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Abstract

This thesis makes the issue of reconciling the existence of thermodynami-

cally irreversible processes with underlying reversible dynamics clear, so as to

help explain what philosophers mean when they say that an aim of nonequi-

librium statistical mechanics is to underpin aspects of thermodynamics.

Many of the leading attempts to reconcile the existence of thermodynam-

ically irreversible processes with underlying reversible dynamics proceed by

way of discussions that attempt to underpin the following qualitative facts:

(i) that isolated macroscopic systems that begin away from equilibrium spon-

taneously approach equilibrium, and (ii) that they remain in equilibrium for

incredibly long periods of time. These attempts standardly appeal to phase

space considerations and notions of typicality. This thesis considers and eval-

uates leading typicality accounts, and, in particular, highlights their limita-

tions. Importantly, these accounts do not underpin a large and important set

of facts. They do not, for example, underpin facts about the rates in which

systems approach equilibrium, or facts about the kinds of states they pass

through on their way to equilibrium, or facts about fluctuation phenomena.

To remedy these and other shortfalls, this thesis promotes an alternative, and

arguably more important, line of research: understanding and accounting for

the success of the techniques and equations physicists use to model the be-

haviour of systems that begin away from equilibrium. Accounting for their

success would help underpin not just the qualitative facts the literature has

focused on, but also many of the important quantitative facts that typicality

accounts cannot.
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This thesis also takes steps in this promising direction. It outlines and

examines a technique commonly used to model the behaviour of an interesting

and important kind of system: a Brownian particle that’s been introduced to

an isolated homogeneous fluid at equilibrium. As this thesis highlights, the

technique returns a wealth of quantitative and qualitative information. This

thesis also attempts to account for the success of the model and technique,

by identifying and grounding the technique’s key assumptions.

Keywords: statistical mechanics, thermodynamics, foundations of thermo-

dynamics, reversible, time-reversal non-invariance, laws of thermodynamics,

typicality, approach to equilibrium, Brownian particle, Langevin dynamics.
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Chapter 1

Introduction

Contemporary philosophical discussions of statistical mechanics primarily

focus on two issues: securing a foundation for thermodynamics, and inter-

preting statistical mechanical probabilities. This thesis speaks to the first of

these issues.1 In particular, it speaks to aspects of the foundational debate

that make contact with nonequilibrium statistical mechanics.

This thesis has several aims. One of the aims is to help explain what

philosophers mean when they say that an aim of nonequilibrium statistical

mechanics is to account for aspects of thermodynamics. While there are a

number of aspects of thermodynamics whose justification relies on nonequi-

librium statistical mechanics, philosophers have tended to focus on the is-

sue of reconciling the existence of thermodynamically irreversible processes

with underlying reversible dynamics. Interestingly, and perhaps somewhat

surprisingly, this goal is expressed in different ways throughout the litera-

1For good introductions and discussions on how we should understand the probabil-
ity distributions introduced into statistical mechanics, see Sklar (1995), Frigg (2008b),
Myrvold (2012), and Myrvold (Forthcoming).
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ture. Or rather, what’s seen as central to achieving this goal differs across

authors—whether this is intended or not. To an outsider, these differences

may suggest that there is a disagreement or confusion in the literature. It is

an aim of this thesis to make the issue of reconciling the existence of thermo-

dynamically irreversible processes with underlying reversible dynamics more

clear, and to explain why there is neither a disagreement or confusion in the

literature. This is done so as to satisfy the more general aim of helping to ex-

plain what philosophers mean when they say that an aim of nonequilibrium

statistical mechanics is to underpin aspects of thermodynamics.

Many of the leading attempts to reconcile the existence of thermodynam-

ically irreversible processes with underlying reversible dynamics proceed by

way of discussions that attempt to underpin the following qualitative facts:

(i) that isolated macroscopic systems that begin away from equilibrium spon-

taneously approach equilibrium, and (ii) that they remain in equilibrium for

incredibly long periods of time. These attempts standardly appeal to phase

space considerations and notions of typicality. It is an aim of this thesis to

consider and evaluate leading typicality accounts, and, in particular, to high-

light their limitations. Importantly, these accounts do not underpin a large

and important set of facts. They do not, for example, underpin facts about

the rates in which systems approach equilibrium, or facts about the kinds of

states they pass through on their way to equilibrium, or facts about fluctua-

tion phenomena. To remedy these and other shortfalls, this thesis promotes

an alternative, and arguably more important, line of research: understanding

and accounting for the success of the techniques and equations physicists use

to model the behaviour of systems that begin away from equilibrium. Ac-
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counting for their success would help underpin not just the qualitative facts

the literature has focused on, but also many of the important quantitative

facts that typicality accounts cannot.

This thesis also takes steps in this promising direction. It is an aim of

the fourth chapter to outline, examine, and ground the success of a tech-

nique commonly used to model the approach to equilibrium and subsequent

behaviour of a Brownian particle that’s been introduced to an isolated homo-

geneous fluid at equilibrium. Interestingly, the model is easily generalised,

and so is applicable to a wide variety of systems. This chapter attempts

to account for the success of the model, by identifying and grounding the

technique’s key assumptions.

It’s standard for philosophical discussions of statistical mechanics to take

place within a classical mechanical framework. This thesis follows this con-

vention and eschews quantum mechanical considerations. While the following

view will not be defended in this thesis, it is the view of the author that clas-

sical statistical mechanics needs no help from quantum mechanics to make

sense; classical statistical mechanics can stand on its own.

1.1 Chapter Summaries

1.1.1 Chapter 2

A number of authors claim that an aim of statistical mechanics is to provide

a suitable foundation for thermodynamics. With respect to the role nonequi-

librium statistical mechanics plays in the foundational project, philosophers

have tended to focus on reconciling the existence of thermodynamically irre-
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versible processes with underlying reversible dynamics. Interestingly, what’s

seen as central to this task differs across authors. Or rather, and more ac-

curately, many authors use distinct concepts when they outline what they

see as central to reconciling the tension between these macroscopic processes

and the underlying dynamics of those systems that give rise to them. Impor-

tantly, these differences may indicate, to those unfamiliar with the literature,

that there is either a confusion or disagreement in the literature. This chapter

highlights these differences. This is done via a discussion of various reversibil-

ity concepts and several laws of thermodynamics. It also explains why these

differences, in fact, do not amount to there being a confusion or disagree-

ment in the literature, and why well informed authors needn’t (and probably

don’t) worry about eliminating these differences. This chapter encourages

thinking of these different statements as short, approximate statements that

refer to a collection of relevant ideas central to the reconciliation issue.

This chapter, by way of making the reconciliation issue more clear, helps

explain what philosophers mean when they say that an aim of statistical

mechanics is to underpin aspects of thermodynamics. And this, in turn,

contributes to this thesis’s aim of encouraging that we pursue an alternative

line of research within the philosophical literature on statistical mechanics:

to understand and account for the success of the techniques and equations

physicists use to model the behaviour of systems that begin away from equi-

librium. By better understanding the goals philosophers have traditionally

set themselves, we’ll not only be able to better situate, appreciate, and evalu-

ate their attempts to achieve them, but we’ll also better appreciate how this

proposed line of research fits with contemporary discussions of statistical
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mechanics.

1.1.2 Chapter 3

Chapter two discusses the reconciliation of thermodynamically irreversible

processes with underlying reversible dynamics with reference to thermody-

namics. This chapter discusses the issue from the perspective of statistical

mechanics.

One of the aims of this chapter is to outline and review leading attempts

to address the reconciliation issue. These attempts are typically part and

parcel of works that aim at accounting for why macroscopic systems approach

equilibrium and why they remain in equilibrium for incredibly long periods

of time. Almost all of the attempts discussed in this chapter appeal to a

notion of typicality.

This chapter discusses the most pressing problems with typicality ac-

counts and, where possible, discusses their most promising solutions. It is

argued that they have severe limitations, even when we overlook their prob-

lems. It is argued that they do not underpin a large and important set of

facts that concern the behaviour of systems that begin away from equilib-

rium. While they may account for why isolated macroscopic systems ap-

proach equilibrium and why they remain in equilibrium for incredibly long

periods of time, they do not, among other things, underpin facts about the

rates in which systems approach equilibrium, or about the kinds of states

they pass through on their way to equilibrium, or about fluctuation phenom-

ena. They do not help us form expectations about these aspects of a system’s

behaviour or help justify the expectations we may already have about them,
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having formed them on the basis of experience.

This chapter claims that the limitations of typicality accounts are a symp-

tom of what they are aiming at. By focusing on recovering aspects of thermo-

dynamics, those contributing to the foundational project have merely been in

the business of articulating microphysical accounts of irreversible macroscopic

behaviour that recover a few qualitative facts. To remedy these shortfalls,

this chapter promotes pursuing a different line of research; one in which we

attempt to understand and ground the success of the techniques and equa-

tions physicists use to model the behaviour of systems that begin away from

equilibrium. It is claimed that accounting for their success would help un-

derpin not just the qualitative facts the literature has focused on, but also

many of the important quantitative facts that typicality accounts cannot.

This chapter is composed of five sections. The first section outlines and

discusses the essence of what many people think of as the first serious attempt

to account for the behaviour of systems that begin away from equilibrium.

This approach is based on Ludwig Boltzmann’s early work on statistical me-

chanics, when he first offers what has come to be known as Boltzmann’s

equation and H-theorem. As this section highlights, this work gives rise to

one of the very issues that is at the centre of contemporary discussions of

statistical mechanics: the reconciliation of thermodynamically irreversible

processes with underlying reversible dynamics. The second section outlines

and discusses leading ways of accounting for the behaviour of systems that

begin away from equilibrium that also addresses the tension between their

macrolevel and microlevel descriptions. These approaches are inspired by,

and build on, Boltzmann’s attempts (circa 1877) to resolve this tension and,
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once again, account for the behaviour of systems that begin away from equi-

librium. As we’ll see, each one incorporates a notion of typicality. The

second section also considers worries specific to each kind of typicality ac-

count discussed. More general concerns are discussed in the third section.

Both sections also discuss, where possible, the most promising solutions to

these concerns. The fourth section highlights and discusses the limitations

of typicality accounts. It also encourages those working in the field to be-

gin work on understanding and grounding the success of the techniques and

equations physicists use to model the behaviour of systems that begin away

from equilibrium. The fifth section summarises the material presented in this

chapter.

1.1.3 Chapter 4

Chapter three ends by highlighting the limitations of typicality accounts and

by suggesting that we pursue a line of research aimed at properly under-

standing and accounting for the success of the techniques physicists use to

model the behaviour of systems that begin away from equilibrium.

This chapter takes steps in this promising direction. It outlines and ex-

amines a technique commonly used to model the behaviour of an interesting

and important kind of system. More accurately, this chapter outlines and

examines a technique commonly used to model the behaviour of a Brownian

particle that’s been introduced to an isolated homogeneous fluid at equi-

librium. As we’ll see, the technique returns a wealth of quantitative and

qualitative information. This chapter also attempts to account for the suc-

cess of the model and technique, by identifying and grounding the technique’s
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key assumptions.

This chapter is composed of four sections. The first section details a

way of modelling the Brownian particle’s approach to equilibrium and sub-

sequent behaviour. The approach takes its cue from the theory of Brownian

motion. It appeals to Langevin dynamics. As this section highlights, the

described technique generates a collection of interesting equations that track

important aspects of the system’s behaviour. These equations provide us

with the resources to answer the kinds of questions commonly asked about

the behaviour of this kind of system. The second section expands and com-

ments on several aspects of the approach. It also identifies the technique’s

key assumptions and discusses their motivation. This section also begins a

discussion about what would have to be true, or be at least approximately

true, at the microscopic level, in order to justify the use of these assump-

tions, and to account for the success of the equations they help generate.

The third section attempts to motivate a crucial microphysical fact, which,

it is claimed, justifies the use of the technique’s key assumptions, grounds

the success of the technique, and underpins the facts the equations it helps

generate track. The fourth section summarises the details of this chapter. It

also contains some suggestions about the direction of future investigations.
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Chapter 2

On Some of the Aims of

Nonequilibrium Statistical

Mechanics

A number of authors claim that the aim of statistical mechanics is to provide

a suitable foundation for thermodynamics.1,2 For example, in a recent review

article Roman Frigg writes:

Thermodynamics (TD) correctly describes a large class of phe-

nomena we observe in macroscopic systems. The aim of statistical

mechanics is to account for this behaviour in terms of the dynam-

ical laws governing the microscopic constituents of macroscopic

systems and probabilistic assumptions. (Frigg 2008b: p.99)

1See, for example, Sklar (1995: p.3), Lebowitz (1999: p.346), Uffink (2007: p.923), and
Frigg and Werndl (2012b: pp.99-100).

2This observation has also recently been made by Wallace (2013).



10

Others, perhaps more cautiously, claim that it is a central aim of sta-

tistical mechanics to provide a foundation for thermodynamics. Katinka

Ridderbos (2002: p.66), for example, says that

One of the cardinal aims of the theory of statistical mechanics is

to underpin thermodynamic regularities by a theory formulated

in terms of the dynamical laws governing the motion of the mi-

croscopic constituents of a thermodynamic system.

While Craig Callender (2001: p.540) writes,

Kinetic theory and statistical mechanics are in part attempts to

explain the success of thermodynamics in terms of the basic me-

chanics.

As one might have expected, the consensus among philosophers and philo-

sophically minded physicists (which will hereafter collectively be referred to

as philosophers) is that it is an aim of nonequilibrium statistical mechanics

to underpin certain aspects of thermodynamics. While there are a number

of aspects of thermodynamics whose justification relies on nonequilibrium

statistical mechanics, philosophers have tended to focus on the issue of rec-

onciling the existence of thermodynamically irreversible processes with un-

derlying reversible dynamics. Interestingly, what’s regarded as central to this

task differs across authors. Authors sometimes claim that:
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G1. It is a goal of nonequilibrium statistical mechanics to account for ther-

modynamic behaviour, where we say that an isolated system is be-

having thermodynamically if it’s in equilibrium or if it’s spontaneously

approaching equilibrium.3

G2. It is a goal of nonequilibrium statistical mechanics to account for irre-

versible macroscopic behaviour.4

G3. It is a goal of nonequilibrium statistical mechanics to show how a time-

reversal non-invariant thermodynamics emerges from a time-reversal

invariant microphysics.5

G4. It is a goal of nonequilibrium statistical mechanics to provide a micro-

physical justification for the Second Law of thermodynamics.6

Importantly, these goals are distinct. They are, however, closely related.

For one thing, G1 and G2 do not make explicit reference, like G3 and G4,

to some microphysics. It’s clear, however, from the context in which they

appear, that what authors mean when they say that it’s a goal of nonequi-

librium statistical mechanics to account for thermodynamic behaviour, or

irreversible macroscopic behaviour, is that it’s a goal to provide a micro-

physical underpinning of these concepts.

3See, for example, Lazarovici and Reichert (2014: p.3).
4See, for example, Frigg (2011: p.77).
5See, for example, Wallace (2013: p.1). Actually, Wallace (2013: p.1) describes some-

thing weaker than this. More accurately, he describes the goal as being one in which
writers have tried to show how the apparent time-irreversibility of thermodynamics can
be reconciled with the apparent time-reversibility of microphysics. Since this thesis has
confined itself to talking about classical mechanics and classical thermodynamics, it seems
reasonable to drop the “apparent” qualifier.

6See, for example, Frigg (2008a: p.670) and Lazarovici and Reichert (2014: p.4).
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One of the aims of this chapter is to help explain what philosophers mean

when they say that an aim of nonequilibrium statistical mechanics is to ac-

count for certain aspects of thermodynamics. Another is to highlight the

ways in which G1-G4 are distinct, and to highlight the ways in which they

are related. A third is to explain why these differences are negligible with re-

spect to the reduction of thermodynamics to statistical mechanics. A fourth

is to explain why these distinct but related ways of expressing what’s central

to reconciling the tension between macrolevel and microlevel descriptions of

relevant phenomena do not reveal either a confusion or disagreement in the

literature. All of these aims are related. By discussing the ways in which

these goals are distinct, related, but ultimately whose differences are negligi-

ble with respect to the reduction of thermodynamics to statistical mechanics,

this chapter hopes to make the issue of reconciling the existence of thermo-

dynamically irreversible processes with underlying reversible dynamics more

clear. If it’s successful, then this chapter will have helped articulate what it

is those attempting to underpin aspects of thermodynamics using nonequi-

librium statistical mechanics are actually trying to achieve. The attempt to

satisfy each of these aims also contributes, importantly, to this thesis’s larger

aim of encouraging the pursuit of a different line of research. By better un-

derstanding thermodynamics, its relationship to statistical mechanics, and

the facts philosophers have traditionally tried to underpin using statistical

mechanics, we’ll be able to better situate, and appreciate, this thesis’s pro-

motion of understanding and accounting for the success of the techniques

physicists use to model the behaviour of systems that begin away from equi-

librium.
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While it’s helpful for this thesis’s narrative that this chapter proceeds

by way of a discussion about some distinct but roughly equivalent claims

about what’s central to reconciling the existence of irreversible macroscopic

processes with an underlying reversible dynamics, it also serves the purpose

of later clarifying the relationship between thermodynamics and statistical

mechanics. As a later section explains, the general expectation, among those

working on the reduction of thermodynamics to statistical mechanics, is that

the laws and concepts of thermodynamics appear in statistical mechanics as

complicated, approximate statements that are true under certain conditions.

Importantly, it is for this reason that these distinct but related claims do

not properly indicate that there is either a confusion or disagreement in the

literature.

This chapter consists of three sections. The first section introduces and

discusses some concepts, and some thermodynamic laws, that are relevant

to ways of interpreting G1-4. They are also relevant for understanding the

ways in which these goals are distinct but related. Since much of the founda-

tional literature is concerned with recovering classical thermodynamics, this

discussion focuses on classical thermodynamic concepts and classical ther-

modynamic laws—though often in their modern guise. This is distinguished

from the less orthodox, more formal, axiomatic treatments of thermodynam-

ics that have appeared since the early 1900’s, and which are associated with

Constantin Carathéodory, and Elliott Lieb and Jakob Yngvason.7 The re-

sults of this discussion are summarised in the second section of this chapter.

7See Carathéodory (1909), and Lieb and Yngvason (1999). Other axiomatic approaches
have been offered by Robin Giles (1964), John Boyling (1972), and Josef-Maria Jauch
(1972, 1975), among others.
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The third section explains why the differences between G1-4, and goals sim-

ilar to them, are negligible with respect to the reduction of thermodynamics

to statistical mechanics, and, relatedly, why these differences do not point

to either a confusion or disagreement in the literature. It also explains why

authors contributing to the foundational discussion needn’t worry, and prob-

ably don’t worry, about eliminating these differences.

2.1 Classical Thermodynamics

Classical thermodynamics (which is sometimes called orthodox thermody-

namics) was developed around 1850. It’s usually associated with authors

such as Rudolf Clausius, Lord Kelvin (William Thomson), and Max Planck—

though some trace its origins back to Sadi Carnot’s work on heat engines.8

Thermodynamics characterises macroscopic systems in terms of macroscopi-

cally measurable quantities, e.g. temperature, pressure, volume, etc. It also

describes changes in them in terms of heat and work exchanges with an en-

vironment. The theory rests on a set of fundamental laws. These laws are

intended to be independent of any particular hypothesis concerning the mi-

croscopic constitution of macroscopic systems. They have traditionally been

understood as generalised statements of experimental facts.

