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 Abstract 

Hollowcore slabs are used in floors and roofs of residential, commercial, industrial and 

institutional buildings. They are precast/prestressed concrete elements produced using the 

extrusion process. Their surface finish can be “machine-cast” or “intentionally roughened”. 

A typical floor consists of a number of hollowcore slabs that are connected together. 

Prestressing causes hollowcore slabs to camber, which results in an uneven floor surface. A 

50 mm topping concrete is commonly cast to level the floor surface. To avoid delamination, 

engineers require bonding agents to be applied on the hollowcore slab surface before pouring 

the topping concrete. The concrete topping can be used compositely with the hollowcore 

slabs to increase the floor’s load carrying capacity. However, North American design 

standards require intentional roughening of the hollowcore slab surface to consider such 

composite action. This requirement results in added cost that manufacturers are keen to 

avoid.  

This thesis presents a comprehensive experimental program to assess the performance of 

composite hollowcore slabs with machine-cast and lightly-roughened surface finishes. Three 

types of tests were performed: pull-off, push-off and full-scale. They provided an overall 

understanding of the interfacial shear and peel behaviors at the interface between hollowcore 

slabs and the topping concrete. The tested slabs were found to sustain higher interfacial shear 

stresses than the limits set by the design standards and to provide adequate composite 

behavior up to failure. Linear analytical modeling in which closed-form solutions for 

differential equations governing the interfacial shear and peel stresses during the push-off 

tests was conducted. Two analytical methods were developed to estimate the shear and peel 

stresses during the full-scale tests utilizing the interface stiffness determined from the push-

off tests. Linear finite element analysis was performed to validate and compare the proposed 

methods.  

To better understand the experimental results and to provide engineers with more accurate 

tools for estimating the interfacial stresses, nonlinear finite element analysis of the push-off 

and the full-scale tests were conducted. Interfacial shear and peel stiffness values associated 
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with the tested slabs were also determined to assist design engineers in predicting failure 

modes of composite hollowcore slab. 
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CHAPTER ONE 

1 Introduction 

 

Hollowcore slabs, Fig. 1.1, are precast/prestressed structural concrete elements that are 

used in many structures including large occupancy residential, institutional, office and 

commercial buildings as well as warehouses and detention centers. They are also utilized 

in bridge decks. The voids within the hollowcore slabs run along their length reducing 

their own weight. They can be solid filled with concrete near the supports to enhance the 

vertical shear resistance. The voids can also be used as part of the ventilation system and 

to conceal electrical and mechanical ducts.  

Hollowcore slabs can cover significantly larger spans than solid slabs because of their 

reduced weight and prestressing advantage. Longer spans mean larger usable spaces with 

no intermediate supports. Other advantages of hollowcore slabs include: fire resistance 

with up to 4 hours of endurance, sound insulation and energy savings.  

 

 

Fig. 1.1: Hollowcore slab. 
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Thickness of hollowcore slabs range between 150 mm and 500 mm and their typical 

width is 1220 mm. Their spans can reach up to 24 m. The joints between adjacent 

hollowcore slabs are filled with non-shrink grout. Reinforcement can be provided in the 

joints if required by design.   

        

1.1 Manufacturing of Hollowcore Slabs 

The two basic manufacturing procedures currently used in the production of hollowcore 

slabs are: (1) dry-cast and (2) wet-cast. In the dry-cast procedure, the prestressing strands 

are first laid over the casting beds, 100 to 200 meters long, and then tensioned to the 

desired prestressing force. The extrusion machine is placed over the casting bed and 

concrete with a typical water to cement ratio of 0.3 is poured. The extrusion machine has 

a number of augers that form the voids and vibrate at high frequency to properly compact 

the low-slump concrete. The hollowcore slab is then cured over the casting bed using 

accelerated heated systems to reduce production time.  

After curing, strands are released and the long slab is cut into several segments. The 

resulting hollowcore slab surface finish using this procedure is called “machine-cast 

finish”. Light roughening of the slab surface can be achieved by using a steel broom, Fig. 

1.2. The surface finish in this case is referred to as “lightly-roughened”. When a higher 

surface roughness is required, a concrete screed is poured on top of the slab surface. 

The wet-cast procedure uses higher slump concrete with a water to cement ratio of 0.4 to 

0.45. The cores in this procedure are commonly formed using: (1) light-weight aggregate 

fed through tubes that are attached to the casting machine, (2) anchored pneumatic tubes, 

or (3) tubes fixed to the slip form casting machine. 
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Fig. 1.2: Machine-cast versus lightly-roughened surface finish. 

 

1.2 Problem Description and Motivation 

Hollowcore slabs camber due to prestressing. Difference in camber between slabs in a 

given floor causes floor surface irregularities. Thus, a 50 mm concrete topping is 

commonly cast on top of the hollowcore slabs to achieve a flat surface finish. Design 

engineers might require bonding the concrete topping to the slab surface using 

cement/sand gout, latex modified grout or epoxy bonding materials. This requirement is 

meant to prevent delamination between the two surfaces, which can cause cracks in the 

concrete topping. A field test that follows procedure A of the standard test method A23.2-

6B (CSA A23.2, 2009) is usually requested. If the composite action between the concrete 

topping and the slab is considered, the load carrying capacity of the floor increases. This 

requires roughening of the surface of the hollowcore slab to an amplitude of 6.35 mm or 

5.00 mm according to ACI 318-08 (2008) and CSA A23.3-04 (2004), respectively. 

Design engineers may also require the use of bonding agents in addition to the 

roughening mentioned in the design standards.  

The implementation of the requirements of the design engineers and the design standards 

induce additional material and manpower costs that hollowcore slab manufacturers are 

keen to avoid. There is also a general consensus among manufacturers that the bond 
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between hollowcore slabs with machine-cast surface and topping concrete is sufficient to 

develop adequate composite action.  

The argument, whether hollowcore slabs with machine-cast or lightly-roughened surface 

are capable of providing the necessary design strength, was the main motivation for this 

research.       

 

1.3 Literature Review 

This section sheds light on the mechanism of shear stresses along the interface between 

concrete overlays and reviews previous research that pertains to composite behaviour in 

precast concrete elements. 

        

1.3.1 Shear Transfer at the Interface between Two Concrete 
Layers 

The shear force along the interface between two monolithic or composite concrete layers 

is transferred by “shear-friction”. Birkeland and Birkeland (1966) and Mast (1968) 

proposed models to predict the shear strength at the interface based on its roughness and 

the yield strength of the interface steel bars. The models considered that the shear 

strength of an unreinforced interface to be equal to zero. Several research work had been 

published afterwards that further discussed this subject (Hofbeck et al., 1969; Mattock 

and Hawkins, 1972; Houde and Mirza, 1974). Shaikh (1978) modified the models and 

included the effect of the concrete type. The models were then added to the shear-friction 

provisions of the ACI 318-83 (1983) design standard.  

A typical concrete surface has a general roughness and a local roughness (Walraven, 

1987), Fig. 1.3. Mattock (1974) introduced the cohesion component in the shear-friction 

equation. The cohesion component is provided by the local roughness of the interface. 
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Fig. 1.3: Roughness illustration. 

 

Using interfacial shear reinforcement in hollowcore slab construction is extremely 

inconvenient. Thus, the composite action in such construction mainly relies on friction 

and cohesion of the interface. 

  

1.3.2 Composite Precast Concrete Elements 

The horizontal shear strength at the interface between precast elements and topping 

concrete was examined by many researchers. Ozell and Cochran (1956) tested nine 

prestressed composite lintel beams. The beams did not contain any horizontal shear 

reinforcement and their surface was very smooth. None of the beams failed due to 

horizontal shear. The authors concluded that reliable horizontal shear strength can be 

developed without roughening the surface of precast beams. 

Hanson (1960) conducted tests on smooth specimens and concluded that the horizontal 

shear strength can reach 2.1 MPa without roughening the surface. He also tested a 

composite beam that had an intentionally roughened surface. The roughness amplitude 

was 9.5 mm measured from the spikes and depressions to the average surface level as 

shown in Fig. 1.3. The beam suffered a significant loss of composite action before failure. 

The maximum horizontal shear stress was estimated at 2.76 MPa.  
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CTA Technical Bulletins TB74-B6 (1974) and TB76-B4 (1976) presented the results for 

16 tests on prestressed composite solid slabs with different surface finishes and 

concluded that horizontal shear levels given in ACI Code are highly conservative.  

Scott (1973) performed a full-scale test on a hollowcore slab with machine-cast finish 

that was topped with 50 mm of concrete. The slab was 200 mm deep, 610 mm wide and 

simply supported over a span of 9600 mm. The slab failed at a slightly higher load than 

that calculated using ACI 318 (1971) and composite action was maintained up to failure. 

Girhammar and Pajari (2008) investigated the shear capacity of composite hollowcore 

slabs with machine-cast finish and concluded that the composite action increased the 

shear capacity by 35%. The surface of the tested hollowcore slabs was not treated or 

roughened by any means.  

Ibrahim et al. (2006) studied the horizontal shear transfer along the interface of 

hollowcore slabs and concrete topping using 14 specimens that vary in surface roughness. 

Concrete topping area was 300 mm by 300 mm with thickness of 100 mm. It was 

concluded that slip was not significant for shear forces up to 50 kN.  

Ibrahim et al. (2008) conducted full-scale tests on hollowcore slabs with concrete 

topping. Two main variables were investigated: (1) surface roughness of the hollowcore 

slabs (smooth and roughened) and (2) moisture condition of the hollowcore slab surface 

before casting the concrete topping. Their study found that the ponded condition can 

reduce the bending moment capacity by 5% compared with the optimum wet condition. It 

also stated that the slip in the bonded smooth specimens can be eliminated by roughening 

the surface of the hollowcore slabs. 

Mones (2012) studied the properties of the interface between hollowcore slabs with 

various surface finishes and concrete topping. Push-off tests were used to evaluate the 

shear stiffness of the composite hollowcore slabs with various surface finishes including 

machine-cast, wet-cast and sandblasted wet-cast. All specimens showed higher interfacial 

shear strength than required by the North American standards and averaged at 1.57 MPa. 

The wet-cast slabs showed the least strength because of the laitance layer covering their 
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surface. Sand blasting of such slabs showed an increase of 51% in their interfacial shear 

strength. Mones (2012) implemented the push-off test results into a 2-D finite element 

analysis to study the interface behaviour in full-scale conditions. While multilinear shear 

stiffness was used to model the interfacial shear strength, linear behaviour of the 

hollowcore slab was assumed. The results were not validated and the interfacial peel 

strength was not considered in the analysis. 

Previous work generally agrees with hollowcore slab manufacturers about the adequacy 

of machine-cast surface finish to achieve composite action. However, it is not 

comprehensive. The interfacial shear and peel behaviours at the interface between 

hollowcore slabs and the topping concrete are not well studied. Most of the efforts were 

experimental and lack analytical modeling techniques. The work presented in this thesis 

sheds light on the properties of the interface between hollowcore slabs and the topping 

concrete and provides design engineers with analytical tools to investigate interfacial 

shear failures that can be compared against design standards to obtain a more realistic 

solution.  

 

1.4 Research Objectives 

The general objective for this thesis is to evaluate the interface behaviour between 

hollowcore slabs with machine-cast or lightly-roughened surfaces and cast-in-situ 

concrete topping. Specific objectives are given below: 

1- Experimentally estimate the surface roughness of hollowcore slabs with machine-

cast finish. 

2-  Experimentally examine the bond strength between hollowcore slabs with 

machine-cast or lightly-roughened surface and the topping concrete. 

3- Experimentally evaluate the shear and peel behaviours between hollowcore slabs 

and the topping concrete. 

4- Analytically determine the interfacial shear and peel stiffness between hollowcore 

slabs and the topping concrete. 
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5-  Investigate the performance of composite hollowcore slabs with concrete topping 

through full-scale tests. 

6- Develop closed-form solutions that can be used by design engineers to evaluate 

the levels of shear and peel stresses for composite hollowcore slabs.      

7- Investigate the nonlinear behaviour of the interfacial shear and peel stiffness 

between hollowcore slabs and the topping concrete using finite element analyses. 

 

1.5 Original Contribution           

Most of the prior research work conducted on composite hollowcore slabs was aimed 

towards determining their capacity without studying the behaviour at the interface layer. 

The research conducted in this thesis provides design engineers and hollowcore slab 

manufacturers with a comprehensive evaluation of the interface behaviour for composite 

hollowcore slabs. The thesis proposes a surface roughness threshold that can be used as a 

quality control measure. The linear and nonlinear analyses of the composite hollowcore 

slabs provide credible estimates for the actual interfacial stresses and analytical 

techniques for engineers to accurately analyze composite slabs. The analytical solutions 

presented in this thesis account for the deformations of the interface layer, which are not 

considered in design provisions of North American building codes.    

 

1.6 Thesis Outline 

The thesis is structured using the “Integrated-Article” format following the guidelines of 

the Graduate and Postdoctoral Studies at Western University. It consists of six chapters. 

Chapter 1 introduces the dissertation subject by providing a general review and 

background about hollowcore slabs. Literature review is also included. The chapter 

concludes by stating the objectives of the conducted research and its original 

contribution. Abstracts of the following chapters are given below: 

 



9 

 

Chapter 2 

Following installation of hollowcore slab floors, a layer of concrete topping is usually 

cast to connect the slabs and to have a level surface. According to current North 

American design standards, the topping should not be considered to act compositely with 

the slabs except if their surface satisfies a strict roughness requirement. This chapter 

evaluates if such a restriction is justified for hollowcore slabs with machine-cast and 

lightly-roughened surface finishes through an experimental program that involves pull-

off, push-off and full-scale tests. The surface roughness was first evaluated. The peel 

(bond) and shear strengths of the interface between the slabs and the topping were then 

assessed using pull-off and push-off tests. Full-scale tests examined the overall behaviour 

of the composite slabs. The tested composite slabs exhibited higher tensile and shear 

stresses than the minimum limits set by North American design standards. The surface 

roughness threshold for machine-cast hollowcore slabs is estimated. The chapter presents 

the initial evidence that hollowcore slabs with machine-cast or lightly-roughened surfaces 

can be considered to act compositely with the concrete topping.  

 

Chapter 3 

Structural engineers can use the typical 50 mm topping concrete, usually cast on top of 

hollowcore slab floors, to increase the load-carrying capacity. North American design 

standards relate the horizontal shear strength at the interface between hollowcore slabs 

and the concrete topping to the slab surface roughness. Utilizing results of the push-off 

tests, an analytical model was applied to evaluate the shear and peel stiffness, (ks) and 

(kp), of the interface between the hollowcore slabs and the topping concrete. Structural 

engineers can utilize (ks) and (kp) values to model the composite action between 

hollowcore slabs and concrete topping. The analytical model was also used to evaluate 

the actual distribution of shear and peel stresses.  

 

 



10 

 

Chapter 4 

Two analytical methods are presented in this chapter to evaluate the interfacial shear and 

peel stresses between hollowcore slabs and the topping concrete. The two methods 

consider linear behaviour of the composite section and utilize the shear and peel stiffness 

(ks and kp) obtained from the push-off tests in Chapter 3. Predictions of the two methods 

are then compared with the methods mentioned in the related provisions in the North 

American design standards. The two proposed methods take into account the 

deformations along the interface and utilize the interfacial stiffness to calculate the 

resulting stresses.      

 

Chapter 5 

Post-cracking behaviour of hollowcore slabs greatly affects their ultimate strength. 

Composite action adds another level of nonlinearity. This chapter presents a 

comprehensive nonlinear 3-D finite element analysis to study the behaviour of composite 

hollowcore slabs. The push-off and the full-scale tests were modeled using the finite 

element analysis software, ANSYS R15 (2013). The linear shear and peel interfacial 

stiffness were utilized to initiate the analysis. Iterations were conducted to obtain the final 

nonlinear stiffness that resembles the behaviour of the interface during those tests. The 

interface layer was modeled using nonlinear spring elements and the nonlinear material 

behaviour of the concrete and the prestressing strands were accounted for. The chapter 

demonstrates the innovative analysis techniques that were used to simulate the staged 

construction nature of the concrete topping. The results highlight the contribution of the 

applied load in increasing the interfacial shear stiffness through the confinement effect. 

They have also demonstrated a reduction in the shear stiffness due to the combined effect 

of shear and peel stresses along the interface.  
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Chapter 6 

A conclusive summary of the work performed in this thesis is presented in this chapter 

along with recommendations for future research. 
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CHAPTER TWO 

2 Experimental Investigation of the Composite Action 

between Hollowcore Slabs and Concrete Topping 

Hollowcore slabs are used in floors and roofs of residential, industrial, and commercial 

buildings as well as detention centers. They are characterized by an initial camber that is 

formed during the prestressing process. To account for surface irregularities resulting 

from this camber and to connect the slabs, a layer of concrete topping is usually cast. If 

the interface between the topping and the slabs has adequate shear resistance, the 

composite action developed between the two concrete layers increases the rated capacity 

of the slabs. Values of 0.70 MPa and 0.55 MPa are specified by CSA A23.3-04 (2004) 

and ACI 318-08 (2008), respectively, for the interface shear resistance. Intentional 

roughening of the slabs surface is accepted as a method to guarantee achieving such shear 

strength. The minimum acceptable amplitudes for such roughness are 6.35 mm (clauses 

11.6.9 and 17.5.3.3 of ACI 318-08 (2008)) and 5.00 mm (explanatory note N17.4.3.2 of 

CSA A23.3-04 (2004)). These amplitudes induce additional costs to hollowcore slab 

manufacturers. In a typical precast operation, the default surface finish for hollowcore 

slabs is generally referred to as ‘‘machine-cast finish.’’ This finish, although different 

from manufacturer to manufacturer, has a surface roughness that does not satisfy the 

aforementioned requirement. The literature review mentioned in Chapter 1 provided 

some evidence about the composite action for hollowcore slabs. However, details about 

slip and peel deformations, acceptable levels of peel and shear stresses and full-scale 

composite behavior are scarce in the literature.  

