sample must be run once 

each day human samples are processed. Control preparation involves an initial gentle 

vortex of the control vial, followed by inversion 5 times to mix. The cap from the control 

vial is then carefully removed and an inverted preparation instrument processing tube is 

placed on top of the uncapped vial. In one swift motion, the control vial is inverted, and 

the contents of the vial are poured into the processing tube. While inverted, the sides of 

the control vial are gently flicked to release any remaining contents. The inverted control 

vial is then carefully removed from the processing tube, ensuring that no liquid is lost. 

Using a 1,000µL pipette, any remaining contents from the vial and lid are collected and 

gently deposited into the processing tube. A single control sample (1 per day) and all 

human blood samples are then loaded onto the preparation instrument by following the 

on-screen instructions. Samples must be processed within 1 hour of preparation. 

Following batch completion, the on-screen instructions on the preparation 

instrument are used to unload all samples from the system. Each sample, in a separate 

cartridge, in a magnetic device, must be tapped on the lab bench to release any bubbles 

that are stuck to the edges of the cartridge. Once all the bubbles have been removed, the 



 

155 

cartridge must be firmly capped, laid flat, and incubated in the dark for at least 20 

minutes. Samples must be scanned within 24 hours of preparation.  

Sample scanning is performed on the analysis instrument following lamp 

initialization. Once warmed (~ 15 minutes), quality control measures are performed by 

selecting the QC Test tab, loading the system verification cartridge, and following the on-

screen instructions. Selection of the Patient Test tab allows for sample scanning. The 

system will perform a coarse focus and edge detection on the magnetic device cartridge. 

Edges should be adjusted as necessary using the directional keys. Following acceptance 

of the described changes the system will perform a fine focus and begin sample scanning. 

Validation of control samples must be performed using defined criteria for cells spiked at 

high (CK+DAPI+CD45-APC+) and low (CK+DAPI+CD45-FITC+) concentrations. 

Captured CTCs from human blood samples must be reviewed and classified using the 

defined CTC criteria (CK+DAPI+CD45-). 

5.2.2 CTC characterization for user-defined markers using the 
CSS 

CTC characterization using the CSS requires specific dilution of the antibody 

of interest. Specifically, the antibody must be diluted using Bond Primary Antibody 

Diluent (Leica Biosystems, Concord, ON) to the desired concentration in a marker 

reagent cup using the formula (stock concentration = ([working concentration x 850µL] / 

150µL)), where the working concentration is the concentration of the antibody after 

addition to the sample and the stock concentration is the concentration of antibody in the 

reagent cup. For multiple samples, antibody volumes need to be adjusted as described in 

Table 5.1. Once diluted the reagent cup is placed in position 1 in the reagent cartridge and 

loaded onto the CSS. 
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Table 5.1. Total volume requirements for the CSS when processing various numbers of 

samples with a user-defined marker.

# of Samples with User 
Defined Marker Added

Total Volume to Add 
to Reagent Cup (µl)

1 450

2 600

3 750

4 900

5 1050

6 1200

7 1350

8 1500

**This table has been adapted from the Veridex White Paper (available online:  

http://www.veridex.com/pdf/CXC_Application_Guideline.PDF.) 
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Once prepared, human blood samples for which characterization is desired are 

loaded onto the preparation instrument as described above in section 5.2.1. Selection of 

User Defined Assay on the preparation instrument is required to enable custom marker 

addition to selected samples. Following batch completion, sample scanning is performed 

as outlined in section 5.2.1. Initialization of the FITC channel (Setup tab --> CellSearch 

CTC --> CTC Research) is required for visualization of the marker of interest. Exposure 

times can be edited as necessary. However, it is recommended that an exposure time of 

1.0 sec not be exceeded when using the CSS CTC kit as this can increase bleed-through 

into other fluorescent channels utilized for CTC identification. 

5.2.3 Adaptation of the standard CSS protocol for use in pre-
clinical mouse models 

This protocol has been adapted from the Veridex Mouse/Rat CellCapture Kit 

(Veridex; no longer commercially available). Blood collection (minimum of 50µL) is 

performed from mice previously injected with human tumor cells (orthotopic, tail vein, or 

intracardiac routes) using a 22 gauge needle, pre-coated with ~30µL of 0.5M EDTA. 

Collected blood from the saphenous vein (for serial CTC analysis) or by cardiac puncture 

(for terminal CTC analysis) is dispensed, following removal of the needle, into a 1mL 

EDTA microtainer blood collection tube and mixed by inversion to prevent clotting. 

Blood may be processed immediately or stored at room temperature for up to 48 hours 

following the addition of an equal volume of CytoChex cellular preservative (Streck, 

Omaha, NE).  

 Immediately prior to processing, the CSS reagents must be removed from 

the fridge and allowed to warm to room temperature. The equivalent of 50µL of whole 

blood is then transferred to a 12x75 mm flow cytometry (FCM) tube and 500µL of 
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dilution buffer (Janssen Diagnostics, CellSearch CTC kit) is added to each sample, 

washing down any blood that remains on the sides of the tube. If necessary, a short 

centrifuge spin can be used to collect any remaining blood. Following a gentle vortex, 

25µL of anti-EpCAM ferrofluid (Janssen Diagnostics, CellSearch CTC kit) is added to 

each sample by placing the tip of the pipette directly into the sample. Next, 25µL of 

Capture Enhancement reagent (Janssen Diagnostics, CellSearch CTC kit) is added to 

each sample, followed by a gentle vortex to mix. Samples are then incubated at room 

temperature for 15 min and subsequently placed into a magnet for 10 min. While still in 

the magnet, residual liquid and unlabelled cells are carefully aspirated, without touching 

the wall of the tube, using a glass pipette and discarded. 

Sample tubes are then removed from the magnet and resuspended in 50µL of 

Nucleic Acid Dye (Janssen Diagnostics, CellSearch CTC kit), 50µL of Staining Reagent 

(Janssen Diagnostics, CellSearch CTC kit), 1.5µL of anti-mouse CD45-APC 

(eBioscience, San Diego, CA), 5.0µL of anti-human HLA-AlexaFluor488 (BioLegend, 

San Diego, CA) and 100µL of Permeabilization Reagent (Janssen Diagnostics, 

CellSearch CTC kit). For multiple samples, these reagents may be pre-mixed and 

206.5µL of this mixture may be added to each tube. Following a gentle vortex, each 

sample is incubated for 20 min at room temperature. Dilution buffer (500µL) is then 

added and the samples are placed into a magnet and incubated for 10 min. While still in 

the magnet, a glass pipette is used to carefully aspirate the residual liquid and unlabelled 

cells. Finally, the sample is resuspended in 350µL of dilution buffer and the entire 

volume is carefully transferred into a cartridge in the magnetic device, starting at the 

bottom and slowly withdrawing the tip as the sample is dispensed. Once loaded, the 
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cartridge must be firmly capped as described in section 5.2.1. Bubbles may interfere with 

sample scanning and therefore should be popped using a sterile 22 gauge needle prior to 

capping. Samples must be incubated in the dark for at least 10 minutes and scanned 

within 24 hours of preparation. Prior to sample scanning any existing data on the 

magnetic device must be cleared using the Format Sample button under the Setup tab. 

Sample information must then be input using the Edit button on the Patient Test tab and 

samples can be scanned, following initialization of the FITC channel (exposure time set 

to 1.0 sec), as described in section 5.2.1. 

 

5.3  Results 

5.3.1 Standard circulating tumor cell enumeration assay 

The sensitivity and specificity of the CSS has been well documented in the 

literature26. However, to validate equivalent CTC recovery, spiked (1,000 LNCaP human 

prostate cancer cells) and unspiked human blood samples from healthy volunteer donors 

were processed on the CSS using the standard CSS CTC protocol. As expected, unspiked 

samples were free of CTCs, 0.00±0.00%, and CTC recovery was demonstrated to be 

86.9±4.71% for spiked samples (Figure 5.1A). CSS gallery images obtained from spiked 

samples were of optimal quality and CTCs were easy to distinguish from non-CTCs. 

However, when processing samples obtained from cancer patients, identification of CTCs 

is slightly more challenging, with many cells appearing smaller in size and being less 

easily distinguishable from non-CTCs (Figure 5.1B). In addition, when reviewing patient 

samples 6 categories of events were identified that were commonly discrepant items 

between reviewers (Figure 5.1C). These 6 categories included, (1) small events that did  
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Figure 5.1. CTC enumeration and interpretation using the standard CellSearch®

system (CSS) protocol. (A) CTC recovery measured as a percentage of the number of 

spiked cells. Cells were counted by hemocytometer and ~1,000 LNCaP human 

prostate cancer cells were spiked into 7.5ml of human blood. Unspiked human blood 

samples were used as a negative control (n=3). Data are presented as the mean ± SEM.

(B) Representative CSS gallery images of the differences in CTC quality observed in

spiked blood samples (i.e., healthy donor blood spiked with tumor cells from culture) 

versus samples collected from cancer patients. (C) Representative CSS gallery images 

of commonly discrepant items that are often misclassified. Orange squares indicate 

acceptable CTCs, identified as CK+/DAPI+/CD45–. Images acquired at 10x objective 

magnification.
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not meet the 4 µm size requirement for CTC classification; (2) items with dim CK and/or 

DAPI staining; (3) justified (should be counted as a CTC) versus unjustified (should not 

be counted as a CTC) bleed through into the CD45-APC channel caused by bright CK-PE 

staining; (4) FITC+ events; (5) pixelated images in the CK and/or DAPI channels; and (6) 

events with DAPI staining that is larger than CK images or those with DAPI staining that 

does not overlap >50% with the CK image. For categories (2) and (5) specific criteria 

exist for CTC classification. For category (2), items with dim CK/DAPI can be classified 

as CTCs provided that an intact membrane can be observed in the CK channel and an 

appropriately sized DAPI image is noted. For category (5), items with pixelated 

CK/DAPI cannot be classified as CTCs if any pixelation is observed in the CK channel. 

However, pixelation is acceptable in the DAPI channel provided that it is not too severe 

(i.e., image is entirely white on a background, no grey areas—described by Janssen 

Diagnostics as white paint on a black background) or diffuse (must still appear oval in 

shape and fit within the CK). 

5.3.2 User-defined marker assay development 

Adaptation of the CSS to characterize CTCs for user-defined markers requires 

significant work-up with rigorous controls and has been described previously16. As a 

general rule, appropriate optimization of any user-defined marker requires that negative 

controls be employed to ensure that results are specific. The best results are obtained 

when spiked samples are processed with both a non-specific IgG control in place of the 

target antibody and with the antibody diluent alone as described previously. Various 

target antibody concentrations and exposure times should also be assessed and validated 

using cell lines with high, low, and absent (negative) antigen densities. Optimal protocol 
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conditions are achieved when the assay demonstrates both high sensitivity for the target 

antigen and low background noise from non-specific binding16.  

An example of this work-up using a CSC marker, CD44, is presented here. 

Initial testing with this marker began using the standard CSS CTC kit (hereafter referred 

to as the traditional CTC kit), which utilizes the FITC channel for user-defined marker 

development. Using the traditional CTC kit, it was demonstrated that, after significant 

optimization, the maximum number of CTCs that could be classified as CD44+ was 

69.3±2.67% using samples spiked with 1,000 MDA-MB-468 human breast cancer cells, 

known to demonstrate high CD44 expression with the majority of cells (98.4±0.90%; as 

determined by FCM expressing this protein (Figure 5.2A). Based upon these findings it 

was hypothesized that the commercially available CSS CXC kit might produce improved 

results. This kit allows for improved visualization of markers with a lower antigen 

density (~50,000 antigens/cell) compared with the traditional CTC kit (optimized for 

markers with a density of ~100,000 antigens/cell) by reversing the fluorescence channel 

in which the CK8/18/19 (traditionally represented in the PE channel) and the user’s 

marker of interest (traditionally represented in the FITC channel) are represented 

(therefore hereafter the CXC kit will be referred to as the low antigen density CTC kit)27. 

After significant optimization, it was demonstrated that this change allowed for improved 

CD44 staining, with 98.8±0.51% of CTCs classified as CD44+ using CD44-PE at a 

concentration of 1.0µg/mL and an exposure time of 0.6s (Figure 5.2A). Appropriate 

optimization of any user-defined marker also requires validation using high antigen 

density (MDA-MB-468), low antigen density (21NT), and negative (LNCaPs) cell lines 

for the marker of interest (Figure 5.2B). 
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Figure 5.2. Characterization of CTCs for user-defined markers using the CSS.