This section outlines and discusses four thermodynamic laws. They are

8See Mendoza and Carnot (1960). Most authors consider classical thermodynamics
to have emerged around 1850, in works that attempted to recast Carnot’s theorem (see
section 2.1.5)—which was originally expressed using terms familiar to the caloric theory
of heat—in what we now call classical thermodynamic terms. Other early, important,
but lesser known contributors to classical thermodynamics are Émile Clapeyron, William
Rankine, and Ferdnand Reech. See Uffink (2001, 2007) for more on the interesting history
of thermodynamics.
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known as the Minus First Law, the Zeroth Law, the First Law, and the Second

Law of thermodynamics. Interestingly, only two of these laws—the First and

Second—were stated as laws in original presentations of the theory. While

many modern thermodynamics textbooks include the Zeroth Law, explicit

presentations of the Minus First Law as a law are, at present, only found

in philosophical works. A number of modern textbooks do however include

a Third Law of thermodynamics. Unlike the other laws, the Third Law

is not relevant to the aims of this chapter, so it will not form part of the

discussion.9 The discussion will focus on highlighting aspects of the theory

that bear on G1-4. This will be achieved mostly through a discussion of

thermodynamic laws. This section will also highlight, along the way, some

of the relations between G1-4. But before turning to a discussion of these

laws, it is important that we first disentangle and discuss some important

and closely related concepts.

2.1.1 Time-Reversal Invariance and “Reversibility”

The state of a system is typically represented by a point in some state space

Ω. For example, the thermodynamic state of a system is typically represented

by a point in a state space characterised by a small number of macroscop-

ically measurable parameters.10 The same system can also be represented

in classical phase space, a 6-n-dimensional space in which each point repre-

sents the position and momentum (xi,pi) of every particle constituting the

9See Kardar (2007: Sec.1.10) for an introduction and discussion of the Third Law.
10The thermodynamic state of a system need not be characterised by directly macro-

scopically measurable parameters. It can, for example, be characterised using energy and
entropy, which have to be measured indirectly via the First and Second laws.
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system. Unlike thermodynamic state spaces, points in phase space represent

unique microstates. As a consequence, they provide a microphysical, and

hence more detailed, picture of the system’s state.

A state history is a trajectory through state space. That is, a mapping

σ : I ⊆ R→ Ω, for some time interval I.

Systems are governed by dynamical laws. They enable us to distinguish

a set D of dynamically possible trajectories from kinematically possible tra-

jectories.

For any time t0, we can define a reflection of the time axis around t0 by

t→ tT = t0 − (t− (t0)). (2.1)

Standardly, we take t0 = 0, so that tT = −t.

We can talk about a state’s time-reversal. For a single classical particle,

the time-reversal operation

(x,p)→ (x,−p) (2.2)

returns time-reversed states. For systems that are constituted by many

classical particles, the relevant time-reversal operation reverses each particle’s

momentum.

We can also talk about the time-reversal invariance of physical laws and

theories. Given a time reflection (i.e. (2.1)) and a state reversal operation

(such as (2.2)), whose general form we write as

ω → ωT , (2.3)
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we can define an operation that reverses state histories. Define the

history-reversal operation

σ → σT (2.4)

by

σT (t) = σ(tT )T . (2.5)

So then, if σ includes a sequence of states . . . σ(t1), σ(t2), σ(t3), σ(t4),

. . ., then the time-reversed history includes a sequence of states . . . σ(tT4 )T ,

σ(tT3 )T , σ(tT2 )T , σ(tT1 )T , . . . .

A physical theory is said to be time-reversal invariant (or symmetric un-

der time-reversal) if and only if, whenever a state history σ is dynamically

possible, the time-reversed state history σT is also dynamically possible. An-

other way of putting this is to say that the theory is time-reversal invariant

if and only if DT ⊆ D. A theory is said to be time-reversal non-invariant (or

asymmetric under time-reversal) if and only if it’s not time-reversal invari-

ant. I.e. if there exists at least one state history that is dynamically possible

whose time-reversed history is not.11

Notice that it’s the form of a theory’s dynamical laws, given a state rever-

sal operation, that determines whether or not the theory is time-reversal in-

variant. This is why authors sometimes speak of the time-reversal invariance

of physical laws rather than the time-reversal invariance of physical theories,

11Asymmetry should not be confused with the stronger notion of antisymmetry. A phys-
ical theory is said to be antisymmetric under time-reversal if and only if every dynamically
possible state history has a time-reversed history that is not dynamically possible.
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and why they sometimes use the expression “time-reversal invariant theory”

interchangeably with “time-reversal invariant dynamical laws”.

“Reversible” is a term that has several meanings. Sometimes it’s used to

refer to time-reversal invariant processes. That is, dynamically possible state

histories whose time-reverse state histories are also dynamically possible.

This use most commonly appears in philosophy of science and philosophy

of physics literature. In these contexts, “irreversible” is used to refer to

time-reversal non-invariant processes. That is, dynamically possible state

histories whose time-reverse state histories are not, according to the theory,

dynamically possible.

In other situations, “reversible” is used to mean, what Jos Uffink

(2001: p.316) has called, recoverable. Experience suggests that in many cases

the transition, by some process, from an initial thermodynamic state si to a

final thermodynamic state sf , cannot be fully undone. The expression “fully

undone” is meant to indicate not just a return of the system to its initial

thermodynamic state but also any auxiliary system with which it interacted,

without any additional change associated therewith. Opening a bottle of

perfume in a well ventilated room is an example of an irreversible processes

in this sense. In this and other such cases, there is no process which starts

off from the final state sf that restores the initial state si, completely. As

Uffink (2001: pp.316-317) notes, this concept of reversibility differs from the

previous one in at least three respects. First, the only thing that matters

for reversibility understood as recovery is a return of the initial thermody-

namic state. We needn’t specify a history-reversal operation that ensures

the composite system pass through its reversed sequence of states. In this
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respect, this notion of reversibility is weaker than reversibility understood as

time-reversal invariance. And irreversibility understood as irrecoverability

is a logically stronger notion than irreversibility understood as time-reversal

non-invariance. A second difference is its emphasis on complete recovery. A

complete recovery involves not only the return of the system to its initial

state but also the return of any auxiliary system that it interacted with. Re-

versibility understood as time-reversal invariance is simply concerned with

states of the system, and not with the states of systems it interacted with as

well. A third difference concerns the concept of possibility that’s implicitly

invoked. Here, the intended notion of possibility is usually tied to the means

available, to beings like us, with our epistemic and physical limitations, to

recover the initial thermodynamic state. Irreversible processes, then, are pro-

cesses that result in some thermodynamic state from which it is not possible,

given certain epistemic and physical limitations, to recover the initial ther-

modynamic state. This differs from reversibility understood as time-reversal

invariance in that in that case one is simply making a claim about what is

dynamically possible, irrespective of further limitations.

More commonly, however, the word “reversible” is used to mean what

more careful authors mean when they say that certain processes are quasi-

static and reversible. Thermodynamics can be thought to distinguish between

two kinds of processes. First, there are ones that take place gently, with

no turbulence or friction. Then there are all other processes. Quasi-static

processes are processes of the first kind. They are processes that are carried

out so slowly that the system is, at every moment, effectively in equilibrium.

Reversible processes in this context—that is, when they are distinguished
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from quasi-static processes—are understood as they were in the previous

sense: as processes that occur to systems that result in thermodynamic states

from which it’s possible to recover their initial thermodynamic state along

with the initial thermodynamic state of any auxiliary system with which it

has interacted with, and without there being any other changes associated

therewith.

We can already see from the reversibility concepts outlined above that

there are a number of ways to interpret G2. Importantly, it should be

clear that there are ways of interpreting G2 that are distinct from ways of

interpreting G3.

Having highlighted some things that could be meant by G2 and G3, we

turn now to the task of identifying where these reversibility concepts make

contact with the laws of thermodynamics. We’ll also look to see where goals

such as G1 and G4 make contact with the theory, and with reversibility

concepts.

2.1.2 The Minus First Law

The Minus First Law first appeared in name in Harvey Brown and Jos

Uffink’s 2001 article “The Origins of Time-Asymmetry in Thermodynam-

ics: The Minus First Law”. Earlier authors, however, both appreciated its

content and considered it, like Brown and Uffink, to be more fundamental

than the other laws of thermodynamics.12 Commonly, however, the law is

invoked without being flagged as a law.13 It states:

12See, for instance, Uhlenbeck and Ford (1963: p.5), Kestin (1979: p.72), and Lebowitz
(1994: p.135).

13See, for instance, Pauli (1973: p.1) and Sklar (1995: p.20).
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Minus First Law: An isolated system in an arbitrary initial

state within a finite fixed volume will spontaneously attain a

unique state of equilibrium.

Like the other laws of thermodynamics, the Minus First Law intends to

capture a phenomenological fact. As Brown and Uffink (2001: p.528) explain,

the Minus First Law can be broken into the following three claims:

MFL1. The existence of equilibrium states for isolated systems. The defining

property of such states is that once they are attained, they remain

thereafter constant in time, unless the external conditions are changed.

The claim that such states exist is not trivial—it rules out the possi-

bility of spontaneous fluctuation phenomena.

MFL2. The uniqueness of the equilibrium state; i.e. for any initial state of an

isolated system in a fixed given volume, there is exactly one state of

equilibrium.

MFL3. The spontaneous approach to equilibrium from nonequilibrium. A

nonequilibrium state will typically come about as the result of a re-

moval of internal constraints, such as the rapid displacement of adia-

batic walls separating two bodies.14

Spelled out like this, it’s clear to see that the Minus First Law provides

a characterisation of thermodynamic equilibrium and the approach to equi-

librium. It also reveals that the Minus First Law is asymmetric under time-

reversal. The spontaneous motion towards equilibrium is time-asymmetric

14No indication of the speed of the approach to the new equilibrium state is given of
course: thermodynamics provides no equations of motion.
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because of what equilibrium states, as characterised by MFL1, are: once at-

tained no spontaneous departure from them is possible without intervention

from the environment.

The Minus First Law says that isolated systems will either be in a unique

state of equilibrium or else be spontaneously approaching equilibrium. Com-

pare this to G1. It merely gives this behaviour a name: thermodynamic

behaviour. G1 then, is probably best interpreted as saying that it’s a goal of

nonequilibrium statistical mechanics to provide a microphysical justification

of the Minus First Law. Of course, by providing a microphysical justifica-

tion of the Minus First Law, one can be thought to underpin irreversible

macroscopic behaviour, in line with G2—where irreversible macroscopic be-

haviour is taken to be exhibited by systems that are governed by macroscopic

laws that are time-reversal non-invariant—and one can also be thought to

underpin a particular interpretation of G3; to show how a time-reversal

non-invariant thermodynamics emerges from a time-reversal invariant mi-

crophysics.

It’s worth noting that neither the Minus First Law, the three claims

that constitute it, nor G1 contain adverbs such as “quickly” or “slowly”.

In fact, none of them makes any reference to the rates in which systems

relax to equilibrium. (In fact, none of the goals G1-4 make any reference

to the rates in which systems approach equilibrium.) While it’s sensible to

omit any reference to relaxation rates when articulating the Minus First Law

(since relaxation rates vary significantly from system to system, and because

generality is a feature of a good law) it’s worth bearing in mind, for what’s

to come in the next chapter, that we have detailed information about the
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rates in which many systems approach equilibrium.

2.1.3 The Zeroth Law

The Zeroth Law, like the Minus First Law of thermodynamics, was invoked

for a long time without notice. While some early writers both noted and

emphasised its importance, it wasn’t formally recognised as a law until 1939,

when Ralph Fowler and Edward Guggenheim coined the expression “Zeroth

Law”.15

We say that two objects are in thermal contact with each other if it’s

possible for heat to flow between them. More will be said about heating

in the upcoming discussion of the First Law of thermodynamics. For now,

it will suffice to say that it’s a form of energy transfer. If we bring two

objects, A and B into thermal contact, then one of three things can happen

as the composite system, subject to the Minus First Law, equilibrates. First,

heat could flow from A to B. Second, heat could flow from B to A. Or

third, there could be no flow of heat between A and B. The Zeroth Law of

thermodynamics says that the third situation is transitive.

Zeroth Law: If A is in thermodynamic equilibrium with B when

they are in thermal contact, and B is in thermodynamic equilib-

rium with C when they are in thermal contact, then A is in

thermodynamic equilibrium with C.

This law allows us to define an important equivalence relation on thermo-

15James Clark Maxwell was an early writer who both acknowledged and emphasised the
importance of what would later become the Zeroth Law of thermodynamics. See Maxwell
(1871: p.32-33), for example.
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dynamic equilibrium states.16 We say that if A and B are thermodynamic

equilibrium states, then they are equitemperature states if and only if A

can be brought into thermal contact with B without the flow of heat.17 The

equitemperature relation is trivially reflexive and symmetric. That it is tran-

sitive is a substantive assumption. The equitemperature relation is needed

to introduce the concept of thermodynamic temperature and to establish a

numerical temperature scale.

The Zeroth Law and, as we’ll see, the First Law of thermodynamics are

not directly related to G1-4—or to any of the reversibility concepts that

were introduced earlier. They are, however, needed to properly understand

versions of the Second Law that are connected to G1-4 and to reversibility

concepts. It is for this reason that they have been included in this presenta-

tion and discussion of classical thermodynamics.

2.1.4 The First Law

Work is a form of energy transfer. One way to increase the internal energy

of a system is to do work on it. For example, when we compress springs

we increase their internal energy by transferring energy to them. That is,

by doing work on them. They retain this energy in the form of potential

energy. This energy can be converted into kinetic energy by allowing them

to do work on their environment. The energy that can be recovered from

16A relation is said to be an equivalence relation, if it is reflexive, symmetric, and
transitive.

17The characterisation of equitemperature is not rich enough to provide us with a nu-
merical scale of temperature. In fact, it’s not even rich enough to impose a total ordering
on the class of equivalent sets. That is, it cannot be used to make comparative claims
between sets of nonequivalent equitemperature states.
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the compression of an ideal spring that begins in state si and that finishes in

state sf is equal to

W = −
∫ sf

si

F · dx. (2.6)

F is the force opposing the direction of compression.

The same amount of energy could, however, be used to stir a viscous fluid.

Suppose, for example, that we attach a compressed ideal spring to a paddle,

immerse it in a viscous fluid, and release it. Interestingly, in this case, we

readily recognise that we’re not able to completely recover as kinetic energy

the energy we put into the system as work. Initially, we might think that

this energy has been lost. But then we notice that the system has gotten

warmer. This suggests, and, in fact, we say, that the energy that went into

the system in the form of work was not lost, but was instead converted into

heat. What makes this suggestion better than the first is that there is a

measurable mechanical equivalent of heat: we can measure the amount of

work that is needed to raise a gram of water by 1 degree, for example.

The First Law of thermodynamics can be thought of as a thermodynamic

expression of the principle of conservation of energy. It says that if an amount

of work W is done on a system, and heat Q passes into it, the internal energy

U of the system is changed by an amount

First Law: ∆U = Q+W.

Sometimes the Law is expressed in differential form.

Differential Form: dU = d̄ Q+ d̄W.
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Since U is a state function, we use an exact differential, dU , to represent

change in it. Q and W are not state functions. They are path dependent.

That is why they appear as inexact differentials in the differential form of

the Law.

As we’ve seen, thermodynamics uses the terms “heat” and “work” in

connection with two modes of energy transfer. We can increase the internal

energy of a system either by heating it or by doing work on it. It is assumed,

at least in classical presentations of the theory, that these two modes of

energy transfer can readily be distinguished from one another.

2.1.5 The Second Law

There are several versions of the Second Law of thermodynamics.18 Classical

thermodynamics standardly identifies three. These are: the Kelvin state-

ment, the Clausius statement, and the Entropy statement. This section will

begin by presenting each statement. It will then discuss their relation to one

another and what is typically meant by G4. That is, what authors mean

when they say that it’s a goal of nonequilibrium statistical mechanics to

provide a microphysical justification of the Second Law of thermodynamics.

First, there’s Kelvin’s statement of the Second Law.

Kelvin Statement: No process is possible whose sole result is

the complete conversion of heat into work.19 (Kardar 2007: p.9)

18See Uffink (2001) for an interesting and detailed discussion of the many versions of
the Second Law of thermodynamics.

19This is a common, modern presentation of Kelvin’s statement of the Second Law. As
Uffink (2001: p.327-328) notes, this statement of the Law was inspired by what Kelvin
considered to be an axiom of thermodynamics:
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Then there’s Clausius’s statement.

Clausius Statement: Heat can never pass from a colder body to

a warmer body without some other change, connected therewith,

occurring at the same time. (Clausius 1856: p.86)

The first statement rules out a perfect engine. The second rules out a

perfect refrigerator.

Unlike Kelvin and Clausius’s statements of the Second Law, the Entropy

statement cannot be stated and at the same time be so easily understood.

It will help to have some additional concepts on the table, before presenting

this statement of the Law. We begin with Carnot’s theorem.

Carnot’s Theorem

A heat engine works by taking in a certain amount of heat Qh, from a heat

source (e.g. a coal fire), converting a portion of it into work W , and dumping

the remaining heat Qc into a heat sink (e.g. atmosphere).

A heat engine is said to work in a cycle if it returns to its initial thermo-

dynamic state. This is similar to, but distinct from, reversibility understood

as recovery. In this case, auxiliary systems are allowed to be in different

thermodynamic states when the engine returns to its initial thermodynamic

state. A heat engine that operates in a cycle undergoes no net change in

internal energy.

It is impossible, by means of inanimate material agency, to derive mechanical
effect from any portion of matter by cooling it below the temperature of the
coldest of the surrounding objects. (Kelvin 1851: p.265)
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Figure 2.1: A heat engine.

The principle of conservation of energy entails that

W = Qh −Qc. (2.7)

The fraction of heat the engine takes from the heat source and converts

into useful work, having dumped the rest, is called the efficiency of the

engine. It’s denoted by η.

η =
W

Qh

= 1− Qh

Qc

. (2.8)

A Carnot engine is any heat engine that operates in a cycle in a quasi-

static and reversible manner, and all of its heat exchanges take place either

at a source temperature Th, or at a sink temperature Tc. In these situa-

tions, heat sources and heat sinks are treated as being so large that they can

supply or absorb quantities of heat without incurring a measurable change

in temperature. That is, they are treated as reservoirs. The distinguishing

characteristic of the Carnot engine is that all of its heat exchanges occur at

only two temperatures.
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Carnot’s theorem gives us information about the maximum efficiency of

heat engines. It has two parts.

Carnot’s theorem: 1. Every Carnot engine that operates be-

tween a pair of heat reservoirs, with temperatures Th and Tc, is

equally efficient. 2. Moreover, any other heat engine operating

between these reservoirs is less efficient than a Carnot engine.

When a Carnot engine runs forward, it draws heat from the hot reservoir

and converts a portion of it into work.

Th 

Tc 

Carnot Engine 

Qh 

Qc 

W 

Figure 2.2: A Carnot engine operates between temperatures Th and Tc,
with no other heat exchanges.