This chapter presents a comprehensive experimental program to assess the composite 

action between hollowcore slabs and the concrete topping by using: (1) pull-off tests, (2) 

push-off tests and (3) full-scale tests. The tested hollowcore slabs were supplied by two 

Ontario manufacturers, A and B, and had two surface finish designations: “machine-cast 

finish” and “lightly-roughened finish.” The tested slabs were overlaid with a 50 mm 

concrete topping similar to common practice. 
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Before conducting the experimental tests, the surface roughness of the tested slabs was 

evaluated using the ASTM E965 (2006) standard method. The method was only carried 

out for the slabs with machine-cast surface. A total of sixty nine pull-off tests and twelve 

push-off tests were attempted. Six full-scale tests were performed to examine the overall 

behaviour.  

 

2.1 Test Specimens 

The tested hollowcore slabs were received from two manufactures (A and B) in Ontario, 

Canada in four shipments. Their surface finish was either machine-cast or lightly-

roughened using a conventional steel broom. Table 2.1 summarizes information about the 

tested slabs and the conducted tests. The table also shows the approximate dates of 

delivery for each shipment. The nominal concrete compressive strength was 41 MPa as 

per manufacturer’s specifications. Typical surface finishes are shown in  

Fig. 2.. The depth and width of the surface grooves for the lightly-roughened slabs were 

about 1 mm and they were spaced at about 25 mm. The corresponding uniform roughness 

for these grooves is about 0.04 mm. 

 

               

(a) Machine-cast finish. 
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(b) Lightly-roughened slab (A). 

 

 (c) Lightly-roughened slab (B). 

Fig. 2.1: Typical surface finishes.
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Table 2.1: Hollowcore slab specimens. 

Shipment 
Manufacturer Qty. Slab Label 

Surface 

Finish* 
Tests 

Size, mm 

(L,W,T)* 

Sept. 2011 

Shipment #1 

A 

2 PMA1-1, PMA1-2 M 6 Pull-off 1220, 1220, 203 

3 PRA1-1, PRA1-2, PRA1-3 R 9 Pull-off 1220, 1220, 203 

3 SMA1-1, SMA1-2 M 2 Push-off 1220, 1220, 203 

3 SRA1-1, SRA1-3 R 2 Push-off 1220, 1220, 203 

B 
3 PRB1-1, PRB1-2, PRB1-3 R 9 Pull-off 1220, 1220, 203 

3 SRB1-1, SRB1-2 R 2 Push-off 1220, 1220, 203 

Dec. 2012 

Shipment #2 

A 
2 FMA2-1, FMA2-2C M 6 Pull-off, 2 Full-scale 3658, 1220, 203 

1 FRA2-3 R 3 Pull-off, 1 Full-scale 3658, 1220, 254 

B 
2 FMB2-1C, FMB2-2 M 6 Pull-off, 2 Full-scale 3658, 1220, 203 

1 FMB2-3 M 3 Pull-off, 1 Full-scale 3658, 1220, 254 

May 2013 

Shipment #3 
A 1 FMA3-1 M 3 pull-off 3658, 1220, 254 

July 2013 

Shipment #4 

A 3 PSMA4-1, PSMA4-2, PSMA4-3 M 12 Pull-off, 3 Push-off 1220, 1220, 203 

B 3 PSMB4-1, PSMB4-2, PSMB4-3 M 12 Pull-off, 3 Push-off 1220, 1220, 203 

* M: machine-cast, R: lightly-roughened, L: length of slab, W: width of slab, T: thickness of slab
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The concrete compressive strength for the full-scale test specimens was evaluated using 

ASTM C349 (2008) “standard procedure for evaluating the compressive strength of 

concrete for a lab tested specimen.” After completing the full-scale tests, three 50 mm 

cubes were sampled from the edges of each slab as shown in Fig. 2.. The equivalent 

cylinder concrete compressive strengths are given in Table 2.2. The Number of 

prestressing strands for each slab is also given in the table. Fig. 2. illustrates a typical 

cross section of the slabs.  

 

 

Fig. 2.2: 50 mm cubes for compressive strength test. 

 

Table 2.2: Information for the full-scale slabs. 

Slab 

Label 

Average Concrete Compressive Strength 

f’c (MPa) 

Strand Pattern 

Average Value Standard Deviation 

FMA2-1 53 2.9 4- ½” strands 

FMA2-2C 50 3.1 4- ½” strands 

FRA2-3 51 1.2 6- ½” strands 

FMB2-1C 62 4.1 7- ½” strands 

FMB2-2 58 3.8 7- ½” strands 

FMB2-3 60 1.4 7- ½” strands 
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Fig. 2.3: Typical cross-section of the tested hollowcore slabs. 

 

2.2 Concrete Topping 

Properties of the concrete topping were chosen in accordance with the industry standards. 

A thickness of 50 mm was used. The concrete mix contained 10 mm pea stone aggregates 

and had an average slump of 120 mm. Before casting the topping, the surface of the 

hollowcore slabs was submerged with water and then dried to obtain a Saturated Surface 

Dry (SSD) condition, which prevents the surface from absorbing water from the concrete 

topping. The area of the concrete topping varied as shown in Table 2.3.  
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Table 2.3: Concrete topping. 

Slab Label 
Tests 

Topping Size 

mm 

(L, W, T)* 

Avg. Concrete 

Compressive 

Strength and 

(STD)* MPa 

PMA1-1, PMA1-2 Pull-off 1220, 1220,  50 32 (1.6) 

PRA1-1, PRA1-2, PRA1-3 Pull-off 1220, 1220, 50 32 (1.6) 

SMA1-1, SMA1-2 Push-off 508, 508, 50 32 (1.6) 

SRA1-1, SRA1-3 Push-off 508, 508, 50 32 (1.6) 

PRB1-1, PRB1-2, PRB1-3 Pull-off 1220, 1220, 50 32 (1.6) 

SRB1-1, SRB1-2 Push-off 508, 508, 50 32 (1.6) 

FMA2-1, FMA2-2C Pull-off, Full-scale 3658, 1220, 50 30 (1.2) 

FRA2-3 Pull-off, Full-scale 3658, 1220, 50 30 (1.2) 

FMB2-1C, FMB2-2 Pull-off, Full-scale 3658, 1220, 50 30 (1.2) 

FMB2-3 Pull-off, Full-scale 3658, 1220, 50 30 (1.2) 

FMA3-1 Pull-off 1000, 500, 50 33 (0.8) 

PSMA4-1, PSMA4-2, 

PSMA4-3 

Pull-off 

Push-off 

1000, 500, 50 

508, 508, 50 
33 (0.8) 

PSMB4-1, PSMB4-2, 

PSMB4-3 

Pull-off 

Push-off 

1000, 500, 50 

508, 508, 50 
33 (0.8) 

*L: length, W: width, T: thickness, STD: standard deviation 

 

For the 4
th

 shipment, two concrete areas were cast on each slab to conduct both pull-off 

and push-off tests. The two areas were separated by utilizing wood forms.  Table 2.3 also 

presents the average compressive strength of the concrete topping as was determined 

using the standard method ASTM C39 (2005). Wet curing was applied for three days 

according to clause 7.4.2 of CSA A23.1-09 (2009). The slabs were also covered with 

moisture retaining plastic sheets for at least seven days after casting. Temperature of the 

laboratory was kept constant at 23° C. Formwork and casting of the concrete topping are 

illustrated in Fig. 2. . 
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       (a) Before casting the topping                              (b) Before casting (4
th

 shipment) 

  

(c) After casting the topping (1
st
 shipment)      (d) After casting the topping (2

nd
 shipment) 

   

 (e) After casting the topping (4
th

 shipment)            (f) Curing of the concrete topping 

 

Fig. 2.4: Formwork and casting of the concrete topping. 
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2.3 Pull-off Tests 

The concrete topping can be considered fully bonded to the hollowcore slab if the bond 

strength between the two concrete layers is not less than 0.9 MPa (clause 7.6.4.3.2 of 

CSA A23.1-09 (2009)). This strength can be evaluated in the field using test method 

A23.2-6B (2009) “Determination of bond strength of bonded toppings and overlays and 

of direct tensile strength of concrete, mortar, and grout” of CSA A23.2-09 (2009). This 

method involves core drilling of an annular ring into the composite slab and applying a 

tensile force to the concrete topping. Similar procedure is used in Europe (FIP, 1982). 

This section provides details about the pull-off tests conducted in this research.  

 

2.3.1 Surface Roughness Evaluation 

The degree of surface roughness varies between hollowcore slabs because of differences 

in the manufacturing process and/or equipment maintenance. The surface roughness for 

hollowcore slabs with a machine-cast surface was evaluated using ASTM E965 (2006) 

“Standard Test Method for Measuring Pavement Macrotexture Depth Using a Volumetric 

Technique”. This procedure is generally used for pavements and is suitable for surfaces 

with voids smaller than 25.4 mm, which is the case for the considered surface. The 

proviso, however, is that the voids should be uniformly distributed over the surface. The 

procedure is not feasible for surfaces with random grooves and irregular texture, and, 

thus cannot be used for steel broom roughened surfaces. 

Fig. 2. gives details about the procedure. The tested surface is first cleaned using 

compressed air and a steel brush. Glass beads that pass through sieve No. 60 and are 

retained on sieve No. 80 are then spread over the slab surface in a circular motion using a 

hard plastic disk. When the beads are flush with the surface, three measurements of the 

diameter of the resulting circle are taken. Mean Texture Depth (MTD) is then calculated 

by dividing the volume of the used beads by the average area of the circle. 
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                    (a) Tools                                                            (b) Typical circle 

Fig. 2.5: Surface Roughness Test. 

 

Table 2.4: Surface roughness evaluation results 

Slab Label Surface Roughness (mm) Average Roughness, mm 

PMA1-1 

PMA1-2 

SMA1-1 

SMA1-2 

0.341 

0.360 

0.351 

0.361 

0.353 

FMA2-1 

FMA2-2C 

0.325 

0.314 
0.320 

FMB2-1C 

FMB2-2 

FMB2-3 

0.320 

0.297 

0.315 

0.311 

FMA3-1 0.314 0.314 

PSMA4-1 

PSMA4-2 

PSMA4-3 

0.140 

0.202 

0.152 

0.165 

PSMB4-1 

PSMB4-2 

PSMB4-3 

0.105 

0.121 

0.093 

0.106 
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Results of surface roughness are shown in Table 2.4. It is clear that roughness of the 

machine-cast finish is significantly less than the intentional roughness specified by North 

American design standards. The results show the high variability of roughness from 

manufacturer to another and within the same manufacturer. The roughness of slabs 

delivered in the 4
th

 shipment is significantly less than slabs from previous shipments.   

 

2.3.2 Pull-off Test Setup 

Pull-off tests were performed according to procedure A of the standard test method 

A23.2-6B
15

 “Determination of bond strength of bonded toppings and overlays and of 

direct tensile strength of concrete, mortar, and grout” that is outlined CSA A23.2-09 

(2009). In this procedure, the tensile strength of the interface between two bonded 

concrete surfaces is evaluated using a mechanical pullout apparatus that consists of three 

main components: 1) a pull-off steel disk, which is attached to the concrete topping; 2) a 

rigid frame to support the hydraulic jack applying the pull-off force and 3) a load cell to 

record the failure load. This apparatus was manufactured at Western University. The 

diameter of the used disks was 95 mm, which is slightly smaller than the inner diameter 

of the bit used for core drilling.  

Two disk thicknesses were utilized in this project: 1) 100 mm to allow the tensile force to 

be uniformly distributed over the interface area as illustrated in Fig. 2.(a) and 2) 10 mm 

to match the common industry practice. The first and second disks were used for the (1
st
 

and 2
nd

) and the (3
rd

 and 4
th

) shipments, respectively. The disks are shown in Fig. 2.. A 

steel pipe with thickness of 10 mm was used to provide the needed rigid frame. It 

encompassed the load cell and supported the hydraulic jack. Fig. 2. shows the pull-off 

apparatus and the general test setup.  
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(a) Expected uniform stress distribution under disk No.1 

 

                                               

(b) Disk No. 1 (thickness = 100 mm)                           (c) Disk No. 2 (thickness = 10 mm) 

Fig. 2.6: Steel disks for the pull-off tests. 

 

2.3.3 Pull-off Test Procedure 

The pull-off test was initiated by drilling a core through concrete topping that penetrates a 

minimum of 30 mm into the hollowcore slab surface as illustrated in Fig. 2.. The 

diameter of the core was 100 mm, matching the current industry practice. Fig. 2. shows 

the core drilling. The steel pull-off disks were bonded to the cores using epoxy compound 

after roughening the top surface of the core and the bottom surface of the disk as shown 

in Fig. 2.. The disks were installed on the core using a conventional 5 minute epoxy 

compound. Fig. 2. shows the core locations for the tested slabs. 
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Fig. 2.7: Pull-off apparatus (dimensions in mm). 
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                 (a) Core drilling                                                      (b) Core cleaning 

 

    

      (c) Roughening of core surface                      (d) Roughening of disk bottom surface  

Fig. 2.8: Core drilling and roughening process. 
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                    (a) 1
st
 shipment                                                         (b) 4

th
 shipment 

 

(c) 2
nd

 shipment 

 

 (d) 3
rd

 shipment 

 

Fig. 2.9: Core Locations (dimensions in mm). 
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Fig. 2. shows the process of leveling the pull-off disk and attaching the pull-off 

apparatus. Tests were conducted after 24 hours of the epoxy application. The load cell 

was first attached to the pull-off disk using a threaded rod. The rate of loading was 

approximately 80 N/s, which is within the (50 to 100 N/s) range specified in clause 5.1.4 

of A23.2-6B (2009). It was controlled by monitoring the digital load meter while 

increasing the tensile load using a manual hydraulic pump. 

  

                       

   (a) Bonding of the steel disk using epoxy.       (b) Disk attachment to pull-off apparatus.  

Fig. 2.10: Pull-off test preparation. 

  

2.3.4 Results and Discussion 

The maximum load prior to failure was retrieved from the digital load meter and recorded 

for each test. The weights of the steel disk, load cell and threaded rods were deducted 

from the maximum load. The load was then divided by the cross sectional area of the 

core to obtain the bond strength at failure. Fig. 2. shows the observed types of failure 

during the pull-off tests. The bond strength and the type of failure associated with each 

core are summarized in Table 2.5. Test results are also presented in Fig. 2.. The 0.9 MPa 

limit required by A23.2-6B (2009) is highlighted. Results of 17 tests from manufacturer 

A and 17 tests from manufacturer B were below the 0.9 MPa limit. The thickness of the 
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steel disk did not seem to affect the results as specimen FMA3-1 that was tested using the 

10 mm disk achieved comparable results to specimens of the 1
st
 and 2

nd
 shipments that 

had similar roughness and were tested using the 100 mm disk.   

 

     

   (a) Interface failure (I)                                     (b) Epoxy failure (X) 

 

 (c) Hollowcore slab failure (H) 

Fig. 2.11: Failure types. 
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Table 2.5: Pull-off test results 

Slab 

Label 

Core Bond Strength, MPa / Failure Type Average Bond 

Strength, MPa C1 C2 C3 C4 

Hollowcore slabs with machine-cast surface: 

PMA1-1 1.51/I 1.78/I 2.63/I -- 1.97 

PMA1-2 3.91/H 3.06/H 2.81/H -- 3.26 

FMA2-1 1.71/I 1.18/I 1.99/X -- 1.63 

FMA2-2C 0.44/I 1.14/X 1.96/T -- 1.18 

FMB2-1C 2.19/I 2.57/I 1.23/I -- 2.00 

FMB2-2 0.00/D 0.77/I 1.70/I -- 0.80 

FMB2-3 2.31/X 2.48/X 1.87/H -- 2.22 

FMA3-1 1.52/X 1.34/X 1.44/I -- 1.43 

PSMA4-1 0.00/I 0.00/I 0.00/I 0.00/I 0.00 

PSMA4-2 0.58/X 0.78/I 0.60/X 0.76/I 0.68 

PSMA4-3 0.00/I 0.00/I 0.00/I 0.00/I 0.00 

PSMB4-1 0.00/I 0.00/I 0.00/I 0.00/I 0.00 

PSMB4-2 0.00/I 0.00/I 0.51/I 0.61/X 0.56 

PSMB4-3 0.00/I 0.00/I 0.00/I 0.00/I 0.00 

Hollowcore slabs with lightly-roughened surface: 

PRA1-1 0.2/I 1.28/I 1.60/X -- 1.03 

PRA1-2 0.66/I 0.30/I 1.23/I -- 0.73 

PRA1-3 1.06/I 1.47/I 1.66/I -- 1.39 

PRB1-1 1.84/X 1.65/X 2.09/I -- 1.86 

PRB1-2 1.48/I 1.31/I 0.66/I -- 1.15 

PRB1-3 1.36/I 0.02/I 0.81/I -- 0.73 

FRA2-3 2.29/I 1.33/H 0.78/I -- 1.47 

D: concrete topping debonded from hollowcore slabs during coring, H (hollowcore failure): 

failure occurred in the hollowcore slab, I (interface failure): failure occurred at the interface layer, 

T (topping failure): failure occurred in the concrete topping, X (epoxy failure): the pull-off disk 

separated from the concrete topping.  