(A) Percentage of cells classified as CD44+ using the CTC and CXC kits on the CSS

(n=3). Data are presented as the mean ± SEM. *** = significantly different (P < 

0.0005). (B) Representative CSS gallery images of blood from a healthy volunteer 

donor (7.5ml), spiked with ~1,000 cells from the identified cell line, incubated with 

1.5µg/ml of anti-CD44-PE, and scanned at an exposure time of 0.2s. Orange squares 

indicate CD44+ CTCs, identified as CK+/DAPI+/CD45–/CD44-PE+.
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5.3.3 Circulating tumor cell analysis in pre-clinical mouse 
models 

To determine the sensitivity and specificity of the adapted mouse CSS 

protocol, spiked (1,000 LNCaP human prostate cancer cells) and unspiked mouse blood 

samples were processed manually and scanned on the analysis instrument and compared 

to results obtained using the same cell line processed using the standard automated CSS 

protocol on the preparation instrument (Figure 5.3A). As expected, unspiked samples 

were free of CTCs using both assays, 0.00±0.00% and CTC recovery using the adapted 

mouse kit (90.8±5.18%) was not significantly different from results obtained using the 

standard automated system (86.9±4.71%; p > 0.05). Images obtained using the manual 

mouse adapted protocol did not differ from those observed using the standard automated 

technique, with the exception of the addition of the HLA-FITC marker. In addition, 

mouse squamous epithelial cells do not stain positively for HLA-FITC (Figure 5.3B). To 

confirm that this technique was as sensitive as the standard CSS protocol for the isolation 

of low number of CTCs, serial dilutions were performed with spiked blood samples and 

the correlation of expected number of cells versus recovered number of cells was 

assessed (Figure 5.3C). Results demonstrate that CTCs could effectively be recovered 

down to a sensitivity of 5 cells per 50µL of whole blood using this assay. These values 

correlated with expected results with an r2 = 0.99. 

 

5.4  Discussion 
Despite the development of many new CTC technologies since the introduction 

of the CSS in 2004, this technique is still the only clinically approved technology on the 

market today and therefore it is considered the current gold standard for CTC detection  
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Figure 5.3. Adaptation of the CSS procedure for use in pre-clinical mouse models 

of metastasis. (A) CTC recovery using the adapted mouse CSS protocol measured as 

a percentage of the number of spiked cells and compared to results obtained using the 

standard human CSS protocol. Cells were counted by hemocytometer and ~1,000 

LNCaP human prostate cancer cells were spiked into 7.5ml of human blood. Unspiked 

human blood samples were used as a negative control (n=3). Data are presented as the 

mean ± SEM. ns = not significant. (B) Representative CSS gallery images of CTCs 

captured the adapted mouse CSS protocol demonstrating that HLA-AF488 is able to 

distinguish human from mouse cells. (C) Analysis of correlation and linear regression 

of the expected versus recovered number of spiked tumor cells at various 

concentrations. LNCaP human prostate cancer cells were initially counted by 

hemocytometer and subsequently spiked into mouse blood at a concentration of 

~1,000 tumor cells/50µl of blood. Spiked mouse blood was then serially diluted to a 

concentration of 5 tumor cells/50µl and processed using the mouse adapted CSS

protocol (n=3).
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and enumeration. This manuscript has demonstrated that although the CSS has rigorous 

quality control standards it can be subject to interpretation bias and that CTC 

identification in patient samples is much different from identification in spiked samples. 

Six categories of commonly discrepant items were identified that can cause CTC 

misclassifications to occur. These discrepant items highlight the need for multiple 

reviewers on each patient sample processed on this instrument. In addition, the 

differences observed in spiked versus patient obtained CTCs demonstrates that there is a 

necessity for any new CTC technologies to be validated in both spiked and patient 

samples. In addition, these new technologies must be compared to the gold standard CSS 

using split sample testing of both spiked and patient samples, as efficient CTC capture 

from spiked samples only does not necessarily reflect CTC capture efficiency in patient 

samples.         

Although the CSS has the capability to perform characterization of captured 

CTCs, it is quite restricted with regards to highly customizable optimization. In general, 

the only parameters that can be changed on this instrument for optimization of user-

defined markers are the antibody concentration and the length of time that the 

fluorophore is exposed to the mercury lamp. This limited capacity for optimization can 

present problems when working-up user-defined markers on the CSS. One solution 

proposed in this manuscript (described in detail previously16) is the use of the low antigen 

density CTC kit which switches the FITC and PE fluorescent channels allowing for better 

visualization of markers with a low antigen density. Regardless of which kit is utilized 

(traditional- or low antigen density CTC kit) there are several necessary steps that must 

be undertaken to ensure appropriate marker sensitivity, specificity, and optimization. 
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First, assay sensitivity must be assessed in comparison to a well validated method, such 

as FCM, that will allow determination of the expected detection level (i.e., the % of cells 

in the cell population that express the marker of interest) of the user-defined marker16. 

Secondly, the assay must be assessed for its ability to detect the marker of interest in cell 

lines with various levels of expression (i.e., high and low antigen densities) and its 

specificity must be validated in a cell line that is negative for the marker of interest. In all 

cases, all cell lines must be tested using a cells only control (no antibody added), the 

appropriate IgG control, and the antibody of interest at various concentrations and 

exposure times to determine the most appropriate settings that will ensure optimization of 

the user-defined marker. However, it should be noted that although characterization of 

CTCs is possible on the CSS, currently only one user-defined marker of interest can be 

explored in each sample, and that the system is very limited with regards to downstream 

applications due to the harsh processing of the samples. 

The unique bedside-to-benchtop approach utilized in CTC research has 

allowed for quick entry of this useful assay into the clinical setting. However, it has 

resulted in an inadequate understanding of the basic biology of these rare cells. Therefore 

the development and optimization of assays that allow for assessment of CTCs in pre-

clinical in vivo mouse models of cancer are needed. This manuscript describes an adapted 

CSS protocol that allows for CTCs to be assessed in 50µL volumes of mouse blood, 

ideally suited for serial CTC collection experimentation. This manuscript demonstrates 

that CTC enumeration using this protocol is comparable to results obtained using the CSS 

in combination with the traditional CTC kit, with no significant differences in CTC 

capture efficiency between the automated and manual separation techniques. In addition, 
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during the development of this assay it was recognized, as previously described in the 

literature25, that mouse squamous epithelial cell contamination can make accurate 

identification of CTCs more difficult and sometimes impossible. Therefore to combat this 

issue a user-defined HLA-AlexaFluor488 was added to this protocol to ensure that only 

human cells (CK+DAPI+CD45-HLA-AlexaFluor488+) are being appropriately assigned as 

CTCs. It is important to note that the LNCaP cell line used in this manuscript is HLAlow 

and therefore HLA-AlexaFluor488 may need to be titrated for cell lines with varying 

HLA expression. Although we have added an HLA-AlexaFluor 488 to our protocol to 

ensure accurate identification of CTCs, it is noteworthy that the vast majority of mouse 

squamous epithelial cells were easily identifiable by morphology and were limited in cell 

number. Higher cell numbers were only observed when blood collection, via cardiac 

puncture, proved difficult and repeated attempts were necessary. Therefore we propose 

that if desired, on-system characterization of CTCs could be accomplished by omitting 

this marker. In addition, although not described here, we anticipate that downstream 

characterization could be easily achieved as demonstrated previously28,29.  

Although the CSS has been utilized clinically to effectively detect CTCs in the 

blood of metastatic breast, prostate and colorectal cancer patients4,30,10, it does have 

several limitations. In up to 35% of patients with various metastatic cancers, CTCs are 

undetectable despite the presence of widespread systemic disease26. This lack of detection 

has been proposed to be as a result of the epithelial-to-mesenchymal transition (EMT), a 

well-documented process known to enhance cancer invasion, metastasis, and overall 

aggressiveness31. This transition has been associated with a significant reduction in 

epithelial markers, such as EpCAM, and a corresponding increase in mesenchymal 
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markers32. Several studies have recently demonstrated that the presence of these 

mesenchymal markers in CTCs are predictive of poorer prognosis and that many of these 

cells lack expression of epithelial markers that would be necessary for their detection 

using the CSS24,33–38. This suggests that the standard CSS definition may be missing some 

of the most aggressive CTCs.   

Despite these limitations, it is anticipated the protocols described in this 

manuscript will be important tools for improved CTC analysis using the CSS, 

development of novel CTC technologies, optimization of user-defined markers, and 

improved understanding of CTC biology using in vivo pre-clinical mouse models. Taken 

together, these protocols will provide a useful resource for users of this platform 

interested in pre-clinical and clinical research pertaining to metastasis and CTCs. 
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Abstract 
Metastatic disease is responsible for the majority of prostate cancer (PCa) 

deaths and is associated with the presence of circulating tumor cells (CTCs). Detection of 

≥5 CTCs/7.5mL of blood predicts for poor prognosis in metastatic PCa. The U.S. Food 

and Drug Administration (FDA) and Health Canada-cleared CellSearch® system (CSS) is 

the current gold standard for CTC enumeration. However, using the CSS ~35% of 

metastatic PCa patients have undetectable CTCs, which may result from the epithelial-to-

mesenchymal transition (EMT) and subsequent loss of necessary CTC detection markers. 

Although valuable clinically, little is known about the biology of CTCs, due in large part 

to a lack of appropriate CTC analysis tools in pre-clinical models of metastasis.  In the 

current study, we have developed two pre-clinical assays for assessing human CTCs in 

xenograft mouse models of metastasis; one that is comparable to the EpCAM-based CSS 

(dependent on EMT status) and one that detects CTCs semi-independent of EMT status 

based on capture with EpCAM and HLA (human leukocyte antigen). Using mouse blood 

spiked with PCa cell lines with varying epithelial (LNCaP and LNCaP C4-2B) and 

mesenchymal (PC-3 and PC-3M) phenotypes, we demonstrate that the EpCAM-based 

assay (comparable to the CSS) is unable to detect a significant number (~40-50%) of 

mensechymal CTCs. In vivo analysis demonstrates that cell lines with an increasingly 

mesenchymal phenotype shed a greater number of CTCs, and that these cells are shed 

more quickly and have a greater metastatic capacity than cell lines with an epithelial 

phenotype. Interestingly, the EpCAM-based CSS appears to capture the majority of 

CTCs shed during the early-stages of disease, and it is only after the establishment of 

metastases that a significant number of undetectable CTCs are shed into the circulation. 

Overall these results provide a better understanding of the role of the EMT in CTC 

generation and metastasis. In addition, this study also highlights that the pursuit of novel 

technologies aimed at capturing CTCs that are currently presumed to be undetectable 

may only be useful in the metastatic setting.   
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6.1  Introduction 
Prostate cancer (PCa) is the most commonly diagnosed cancer and third most 

common cause of cancer death in Canadian men1. The majority of PCa deaths result from 

the development of metastatic disease, due to a lack of effective treatment options for 

patients with metastases. During the metastatic cascade, tumor cells disseminate from the 

primary site (i.e., prostate) to distant locations throughout the body via the bloodstream2. 

The presence of circulating tumor cells (CTCs) in the blood correlates with metastatic 

disease and the enumeration of these rare cells has been demonstrated to be an indicator 

of overall survival3–6. In metastatic PCa patients, the detection of ≥5 CTCs/7.5ml of 

blood is indicative of poorer progression-free and overall survival compared to patients 

with <5 CTCs in the same blood volume6. In addition, changes in CTC number 

throughout the course of treatment have been demonstrated to be indicative of treatment 

success7.  

Due to the rare nature of CTCs (~1 CTC per 105-107 blood mononuclear cells 

in a metastatic patient) extremely sensitive technologies are required in order to 

accurately and reliably detect these cells8. Several techniques have been utilized to detect 

CTCs, including polymerase chain reaction (PCR)-based assays9,10, density-gradient 

centrifugation11,12, and flow cytometry (FCM)13–15 techniques. All of these techniques 

have unique advantages and disadvantages, however all of these techniques lack 

standardization, a necessity for use in the clinical setting. The development of the 

CellSearch® system (CSS) by Janssen Diagnostics provides a standardized method for the 

sensitive detection and quantification of these rare CTCs in human blood using 

fluorescence microscopy and immunology based techniques4,6,5. The CSS is also the only 
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CTC technology currently approved by the U.S.FDA (Food and Drug Administration) 

and Health Canada for clinical management of metastatic PCa (as well as metastatic 

breast and colorectal cancers) and therefore it is considered the current gold standard in 

CTC technology.  

The CSS distinguishes CTCs from contaminating leukocytes by first selecting 

for cells with an EpCAM+ (epithelial cell adhesion molecule) phenotype and 

subsequently performing  differential fluorescent staining with cytokeratins (CK) 8/18/19 

(CK), CD45 (leukocyte marker), and DAPI. CTCs identified by this assay are thus 

defined as cells with an EpCAM+/CK+/DAPI+/CD45- phenotype. Therefore CTC 

detection using the CSS is not based on the expression of tumor-specific markers, but 

instead on the expression of epithelial-specific markers (EpCAM and CK), thereby only 

allowing it to capture CTCs from tumors of epithelial origin (i.e., carcinomas).  