Since a Carnot engine is reversible, it can also be run backward and work

as a refrigerator. In this case, work is done on the Carnot engine. This is

used to move heat from the cold reservoir to the hot reservoir (see Figure

2.3).

Carnot’s theorem is proven by deriving a contradiction. Consider a heat

engine, operating in a cycle, with efficiency ηhe, that has been setup to extract

an amount of heat Qh from a hot reservoir, do work W = ηheQh on a Carnot

engine operating in reverse, and discard heat Qc = (1− ηhe)Qh. That is, we
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Qh 
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Figure 2.3: A Carnot engine operating in reverse. Heat is transferred from
the cold reservoir to the hot reservoir.

run the engine forwards, in a cycle, and use it to do work on a Carnot engine

that is extracting heat Q′c from the cold reservoir, and discarding heat Q′h

into the hot reservoir with efficiency ηce.

Th 

Heat Engine 

Qh 

Qc 

W 
Carnot Engine 

Q’h 

Q’c 

Tc 

Figure 2.4: A heat engine used to run a Carnot engine in reverse.

The amount of work that is transferred from the heat engine to the Carnot

engine is

W = ηheQh = ηceQ
′
h. (2.9)

This means that the net effect of the process transfers a quantity of heat
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Q = Q′h −Qh = (
ηhe
ηce
− 1)Qh (2.10)

from the cold reservoir to the hot reservoir. If ηhe > ηce, then (2.10) is

positive. The net result of the process, then, is one in which we have moved

heat from the cold reservoir to the hot reservoir. This contradicts Clausius’s

statement of the Second Law.20 So we conclude that for any heat engine and

any Carnot engine, ηhe ≤ ηce. This is the second part of Carnot’s theorem.

The first part follows as a corollary. Every Carnot engine that operates

between a pair of heat reservoirs is equally efficient, since each can be used

to run any other one backward.

Thermodynamic Temperature

Carnot’s theorem says that every Carnot engine operating between a pair

of heat reservoirs has the same (maximum) efficiency. Since their efficiency

depends only on the temperatures of the reservoirs, they can be used to

define a temperature scale. That is, they can be used to define a scale on the

class of sets of equitemperature states that was established using the Zeroth

Law.

If ηhc is the efficiency of a Carnot engine operating between reservoirs H

and C, define the thermodynamic temperature T by

Tc
Th

=df 1− ηhc. (2.11)

This defines the thermodynamic temperature of any reservoir up to an

20Where Clausius’s statement of the Second Law is taken as an axiom.
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arbitrary scale factor.

The Carnot Cycle

Functioning Carnot engines perform Carnot cycles. These cycles are usually

divided into four stages. This subsection describes one of these cycles for an

engine working between two reservoirs whose working substance is an ideal

gas.

The first stage involves expansion at constant temperature. This is oth-

erwise know as an isothermal expansion. The engine absorbs heat, Qh, from

the hot reservoir at temperature Th, and does work on the environment. The

second stage involves adiabatic expansion. That is, the gas continues to ex-

pand but now does so without exchanging heat with the environment.21 It

does work on the environment as it cools to temperature Tc. The third stage

involves compression at constant temperature. This is otherwise known as

an isothermal compression. At this stage, an external agent does work on

the gas. The engine expels heat, Qc, into the cold reservoir at temperature

Tc. The fourth and final stage of the cycle involves adiabatic compression.

This stage also involves an agent doing work on the gas, raising its tempera-

ture to Th. The compression occurs without heat being exchanged with the

environment.

21A system is adiabatically isolated if and only if it can’t exchange heat with the envi-
ronment. An adiabatic process (e.g. an adiabatic expansion) is one in which the system
exchanges no heat with the environment.



33

Figure 2.5: The four stages of a Carnot Cycle. (A) isothermal expansion.
(B) adibatic expansion. (C) isothermal compression. (D) adiabatic

compression. (Schroeder 2000: p.126)

Thermodynamic Entropy

The following equality holds for a Carnot cycle:

∮
d̄ Q

T
=
Qh

Th
− Qc

Tc
= 0. (2.12)

If we assume that any quasi-static and reversible cycle can be represented

by a collection of Carnot processes, that is, by a path through the system’s

thermodynamic state space that alternates between isothermal and adiabatic

segments, then for any thermodynamic system

∮
qsr

d̄ Q

T
= 0. (2.13)

The subscript attached to the path integral signifies that the cycle is

performed in a quasi-static and reversible manner. If (2.13) did not hold, then
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we could construct a quasi-static and reversible heat engine that operated in

a cycle with an efficiency that was different from the efficiency of a Carnot

engine, in violation of Carnot’s theorem.

It follows from (2.13) that there exists a state function S such that, for

any quasi-static and reversible process, and any two thermodynamic states

a and b,

∫ b

a

d̄ Q

T
= Sb − Sa. (2.14)

This state function is called the thermodynamic entropy of the system.

It can also be written in differential form.

dS =
( d̄ Q
T

)
qsr

(2.15)

For any heat engine operating in a cycle that is less efficient than a Carnot

engine, it must be the case that

∮
d̄ Q

T
< 0. (2.16)

Equations (2.13) and (2.16), when written together, state that for any

cycle,

∮
d̄ Q

T
≤ 0. (2.17)

This is known as Clausius’s theorem.22 It’s often expressed in differential

form.

22This is also sometimes referred to as the “Inequality of Clausius”.
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d̄ Q ≤ TdS. (2.18)

The Entropy statement of the Second Law follows from this result.

Entropy Statement: The thermodynamic entropy of an adia-

batically isolated system cannot decrease. That is, dS ≥ 0.

Relations Between Statements of the Second Law

Three statements of the Second Law have been presented: the Kelvin state-

ment, the Clausius statement, and the Entropy statement. One may wonder

then what could be meant by G4. That is, one may wonder what is meant

by those who say that it is a goal of nonequilibrium statistical mechanics to

provide a microphysical justification of the Second Law of thermodynamics.

Such a claim is likely to have been informed by two thoughts. First, most

authors are aware of the equivalence of these statements. Their equivalence

will be highlighted shortly. Second, it’s reasonable to think that many au-

thors have the Entropy statement in mind when they state this goal. The

reason for this has to do with its content. It, unlike the other statements,

formally identifies a thermodynamic quantity that tracks irreversible macro-

scopic behaviour: thermodynamic entropy. Since (as we’ll see) philosophers

typically have claims such as G1-3 in mind whenever they claim something

like G4, it seems reasonable to interpret them as saying that it’s a goal of

nonequilibrium statistical mechanics to provide a microphysical justification

of why the thermodynamic entropy of adiabatically isolated systems cannot

decrease.



36

Interestingly, one might see the satisfaction of this goal as a way of also

satisfying G2 and G3—where these claims are suitably interpreted. That

is, where we associate increases in thermodynamic entropy with irreversible

macroscopic behaviour (G2), and where we take the Entropy statement of

the Second Law as being a (or perhaps the) time-reversal non-invariant aspect

of thermodynamics that is referred to in G3.

Returning to the equivalence of statements of the Second Law, we find

that the Kelvin and Clausius statements are equivalent if we insist that all

temperatures have the same sign.23 Their equivalence is typically displayed

by highlighting that a violation of one of these statements leads to a violation

of the other, and vice versa.

Consider an engine C that violates the Clausius statement of the Second

Law by transferring Q heat from a colder reservoir to a hotter one. Now

consider a heat engine that operates between these reservoirs that transfers

heat Qh from the hotter reservoir and dumps Qc into the colder one. The

combined system takes Qh − Q from the hot reservoir, produces work equal

to Qh − Qc, and dumps Qc − Q into the colder reservoir. If we adjust the

output of the heat engine such that Qc = Q, the net result is a perfectly

efficient engine K, in violation of Kelvin’s statement. See Figure 2.6.

Now consider an engine K that absorbs Q heat from the hot reservoir

23As Uffink (2001: p.329) notes, Tatyana Ehrenfest-Afanassjewa (1925, 2002) noticed
that the two formulations only become equivalent when we add an extra axiom to ther-
modynamics, namely that all temperatures have the same sign. If we allow systems with
negative absolute temperature, which is not forbidden by the standard laws of thermody-
namics, then one can distinguish between these two formulations. As Uffink (2001: p.329)
continues, this observation became less academic when Norman Ramsey (1956) gave con-
crete examples of physical systems with negative absolute temperatures (e.g. nuclear spin
systems.
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Figure 2.6: An engine violating the Clausius statement C can be connected
to a heat engine, resulting in a combined device K that violates the Kelvin

statement.

and converts it entirely into work. This engine violates Kelvin’s statement.

The work output by this engine can be used to run a heat engine backwards

(i.e. it can work as a refrigerator), with the net outcome of transferring heat

from a colder body to a hotter body, in violation of Clausius’s statement.
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Figure 2.7: An engine violating the Kelvin statement K can be connected
to a refrigerator, resulting in a violation of the Clausius statement.

Since Kelvin and Clausius’s statements are equivalent, it remains to show
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that they are equivalent to the Entropy statement. But since Kelvin and

Clausius’s statements are equivalent, we only need to show that one of them is

equivalent to the Entropy statement. And since earlier subsections effectively

detailed how the Entropy statement followed from the Clausius statement,

all that remains is for us to show that the Clausius statement follows from

the Entropy statement.

Consider a violation of the Entropy statement. That is, consider a heat

engine operating in a cycle between two reservoirs with different temperatures

whose thermodynamic entropy decreases, i.e. dS < 0. Then, for such a

process,

d̄ Q > TdS. (2.19)

So

∮
d̄ Q

T
> 0. (2.20)

This means that we have heat passing from a colder body to a warmer

body without some other change, connected therewith, occurring at the same

time. That is, we have a violation of Clausius’s statement.

2.2 Summary of Results

Through a discussion of various reversibility concepts and the laws of thermo-

dynamics, this chapter highlighted ways in which the goals G1-4 are distinct

but related. This was done so as to make the issue of reconciling the exis-
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tence of thermodynamically irreversible processes with underlying reversible

dynamics more clear, and to highlight what philosophers are attempting to

underpin using nonequilibrium statistical mechanics. It was also done so that

we might, after the coming section and next chapter, better appreciate the

relationship between thermodynamics and statistical mechanics. This discus-

sion also contributed to the task of explaining what philosophers mean when

they say than an aim of nonequilibrium statistical mechanics is to account

for certain aspects of thermodynamics.

To these ends, an earlier section suggested that G1 is probably best in-

terpreted as saying that a goal of nonequilibrium statistical mechanics is to

provide a microphysical account of the Minus First Law. Earlier sections also

discussed other ways of interpreting this goal and highlighted its connections

to G2-4. It was noted that if one were to provide a microphysical account of

the Minus First Law, one could also be thought to fulfil the goal of accounting

for irreversible macroscopic behaviour, in line with G2—where irreversible

macroscopic behaviour is taken to be exhibited by systems that are governed

by time-reversal non-invariant macroscopic laws—and to satisfy the goal ex-

pressed by a particular interpretation of G3, where the Minus First Law is

thought to be at least one aspect of the theory that is responsible for its

time-reversal non-invariance.

Earlier sections highlighted that G2 could be interpreted in various ways,

depending on how we interpret “irreversible macroscopic behaviour”. It could

be understood as macroscopic behaviour that is governed by some time-

reversal non-invariant law. G2 could also be understood as saying that a

goal of nonequilibrium statistical mechanics is to account for why certain
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processes render particular initial thermodynamic states irrecoverable. G2

could also be interpreted as a request for a microphysical account of the Minus

First Law, but it could also be interpreted as a request for a microphysical

account of the Second Law of thermodynamics.

How we interpret G3 depends on what aspects of the theory are thought

to be captured by the expression “time-reversal non-invariant thermodynam-

ics”. Again, this could be seen as saying that a goal of nonequilibrium sta-

tistical mechanics is to provide a microphysical account of the Minus First

Law, but it could also be interpreted as saying that a goal of nonequilibrium

statistical mechanics is to provide a microphysical account of the Second Law

of thermodynamics. It could also be understood as saying that it is a goal

of nonequilibrium statistical mechanics to provide a microphysical account

of both laws.

Earlier sections suggested that G4 is probably best interpreted as saying

that it is a goal of nonequilibrium statistical mechanics to provide a micro-

physical account of the Entropy statement of the Second Law of thermody-

namics. This is despite its equivalence to Kelvin and Clausius’s statements

of the law. The reason is that, unlike Kelvin and Clausius’s statements,

the Entropy statement formally identifies a thermodynamic quantity that

tracks irreversible macroscopic behaviour: thermodynamic entropy. It was

also indicated that one might see the satisfaction of this goal as a way of

satisfying G2 and G3—where these goals are suitably interpreted. That is,

respectively, where we associate increases in thermodynamic entropy with ir-

reversible macroscopic behaviour, and where we take the Entropy statement

of the Second Law as being a (or perhaps the) time-reversal non-invariant
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aspect of thermodynamics that is requested by G3.

2.3 Not Strict Interpretations, Suitable

Analogues

Having highlighted that G1-4 are distinct, and that each goal could be made

more precise—often in a number of ways—one may wonder whether this

points to either a confusion in the literature or a disagreement about what

is central to reconciling the existence of thermodynamically irreversible pro-

cesses with underlying reversible dynamics. One might also think that the

appropriate way for the discussion to proceed is for contributors to first care-

fully specify what it is they’re attempting to use nonequilibrium statistical

mechanics to accomplish.

This chapter will now end by elaborating a little bit on the relationship

between thermodynamics and statistical mechanics, and by explaining why

there is neither confusion nor disagreement in the literature. It will also

explain why well informed authors needn’t worry about, and probably don’t

worry about, eliminating the differences between expressions of goals such as

G1-4.

Those attempting to provide a foundation for thermodynamics recognise

that macroscopic systems can be described in various ways, by various phys-

ical theories. A dilute gas and its behaviour, for example, can be described

in thermodynamic terms. It can also be described at a microscopic level, and

its behaviour, we think, can be modelled by describing the behaviour of the

entities that constitute it. At the microscopic level, a mechanical theory like
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statistical mechanics is used to describe the system’s behaviour. Since we

think both descriptions are equally valid, the two theories’ predictions had

better be consistent when applied to the same phenomena. Since statisti-

cal mechanics is thought to be the more fundamental theory, the concern is

often transformed into whether we can recover thermodynamics from statis-

tical mechanics. Philosophers often talk about reduction in these contexts.

The worry is otherwise stated in terms of whether one theory reduces to an-

other. This is a way of looking at what those engaged in the foundational

discussion are discussing. While reduction is a philosophically hairy notion,

the main idea shared by many theories of reduction, and implicitly (but

sometimes explicitly) endorsed by those contributing to foundational discus-

sions of thermodynamics, is that one theory reduces to another if we can

use the reducing theory to construct an analogue of the laws and concepts

of the theory to be reduced. What philosophically well-minded contributors

do not expect is a logical deduction from statistical mechanics (the reducing

theory) to thermodynamics (the theory to be reduced). They also do not

expect the laws of the reduced theory to be laws of the reducing theory, nor

do they expect the concepts used by the former to always be applicable at

the level of the latter. The general expectation is instead that the laws and

concepts of thermodynamics appear in statistical mechanics as complicated,

approximate statements that are true under certain conditions.24 To expect

anything more would be, in the words of Craig Callender (2001), to take

thermodynamics too seriously.

24Many authors hold this kind of view. See, for example, Frigg and Werndl (2012a: 919-
920), Frigg and Werndl (2012b: p.100), Lavis (2005: p.255), Callender (2001), and Callen-
der (1999).
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With these considerations in mind, it’s reasonable to read goals such as

G1-4 not as ones that are confused, or as ones that are taking a firm stand

on what exactly is needed to reconcile the tension between thermodynam-

ics and statistical mechanics. Instead, it’s reasonable to read them as short

approximate statements that refer to a collection of relevant ideas that are

central to reconciling the existence of thermodynamically irreversible pro-

cesses with underlying reversible dynamics. A collection of relevant ideas,

that is, such as those discussed in previous sections, that come from var-

ious ways of unpacking goals that resemble G1-4. What contributors to

the foundational discussion presumably want from nonequilibrium statistical

mechanics are, among other things, statistical mechanical stories that, at a

macroscopic level, do justice to the aspects of thermodynamics touched on

by claims such as G1-4.

These considerations also motivate why well informed contributors needn’t

bother eliminating the differences between these claims. If they are under-

stood as referring to a collection of important and relevant ideas, and if an

appropriate reduction of thermodynamic concepts to statistical mechanical

ones involves locating suitable analogues, then it’s unnecessary to homogenise

them.
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Chapter 3

An Evaluation of Foundational

Accounts

The previous chapter discussed one of the aims of statistical mechanics: to

reconcile the existence of thermodynamically irreversible processes with un-

derlying reversible dynamics. It focused on one side of the issue, where it

makes contact with thermodynamics. This chapter takes up another side,

where it makes contact with statistical mechanics.

One of the aims of this chapter is to outline and review some of the leading

attempts to reconcile this conflict. These attempts are typically part and

parcel of works that aim at accounting for why isolated systems that begin

away from equilibrium spontaneously approach equilibrium and why they

remain in equilibrium for incredibly long periods of time. In addressing this

goal, these works hope to provide a foundation for aspects of thermodynamics

and satisfy goals such as G1-4. This chapter considers the most pressing

problems facing these accounts and, where possible, presents and discusses
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their most promising solutions. It highlights that they have some severe

limitations, even when we overlook their problems. It reveals that they do

not underpin a large and important set of facts that concern the behaviour

of systems that begin away from equilibrium. While they may satisfy goals

such as G1-4 and account for why isolated systems that begin away from

equilibrium spontaneously approach equilibrium, and why they remain in

equilibrium for incredibly long periods of time, they do not underpin facts

about the rates in which systems approach equilibrium, or facts about the

kinds of states they pass through on their way to equilibrium, or facts about

fluctuation phenomena. They also do not help us form expectations about

these things or help justify the expectations we may already have about them,

having formed them on the basis of experience.

This chapter claims that the limitations of these accounts are a symptom

of what they are aiming at. By focusing on recovering certain aspects of

thermodynamics, those contributing to the foundational project have merely

been in the business of articulating microphysical accounts of irreversible

macroscopic behaviour that recover a few qualitative facts. To remedy this

situation, this chapter encourages pursuing a different line of research: un-

derstanding and accounting for the success of the techniques and equations

physicists use to model the behaviour of systems that begin away from equi-

librium. If we’re able to properly understand these techniques and equations,

and are able to account for their success, then we will not only be able to

underpin the kinds of qualitative facts the literature has focused on, but

we’ll also be able to underpin the important quantitative facts that leading

typicality accounts cannot.
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The following chapter takes steps in this promising direction. It outlines,

discusses, and attempts to ground the success of a way of modelling the

approach to equilibrium and subsequent behaviour of a Brownian particle

that’s been introduced into an isolated homogeneous fluid at equilibrium.

The next chapter also highlights how the model contributes to the satisfaction

of goals such as G1-4, and to the underpinning of important quantitative

facts.