Note: underlined values indicate bond strength less than the 0.90 MPa required by A23.2-6B 

(2009).   
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Considering hollowcore slabs with machine-cast surface, Fig. 2. shows the pull-off test 

results in terms of surface roughness. It can be observed that slabs with surface 

roughnesses that exceed 0.30 mm achieved bond strength higher than 0.9 MPa with the 

exception of one test, slab FMA 2-2. Slabs of 4
th

 shipment showed poor performance (24 

tests). Four of the specimens failed at the interface and did not provide any tensile 

resistance. Two slabs, PSMA4-2 and PSMB4-2, provided unacceptable bond strength. 

This poor performance can be attributed to the considerably low surface roughness for 

this shipment that is below 0.3 mm roughness. The bond between the concrete topping 

and the hollowcore slab surface is controlled by two mechanisms: chemical bond and 

mechanical bond. The latter is dependent on the surface roughness. The chemical bond is 

affected by the moisture content of the hollowcore slab surface, which was optimized 

utilizing the SSD moisture condition. The obtained results suggest that machine-cast 

surfaces with a minimum surface roughness of 0.3 mm will provide adequate mechanical 

bonding to achieve the 0.9 MPa bond strength specified by A23.2-6B (2009). 

The light roughness produced by the steel broom was equivalent to a uniform roughness 

of about 0.04 mm. This additional roughness was very small and did not increase the 

pull-off strength. Six tests of the lightly-roughened slabs produced unsatisfactory 

strength. This low strength might be due to low roughness of the original machine-cast 

surface. 
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(a) Machine-cast slabs 

 

 

(b) Lightly-roughened slabs 

Fig. 2.12: Pull-off test results 
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Fig. 2.13: Pull-off test results in terms of hollowcore slab surface roughness

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.05

B
o
n

d
 S

tr
en

g
th

, 
M

P
a

Proposed

100 mm disk

10 mm disk

off test results in terms of hollowcore slab surface roughness

0.1 0.15 0.2 0.25 0.3

Roughness, mm

CSA A23.24-6B limit = 0.9 MPa

Proposed minimum roughness (0.30 mm)

100 mm disk

10 mm disk

34 

 

off test results in terms of hollowcore slab surface roughness 

0.35 0.4
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2.4 Push-off Tests 

The push-off tests were conducted in a vertical orientation to permit easier alignment of 

the MTS hydraulic actuator with the existing vertical support frame at the structures lab 

at Western. Fig. 2. shows a hollowcore slab installed in the vertical direction with its 

concrete topping resting on a 50 mm thick steel plate. When a vertical force is applied 

using the shown MTS hydraulic actuator, a spreader steel beam distributes the force on 

the hollowcore slab. The steel plate then reacts with a force on the concrete topping. This 

force generates shear stresses along the interface between the slab and the topping.  

A steel frame, positioned behind the hollowcore slab, prevents the lateral movement. The 

soffit side of the hollowcore slab is sufficiently smooth, which allows free movement of 

the slab relative to the steel frame. 50 mm wide by 3 mm thick Korolath bearing pads are 

used under the steel spreader beam and between the steel plate and the concrete topping 

to guarantee a uniform stress distribution at those locations. The tests were conducted by 

applying the load using the MTS actuator at a rate of 10 kN per minute.  

To capture the state of strains in the concrete topping, five strain gauges were attached to 

its top surface as illustrated in Fig. 2.. Strain gauges S1, S3, and S5 measured the strains 

in the direction of the applied load and strain gauges S2 and S4 measured the distribution 

of stresses across the topping width. The push-off test induced two types of stresses on 

the interface between the concrete topping and the hollowcore slab: (1) shear stresses 

(stresses parallel to the interface) and (2) peel stresses (stresses perpendicular to the 

interface).  

Movement in the shear and peel directions were recorded using four Linear Variable 

Displacement Transducers (LVDTs), L1 to L4, as shown in Fig. 2.. LVDTs L1 and L2 

measured the peel deformations and LVDTs L3 and L4 measured the shear deformations 

between the hollowcore slab and the concrete topping.  
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(a) Schematic 

 

 

 (b) Photo 

Fig. 2.14: Push-off test setup. 
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Fig. 2.15: Push-off test instrumentation. 

 

2.4.1 Test Results and Discussion 

The push-off tests were conducted on slabs of the 1
st
 and the 4

th
 shipments. Slabs 

PSMA4-1, PSMB4-1, PSMB4-2 and PSMB4-3 achieved zero shear strength, which is 

directly related to their low surface roughness. The average horizontal shear strength      

νh avg. can be obtained from the push-off tests using Eq. 2.1, where Pu is the ultimate 

applied load, at which the concrete topping is separated from the hollowcore slab, and A 

is the interface area. Values of Pu and the corresponding slip and peel deformations and 

νh avg. are shown in Table 2.6. 

A

Pu
h =avg.  ν  2.1 
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Table 2.6: Push-off test results 

Slab Pu (kN) Slip (mm) Peel (mm) ννννh avg. (MPa) 

SMA1-1 510  __ __ 1.98  

SMA1-2 359  0.606 0.404 1.39  

SRA1-1 504  0.956 0.913 1.95  

SRA1-3 554  0.35 0.696 2.15  

SRB1-1 223  0.311 0.582 0.860  

SRB1-2 182  0.174 0.134 0.710  

PSMA4-2 308 0.851 0.851 1.19 

PSMA4-3 66.0 0.980 0.017 0.256 

 

Interfacial shear between the concrete topping and the hollowcore slab was the dominant 

failure type observed in the tests, Fig. 16(a). However, failure of slab SRA1-1 was 

affected by the peel stresses as shown in Fig. 2.16(b). 

          

             (a) Interface shear failure                               (b) Peel failure in hollowcore slab 

Fig. 2.16: Failure types of push-off tests. 
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Three of the machine-cast finished slabs achieved average shear strength higher than  

0.70 MPa and 0.55 MPa limits that are required by CSA A23.3-04 (2004) and ACI 318-

08 (2008), respectively. However, one slab did not achieve the required limit, PSMA4-3 

mainly because of its low surface roughness (0.152 mm). On the other hand, the lightly-

roughened slabs, reported in Table 2.6, achieved the required limits. Considering 

manufacturer A, the lightly-roughened slabs demonstrated higher failure loads than the 

machine-cast slabs. Strains recorded by strain gauges S2, S3 and S4 exhibited close 

agreement in measured values and trends as illustrated in Fig. 2.. The slight variation in 

the readings may be due to misalignment of the direction of the strain gauges relative to 

the load direction.  

These readings show that the load was almost uniformly distributed across the width of 

the topping. The concrete strain readings from strain gauges S1, S3 and S5 are shown in 

Fig. 2.. Strain gauge S5 initially recorded the highest readings. At failure, Strain gauges 

S3 and S1 recorded values higher than S5 in the majority of the samples indicating that 

the interface layer in the zone of S5 had fractured. Considering slab SMA1-2, strain 

gauge S5 initially recorded the highest readings.  

At a load level of about 200 kN, strains measured by S3 started to increase at a high rate 

indicating a fracture in the zone of S5. At load level of about 320 kN, readings from 

strain gauge S1 started to rise. This mechanism illustrates a progressive type of failure, 

which is initiated by the fracture of the interface between the hollowcore slab and 

concrete topping at the loading end.  
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                     (a) Slab SMA1-2                                                     (b) Slab SRA1-1 

           

                                              

                     (c) Slab SRA1-3                                                      (d) Slab SRB1-1    

 

 (e) Slab SRB1-2 

Fig. 2.17: Readings of strain gauges S2, S3 and S4. 
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      (a) Slab SMA1-2                             (b) SRA1-1                        (c) Slab SRA1-3                                                               

 

 

           (d) SRB1-1                          (e) Slab SRB1-2                    (f) Slab PSMA4-2                                                     

Fig. 2.18: Readings of strain gauges S1, S3 and S5. 

 

Reading of the strain gauges gave evidence of load redistribution within the slab surface. 

However, extremely brittle and abrupt failure was observed because of the small recorded 

slips. The average slips at failure were calculated using readings of LVDTs L3 and L4 

and are shown in Table 6. The load versus slip curves are also shown in Fig. 2.. The peel 

deformations recorded by LVDT L2 are shown in Fig. 2.. Readings from LVDT L1 were 

negligible. 
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                   (a) Machine-cast slabs (slip)                     (b) Lightly-roughened slabs (slip) 

 

    

                (c) Machine-cast slabs (peel)                          (d) Lightly-roughened slabs (peel) 

Fig. 2.19: Slip and peel results based on slabs’ surface finish. 
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instance in slab SRA1-3, the slip and peel deformations did not initiate until load level of 

100 kN at which the stiffness has decreased due to the loss of the interfacial bond. After 

that load level, resistance of the interface layer depends on the mechanical bond (shear-
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surface roughness for that slab. This specimen experienced low peel deformations and 

high slip values indicating low shear stiffness.    

 

2.5 Full-scale Tests 

The full-scale tests were conducted using three-point bending as shown in Fig. 2.. The 

total length of each slab was 3658 mm. The depth of the composite slabs was either 

254 mm or 304 mm. The distance between the support and the point load was 1329 mm 

resulting in shear span ratios of 4.37 and 5.25 for the 304 mm and 254 mm slabs, 

respectively. 

   

 

(a) Schematic (dimensions in mm). 
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(b) Photo. 

 

Fig. 2.20: Full-scale test setup. 

 

The contact surface was reduced for slabs FMA2-2C and FMB2-1C by inducing a 

separation in the concrete topping. This discontinuity in the concrete topping was 

achieved by saw cutting as illustrated in Fig. 2.. The saw cut created a 4 mm separation 

gap in the concrete topping. The four specimens that did not have a gap in their topping 

were instrumented with six LVDTs as shown in Fig. 2.(a). Two LVDTs (LE and LW) 

located at mid-span of the slabs measured the vertical deflection. Four LVDTs measured 

the slip between the concrete topping and the hollowcore slab at the middle of the shear 

span (SLE1 and SLW1) and near the supports (SLE2 and SLW2). Four strain gauges 

were also attached to the sides of the concrete topping and the hollowcore slab at the mid-

span section. They were installed at a distance of 10 ± 5 mm from the interface line. The 

distance varied depending on the adequacy of the concrete surface. 

Instrumentation layout of slabs FMA2-2C and FMB2-1C is illustrated in Fig. 2.(b). The 

slip and peel deformations between the hollowcore slabs and the topping were measured 

using LVDTs (SLCE and SLCW) and (PCE and PCW), respectively.  
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(a) Saw cutting of the concrete topping. 

 

 

 (b) Test setup. 

Fig. 2.21: Slabs with gap in their topping (FMA2-2C and FMB2-1C). 

 

Four strain gauges at the mid-span section were also used to monitor concrete strains. 

Photos of typical LVDTs and strain gauges are given in Fig. 2.. A load rate of 10 kN per 
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minute was applied for all tests. The instrumentation data were collected through a data 

acquisition system at a 1 Hz sampling rate. 

 

 

(a) Typical slab. 

 

 

 (b) Slabs with gaps in their topping. 

 

Fig. 2.22: Instrumentation layout (dimensions in mm). 
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                    (a) Slip (LVDTs).                                     (b) Concrete strain gauges. 

 

Fig. 2.23: Instrumentation devices. 

 

 

 

 

 

 

 

 

 

 

 



 

2.5.1 Test Results

2.5.1.1 Flexural and

The load-deflection graphs are shown in 

based on the average of LVDTs LW and LE. 

typical flexural behaviour. The initial change in the load

cracking when the tensile stress at the bottom of the hollowcore slab exceeds the cracking 

stress. The propagation of the existing cracks along with the initiation of new ones 

continues to affect the load

At a later loading stage close to failure, yielding starts to further affect the load

curve until total failure occur

where a flexural crack had initiated and then propagated triggering shear failur

slabs have failed by strand rupture, FMA2

modes for all slabs. 
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deflection graphs are shown in Fig. 2. with the deflection values calculated 

based on the average of LVDTs LW and LE. The load-deflection curves demonstrate 

typical flexural behaviour. The initial change in the load-deflection slo

cracking when the tensile stress at the bottom of the hollowcore slab exceeds the cracking 

propagation of the existing cracks along with the initiation of new ones 

continues to affect the load-deflection curve trend.  

loading stage close to failure, yielding starts to further affect the load

curve until total failure occurs. Four of the tested slabs failed in flexure

where a flexural crack had initiated and then propagated triggering shear failur

slabs have failed by strand rupture, FMA2-1 and FMA2-2C. Fig. 2. shows the failure 

Fig. 2.24: Load-deflection test results. 
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Vertical Shear Strength Evaluation 

with the deflection values calculated 

deflection curves demonstrate 

deflection slope is caused by 

cracking when the tensile stress at the bottom of the hollowcore slab exceeds the cracking 

propagation of the existing cracks along with the initiation of new ones 

loading stage close to failure, yielding starts to further affect the load-deflection 

Four of the tested slabs failed in flexure-shear mode, 

where a flexural crack had initiated and then propagated triggering shear failure. Two 

shows the failure 
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(a) FMA2-1 (strand rupture).                                (b) FMA2-2C (strand rupture). 

 

 

(c) FMB2-2 (flexure-shear failure).                (d) FMB2-1C (flexure-shear failure). 

 

  

       (e) FMB2-3 (flexure-shear failure).                  (f) FRA2-3 (flexure-shear failure). 

Fig. 2.25: Failure modes. 
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Table 2.7 summarizes the experimental failure loads along with the predicted failure 

loads for untopped and topped slabs. The flexural capacity was estimated by assuming a 

maximum compressive strain of 0.0035. The concrete stress-strain relationship used in 

the flexural capacity prediction was based on a simple parabola equation, where the strain 

corresponding to maximum stress is equal to 0.002. The stress-strain relationship for the 

prestressing strands was developed using the Ramberg-Osgood function (Collins and 

Mitchell, 1991). Three constants, A, B and C define this function. Those constants were 

calculated using tensile strength test results of a typical strand for slabs from 

manufacturer A (Appendix 1), while recommended values from CPCI (2007) and PCI 

(2004) design handbooks were used for slabs from supplier B. The flexural capacity 

prediction was executed using strain compatibility as illustrated in Fig. 2.. 

 

Table 2.7: Predicted capacity of the tested slabs 

Slab 

Label 

Experimental 

Failure Load 

P (kN)  

Predicted Capacity in terms of Load P, 

kN 

Failure 

Type 

Shear Failure Flexural Failure 

topped untopped topped untopped 

FMA2-1 253 270-544 205-444 262 206 
strand 

rupture 

FMA2-2C 244 267-536 199-434 260 204 
strand 

rupture 

FRA2-3 388 315-639 236-518 451 379 flexure-shear 

FMB2-1C 380 288-630 222-535 383 315 flexure-shear 

FMB2-2 410 281-619 215-512 382 312 flexure-shear 

FMB2-3 512 336-694 256-571 494 428 flexure-shear 
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Fig. 2.26: Strain compatibility method 

 

The equivalent rectangular stress block parameters, α1 and β1, were calculated as per 

Eqns. 2.2 and 2.3 below. These equations are based on the integration of the concrete 

stress-strain curve over the concrete compression area.  
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where, εt is the top strain and εο is 0.002. 

The tensile strength of concrete was included in the flexural capacity predictions The area 

of concrete in tension, At, was iterated such that its centroid coincides with the 

prestressing strand location and its minimum width is less than 15 times the strand 

diameter, Fig. 2.. The flexural tensile strength of concrete, fcr, was calculated as 

chcf '6.0  according to A23.3-04 (2004) clause 8.6.4. More details about the strain 

compatibility method are shown in Appendix 1.   
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Fig. 2.27: Flexural concrete tensile strength (typical slab) 

 

The shear capacity was estimated based on the general method in CSA A23.3-04 (2004). 

The effective web width was calculated according to clause 11.2.10.1 as explained in Fig. 

2.. The web area encompassed by the 20
ο
 tangents to the cores is equal to bwdv. The 

effective web width calculations for the topped and untopped slabs are shown in 

Appendix 1. The predicted shear capacities provided in Table 2.7 are shown as a range, 

where the minimum value indicates the shear capacity under the applied load and the 

maximum value represents the shear capacity at dv from the face of the support.  

 

 

Fig. 2.28: Effective web width. 

 

The experimental failure loads are in good agreement with the predicted failure loads. 

The slabs from supplier B showed slightly lower predicted flexural capacity than the 

actual failure loads, which can be attributed to the variation between the actual and the 
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assumed stress-strain model used for the strands. For slabs that failed by flexure-shear, a 

flexural crack propagated into a flexure-shear crack that caused failure.  

The failure load was within the predicted range of shear capacity for all the slabs. For the 

two slabs that failed by strands rupture, FMA2-1 and FMA2-2C, the failure load 

represents the level at which the slab ceased to carry any further load, which occurs 

approximately at ultimate compressive strain of 0.0035. The strain in the strands at that 

load level is calculated as 0.0180 and 0.0181 for slabs FMA2-1 and FMA2-2C, 

respectively, which is lower than the rupture strain of 0.059 reported in the strands tensile 

test data sheet. The crushing of the extreme compressive fibers did not manifest during 

the test so the loading was continued until strands rupture.  