Although the CSS has been utilized clinically to effectively detect CTCs in the 

blood of metastatic PCa patients6, in up to 35% of patients CTCs are undetectable despite 

the presence of widespread systemic disease16. This suggests one of two things, either (1) 

CTCs are truly not present in ~1/3 of patients with metastatic disease or (2) CTCs are 

present but are undetectable by the CSS as they do not meet the standard definition of 

CTCs (EpCAM+/CK+/DAPI+/CD45-). This lack of detection has been proposed to be as a 

result of the epithelial-to-mesenchymal transition (EMT), a process first described in the 

setting of embryogenesis that is now being explored for its contribution to the metastatic 

spread of various cancers of epithelial origin17–19. EMT has been demonstrated to result in 

a significant reduction in various epithelial markers (EpCAM and E-cadherin), some of 

which are necessary for CTC capture and enumeration17,20,21. In addition to a reduction in 
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epithelial marker expression, EMT also results in a corresponding increase in 

mesenchymal marker expression (N-cadherin and vimentin), and in doing so, has been 

well documented for its role in enhancing cancer invasion, metastasis, and overall disease 

aggressiveness17,18. This therefore suggests that the standard CSS definition of CTCs may 

be missing some of the most invasive and highly metastatic cells in the bloodstream and 

that the capture and subsequent characterization of these CTCs with an increasingly 

mesenchymal phenotype may be more informative then those with a purely epithelial 

phenotype. In fact, several studies have recently demonstrated that CTCs with a purely 

mesenchymal phenotype are undetectable by the CSS, but that the presence of 

mesenchymal marker expression on CTCs with a hybrid phenotype is predictive of 

poorer prognosis20,22–27. This suggests that current technology may be limiting our ability 

to capitalize on the full potential of CTCs and that a greater understanding of CTC 

biology is necessary in guiding future research.  

The unique bedside-to-bench approach utilized in the field of CTC research has 

allowed for quick entry of this technology into the clinic. However, outstanding questions 

regarding the biology of these rare cells has resulted in a hesitance in utilizing this 

information to direct patient care. Unfortunately appropriate tools needed to address these 

outstanding questions are lacking and therefore appropriate mouse models and 

complementary CTC analysis techniques are necessary in order to move this field of 

study forward. Previous work on CTC biology in our laboratory has shown that CTC 

dissemination appears to occur at relatively early time points in the metastatic cascade 

and that CTCs may also be generated by metastases in an orthotopic mouse model of 
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breast cancer metastasis28,29. However, very little is currently known about the role of 

EMT in CTC dissemination patterns and metastasis.  

In the current study, we have developed two pre-clinical assays for assessing 

human CTCs in xenograft mouse models of metastasis; one that is comparable to the 

EpCAM-based CSS (dependent on EMT status) and one that detects CTCs semi-

independent of EMT status based on capture with EpCAM and HLA (human leukocyte 

antigen). Using these assays, differences in CTC capture efficiency and kinetics in vivo 

was assessed using 4 prostate cancer cell lines (LNCaP, LNCaP C4-2B, PC-3, and PC-

3M) with varying EMT phenotypes. Additionally, primary tumor formation and 

metastatic dissemination was compared for each investigated cell line. The novel results 

presented here provide a better understanding of CTC biology and may shed light on 

which CTCs are the most important to study and characterize, thereby guiding strategies 

on how to utilize CTCs most effectively in a clinical setting.  

 

6.2  Materials and methods 

6.2.1 Cell culture and reagents 

LNCaP30 (ATCC, Manassas, VA) and PC-3M31 (a kind gift from Dr. Paula 

Foster, Western University, London, ON) human prostate cancer cell lines were 

maintained in RPMI-1640 + 10% fetal bovine serum (FBS). LNCaP C4-2B32 human 

prostate cancer cells (a kind gift from Dr. Katherine Stemke Hale, M.D. Anderson Cancer 

Center, Houston, TX) were maintained in T-media + 10% heat-inactivated FBS. PC-333 

human prostate cancer cells (ATCC, Manassas, VA) were maintained in F12K media + 

10% FBS. MDA-MB-46834 human breast cancer cells (a kind gift from Dr. Janet Price, 
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M.D. Anderson Cancer Center, Houston, TX) were maintained in αMEM + 10% FBS. 

HeLa35 human cervical cancer cells (a kind gift from Dr. Jim Koropatnick, Western 

University, London, ON) were maintained in DMEM + 10% FBS. Upon reaching 80% 

confluency, cells were passaged using 0.25% trypsin/EDTA (ethylenediaminetetraacetic 

acid). Media and 0.25% trypsin/EDTA was obtained from Life Technologies (Carlsbad, 

CA). FBS was obtained from Sigma (St. Louis, MO).   

6.2.2 RNA extraction, cDNA synthesis, and real-time PCR 

Total RNA was isolated from the appropriate prostate cancer (LNCaP, LNCaP 

C4-2B, PC-3, and PC-3M) and control (MDA-MB-468 and HeLa) cell lines using TRIzol 

reagent (Life Technologies) following the manufacturer's instructions and quantified 

using a Nanodrop ND-1000 (Thermo Scientific, Waltham, MA). Following 

quantification, for each reaction 1.0 µg of total RNA was reverse transcribed into 

complementary DNA (cDNA) by Superscript III reverse transcriptase and oligo(dT)20 

primers (Life Technologies). Quantitative reverse-transcription polymerase chain 

reactions (qRT-PCR) were performed in triplicate using Brilliant II SYBR Green qPCR 

Master Mix (Agilent Technologies, Santa Clara, CA) on a Stratagene Mx3000P qPCR 

system (Life Technologies). Sequence specific primers for E-cadherin, N-cadherin, 

vimentin, EpCAM, α-catenin, and GAPDH were designed based on gene sequence 

information from the National Center for Biotechnology Information (NCBI; Bethesda, 

MD), and are presented in Table 6.1. The thermal cycling profile used for all genes was 

40 cycles of 94°C for 1 min, 60°C for 1 min, and 72°C for 2 min. To account for 

differences in GAPDH expression between cell lines, samples were normalized using a  
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Table 6.1. Forward and reverse primers used for qPCR analysis of prostate cancer cell 
lines.

Target 
Gene

Forward Primer (5' → 3') Reverse Primer (5' → 3')

E-cadherin TGCTGATGCCCCCAATACCCCA GTGATTTCCTGGCCCACGCCAA

N-cadherin TGACTCCAACGGGGACTGCACA AGCTCAAGGACCCAGCAGTGGA

EpCAM CGACTTTTGCCGCAGCTCAGGA GGGCCCCTTCAGGTTTTGCTCT

Vimentin AACCAACGACAAAGCCCGCGTC TTCCGGTTGGCAGCCTCAGAGA

α-catenin CCACGTTTTACTGAGCAAGT AGTCAGAGTCATCCAACTCC

GAPDH TCCATGGCACCGTCAAGGCTGA GCCAGCATCGCCCCACTTGATT
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standard curve generated using pooled qPCR human reference total RNA (Agilent 

Technologies)36. 

6.2.3 Immunoblotting 

Human prostate cancer (LNCaP, LNCaP C4-2B, PC-3, and PC-3M) and 

control (MDA-MB-468 and HeLa) cell lines were harvested from tissue culture using 

either cell scraping (E-cadherin and N-cadherin analysis) or trypsinization (vimentin, 

EpCAM, and α-catenin analysis). Cell lysates were collected from harvested cells using 

1% NP-40 lysis buffer and samples were quantified using the DC Protein Assay (Biorad, 

Hercules, CA). Protein (10µg) was subjected to sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) and transferred onto polyvinylidene difluoride 

membranes (PVDF; Millipore, Billerica, MA). Membranes were blocked using 5% skim 

milk in Tris-buffered saline + 0.1% Tween-20 (TBS-T; Sigma).  Anti-human primary 

antibodies, diluted in 5% skim milk in TBS-T, were used as described in Table 6.2. Goat 

anti-mouse IgG and goat anti-rabbit IgG secondary antibodies (Calbiochem, Billerica, 

MA) conjugated to horseradish peroxidase, diluted in 5% skim milk in TBS-T, were 

utilized at a 1:2,000 dilution for all proteins except E-cadherin (1:10,000). Protein 

expression was visualized using Amersham ECL Prime Western Blotting Detection 

Reagent (GE Healthcare, Wauwatosa, WI), and normalized using total protein based on 

amido black (Sigma) staining on the transfer membrane. MDA-MB-468 and HeLa cell 

lines were utilized as positive controls for E-cadherin/EpCAM and N-

cadherin/vimentin/α-catenin expression, respectively. 
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Table 6.2. Details of the anti-human antibodies utilized for western blot analysis of 
prostate cancer cell lines.

Target 
Protein

Clone Commercial 
Source

1° Host kDa 1°
Conditions

N-Cadherin EPR1791-4 Abcam Rabbit 100
1:1,000

(1 hr @ RT)

E-Cadherin 36/E-cadherin
BD 

Biosciences
Mouse 120

1:20,000
(1 hr @ RT)

Vimentin V9 Millipore Mouse 60
1:1,000

(1 hr @ RT)

EpCAM E144 Abcam Rabbit 39
1:1,000

(1 hr @ RT)

α-catenin EP1793Y Abcam Rabbit 100
1:50,000

(1 hr @ RT)

β-Actin Polyclonal Sigma Rabbit 42
1:5,000

(1 hr @ RT)
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6.2.4 Flow cytometry 

Human prostate cancer (LNCaP, LNCaP C4-2B, PC-3, and PC-3M) and 

control (MDA-MB-468 and HeLa) control cells were harvested from tissue culture using 

either 1mM EDTA or 0.25% trypsin/EDTA, as necessary, and resuspended in flow buffer 

(PBS + 2% FBS). For each cell line, 5 x 105 tumor cells were fixed and permeabilized 

using the IntraPrep™ Fix/Perm kit (Beckman Coulter, Fullerton, CA, USA),  and 

incubated with blocking buffer (PBS + 5% BSA [bovine serum albumin]) for 15 min. 

Cells were then washed with 1mL of flow buffer and incubated with either 0.80 µg of 

anti-E-cadherin (36/E-cadherin; BD Biosciences, San Jose, CA), 0.15 µg of anti-EpCAM 

(E144; Abcam, Cambridge, MA), 100µL of  anti-CK 8/18/19-PE (Veridex, Raritan, NJ), 

0.40 µg of anti-N-cadherin (EPR1791-4; Abcam), 0.80 µg of anti-vimentin (V9; 

Millipore), and/or 0.35 µg of anti-α-catenin (EP1793Y; Abcam). Following 3 washes 

with 1mL of flow buffer, samples were incubated with 1.0 µg of either AlexaFluor488 

conjugated goat-anti-mouse IgG or AlexaFluor488 conjugated goat-anti-rabbit IgG 

secondary antibodies (Life Technologies). Following 3 washes with 1mL of flow buffer, 

samples were resuspended in 500µL of flow buffer and analyzed using either a Beckman 

Coulter EPICS XL-MCL or Cytomics FC 500 flow cytometer. Flow buffer alone (cells 

only), mouse IgG (BD Biosciences), mouse IgG2a,κ (Abcam), rabbit IgG (Abcam), and 

10µL of PE conjugated mouse IgG (BD Biosciences) were used as negative controls at 

corresponding assay-specific concentrations. MDA-MB-468 and HeLa cell lines were 

utilized as positive controls for E-cadherin/EpCAM/CK and N-cadherin/vimentin/α-

catenin expression, respectively. 
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6.2.5 Immunofluorescence 

LNCaP, LNCaP C4-2B, PC-3, and PC-3M prostate cancer cell lines were 

seeded at cell line specific concentrations into Lab Tek 8-well glass chamber slides 

(Thermo Scientific) pre-coated with 5 µg/mL of fibronectin (LNCaP and LNCaP C4-2B 

cells; Santa Cruz Biotechnologies, Dallas, TX) and grown until confluent. Cells were 

then fixed using freshly prepared 2% paraformaldehyde for 10 min and washed with PBS 

(3 x 5 min). Following fixation, cells were permeabilized using 0.1% Triton X-100 

(Sigma) for 5 min and washed with PBS (3 x 5 min). Cells were then blocked using PBS 

+ 1% BSA for 1 hour and subsequently incubated with anti-E-cadherin and/or anti-α-

catenin primary antibodies diluted (1:50) in PBS + 1% BSA for 1 hour. Following 3 

washes with PBS, cells were fluorescently labelled using AlexaFluor488 conjugated 

goat-anti-mouse IgG and/or AlexaFluor594 conjugated goat-anti-rabbit IgG (Life 

Technologies) diluted (1:300) in PBS + 1% BSA for 1 hour. Finally, cells were washed 

(3 x 5 min) using PBS and mounted using 20µL of VectaShield mounting media with 

DAPI (Vector Laboratories, Burlingame, CA), coverslipped, and stored at 4°C until 

analyzed and imaged at 60x magnification using an Olympus Provis AX70 microscope 

(Olympus, Richmond Hill, ON). 