This chapter is composed of five sections. The first section outlines and

discusses the essence of what many people think of as the first serious at-

tempt to account for the behaviour of systems that begin away from equi-

librium. This approach is based on some of Ludwig Boltzmann’s early work

on statistical mechanics, when he first offers what has come to be known as

Boltzmann’s equation and H-theorem. As we’ll see, this work gives rise to

one of the very issues that is at the centre of contemporary discussions of

statistical mechanics: the reconciliation of the existence of thermodynami-

cally irreversible processes with underlying reversible dynamics. The second

section outlines and discusses the leading ways—found in the contemporary

foundational literature—to account for the behaviour of systems that be-

gin away from equilibrium. These approaches are inspired by, and build

on, Boltzmann’s later attempts (circa 1877) to resolve this issue and, once

again, account for the behaviour of systems that begin away from equilib-

rium.1 Each one incorporates, in some way or other, a notion of typicality.

1This presentation and discussion of Boltzmann’s work is couched in the language of
modern statistical mechanics. It also makes use of its technical resources. While this
presentation does not do justice to the messy and tangled history of statistical mechanics,
or to Boltzmann’s original works, it is in line with how these ideas are now standardly
presented. It also happens to be the cleanest way to present the ideas most relevant to
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The second section also discusses worries specific to each typicality account.

More general concerns are discussed in the third section. Both sections also

discuss, where possible, the most promising solutions to these concerns. The

fourth section highlights and discusses the limitations of typicality accounts.

It also promotes pursuing lines of research that aim at more than merely

recovering a few qualitative facts and satisfying goals such as G1-4. The

suggestion is that we make sense of, and try to ground the success of, the

techniques and equations commonly used to model the behaviour of systems

that begin away from equilibrium. Understanding and accounting for their

success will provide us with a microphysical underpinning of the aspects of

the behaviour of systems that begin away from equilibrium not accounted for

by typicality accounts. It will also provide us with the means to satisfy goals

such as G1-4. The chapter ends, in the fifth section, with a brief summary.

3.1 Boltzmann’s Early Work

Ludwig Boltzmann famously attempted to explain why isolated systems that

begin in some nonequilibrium state spontaneously approach equilibrium and

why they remain in equilibrium for incredibly long periods of time. In 1872,

Boltzmann considered how the distribution of velocities of the molecules of a

dilute gas could be expected to change under collisions and argued that there

the aims of this chapter and thesis. Readers interested in the gritty details are encouraged
to consult Klein (1973), Brush (1986), Sklar (1995), von Plato (1994), Cercignani (1998),
Ehrenfest and Ehrenfest (2002), Uffink (2007), Brown, Myrvold, and Uffink (2009), and
Uffink (2014) for discussions of Boltzmann’s work on statistical mechanics and its tangled
history. For Boltzmann’s original works, see Boltzmann (1909). And see de Regt (1996),
Blackmore (1999), and Visser (1999) for discussions of the philosophical and methodolog-
ical shifts in Boltzmann’s thinking.
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was a unique distribution—now called the Maxwell-Boltzmann distribution—

that was stable under collisions.2

Maxwell-Boltzmann Distribution: the fraction of molecules

having velocity lying within the velocity-space element d3v about

v is proportional to

e−mv
2/2kT d3v, (3.1)

where k is the Boltzmann constant and T is temperature.

Boltzmann further argued that a gas that initially had a different distribu-

tion would move toward the Maxwell-Boltzmann distribution. To argue that

this was the unique (equilibrium) distribution, which would be approached

starting from some other distribution, Boltzmann defined a quantity, which

we now call H, showed that it reached a minimum value for the Maxwell-

Boltzmann distribution, and argued that it would monotonically decrease to

its minimum.3 This result is now known as Boltzmann’s H-theorem. It’s

a straightforward consequence of Boltzmann’s transport equation. Impor-

tantly, the result is asymmetric under time-reversal.

The next subsection fleshes this picture out by presenting and discussing

aspects of the theorem. The subsection after that highlights its logic and

limitations using a simple toy model that shares salient features with dilute

gases.4

2See Boltzmann (1872).
3The quantity we call H was originally denoted E in Boltzmann’s early work. See

Boltzmann (1872).
4The interested reader should consult Uffink (2007) and, especially, Brown et al. (2009)

for the details of Boltzmann’s H-theorem, and for an in depth discussion of it. For a good
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3.1.1 Boltzmann’s H-theorem

Boltzmann’s H-theorem was based on a model of a gas consisting of n qual-

itatively identical, hard, spherical molecules, in a container with perfectly

elastic walls. He supposed the gas was sufficiently dilute so that only binary

collisions needed to be taken into account in the dynamics.

The distribution (or density) function f(x,v, t) is defined such that

f(x,v, t)d3xd3v is the number of molecules within a volume element d3x

about x and with velocity lying within the velocity-space element d3v about

v. Boltzmann’s transport equation determines how f(x,v, t) evolves in time.

Brown et al. (2009: p.175) explain that Boltzmann’s first derivation of

the transport equation made use of three noteworthy assumptions. Two

of these were harmless, the third became controversial. First, Boltzmann

assumed that for the initial state of the gas, the momentum distribution is

isotropic. That is, f0(x,v, t) = f0(x, v, t). Second, Boltzmann assumed that

no external forces act on the gas and that the distribution is independent

of position at all times. That is, f(x,v, t) = f(v, t). It follows from these

considerations that the expression for ∂f/∂t depends only on collisions, so

that the transport equation can be expressed as a balance equation, in which

losses are subtracted from gains during collisions. The third and most famous

assumption concerned collision numbers. We now refer to this assumption,

following Paul and Tatiana Ehrenfest, as the Stoßzahlansatz.5 Here’s how

Brown et al. (2009: p.175) describe it:

heuristic derivation of Boltzmann’s H-theorem see Dorfman (1999).
5See Uffink (2007) and Brown et al. (2009) for more on the Stoßzahlansatz.
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Suppose we have two groups of molecules heading towards each

other. Choose one of the groups and call it the target group.

Consider the collection S of all the spatial volumes (cylinders)

swept out by the target molecules in time δt such that if any

molecule of the second group is found in S there is bound to be

a collision. Note that S depends on the relative velocities of the

molecules in the two groups; it is not defined solely in relation to

the target molecules! Then suppose that the number of collisions

that actually occur is the total volume associated with S multi-

plied by the density of molecules of the second, colliding group.

This holds only if the spatial density of the colliding molecules in

S is the same as in any other part of space.

Since the target region S is defined in relation to the relative velocities of

the molecules from the two groups, and since, from the second assumption,

the distribution function is position independent, the assumption depends on

the relationship between the momenta of the target and colliding molecules

before collision. In fact, the Stoßzahlansatz is tantamount to the claim that

the density F (v1, v2, t) of pairs of molecules which are about to collide within

the interval [t, t+ ∆t] with velocities v1 and v2 is given by the product of the

single molecule densities. That is,

F (v1, v2, t) = f(v1, t)f(v2, t). (3.2)

Thus the molecules entering into but not out of collision are uncorrelated

in velocity.
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In the same work, Boltzmann also introduced the H-functional

H[ft] =

∫
f(x,v, t) ln f(x,v, t)d3xd3v (3.3)

which is large for narrow distributions and small for wide ones. Boltz-

mann treated the density function as continuous and differentiable, since the

number of molecules in a gas is very large.

If we assume that the Stoßzahlansatz holds at time t0, then it follows

from Boltzmann’s transport equation that

dH

dT
≤ 0. (3.4)

Equality holds when the gas reaches equilibrium, coinciding with the

Maxwell-Boltzmann distribution. This is Boltzmann’s H-theorem. One of

its assumptions is the validity of the Stoßzahlansatz at all times. This en-

sures the monotonic behaviour of H over time. It also ensures that it’s a

temporally asymmetric result. The theorem can be thought to provide a

microphysical underpinning of the Minus First Law. It can also be thought

to provide an underpinning of the Entropy Statement of the Second Law of

thermodynamics, if we associate thermodynamic entropy with −H. It can

also be thought to satisfy G2.

3.1.2 The Kac Ring

This subsection highlights the theorem’s logic and limitations by discussing

a simple, explicitly solvable toy model called the Kac ring. The Kac ring

first appeared in a series of lectures given by Mark Kac at the University of
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Colorado in 1959.6 It’s similar, in some important respects, to a dilute gas.

In the model, N sites are arranged around a circle, forming a one-

dimensional periodic lattice. Sites are joined to their neighbours by an edge,

and 0 < n < N of the edges carry a marker. Each site is occupied by either a

black ball or a white ball.7 The balls and markers are similar to the molecules

that comprise a gas.

Figure 3.1: A Kac ring with N = 8 lattice sites and n = 5 markers.

The system evolves on a discrete set of ticks t ∈ Z from state t to state

t + 1 in the following way: each ball moves in a clockwise direction to its

6The purpose of these lectures was to furnish an introduction to probability theory and
its applications to an audience that had little knowledge of these subjects. In a lecture
on classical statistical mechanics, Kac (1959: p.99) used the ring model to introduce his
audience to the statistical mechanical treatment of irreversible phenomena. The Kac ring
is often used to introduce this idea. It’s also used to introduce some related ideas. See,
for example, Bricmont (1995: Appendix 1), Bricmont (2001), Dorfman (1999: Sec.2.3),
Kac (1959: Ch.3 Sec.14-15), Gottwald and Oliver (2009), Schulman (1997: Sec.2.1), and
Thompson (1972: Sec.1.9).

7Similar descriptions of the model can be found in Bricmont (1995: Appendix 1), Bric-
mont (2001: p.10), Dorfman (1999: Sec.2.3), Kac (1959: p.99), and Gottwald and Oliver
(2009: Sec.3).
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nearest neighbour. When a ball passes a marker its colour changes. This is

analogous to changes in the velocities of molecules of a gas as they collide

with one another.

The Kac ring has a number of interesting features. Analogous to Boltz-

mann’s dilute gas, its microdynamics are symmetric under time-reversal.

Any reversed sequence of states is compatible with the dynamics of the sys-

tem. The system is strictly periodic, and so displays recurrence. The ring,

after a series of ticks, returns to its initial state. After N ticks, each ball has

reached its initial site and changed colour n times. If n is even, the initial

state recurs. If n is odd, it takes at most 2N ticks for the initial state to

recur. Recurrence is a property also shared by contained gases.

Let B(t) denote the total number of black balls and b(t) the number of

black balls that pass a marker on the next tick. Similarly, let W (t) denote

the number of white balls and w(t) the number of white balls that pass a

marker on the next tick. It follows that

B(t+ 1) = B(t) + w(t)− b(t) (3.5)

and

W (t+ 1) = W (t) + b(t)− w(t). (3.6)

We can study the difference between the number of black and white balls

at various times.

∆(t) = W (t)−B(t) (3.7)



54

and

∆(t+ 1) = W (t+ 1)−B(t+ 1) = ∆(t) + 2b(t)− 2w(t). (3.8)

The system is said to be in equilibrium when W (t) ≈ B(t). W , B, and

∆ are macroscopic quantities. They describe global features of the system’s

state; many different microstates give rise to the same macroscopic quantities.

In contrast, w and b give local information about individual sites. They

cannot be computed without knowing the location of each marker and the

colour of the ball at each site. Importantly, the evolution of W , B, and ∆

cannot be determined using only macroscopic state information.

This limitation, however, can be overcome if we make the following non-

dynamical assumption: suppose that the fraction of white or black balls that

change colour at each tick is equal to the probability µ that an edge has a

marker on it, where µ is equal to the number of markers, n, divided by the

number of edges, N . That is,

µ =
n

N
=

w(t)

W (t)
=

b(t)

B(t)
. (3.9)

This assumption is analogous to the assumption that the Stoßzahlansatz

holds at all times. We too have posited a continued independence. Here, the

colour of each ball is taken, at each tick, to be probabilistically independent

of whether there is a marker in front of it. It’s important to note that we

have also introduced a time-reversal non-invariant element into the model.

There are sequences of states of the system that are compatible with the

assumption whose temporal reverse is not. For example, consider a ring that
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has a white ball at each site and whose markers at some initial time have been

randomly distributed. Now let the system evolve for one tick. All and only

the balls that have changed colour have passed a marker. The assumption,

which holds for this sequence of states, does not hold for its time reverse. In

the later case, ball colours are not independent of marker locations. Black

balls are found at all and only those sites that have a marker in front of them.

Importantly, this collision assumption enables us to express (3.8) as

∆(t+ 1) = ∆(t) + 2µB(t)− 2µW (t) = (1− 2µ)∆(t). (3.10)

This yields

∆(t) = (1− 2µ)t∆(0), (3.11)

which is analogous to Boltzmann’s equation. Since 0 < µ < 1, (3.11)

tells us to expect |∆(t)| → 0 as t→∞. This is the analogue of Boltzmann’s

H-theorem. This result, like Boltzmann’s H-theorem, is asymmetric under

time-reversal. Moreover, this result, like Boltzmann’s, is inconsistent with

the system’s dynamics. More will be said about this in a moment.

Returning to the H-theorem, we may ask how Boltzmann arrived at his

result having only assumed an underlying dynamics that is symmetric under

time-reversal. The answer is that he didn’t, and two famous objections have

shown that he couldn’t. These are known as the reversibility objection and

the recurrence objection. The former is usually credited to Josef Loschmidt

and the latter to Ernst Zermelo.8

8See Uffink (2007) and Brown et al. (2009) for more on these objections.
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The reversibility objection notes that for any set of trajectories of the

molecules of a gas, the time-reversed trajectories are also possible. This is a

straightforward consequence of assuming that the microdynamics is symmet-

ric under time-reversal. It shows that not all microstates of the gas at any

time lead to a monotonic decrease of H. The recurrence objection applies

to classical systems with bounded phase spaces. That is, to systems, such

as Boltzmann’s dilute gas, with total fixed energy. If we consider a small

open neighbourhood of the initial state, and ask, will the state of the system,

after it leaves that neighbourhood, ever return to it? Then the answer, which

makes use of Henri Poincarè’s recurrence theorem, is yes, it will, for almost

all initial phase space-points, i.e. for all except a set of Lebesgue measure

zero.

The same objections apply to the Kac ring. Its underlying dynamics are

symmetric under time-reversal, so not all microstates of the system compati-

ble with its macroscopic properties at any time lead to a monotonic decrease

of |∆(t)|. This is an instance of the reversibility objection. Moreover, because

the system is strictly periodic, no initial microstate will yield a monotonic

decrease of |∆(t)|. This is an instance of the recurrence objection.

To derive Boltzmann’s original, asymmetric, result, one needs more than

what is given by simply applying Newton’s laws of motion to molecular col-

lisions. For Boltzmann, it was the assumption that the Stoßzahlansatz holds

at all times. This is analogous to assuming that (3.9) holds at each tick when

deriving (3.11), a monotonic and temporally asymmetric result.

In the wake of concerns about Boltzmann’s H-theorem, many began to

wonder how irreversible thermodynamic behaviour could emerge from an
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underlying reversible dynamics. That is, one of the very issues that is at

the centre of philosophical discussions of statistical mechanics emerged from

worries about Boltzmann’s original attempt to account for the behaviour of

systems that begin away from equilibrium. These concerns have also influ-

enced many to regard the Second Law of thermodynamics as an approximate

statement that holds with high probability. These concerns have also influ-

enced many to endorse a weakened version of it, and to seek justification for

a revised statistical version of Boltzmann’s H-theorem, along the lines that,

for macroscopic systems, H will probably decrease to a minimum, and stay

there for long periods of time. Most physicists now endorse something like

the following statement.

Revised Second Law: Although fluctuations will occasionally

result in heat passing spontaneously from a colder body to a

warmer body, these fluctuations are inherently unpredictable and

it is impossible for there to be a process that consistently and

reliably harnesses these fluctuations to do work.

3.2 Typicality Accounts

In the years that have followed Boltzmann’s derivation of the H-theorem,

a number of authors have attempted to reconcile the existence of thermo-

dynamically irreversible behaviour with an underlying reversible dynamics.

They have offered accounts that aim at satisfying goals such as G1-4. More

directly, however, these accounts aim at explaining why isolated systems

spontaneously approach equilibrium and why they remain in equilibrium



58

for incredibly long periods of time. An interesting and important class of

these accounts have been inspired by, and build on, Boltzmann’s later at-

tempts (circa 1877) to justify the H-theorem. Each of these accounts takes

the lessons learnt from the reversibility and recurrence objections seriously.

They attempt to show that irreversible macroscopic behaviour is, in some

sense, typical, and they often try to recover a revised version of the Second

Law of thermodynamics. Intuitively speaking, something is typical if it hap-

pens in the “vast majority” of cases. Typical lottery tickets, for example,

lose. Typicality accounts usually focus on accounting for the behaviour of

Boltzmann-like gases. More often than not, though, they are thought to be

applicable to a wide variety of systems.

Standardly, authors claim that Boltzmann (1877) inspired the modern

typicality approach. Joel Lebowitz (1993a, b) and Shelly Goldstein (2001)

are often credited as having ushered in modern forms of the view.9 Typicality

views have become increasingly popular, since the appearance of their work.

This section outlines several of the most promising and influential typ-

icality accounts.10,11 It also presents and discusses a number of their most

9See also, Lebowitz (1999) and Goldstein and Lebowitz (2004). Jean Bricmont (1995)
and Roger Penrose (1989) are sometimes, but much less often, also credited with estab-
lishing modern forms of the view.

10To be fair, some of the accounts presented in this section do not trade under the
name “typicality account”. At least not by those endorsing them. Both the ergodic
view and the epsilon ergodic view fall under this category. Roman Frigg and Charlotte
Werndl, for example, have appealed to epsilon ergodicity to explain why certain systems
spontaneously approach equilibrium and why remain in equilibrium for long periods of
time. (See Frigg and Werndl 2011, and Frigg and Werndl 2012b.) Interestingly, they both
explicitly distance themselves from typicality when they articulate their view. As this
section highlights, however, both (what will be called) the ergodic view and the epsilon
ergodic view can straightforwardly be read through a typicality lens. Since these views
are subject to the same limitations standard typicality accounts face, it is both fitting and
convenient to present them as a kind of typicality account.

11A less promising and less influential typicality account that is not discussed is con-
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worrying concerns. It also discusses their most promising solutions. The

next section continues this discussion by focusing on more general, but no

less worrying, concerns with typicality accounts. It also discusses their most

promising solutions. A later section highlights the limitations of typicality

accounts. It notes, in particular, that even if we overlook the most pressing

concerns with typicality accounts, that these accounts will not have achieved

very much. Their shortfalls will be used to motivate a different line of re-

search: to encourage philosophers to consider, understand, and account for

the success of the techniques and equations physicists use to model the be-

haviour of systems that begin away from equilibrium.

3.2.1 Some Background

Consider, once again, Boltzmann’s dilute gas. It’s an isolated system, con-

sisting of n classical particles, each with three degrees of freedom, that are

confined to a container with perfectly elastic walls. The system has a fixed

total energy, E. The microstate of the system is specified by a point x, in

6n-dimensional phase space, Γ. Γ is endowed with Lebesgue measure µL.