 

2.5.1.2 Slip and Peel Deformations 

Slip and peel measurements obtained from the displacement LVDTs are illustrated in Fig. 

2.. Negative LVDT readings indicate that the LVDT has expanded, which means that slip 

or peel has occurred. Positive values indicate that the LVDT has compressed, which 

results from the curvature of the slab specimen due to bending under loading.  

 

Table 2.8 shows the maximum slip and peel deformations for all of the tested slabs. The 

slip measured for slabs FMA2-1 and FMB2-3 was almost zero suggesting that full 

composite action was achieved.  

Specimen FMA2-2C had better ductility than FMA2-1. This ductility resulted from the 

observed slip in this specimen. Specimen FMB2-2 had slip values that are higher than 

FMA2-1 and FMB2-3, which may be due to the lower bond strength between the slab 

and the concrete topping. However, these slip values were very small and did not affect 

the overall performance of the specimen. 
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(a) FMA2-2C 

                 

(b) FMB2-1C 

 

(c) Slab FMB2-2 

Fig. 2.29: Slip and peel measurements. 
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Table 2.8: Full-scale test results at failure loads 

Specimen 

Label 

Max. Load 

P, kN 

Max. Slip δδδδs, mm Max. Peel δδδδp, mm 

E W E W 

FMA2-1 253 0.000 0.004 ------ ------ 

FMA2-2C 244 1.949 3.279 0.315 1.643 

FRA2-3 388 0.000 0.002 ------ ------ 

FMB2-1C 380 1.263 3.018 0.817 2.030 

FMB2-2 410 0.270 0.165 ------ ------ 

FMB2-3 512 0.021 0.000 ------ ------ 

 

Careful inspection of the slip and peel curves for the cut-slabs illustrated consistency 

between peel and slip readings. The slip values for specimen FMA2-2C show an initial 

high horizontal shear stiffness that is significantly reduced at a load of about 186 kN. 

This might be due to loss of the bond resistance at the interface. The slip measured at the 

west side was higher than that measured at the east side. This is linked to the peel 

deformations that show higher values at the west side than the east side. Similar 

observations can be made about slab FMB2-1C. Strain readings for slab FMB2-1C are 

shown in Fig. 2.. Near failure, the bond between the concrete topping and the hollowcore 

slabs was weakened, which triggered slip along the interface and caused the compressive 

stresses in the concrete topping to unload and the tensile strains in the top of the 

hollowcore slab to change to compressive strains. 

The slip measured for slabs FMA2-1 and FMB2-3 was almost zero suggesting that full 

composite action was achieved. Specimen FMA2-2C had better ductility than FMA2-1. 

This ductility resulted from the observed slip in this specimen. Specimen FMB2-2 had 

slip values that are higher than FMA2-1 and FMB2-3 because of its low bond strength 

(average of 0.80 MPa with one of the cores having zero bond strength). However, these 

slip values were very small and did not affect the overall performance of the specimen. 

Slab FMB2-3 had a thickness of 304 mm including the concrete topping, which is greater 

than the thickness of slab FMB2-2 but had similar prestressing reinforcement. Horizontal 
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shear failure was not observed for slab FMB2-3 and the slab acted compositely up to 

failure. This indicates that the increased thickness did not affect the horizontal shear 

behaviour.    

.  

     

                      (a) FMB2-1C                                                        (b) FRA2-3                                                           

                                       Fig. 2.30: Strain readings for all tested slabs. 

 

2.5.1.3 Average Horizontal Shear Strength Evaluation 

The average horizontal shear stress at failure, τtest avg., was calculated using the two 

methods available in A23-04 (2004) and ACI 318-08 (2008). The first method utilizes the 

maximum shear force as the maximum horizontal shear force applied on the concrete 

topping, clause 17.5.3 of ACI 318-08 (2008) and clause 17.4.3 of CSA A23.3-04 (2004). 

The maximum horizontal shear stress is then calculated by dividing the maximum shear 

force by bvd, where bv is the width of the interface between the topping and the 
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area, Acv, in substitution of bvd. The first method is simple and depends on the shear force 

diagram of the full-scale test while the second method involves more analysis using the 

strain compatibility procedure to determine the horizontal shear force in the concrete 

topping. The equivalent stress block parameters were determined in a similar fashion to 

the procedure used in the evaluation of the flexural capacity of the composite slabs.  

Table 2.9 shows the calculated average shear stress at failure for each of the tested slabs. 

The results show that both methods generally produce comparable horizontal shear 

stresses. However, they had significant differences for the case of the cut-slabs, which is 

expected because the first method does not account for the reduction of the concrete 

topping area. The allowable horizontal shear strength for composite hollowcore slabs as 

specified in A23.3-04 (2004) and 318-08 (2008) are 0.70 MPa and 0.55 MPa, 

respectively. These limits are applicable when the hollowcore slab surface is intentionally 

roughened to 6 mm and 5 mm amplitudes as per A23.3-04 (2004) and ACI 318-08 

(2008), respectively. The tested slabs reached values that are comparable or higher than 

these limits, which suggests that the used surface roughness can develop a full composite 

action. 

 

Table 2.9: Shear stress evaluation according to design standards 

Slab Label Failure Load P, kN  Avg. Shear Stress, ττττtest-avg., MPa 

Method (1) Method (2) 

FMA2-1 253 0.50 0.53 

FMA2-2C 244 NA 2.27 

FRA2-3 388 0.61 0.66 

FMB2-1C 380 NA 3.67 

FMB2-2 410 0.81 0.84 

FMB2-3 512 0.81 0.84 
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2.6 Conclusions 

This chapter examined the peel and shear behaviour of the interface between hollowcore 

slabs with machine-cast surface and concrete topping through pull-off, push-off, and full-

scale tests. The work conducted in this study is distinguished from previous work by 

adapting a comprehensive experimental program, which gave broader understanding of 

the performance of composite hollowcore slabs. Other manufactures can follow the tests 

explained in this study to evaluate the adequacy of their products. In view of the 

presented results and discussions, the following conclusions may be drawn: 

Surface roughness and bond strength between hollowcore slabs and topping concrete: 

• The surface roughness provided by the machine-cast finish is much lower than the 

intentional roughness required by North American design standards. High variability 

of surface roughness was observed for different shipments from the same 

manufacturer. 

• Pull-off test results indicated that if the surface roughness of hollowcore slabs with 

machine-cast finish exceeds 0.3 mm, their bond strength to the concrete topping is 

expected to satisfy the 0.9 MPa limit in A23.2 (2009). The loss of bond between the 

hollowcore slab and the concrete topping decreases the load carrying capacity of the 

slab, which may cause premature failure in real cases. The suggested surface 

roughness threshold can be used as a quality control measure. This threshold is valid 

for the slabs produced by the participating manufacturers.   

Shear strength between hollowcore slabs and topping concrete: 

• Push-off test results indicated that if the surface roughness of the hollowcore slabs is 

acceptable and the slab is free from contamination, the shear strength of the interface 

layer between the slab and the concrete topping can be higher than the minimum 

acceptable shear stresses specified in North American design standards. The shear 

strength was found to vary significantly from one manufacturer to another. 

Full-scale tests: 

• Full-scale three point bending tests have shown that hollowcore slabs with machine-

cast finish and acceptable roughness can provide adequate composite action up to 
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failure. Thus, the horizontal shear strength required by CSA A23.3-04 (2004) and 

ACI 318-08 (2008)
 
can be met without the need for intentional roughening. 

• Two of the slabs had a gap in their concrete topping limiting the effective area of the 

topping to a small area in the middle of the slab. The topping of the two slabs 

experienced slip and peel deformations that did not affect the overall behaviour. This 

might be due to the confining action provided by the load that acts on the topping. 

This suggests that live loads increase the shear strength provided by the interface 

layer. 
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CHAPTER THREE 

3 Analytical Modeling of the Interface between Hollowcore 

Slabs and Cast-In-Place Concrete Topping 

Hollowcore slabs are precast/prestressed concrete elements that are commonly used in 

the construction industry. They are manufactured at a precast concrete plant prior to 

shipping to the job site. After installation, they are typically topped with a 50-mm cast-in-

place concrete topping to level the surface. Structural engineers can make use of the 

concrete topping to increase the load-carrying capacity of the slab. This consideration 

requires that failure at the interface between the hollowcore slab and the concrete topping 

does not initiate prior to reaching the ultimate capacity of the composite section.  

North American design standards specify that the shear strength of the interface between 

intentionally roughened hollowcore slab surface and the concrete topping can be taken as 

0.70 MPa [CSA A23.3-04 (2004), clause 17.4.3.2] or 0.55 MPa [ACI 318-08 (2008), 

clause 17.5.3.1]. ACI 318-08 (2008) commentary clause R17.5.3.3 defines intentionally 

roughened as 6.4 mm of surface roughness, and CSA A23.3-04 (2004) explanatory note 

N17.4.3.2 defines it as roughness to an amplitude of 5.0 mm. In North America, 

hollowcore slabs are commonly produced using the extrusion process, which involves the 

use of zero-slump concrete mix and high vibration augers. The surface of hollowcore 

slabs manufactured using this process is referred to as machine-cast finish. The roughness 

of this surface varies depending on a number of factors, including concrete mix design 

and wear and tear of the concrete extrusion machine. The same variability exists when 

this surface is roughened. Roughening a hollowcore slab surface to the amplitudes 

specified in the design standards involves additional time, material, and labor that 

manufacturers would be keen to avoid. A simple roughening technique that is widely 

used by manufacturers involves the use of a steel broom. However, the produced 

roughness does not qualify the slabs to be ranked as intentionally roughened.  

This chapter investigates the shear and peel behavior at the interface between hollowcore 

slabs and cast-in-situ concrete topping. This chapter models the shear and peel stresses 
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along the interface between the hollowcore slab specimens and the topping concrete. The 

model is based on the technique presented by El Damatty and Abushagur (2003) to 

calculate the shear and peel stresses in the adhesive attaching fiber-reinforced polymer 

(FRP) sheets to the flanges of steel I beams. A closed-form solution of the system 

equilibrium was used to determine the distribution of the developed shear and peel 

stresses. 

   

3.1 Push-off Tests 

Push-off tests were conducted vertically. While the concrete topping is resting on a steel 

plate, a downward force was applied to the hollowcore slab. Two steel beams were 

positioned on the back of the hollowcore slab to provide stability. The concrete topping 

was instrumented with five strain gauges (S1 to S5), two peel displacement gauges (L1, 

L2) and two slip displacement gauges (L3, L4). The push-off test setup and 

instrumentation are shown in Fig. 3.31. The tested hollowcore slabs were 203 mm deep 

and had a surface area of 1220 mm by 1220 mm. The nominal concrete compressive 

strength for the hollowcore slabs was 41 MPa. The concrete topping had a surface area of 

508 mm by 508 mm, a thickness of 50 mm and a concrete compressive strength of 32 

MPa. A total of seven slabs (SMA1-2, SRA1-1, SRA1-3, SRB1-1, SRB1-2, PSMA4-2 

and PSMA4-3) were tested.  

“M” and “R” refer to the surface finish of the slab as either machine-cast or lightly-

roughened, respectively. “A” and “B” refer to the slab manufacturer. Each of the tested 

slabs had four-½
”
 prestressing strands. Prior to starting the test, a careful visual inspection 

did not reveal any signs of separation between the concrete topping and the hollowcore 

slabs. The load was applied via the hydraulic actuator at a rate of 10 kN/minute. 

Displacement and strain readings were collected throughout the tests. 
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Fig. 3.31: Push-off test setup and instrumentation. 

 

The ultimate load, at which the concrete topping separates from the hollowcore slab, and 

the corresponding average shear strength, νh avg., are shown in Table 3.1. To obtain a 

conservative estimate of νh avg., the effect of slippage on the contact area was not 

accounted for and, thus, νh avg. was directly calculated by dividing the failure load by the 

contact area. The ultimate load accounts for the weight of the slab and the steel spreader 

beam.  

The average horizontal shear strength for all of the tested slabs was higher than the limit 

of 0.7 MPa and 0.55 MPa required by CSA A23.3 (2004) and ACI 318 (2008), 

respectively. Slabs from manufacturer A demonstrated considerably higher shear strength 

than those from manufacturer B except for PSMA4-3 because it had a very low surface 

roughness. This difference might be due to the initial surface roughness and/or the 

roughening pattern. 
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Table 3.1: Push-off test results 

Specimen 

Label 

Failure load, 

kN  

Average shear 

strength, ννννh avg., 

MPa  

Calculated yielding 

horizontal shear stress, 

ννννh max., MPa  

SMA1-2 354 1.37 1.69 

SRA1-2 504  1.95  6.19  

SRA1-3 554  2.15  7.24  

SRB1-1 223  0.86  1.24  

SRB1-2 182  0.71  1.01  

PSMA4-2 308 1.19 2.47 

PSMA4-3 66 0.26 0.26 

 

While the interface capacity in the pre-yielding stage depends on the bond between the 

concrete topping and the hollowcore slab, the post-yielding behavior is governed by shear 

friction between the slab and the topping. The abrupt failure type that was observed for 

all tested specimens emphasizes that the horizontal stress transferred along the interface 

layer did not have the ability to fully redistribute over the contact area once failure was 

initiated. This observation suggests that the reported values of average shear stresses are 

lower than the actual shear stresses that were reached.  
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3.2 Analytical Model 

 

 

Fig. 3.32: General layout of the push-off test spring model. 

 

The hollowcore slabs are modeled as rigid elements. Two continuous spring systems 

were used to simulate the stiffness of the interface layer as illustrated in Fig. 3.32. Similar 

modeling technique was used by El Damatty and Abushagur (2003) while modeling the 

adhesive attaching FRP sheets to steel I beams. The first set of springs depicts the in-

plane stiffness ks in the direction of the applied load (parallel to the X axis). They allow 

modeling the horizontal shear stress behavior. The out-of-plane stiffness kp models the 

peel behavior using another set of springs that are parallel to the Z axis. The shear stress 

profile νh(x) acting along the interface between the hollowcore slab and the concrete 
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topping can be calculated using Eq. 3.1, where u(x) is the in-plane displacement profile of 

the concrete topping along the X axis. 

)()( xukx sh ×=ν  3.1 

The in-plane and out-of-plane equilibrium are explained in the following sections on an 

infinitesimal segment of the concrete topping “element T”, Fig. 3.33, to evaluate the 

shear and peel stiffness (ks) and (kp).  

 

 

Fig. 3.33: Free body diagram of element T. 

 

3.2.1 In-Plane Equilibrium  

When the hollowcore slab is pushed downward by the applied force Phc, an equivalent 

reaction force Pt is generated in the concrete topping, Fig. 3.33. The resultant of the 

developed axial stresses in the concrete topping, σ, is acting at its centroid. σ has a value 
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of zero at the top point of the topping (x = 0) and a maximum value at the bottom point (x 

= 508 mm).  

Considering the in-plane equilibrium of an infinitesimal element T, the increase in axial 

stresses dσ is in equilibrium with the developed shear stresses at the interface. The force 

in the in-plane spring, Fs, represents the shear force along the interface between the 

hollowcore slab and the concrete topping. This force can be calculated from the 

summation of forces along the X axis as given by Eq. 3.2. Fs can also be calculated as a 

function of the shear spring stiffness as given by Eq. 3.3.  

σbtdFs =  3.2 

bdxxuKF ss )(=  3.3 

The relationship between σ and the in-plane displacement u(x) can be obtained from 

Eqns. 3.2 and 3.3 and Hook’s Law as illustrated in Eqns. 3.4 and 3.5. 

t

xuk

dx

d s )(
=

σ
  3.4 

dx

du
Ec=σ   3.5 

where (du/dx) is the strain in the concrete topping, and Ec is the modulus of elasticity of 

concrete. Since the concrete topping is made of normal density concrete and have a 

compressive strength f’c of 30 MPa, Ec is calculated using clause 8.6.2.3 of CSA A23.3-4 

(2004). The differential equation that governs the state of stresses in the concrete topping 

is: 

0)(2

2

2

=− xu
dx

ud
ω  3.6 

where  
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Eq. 3.6 is a second order differential equation and can be solved by defining the 

following boundary conditions: 

1) At 00 =→=
dx

du
x             (strain = 0) 

2) At 
c

t

btE

P

dx

du
Lx −=→=    (strain from Hook’s Law) 

Solving Eq. 3.6 using the defined boundary conditions leads to the following in-plane 

displacement profile. 

)cosh(
)sinh(

)( x
LbtE

P
xu

C

t ω
ωω

−=   3.8 

The relationship between the load Pt and the measured displacement at the bottom 

surface of the concrete topping when x is equal to L can be expressed by Eq. 3.9. 

 )()tanh( LuLbtEP Ct ωω−=  3.9 

where u(L) is the average in-plane displacement measured using LVDTs L3 and L4. The 

measured Pt - u(x) is simplified to a bilinear curve as shown in Fig. 3.34 for slab SRB1-1. 

The slope ksm was obtained such that areas A1 and A2 are equal. The coordinates of 

points C for all specimens are reported in Table 2 and were used to define Pt and u(L) and 

then evaluate ω  using Eq. 3.9. 