6.2.6 Blood sample collection 

A minimum of 100µL of whole blood was collected from 6-8 week old male 

athymic nude (nu/nu) mice (Harlan Sprague-Dawley, Indianapolis, IN) via terminal 

cardiac puncture of the right ventricle. Cardiac puncture was performed using a 22-G 

needle, pre-coated with sterile 0.5M EDTA, attached to a 1mL syringe. Following 

collection, the needle was removed, and whole blood was dispensed into a 1mL EDTA 
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microtainer blood collection tube (BD Microtainer, Franklin Lakes, NJ) and mixed by 

inversion to prevent clotting. Blood was either processed immediately or stored for up to 

48 hours after the addition of an equal volume of CytoChex cellular preservative (Streck, 

Omaha, NE). For EMT-dependent and semi-independent assay development, 50µL of 

whole blood was "spiked" with either 1000 LNCaP, LNCaP C4-2B, PC-3, or PC-3M 

tumor cells. To assess assay recovery of low numbers of spiked cells (100, 50, 10, 5) 

serial dilutions were performed using whole blood (data not shown). 

6.2.7 EMT dependent circulating tumor cell assay 

This assay was adapted from the Veridex mouse/rat CellCapture kit (no longer 

commercially available) and has been described in detail previously37. Briefly, following 

blood collection, the equivalent of 50µL of whole blood was incubated with 25µL of 

anti-EpCAM ferrofluid (Janssen Diagnostics; CellSearch CTC kit) and 25µL of Capture 

Enhancement Reagent (Janssen Diagnostics; CellSearch CTC kit) for 15 min. Samples 

were then incubated in a magnet for 10 min and unlabelled cells were aspirated using a 

glass pipette. Fluorescent labelling of the remaining cells was performed using 50µL of 

Nucleic Acid Dye (Janssen Diagnostics; CellSearch CTC kit), 50µL of Staining Reagent 

(Janssen Diagnostics; CellSearch CTC kit), 0.30 µg of anti-mouse CD45-APC (30-F11; 

eBioscience, San Diego, CA), 1.5 µg of anti-human HLA-AlexaFluor488 (W6/32; 

BioLegend, San Diego, CA) and 100µL of Permeabilization Reagent (Janssen 

Diagnostics; CellSearch CTC kit) for 20 min. Dilution buffer (500µL; Veridex; 

CellSearch CTC kit) was added and samples were incubated in a magnet for 10 min. 

Unlabelled cells were aspirated using a glass pipette and the remaining sample was 

resuspended in 350µL of dilution buffer and transferred to a MagNest™ device for 



 

187 

analysis using the CellSearch analyzer (Janssen Diagnostics). Events with an 

EpCAM+/CK+/DAPI+/CD45-/HLA+ phenotype and a round/oval morphology were 

classified as CTCs. 

6.2.8 EMT semi-independent circulating tumor cell assay 

Following blood collection, the equivalent of 50µL of whole blood was 

transferred to a 5mL flow tube and red blood cells (RBC) were lysed using 2mL of 1x 

NH4Cl for 10 min. Following RBC lysis, samples were washed with 2mL of dilution 

buffer and centrifuged to collect cells. Cells were then fluorescently labelled using 0.2 µg 

of anti-human HLA-PE (W6/32; BioLegend), 0.0075 µg of anti-human EpCAM-PE 

(EBA-1; BD Bioscience), and 0.30 µg of anti-mouse CD45-APC and incubated for 20 

min. Samples were washed with 1mL of dilution buffer and immunomagnetically 

enriched using the EasySep APC Positive Selection kit (StemCell Technologies, 

Vancouver, BC) as per the manufacturer's instructions. Following enrichment, the 

fraction containing the tumor cells (supernatant) was centrifuged and the cell pellet was 

resuspended in 100µL of Permeabilization Reagent and 50µL of Nucleic Acid Dye and 

incubated for 20 min. Samples were then washed with 1mL of dilution buffer and cells 

bound by PE-conjugated antibodies (HLA and/or EpCAM) were immunomagnetically 

labelled using the EasySep PE Positive Selection kit (StemCell Technologies) as per the 

manufacturer's instructions. Samples were washed, resuspended in 350µL of dilution 

buffer, and transferred to a MagNest™ device for analysis using the CellSearch analyzer. 

Events with an EpCAM/HLA+/DAPI+/CD45- phenotype and a round/oval morphology 

were classified as CTCs. 
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6.2.9 In vivo metastasis assays 

All animal experiments were conducted under protocol #2012-031 approved by 

Western University's animal care and use committee (Appendix 3). LNCaP, LNCaP C4-

2B, PC-3, and PC-3M cancer cells were prepared in sterile Hank's buffered saline 

solution (HBSS; Life Technologies) and injected (1x106 cells/40µL per mouse) 

orthotopically into 6-8 week old male athymic nude (nu/nu) mice (Harlan Sprague-

Dawley) via the right dorsolateral lobe of the prostate as described previously38,39. At 

various time points post-injection (2, 4, 8, 12, and 16 weeks) mice were sacrificed, 

necropsies performed to assess for gross metastases, and tissues collected for 

pathohistological analysis. Blood (100µL) was also collected and processed using both 

the EMT dependent and EMT semi-independent assays (50µL/assay), described above, to 

assess differences in CTC presence in the bloodstream. Whenever possible, CTC sub-cell 

lines were generated using excess blood not required for CTC analysis using the EMT-

dependent or EMT semi-independent assays. Specifically, any unused blood was lysed 

using 1x NH4Cl (Beckman Coulter), washed with PBS, and plated (in 6 well dishes) for 

tissue culture in the complete growth media utilized for the parental cell line. The cells 

were grown for ~1-2 weeks, with regular media changes every 1-2 days to remove 

contaminating blood cells until a sufficient number of cells were available for freezing. 

6.2.10 Histology and immunohistochemistry 

At necropsy, tissue (prostate, lymph nodes, liver, lungs, and bone) was 

collected and fixed using 10% neutral-buffered formalin before processing. Tissue was 

subsequently paraffin-embedded, sectioned (4 µm) and stained using standard 

hematoxylin and eosin (H&E) staining. Slides were imaged at 400x magnification using 
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an Aperio ScanScope microscope (Aperio Technologies,Vista, CA) and assessed for 

tumor incidence and histological characteristics. Slides containing serial sections were 

deparaffinised using xylene and rehydrated using a graded series of alcohols (100%, 

95%, 80%, 75%) prior to tissue staining. Antigen retrieval was then performed via 

immersion in 10 mM sodium citrate buffer + 0.05% Tween-20 at 100°C for 20 min, 

followed by cooling for 20 min at room temperature, and washing with PBS + 0.05% 

Tween-20 (3 x 2 min). Slides were incubated in BLOXALL Endogenous Peroxidase and 

Alkaline Phosphatase Blocking Solution (Vector Laboratories) for 10 min, washed with 

PBS + 0.05% Tween-20 for 5 min, and rinsed with running water (2 x 1 min). Tissue 

staining for E-cadherin (1:100) and N-cadherin (1:750) was performed using the Polink 

DS-MR-Hu kit (GBI Labs, Bothell, WA). Slides were stored at room temperature until 

imaged at 40x magnification using an Aperio ScanScope microscope. 

6.2.11 Statistical analysis 

Statistical analysis was performed using GraphPad Prism 5.0 (San Diego, CA). 

Analysis of CTC recovery using the EMT dependent and semi-independent  assays was 

performed using 1-way ANOVA with Tukey's post-test for multiple comparisons. To 

assess differences in the mean number of CTCs between cell lines at a given time point 

using either the EMT dependent assay, EMT semi-independent assay, or differences 

between each assay within individual mice, a Mann-Whitney test was performed. 

Comparison of differences between each assay in matched data sets within cell lines at a 

given time point was performed using a Wilcoxon matched-pairs signed rank test. 

Primary tumor weights and mean metastatic burden were compared using 1-way 

ANOVA with Bonferroni's post-test for multiple comparisons. Differences in the 



 

190 

incidence of primary tumors, lymph node metastasis, and distant metastasis were 

assessed using Fisher's Exact Test. Differences in the mean number of CTCs in mice with 

no metastasis versus those with metastatic disease were compared using a Student’s T-

test. Changes in EMT gene expression in isolated CTC sub-cell lines were compared to 

the parental cell line using 1-way AVONA with Dunnett's post-test for multiple 

comparisons. Linear regression and Spearman analysis was utilized to examine the 

relationship between mean number of CTCs and primary tumor weight. Unless otherwise 

stated, data are presented as the mean ± SEM. In all cases, p values of ≤0.05 were 

considered statistically significant. 

 

6.3 Results 

6.3.1 Human prostate cancer cell lines display differences in 
EMT phenotype 

Four human prostate cancer cell lines (LNCaP, LNCaP C4-2B, PC-3, and PC-

3M) previously reported to have progressively increasing metastatic capacity40–43 were 

characterized for epithelial (E-cadherin, EpCAM, and/or CK 8/18/19) and mesenchymal 

(N-cadherin and vimentin) markers using qRT-PCR (Figure 6.1), western blot (Figure 

6.2), and FCM (Figure 6.3). Results of this analysis demonstrated that the LNCaP and 

LNCaP C4-2B cell lines had consistently higher expression of the epithelial-associated 

markers E-cadherin and CK 8/18/19 (investigated by FCM only), while the PC-3 and PC-

3M cell lines had consistently higher expression of the mesenchymal-associated markers 

N-cadherin and vimentin across all 3 assays. Although EpCAM levels appeared similar 

between cell lines at the mRNA level (Figure 6.1), relative differences in EpCAM 

expression were evident at the protein level, with the LNCaP and LNCaP C4-2B cell  
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Figure 6.1. Human prostate cancer cell lines display differences in epithelial-to-

mesenchymal transition (EMT) phenotype at the RNA level. The expression of 

epithelial-associated (grey bars) and mesenchymal-associated genes (black bars) 

correlates with previously reported cell aggressiveness and in vivo metastatic capacity.

Results of real time quantitative PCR mRNA expression analysis for the epithelial-

associated markers E-cadherin and EpCAM and mesenchymal-associated markers N-

cadherin and vimentin are presented as relative expression compared to pooled 

reference RNA (n=3).
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Figure 6.2. Human prostate cancer cell lines display differences in EMT 

phenotype at the protein level as assessed by immunoblotting. The expression of 

epithelial-associated (grey bars) and mesenchymal-associated proteins (black bars) 

correlates with previously reported cell aggressiveness and in vivo metastatic capacity.

Results of western blot protein expression analysis for the epithelial-associated 

markers E-cadherin and EpCAM and the mesenchymal-associated markers N-cadherin 

and vimentin are presented as quantitative densitometric data relative to appropriate 

positive control cell lines and normalized to total protein loaded as assessed by amido 

black staining, and as representative western blots shown as cropped gel images (n=3).
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Figure 6.3. Human prostate cancer cell lines display differences in EMT 

phenotype at the protein level as assessed by flow cytometry. The expression of 

epithelial-associated (grey bars) and mesenchymal-associated proteins (black bars) 

correlates with previously reported cell aggressiveness and in vivo metastatic capacity.

Results of protein expression analysis by flow cytometry for the epithelial-associated 

markers E-cadherin and EpCAM and the mesenchymal-associated markers N-cadherin

and vimentin are presented as relative fluorescence intensity (expression) compared to 

appropriate positive control cell lines (n=3).
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lines demonstrating higher levels of expression compared to the PC-3 and PC-3M cell 

lines (Figure 6.2 and 6.3).  

To further investigate the potential capacity for capture of these cells by the 

EpCAM and CK 8/18/19 reliant CSS, differences in the co-expression of these proteins 

on individual cells was assessed using FCM in order to determine relative differences in 

co-expression of these proteins within each cell line (Figure 6.4). This analysis further 

confirmed the differential EpCAM expression between these 4 cell lines, but interestingly 

demonstrated a similar distribution of CK 8/18/19 expression. This suggested that any 

differences in CTC capture between these 4 cell lines would likely be as a result of 

differences in EpCAM expression and would be less impacted by differences in CK 

8/18/19. 

Finally, the ability of E-cadherin to maintain the epithelial phenotype of cells is 

due, in part, to its localization on the cell membrane. In fact, this localization has been 

reported to be a requirement for normal adhesive functions of epithelial cells
44,45

. 

Therefore localization studies using immunofluorescence were performed on the 4 

investigated cell lines. These studies demonstrated that although E-cadherin expression 

could be detected in the PC-3 cell line via western blot, the protein was aberrantly 

localized to the cytoplasm in these cells, most likely due to a lack of α-catenin 

expression, a protein necessary for appropriate E-cadherin membrane localization
46

. In 

contrast, we observed that LNCaP and LNCaP C4-2B cell lines strongly expressed E-

cadherin with appropriate membrane localization (Figure 6.5). Validation of the loss of 

α-catenin expression in the PC-3 and PC-3M cell lines was further confirmed using qRT-

PCR, western blot, and FCM (Figure 6.6). 
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Figure 6.4. Human prostate cancer cell lines express similar levels of CK 8/18/19 

but variable levels of EpCAM as assessed by flow cytometry. (A) Representative 

flow cytometry dot plots of the differential expression of EpCAM (AF488) and CK 

8/18/19 (PE) in investigated prostate cancer cell lines. (B) Results of flow cytometry 

protein expression analysis for epithelial-associated markers, EpCAM and CK 

8/18/19, presented as the mean (± SEM) fluorescence intensity of the investigated 

proteins for each cell line (n=3).