The system is governed by Hamilton’s equations of motion, which define a

measure preserving flow φt on Γ. This means that for every measurable set

A, and every time t, µ(φ−1
t (A)) = µ(A). The system’s initial microstate at

nected to the view that systems are what Frigg (2009: p.84) calls “globally entropy in-
creasing”. For more on this view see Frigg (2009: pp.84-87), and the references therein.
Other less promising and less influential typicality accounts that are not discussed in this
thesis, or rather, accounts that could straightforwardly be offered within the typicality
framework but that will not be discussed in this thesis, include the view that relevant
systems are mixing and the view that relevant systems have an ergodic decomposition.
For work related to these views, see Frigg and Werndl (2012b: Sec.4.3). See also Sklar
(1995: pp.53-59), Bricmont (2001: p.16), and Lavis (2008: Sec.2).
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time t0, x(t0), evolves into x(t) = φtx(t0) at time t. For isolated Hamiltonian

systems, such as Boltzmann’s gas, energy is conserved. So the motion of

the system is confined to its 6n-1-dimensional energy hypersurface ΓE. The

measure µL can be restricted to ΓE, inducing an invariant measure µ on ΓE.

Thermodynamic systems, as noted in the previous chapter, are charac-

terised by a set of macrovariables: volume, temperature, pressure, etc.12

Macrostates of the system correspond with the macrovariables obtaining cer-

tain values, or with some range of values, if we take into consideration our

means of distinguishing between them.13 Each macrostate Mi, i = 1, 2, . . . ,m

(where m is finite) corresponds to a set of macro-regions ΓMi
that consist of

all x ∈ Γ that take the macrovariable values characteristic of Mi. Together,

the ΓMi
form a partition of ΓE. That is, they do not overlap but jointly

cover ΓE. Symbolically, ΓMi
∩ ΓMj

= ∅ for all i 6= j and i, j = 1, . . . ,m, and

ΓMi
∪ . . . ∪ ΓMm = ΓE.14

Mp is the initial macrostate of the system and Meq is the equilibrium

macrostate. Meq is characterised as the macrostate whose associated macrovari-

ables remain (approximately) constant in time.15 For a Boltzmann-like gas,

Meq is standardly identified as the macrostate whose temperature, pressure,

12There are typically a variety of sets one can use to characterise a thermodynamic
system. Physicists often choose sets based on the problems they’re dealing with.

13It’s standardly assumed that each macrostate compatible with the constraints placed
on the system can be characterised using macrovariables that take on well defined values,
or that are at least compatible with some well defined range of values.

14As usual, ‘∩’, ‘∪’, and ‘∅’ denote set theoretic union, intersection, and the empty set,
respectively.

15See Werndl and Frigg (2014) for an interesting discussion of the consequences of this
characterisation of equilibrium when viewed through the lens of Boltzmannian statistical
mechanics; they prove a new theorem establishing that equilibrium thus defined corre-
sponds to the largest macroregion of a system’s phase space energy hypersurface. Also,
notice the similarity of this characterisation of equilibrium with the thermodynamic char-
acterisation outlined by Brown and Uffink (2001).
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and volume remain (approximately) constant through time. Corresponding

to these macrostates are, respectively, the macro-regions ΓMp and ΓMeq .

The Boltzmann entropy of a macrostate Mi is standardly defined as

SB(Mi) =df k log[µ(ΓMi
)], where k is again Boltzmann’s constant. Since

a system is in exactly one macrostate at a time, we define the Boltzmann en-

tropy of a system at a time t, SB(t), as the entropy of the system’s macrostate

at t. That is, SB(t) =df SB(Mx(t)) where x(t) is the system’s microstate at t

and Mx(t) is its corresponding macrostate.

Typicality views attempt to account for why systems beginning in Mp end

up in Meq, and why they remain in Meq for incredibly long periods of time.

They also attempt to show that SB(t) generally increases to its maximum

value as the system evolves from Mp to Meq and that it remains (approxi-

mately) at this value for incredibly long periods of time. The later is done

so as to claim that SB(t) is the microphysical analogue of thermodynamic

entropy.

3.2.2 The Dominance View

One kind of typicality account, which we’ll call the dominance view, at-

tempts to account for the approach to equilibrium and an associated en-

tropy increase by arguing for them on the basis of a technical result that

applies to Boltzmann-like gases known as the “dominance of the equilibrium

macrostate”.

The first ingredient in the account is an interpretation of the measure over

microstates on ΓE—standardly taken to be Lebesgue measure—as a typical-

ity measure. Typicality measures represent the relative size of sets of states.
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They are usually understood to be a kind of normalised measure. Typical

states show a certain property if the measure of the set that corresponds to

this property is one or close to one. What it means to be a typicality measure

is one of the pressing general concerns that will be discussed in a later section.

The second, closely related ingredient is the idea that Lebesgue measure is

a good (perhaps, the appropriate) measure of what’s typical. That is, that

it’s a good typicality measure. Justifying why Lebesgue measure is a good

choice of typicality measure is another pressing general concern that will be

discussed in a later section.

The next ingredient is the recognition that under certain circumstances,

and for Boltzmann-like gases, Meq is the largest of all Mi.
16 In fact, for

large n, Meq is enormously larger than any other region.17 For example, the

ratio µ(Meq)/µ(Mi) is of the magnitude of 10n, where Mi is a nonequilibrium

macrostate of an ordinarily prepared system.18

Since, for large n, ΓE is almost entirely taken up by equilibrium mi-

crostates, the dominance of the equilibrium macrostate is often taken to im-

ply that equilibrium microstates are typical with respect to ΓE and Lebesgue

measure µ.19 Some authors claim that its dominance explains why systems

exhibit the following qualitative facts: that isolated macroscopic systems that

begin away from equilibrium spontaneously approach equilibrium and that

16See Frigg (2011: pp.89-90) and Uffink (2007: pp.974-983) for a discussion of the cir-
cumstances in which this result holds. See Werndl and Frigg (2015) for an argument that
attempts to generalise this result.

17See Ehrenfest and Ehrenfest (2002: p.30).
18See Frigg (2011: p.80), Goldstein (2001: p.43), and Penrose (1989: p.403).
19See, for example, Frigg (2011: p.81), Bricmont (2001: p.146), Goldstein (2001: p.43),

and Zangh̀ı (2005: p.191 & p.196).
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Meq 

Figure 3.2: The dominance of the equilibrium macrostate on the energy
hypersurface.

they stay there for incredibly long periods of time.20 Some authors also claim

that its dominance explains why thermodynamic entropy generally increases.

Naturally, this account is seen by some as a way of fulfilling goals such as

G1-4 without introducing a time-reversal non-invariant element.

Frigg (2011: p.81) claims that such a view may be read into the following

passage:21

. . . reaching the equilibrium distribution in the course of the tem-

20See Frigg (2011: Sec.4.3) for a list of authors that endorse this kind of view.
21Frigg (2011: p.81) also claims that the dominance view may be read into the following

passage by Goldstein, but this quote is taken from an article that is standardly thought
to endorse what the next subsection labels “the unspecified dynamical view”.

Suppose a system, e.g. a gas in a box, is in a state of low entropy at some
time. Why should its entropy tend to be larger at a later time? The rea-
son is basically that states of large entropy correspond to regions in phase
space of enormously greater volume than those of lower entropy. (Goldstein
2001: p.49)
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poral evolution of a system is inevitable due to the fact that the

overwhelming majority of microstates in the phase space have

this distribution; a fact often not understood by the critics of

Boltzmann. . . (Zangh̀ı 2005: p.196; Frigg’s translation)

The view can also be found in Price (1996: pp.39-40).

Thus it seems to me that the problem of explaining why entropy

increases has been vastly overrated. The statistical considerations

suggest that a future in which entropy reaches its maximum is

not in need of explanation; and yet that future, taken together

with the low-entropy past, accounts for the general gradient.

The most troubling concern for the dominance view is its lack of a con-

nection to the dynamics.22 Nothing that has been said so far guarantees,

or even makes it likely, that the microstates of systems prepared into some

nonequilibrium macrostate evolve into states that constitute the equilibrium

macrostate. It also doesn’t follow from the view presented above that systems

whose microstates do evolve into the equilibrium macrostate remain in it for

even short periods of time. Or even that states that begin in equilibrium stay

there! The idea that systems remain in states away from equilibrium is per-

fectly consistent with the idea that equilibrium microstates are typical. So

too is the idea that they fluctuate wildly in and out of equilibrium. The ques-

tion then of what kinds of dynamical considerations need to be added to the

view, along with any restrictions that need to be placed on the kinds of initial

microstates we allow—on the basis of available preparation procedures—so

22Other concerns are discussed in Frigg (2009) and Frigg (2011). See also Uffink (2014).
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that it can underpin the sought after qualitative facts, and satisfy goals such

as G1-4, leads us onto discussing other typicality accounts.

3.2.3 The Unspecified Dynamical View

Aware of concerns with the dominance view—including, most troublingly,

the concern mentioned above, that measure theoretic considerations cannot,

on their own, tell us anything about the behaviour of systems that begin

away from equilibrium—many supporters of typicality incorporate into their

view some claim about a system’s dynamics and initial state.23 Standardly,

they claim that given any reasonable account of the dynamics, typical initial

microstates are taken by the dynamics into the equilibrium macrostate and

that they remain there for incredibly long periods of time. Let’s call this the

unspecified dynamical view. The classic and often cited expression of this

view is found in Goldstein (2001: pp.43-44):

[ΓE] consists almost entirely of phase points in the equilibrium

macrostate [Meq], with ridiculously few exceptions whose total-

ity has volume of order 10−1020 relative to that of [ΓE]. For a

non-equilibrium phase point [x] of energy E, the Hamiltonian dy-

namics governing the motion [x(t)] would have to be ridiculously

special to avoid reasonably quickly carrying [x(t)] into [Meq] and

keeping it there for an extremely long time—unless, of course, [x]

itself were ridiculously special.24

23For a list and discussion of other concerns, see Frigg (2009) and Frigg (2011). See also
Uffink (2014).

24This quote has been modified to be consistent with the formalism that has already
been introduced. Its content has not been altered.
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The unspecified dynamical view is, at present, the most promising and

influential kind of typicality view. One of its ingredients is, like before, an in-

terpretation of the measure over microstates on ΓE as a typicality measure.

Another is that it’s a good choice of typicality measure. But here, unlike

the dominance view, which treats the relevant typicality property as being

a microstate that corresponds to the equilibrium macrostate, the relevant

property is (or is something close to) being a microstate that has been pre-

pared in an ordinary way, that evolves under the dynamics into a microstate

that corresponds to the equilibrium macrostate (if it wasn’t already in that

macrostate), and that remains in the equilibrium macrostate for long periods

of time.

When supporters of this kind of view discuss the dynamics of relevant

systems, it’s common for them to write very general and often noncommittal

things. The description offered above by Goldstein is a good example. Here’s

another example, offered by Frigg (2008b: p.114):25

If we now assume that the system’s state drifts around more or

less “randomly” on [ΓE] then, because [Meq] is vastly larger than

any other macro region, sooner or later the system will reach

equilibrium and stay there for at least a very long time.

As Frigg (2008b: p.114) rightly notes, the qualification “more or less ran-

domly” is essential. If its motion were just right, then it could avoid ever

wandering into the equilibrium macrostate. Or else, it could, among other

things, wander in and out of this state in a very erratic fashion, thereby

giving rise to a kind of anti-thermodynamic behaviour.

25See Lazarovici and Reichert (2014: p.7), also.



67

While some are dissatisfied by these descriptions, and think that a more

detailed account of the dynamics is necessary, supporters of this view often

see the generality of their position as both reasonable and virtuous.26 Their

point is often that there are many different dynamical properties a system

could possess that each have the consequence that thermodynamic behaviour

is typical, given the dominance of the equilibrium macrostate. And that the

dynamics would need to be very precise indeed to avoid this consequence,

since we’re unable to prepare systems into states that would otherwise yield

anti-thermodynamic behaviour.

Those unsatisfied with the unspecified dynamical view often try to supple-

ment it by claiming that relevant systems possess some dynamical property

found on the ergodic hierarchy.27 Properties standardly appealed to include:

ergodicity and epsilon-ergodicity.28

26Uffink (2007), Frigg (2009), Frigg (2011), Frigg and Werndl (2011), and Uffink (2014)
express dissatisfaction at the manner in which generality is obtained by this view. Frigg
and Werndl (2012b: p.101), for example, say:

Just saying the relevant Hamiltonians possess the dynamical property of TD-
likeness has no explanatory power—it would be a pseudo-explanation of the
vis dormitiva variety. The challenge is to identify in a non-question begging
way a dynamical property (or, indeed, properties) that those Hamiltonians
whose flow is TD-like have.

Lazarovici and Reichert (2014: p.31-34), for example, see the generality of the position as
both reasonable and virtuous.

27See Frigg, Berkovitz, and Kronz (2014) and Berkovitz, Frigg, and Kronz (2006) for
more on the ergodic hierarchy.

28Some authors appeal to some form of mixing, but very few, if any, claim that relevant
systems are K-systems or Bernoulli.
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3.2.4 The Ergodic View

While no one contributing to the contemporary discussion appears to endorse

what we’ll call the ergodic view, it both frequently appears in contemporary

discussions and is regarded by many to capture a position carved out by

some of the ideas Boltzmann expressed in his later writings on statistical

mechanics. Understanding this view makes it easier to understand a closely

related view that is taken seriously, so it’s worth discussing here.

Boltzmann conjectured that

The great irregularity of the thermal motion and the multitude

of forces that act on a body make it probable that its atoms,

due to the motion that we call heat, traverse all positions and

velocities which are compatible with the principle of [conservation

of] energy. (Quoted in Uffink (2007: p.40))

This has come to be known as the ergodic hypothesis. As stated, it cannot

be correct, as the trajectory is a one-dimensional continuous curve and so

cannot fill a space of more than one dimension. But it can be true that

almost all trajectories eventually enter every open neighbourhood of every

point on the energy surface.29

A dynamical system 〈Γ,S, µ, φt〉 with a measure preserving evolution (i.e.

for every measurable set A, and every time t, µ(φ−1
t (A)) = µ(A)) is said to

29Boltzmann argued, on the basis of the ergodic hypothesis, that the long-run fraction of
time that a system spends in a given subset of the energy surface is given by the measure
that Josiah Gibbs was to call microcanonical. See Uffink (2007: Sec.4.1 & Sec.6.1-6.2)
for a good discussion of ergodic theory and Boltzmann’s ergodic hypothesis. For a classic
discussion of Boltzmann’s hypothesis see Ehrenfest and Ehrenfest (2002).
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be ergodic if and only if, for any set A, such that µ(A) > 0, the set of initial

points that never enters A has zero measure.30

An important part of the ergodic view is the following two-part result

established by George David Birkhoff (1931a,b).31

For any measure-preserving dynamical system,

1. For any A ∈ S, and where

χA(x) =

 1, if x ∈ A

0, if x /∈ A,
(3.12)

the limit

〈A, x0〉time = lim
T→∞

1

T

∫ T

0

χA(Tt(x0))dt (3.13)

exists for almost all points x0. That is, except for a set of measure zero.

2. If the dynamical system is ergodic, then

〈A, x0〉time = µ(A) (3.14)

for all A ∈ S and almost all x0 ∈ Γ.

The first part of the theorem says that it makes sense to talk about the

long-run fraction of time the system spends in A. Or rather, it makes sense

to talk about it for almost all initial microstates. The second part says that

the long-run fraction of time the system spends in A is equal to the phase

space volume of A—where we ignore those sets whose limit does not exist.

Again, noting the dominance of the equilibrium macrostate, it follows

30As usual, S is a σ-algebra on Γ.
31It should be noted that this result is appropriated by supporters of typicality. There

is no indication that Birkhoff was or would be a supporter of typicality.
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that almost all initial conditions lie on solutions that spend most of the time

in equilibrium and only show relatively short fluctuations away from it.

If we add to this result the assumption (or can show that) relevant sys-

tems are ergodic, and if we again interpret the measure on ΓE as a typicality

measure, and hold that it’s a good measure of what’s typical, then it follows,

given ordinary preparation procedures, that typical initial states approach

equilibrium, and that they remain in equilibrium for incredibly long peri-

ods of time. Again, just like the views that have come before, this view

could be seen as a way of fulfilling goals such as G1-4 without introducing

a temporally asymmetric element.

Standardly, this view is thought to be troubled by two problems.32 First,

it turns out to be extremely difficult to prove that anything that closely re-

sembles a realistic system is ergodic. As Frigg (2008b: p.124) notes, not even

a system of n elastic hard balls moving in a cubic box with hard reflecting

walls has been proven to be ergodic for arbitrary n. In fact, it has only

been proven in cases where n ≤ 4. What’s more, there are dynamical sys-

tems that exhibit thermodynamic behaviour that are provably not ergodic.

Jean Bricmont (2001), for example, highlights that the Kac ring model and

a system of n uncoupled anharmonic oscillators of identical mass exhibit

thermodynamic behaviour and that both are provably not ergodic. Other

well behaved, non-ergodic systems include: solids, and systems comprised of

non-interacting point particles.33 Examples such as these have led many to

32For discussions of these and other related problems, see Friedman (1976), Sklar
(1995: Ch.5), Earman and Rédei (1996), van Lith (2001), Emch and Liu (2002: Ch.7-
9), Uffink (2007: Sec.6.1), and Frigg (2008b: Sec.3.2.4.3).

33See Uffink (1996: p.381) and Uffink (2007: p.1017). In a solid, say an ice cube, the
molecules are tightly locked to their lattice site, and the phase point can access only a
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think that ergodicity does not provide a satisfactory explanation of why iso-

lated systems spontaneously approach equilibrium and why they stay there

for long periods of time.34 The second worry standardly thought to trouble

the ergodic view is known as the “measure zero” problem. While, properly

speaking, the problem is usually levelled at a view closely related to what

we’re calling the ergodic view, in which the measure on ΓE is simply regarded

as a probability measure—whose probabilities require interpretation—rather

than as a typicality measure, it, in this context, effectively amounts to a

request to justify why we can neglect atypical microstates. Since Birkhoff’s

results apply to all but a set of states with measure zero, one would like to

have reason to neglect them. That is, one would like to have reason to treat

them as atypical states. The mere fact that the measure labels them as such

does not provide the justification that’s needed; sets that have measure zero

according to some measures have finite measure according to others. So, the

concern goes, what singles out this measure (or an equivalence class of mea-

sures) as the one to use to determine which sets are negligible? Since this is

really just an instance of a general worry that will be discussed later, further

discussion of it will be left till then.

minute region of the energy hypersurface.
34See, for example, Earman and Rédei (1996) and van Lith (2001). In fact, some—

often those who endorse something close to the unspecified dynamical view—take an even
stronger position on the ergodic enterprise. David Albert (2000: p.70), for example, thinks
that

. . . the prodigious effort that has over the years been poured into rigorous
proofs of ergodicity is nothing more nor less—from the standpoint of the
foundations of statistical mechanics—than a waste of time.
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3.2.5 The Epsilon Ergodic View

There is a view, or rather, an interpretation of a view, endorsed by some of

the discussions leading contributors, that’s closely related to the ergodic view.

It will be called the epsilon ergodic view. See Frigg and Werndl (2011, 2012a,

& 2012b).35 Unlike earlier views, this view restricts itself to accounting for

the behaviour of realistic gases. Its advocates do not claim to be offering

an account that speaks to the behaviour of macroscopic systems, generally.