69 

 

 

Fig. 3.34: Approximate load-slip relationship for slab SRB1-1. 

 

Table 3.2: Values of Pt and u(L) at the yielding points, C. 

Slab label Pt, kN  u(L), mm  

SMA1-2 354 0.49 

SRA1-2 504  0.13  

SRA1-3 554  0.13  

SRB1-1 223  0.18  

SRB1-2 182  0.15  

PSMA4-2 308 0.13 

PSMA4-3 66 1.9 



 

3.2.2 Maximum Shear Stress (

The in-plane displacement distribution along the X axis of the concrete topping can be 

obtained using Eq. 3.8. The horizontal shear stress distribution, 

using Eq. 3.1. Fig. 3.35 illustrates the horizontal shear stress distribution along the X axis. 

Fig. 3.36 compares the calculated h

average measured horizontal shear stress at failure. 
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The actual horizontal shear profile shows a concentration of the shear stresses near the 

applied load Pt. This observation indicates that the tested slabs sustained higher stresses 

than the average value. Table 3.1 shows the average and the calculated horizontal shear 

stress values at yielding. For all of the tested slabs, the shear strength at the interface 

between the hollowcore slabs and the concrete topping reached values that are much 

higher than the values specified in North American design standards. 

 

3.2.3 Out-of-Plane Equilibrium  

Fig. 3.33 illustrates the forces and stresses acting on element T in the out-of-plane 

direction. The external applied moment, m(x), results from the eccentric force in the shear 

spring, Fs, and can be found by multiplying the force Fs by half the thickness of the 

concrete topping. The applied moment, m(x), can be defined using Eq. 3.10. 

)(
2

1
)( xbtukxm s=   3.10 

The force, Fp, is developed in the out-of-plane springs as a result of the applied moment 

m(x) and is responsible for the peel behavior of the concrete topping. Fp can be calculated 

from the equilibrium of forces along the Z axis and the equilibrium of the external and 

the internal moments acting on the element, Eqns. 3.11 and 3.12. 

)(xbwk
dx

dV
p−=   3.11 

)(xmV
dx

dM
+=   3.12 

Utilizing the moment-curvature relationship, Eq. 3.13, the differential equation governing 

the peel behavior, Eq. 3.14, can be derived.  

)()(
2

2

x
dx

wd
EIxM =  3.13 
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dx

dm

EI
xw

dx

xwd 1
)(

)( 4

4

4

=+ λ  3.14(a) 

where 
EI

bk p
=4λ   3.14(b) 

The homogenous and particular solutions of Eq. 14 are given by Eq. 15. 

)sinh()cos()sinh()sin()cosh()sin(

)sinh()cos()cosh()cos()(

xFxxxDxxC

xxBxxAxw

ωλλλλλ

λλλλ

−++

+=
     3.15(a)  

where 
))(Lsinh(IE

k
F

442

c

s

ωλω +
= tP

 3.15(b) 

The constants B and D can be determined by applying the following boundary conditions 

at the free end of the concrete topping (x = 0). 

(1) 0
2

2

=
dx

wd
 (M = 0). 

(2) 0
3

3

=
dx

wd
 (V = 0). 

Substituting with the evaluated constants, Eq. 15 reduces to the following form: 

)sinh()sinh()cos(
2

)]cosh()sin()sinh()[cos()cosh()cos()(

xFxx
F

xxxxCxxAxw

ωλλ
λ

ω

λλλλλλ

++

++=

 3.16 

Eq. 3.16 represents the calculated out-of-plane displacement profile of the concrete 

topping, w(x), and contains three unknowns A, C and λ. The load and displacement 

defining point C in Fig. 3.34 and the corresponding strains (point D in Fig. 3.37) are used 

to evaluate these constants as follows: 



 

Fig. 3.37: Approximate load

 

1- The values of du(

S5 by differentiating Eq. 3.8.

Fig. 3

 

Approximate load-S3 strain relationship for slab SRB1-

mid)dx/du , Fig. 3.38, are evaluated at the locations of S1, S3 and 

S5 by differentiating Eq. 3.8. 

3.38: State of strains in the concrete topping. 

73 

 

-1 (typical) 

, are evaluated at the locations of S1, S3 and 
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2- Readings of S1, S3, and S5 represent the measured strain at the surface of the 

concrete topping, outer)dx/du( , Fig. 3.38. 

3- bending)dx/du(  is evaluated at the locations of S1, S3, and S5 using Eq. 3.17.  

           
midouterbending dx

du

dx

du

dx

du








−








=








 3.17 

4- The curvature of the concrete topping at the locations of S1, S3 and S5 is 

evaluated using Eq. 3.18. 

           
bendingdx

du

tdx

wd








−=







 2
2

2

 3.18 

5- The cubic function that best fits the calculated curvature in step 4 is then 

evaluated. Fig. 3.39 shows a typical cubic function. 

 

 

Fig. 3.39: Curvature best fit cubic curve. 
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6- The out-of-plane measured displacement profile w(x)m was obtained by double 

integration of Eq. 3.18. The two integration constants were then evaluated using 

the out-of-plane displacement readings from LVDTs L1 and L2.  

7- Nonlinear regression analysis was conducted to match the calculated out-of-plane 

displacement profile w(x) with the displacement profile w(x)m evaluated in step 6. 

This analysis allowed determining constants A, C and λ. The out-of-plane profile, 

w(x), is shown in for all tested slabs. 

 

 

Fig. 3.40: Out-of-plane displacement profiles. 

 

3.3 Shear and Peel Stiffnesses 

The peel stiffness kp is calculated using Eq. 3.14(b) by substituting with the value of λ. 

The shear stiffness (ks) is calculated using Eq. 3.6. Table 3.3 shows the calculated shear 

and peel stiffnesses for all slab specimens. (kp) is considerably smaller than (ks)  for all 

slabs.  
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Table 3.3: Shear and peel stiffness values. 

Specimen 

Label 

Horizontal shear stiffness ks, 

(N/mm)/mm
2
 

Peel stiffness kp, 

(N/mm)/mm
2
 

SMA1-2 
3.48 0.50 

SRA1-2 
47.6 5.69 

SRA1-3 
54.0 8.67 

SRB1-1 
6.72 2.07 

SRB1-2 
6.85 1.92 

PSMA4-2 
19.0 4.50 

PSMA4-3 
0.26 NA 

 

Average shear stiffness (ks) of 31.0 (N/mm)/mm
2
 and 6.8 (N/mm)/mm

2 
and average peel 

stiffness (kp) of 6.3 (N/mm)/mm
2
 and 2.0 (N/mm)/mm

2
 were calculated for slabs from 

manufacturer A and B, respectively. Slab PSMA4-3 was not included in the average 

value of (ks) and its peel stiffness (kp) was not calculated because of its significantly low 

readings. Peel stiffness (kp) was not calculated for slabs SMA1-2 because it was not 

instrumented with strain gauges. Manufacturers A and B can use these values to predict 

the composite behavior of their hollowcore slabs. 

 

3.4 Conclusions 

An analytical model that simulates the interface between the hollowcore slab and the 

concrete topping using continuous springs was presented. The springs depicted the 

interfacial shear and peel behaviors. The actual shear stresses were evaluated using the 

analytical model and found to be higher than the average measured values for all of the 
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tested slabs. The actual values are much higher than the specified code limits. The shear 

and peel stiffnesses, (ks) and (kp), of the interface between hollowcore slabs and concrete 

topping were then estimated using the presented analytical model. The reported (ks) and 

(kp) values are unique for the tested slabs. The presented method can be repeated to 

evaluate these stiffnesses for slabs from different manufacturers. Structural engineers can 

then use (ks) and (kp) values to evaluate the actual shear stresses developed at the interface 

between hollowcore slabs and their concrete topping and judge on the appropriateness of 

using the composite action.  
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CHAPTER FOUR 

4 Analytical Evaluation of the Composite Behavior of 

Hollowcore Slabs with Concrete Topping 

Retrofitting reinforced concrete beams with plates is a common practice to increase their 

load capacity. The plates are usually bonded to the soffit of the beams using a bonding 

agent such as epoxy. The design aim is reaching the ultimate capacity of the beam prior 

to delamination of the plate. Vilnay (1988) presented an analytical method to estimate the 

shear and peel stresses between a reinforced concrete beam and a steel plate bonded to its 

soffit. Vilnay’s method (1988) does not account for the effects of axial deformations of 

the beam, bending deformations of the plate and shear deformations of the epoxy layer. It 

assumes zero shear stress under the load and is only applicable for the case of a point 

load applied at mid-span. Smith and Teng (2001) proposed an analytical solution to 

determine the shear and peel stress distributions in the adhesive layer connecting beams 

and retrofitting plates made of any material. Smith and Teng’s approach (2001) accounts 

for the effect of the bending deformation of the strengthening plate and the axial 

deformation of the beam. The interfacial shear stress is assumed to be continuous at the 

point load. This approach can also be applied to general load scenarios.  

Analytical evaluation of the interfacial shear and peel stresses for composite hollowcore 

slabs with concrete topping does not exist in the literature. Adawi et al. (2014) estimated 

the shear and peel stiffness coefficients, (ks) and (kp), that govern the behaviour of the 

interface between hollowcore slabs and the concrete topping by providing closed form 

solutions for the differential equations governing the push-off tests. However, the push-

off tests do not resemble the actual state of the interfacial stresses in composite 

hollowcore slabs systems. This chapter provides closed form solutions for the differential 

equations governing the behavior of a simply supported composite hollowcore slabs. Two 

analytical solutions, simplified and modified, developed based on the deformation 

compatibility of the composite section are developed and validated. The simplified 

solution follows the approach of Vilnay (1988) while the methodology of Smith and 
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Teng (2001) is utilized to develop the modified solution. The simplified solution is easier 

to derive and implement compared to the modified solution because it neglects the 

bending deformations of the concrete topping. The modified solution on the other hand 

includes the bending deformation of the concrete topping and can be applied to any load 

case. The peel stresses are evaluated using the modified solution only. Details of the 

analytical solutions are explained in the following sections.  

    

4.1 Full-scale Tests 

Adawi et al. (2015) tested five machine-cast hollowcore slabs that were topped with 

50 mm concrete. Chapter 2 presented the results for an additional slab that was lightly-

roughened before casting of the topping concrete. The surface roughness of the machine-

cast hollowcore slabs ranged between 0.297 mm and 0.325 mm, which is considerably 

lower than the 6.35 mm and 5.00 mm roughness amplitudes required by CSA A23.3-04 

(2004) and ACI 318-08 (2008), respectively, to allow for composite action. The area of 

the concrete topping was reduced for slabs FMA2-2C and FMB2-1C to increase the 

horizontal shear stresses. 

The full-scale tests were conducted using the three point bending test setup. The span was 

2658 mm and the concentrated load was applied at mid-span using a steel spreader beam. 

The slabs were instrumented with gauges to measure strains in the hollowcore slabs and 

the concrete topping during the test. Shear and peel displacements were measured using 

four LVDTs that were distributed symmetrically along the slab. All slabs showed 

adequate composite performance up to failure. The slabs with reduced concrete topping 

area suffered significant slip and peel deformations, however, they were able to achieve 

the predicted capacity for the composite section. 
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4.2 Evaluation of Interfacial Stresses Using Analytical 
Solutions 

Fig. 4.41 shows the forces acting on a segment (dx) of a simply supported composite 

hollowcore slab.  

 

 

 

Fig. 4.41 : Equilibrium forces of segment (dx) 

 

The figure shows the concrete topping connected to the hollowcore slab at the interface, 

which has a thickness of zero. N(yhc + yt) represents the moment component resisted by 

the composite section. (Mhc, Vhc) and (Mt , Vt) are the moment and vertical shear resisted 

by the hollowcore slab and the concrete topping, respectively. (Q) is the generalized 

uniformly distributed load on the composite slab. 
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From the equilibrium of the forces and moments shown in Fig. 4.41, 

τb
dx

dN
=  4.1 

hchc

hc ybV
dx

dM
τ−=  4.2 

tt

t ybV
dx

dM
τ−=  4.3 

)( thc uuKdN −=  4.4 

where (K) is the general shear stiffness of the interface in N/mm and (uhc – ut) is the 

relative displacement between the top of the hollowcore slab (uhc) and the bottom of the 

concrete topping (ut). By dividing Eq. 4.4 by (bdx), differentiating with respect to (x) and 

noting that the total strain at the bottom of the concrete ( dxdutt =ε ) and at the top of 

the hollowcore slab ( dxduhchc =ε ), the following equation can be reached. 

)( thcsk
dx

d
εε

τ
−=  4.5 

Where (ks) is the interfacial shear stiffness in (N/mm)/mm
2
 and (b) is the width of the 

concrete topping. εt and εhc can be determined based on the moments and normal forces 

in the hollowcore slabs and the concrete topping as described by Eqns. 4.6 and 4.7 below. 

tttt

tt

t
AE

N

IE

yM
−=ε  4.6 

hchchchc

hchc

hc
AE

N

IE

yM
+

−
=ε  4.7 

In the following sections, the differential equations governing the shear stresses acting on 

the element shown in Fig. 4.41 are first derived using the two proposed methods: 

simplified and modified. They are then solved for the case of an applied point load at 
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mid-span to obtain the shear stress distribution along the interface between the 

hollowcore slabs and the concrete topping. The peel stress distribution is determined by 

solving the differential equations developed using the modified method.        

 

4.2.1 Interfacial Shear Stress  

4.2.1.1 Simplified Method 

Vilnay’s approach (1988) assumes that the strain at the bottom of the beam is due to 

bending of the beam, ignoring the bending rigidity of the steel retrofitting plate. The 

simplified method is developed based on Vilnay’s assumptions (1988) while accounting 

for: (1) location of the concrete topping relative to the slabs and (2) effect of the axial 

deformations of the hollowcore slab. Eq. 4.6 is reduced to: 

tt

t
AE

N
=ε  4.8 

Substituting Eqns. 4.7 and 4.8 in Eq. 4.5 yields: 





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Rearranging Eq. 4.9 and differentiating it with respect to (x): 
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Substituting Eqns. 4.1 and 4.2 into Eq. 4.10 gives the following relationship: 
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Considering the case of the one point load applied at mid-span and substituting with 

Vhc=P/2, the second order differential equation that governs the shear stress distribution is 

shown below. 

0
2

2

=−+ BA
dx

d
τ

τ
 4.12 

 where 










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
++=

hchc

hc

hchctt

s
IE

y
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 4.13 

hchc

hcs

IE

Pyk
B

2
=  4.14 

 

4.2.1.2 Modified Method  

The modified solution follows Smith and Teng’s approach (2001). It includes the effect 

of bending deformation of the concrete topping. The ratio between the moment resisted 

by the slab and the topping can be based on their relative rigidity as follows. 

 tt

tt

hchc

hc RMM
IE

IE
M ==  4.15 

The moment equilibrium of the infinitesimal segment implies that: 

( )[ ]hctthcT yyNMMM +++=  4.16 

Solving Eqns. 4.15 and 4.16 for (Mhc) and (Mt) and differentiating with respect to (x): 

[ ])(
1

hcttT

hc yybV
R

R

dx

dM
+−

+
= τ  4.17 
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[ ])(
1

1
hcttT

t yybV
Rdx

dM
+−

+
= τ  4.18 

where, (MT) and (VT) are the total moment and vertical shear. By differentiating Eqn. 4.5 

with respect to (x) and substituting Eqns. 4.6, 4.7, 4.17 and 4.18, the second order 

differential equation that governs the interfacial shear stress can be obtained.    
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4.2.2 General Solutions  

4.2.2.1 Simplified Method 

The general solution of Eq. 4.12 is given by the following form: 

A

B
eCeCx

AxAx ++= −
21)(τ  4.20 

Considering the general case of a partial concrete topping subjected to one point load at 

mid-span, Fig. 4.42, the constants (C1) and (C2) can be determined using the following 

boundary conditions: 

1) τ = 0 at x = L/2 (symmetry) 

2) Mhc = Pa/2 at x = 0 (total moment is resisted by the hollowcore slab)   

3) N = 0 at x = 0 (end of concrete topping)  

4) 
hchc

hcs

IE

Payk

dx

d

2

−
=

τ
 at x = 0 (after applying boundary conditions 2 and 3 in Eq. 4.9)  
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Fig. 4.42 : Boundary conditions for the simplified solution 

 

4.2.2.2 Modified Method 

The general solution of Eq. 4.19 is given by:   

TVmxBxB 121 )sinh()cosh( ++= λλτ  4.21 

 where 
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The constants are evaluated for the general case of hollowcore slab with partial concrete 

topping. The boundary conditions and the corresponding constants for all potential 

locations of the load (P) relative to the concrete topping are as follows: 
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• For a < b, Fig. 4.43(a) 

 

(a) a < b 

 

(b) a > b 

Fig. 4.43 : Boundary conditions for the modified solution.  