197 

 

 



198 

 

 

 

 

 

 

 

 

 

Figure 6.5. E-cadherin cell membrane localization is aberrant in human prostate 

cancer cell lines that do not express α-catenin. (A) Representative 

immunofluorescent images of E-cadherin (green) and DAPI (blue) stained PC-3, PC-

3M, LNCaP, and LNCaP C4-2B cell lines cultured on glass chamber slides. (B)

Representative immunofluorescent images of co-localization (yellow) of E-cadherin 

(green) and α-catenin (red) in PC-3, PC-3M, LNCaP, and LNCaP C4-2B cell lines 

cultured on glass chamber slides (DAPI [blue]). Images were obtained at 60x 

magnification, scale bars = 15 µm (n=3).
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Figure 6.6. α-catenin mRNA and protein are aberrantly expressed in PC-3 and 

PC-3M human prostate cancer cell lines. (A) Results of real time quantitative PCR 

mRNA expression analysis for α-catenin in the investigated cell lines (PC-3M, PC-3, 

LNCaP C4-2B, and LNCaP) are presented as relative expression compared to pooled 

reference RNA (n=3). (B) Results of western blot protein expression analysis for α-

catenin in the investigated cell lines are presented in quantitative densitometric form

relative to an appropriate positive control cell line and as a representative western blot,

shown as a cropped gel image (n=3). (C) Results of flow cytometry expression 

analysis for α-catenin in the investigated cell lines are presented as relative 

fluorescence intensity (expression) compared to an appropriate positive control cell 

line (n=3).
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6.3.2 Circulating tumor cell recovery using the CellSearch® 
system is lower for prostate cancer cells with a 
mesenchymal phenotype 

As the current gold standard CTC detection technology, the CSS relies solely 

on the expression of the epithelial-associated marker EpCAM for CTC capture. However, 

this marker has been shown to be downregulated in cells with an invasive phenotype47, 

suggesting that EpCAM-based CTC detection techniques such as the CSS may be 

missing at least a portion of the CTCs that enter the bloodstream. In order to assess this, 

we developed 2 novel CTC assays for use with pre-clinical models of cancer metastasis; 

one that would recapitulate the EpCAM-based CTC capture of the CSS in a mouse model 

(“EMT dependent assay”), and one that would capture all the CTCs shed into the 

circulation regardless of EMT status (“EMT semi-independent assay”). Following 

development, all 4 prostate cancer cell lines were spiked into mouse blood at a known 

concentration (1000 tumor cells/50µL blood) and were assessed using both assays to 

determine differences in CTC recovery relative to the EMT phenotype of the cells 

(Figure 6.7). Use of the EMT dependent assay resulted in significantly reduced recovery 

of CTCs with a mesenchymal phenotype (PC-3 and PC-3M) when compared to CTCs 

with an epithelial phenotype (LNCaP and LNCaP C4-2B; p ≤ 0.05) (Figure 6.7A). 

However, when the EMT semi-independent assay was utilized, although overall the CTC 

recovery was lower than that demonstrated using the EMT dependent assay, the percent 

recovery was not significantly different across all 4 cell lines regardless of EMT status 

(Figure 6.7B). The reasons underlying the reduced recovery of the EMT semi-

independent assay was further investigated by incorporating the additional sample 

handling steps required for the EMT semi-independent assay (i.e. red blood cell lysis and  
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Figure 6.7. CTC recovery using the CellSearch® system (CSS) is lower in human 

prostate cancer cells with a mesenchymal phenotype. Prostate cancer cells were 

counted by hemocytometer and spiked at a concentration of 1,000 tumour cells/50µl 

of whole mouse blood. 50µl of mouse blood was subsequently processed using a 1 of 

2 mouse-adapted protocols and CTC recovery was measured as a percentage recovery 

of the number of spiked cells. (A) CTC recovery using the EMT dependent assay is 

significantly lower in cells with a more mesenchymal and metastatic phenotype. (B)

CTC recovery using the EMT semi-independent assay is lower relative to the EMT 

dependent assay. However, equivalent recovery is observed across all 4 cell lines 

regardless of EMT phenotype. (C) Reduced recovery observed when using the EMT 

semi-independent assay was further investigated and determined to be as a result of 

extra processing steps required in this protocol. Data are presented as the mean ± SEM 

(n=3; * = significantly different [p ≤ 0.05]).
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additional washes) into the EMT dependent assay. The results demonstrated that when 

using the same reagents and a highly epithelial cell line (LNCaP C4-2B), addition of the 

extra processing steps resulted in additional sample loss between matched samples as 

previously seen when comparing both assays (Figure 6.7C). 

6.3.3 Tumors generated from prostate cancer cell lines with an 
increasingly mesenchymal phenotype have an enhanced 
capacity for circulating tumor cell shedding in vivo and 
may produce circulating tumor cells that are 
undetectable by the CellSearch® system 

LNCaP, LNCaP C4-2B, PC-3, and PC-3M prostate cancer cells were injected 

into 6-8 week old male nude mice via the right dorsolateral lobe of the prostate (1x106 

cells/mouse) to assess spontaneous metastasis. At several time points post-injection (2, 4, 

8, 12, and 16 weeks) mice were sacrificed and blood (100µL) was collected and 

processed using both the EMT dependent and EMT semi-independent assays 

(50µL/assay) and CTC numbers were normalized to the assay-specific cell line recovery 

determined in Figure 6.7. Throughout the study mice were occasionally sacrificed at 

modified time points (±1-2 weeks), either due to morbidity or other technical issues. 

However, to ensure an adequate number of animals were included for the final statistical 

analysis, mice were categorized based on time of sacrifice (1-3, 4-6, 8-10, 11-13, and 14-

16 weeks). For simplicity, the data will be presented at the initially defined time points 

(2, 4, 8, 12, and 16 weeks). Unfortunately, due to the rapid progression of the PC-3M cell 

line, CTC analysis in this group of mice could only be assessed at 2 and 4 weeks. We 

observed that, using the EMT dependent assay, the highly mesenchymal PC-3M cell line 

shed CTCs very quickly post-injection and the number of CTCs shed was significantly 

greater than all other cell lines at both time points investigated (2 and 4 weeks; p ≤ 0.05) 
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(Figure 6.8A). Additionally, the mesenchymal-like PC-3 cell line shed a similar number 

of CTCs as the epithelial LNCaP and LNCaP C4-2B cell lines until week 12, at which 

time the number of CTCs increased significantly compared to the LNCaP C4-2B cell line 

(p ≤ 0.05). Although this trend appeared to continue at 16 weeks post-injection, it was not 

significantly different from the LNCaP and LNCaP C4-2B cell lines. Similarly, using the 

EMT semi-independent assay the PC-3M cell line shed a significantly greater number of 

CTCs then all other cell lines at 2 weeks, and greater than the LNCaP and LNCaP C4-2B 

cell lines at 4 weeks (p ≤ 0.05) (Figure 6.8B). When considering the PC-3 cell line, 

unlike with the EMT dependent assay, no significant differences were observed between 

any of the cell lines at 12 weeks. However, significant differences between the PC-3 and 

LNCaP C4-2B cell lines were observed at 16 weeks (p ≤ 0.05).  

To quantify differences in CTC recovery based on EMT status, normalized 

CTC values obtained using both assays from each time point were compared. The results 

demonstrated there were no significant differences observed in CTC recovery between 

the EMT dependent and EMT semi-independent assays at any time point examined, 

except for the C4-2B cell line at 8 weeks (data not shown). To assess if the lack of 

statistical significance observed was due to a truly non-significant result or due to a high 

level of variability with regards to CTC number in individual mice within each time point 

further  investigation was undertaken to assess the difference in CTCs recovered using 

the EMT dependent and EMT semi-independent assays within individual animals. To 

assess this, the normalized number of CTCs identified using the EMT dependent assay 

were subtracted from the normalized number of CTCs identified using the EMT semi-

independent assay and presented as the mean for each time point (Figure 6.8C). In this 
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Figure 6.8. Human prostate cancer cell lines with an increasingly mesenchymal 

phenotype have an enhanced in vivo capacity for shedding CTCs that are 

undetectable by the CSS. PC-3M, PC-3, LNCaP C4-2B, and LNCaP prostate cancer 

cells were orthotopically injected into 6-8 week old male nude mice via the right 

dorsolateral lobe of the prostate (1x10
6
 cells/mouse) to assess spontaneous metastasis. 

At several time points post injection (2, 4, 8, 12, and 16 weeks) mice were sacrificed 

and blood (100 µl) was collected and processed using both the (A) EMT dependent 

and (B) EMT semi-independent assays (50 µl/assay) to assess differences in CTC 

recovery. Data are presented as the mean ± SEM (n=5-12 mice/group). (C) 

Comparison of the observed difference in the number of CTCs detected using the 

EMT dependent and EMT semi-independent assays in matched samples. Data are 

presented as the mean (± SEM) difference in the number of observed CTCs between 

both assays (# captured by EpCAM/HLA assay - # captured by EpCAM assay) at a 

given time point (n=5-12 mice/group). Negative values represent groups in which 

more CTCs were detected with the EMT dependent assay. Positive values represent 

groups in which more CTCs were detected with the EMT semi-independent assay. * = 

significantly increased relative to the PC-3 cell line; α = significantly increased 

relative to the LNCaP C4-2B cell line; δ = significantly increased relative to the 

LNCaP cell line (p ≤ 0.05). 
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way, negative values represent time points in which more CTCs were detected with the 

EMT dependent assay and positive values represent groups in which more CTCs were 

detected with the EMT semi-independent assay. Based on this analysis it was 

demonstrated that the epithelial cell lines LNCaP and LNCaP C4-2B had similar CTC 

recovery numbers across both assays at all time points investigated. However, the 

mesenchymal cell lines PC-3 and PC-3M showed increased numbers of CTCs recovered 

using the EMT semi-independent assay at later time points, with significant differences 

observed when comparing the PC-3s to the LNCaP C4-2Bs and the PC-3s to the LNCaPs 

at 12 weeks post-injection (p ≤ 0.05). 

6.3.4 Prostate cancer cell lines with an increasingly 
mesenchymal phenotype have an enhanced capacity for 
primary tumor formation and metastasis 

In addition to differences in CTC kinetics, comparison of the metastatic 

capacity of these 4 prostate cancer cell lines and the relationship between CTC 

dissemination and metastasis, has not yet been established in the literature. Therefore, at 

each time point, mice were sacrificed and tissue (all major organs and bone) was 

collected and assessed for the presence of primary and metastatic lesions based on both 

gross observations at necropsy (all organs) and microscopic (prostate, lymph nodes, liver, 

lung, and bone) analysis following standard H&E staining. In addition, the prostate and 

bladder were weighed as a surrogate of primary tumor volume, as caliper measurements 

of primary tumors in the prostate gland were not possible in live animals.  

Incidence of primary tumor formation and tumor weight was significantly 

increased in the highly mesenchymal PC-3M cell line compared to all other cell lines 

investigated (p ≤ 0.05), except when considering tumor weight of the PC-3s at 2 weeks 
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post-injection (Figure 6.9A, B). All other cell lines showed comparable primary tumor 

incidence and weight at all of the investigated time points. Additionally, when 

considering primary tumor weight and CTC number (using the EMT-semi-independent 

assay), for all cell lines there was a positive correlation between the weight of the primary 

tumor and the number of CTCs shed into the circulation (Figure 6.9C), with larger 

primary tumors shedding a greater number of CTCs. 

Additional differences between the mesenchymal and epithelial cell lines were 

observed when considering the incidence of metastasis and metastatic burden to the 

lymph nodes. Microscopic histology analysis revealed that the PC-3M cell line had a 

significantly increased incidence of lymph node metastases compared to all other 

investigated cell lines at 4 weeks (p ≤ 0.05), while the PC-3 cell line had a significantly 

increased incidence at weeks 8 and 12 compared to the LNCaP C4-2B cell line (p ≤ 

0.05). Interestingly, the incidence of metastases to the lymph node did not differ 

significantly between the PC-3 and LNCaP cell lines (Figure 6.10A). However, when 

metastatic burden to the lymph node was assessed, the PC-3 cell line demonstrated 

significantly increased metastatic burden compared to both the LNCaP C4-2Bs and the 

LNCaPs at 12 weeks post-injection (p ≤ 0.05) (Figure 6.10B). Therefore, it appears that 

although these cell lines have a similar capacity to disseminate to the lymph nodes, they 

do not have the same capacity for subsequent growth in this organ. Finally, differences in 

metastases to distant sites were also investigated, based on both gross assessment at 

necropsy, and microscopic assessment following H&E staining. We observed that both 

the PC-3M and PC-3 cell lines were able to disseminate to and establish gross 

macrometastases in a number of distant organs. In fact, no visible macrometastases were 
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Figure 6.9. The highly mesenchymal PC-3M cell line exhibits a greater incidence 

of primary tumour formation and mean tumour weight compared to other 

investigated cell lines and all cell lines show a positive correlation of CTC 

number with primary tumour weight. (A) Incidence of primary tumour formation of 

PC-3M, PC-3, LNCaP C4-2B, and LNCaP prostate cancer cell lines based on 

microscopic histological examination of formalin fixed, H&E stained tissue following 

orthotopic injection. Data are presented as the percentage of mice per cell line per time 

point with detectable primary tumours (n=6-39 mice/group). (B) Mean combined 

weight of prostate and bladder at time of sacrifice following orthotopic injection of 

prostate cancer cell lines. Data are presented as the mean ± SEM (n=6-39 mice/group). 