The view is primarily aimed at overcoming the first of the worries standardly

levelled at the ergodic view. Its supporters hope to show that an impor-

tant class of realistic systems are epsilon ergodic, and that this dynamical

property, in conjunction with many of the ideas that have been introduced

previously, accounts for why they spontaneously approach equilibrium, and

why they spend large amounts of time in equilibrium.

To introduce epsilon ergodicity, it’s helpful to begin, as Frigg and Werndl

(2012b: p.104) do, by first defining ε-ergodicity—a distinct but related no-

tion. A dynamical system 〈ΓE, µE, φt〉 is ε-ergodic, where ε ∈ R and 0 ≤ ε <

1, if and only if there is a set Z ⊂ ΓE, with µ(Z) = ε, and with φt(Γ̂E) ⊆ Γ̂E

for all t ∈ R, where Γ̂E =df ΓE \ Z, such that the system 〈Γ̂E, µΓ̂E
, φΓ̂E

t 〉 is

ergodic, where µΓ̂E
(·) =df µE(·)/µE(Γ̂E) for any measurable set in Γ̂E and

where φΓ̂E
t is φt restricted to Γ̂E. Naturally, a 0-ergodic system is simply an

ergodic system. We say that a dynamical system is epsilon ergodic if and

only if there exists a very small ε (i.e. ε << 1) for which the system is

35While Frigg and Werndl explicitly distance themselves from typicality in their 2011
paper and again in their 2012b chapter, and regard themselves as offering a competing
account, their work can be straightforwardly read through a typicality lens. What’s more,
given their later work (see Frigg and Werndl 2012a, and Werndl 2013), it’s reasonable to
think that they would permit such a reading.
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ε-ergodic.36

Since an epsilon ergodic system is ergodic on ΓE \ Z, the set of initial

states that lie in ΓE \Z spend most of the time in equilibrium and only show

relatively short fluctuations away from it. If ε is very small in comparison

to µE(ΓMP
), then almost all initial microstates spend most of the time in

equilibrium and only show relatively short fluctuations away from it. Here,

“almost all” has been weakened to include all initial states except ones that

form a set of measure ε. If this measure is understood as a typicality measure,

then it follows that typical initial states exhibit thermodynamic behaviour.

Once again, this has been achieved without introducing a temporally asym-

metric element. So the result can be seen as a way of satisfying goals such

as G1-4.

Supporters of the epsilon ergodic view claim that the kinds of systems

usually called upon to show that ergodicity does not provide a sufficient

explanation for why isolated macroscopic systems spontaneously approach

equilibrium and why they remain in equilibrium for incredibly long periods

of time cuts no ice in this context. As Frigg and Werndl (2012b: p.107) argue,

Clearly, solids are not gases and hence can be set aside. Similarly,

uncoupled harmonic oscillators and the Kac ring model are irrel-

evant because they seem to have nothing to do with gases. The

properties of ideal gases are very different from the properties of

real gases because there are no collisions in ideal gases and colli-

sions are essential to the behaviour of gases. So while ideal gases

36Peter Vranas (1998) first introduced the concept of epsilon ergodicity to the founda-
tions of statistical mechanics, but he put it to a different use.
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may be expedient in certain context, no conclusion about the

dynamics of real gases should be drawn from them. Hence, the

well-rehearsed examples do not establish that there is a gas-like

system which behaves TD-like while failing to be ergodic.37

What’s more, they often cite a small collection of rigorous results along

with some numerical studies to support the idea that real gases are, in fact,

epsilon ergodic.38

3.3 Some General Concerns About

Typicality Accounts

This section discusses three worries commonly thought to trouble the typi-

cality accounts presented above. It also discusses, where possible, their most

promising solutions. Two of these worries were flagged earlier. The first

worry concerns interpreting Lebesgue measure as a typicality measure. The

second worry grants that it’s a typicality measure and asks, why should we

think it’s a good measure of what’s typical? The third worry concerns ex-

tending the results gained from the study of Boltzmann-like gases to other

37This conclusion is a bit odd. The conclusion Frigg and Werndl have in fact argued
for is more narrow: that the well-rehearsed examples do not establish that there is a real
gas system which behaves TD-like while failing to be ergodic. Their conclusion seems to
rely on a pretty dim view of idealised models and toy models. The Kac ring, for example,
is thought to share salient features with real gases. In fact, it’s often called on, as it was
in Section 3.2.1, to highlight certain things about real gases because it has these features.
And yet, Frigg and Werndl’s remarks imply that it’s not gas-like!

38See, for example, Frigg and Werndl (2011: Sec.7), Frigg and Werndl (2012b: Sec.7.6),
and Frigg and Werndl (2012a: Sec.6).



75

macroscopic systems.39

3.3.1 Typicality Measures

All of the typicality accounts presented above trade on the assumption that

Lebesgue measure can be interpreted as a typicality measure. One might

wonder: what justifies interpreting this measure as a typicality measure?

A promising answer to this question has recently been offered by Charlotte

Werndl (2013).40 Werndl offers a set of conditions that measures ought to

satisfy so as to count as typicality measures and argues that these conditions

are satisfied by Lebesgue measure. This set builds on conditions that are

often implicitly, but sometimes explicitly, endorsed in the literature.

As mentioned earlier, a typicality measure represents the relative size of

sets of states. Any function T that describes the size of sets of states should

satisfy the standard axioms of a measure. That is, T (∅) = 0, T (A) ≥ 0 for

any measurable set A, and T (
⋃
i∈NAi) =

∑
i∈N T (Ai) whenever Ai ∩ Aj = ∅

for all i, j, i 6= j. Since typicality measures are thought to represent the

relative size of sets of states, they are usually normalised, i.e., T (ΓE) = 1.

It was also mentioned earlier that typical states show a certain property if

the measure of the set that corresponds to this property is one or close to

one. Formally, typical states of ΓE have property P relative to a typicality

measure T if and only if T (ΓE \ D) ≤ β, where D ⊆ ΓE consists of all of

the states in ΓE that have property P and β is a very small real number,

39For a different discussion of these concerns, and other general concerns, see Frigg
(2011: Sec.4.4). See Lazarovici and Reichert (2014: Sec.5) for a reply to the concerns
raised by Frigg, and others.

40Pitowsky (2012) also attempts to justify typicality measures. See Werndl (2013: Sec.6)
for a critique of this attempt.
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possibly 0. D is called the typical set and ΓE \D is called the atypical set.

We’ll look at the conditions Werndl suggests for the case in which a typical

state possesses some property that it shares with a collection of states that

together form a set of measure one.41

The first condition Werndl (2013: p.474) notes is that the measure has

to be invariant under the dynamics. What’s typical at some time has to be

typical at both earlier and later times. Call this condition C1. This condition

is standardly endorsed by supporters of typicality.

C1. Typicality measures are invariant under the dynamics.

Since we’re unable to prepare systems into particular microstates, it’s

common to place a probability distribution (or class of distributions) over

the set of microstates compatible with our preparation procedures. Such a

distribution gives the probability that a system has been prepared in some

microstate. Werndl (2013: p.474) assumes that these probability distribu-

tions, p, are translation-continuous. That is,

lim
‖τ‖→0

p(Tr(A, τ)) = p(A) for all open sets A, (3.15)

where ‖τ‖ is the standard Euclidean norm in Rn and Tr(A, τ) is the set

A translated by τ . That is,

Tr(A, τ) = Γ ∩ {x+ τ |x ∈ A}. (3.16)

41See Werndl (2013: Sec.8) for a set of conditions that are relevant for a more liberal
kind of typicality measure; where typical states possess some property that they share
with a collection of states that together form a set of measure close to one.
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We’ll return to this assumption later. Next, Werndl (2013: p.475) assumes

that there is a class P of initial probability distributions of interest, which

she characterises as,

Distributions of Interest: The initial probability distributions

of interest are a class P of translation-continuous probability dis-

tributions where for every open set A there is a p ∈ P which

p(A) > 0.

The second part of this characterisation intends to capture the possibility

that, for any arbitrary open region of phase space, we cannot exclude the

possibility that there might be some way of preparing the system such that

there is a positive probability that it ends up in this region. While this

assumption does not impose a condition that a measure has to satisfy in

order to count, by Werndl’s lights, as a typicality measure, it does place a

restriction on the kinds of distributions with which these conditions have to

be satisfied.

The next two conditions are motivated by the idea that typicality mea-

sures should be related to initial probability distributions of interest. They

are:

C2. If p(A) = 0 for all probability distributions of interest for

some measurable A, then T (A)=0.

And,

C3. If T (A)=1 for some measurable A, then p(A) = 1 for all

probability distributions of interest.
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C2 is the requirement that if a set of states has probability zero for all

initial probability distributions of interest, the set is atypical. C3 is the

requirement that whenever a set of states is typical, it has probability one

for all initial probability distributions of interest.

Werndl (2013: p.475) claims that a measure is a typicality measure when-

ever it satisfies conditions C1-3, for probability distributions characterised

as ones of interest. Werndl then argues that Lebesgue measure satisfies these

conditions, and so concludes that it can be interpreted as a typicality mea-

sure.42

While it may appear that the above considerations only provide us with

the resources to argue for the permissibility of interpreting Lebesgue measure

as a typicality measure, they, in fact, also provide us with the resources

to argue that it provides a good account of what’s typical. This is good

news because one might have worried first, that these measures were not

appropriately connected to experience, and so do not capture what’s typical

of actual systems, and second, that there are measures that can be placed on

ΓE that conflict with what’s typical according to Lebesgue measure.

The first of these worries is remedied by the connection of measures to

probability distributions of interest. They are related to our means of prepa-

ration of systems, and the rationale for assuming that they are translation-

continuous has to do with feasible preparation procedures—as we’ll see in a

moment. The second concern is avoided because of a result due to Malament

and Zabell (1980). Malament and Zabell have shown that a probability mea-

sure p is translation-continuous if and only if p is absolutely continuous with

42See Werndl (2013: Appendix A) for the details of this argument.
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respect to the Lebesgue measure (p � µ), where µ2 is said to be absolutely

continuous with respect to µ1 if and only if

if µ1(A) = 0 for a measurable set A, then µ2(A) = 0 (3.17)

for any two measures µ1 and µ2 defined on 〈Γ,S〉.

So then, the success of Werndl’s proposal effectively boils down to the

plausibility of her characterisation of probability distributions of interest,

and, relatedly, the assumption that initial probability distributions of interest

are translation-continuous. Regarding the later condition, Werndl cites the

motivation Malament and Zabell (1980) offer in support of this assumption.

They write:

Given two measurable sets on the constant energy surface, if one

is but a small displacement of the other, then it seems plausible

to believe that the probability of finding the exact microstate of

the system in one set should be close to that of finding it in the

other. (Malament and Zabell 1980: p. 346)

Unfortunately, this rationale does not uniquely support translation-continuity.

In the definition of translation-continuity, the perturbations of the set A are

ones such that every point of A undergoes the same displacement. But this

does not seem essential to the rationale offered by Malament and Zabell, and

it seems that the rationale should hold equally well for other transformations

of our measure space, whether or not each point gets the same displacement,

as long as the displacements are small. With this in mind, consider the

stronger condition of displacement-continuity, which we’ll define as follows.
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A measure υ is displacement-continuous if and only if, for every

measurable set A, for any ε > 0, there exists δ > 0 such that

|υ(H(A))− υ(A)| < ε for all homeomorphisms H of the measure

space such that ‖H(x)− x‖ < 0 for all x.

This seems to be an intuitively reasonable condition to place on our prob-

ability measures. Unfortunately, it’s not satisfied by Lebesgue measure, and,

indeed, not satisfiable!43

While Malamant and Zabell’s remarks do not quite have the consequence

that’s needed, if one could motivate, on the basis of physical considera-

tions, translation-continuity, or some other continuity condition that’s equiv-

alent to being absolutely continuous with respect to Lebesgue measure, then

something that resembles the reasoning Werndl employs seems likely to go

through.

3.3.2 Extending Typicality Results

Typicality accounts attempt to extend results that apply to Boltzmann-like

gases to other macroscopic systems. Their success depends on the plausibility

of their extension. Notably, these accounts assume that relevant systems have

energy hypersurfaces that are dominated, like a Boltzmann-like gas, by their

respective equilibrium macrostate. They also assume that the microstates

that constitute the equilibrium macrostate are, like a Boltzmann-like gas,

typical. Both of these assumptions are dubious.

First, as Frigg (2011: p.89) notes, despite it often being stated as if it were

43See Luczak and Myrvold (unpublished) for more on this point, and for a discussion of
translation-continuity, its rationale, and other continuity conditions.
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a general truism, the result that the equilibrium macrostate dominates a sys-

tem’s energy hypersurface has only been proven for an ideal gas. That is, for

a system of non-interacting particles. What’s more, as Uffink (2007: p.976)

explains, it’s central to the proof that we’re dealing with an ideal gas. Since

most systems are not ideal gases, not even approximately, one may worry

about using this assumption to account for their behaviour. Moreover, as

Frigg (2011: p.90) also notes, it seems likely that this assumption is false, at

least for some thermodynamically well-behaved systems.44

Second, even if we grant that systems have energy hypersurfaces that

are dominated by their respective equilibrium macrostate, it doesn’t follow

that the measure of this set is one or close to one. In fact, it’s possible

that there are systems with distinct nonequilibrium macrostates that share

the same Boltzmann entropy value whose union has a measure greater than

the equilibrium macrostate. David Lavis has shown that this possibility is

realised by the Baker’s gas (a gas whose particles move according to the

Baker’s transformation) and the Kac ring model.45

Of course, most supporters of typicality are under no illusions about the

results they actually possess or about the ones they don’t. They are also not

under any illusions about what they can logically infer about the behaviour

of other systems on the basis of the results they actually possess. These

claims are especially true of those who support the unspecified dynamical

view. Many supporters of typicality seem to think of themselves as offering

arguments that are of heuristic value. They see themselves as offering a

44See also Callender (2010).
45See Lavis (2005: pp.255-258) for a more detailed description of the Baker’s gas and

the relevant result, and see Lavis (2008: Sec.2) for the Kac ring model result.
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general framework that highlights the form rigorous results would likely take.

Because of this, supporters are usually untroubled by these concerns. They

are also unmoved by those who demand more rigorous results; they often see

them as unnecessary.

3.4 The Limitations of Typicality Accounts

Suppose for the moment that we can treat Lebesgue measure as the appro-

priate and unique measure of typicality. Suppose also that every isolated

thermodynamic system has an energy hypersurface that is dominated by its

equilibrium macrostate. Or even just that many of the systems we’re inter-

ested in have this feature. Suppose further that this state has measure one

(or is close to one) and that the set of microstates that evolve under the

dynamics of the system that spend incredibly long periods of time in the

equilibrium macrostate also has measure one (or is close to one). Suppose

that by ordinary preparation procedures systems are placed into one of these

microstates with high probability. That is, with probability one or with a

probability close to one. And suppose that every isolated thermodynamic

system can be shown either to be ergodic or epsilon ergodic. Or even just

that many of the systems we’re interested in can. An aim of this section is

to highlight that typicality accounts have severe limitations, even if we grant

all of these things.

Typicality accounts do not provide us with the resources to answer im-

portant questions such as: what will this system do in the next five minutes?

Ten minutes? Hour? Year? What states will it pass through on its way to
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equilibrium? If it reaches equilibrium, how long will it stay there before it

moves out of equilibrium? How likely is it that we’ll see the system fluctuate

out of equilibrium in the next few minutes? If it does, how large a fluctuation

should we expect? Etc. They do not underpin facts about the rates in which

systems approach equilibrium, or about the kinds of states they pass through

on their way to equilibrium, or about fluctuation phenomena. Interestingly,

it’s typically these other quantitative facts, and not the qualitative ones the

literature has focused on, that we care about most. Moreover, none of these

views help us form expectations about any of these quantitative facts or help

us justify the expectations we may already have about the behaviour of sys-

tems that begin away from equilibrium, having formed them on the basis

of experience. They also do not underpin quantitative relations such as the

fluctuation-dissipation theorem (see Sec.4.1).

Each view fails to underpin these facts, and fails to answer these questions,

for the same reason: they do not incorporate enough dynamical information.

The dominance view is unable to underpin these facts and answer these

questions because it does not incorporate any dynamical information. We

have no way of accounting for what a system will do without some account

of its dynamics. The unspecified dynamical view is unable to underpin these

facts, and answer these questions, because it, as its name suggests, leaves

a system’s dynamics, for the most part, unspecified. And both the ergodic

and epsilon ergodic views fail because they are tied to dynamical properties

that only hold in the long term time limit. Consequently, neither of these

properties can be used to validly conclude anything about a system’s state
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at a particular time, or about its behaviour over finite time intervals.46

Of course, none of this should come as much of a surprise once we re-

member what typicality accounts hope to achieve. These accounts attempt

to show, in a way that satisfies goals such as G1-4, that isolated macroscopic

systems that begin away from equilibrium spontaneously approach equilib-

rium and that they remain in equilibrium for incredibly long periods of time.

Importantly, none of these goals makes any reference to the rates in which

systems approach equilibrium, or about the states they pass through on their

way to equilibrium, or about fluctuation phenomena. And why would they?

Not only would this undermine the generality of these claims, which is surely

one of their virtues, but it would also betray the macroscopic theory they’re

intended to be compatible with: thermodynamics. That is, a theory that

does not speak to any of these things. In fact, a theory no less, that despite

it’s somewhat misleading name, does not contain any dynamics.

In light of all of these shortfalls, it seems natural to turn some of our atten-

tion towards understanding and accounting for the success of the techniques

physicists use to model the behaviour of systems that begin away from equi-

librium. These techniques lead to equations that track a large and important

set of facts that concern a system’s behaviour. These equations also answer

the kinds of questions we’re often most interested in. Understanding and ac-

counting for the success of these techniques and equations would provide us

with an underpinning of a large and important set of quantitative facts that

typicality accounts cannot. Accounting for their success would also provide

46In fact, these criticisms also apply to views which hold that relevant systems are
mixing. Some of these criticisms, however, do not apply to views which hold that relevant
systems are K-systems or Bernoulli. Again, for more on the ergodic hierarchy, see Berkovitz
et al. (2006) and Frigg et al. (2014).
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us with an underpinning, albeit a mosaic one, of the general qualitative facts

that are presently at the centre of foundational discussions. Here’s another

way of making these points. While there are certain qualitative facts we want

to understand about the behaviour of systems that begin away from equi-

librium, we also want to understand an associated set of quantitative facts,

and an account of how systems approach equilibrium quantitatively will a

fortiori tell us that they approach equilibrium and remain in equilibrium for

incredibly long periods of time.

What’s more, as an added bonus, this alternative line of research is more

in line with actual scientific practise. It’s worth noting that when physicists

model the behaviour of systems that begin away from equilibrium, they are

typically not, at the same time, attempting to satisfy goals such as the ones

that drive typicality accounts. While they are sensitive to the tension be-

tween the existence of irreversible macroscopic behaviour and an underlying

reversible dynamics, and while they are concerned about getting their models

to agree with experience, they are not concerned about expressing themselves

in ways that would underpin very general facts that concern the behaviour

of a wide variety of macroscopic systems. They are happy for their models,

which incorporate more specific dynamical information than the typicality

accounts presented above, to simply describe and predict the behaviour of

particular systems, or to describe and predict the behaviour of particular

classes of systems.
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3.5 Summary

This chapter outlined and examined a collection of typicality accounts. These

accounts aim at explaining why isolated macroscopic systems spontaneously

approach equilibrium and why they remain in equilibrium for incredibly long

periods of time. They attempt to underpin these qualitative facts and satisfy

goals such as G1-4, thereby reconciling the existence of irreversible macro-

scopic processes with underlying reversible dynamics.