  

Boundary conditions: 

• at x = 0, MT = Mhc= 







−

L

b
Pa 1  

• at x = Lt, Mhc = MT = 
L

ab
P  

• at x = (b – a), τ (x) and )(x
dx

dτ
 are continuous functions.  
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[1] for )(0 abx −≤≤ and a < b: 
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[2] for tLxab ≤≤− )(  and a < b: 
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• For a > b, Fig. 4.43(b): 

Boundary conditions: 

at x = 0, MT = Mhc= 







−

L

a
Pb 1  
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at x = Lt, MT = Mhc = 
L

ab
P  

For tLx ≤≤0  
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For all of the above equations,  

hchc

hcs

IE

yk
m =2  4.33 

( )abk −= λ  4.34 

 

4.2.3 Interfacial Peel Stress (σ)  

The differential equation governing the equilibrium is derived and solved based on the 

work of Smith and Teng (2001) after accounting for the location of the concrete topping 

relative to the hollowcore slab. Equilibrium of forces along y axis in Fig. 4.41 yields the 

following equations: 
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t

t
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P
xb

dx

dV
−−= )(σ  4.35 

  )(xb
dx

dV
t

hc σ=  4.36 

where (bt) is the width of the concrete topping and (P/Lt) is the average uniformly 

distributed load that results from the applied load (P) on the partial concrete topping and 

represent (Q) in Fig. 4.41. The peel stress can be defined by using the stiffness of the 

interface layer: 

[ ]thcp xwxwkx )()()( −=σ  4.37 

where kp is the peel stiffness of the interface and w(x) is the displacement profile in the Y 

direction. By differentiating Eq. 4.37 twice, Eq. 4.38 can be obtained. 
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The relationship between the moments and curvatures for the hollowcore slab and the 

topping are: 
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By taking moment around points A and B in Fig. 4.1: 

( ))(xybV
dx

dM
hcthc

hc τ−=  4.41 

( ))(xybV
dx

dM
ttt

t τ−=  4.42 



91 

 

 By differentiating Eqns. 4.38 two times and substituting with Eqns. 4.39 - 4.42, the 

following fourth-order differential equation can be obtained: 
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The general solution of Eq. 4.43 is given as follows: 
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By assuming that the peel stress approaches zero for large (x) values (Smith and Teng, 

2001), the constants C3 and C4 are equal to zero. The constants (C1) and (C2) are 

determined using the following boundary conditions: 

1) at x = 0, Mt = 0, N = 0 and MT = Mhc (end of the concrete topping), where (MT) is the 

total external moment. Implementing this boundary condition in Eq. 4.38 yields the 

following expression: 
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2) at x = 0, Vt = 0 and VT = Vhc (end of concrete topping), where (VT) is the total external 

shear force. By differentiating Eq. 4.38 once with respect to (x) and substituting Eqns. 

4.41 and 4.42, this boundary condition can be expressed as: 
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Multiple differentiation of the peel stress general solution given in Eq. 4.44 yields the 

following second and third derivatives at the end of the concrete topping (x = 0): 

2

2

23

3

12

2

2

2

2
dx

Qd
n

dx

d
nC

dx

d
−−−=

τ
β

σ
 4.48 

3

3

24

4

12

3

1

3

3

3

22
dx

Qd
n

dx

d
nCC

dx

d
−−+−=

τ
ββ

σ
 4.49 

The second and third order derivative of the load (Q) can be eliminated because it is 

limited to either uniformly distributed or point load type (Smith and Teng, 2001). By 

substituting the boundary conditions described above into Eqns. 4.48 and 4.49, the 

constants (C1) and (C2) can be determined as follows: 
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4.2.4  Analytical Solution Results 

4.2.4.1 Interfacial Shear Stress Distribution 

Using the simplified and the modified methods explained in the previous sections, the 

shear stress distribution along the interface between the concrete topping and the 

hollowcore slab was evaluated for the full-scale test slabs at yielding. (ks) values 

evaluated by Adawi et al. (2014) were utilized. For slabs with machine-cast surface, (ks) 

ranged from 3.48 to 19 (N/mm)/mm
2
. For slabs with lightly-roughened surface finish (ks) 

was 6.75 (N/mm)/mm
2
. The resulting distributions are given in Fig. 4.44 through Fig. 

4.46.  

Considering slabs with full concrete topping, the shear stress distribution calculated using 

the modified solution is lower than that calculated using the simplified solution with an 

average percentage difference of 51%. Both solutions produced higher interfacial shear 

stresses for higher shear stiffness coefficient (ks). For the slabs with reduced topping area, 

the assumption of the modified method that the shear stress is continuous at (x) = Lt/2 

produced a finite shear stress value at mid-span. Smith and Teng (2001) mentioned that 

this error does not significantly affect the shear stress distribution at the ends of the 

concrete topping. The simplified solution enforces zero shear stress under the point load 

as a boundary condition, so this behavior was not a concern.  

 

 

Fig. 4.44 : Shear stress distribution of slab FRA2-3 (full concrete topping). 

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000 1200

S
h

ea
r 

S
tr

es
s 

ττ ττ,
 M

P
a

Distance x, mm

Modified Method

Simplified Method

FRA2-3

Py = 293 kN

ks = 6.75 (N/mm)/mm2



 

Fig. 4.48 : Shear stress distribution of the full
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Fig. 4.46 : Shear stress distribution of the full
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The average horizontal shear stress at yielding (τtest-avg.) is calculated using the two 

methods available in the North American design standards, CSA A23.3-04 (2004) and 

ACI 318-08 (2008). The first method depends on the shear force diagram of the full-scale 

test and does not take into account the length of the concrete topping hence could not be 

used to evaluate the horizontal shear stress for the cut-slabs. The second method requires 

the use of strain compatibility to determine the horizontal shear force in the concrete 

topping. Table 4.1 summarizes (τtest-avg.) along with the results from the simplified and 

modified analytical solutions.  

 

Table 4.1: Interfacial shear stress results  

Slab 

Label 

Yield 

Load 

Py, 

kN 

Max. Shear Stress ττττf,  MPa 
Avg. Shear 

Stress (North 

American 

Standards), ττττf-avg. 

MPa 
Machine-cast Surface Finish 

Lightly-

roughened 

Surface Finish 

ks = 3.48 

(N/mm)/mm
2
 

ks = 19 

(N/mm)/mm
2
 

ks = 6.75 

(N/mm)/mm
2
 

M
et

h
o

d
 (

1
) 

M
et

h
o

d
 (

2
) 

SM MM FE SM MM FE SM MM FE 

FMA2-1 160 0.34 0.21 0.17 0.44 0.22 0.22 NA NA NA 0.32 0.34 

FMA2-2C 160 0.39 0.50 0.38 1.62 1.28 1.00 NA NA NA NA 1.49 

FRA2-3 293 NA NA NA NA NA NA 0.56 0.3 0.24 0.46 0.49 

FMB2-1C 267 0.65 0.76 0.4 2.71 1.98 1.22 NA NA NA NA 2.53 

FMB2-2 233 0.50 0.30 0.24 0.63 0.32 0.33 NA NA NA 0.46 0.50 

FMB2-3 327 0.53 0.30 0.24 0.69 0.33 0.30 NA NA NA 0.52 0.56 

Note: SM: simplified method, MM: modified method, FE: linear finite element analysis. 
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Considering the slabs with full concrete topping, it can be observed that the shear stress 

values calculated using the modified solution were the lowest. Results of the simplified 

solution were more comparable with the design standards. 

 

4.2.4.2 Validation of the Proposed Methods using Linear Finite 

Element Analysis  

A linear finite element analysis was performed to judge on the accuracy of both methods.  

 

 

Fig. 4.50 : Idealization of the linear FE model. 

 

The FE modeling was conducted using ANSYS R15 (2013) and idealized as illustrated in 

Fig. 4.50. Element SOLID65 was used to model the hollowcore slab and the concrete 

topping. LINK180 elements were used to model the prestressing strands and full bond 

was assumed between the strands and the surrounding concrete.  

The interfacial shear and peel stiffness between the hollowcore slabs and the topping 

concrete were modeled using spring elements (COMBIN39) utilizing the linear stiffness 
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values used in the analytical models. A general 3-D view of the loaded slab is given in 

Fig. 4.51. 

 

 

Fig. 4.51 : General 3-D view. 

 

Similar to the analytical models, linear material properties were used in the FE model 

utilizing the Young’s modulus for the hollowcore slab, the concrete topping and the 

prestressing strands (Ehc, Et and Ep), respectively. The results of the FE analysis are 

shown in Table 4.1.  

It can be observed that the finite element analysis yielded the lowest shear stress values 

among the presented methods. The modified method appear to be consistent with the 

FEA when used with the upper bound (ks) value, 19 (N/mm)/mm
2
 with an average 

difference of 16%.    
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4.2.4.3 Peel Stress Distribution 

The peel stress distribution evaluated is shown in Fig. 4.52.  

 

 

Fig. 4.52 : Peel stress distribution. 

 

The approximate peel stiffness coefficient (kp = 2.0 (N/mm)/mm
2
) determined from 

analytical modeling of the push-off tests was used. As can be noticed, negative peel stress 

was calculated at the interface layer for all of the tested slabs. This implies that the 

interface layer was under compression, thus peel failure was not a concern. This result is 

consistent with the experimental data from the cut-slabs where the peel deformation 

gauges did not record any movement up to the yielding loads. 

The behavior of the peel stress is consistent for all of the slabs where the maximum 

negative peel stress occurs at the end of the concrete topping and then decrease towards 

the mid-span point where the load (P) is applied. Additionally, the magnitude of the 

negative peel stress increases with the increase in the bending rigidity (EI) and the 

concrete compressive strength, f’c, of the slab. The linear finite element analysis 

conducted in the previous section also produced negative peel stresses for all slabs. This 
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corroborates the results obtained using the proposed analytical model for the peel 

behavior. 

   

4.2.5 Conclusions 

Two analytical methods, simplified and modified, were developed to evaluate the 

interfacial shear stress distribution along the interface between the concrete topping and 

the hollowcore slab during the full-scale tests. The simplified method ignores the moment 

and shear resistances of the concrete topping while they are considered in the modified 

method. Additionally, the simplified method assumes zero interfacial shear stress under 

the point load whereas the modified method retains continuity at that location.  

The analytical solutions are applicable up to the yielding load level where the composite 

slab is behaving in the linear elastic zone. The interfacial shear stress levels obtained 

from the methods existing in the North American codes were shown to be conservative in 

comparison with the proposed analytical solutions. Considering the slabs with reduced 

concrete topping, the analytical solutions revealed higher interfacial shear stresses than 

the limits mentioned in CSA A23.3-04 (2004), 0.7 MPa, and ACI 318-08 (2008), 

0.55 MPa. However, those slabs exhibited reliable composite action up to the predicted 

failure loads. The interfacial shear stiffness (ks) did not seem to significantly affect the 

interfacial shear stress except when the concrete topping is reduced. Higher (ks) values 

appear to produce better results for this case. Peel stresses did not have any tangible 

effect considering the linear analysis presented in this chapter.     

In comparison with linear finite element analysis, it can be concluded that the modified 

method is the most adequate technique in evaluating the interfacial shear and peel 

stresses in composite hollowcore slabs. This method can be conveniently used by 

designers regardless of the concrete topping length. The shear and peel stiffness 

coefficients can be estimated using the analytical modeling explained in Chapter 3. 
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CHAPTER FIVE 

5 Finite Element Analysis of the Composite Action between 

Hollowcore Slabs and the Topping Concrete 

The vast majority of previous literature on composite action of flexural elements is 

related to steel beams, where the concrete topping is attached to the top flange of the steel 

beam using shear connectors. Those connectors can be modeled using spring elements, 

(Salari et al., 1998) and (Queiroz et al., 2006). Springs can also be used to model bond 

strength between concrete and the asphalt overlays in roads, (Taizo et al., 2005). Mones 

(2012) modeled composite hollowcore slabs using 2-D plane stress elements. Spring 

elements resembled the interfacial shear stress. The analysis assumed linear elastic 

behaviour and did not account for the peel behaviour. The shear stiffness of the spring 

elements was determined using push-off tests. Results of the finite element analysis were 

not validated.   

The behaviour of the concrete material becomes highly nonlinear after cracking, which 

greatly affects its overall response. Therefore, it is necessary to investigate the behaviour 

of the composite hollowcore slabs in the post-cracking zone (nonlinear). This chapter 

starts by summarizing the push-off and full-scale tests that were conducted on composite 

hollowcore slabs. Finite element modeling of the push-off tests allowed determining the 

interfacial shear and peel stiffness for each slab. These were used as initial values while 

modeling the full-scale tests, which allowed evaluating the final interfacial shear and peel 

stiffness of the composite slabs.    

 

5.1 Push-off and Full-scale tests 

Push-off tests were conducted in the vertical orientation. The concrete topping was 

resting on a steel plate, and a downward force was applied to the hollowcore slab. Two 

steel beams were positioned on the back of the hollowcore slab to provide stability. The 
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concrete topping was instrumented with five strain gauges (S1 to S5), two peel 

displacement gauges (L1, L2) and two slip displacement gauges (L3, L4). The push-off 

test setup and instrumentation are shown in Fig. 5.1.  

  

               

Fig. 5.1: Push-off test setup and instrumentation. 

 

The tested hollowcore slabs were 203 mm deep and had a surface area of 1220 mm by 

1220 mm. The nominal concrete compressive strength for the hollowcore slabs was 41 

MPa. The concrete topping had a surface area of 508 mm by 508 mm, a thickness of 50 

mm and a concrete compressive strength of 32 MPa. A total of seven slabs (SMA1-2, 

SRA1-1, SRA1-3, SRB1-1, SRB1-2, PSMA4-2 and PSMA4-3) were tested. “M” and “R” 

refer to the surface finish of the slab as either machine-cast or lightly-roughened, 

respectively. “A” and “B” refer to the slab manufacturer.  

Table 5.1 provides details about the full-scale test slabs. Five of the slabs (FMA2-1, 

FMA2-2C, FMB2-1C, FMB2-2 and FMB2-3) had machine-cast surface finish. Slab 

FRA2-3 had a lightly-roughened surface finish. The length and width of the slabs were 
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approximately 3658 mm and 1220 mm, respectively. The concrete topping had a 

thickness of 50 mm and a concrete compressive strength of 30 MPa. 

  

Table 5.1: Full-scale test slabs 

Slab 

Label 

Concrete Compressive Strength 

f’c (MPa) 

Thickness, 

mm 

Prestressing Strands  

FMA2-1 53 203 203, 4- ½” strands 

FMA2-2C 50 203 203, 4- ½” strands 

FRA2-3 51 253 253, 6- ½” strands 

FMB2-1C 62 203 203, 7- ½” strands 

FMB2-2 58 203 203, 7- ½ “ strands 

FMB2-3 60 203 203, 7- ½” strands 

 

Fig. 5.2 shows a typical full-scale test. The load (P) was applied at mid-span using a steel 

spreader beam. The figure also shows the instrumentations for slabs (FMA2-1, FRA2-3, 

FMB2-2 and FMB2-3) that had full concrete topping and slabs (FMA2-2C and FMB2-

1C) for which the concrete topping was discontinuous. Vertical deflection was measured 

at mid-span using displacement gauges (LE and LW).  

Slip was measured using displacement gauges (SLE1 and SLE2) at the east side and 

(SLW1 and SLW2) at the west side for composite slabs that had full concrete topping.  

Peel deformations were not measured for those slabs. For slabs that had a cut in their 

concrete topping, slip was measure on both sides of the concrete topping using 

displacement gauges (SLCW and SLCE). Peel deformations were measured using 
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displacement gauges (PCW and PCE). Strain gauges were attached to the hollowcore 

slabs (SHCE and SHCW) and the concrete topping (STE and STW) at mid-span as close 

as possible to the interface layer. More details about the push-off and full-scale tests are 

given by Adawi et al. (2014) and in Chapter 2. 

 

 

Typical full-scale test setup. 

 

 

 

Instrumentation of slabs with full concrete topping 
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Instrumentation of the slabs with discontinued concrete topping 

 

 Fig. 5.2: Full-scale test setup and instrumentation. 

 

5.2 Finite Element Modeling 

ANSYS R15.0 (2013) was utilized to model the push-off and the full-scale tests. This 

section explains the modeling techniques including modeling of the prestressing force 

and the staged construction process. The material models used in the analysis will then be 

presented.       

 

5.2.1 Push-off Test  

The finite element idealization of the push-off test is illustrated in Fig. 5.3. The concrete 

and the hollowcore slab were modeled using 4-noded plane stress elements (PLANE182) 

that has two translation degrees of freedom per node. An element size of 12.7 mm by 

12.7 mm resulted in a total of 40 common nodes along the interface layer. While a finer 

mesh size did not improve the results, a coarser mesh was not deemed necessary since the 

processing time was quite reasonable. The width of the concrete element in the out-of-

plane direction is equal to 508 mm.  



107 

 

Two coincident set of nodes were used at the interface, one for the bottom surface of the 

topping slab and the other for the top surface of the hollowcore slab. At every node, two 

contact elements (COMBIN39) were used to attach the hollowcore slab to the concrete 

topping in the X and Z directions. COMBIN39 is unidirectional nonlinear spring element 

where its generalized force-displacement relationships can be defined independently for 

tension and compression. The tributary area associated with each spring depends on its 

location. Thus, the springs were divided in two groups: edge springs with a tributary area 

of 6.35 mm by 508 mm and interior springs with a tributary area of 12.7 mm by 508 mm.  

Roller supports were used at the loaded end of the hollowcore slab. The lateral 

deformation of the hollowcore slab was experimentally prevented using the steel frame 

shown in Fig. 5.3. This frame was modeled using compression only springs. The load 

was applied on the concrete topping in a force controlled manner.  

 

 

Fig. 5.3: Finite element idealization of the push-off test. 
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5.2.2 Full-scale Test 

The full-scale test was conducted using a three-point bending test setup as shown in Fig. 