(C) Mean normalized number of CTCs/50 µl of blood (assessed using the EMT semi-

independent assay) positively correlates with the primary tumour weight in all of the 

investigated cell lines. * = significantly different (p ≤ 0.05). 
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Figure 6.10. The mesenchymal PC-3M and PC-3 cell lines exhibit a greater 

incidence of lymph node metastases and mean lymph node metastatic burden. (A) 

Incidence of lymph node metastasis of PC-3M, PC-3, LNCaP C4-2B, and LNCaP 

prostate cancer cell lines based on microscopic histological examination of formalin 

fixed, H&E stained tissue following orthotopic injection. Data are presented as the 

percentage of mice per cell line per time point with detectable lymph node metastases 

(n=7-39 mice/group). (B) Quantitative analysis of tumour burden (mean % of lymph 

nodes occupied by tumour) following orthotopic injection of prostate cancer cell lines. 

Data are presented as the mean ± SEM (n=7-39 mice/group). * = significantly 

different (p ≤ 0.05). 
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observed in mice injected with either the LNCaP and LNCaP C4-2B cell lines at 

necropsy (Figure 6.11). However, microscopic histology analysis of the lung and liver 

revealed distant metastases to these organs for all of the investigated cell lines. Analysis 

of the overall metastatic capacity of the investigated cell lines, based on the incidence of 

gross distant metastases to any of described organs, demonstrated that the more 

mesenchymal PC-3M and PC-3 cell lines had a significantly increased metastatic 

capacity compared to the more epithelial LNCaP and LNCaP C4-2B cell lines (p ≤ 0.05). 

Specifically, the PC-3M cell line had an increased incidence of distant metastases 

compared to the LNCaP and LNCaP C4-2B cell lines at both 2 and 4 weeks post-

injection (p ≤ 0.05), and to the PC-3s at 4 weeks post-injection (p ≤ 0.05). Similarly, at 

later time points the PC-3s had an increased incidence of distant metastases compared to 

the LNCaP C4-2Bs (16 weeks) and the LNCaPs (12 and 16 weeks; p ≤ 0.05) (Figure 

6.12A).  

Finally, we wanted to determine the relationship between CTCs and metastatic 

spread. CTC numbers were compared in mice that had the presence of metastasis to the 

lymph node or any distant organ (based on gross or microscopic analysis) to those 

without metastasis (Figure 6.12B). This data clearly demonstrates that the number of 

CTCs was significantly higher, across all 4 cell lines, in mice with metastatic disease, 

compared to those without, validating the relationship between CTC dissemination and 

metastasis, and that the mean CTC numbers were higher in those cell lines with the 

greatest metastatic capacity. 
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Figure 6.11. Human prostate cancer cell lines with an increasingly mesenchymal 

phenotype have an enhanced in vivo capacity for metastasis to distant organs. 

Incidence of metastasis to distant organs of PC-3M, PC-3, LNCaP C4-2B, and LNCaP 

prostate cancer cell lines based on gross observations at necropsy (left panel) and 

microscopic histological examination (right panel) of tissue following orthotopic 

injection. Data are presented as the percentage of mice per cell line per time point with 

detectable distant metastases to the lung, liver diaphragm, intestines, kidney, and/or 

spleen/pancreas (n=7-39 mice/group). 
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Figure 6.12. The mesenchymal PC-3M and PC-3 human prostate cancer cell lines 

exhibit a greater capacity for metastasis and this correlates with CTC 

dissemination. (A) Incidence of metastasis to distant organs of PC-3M, PC-3, LNCaP 

C4-2B, and LNCaP prostate cancer cell lines based on gross observations at necropsy 

following orthotopic injection. Data are presented as the percentage of mice per cell 

line per time point with detectable distant metastases (n=7-39 mice/group). (B) The 

mean number of CTCs/50 µl of blood, assessed using the EMT semi-independent 

assay, are presented for mice with either metastasis to the lymph nodes or any distant 

organ (based on gross and/or microscopic analysis) or mice with no evidence of 

metastasis at any time point (n=6-47 mice/group). * = significantly different (p ≤ 

0.05). 
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6.3.5 Prostate cancer cell lines maintain their established EMT 
phenotypes in vivo 

Although it appeared that cell lines with an increasingly mesenchymal 

phenotype had a higher capacity for CTC shedding and metastatic capacity, we wanted to 

confirm that the investigated cell lines demonstrated comparable epithelial and 

mesenchymal phenotypes in vitro and in vivo. Therefore immunohistochemistry was 

performed on tissue collected at necropsy for E-cadherin and N-cadherin expression 

(Figure 6.13 and 6.14).  As expected, following orthotopic injection, primary tumors 

from all investigated cell lines displayed E-cadherin and N-cadherin expression in 

patterns similar to that seen using in vitro analysis techniques (western blot and FCM; 

Figure 6.13). However, interestingly, it did appear that the PC-3M cell line expressed a 

low level of E-cadherin in vivo, versus nearly absent expression in vitro (Figure 6.2 and 

6.3). Additionally, immunohistochemistry performed on metastases from each cell line to 

the lymph nodes and lung showed similar expression for these markers in the 

mesenchymal cell lines, however slight increases in N-cadherin expression were noted in 

the lymph nodes and lungs for the LNCaP and LNCaP C4-2B cell lines respectively 

(Figure 6.14). However, further assessment of this trend will need to be explored in all 

mice positive for metastases to the lymph nodes and/or lungs to confirm this result. 

6.3.6 Circulating tumor cells acquire a more mesenchymal 
phenotype during disease progression 

To further investigate the EMT profile of CTCs shed into the circulation, blood 

that was not utilized for CTC analysis using the EMT dependent and EMT semi-

independent assays was used to generate CTC sublines representing different timepoints 

along the metastatic cascade. Unfortunately due to the low number of CTCs collected  
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Figure 6.13. Prostate cancer cell lines maintain their established EMT 

phenotypes when forming primary tumors in vivo. PC-3M, PC-3, LNCaP C4-2B, 

and LNCaP prostate cancer cells were orthotopically injected into 6-8 week old male 

nude mice via the right dorsolateral lobe of the prostate (1x10
6
 cells/mouse). At 2 

weeks post injection mice were sacrificed and prostate tissue was collected, formalin 

fixed, and assessed for tumour cells using standard H&E staining, as well as 

immunohistochemistry for E-cadherin (red) and N-cadherin (brown) expression on 

selected animals. Sections stained with hematoxylin alone (cells only) and appropriate 

secondary antibodies (secondary only) are presented as negative controls. Histological 

sections are presented at 40x magnification. Scale bars = 50 µm. 
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Figure 6.14. EMT phenotype may change between primary tumors and 

metastases in vivo. PC-3M, PC-3, LNCaP C4-2B, and LNCaP prostate cancer cells 

were orthotopically injected into 6-8 week old male nude mice via the right 

dorsolateral lobe of the prostate (1x10
6
 cells/mouse). At various time points post 

injection mice were sacrificed and (A) lymph nodes and (B) lung were collected, 

formalin fixed, and assessed for tumour cells using standard H&E staining, as well as 

immunohistochemistry for E-cadherin (red) and N-cadherin (brown) expression. PC-

3M and PC-3 cell lines demonstrate a similar EMT phenotype following metastatic 

dissemination to the lymph nodes and lung as that demonstrated using in vitro assays. 

However, some differences are observed in N-cadherin expression of the epithelial 

cell lines (LNCaP and LNCaP C4-2B) following dissemination. Histological sections 

are presented at 40x magnification. Arrowheads on H&E images indicate regions of 

tumour within the given tissue. Scale bars = 50 µm. 
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from the LNCaP and LNCaP C4-2B cell lines, CTC growth following plating did not 

occur. However several cell lines were created for both the PC-3 and PC-3M cell lines. 

To explore differences in EMT expression in CTCs, the PC-3 parental cell line (initially 

expressing a mesenchymal-like phenotype), as well as 3 sub lines collected at 8, 12, and 

16 weeks, were assessed via western blot for expression of various EMT markers, 

including E-cadherin, N-cadherin, EpCAM, and vimentin. Based on this analysis, it was 

demonstrated that there is a significant reduction in E-cadherin expression in CTCs 

collected at all time points compared to the parental cell line (p ≤ 0.05) (Figure 6.15). 

Additionally, there was an increase in N-cadherin expression at all timepoints, however 

this difference was only significantly different from the parental cell line at 12 and 16 

weeks (p ≤ 0.05). Although there was a trend toward a reduction in EpCAM and an 

increase in vimentin expression at all the timepoints investigated, the expression was not 

statistically different from the parental cell line. This data suggest that CTCs may become 

more mesenchymal as disease progresses, however additional analysis of the remaining 

CTC sublines will need to be conducted to validate these results. 

 

6.4  Discussion 

Although CTCs are now being utilized for prognostication in the clinical 

settings of metastastic breast, prostate and colorectal cancer, their underlying biology 

remains poorly understood. This lack of information stems from both the unique bedside-

to-bench approach that has been employed in the CTC field, as well as the lack of 

appropriate tools for studying CTCs in vivo in pre-clinical models of metastasis. 

Inadequate knowledge in the area of CTC biology has ultimately led to confusion with  
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Figure 6.15. Circulating tumour cells acquire a more mesenchymal phenotype 

during disease progression. Following orthotopic injection of PC-3 prostate cancer 

cells into the right dorsolateral lobe of the prostate (1 x 10
6
 cells/mouse) blood 

collected at 8 weeks, 12 weeks, and 16 weeks post-injection was lysed with sterile 1x 

NH4Cl, washed with PBS, and plated for tissue culture. Following 1-2 weeks of 

growth, with regular media changes to remove contaminating blood cells, the 

remaining CTCs were assessed using western blot for the expression of the epithelial-

associated markers E-cadherin and EpCAM and the mesenchymal-associated markers 

N-cadherin and vimentin. Results are presented in quantitative densitometric form 

normalized to β-actin and as representative western blots, shown as cropped gel 

images (n=3). 
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regards to which CTCs are the most valuable to capture, and which will serve as the best 

tools for personalized cancer treatment based on CTC molecular characterization. We 

believe that improved understanding of the biology of CTCs and how these cells relate to 

the dynamic processes of EMT and metastasis will provide important translational 

information that will help inform the use of CTCs as valuable biomarkers of cancer 

progression in the clinic. 

In the current study we have utilized 2 CTC enumeration assays to assess the 

differences in CTC capture using the epithelial-based CSS (EMT-dependent) and a 

human versus mouse based (EMT semi-independent) capture technique to assess the 

generation of mesenchymal CTCs that would be missed by current technologies. 

Additionally, we performed a comprehensive assessment of the EMT phenotype in 4 of 

the most commonly utilized prostate cancer cell lines and compared the potential of these 

cell lines for CTC generation and metastasis.   

Significant effort is currently being focused on the development of CTC 

capture techniques capable of recovering not only CTCs expressing epithelial markers 

(i.e., EpCAM and CK), but also those with a highly mesenchymal phenotype. This 

pursuit is largely based on the current understanding of EMT, specifically regarding 

phenotypes imparted by this process on the primary tumor (i.e., enhanced invasiveness, 

increased metastatic capacity, reduced apoptosis, improved therapy resistance, and the 

generation of stem cell-like properties). However, the results of the current study 

demonstrate that although prostate cancer cell lines with an increasingly mesenchymal 

phenotype shed more CTCs early in disease compared to epithelial cell lines, the majority 

of CTCs shed from these mesenchymal cells are captured, at least before the 
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establishment of metastatic disease, by the CSS. This thereby suggests that CTCs shed 

early in disease have a hybrid EMT phenotype and still express sufficient levels of 

EpCAM and CK 8/18/19 for detection using epithelial-based techniques. While the 

observation that cell lines with an increasingly mesenchymal phenotype are more 

invasive and metastatic is not surprising
17

,  it appears that CTCs with a hybrid phenotype 

may be those that are most important for establishing metastasis and therefore the most 

interesting to characterize, at least in early-stage patients. In fact, some have suggested 

that CTCs with a hybrid phenotype may be of particular importance based on their 

plasticity for EMT and MET related phenotypic changes
27

.  

Based upon our data, however, it appears that following the establishment of 

distant metastases there is a significant increase in the number of mesenchymal CTCs 

that are undetectable by the CSS. This increase in the mesenchymal characteristics of 

CTCs in later stage disease has also been demonstrated in clinical samples with a number 

of studies reporting an increase in CTCs (captured by epithelial methods) expressing 

mesenchymal markers in metastatic versus primary breast cancer patients
48,49

. Therefore 

further studies are needed to determine if and how these undetectable CTCs are 

contributing to disease progression and metastasis.  