This chapter began by discussing Boltzmann’s H-theorem—which can

be seen as the first serious attempt to account for the behaviour of sys-

tems that begin away from equilibrium—and highlighted that it gives rise

to one of the very issues that is at the centre of contemporary philosophical

discussions of statistical mechanics: reconciling the existence of irreversible

macroscopic processes with underlying reversible dynamics. It then outlined

and discussed several typicality accounts. As was noted, these accounts are

inspired by, and build on, one of Boltzmann’s attempts to resolve the issues

that were sparked by his original derivation of the H-theorem. This chap-

ter considered some of the most pressing problems facing typicality accounts

and, where possible, discussed their most promising solutions. It then ex-

plained that these accounts have severe limitations, even when we ignore the

usual concerns. This chapter highlighted that they do not underpin a large

and important set of facts that concern the behaviour of systems that begin

away from equilibrium. This chapter suggested that this was a consequence

of what they aim at: underpinning two very general qualitative facts, while

satisfying goals such as G1-4. While typicality accounts may underpin some

important aspects of thermodynamics, they do not underpin many of the im-
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portant quantitative facts that concern the behaviour of systems that begin

away from equilibrium. They are also of no help when it comes to forming

expectations about the rates in which systems equilibrate, or about the kinds

of states they pass through on their way to equilibrium, or about fluctuation

phenomena.

To remedy these shortfalls, this chapter ended by suggesting that we

pursue an alternative line of research. That we attempt to understand and

ground the success of the techniques and equations physicists commonly use

to model the behaviour of systems that begin away from equilibrium. This

line of research, if successful, has the potential to underpin not just some

important qualitative facts but also a large set of important quantitative

facts.
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Chapter 4

Another Way to Approach the

Approach to Equilibrium

The previous chapter ended by highlighting the limitations of typicality ac-

counts. To remedy this shortfall, it promoted pursuing a different line of

research. That we attempt to understand and account for the success of the

techniques and equations physicists use to model the behaviour of systems

that begin away from equilibrium. The previous chapter indicated that by

understanding and grounding their success, we will not only be able to un-

derpin the qualitative facts the literature has focused on but we will also be

able to underpin many of the important quantitative facts that typicality

accounts cannot.

This chapter takes steps in this promising direction. It outlines and ex-

amines a technique commonly used to model the behaviour of an important

kind of system. More accurately, this chapter outlines and examines a tech-

nique commonly used to model the approach to equilibrium, and subsequent
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behaviour, of a system in which a Brownian particle is introduced to an

isolated homogeneous fluid at equilibrium. As this chapter highlights, the

technique generates a collection of quantitatively accurate equations that

track important aspects of the system’s behaviour. This chapter also at-

tempts to account for the success of the model, by identifying and grounding

the technique’s key assumptions.

This chapter is composed of four sections. The first section outlines a way

of modelling the Brownian particle’s approach to equilibrium and subsequent

behaviour. As one might have expected, the approach takes its cue from the

theory of Brownian motion. It appeals to Langevin dynamics. The aim of

this section is to present the technique in a manner that reflects the way

physicists standardly model this kind of system.1 As this section highlights,

the approach generates a collection of interesting equations that track aspects

of the particle’s behaviour. These equations provide us with the resources to

answer the kinds of questions commonly asked about this kind of system. The

second section narrows in on, and discusses, the approach’s key assumptions.

The third section attempts to motivate a particular microphysical claim that

would ground the success of the technique, justify its key assumptions, and

underpin the facts the equations it leads to track. The fourth, concluding

1It should be noted that the system and technique discussed in this chapter draw on
a range of assumptions supported by equilibrium statistical mechanics. While there are
benefits to considering systems and techniques that do not appeal to such assumptions,
such as those that are described by, and that generate, Boltzmann’s equation, there are also
costs. For one thing, these free-of-equilibrium-statistical-mechanical-assumption systems
and techniques are conceptually more difficult than the ones discussed in this chapter.
Another reason to focus on the systems and techniques of Langevin dynamics are their
novelty. There is already a wealth of philosophical literature that discusses Boltzmann’s
equation. As far as the author can tell, no one, at least at the time of publication, has
discussed Langevin dynamics in the philosophical literature on statistical mechanics.
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section, includes a summary and a suggestion about future research.

4.1 Modelling a Brownian Particle’s

Behaviour

The theory of Brownian motion is quite possibly the simplest approximate

way to treat the dynamics of nonequilibrium systems. The theory arose

from investigations into the irregular behaviour of objects such as pollen

grains and dust particles when they are placed into various kinds of fluids.

The phenomenon became widely known through the work of Robert Brown,

a botanist, who, in 1827, reported on the strange behaviour of pollen grains

floating on water. Albert Einstein (1905) and Marian Smoluchowski (1906)

provided the first theoretical analyses of Brownian motion. Since then, a

number of authors have helped develop the theory. Paul Langevin, a promi-

nent French physicist during the early parts of the 20th century, was one such

contributor.2 What’s particularly interesting about the theory of Brownian

motion is that it can be applied successfully to many other phenomena (e.g.

the motions of ions in water and the reorientation of dipolar molecules). In

fact, the theory has been extended to situations in which the “Brownian par-

ticle” is not really a particle at all, but is instead some collective property of

a macroscopic system. An example is the instantaneous concentration of any

component of a chemically reacting system near thermal equilibrium. In this

situation, the irregular fluctuations of the concentration in time correspond

to the irregular motion of the Brownian particle. What’s more, Brownian

2See, for example, Langevin (1908).
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motion continues to be a topic of research nearly 200 years after Brown’s

work. As Pathria and Beale (2011: p.599) explain, much of the current in-

terest is due to the growth in the technological importance of colloids across

a wide range of fields, and the development of digital video and computer

image analysis.

The Langevin equation is the theory’s fundamental dynamical equation.

It contains both frictional forces and random forces. It’s a linear, first-order,

inhomogeneous differential equation. The Langevin equation is often used

to construct expressions that track interesting macroscopic variables. We

often have detailed quantitative information about these variables and they

capture what we’re often most interested in tracking. This section examines

the evolution of a system in which a Brownian particle is introduced to an

isolated homogeneous fluid at equilibrium. It also highlights the Langevin

equation’s use in the construction of equations that track the behaviour of

two interesting macroscopic variables—the Brownian particle’s mean squared

displacement and its mean squared velocity. The theory also possesses a

fluctuation-dissipation theorem. It relates the forces that appear in the

Langevin equation to each other. This theorem has many important and

far-reaching generalisations. This section includes an elementary version of

the theorem.

When a single Brownian particle is immersed in an isolated homoge-

neous fluid at equilibrium it typically does one of three things, depending

on its initial velocity. If the Brownian particle enters the fluid with a mean

squared velocity (an expectation value around which the actual value fluctu-

ates) that’s greater than the value given by the equipartition theorem, then
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it typically slows down to that value. If the Brownian particle enters the fluid

with a mean squared velocity that’s less than the value given by the equipar-

tition theorem, then it typically speeds up. The particle’s speeding up and

slowing down is the result of collisions with the molecules that comprise the

fluid. If the Brownian particle enters the fluid with a mean squared velocity

that’s close to the value given by the equipartition theorem, then it typically

remains at this value. When the Brownian particle reaches equilibrium, it

jostles about, on macroscopic time scales, with a mean displacement of zero.

Slight deviations from this behaviour can occur, but large deviations are ex-

tremely rare. From the standpoint of an ordinary observer, the Brownian

particle’s short-term behaviour seems to be random, both as it approaches

equilibrium and once it has reached equilibrium. As such, there isn’t much

more an unaided observer can say about its motion.

While the motion of a Brownian particle appears to be random, it’s

nonetheless describable by the same equations of motion that model the

behaviour of other classical systems.3

We’ll consider the one-dimensional motion of a spherical particle with

radius a, mass m, position x, and velocity V , in a fluid medium with viscosity

η.

Newton’s equation of motion for the particle is

3One might argue that it’s inappropriate to be talking about classical mechanics in
connection with the Langevin equation, since the wave packets of molecules will spread
too quickly for a classical approximation to be appropriate.

However, in an appropriate regime, even if we can’t treat the molecules as approximately
localised, the Wigner function will, to a good approximation, obey the same Liouville equa-
tion that the classical probability density function obeys, and hence thinking about what
classical trajectories will do is a useful way of visualising the behaviour of the quantum
probability density. The expectation values we consider can be taken to be expectation
values of quantum observables, and much the same things will be said in that context.
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Figure 4.1: The mean squared velocity of a Brownian particle as a function
of time. Curves 1,2, and 3 correspond, respectively, to the initial conditions
v2 = 6KT/m, 3KT/m, and 0. τ is the characteristic time. (Pathria and

Beale 2011: p.591)

m
dv

dt
= Ftotal(t). (4.1)

Ftotal(t) is the total instantaneous force on the particle at time t. This

force is the result of the particle’s interaction with the fluid molecules. If the

positions of the molecules are known as functions of time, then, in principle,

this force is a known function of time. In this sense, the particle is not subject

to a “random force” at all.

It’s usually not practical or even desirable to look for an exact expression

of Ftotal(t). Experience teaches us that in ordinary cases this force is domi-

nated by a frictional force, −ζV , that is proportional to the velocity of the

Brownian particle. The friction coefficient is given by Stokes’ law, ζ = 6πηa.
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If this were the whole story, the equation of motion for the Brownian particle

would be

m
dV

dt
∼= −ζV, (4.2)

whose solution is

V (t) = e−ζt/mV (0). (4.3)

According to (4.3), the velocity of the Brownian particle decays, over

time, to zero. This result, however, cannot be quite right. It follows from

the equipartition theorem that the mean squared velocity of the particle at

thermal equilibrium is 〈V 2〉eq = KT/m. Obviously, the assumption that

Ftotal(t) is dominated by the frictional force has to be modified.

Standardly, an additional force, δF (t), is added to the frictional force.

For reasons that will become clear shortly, this force is referred to as the

fluctuating force. The equation of motion then becomes

m
dV

dt
= −ζV + δF (t). (4.4)

This is the Langevin equation for a Brownian particle. It partitions the

total force in two. Because both parts are the result of the Brownian particle’s

interaction with the fluid, it’s reasonable to think that a fundamental relation

exists between them.

The additional force, δF (t), is the result of continual collisions between

the Brownian particle and molecules in the fluid. It’s typically assumed,

given the observed randomness of an individual trajectory, that this force
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has the following properties.

〈δF (t)〉 = 0, (4.5)

and

〈δF (t)δF (t′)〉 = 2Bδ(t− t′). (4.6)

Because of these properties, δF (t) is standardly referred to as the fluctu-

ating force. B is a measure of the strength of the fluctuating force. The delta

function in time indicates that there is no correlation between collisions in

distinct time intervals dt and dt′.

The Langevin equation can be solved to give

V (t) = e−ζt/mV (0) +

∫ t

0

dt′e−ζ(t−t
′)/mδF (t′)/m. (4.7)

The first term describes the exponential decay of the particle’s initial

velocity. The second term describes the extra velocity produced by the fluc-

tuating force.

This expression can be used, in conjunction with (4.5) and (4.6), to model

the equilibration of the Brownian particle’s mean squared velocity. There are

three contributions to V (t)2. The first one is

e−2ζt/mV (0)2. (4.8)

It decays to zero at long times. Next are two cross terms, each first order

in the noise,
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2V (0)e−ζt/m
∫ t

0

dt′e−ζ(t−t
′)/mδF (t′)/m. (4.9)

When (4.5) is used to average over the noise, these terms vanish. The

final term is second order in the noise:

∫ t

0

dt′e−ζ(t−t
′)/mδF (t′)

∫ t

0

dt′′e−ζ(t−t
′′)/mδF (t′′)/m2. (4.10)

Now the product of the two noise factors is averaged, according to (4.6).

This leads to

∫ t

0

dt′e−ζ(t−t
′)/m

∫ t

0

dt′′e−ζ(t−t
′′)/m2Bδ(t′ − t′′)/m2. (4.11)

The delta function removes one time integration, and the other can be

done directly. The resulting mean squared velocity is

〈V (t)2〉 = e−2ζt/mV (0)2 +
B

ζm
(1− e−2ζt/m). (4.12)

In the long time limit, the exponentials fall out, and this quantity ap-

proaches B/ζm. At long times the mean squared velocity obtains the value

KT/m, as given by the equipartition theorem. As a consequence, we find

that

B = ζkT. (4.13)

This result is known as the fluctuation-dissipation theorem. It relates the

strength B of the fluctuating force to the magnitude ζ of the friction.

The evolution of one of the system’s macrovariables is described by (4.12).
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It models the system’s spontaneous approach to equilibrium. It provides

qualitative and quantitative information. It tells us to expect the system to

approach equilibrium reasonably quickly and for it to remain in equilibrium

for incredibly long periods of time. It helps us form expectations about the

kinds of macrostates the system will be in at various stages of its evolution

and it helps us form expectations about how quickly the system will reach

equilibrium. It also helps us form expectations about fluctuation phenomena.

What’s more, as the fluctuation-dissipation theorem reveals, (4.12) also leads

to quantitative information about the strength of the fluctuating force.

The Langevin equation can also be used, again with the help of (4.5)

and (4.6), to derive an expression for the mean squared displacement of a

Brownian particle that’s been in the fluid for a long time.

Multiplying both sides of the Langevin equation by x gives

mx
dV

dt
= m

[ d
dt

(xV )− V 2
]

= −ζxV + xδF (t). (4.14)

If we take the average of both sides and use (4.5), we find that

m〈 d
dt

(xV )〉 −m〈V 2〉 = −ζ〈xV 〉. (4.15)

From the equipartition theorem we have 1
2
m〈V 2〉 = 1

2
KT , so (4.15) be-

comes

m〈 d
dt

(xV )〉 = KT − ζ〈xV 〉. (4.16)

This is a first-order differential equation that can be solved using the

integrating factor technique. Its solution is
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〈xV 〉 = Ce−
ζ
m
t +

KT

ζ
, (4.17)

where C is a constant of integration. Let τ ≡ ζ
m

, so that τ−1 is a charac-

teristic time constant of the system. If we take as our initial condition that

x = 0 at t = 0, then (4.17) entails that C = −KT
ζ

. So we have

〈xV 〉 =
KT

ζ
(1− e−τt). (4.18)

If we replace 〈xV 〉 by 1
2
d
dt
〈x2〉 and integrate (4.18) with respect to t, we

obtain

〈x2〉 =
2KT

ζ
[t− 1

τ
(1− e−τt)]. (4.19)

(4.19) gives the mean squared displacement of the Brownian particle.

Note two interesting limiting cases. Case 1 : t << τ−1. If t < τ−1, then

using a Taylor series expansion,

e−τt = 1− τt+
1

2
τ 2t2 − . . . . (4.20)

So for t << τ−1 and O(t3) = 0,

〈x2〉 =
KT

m
t2. (4.21)

This means that on very short time scales the particle behaves as if it

were a free particle moving along with constant velocity V = (KT/m)
1
2 .
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Case 2: t >> τ−1. If t >> τ−1, then e−τt → 0. So (4.19) simply becomes

〈x2〉 =
2KT

ζ
t. (4.22)

(4.19) provides both interesting qualitative information and interesting

quantitative information about one of the system’s macrovariables. It models

the Brownian particle’s behaviour. The Brownian particle jostles about with

a mean displacement of zero and with a mean squared displacement given by

(4.19). It tells us to expect it to behave as if it were a free particle moving

along with constant velocity on very short time scales, and for it to behave

like a diffusing particle executing a random walk on longer time scales. It

helps us form expectations about the kinds of macrostates the system will

be in at various stages of its evolution, and it helps us form expectations

about the Brownian particle’s fluctuations. And this does not exhaust the

quantitative information that can be extracted from the model. Since we’re

able to measure 〈x2〉 experimentally, then, if we know the size and density of

the particles, as well as the viscosity of the medium, we can deduce from these

observations a good approximation of K, Boltzmann’s constant. Moreover,

if we have knowledge of the gas constant, then we can also calculate the value

of Avogadro’s number.

As a final point, consider the results of the following real study. In the

study, experimenters observed the behaviour of a spherical particle immersed

in water and recorded aspects of its Brownian motion. The study highlights

the predictive accuracy of (4.19) and (4.22). For the complete details of

the study, see Lee, Sears, and Turcotte (1973). In the study, T ' 300K,

η ' 10−2 poise, and a ' 4× 10−5cm. The study found that 403 values of the
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net displacement, ∆x, of the particle, observed after successive intervals of 2

seconds each, were distributed as follows:

Table 4.1: Observed displacements of a spherical particle immersed in
water. (Pathria and Beale 2011: p.591)

The data indicates that 〈x2〉 = 2.09 × 10−8cm2. This observationally

calculated result is remarkably close to the value given by (4.22).

4.2 Some Comments on the Approach

The purpose of this section is to narrow in on the approach’s key assump-

tions and to set aside aspects of the approach that may appear mysterious.

Justifying these assumptions is central to underpinning the qualitative and

quantitative facts the technique tracks.
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4.2.1 Constructing a Langevin Equation

First, it may seem as though the Langevin equation came out of nowhere. Its

form was motivated by aspects of ordinary experience. The discussion began

by noting that experience teaches us that in ordinary cases the total force

acting on the particle is dominated by a frictional force, −ζV , proportional to

the velocity of the Brownian particle. It was then indicated that this couldn’t

be the whole story, since it’s at odds with what we observe over longer periods

of time. This led to adding a force to the frictional force that would account

for the difference. We were thus led to (4.4), the Langevin equation for a

Brownian particle. This kind of motivation is common.4 It is, however, “top

down”. Since it’s motivated by phenomenal considerations, one may worry

about whether and how it connects to the microphysics. Happily, it can be

constructed from a combination of physical and mathematical considerations.

Consider a similar but simpler system than the one discussed in the pre-

vious section, a one-dimensional system that’s comprised of a relatively large

Brownian particle with mass M , which is hit from both sides by molecules

of mass m.5 We’ll also assume that M � m and that collisions are elastic.

The velocity of the Brownian particle before and after a single collision will

be denoted by V and V ′, respectively, and the velocity of a molecule before

and after a collision will be denoted by v and v′, respectively. If we combine

the equations for conservation of momentum and energy, then we can write

the velocities after the collision in terms of the velocities before the collision.

That is,

4See Reif (1965: Sec.15.5), Zwanzig (2001: Ch.1), Mazenko (2006: Ch.1), and Pathria
and Beale (2011: Ch.15), for example.