5.2. The finite element idealization of the test is demonstrated in Fig. 5.4.  

 

 

Fig. 5.4: FE idealization of the full-scale test. 

 

Similar to the push-off test, the main components of the full-scale test are: the hollowcore 

slab, the concrete topping and the interface between the hollowcore slab and the concrete 

topping. 6-noded and 8-noded 3-D solid elements (SOLID65) were used to model the 

hollowcore slab and the concrete topping, respectively.  

The interface layer between the hollowcore slab and the concrete topping was modeled 

using nonlinear spring elements. A typical 3-D model for the composite hollowcore slab 

is shown in Fig. 5.5.  
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(a) General 3-D view of the composite hollowcore slab. 

 

(b) Cross section of the composite slab. 

Fig. 5.5: Finite element model of the full-scale test 

 

The prestressing strands of the hollowcore slab were modeled using a 3-D truss element 

(LINK180) that is defined by two nodes with three degrees of freedom in translation at 

each node.  

The geometry of a typical composite hollowcore slab was initially created by using block 

shapes. Several ANSYS geometry tools including “BOOLEANS” were used to create the 

voids in the hollowcore slab. The meshing was first conducted on the cross section area 
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using the generic area element (MESH200) as shown in Fig. 5.6. The meshed cross 

section was then swept over the entire hollowcore slab’s using the (SOLID65) concrete 

element. Nodes at the strands location were forced during meshing in order to coincide 

with the strands nodes that will be created later. Aspect ratio adequacy was verified 

automatically using the ANSYS recommended built-in criteria.   

 

 

Fig. 5.6: Meshing layout. 

 

The coincident nodes at the interface were connected using the nonlinear spring elements 

(COMBIN39) in the three directions X, Y and Z. The boundary conditions were assigned 

such that they simulate the actual support conditions of the composite slab in the full-

scale test, Fig. 5.4. The bottom nodes at the hinged end of the slab were restricted in the Z 

and Y directions while the nodes at the roller support were restricted in the Y direction. 
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The load, (P), was applied at the nodes located on top of the concrete topping at mid-span 

of the slab. 

Each strand consisted of (LINK180) elements that have the same length as the concrete 

elements along the Z direction, Fig. 5.6. Accordingly, coincident nodes from the concrete 

and strands elements were created along the length of each strand. Those coincident 

nodes were used to model the bond between the strands and the surrounding concrete as 

explained in the following section.  

 

5.2.3 Special Modeling Techniques 

Modeling the composite hollowcore slab involves dealing with two complex issues: 

modeling the transfer of the prestressing force and the strain discontinuity between the 

hollowcore slab and the concrete topping. The concrete topping is cast after the 

hollowcore slab. This implies that the strains, and stresses, in the concrete topping were 

equal to zero before applying the concentrated load (P) shown in Fig. 5.4. The following 

sections explain how those two issues were addressed. 

 

5.2.3.1 Prestressing Force 

The prestressing force was modeled using the “initial state” (INISTATE) command. This 

command can be used to apply specific strain values to element (LINK180) that 

resembles the strands. The strain in the prestressed strands at the time of testing was 

estimated. The jacking stress was 70% of the strand’s ultimate tensile strength. Prestress 

losses were estimated to be 15% of the jacking stress. Bond between the hollowcore slab 

and the prestressing strands was modeled using nonlinear spring elements (COMBIN39), 

as shown in Fig. 5.7.  
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(a) Modeling of strands. 

 

 

(b) Strand cut-out. 

Fig. 5.7: Illustration of the bond stress modeling. 
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The constitutive force-displacement curve for those springs was developed using the 

bond-slip model by Balázs (1992), Eq. 5.1.  

21'
)(324.2 sf chb ×=τ  (MPa) 5.1 

where (τb) is the bond stress in the direction of slip direction, (f’ch) is the concrete 

compressive strength of the hollowcore slab and (s) is the slip between the strand and the 

surrounding concrete in millimeters. The bond stress (τb) is multiplied by the cylindrical 

circumferential area of the strand along the segment length to define the spring force at 

different slip values. For illustration, the force-displacement relationship of the bond 

springs used for slab FMA2-1 is shown in Fig. 5.8.  

 

 

Fig. 5.8: Bond-slip relationship for slab FMA2-1 

 

5.2.3.2 Strain Discontinuity 

The concrete topping was cast after prestressing the hollowcore slab. Accordingly, the 

strains and stresses in the concrete topping were equal to zero before applying the 

external load (P). The interfacial shear and peel stresses were also equal to zero at that 

stage. Fig. 5.9 illustrates the typical staged construction for the composite slab. To model 
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the staged construction process, the initial stiffness of the concrete topping elements was 

significantly reduced such that it does not contribute to the overall stiffness. This was 

achieved by using the “Kill” feature. The prestressing force was then applied as an initial 

strain using the “Initial State” feature in ANSYS. The stiffness of the concrete topping 

elements was finally adjusted to reflect its actual value using the feature “Birth” in 

ANSYS.  

  

 

Fig. 5.9: Staged construction steps. 
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The concrete topping and the interface springs were checked at the mid-span section to 

ensure that they did not experience any stresses. The load (P) was then applied along the 

entire width of the composite slab as shown in Fig. 5.10.  

 

 

Fig. 5.10: Loaded composite slab 

 

5.2.4 Material Models 

5.2.4.1 Concrete  

The concrete material model is implemented in ANSYS by three components: (1) linear 

isotropic component, (2) multilinear kinematic hardening properties of concrete and (3) 

William and Warnke (1974) concrete model, which describes the constitutive behaviour 

of concrete under triaxial conditions.  
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The linear isotropic component is defined by the concrete initial tangent stiffness (Ec) that 

was determined using Eqn. 5.5, recommended by Collins (1991), and the Poisson’s ratio 

of 0.2. The unconfined concrete stress-strain relationship proposed by Popovics (1973) 

and calibrated by Porasz (1989) was used to define the multilinear stage using Eqns. 5.2 

to 5.4: 

nk

cc

cc

cc
n

n
ff

)'(1

)'(
'

εε

εε

+−
=  (MPa) 5.2  

17
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8.0 cf
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k = 1 for 0.1)'( <cc εε  5.4 

  
62

'
67.0 cf

+=  for 0.1)'( >cc εε  

where, 

fc: concrete compressive stress  

εc: concrete compressive strain  

f’c: peak cylinder compressive strength  

ε’c: strain at peak compressive stress 

n: curve fit parameter 

k: factor to account for the post peak ductility for high strength concrete  

 

(ε’c) can then be calculated using Eqn. 5.6 

 6900'3320 += cc fE (MPa) 5.5 
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For illustration, the concrete stress-strain curve for the hollowcore slab SMA1-2 and its 

concrete topping are shown in Fig. 5.11.  

 

 

Fig. 5.11: Concrete stress-strain curve for hollowcore slab SMA1-2. 

 

The concrete triaxial behaviour is defined by assigning shear transfer coefficients of 0.3 

and 0.95 for open and closed cracks, respectively (Cheng and Wang, 2010). The uniaxial 

tensile cracking stress (ft) was calculated using the formula recommended by Bentz 

(2000), Eq. 5.7.   
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5.2.4.2 Prestressed Reinforcement 

The tensile test results for the prestressing strands for slabs from manufacturer A were 

conducted in accordance with ASTM standard A416/A416M-02 (2002). The ultimate 

strength (fpu), rupture strain (εpr) and average modulus of elasticity (Ep) were 1965 MPa, 

0.0059 and 199,948 MPa, respectively. The complete stress-strain curve is shown in Fig. 

5.12. 

 

 

Fig. 5.12: Stress-strain curves for the prestressed strands. 

 

The tensile test results were not available for strands used by manufacturer B, thus, 
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where (fp) and (εp) are the stress and strain in the prestressing strand, respectively. The 

constants A, B and C were taken as 0.025, 118 and 10.0, respectively, as recommended in 

the 4
th

 edition of the Canadian Precast/Prestressed Institute (CPCI) design manual (2007). 

The modulus of elasticity (Ep) was taken as 200 GPa.  

 

5.2.5 Failure Criteria 

The failure criteria were: (1) maximum principal concrete strain reaching 0.002, which 

indicates shear failure; (2) compressive strain in concrete exceeding 0.0035 indicating 

flexural failure; (3) maximum stress in the strands reaching 1860 MPa and 1965 MPa for 

the slabs from manufacturers A and B, respectively; (4) interface shear failure when shear 

springs reach their ultimate capacity and (5) interface peel failure when peel springs 

reach their ultimate capacity.   

 

5.3 Finite Element Analysis 

5.3.1 Push-off Tests 

5.3.1.1 Force-Displacement Curves of the Spring Elements 

The assumed force-displacement curve for a typical shear spring is illustrated in Fig. 

5.13(a), which shows three main regions: elastic, inelastic and failure. In the elastic 

region, the shear resistance is provided by chemical bond and mechanical friction. The 

chemical bond is lost at the yielding load, (Pyx). Sudden failure occurs when mechanical 

friction diminishes at load pf (Pux). For the peel springs, Z direction, the resistance is only 

provided by the chemical bond as shown in Fig. 5.13(b). 
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5.3.1.2 Solution Strategy 

Determination of the parameters defining the force-displacement curves for the spring 

elements involves an iterative procedure. The results obtained from the pull-off and the 

push-off tests of slab SRB1-1 are used to explain the solution strategy. 

 

 

(a) Shear spring. 

 

(b) Peel spring. 

Fig. 5.13: Concept force-displacement curves of the interfacial spring elements. 
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The push-off test average load-displacement graph, P-UX, for slab SRB1-1 is shown in 

Fig. 5.14. The P-UX curve can be reasonably approximated using multi-linear segments. 

The linear segments are plotted such that the error areas above and below each segment 

are equal. The approximated P-UX curve was used to define the initial parameters of the 

shear springs force-displacement curve. By taking into account the number of springs, the 

following initial parameters can be obtained kx1=373.3 × 10
3
 N/mm, 

kx2=73.4 ×10
3
 N/mm, Pyx =2073 N and Pux =5650 N. 

 

 

Fig. 5.14: Approximation of the P-UX graph for slab SRB1-1. 

 

The initial parameters for the peel springs could not be drawn from the push-off tests. 

They were established using the pull-off test results. The bond strength for slab SRB1-1 

was estimated to be 1.86 MPa, which is the average bond strength of similar slabs from 

the same manufacturer. The tributary area for an interior spring is equal to 6452 mm
2
, 

thus, its maximum tensile force, (Pyz), can be calculated as 12 kN. The peel stiffness, kz, 
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could not be determined experimentally because of the extremely small displacements. 

Adawi at al. (2014) provided a closed form solution of the differential equations 

governing the push-off tests, which allowed evaluating, kp, as 2.1 (N/mm)/mm
2
. 

Accordingly, the stiffness of an interior peel spring, kz, is equal to 12.9 kN/mm. Peel 

springs were assumed to have very high stiffness in compression (120 kN/mm) to model 

the rigid compressive behaviour between the topping concrete the hollowcore slab.  

The finite element analysis was conducted in a force-control fashion using automatic load 

stepping to enhance convergence. The obtained peel and slip deformations were 

compared to the experimental results. Suitable adjustments were then made to the 

properties of the shear and peel springs and the analysis was repeated. 

The iterative process for slab SRB1-1 illustrated in Fig. 5.15. The initial properties for the 

shear and peel springs resulted in slip and peel values that are higher than the 

experimental results. In addition, it can be observed that the peel response was showing a 

linear behaviour that is not consistent with the experimental curve. Thus, the stiffness of 

the shear springs (kx) was increased in the subsequent trials until a satisfactory match was 

obtained. A nonlinear force-displacement curve was used in to describe the peel 

behaviour. The above procedure was repeated for the rest of the push-off slabs and their 

final results are shown in Appendix 2.  
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(a) Shear springs. 

 

 

(b) Peel springs. 

Fig. 5.15: Iterations for slab SRB1-1.  
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The parameters defining the force-displacement curves for the shear and peel springs are 

summarized in Table 5.2. Those values govern the nonlinear behaviour of the interfacial 

shear and peel responses in the push-off tests. The final force-displacement curves for the 

peel and shear springs are shown in Fig. 5.16 for slab SRB1-1. The final curves for the 

rest of the slabs are shown in Appendix 2. 

 

Table 5.2: Force-displacement curves parameters of the push-off tests 

Slab 

Label 

Shear Stiffness Peel Stiffness 

yield ultimate yield ultimate 

Pyx, 

kN 

kx1, 

kN/mm 

Pux, 

kN 

kx2, 

kN/mm 

Pyz, 

kN 

kz1, 

kN/mm 

Puz, 

kN 

kz2, 

kN/mm 

SMA1-2 2.0 333 9.2 12.1 0.45 225 1.15 1.8 

SRA1-1 7.0 700 12.7 5.8 1.0 100 1.6 3.2 

SRA1-3 8.0 1600 15.0 23.7 1.7 170 2.1 0.8 

SRB1-1 2.3 115 6.3 14.3 0.4 20 0.6 0.7 

SRB1-2 3.8 38 4.8 12.5 0.6 12 0.75 3.0 

PSMA4-2 6.5 650 7.35 6.5 1.3 130 1.35 2.5 

PSMA4-3 1.0 200 1.7 0.4 0.15 150 0.19 0.5 

 

Considering the slabs from manufacturer (A), kx1, kx2, Pyx, Pux, kz1, kz2, Puz and Puz were 

found to range from: 200 to 650 kN/mm, 0.4 to 12.1 kN/mm, 1.0 to 6.5 kN, 1.7 to 9.2 kN,  

130 to 225 kN/mm, 0.5 to 1.8 kN/mm, 0.15 to 1.3 kN and 0.19  to 1.35 kN for the slabs 

with machine-cast finish and: 700 to 1600 kN/mm, 5.8 to 23.7 kN/mm, 7.0 to 8.0 kN, 
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12.7 to 15 kN, 100 to 170 kN/mm, 0.8 to 3.2 kN/mm, 1.0 to 1.7 kN and 1.6 to 2.1 kN for 

lightly-roughened slabs. For lightly-roughened slabs from manufacturer (B), the variables 

were: 38 to 115 kN/mm, 12.5 to 14.3 kN/mm, 2.3 to 3.8 kN, 4.8 to 6.3 kN, 12 to 

20 kN/mm, 0.7 to 3.0 kN/mm, 0.4 to 0.6 kN and 0.7 to 3.0 kN.  

 

               

      (a): Shear spring (SRB1-1).                                (b) Peel spring (SRB1-1). 

Fig. 5.16: Force-displacement curves of the springs of slab SRB1-1. 

 

The ultimate peel force (Pzu) was found to be much less than the peel strength evaluated 

the pull-off tests, which indicates a reduction in bond strength in the Z direction. This 

reduction is related to interaction between the shear and peel stresses along the interface. 

The peel springs experienced yielding behaviour when the chemical bond between the 

concrete topping and the hollowcore slab is lost due to shear. A comparison between the 

linear shear and peel stiffness evaluated by Adawi et al. (2014) and the nonlinear stiffness 

evaluated in this chapter is provided in Fig. 5.17 for slab SRB1-1. The shear and peel 

interfacial stiffness are shown in Appendix 2 for the rest of the slabs. 
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Fig. 5.17: Interfacial shear and peel stiffness for slab SRB1-1 

 

Fig. 5.18 compares the strains obtained experimentally and using the finite element 

analysis for slab SRB1-1. The strain graphs for the rest of the slabs are shown in 

Appendix 2.  

 

 

Fig. 5.18: Strain results for slab SRB1-1 
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maximum shear stress evaluated using the finite element analysis is compared with the 

results obtained from the push-tests and the analytical model in Table 5.3.  

 

Table 5.3: Maximum shear stress comparison  

Slab 

Label 

Maximum shear stress, MPa 

Linear Analytical 

Solution, Adawi et 

al. (2014) 

Nonlinear Finite 

Element Analysis 

Average Shear 

Strength (tests), 

ννννh avg. 

SMA1-2 
1.69 1.43 1.39 

SRA1-1 
1.95 1.97 1.95 

SRA1-3 
2.15 2.33 2.15 

SRB1-1 
1.24 0.98 0.860 

SRB1-2 
1.01 0.75 0.710 

PSMA4-2 
2.47 1.2 1.19 

PSMA4-3 
0.26 0.26 0.256 

 

Similar to the linear analytical modeling, the finite element analysis revealed higher shear 

stresses than the average values. However, the finite element results appear to be closer to 

the average shear stresses than the analytical. It is clear that the use of the nonlinear shear 

springs has resulted in redistributing the shear stresses, thus, reducing the values of the 

maximum shear stresses.  
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5.3.2 Full-Scale Tests 

Results of the finite element analysis for the full-scale tests are presented in this section. 

 

5.3.2.1 Load-deflection Response 

A summary of the load-deflection results obtained from the experimental tests and the 

FEA analysis is shown in Table 5.4.  

 

Table 5.4: Load-deflection results 

Slab Label Analysis 

Type. 