Despite widespread speculation, there is very little evidence in the literature to 

support the hypothesis that CTCs with a highly mesenchymal phenotype have any 

additional prognostic value compared to CTCs with a hybrid epithelial-mesenchymal 

phenotype or even a purely epithelial phenotype in patient samples. However, we must 

consider that technological limitations with regards to mesenchymal CTC capture may 

significantly hinder the ability to test this hypothesis in the clinic. In addition, we cannot 
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rule out the possibility that highly mesenchymal CTCs are present in early-stage disease 

but not in high enough number to significantly contribute to differences between the 2 

assays presented here. In fact, the cancer stem cell (CSC) hypothesis posits that only a 

small number of cells that make up the bulk primary tumor efficiently complete the 

metastatic process
50

. Based upon this theory it is possible that the dramatic increase in 

mesenchymal CTCs following the development of metastases is due to a selective 

outgrowth of highly mesenchymal CSCs. Therefore, although this study provides many 

valuable insights into the role of EMT in CTC dissemination and kinetics, many 

questions remain, for which the assays developed here will be very useful in answering.  

In addition to the contributions this manuscript makes towards understanding 

CTC biology and its relationship to EMT, to our knowledge it is also the first 

comprehensive head-to-head comparison and EMT characterization of the in vivo 

behavior of 4 of the most commonly utilized cell lines in prostate cancer research. 

Specifically, this manuscript describes the EMT phenotype of the PC-3M, PC-3, LNCaP 

C4-2B, and LNCaP cell lines at both the mRNA and protein level. It also details 

differences in primary tumor incidence, CTC dissemination and kinetics, and metastatic 

capacity to multiple organs. This will therefore serve as an incredibly valuable tool for 

future research in the field of prostate cancer. 

Overall the results presented here highlight that how CTC characterization is 

utilized in a clinical setting may greatly depend on disease stage. Specifically, in early-

stage patients, it has been suggested by our group and others that the use of novel CTC 

technologies capable of capturing highly mesenchymal CTCs could result in an increase 

in the overall number of detectable CTCs and thereby increase the potential prognostic 
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power of CTCs in these patients. However, our data suggest that the application of these 

novel technologies may not lead to a dramatic increase in CTC enumeration in these 

patients and that instead the detection of an increased number of CTCs will require the 

processing of additional blood (>7.5mL) on traditional epithelial-based CTC detection 

technologies such as the CSS. In addition, the data also suggest, as has been previously 

reported
17

, that primary tumors with an increasingly mesenchymal phenotype may have 

an enhanced metastatic capacity and therefore the detection of CTCs with a hybrid 

phenotype may be of prognostic importance in these patients. In contrast, when 

considering metastatic patients, we have demonstrated a significant increase in 

undetectable highly mesenchymal CTCs. Therefore further research in this patient cohort 

will need to examine the functional role of these CTCs versus those with an epithelial or 

hybrid phenotype in disease progression and, importantly, in therapy resistance. 

Ultimately a better understanding of the biology of CTCs will aid in the identification of 

those cells that would be most valuable for determining individualized treatment. 
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Chapter 7 

Overall Discussion 

 

Prostate cancer (PCa) is a leading cause of death in men and the majority of 

these deaths result from metastatic spread
1,2

. The presence of circulating tumor cells 

(CTCs) is associated with metastatic disease and has been demonstrated to be prognostic 

in metastatic prostate cancer patients, predicting for progression-free and overall 

survival
3
. Prior to the initiation of this work, CTCs were utilized almost exclusively in the 

metastatic setting with little known about their role in early-stage PCa
3,4

. Additionally, 

significant focus had been placed on the characterization of CTCs and their potential for 

optimizing patient treatment with limited understanding of the underlying biology of 

these cells
5–7

. This lack of exploration of CTC biology was due, in large part, to 

inadequate tools for studying CTCs in experimental mouse models of metastasis. 

Therefore this thesis aimed to investigate the role of CTCs in early-stage prostate cancer 

and assess their potential for determining prognosis as has been demonstrated for 

metastatic patients
3,8

. Additionally, we sought to provide detailed protocols that would 

allow users of the regulatory-approved CellSearch
®
 system (CSS) to capitalize on its 

potential for CTC molecular characterization and to develop novel tools that would allow 

for detailed investigation of the biology of CTCs. 
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7.1  Summary of key experimental findings 

1. CTCs are detectable in early-stage PCa patients post-prostatectomy undergoing 

treatment with adjuvant or salvage radiation therapy (RT) for recurrent or 

residual disease. 

2. The CTC status (presence/absence) of PCa patients in the adjuvant and salvage 

settings correlates with the clinical observations of local versus systemic 

relapse associated with previously described clinicopathologic risk factors 

(margin status, extracapsular extension [ECE], and seminal vesicle invasion 

[SVI]), suggesting that CTCs may relate to disease localization in these 

patients. 

3. The presence of either ECE or SVI in combination with CTC
pos

 disease prior to 

RT in adjuvant and salvage PCa patients predicts for poorer response to 

localized treatment compared to CTC
neg

 patients with the same 

clinicopathologic risk factors. In addition, CTC
pos

 status at any point 

throughout treatment correlated significantly with time to biochemical failure 

(BCF) and incidence of BCF at 2 years. This suggests that the addition of 

CTCs to a patient’s clinicopathologic "risk profile" (ECE, SVI, and margin 

status) may further enhance our ability to discriminate patients with localized 

versus systemic recurrence. 

4. Although promising in theory, the detailed process of optimization required for 

the development of user-defined markers on the CSS requires significant work-

up with rigorous controls. In addition, not all markers may be suitable 
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candidates for use with this platform and therefore marker selection should be 

carefully considered.  

5. Prostate cancer cell lines display differences in EMT status at both the RNA 

and protein level. Cell lines with an increasingly mesenchymal phenotype (PC-

3M and PC-3) demonstrate an enhanced capacity for CTC generation and 

metastasis when compared to cell lines with a more epithelial phenotype. 

6. CTCs with a highly mesenchymal phenotype may be undetectable by 

epithelial-based detection systems. However, these undetectable CTCs only 

appear in significant number following the establishment of metastatic disease.  

 

7.2  Implications of experimental findings 

7.2.1 Circulating tumor cells are detectable in early-stage 
prostate cancer patients and may be useful in guiding 
clinical decision-making 

When this work was first initiated, CTC enumeration and characterization was 

being utilized almost exclusively in the setting of metastatic disease and very little 

research was exploring the prognostic value of these rare cells in patients with early-stage 

disease
3,4,8–11

. Current research has begun to focus on the clinical value of CTCs in early-

stage patients, however the majority of this research has been performed in non-

standardized systems that do not have FDA or Health Canada approval for use in the 

clinic
4,12–16

. Our group was the first to describe the detection and enumeration of CTCs in 

early-stage PCa patients undergoing salvage or adjuvant radiation therapy using the only 

regulatory-approved  CTC technology, the CSS
17

.  In addition, we also demonstrated that 

CTCs may contribute to a patient's clinicopathologic risk profile and that the detection of 
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CTCs prior to or following localized treatment with radiation therapy may be an indicator 

of residual/recurrent disease and ultimately treatment failure.   

This data suggests that the detection of CTCs at any disease stage may be a 

sign of the potential for metastatic spread, regardless of the clinical confirmation of 

macrometastatic disease. CTCs, especially those detected early, may alert clinicians of 

aggressive disease sooner than currently used techniques thereby suggesting that more 

aggressive treatment options should be considered for these patients and/or that these 

patients may be spared unnecessary localized treatments
8,9,11,18

. Additionally, these 

results provide clinical support that CTCs shed early aid in the establishment of 

micrometastatic disease and these CTCs may be of particular value for CTC 

characterization. 

Unfortunately based on the low number of CTCs detected in these patient 

cohorts, characterization would require either additional blood (>7.5ml) to be processed 

if using the CSS or for novel CTC technologies with greater sensitivity to be utilized in 

this regard. However, CTC characterization in these patient populations may provide 

valuable clinical information regarding which CTCs have the greatest capacity for 

metastatic dissemination. In fact, characterizing CTCs in early-stage patients may be of 

particular value as the disease will have had less opportunity for significant mutation, as 

compared to patients with metastatic disease, and may better represent the phenotype of 

the cells that are capable of metastasis. Additionally, identifying the CTCs with the 

greatest metastatic capacity may be easier in early-stage patients as there will be fewer 

"contaminating" CTCs with phenotypes that do not necessarily represent the phenotype 

of metastasis-initiating CTCs. Currently, there is a need for novel biomarkers that could 
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be utilized for prognosis in clinically challenging early-stage patients. Our data suggests 

that CTCs may serve as a valuable tool for clinical decision-making in early-stage PCa. 

7.2.2 Novel tools developed throughout this thesis will be 
important for future work in the area of CTC biology and 
in clinical samples 

The field of CTC research is exceedingly reliant on appropriate technology 

development. The rarity of CTCs in the bloodstream presents significant challenges for 

the detection, enumeration, and characterization of these cells. Additionally, the 

overwhelming number of technologies developed in recent years has made the field 

extremely complicated and made choosing an appropriate technology for both clinical 

and research uses difficult
19–21

. However, thus far the only CTC platform approved for 

use in the clinic is the CSS, thereby making it the current gold standard in CTC 

technology
3,10,11

. It is for this reason that throughout the course of this thesis we have 

provided a detailed description of common discrepancies encountered during CTC 

enumeration from clinical samples and a guide to CTC molecular characterization using 

the CSS that will aid users of this platform in the development of user-defined protein 

markers
22,23

. In addition, we have also provided novel techniques that can be utilized to 

study CTCs in pre-clinical mouse models of metastasis
22

. These tools hold particular 

value as they not only allow for the study of CTC biology based on CTCs that would be 

captured by the gold standard technology, but also allow for the study of CTCs that 

would be missed using this system. Although CTC enumeration has previously been 

performed in in vivo model systems, due to the capture methods utilized, these results do 

not necessarily represent the results that would be obtained using the CSS
24,25

. 

Particularly in this field, where CTCs are extremely rare, there can be dramatic 
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differences in the sensitivity and specificity of given assays and these results are not 

necessarily able to be generalized to all other platforms
26–29

. Ultimately these tools will 

allow users of the CSS to capitalize on its limited potential for CTC characterization and 

also to investigate important biological questions regarding the CTCs which are both 

captured and missed by the standard clinical assay used on this platform. 

7.2.3 Prostate tumors displaying a mesenchymal phenotype 
may predict for an enhanced capacity for CTC shedding 
and metastatic spread of disease. 

While the observation that the epithelial-to-mesenchymal transition (EMT) 

imparts cells with an enhanced capacity for invasion and migration
30

, very little is known 

about the influence EMT has on CTC generation and the timing of metastasis. The data 

presented in this thesis indicates that primary prostate tumors that possess an increasingly 

mesenchymal phenotype will have an enhanced capacity for CTC generation and 

metastasis. Ultimately this suggests that further investigation of the EMT status of 

primary tumor specimens and their impact on patient prognosis may be warranted. In 

fact, a number of studies have performed such investigations and demonstrated a 

correlation between EMT status and patient outcomes
31–33

. Additionally, not only did we 

demonstrate that mesenchymal primary tumors may shed more CTCs than those with an 

epithelial phenotype, but also that these CTCs may be shed earlier in disease. From a 

clinical perspective, this therefore suggests that patients with mesenchymal primary 

tumors may already have undetectable micrometastatic disease at the time of diagnosis 

and therefore are at greater risk for metastatic dissemination and subsequent relapse 

following localized first-line treatments. Therefore incorporating analysis of EMT status 

of primary tumors into a patient’s clinicopathologic risk profile may improve the ability 
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to discriminate patients with aggressive versus indolent disease and ultimately improve 

our ability to choose appropriate treatment options for PCa patients.  

7.2.4 Technologies aimed at capturing mesenchymal CTCs 
may fail to enhance the prognostic value of CTCs in the 
setting of early disease  

One interesting observation that was made using our in vivo model of PCa 

metastasis was that highly mesenchymal CTCs that are undetectable by the standard CSS 

assay are not shed in significant numbers until the establishment of metastatic disease. 

This result suggests that CTCs with a purely epithelial and/or hybrid EMT phenotype are 

those capable of establishing initial metastases and that novel technologies aimed at 

capturing these cells will not enhance the prognostic value of CTCs in the setting of early 

disease. Alternatively (or additionally),  highly mesenchymal CTCs capable of metastasis 

are very rare at the early stages of metastatic dissemination and present only in very low 

numbers, thereby making them difficult to visualize using these assays and only 

noticeable after metastatic dissemination and selective outgrowth of these aggressive 

clones. Either way, this suggests that the clinical value of CTC molecular characterization 

may be greatly affected by the patient population chosen for proof-of-principle studies. 

Until the importance of these highly mesenchymal, undetectable CTCs are understood 

from a biological perspective, careful consideration must be made when choosing these 

patient cohorts for clinical trials and assay validation. 

 This data may also have a significant impact on how we view EMT and 

cellular plasticity. Currently much focus is being placed on finding highly mesenchymal 

CTCs as they are viewed as the most aggressive and valuable to characterize
34–42

. 