5This system is also discussed by de Grooth (1999).
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V ′ =
M −m
M +m

V +
2m

M +m
v (4.23)

and

v′ =
m−M
M +m

v +
2M

M +m
V. (4.24)

Using the assumption that M � m, and the following approximations,

M −m
M +m

≈ 1− 2
m

M
+O

((m
M

)2
)
, (4.25)

M

M +m
≈ 1− m

M
+O

((m
M

)2
)
, and (4.26)

m

M +m
≈ m

M
+O

((m
M

)2
)
, (4.27)

(4.23) can be written as

V ′ =

(
1− 2m

M

)
V +

2m

M
v. (4.28)

So the change in momentum of the Brownian particle due to a single

collision is

∆P = 2mv − 2mV. (4.29)

And the momentum change of the Brownian particle due to N collisions

is
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∆PN = 2m
N−1∑
i=0

vi − 2m
N−1∑
i=0

Vi. (4.30)

If we consider a time interval ∆t that’s small enough that the velocity of

the Brownian particle does not change appreciably, but because M >> m,

we still have a large number of collisions, then the second sum in (4.30) can

be approximated by 2mNV = 2mnV (t)∆t, where V (t) is the velocity of

the Brownian particle at time t, and n is the mean number of collisions per

second so that N = n∆t. So, we have,

∆PN = 2m
n∆t−1∑
i=0

vi − 2mnV (t)∆t. (4.31)

Dividing both sides by ∆t yields an expression for the time derivative of

the Brownian particle’s velocity.

M
dV

dt
= −γV + Fs, (4.32)

where the damping constant γ = 2mn and

Fs =
1

∆t

n∆t−1∑
i=0

2mvi. (4.33)

Fs is a fluctuating force, if, like before, it’s assumed to have the following

properties:

〈Fs(t)〉 = 0, (4.34)

and

〈Fs(t)Fs(t′)〉 = 2Bδ(t− t′). (4.35)
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(4.34) entails that the incoming velocities of colliding molecules have an

expectation value of zero. (4.35) entails that the incoming velocities of col-

liding molecules at distinct times are uncorrelated.

(4.32) has the same form as the Langevin equation. It, however, contains

explicit expressions for both the damping force and the fluctuating force.

Much like (4.4), (4.32) can be used together with (4.34), (4.35), and the

equipartition theorem, to arrive at important results such as (4.22).

4.2.2 The Time-Reversal Non-Invariance of the

Langevin Equation

Something else that may have seemed mysterious about the approach de-

scribed in the previous section is the time-reversal non-invariance of the

Langevin equation. The one-dimensional version, (4.32), is also asymmetric

under time-reversal. This too may seem mysterious. Each equation describes

the evolution of a system whose underlying dynamics are symmetric under

time-reversal.

To see that (4.32) is asymmetric under time-reversal, first note that the

expectation value of the fluctuating force is zero. Then, taking the expecta-

tion values of both sides of (4.32), we get the conclusion that the expectation

value of V decays exponentially to zero. The temporal reverse of this would

have an exponentially increasing expectation value of V . This reasoning also

applies to the Langevin equation. Again, the expectation value of the fluctu-

ating force is taken to be zero. Since the frictional force term is temporally

asymmetric, we are led, when we take the expectation values of both sides of

(4.4), to the conclusion that the expectation value of V decays exponentially
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to zero. And similarly, the temporal reverse would have an exponentially

increasing expectation value of V .

The time-reversal non-invariance of the Langevin equation is the result

of the temporal asymmetry of its frictional force term and the properties

attributed to its second, fluctuating force term. The same is true of (4.32).

Interestingly, both equations, understood simply as equations that divide the

total force acting on the Brownian particle in two, are compatible with time-

reversal invariance. What’s more, this compatibility holds even after the

choice is made to split the total force into a frictional force and what is left

over. What ensures the time-reversal non-invariance of these equations, given

the time-reversal non-invariance of their respective frictional force terms, are

the properties attributed to their second terms.

The time-reversal non-invariance of the Langevin equation prompts fur-

ther questions. First, why do physicists standardly assume that the Langevin

equation’s second term has the properties identified in (4.5) and (4.6)? And

second, what does their rationale reveal about the microphysics of those sys-

tems whose behaviour is accurately modelled by the Langevin equation, and

the equations derived from it (e.g. (4.12) and (4.19))? Otherwise said, what

would have to be true, or at least be approximately true, at the microlevel to

account for the success of equations such as (4.4), (4.12), and (4.19), given

that the underlying dynamics is symmetric under time-reversal?

First, it’s standardly assumed that the second force term has an expecta-

tion value of zero because the Brownian particle, observed at ordinary scales,

seems just as likely to move in any direction at any moment as any other.

In the one-dimensional model, the analogous thought is that the Brownian
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particle seems just as likely to move, at any moment, to the left as it is

to the right. What’s more, if observation provided us with reason to think

that the Brownian particle was more likely to move in one direction than

another—say, because we thought it was more likely to be struck from one

side rather than another—then we would describe this thought using some

force expression and extract it from the second term.

Interestingly, (4.5) is standardly presented alongside an assumption anal-

ogous to (4.6).6 Notice too that (4.34) was presented along with (4.35).

Both (4.6) and its analogue, (4.35), say that no correlation exists between

the forces acting on the Brownian particle at any two distinct times.7

Importantly, what standardly underlies and motivates both (4.5) and

(4.6), or, analogously, (4.34) and (4.35), is something that closely resembles

the following microphysical assumption.

Collision Assumption: That v is, at any time, independent of

V .

Spelled out, the underlying claim is that the velocity of any incoming

colliding fluid molecule (drawn from the distribution of velocities of molecules

of the fluid), is, at any time, probabilistically independent of the incoming

velocity of the Brownian particle.

Interestingly, the collision assumption is temporally asymmetric. To see

this, consider the one-dimensional model. Next, note that the collision as-

6See Zwanzig (2001: p.5), Kadanoff (2000: p.120), and Mazenko (2006: p.8), for exam-
ple.

7It’s worth noting that concerns about the conflict between the time-reversal non-
invariance of the Langevin equation and the time-reversal invariance of the underlying
dynamics do not standardly play a role in the determination of properties attributed to
the Langevin equation’s second term.
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sumption has to do with the probability distribution of the velocities of

molecules that are about to hit the Brownian particle. Now consider (4.24).

In particular, consider the probability distribution of v′. That is, the proba-

bility distribution of the velocities of molecules that have just collided with

the Brownian particle. If the expectation value of v is zero, as (4.34) entails,

then the expectation value of v′ is proportional to V . So, if V is greater than

its equilibrium value, then, on average, colliding molecules that are in the

path of the Brownian particle’s motion will have a greater velocity after the

collision than before. Meanwhile, colliding molecules that are travelling on

the Brownian particle’s path will, on average, have a post-collision velocity

that’s less than their pre-collision velocity. When we velocity-reverse the

situation, we get a state of affairs in which the distribution of velocities of

incoming colliding molecules are, contrary to the assumption, not indepen-

dent of the Brownian particle’s velocity. They appear conspiratorial. The

ones travelling on its path will, on average, have a pre-collision velocity that’s

greater than the average molecule and the ones traveling in its path will, on

average, have a pre-collision velocity that’s less than average.

4.2.3 Why Does the Langevin Equation Work?

Since (4.4), (4.12), and, in particular, (4.19) have consequences that are con-

firmed by experiment, it’s worth considering what would have to be true, or

be at least approximately true, at the microlevel, to justify the use of the

collision assumption, and to ensure that its consequences—(4.5) and (4.6)—

are at least approximately true. Answering this helps explain the success

of equations such as (4.4), (4.12), and (4.19). It also helps to underpin the
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quantitative and qualitative facts these equations track. As one might have

expected, the answer is suggested by the assumption itself. The natural sug-

gestion is that it’s a convenient approximation of the following microphysical

fact.

Microphysical Fact: That v is at most independent of V at

some initial time and that at any other time v is effectively inde-

pendent of V .

The claim here is that, at all times (except, perhaps, initially), the velocity

of any incoming colliding fluid molecule and the incoming velocity of the

Brownian particle are approximately probabilistically independent.8

Notice that we don’t claim that the velocities of incoming colliding molecules

are, at all times, in fact independent of the incoming velocity of the Brownian

particle, as the collision assumption has it. The reason for this more modest

claim is that these velocities are at least correlated for very short times after

collision. This can be seen by reflecting on what we think’s going on at the

microlevel. Once the Brownian particle is introduced to the fluid, it begins

to collide with fluid molecules. The subsequent positions and momenta of

the molecules, like the Brownian particle, are the result of collisions. Because

the forces acting on the particle can be expressed by smooth functions—at

least to a good approximation—the forces resulting from these collisions will

be correlated.

But it should be remembered that the motion of the Brownian particle

appears to be random on macroscopic time scales. So it seems reasonable to

8The idea then is that, for practical purposes, one can treat the velocities of these col-
liding particles as if they are probabilistically independent. That is, one may be justified
in using the collision assumption.
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think, as the microphysical fact intends to suggest, that any correlations that

form between the velocities of colliding particles wash out incredibly quickly.

Happily, weakening (4.6) (or (4.35)) to accommodate these considerations—

say by instead assuming that correlations between fluctuating forces at dis-

tinct times exponentially decay on scales that are incredibly short compared

to the system’s relaxation to equilibrium—yields results that closely approx-

imate (4.19) and (4.13). Similar results also hold if we assume that correla-

tions between fluctuating forces at distinct times are Gaussian on scales that

are extremely short compared to the system’s relaxation to equilibrium.

Having identified the approach’s crucial assumption, the collision assump-

tion, it’s important to ask whether its use is justified. Or, more crucially,

what reason do we have to think that the microphysical fact is, in fact,

true? This question is important, since we can hardly ground the success of

the technique, or the facts its resulting equations track, on an unsupported

microphysical claim.

4.3 Motivating the Collision Assumption

The microphysical fact, if true, provides reason to utilise the collision as-

sumption. Support for the microphysical fact comes from at least two sources:

from a scientifically informed reflection on the microphysical behaviour of rel-

evant systems, and from results that emerge from the study of an idealised

system, a hard sphere gas.

First, when thinking about the behaviour of a Brownian particle that’s

been placed into an isolated homogeneous fluid at equilibrium, it seems rea-
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sonable to have the following picture in mind. Once the Brownian particle is

placed into the fluid, it begins to collide with fluid molecules as it approaches

equilibrium. Since the fluid is composed of a very large number of molecules,

which are involved in very many collisions, it’s reasonable to think that when-

ever two of them collide it’s overwhelmingly likely that a very large number

of collisions will occur before they collide again—if, in fact, they ever collide

again. This suggests that by the time the Brownian particle were to col-

lide with some molecule it had already encountered neither would, in effect,

carry a memory of their past collision. That is, any correlation that resulted

from their previous interaction would have effectively been washed out. Be-

cause these collisions happen incredibly quickly, so too would the washing

out of correlations. So then, we can reasonably expect the forces acting on

the Brownian particle to be, at any moment, effectively random, and we

can expect the velocities of incoming colliding molecules to be, at any mo-

ment, effectively independent of the velocity of the Brownian particle. The

reasonableness of this picture supports the truth of the microphysical fact.

Notice too how bizarre the temporal reverse of a situation in which a

Brownian particle slowed to equilibrium would be. That is, a situation in

which the microphysical fact did not hold. If we reversed the velocities of all

of the molecules that comprise the system, then we would witness a conspir-

atorial situation similar to the one described at the end of the last section.

The Brownian particle would miraculously speed up and the velocities of the

incoming colliding molecules would be correlated with it. The molecules that

are about to hit the Brownian particle from behind would, on average, have

a higher than average velocity, and the ones that are in its path would, on
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average, have a lower than average velocity.

What makes the first picture reasonable and the second situation bizarre

is that only in the second situation are the velocities of incoming colliding

molecules correlated before they interact. What’s peculiar about this is that

in the absence of some earlier event that would account for this correlation,

their correlation is to be explained by some event that lies in their future.

And this flies in the face of the fundamental idea that causes precede their

effects.9

If we assume that the microphysical fact holds (or that something close

to it holds), then we are led to equations that accurately model and predict

the behaviour of systems we can and do observe. The models outlined in

earlier sections attest to this fact. So we have support for the truth of the

microphysical fact. As the discussions of the temporal reversals of the ordi-

nary behaviour of these systems suggest, deviations from such an assumption

lead us to expect systems to behave in ways we simply do not ever witness.

So we have further support for the truth of the microphysical fact.

The study of idealised models also supports the truth of the microphysical

fact. Oscar Lanford III has shown that an instance of the microphysical fact

is true, under certain conditions, for a hard sphere gas model.10 Lanford has

shown that when the initial state of the gas satisfies a certain condition—that,

in effect, amounts to there being a lack of correlation between the momenta

9This claim might be controversial to some. Huw Price (1996), for example, disputes
its truth at the microphysical level. The following things, however, are not controversial.
First, we take this idea for granted in our ordinary dealings with the world. That it’s
universally true is the default position. Second, even on reflection, it’s not disputed at the
macroscopic level. Third, scientists standardly develop successful physical models on the
basis that causes precede their effects.

10See Lanford III (1975, 1976, & 1981).
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and positions of gas molecules—the system effectively sustains this property,

as it approaches equilibrium.11 The result, which follows from Lanford’s

theorem, applies to systems whose behaviour is described by Boltzmann’s

equation. These systems also have an underlying dynamics that is invariant

under time-reversal. While the result holds only for a short period of time,

there are good reasons to think that it can be extended.12

On the basis of these considerations, it seems reasonable to think that the

microphysical fact is true. Its truth would support the use of the collision

assumption and its consequences, (4.5) and (4.6) ((4.35) and (4.35)). In

particular, it would justify the use of (4.5) and (4.6) in the derivations of

(4.12) and (4.19). Its truth would also help explain the success of these

equations, and help underpin the quantitative and qualitative facts these

equations track.

4.4 A Summary and a Suggestion

The last chapter suggested pursuing a particular line of research. More ac-

curately, it promoted turning some of our attention towards understanding

and grounding the success of the techniques and equations physicists use

to model the behaviour of systems that begin away from equilibrium. This

chapter took steps in this direction by outlining, examining, and attempt-

ing to ground the success of a technique and equation used to model the

behaviour of a Brownian particle that’s been immersed in a homogeneous

11See Uffink (2007: Sec.6.4), Uffink and Valente (2015), and Valente (2014) for discus-
sions of Lanford’s results.

12For a discussion of its extension, see Valente (2014: Sec.7.2) and Lanford III
(1976: p.14).
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fluid. This chapter highlighted that the technique generates a collection of

interesting and quantitatively accurate equations whose predictions are con-

firmed by experiment. This chapter attempted to account for the success of

the model, by identifying and motivating the technique’s key assumptions.

It noted that support for them can be traced back to an endorsement of the

collision assumption, which is a convenient approximation of the microphys-

ical fact. The body of the chapter ended with several reasons to think that

the microphysical fact is, in fact, true.

Of course, the technique and equation discussed in this chapter are but

the first in a collection of more elaborate and predictively accurate techniques

and equations.13 There are also limitations on the model’s applicability—

despite its generality. Naturally, it would be good for future investigations to

consider and examine more elaborate techniques and equations, and for them

to also examine more complicated systems (e.g. systems that are influenced

by external forces). It would be good for these investigations to uncover and

discuss the presuppositions these techniques and equations trade on (if any),

and, where possible, to discuss the grounds we have for believing that these

conditions are satisfied.

A more concrete suggestion is to examine and motivate the steps that

lead to the Fokker-Plank equation—a probabilistic version of the Langevin

equation. The Fokker-Plank equation is the starting point for many useful

calculations in nonequilibrium statistical mechanics. For example, it’s used

to determine the rate at which a Brownian particle crosses a potential bar-

rier (Zwanzig 2001: p.40). The Fokker-Plank equation is often called upon

13See, for example, Zwanzig (2001) and Mazenko (2006).
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in situations in which it’s suitable to model a system’s behaviour using a

non-linear Langevin equation. Linear Langevin equations are easy to solve

analytically, non-linear Langevin equations are not. Physicists standardly

side-step this difficulty by constructing a Fokker-Plank equation that corre-

sponds to a given Langevin equation. It would be good to highlight whatever

presuppositions are required to make these steps legitimate, and to discuss

the grounds we have for believing that these conditions are met.

More obviously though, it would be good for future investigations to

return to Boltzmann’s equation (and the many versions of it) and to examine

and motivate the steps that lead to it. Boltzmann’s equation accurately and

quantitatively models the behaviour of dilute gases that begin away from

equilibrium. This fact is often lost amidst talk of its problems.14 As the

discussion of Boltzmann’s equation in Section 3.1 and the underpinning of the

Langevin equation offered in Section 4.3 suggest, this research project would

involve an attempt to motivate an assumption similar to the Stoßzahlansatz.

The successful grounding of these, and other techniques and equations,

would likely underpin many of the important and interesting quantitative

facts that typicality accounts cannot. Accounting for the success of these

techniques and equations would also lead, in a mosaic fashion, to an under-

pinning of the very concepts that are currently at the centre of foundational

discussions of statistical mechanics.

14See also Wallace (2013: p.14).



115

Chapter 5

Conclusion

This thesis commented on aspects of foundational debates that arise in con-

nection with statistical mechanics and thermodynamics.

One of its overarching goals was to promote a particular line of research:

understanding and accounting for the success of the techniques and equa-

tions physicists use to model the behaviour of systems that begin away from

equilibrium.

This thesis helped explain what philosophers mean when they say that

an aim of nonequilibrium statistical mechanics is to account for certain as-

pects of thermodynamics, by making the issue of reconciling the existence

of thermodynamically irreversible processes with underlying reversible dy-

namics more clear. This contributed to the overarching goal of promoting

a particular line of research by making clear the goals philosophers have

traditionally set themselves. This enabled us, in later chapters, to better ap-

preciate and evaluate their attempts to achieve them, and to better situate

and appreciate how the proposed line of research fits with the contemporary
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literature.

As was noted, many of the leading attempts to reconcile the existence of

thermodynamically irreversible processes with underlying reversible dynam-

ics proceed by way of, and are typically part and parcel of, discussions that

attempt to underpin the following qualitative facts: (i) that isolated macro-

scopic systems that begin away from equilibrium spontaneously approach

equilibrium, and (ii) that they remain in equilibrium for incredibly long peri-

ods of time. As we saw, these attempts appeal to phase space considerations

and notions of typicality. This thesis examined leading typicality accounts

and highlighted their severe limitations. For one thing, they do not underpin

a multitude of interesting quantitative facts that arise in connection with

the behaviour of systems that begin away from equilibrium. To remedy this

and other shortfalls, this thesis promoted working on the alternative project,

since accounting for the success of the techniques and equations physicists

use to model the behaviour of systems that begin away from equilibrium

helps underpin not just the qualitative facts mentioned above, which the lit-

erature has focused on, but also many of the important quantitative facts

that typicality accounts cannot.

This thesis also took steps in this promising direction. The fourth chapter

outlined, examined, and attempted to ground the success of a technique com-

monly used to model the approach to equilibrium and subsequent behaviour

of a Brownian particle that’s been introduced to an isolated homogeneous

fluid at equilibrium. It attempted to account for the success of the model,

by identifying and grounding the technique’s key assumptions. The chapter

ended by offering some suggestions about where this research may be taken
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next. It suggested examining more elaborate techniques and to ground their

success along with the predictively accurate equations they help generate.
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