Cracking 

load, kN 

Failure 

load, kN 

Deflection at 

failure, mm 

Failure Type 

FMA2-1 
Exp. 157 253 29.4 strands rupture 

FEA 152 257 19.7 strand rupture 

FMA2-2C 
Exp. 152 244 49.6 strands rupture 

FEA 164 206 18.4 concrete crushing 

FRA2-3 
Exp. 275 388 12 flexure-shear 

FEA 278 386 11.1 shear failure 

FMB2-1C 
Exp. 254 380 44 flexure-shear 

FEA 250 376 23 shear failure 

FMB2-2 
Exp. 231 410 16.3 flexure-shear 

FEA 225 408 15.7 shear failure 

FMB2-3 
Exp. 315 512 19.8 flexure-shear 

FEA 338 500 16 shear failure 

 

The results are also shown graphically in Fig. 5.19 and Fig. 5.20. It can be noticed that 

the finite element analysis was fairly successful in capturing the behaviour of the slabs in 
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terms of stiffness and failure load.  The ductility was accurately predicted for slabs 

FRA2-3, FMB2-2 and FMB2-3, which failed in shear. Although the failure mechanism 

for slab FMA2-1 was accurately predicted as strand rupture, the ductility was 

underestimated by 30%. Same behaviour was observed for FMB2-1C. 

 

 

 

Fig. 5.19: Load-deflection results for slabs from manufacturer A 
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Fig. 5.20: Full-scale results for slabs from manufacturer B 
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                (a) FMA2-1                                                     (b) FMA2-2C 

          

(c) MB2-2C 

                

(d) FMB2-2                                                     (e) FMB2-3 

Fig. 5.21: Mid-span strain Results  
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5.3.2.3  Interfacial Slip and Peel Results 

The slip results are compared with the experimental measurements for slab FMB2-2 in 

Fig. 5.22. Readings from LVDT SLW2 were found to be in good agreement with the 

FEA results. Visual inspection of this slab revealed hair cracks in the concrete topping 

that extend to the interface level and sporadic delamination spots between the concrete 

topping and the hollowcore slab along the interface, Adawi et al. (2015). This translated 

in significant slip measured for this slab compared with the rest of slabs that had a full 

concrete topping.  

 

 

Fig. 5.22: FEA slip results for slab FMB2-2. 
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5.3.2.4 Constitutive Relationships of the Interfacial Springs 

The stiffness of the nonlinear springs (COMBIN39) simulating the interface between the 

hollowcore slab and the concrete topping was crucial in controlling the composite slabs 

response in the FEA. The constitutive force-displacement curves were initially based on 

the FEA results of the push-off tests. The final force-displacement curves were 

determined using an extensive iteration process to match the full-scale experimental 

results. The final shear and peel stiffness results along with the parameters defining the 

force-displacement curves for the interface springs are show in Table 5.5 and Fig. 5.23. 

Difference between these values and the push-off test values can be attributed to 

confinement of the interface layer in the region of the applied load in the full-scale test 

and interaction between the shear and peel stresses along the interface layer.          

 

Table 5.5: FEA shear and peel stiffness results for the full-scale test slabs 

Slab 

Label 

Shear Stiffness Peel Stiffness 

yield ultimate yield ultimate 

Py, N 
Slip, 

mm 
Pu, N 

Slip, 

mm 
Py, N 

Peel, 

mm 
Pu, N 

Peel, 

mm 

FMA2-1 200 0.02 1100 0.12 200 0.1 200 0.1 

FMA2-2C 2740 0.007 6170 0.24 1000 0.5 1000 0.5 

FRA2-3 480 0.18 675 0.3 1000 0.5 1000 0.5 

FMB2-1C 4000 0.01 6000 0.24 1000 0.5 1000 0.5 

FMB2-2 1440 0.24 1440 0.24 2000 1 2000 1 

FMB2-3 1050 0.35 1050 0.35 2000 1 2000 1 
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Fig. 5.23: Interfacial springs properties for slabs from manufacturer A. 
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nonlinear behaviour to become apparent. The maximum interfacial shear stiffness 

evaluated from the push-off tests FEA was found to be 102 (N/mm)/mm
2
, while it 

reached 297 (N/mm)/mm
2
. The interfacial peel stiffness did not seem to vary between the 

slabs and was found to be approximately 1.5 (N/mm)/mm
2
.  

 

5.3.2.5 Shear Stress Distribution 

The shear stress distribution along the interface between the hollowcore slab and the 

concrete topping for slab FMA2-1 is shown in Fig. 5.24 and in Appendix 2 for the rest of 

the slabs. The yielding load is the load at which the composite slab stiffness changes from 

linear to nonlinear based on the load-deflection curve of the slab.  

 

 

Fig. 5.24: Interfacial shear stress distribution slab FMA2-1. 
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Table 5.6: FEA maximum interfacial shear stress results 

Slab Label Shear Stress, MPa 

FMA2-1 0.96 

FMA2-2C 2.0 

FRA2-3 0.33 

FMB2-1C 3.2 

FMB2-2 1.85 

FMB2-3 0.75 

 

With the exception of slabs FRA2-3 and FMB2-3, all tested slabs had sustained relatively 

higher than the 0.55 MPa and 0.7 MPa limits set by the ACI 318-08 (2008) and the CSA 

A23.3-04 (2004) design standards. The higher stiffness due to the increased thickness for 

slabs FRA2-3 and FMB2-3 had reduced the intensity of the interfacial shear stress for 

those slabs.        

 

5.4 Conclusions 

Modeling of the push-off and the full-scale tests using the finite element method was 

conducted in this chapter. The FEA showed comparable results with the experimental 

program conducted in Chapter 2. This demonstrates that the presented FEA approach and 

modeling procedures are adequate in capturing the behaviour of composite hollowcore 

with an acceptable accuracy. The FEA of the push-off tests was able to determine the 

nonlinear shear and peel stiffness coefficients of the interface between the hollowcore 

slab and the concrete topping. Those coefficients were then used as initial values in the 

FEA of the full-scale tests. The shear stresses were found to reduce the bond strength of 
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the interface layer causing the peel stiffness to significantly reduce. Bond strength 

evaluated using pull-off tests was found to be uncorrelated to the peel strength.   

The use of the full concrete topping reduces the interfacial shear and peel stiffness 

causing them to behave linearly. When the concrete topping is reduced, the behaviour of 

the shear and peel changes to the nonlinear mode affected by the interfacial confinement 

provided by the applied load. This suggest that live loads tend to confine the interface 

layer in the area where they are applied causing a significant increase in the interfacial 

shear and peel stiffness. Considering the first stiffness branch of the FEA results, the 

shear stiffness of the tested composite hollowcore slabs ranged from 2.2 to 

8.3 (N/mm)/mm
2
 while the peel stiffness was found to be steady at 1.5 (N/mm)/mm

2
. 
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CHAPTER SIX 

6 Summary and Conclusions 

The ability of composite hollowcore slabs to resist flexural and vertical shear is governed 

by the strength of the interface layer between the slab and the concrete topping. North 

American design standards specify a surface roughness to assume interfacial shear stress 

thresholds. This thesis presented a comprehensive study of the interfacial shear and peel 

stresses for composite hollowcore slabs with machine-cast or lightly-roughened surface 

finishes, which do not qualify for composite action according to CSA A23.3-04 (2004) 

and ACI 318-08 (2008). It provides a substantial proof that such slabs can perform 

adequately up to ultimate design loads without the need for additional roughening or 

surface treatment. The following sections summarize the work conducted in each chapter 

and the conclusions withdrawn from them. While the research is fairly comprehensive yet 

additional work is required in order to steer a change in the related design standard 

provisions. The future work section highlights some areas that will help reach this goal. 

 

6.1 Experimental Program                    

Chapter 2 examined the shear and peel behaviors of the interface between hollowcore 

slabs with machine-cast and lightly–roughened surfaces and the topping concrete through 

pull-off, push-off, and full-scale tests. The work conducted in this chapter is 

distinguished from previous work by adapting a comprehensive experimental program, 

which gave broader understanding of the performance of composite hollowcore slabs. 

Precast manufactures can follow the tests explained in this chapter to evaluate the 

adequacy of their products.  

The surface roughness provided by the machine-cast finish was found to be much lower 

than the intentional roughness required by North American design standards. High 

variability of surface roughness was observed for different shipments from the same 

manufacturer. Pull-off tests results indicated that if the surface roughness of hollowcore 
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slabs with machine-cast finish exceeds 0.3 mm, their bond strength to the concrete 

topping is expected to satisfy the 0.9 MPa limit in A23.2 (2009). This surface roughness 

threshold can be used by imposing quality control measure by precast manufacturers of 

the tested slabs. 

Push-off test results indicated that if the surface roughness of hollowcore slabs is 

acceptable and the slab is free from contamination, the shear strength of the interface 

layer between the slab and the concrete topping can be higher than the minimum 

acceptable shear stresses specified in North American design standards. The shear 

strength was found to vary significantly between manufacturers. 

Full-scale three point bending tests have shown that hollowcore slabs with machine-cast 

finish and acceptable roughness can provide adequate composite strengths up to ultimate 

condition. Thus, the horizontal shear strength required by CSA A23.3-04 (2004) and ACI 

318-08 (2008)
 
can be met without the need for surface roughening. Two of the slabs had 

a gap in their concrete topping to limit the effective area of the topping. The topping of 

the two slabs experienced slip and peel deformations that did not affect the overall 

behavior. This can be regarded to the confining action provided by the load that acts on 

the topping. This suggests that the live loads increase the shear strength provided by the 

interface layer. 

 

6.2 Analytical Modeling  

In Chapter 3, an analytical model that simulates the interface between the hollowcore slab 

and the concrete topping during the push-off tests using continuous springs was 

presented. The springs depicted the interfacial shear and peel behaviors. The actual shear 

stresses were evaluated using the analytical model and found to be higher than the 

average measured values for all of the tested slabs. The actual values were found to be 

much higher than the specified code limits. The shear and peel stiffness, (ks) and (kp), of 

the interface between hollowcore slabs and concrete topping were estimated using the 

presented analytical model and were found to range from 6.8 to 31 (N/mm)/mm
2
 and 2.0 
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to 6.3 (N/mm)/mm
2
, respectively. The reported (ks) and (kp) values are unique for the 

tested slabs. The presented method can be repeated to evaluate these stiffnesses for slabs 

from different manufacturers. Structural engineers can then use (ks) and (kp) values to 

evaluate the actual shear stresses developed at the interface between hollowcore slabs and 

their concrete topping and judge on the appropriateness of using the composite action.  

Two analytical methods, simplified and modified, were developed in Chapter 4 to 

evaluate the interfacial shear stress distribution along the interface between the concrete 

topping and the hollowcore slab during the full-scale tests. The simplified method ignores 

the moment and shear resistances of the concrete topping while they are considered in the 

modified method. Additionally, the simplified method assumes zero interfacial shear 

stress under the point load whereas the modified method retains continuity of shear 

stresses at that location. The analytical solutions are applicable up to the yielding load 

level where the composite slab is behaving in the linear elastic zone. The interfacial shear 

stress levels obtained from the analytical solutions were generally in good agreement 

with the traditional methods existing in the North American codes. Considering the slabs 

with reduced concrete topping, the analytical solutions revealed higher interfacial shear 

stresses than the limits mentioned in CSA A23.3-04 (2004), 0.7 MPa, and ACI 318-08 

(2008), 0.55 MPa. However, those slabs exhibited reliable composite action up to the 

predicted failure loads. The interfacial shear stiffness (ks) did not significantly affect the 

interfacial shear stresses for cases of full topping. When the concrete topping was 

reduced, the higher (ks) value (19 (N/mm)/mm
2
) produced more reliable results. Peel 

stresses were not a concern considering the linear analysis presented in this chapter.     

In comparison with linear finite element analysis, it can be concluded that the modified 

method is the most adequate technique in evaluating the interfacial shear and peel 

stresses in composite hollowcore slabs. This method can be conveniently used by 

designers regardless of the concrete topping length where the shear and peel stiffness 

coefficients can be estimated using the analytical modeling explained in Chapter 3. 
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6.3 Finite Element Analysis 

Modeling of the push-off and the full-scale tests using the finite element method was 

conducted in Chapter 5. The FEA showed comparable results with the experimental 

program conducted in Chapter 2. This demonstrates that the presented FEA approach and 

modeling procedures are adequate in capturing the behavior of composite hollowcore 

with an acceptable accuracy. The FEA of the push-off tests was able to determine the 

nonlinear shear and peel stiffness coefficients of the interface between the hollowcore 

slab and the concrete topping. Those coefficients were then used as initial values in the 

FEA of the full-scale tests. The shear stresses were found to reduce the bond strength of 

the interface layer causing the peel stiffness to significantly reduce. Bond strength 

evaluated using pull-off tests was found to be uncorrelated to the peel strength.   

The use of the full concrete topping was found to reduce the interfacial shear and peel 

stiffness causing them to behave linearly. When the concrete topping is reduced, the 

behavior of the shear and peel changes to the nonlinear mode and was affected by the 

interfacial confinement provided by the applied load. This behavior suggests that live 

loads tend to confine the interface layer in the area where they are applied causing a 

significant increase in the interfacial shear and peel stiffness. Considering the first 

stiffness branch of the FEA results for the full-scale tests, the shear stiffness of the tested 

composite hollowcore slabs ranged from 2.2 to 8.3 (N/mm)/mm
2
 while the peel stiffness 

was found to be steady at 1.5 (N/mm)/mm
2
. 

 

6.4 Future Recommended Work 

In view of the results obtained and the conclusions withdrawn from the work performed 

in this thesis, the author believes that a large window for future work remains open. The 

following suggested areas of work are proposed: 

1- Extending the presented experimental program to include more hollowcore slab 

manufacturers from all over North America. Additionally, study the effect of surface 

contamination and concrete curing techniques on the interface strength. 
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2- Investigate experimentally and analytically the effect of differential shrinkage and its 

residual stresses on the strength of the interface and delamination of the concrete 

topping. 

3- Examine effect of creep on the interface strength due to long-term sustained loading. 

4- Explore the use of advanced finite element analysis using contact elements in lieu of 

the nonlinear springs used in this study to better understand the combined effect of 

shear and peel interfacial stresses. 

5- Investigate the behaviour of dynamic loading, such as floor vibration, on the 

composite action of hollowcore slabs. 
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APPENDIX ONE 

 

A1.1     Strain Compatibility Procedure 

The flexural capacities of the hollowcore slabs presented in Table 2.7 of Chapter 2 were 

estimated using the strain compatibility method as illustrated in Fig. A1.25.  

 

 

 

Fig. A1.25: Strain compatibility procedure. 
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In this method, the total compressive force (Ctotal) acting on the cross section is calculated 

using an iterated concrete strain profile by changing the value of the top strain (εt1) and 

checking for equilibrium.  

Because of the difference in the concrete compressive strength between the hollowcore 

slab and the topping concrete, the values of the compressive stress block parameters (α1 

and β1) cannot be determined using CSA A23.3-04 equations. Superposition was used 

such that the compression forces acting on the hollowcore slab and the concrete topping 

were evaluated separately using the corresponding concrete compressive strength.  

 

A1.2     Contribution of Concrete Tensile Strength to Flexural 
 

Shaded areas in Fig. A1.26 are used to calculate the tensile forces contributing to the 

flexural capacity. The areas are determined by iterations such that their centroids coincide 

with the centroids of the prestressing strands and their least dimension does not exceed 15 

times the strand diameter.  

 

 

Fig. A1.26: Concrete tensile areas contributing to the flexural resistance. 
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A1.3     Effective Web Width for Shear Capacity 

CSA A23.3-04 (2004) specifies an allowance for tapered and irregular cross sections 

when calculating the concrete area contributing to the vertical shear capacity. To 

determine this area, a trajectory line is constructed at 20
ο
 from the vertical axis of the 

cross section that is tangent to the hollowcore slab void. Those lines are then extended to 

a distance that is equal to (dv) measured from the strands level. The allowable area is 

calculated by evaluating the area of the region encompassed by those lines as shown in 

Fig. A1.27. 

 

 

Fig. A1.27: Concrete tensile areas contributing to the flexural resistance. 
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A1.4     Tensile Strength Test for a Typical Prestressing 
Strand 
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APPENDIX TWO 

 

A2.1     FEA Final Iteration Results for the Push-off Tests 

The final load-slip and load-peel relationships using the final iterations resulted from the 

finite element analysis of the push-tests are compared with the test results in Fig. A2.28. 
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(c) Slab SRA1-3 

             

(d) Slab SRB1-2 

               

(e) Slab PSMA4-2 
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 (f) Slab PSMA4-3 

Fig. A2.28: FEA results for the push-off tests. 

 

The final force-displacement curves for the shear and peel springs for each tested slab are 

shown in Fig. A2.29. 
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(b) Slab SRA1-1 

                    

(c) Slab SRA1-3 
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(e) Slab PSM4-2 

                      

(f) Slab PSM4-3 

Fig. A2.29: FEA results for the push-off tests. 

 

Fig. A2.30 compares the test readings from strain gauges S1, S3 and S5 with the results 

obtained from the FEA. 
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                  (a) SMA1-2                                                                (b) SRA1-1 

                     

                   (c) SRA1-3                                                         (d) PSMA4-2 

                        

                  (e) SRB1-2                                                        (f) PSMA4-3 

Fig. A2.30: Strain results. 
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A2.2     Results of the Full-scale Tests FEA  

The shear stress distribution along the interface between the hollowcore slab and the 

topping concrete are demonstrated in Fig. A2.31 
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(a) Slab FRA2-3 

 

 

(a) Slab FMB2-1C 
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(a) Slab FMB2-2 

 

 

(a) Slab FMB2-3 

 

Fig. A2.31: Shear stress distribution for the full-scale tests. 
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