However this may not be the case and CTCs with a hybrid phenotype, allowing for quick 
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phenotypic switching may be more important, as has been previously suggested
43,44

. This 

data also suggests that the mixed results seen in clinical trials examining the utilization of 

CTC molecular characterization for individualized cancer treatments may be due to a lack 

of understanding of the biology of these cells, resulting in inappropriate trial design, and 

not due to lack of appropriate technologies for capturing CTCs that are highly 

mesenchymal
45–49

. 

 

7.3  Possible limitations of the thesis work  

The data presented throughout this thesis has described novel findings in the 

areas of CTC biology, clinical uses, and technology development. Although these results 

represent significant contributions to the field of CTC research and PCa metastasis, as 

with all research, there are limitations that exist. These limitations are discussed below. 

7.3.1 Clinical studies 

In Chapter 2, we performed a pilot study in 26 early-stage PCa patients 

consented to undergo salvage RT. From this small patient cohort we found that CTCs 

were detectable in ~70% of these patients. In this study, we also demonstrated that 

changes in CTC number (increased, decreased, or unchanged)  before initiation and 

following completion of salvage RT correlated with BCF
17

. However, these results were 

only correlative, and no significant differences were observed. Regardless, we anticipated 

that significant results would be possible by increasing the number of accrued patients 

and therefore we sought to recruit 55 patients for a follow-up study. In addition, based on 

the high CTC detection rate demonstrated in the first study (~70%) we also decided to 

include patients in the adjuvant setting, thus reducing the number of salvage patients 
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accrued. Unfortunately in the follow-up study presented in Chapter 3, the number of 

patients with detectable CTCs dropped significantly to ~15% and therefore limited the 

statistical power of our follow-up study. The choice to include patients from both the 

adjuvant and salvage settings may have limited our analysis of results from both cohorts 

and the selection to study either salvage or adjuvant patients may have led to more 

conclusive data.  

Additionally, analysis of the results from Chapters 2 and 3 were also limited 

due to the low number of CTCs detected in individual patients, with the vast majority 

having CTC counts of ≤ 2 and only 1 patient having 5 CTCs (the number that predicts for 

poor outcomes in metastatic PCa
3
). If financially feasible, it may have been beneficial to 

increase the amount of blood collected and processed at each time point from individual 

patients (>7.5mL). The detection of additional CTCs would reduce the potential for false 

negative and positive results and likely increase the number of patients in the CTC
pos

 

group, thereby enhancing the statistical power of this study. The detection of more CTCs 

in the follow-up study would have allowed for comparison of pre- and post-treatment 

numbers (increased, decreased, or unchanged), as was performed in the pilot study
17

 and 

utilized for patients in the metastatic setting
8
, which may be more informative then the 

presence or absence of CTCs alone.  

Finally, during the analysis of the follow-up study a small group of patients 

(n=3) initially presenting in the adjuvant setting shortly thereafter were found to have a 

detectable PSA and were instead considered salvage patients by the time of RT initiation. 

These patients in particular appeared to be more likely to have CTC
pos

 disease (66%) 

compared to the patients with less aggressive disease. Therefore we anticipate that more 
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conclusive results may have been possible if stricter inclusion criteria were set that 

selected for patients with intermediate or high-risk disease. However, it is also important 

to consider that these stricter criteria would likely have significantly slowed patient 

accrual as there may have been fewer patients presenting in this setting and fewer may 

have been recommended for RT. 

7.3.2 Technology development studies 

Although the protocol described in Chapter 4 outlined the proper development 

of user-defined protein markers for on-system CTC molecular characterization, the 

optimization of these assays requires the use of cell lines with known protein expression 

and relative antigen density comparisons. For example, when optimizing the CD44 

marker for use with the CSS, a panel of cell lines were chosen to represent high (MDA-

MB-468), low (21NT), and negative (LNCaP) expression of this marker. However, in 

doing so, assumptions are being made regarding the expression levels of this protein in 

patient samples, which could be much higher (leading to significant bleed-through and 

misclassification of CTCs) or much lower (leading to false negatives) than anticipated. 

Therefore, comparison and validation of user-defined protein markers in patient samples 

should be considered as the final optimization step. Unfortunately this was not performed 

here. In addition, we have demonstrated that not all user-defined protein markers can be 

properly optimized for use with the CellSearch CTC kit and instead for low antigen 

density markers the CellSearch CXC kit must be utilized. However, FDA and Health 

Canada approval have only been given for the traditional CTC kit and not the CXC kit as 

it has been shown to have reduced CTC recovery due to the switching of PE and FITC 

fluorophores for CK 8/18/19 detection
50

. Therefore, when utilizing the CXC kit, the 
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unique advantage imparted on the CSS over other enumeration and characterization 

technologies (i.e., the ability to perform CTC enumeration and characterization in 

individual cells on a regulatory-approved platform) is lost. 

7.3.3 In vivo prostate xenograft studies 

The time points (2, 4, 8, 12, and 16 weeks) and number of mice per group 

(n=12) utilized for the in vivo studies performed in Chapter 6 were chosen based on 

previously reported data regarding each cell line
51–57

. However, this was our laboratory's 

first experience with these cell lines in vivo and our first experience with orthotopic 

injection into the prostate gland. Therefore there was uncertainty with regards to the 

number of mice utilized and the time points chosen that would allow for comparison of 

the various steps in the metastatic cascade across all 4 of the investigated PCa cell lines. 

Although the chosen time points appeared reasonable, the PC-3M cell line was highly 

aggressive and the longest surviving animal was sacrificed at 6 weeks post-injection, with 

the majority being sacrificed earlier than anticipated, at 4-5 weeks post-injection. 

Additionally, the 16 week time point may have been too long, as the early sacrifice of 

mice originally allocated to this time point, due to significant morbidity, led to an 

enrichment of this group specifically with healthy animals (with no evidence of primary 

tumors) compared to the other groups. Ideally it would have been advantageous to 

exclude these healthy animals from the subsequent analysis, however due to the modest 

number (n=12) of mice chosen for each group this would have reduced our ability to do 

appropriate statistical analysis and therefore these mice had to be included. 

Regardless of the challenges in mouse number, the results obtained in Chapter 

6 demonstrated that some CTCs may be missed by the EMT dependent assay 
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(representative of CSS based capture) due to its reliance on EpCAM expression. 

However, it is important to remember that the EMT semi-independent assay also has 

some reliance on EpCAM expression as it selects cells based on expression of both 

EpCAM and HLA. Therefore if HLA and/or EpCAM are significantly down-regulated in 

the circulation this assay may not work as expected in vivo. The downregulation of HLA 

has previously been described to occur as a method of immune evasion and demonstrated 

to enhance tumorigenicity in immunocompromised mice
58

. Ideally, a simple assessment 

would be to compare HLA and EpCAM expression on CTCs to that of the primary tumor 

following orthotopic injection. However, unfortunately, as these antigens are used for 

CTC capture, cells with significant EpCAM and/or HLA downregulation may not be able 

to be captured and subsequently assessed for expression.  

Finally, as with all xenograft models there are always concerns with regards to 

the use of human cell lines in an immunocompromised mouse background and how 

accurately this represents human disease. To reduce as many confounding variables as 

possible we performed orthotopic injections directly into the dorsolateral lobe of the 

mouse prostate instead of subcutaneously or into the renal capsule (other common sites 

utilized for xenograft models of PCa)
59

. Despite the technical difficulty of the surgery 

itself and the limitations with regards to the volume of sample that can be delivered to 

this site, we felt it was most appropriate, compared to other sites, as it best mimics the 

microenvironment and vasculature of human PCa
59

. However, we must also consider that 

the mouse prostate is quite dissimilar from the human prostate. Specifically the mouse 

prostate is a multi-lobular structure composed of 4 lobes, the anterior, ventral, dorsal, and 

lateral lobes versus the human prostate, composed of a single "lobe" divided into 3 zones, 
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the peripheral, transitional, and central
60

. The majority of human prostate cancers develop 

in the peripheral zone and the dorsal and lateral lobes of the mouse prostate (often 

referred to as the dorsolateral lobe) has been described as being the most similar to this 

zone, hence why it was chosen for these studies
61

. However, there is no histological 

evidence that a relationship exists between any one lobe of the mouse prostate and a 

particular zone of the human prostate gland
62

. In addition to the observed structural 

differences, the use of immunocompromised mice may also have an impact on the 

metastatic capacity of the investigated cell lines. The immune system plays a large role in 

PCa and cannot be discounted as a confounding factor of this study
63–66

. Finally, the use 

of human prostate cancer cell lines is always a point of contention when investigating 

xenograft models as the majority of cancer cell lines are isolated from patients with 

highly aggressive disease and are often not collected from the primary site, but instead 

from a metastatic lesion, as are all the cell lines described in this thesis
67–70

. Ideally these 

experiments would be repeated with human primary cells isolated from isolated primary 

tumors. However, such attempts have proven difficult and based on the number of mice 

utilized in this study this would likely not be feasible
59,71,72

. 

 

7.4  Future directions 

The work presented here will have a significant impact on guiding future CTC 

research. In addition, the results obtained from both pre-clinical and clinical studies have 

raised a number of new questions to be addressed in future studies.  

From our clinical studies we have demonstrated that consideration should be 

given to using CTCs as biomarkers in early-stage patients and not solely in the metastatic 
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setting. Inclusion of CTC analysis in these patients specifically, may aid in the 

stratification of patients into low and high risk groups, and ultimately result in improved 

progression-free survival and overall survival in patients with poor prognosis, and in 

improved quality of life (due to less aggressive treatment options) in patients with good 

prognosis. However, the added benefit of inclusion of CTCs into a patient's 

clinicopathologic risk profile in determining prognosis will need to be validated in larger 

patient cohorts in the future. Based on the work presented here we suggest that this 

validation could occur by using the gold standard CSS alone or in combination with 

newer emerging technologies, but that larger blood volumes would likely need to be 

utilized to allow for an increase in the number of CTCs captured and ultimately allowing 

for more rigorous statistical analysis to be performed. The capture of additional CTCs 

would also allow for comparison of CTCs pre- and post-treatment, which may have 

greater prognostic value. Finally, the results presented here highlight the need for 

appropriate patient selection in the development of these future validation studies.  

Potentially the greatest area in need of future work is in understanding the 

underlying biology of CTCs. The results of this work suggest that the search for highly 

mesenchymal CTCs that are missed by EpCAM-based technologies may not lead to the 

added prognostic value that has been proposed. Our results suggest that CTCs with a 

hybrid phenotype may be the most important in initially establishing metastatic disease 

and that those CTCs with a highly mesenchymal phenotype only appear in significant 

number after metastasis has occurred. Therefore future research needs to address the role 

that both these highly mesenchymal and hybrid CTCs play in disease progression across 
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all stages of disease. The tools developed throughout the course of this thesis will aid in 

answering these questions.  

Additionally, many outstanding questions remain regarding the impact of EMT 

on the various steps of the metastatic cascade. Specifically, how phenotypic switching of 

EMT to MET phenotypes or vice versa at different stages of disease progression would 

impact CTC generation and metastasis is an important area for future investigation. 

Unfortunately the timeline of this thesis did not allow for such investigation. However 

future work in this area will be important in better understanding EMT and its 

contribution to metastatic spread.   

Finally, although careful consideration was given when selecting both the PCa 

cell lines and site of injection utilized in our xenograft models in order to best represent 

disease conditions in the clinic, we did not have time to investigate the implications of 

therapy related interventions (i.e., surgical removal of the prostate and/or localized versus 

systemic therapies) on the results presented here. It would be interesting to investigate 

differences in CTC generation and/or metastasis in response to these typical clinical 

intervention strategies. Additionally, it has been suggested that androgen deprivation may 

be important in the generation of EMT phenotypes
73

, and as it is known that eventually 

PCa will progress to an androgen-independent state
74

. Therefore it may be beneficial to 

further explore the role of androgen deprivation on CTCs and metastasis in vivo. 

 

7.5  Final conclusions 

Throughout this project, we have demonstrated that CTCs may be valuable 

biomarkers in the setting of early-stage PCa, and that their inclusion in a patient's 
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clinicopathologic risk profile may change clinical decision-making. In addition, several 

detailed guides have been presented enable users of the CSS to capitalize on its full 

potential for both CTC enumeration and molecular characterization. Finally, we have 

reported on the role of EMT in CTC generation and metastasis and the capacity for 

mesenchymal CTC capture using the current clinical gold standard CTC technology.  

Overall, the knowledge gained in these studies is important from several 

different perspectives, including; (1) the therapeutic perspective, defining the relationship 

between therapy response and CTC detection in the setting of early stage prostate cancer 

and salvage/adjuvant radiation; (2) the technical perspective, identifying the limitations 

of existing CTC methodologies and aiding in the development/optimization of novel 

CTC enumeration/characterization techniques; and (3) the biological perspective, 

providing a more detailed understanding of the metastatic process in prostate cancer, its 

mechanism(s) and the molecular characteristics of the cells involved. 
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