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Abstract

There is evidence that the functional patterns of the brain observed at rest using fMRI are

sustained by a structural architecture of axonal fiber bundles. As neuroimaging techniques

advance with time, the relationship between structure and function has become the object of

many studies in neuroscience. As recently suggested, the well-defined connectivity structure

found in the brain can be used to understand the self organization of the brain at rest, as well as

to infer the functional connectivity patterns of the brain using different models. These models

include the Kuramoto model, which studies synchronization, and the two-dimensional classical

Ising model, which studies the global dynamics of the brain at the critical temperature. These

models have been successful in capturing the underlying properties of the brain. To extend this

understanding, our objective is to develop the generalized Ising model, following the lesson

from the two-dimensional Ising model, as the generalized Ising model could be simulated

using the anatomical structure of the brain. This model can then be used to study functional

information integration and segregation in the brain at rest. Thus, the primary research question

would be: can the generalized Ising model explain the functional behaviour of the resting brain

at the critical temperature? Preliminary analyses were carried out to determine the critical

temperature of the models and to compare the correlation distributions. Further analyses were

carried out using graph theory considering the brain as a network. By observing the results

obtained from our simulations, it can be inferred that there is a temperature that is different

from the critical temperature of the model at which the generalized Ising model shows a match

with the empirical functional connectivity. At that temperature, the generalized Ising model

could be used to study the global dynamics, as well as the local dynamics of the brain.

Keywords: Ising model, Structure and function of the brain, Graph Theory
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Chapter 1

Introduction

1.1 Introduction

The human brain draws the attention of neuroscientists because of its complex and mysteri-

ous behaviour. It is one of the organs that scientists are still struggling to understand. The

understanding available so far about the brain is mostly due to developments in brain imaging

techniques. However, we are trying to build a bridge between mathematical modelling and the

biological aspects of the human brain to open up new opportunities to widen our understanding

of its behaviour.

That being said, the introduction of mathematics to biology and medicine has drawn much

interest recently. Mathematical models are built in general to describe some aspects of nature

in a numerical manner such that they could be used to predict unseen behaviours in nature.

The spatial scale of modelling varies depending on the scale of the expected end result. In this

research, as we are discussing the behaviour of the brain (which has a complex structure), it

is not realistic to talk in terms of the nano-scale or micro-scale using the available resources.

Thus rather than applying mathematical modelling for our studies at the finest scale, the models

are being developed at macroscopic level.

1



2 Chapter 1. Introduction

However, our brain is comprised of neurons, which form different types of structural net-

works. This structural or the anatomical connectivity allows electrical signals to pass through

and exchange information among different regions of the brain. On the other hand, the neurons

create functional networks depending on their functionality, such as cognition and perception.

Even though there are discussions about a possible connection between these two types of

connectivity patterns (structural and functional), the exact connection is still debatable. Never-

theless, the purpose of this research is to develop a tool that enables us to find the relationship

between the structure and the function of the brain using computational modelling. In terms of

modelling, we use the structural connectivity obtained from brain imaging as an input for the

simulations, and we will be comparing the output of the model with the empirical data of the

functional activity in the brain to find the structure-function relationship.

1.2 Motivation & Objectives

As per the common understanding, inside the brain, there are billions of neurons that collec-

tively are the foundation of who we are. This fact makes the brain more difficult to understand

and still there is no experimental method, or an imaging technique, that can explain the com-

plete behaviour of the brain at a single neuronal level. However, our objective was to find a

mathematical model, that can be used to simplify our understanding at the macroscopic scale

and can be advanced to better spatial resolution in the future. For this purpose, we introduce

the generalized Ising model as a good candidate for our study.

The generalization was performed starting with the two-dimensional classical Ising model

which explains the interactions of magnetic spins. The spins are arranged in a two-dimensional

lattice which is in contact with a heat bath. The model has only one model parameter, the tem-
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perature of the heat bath. Arrangements of spins change as a function of temperature and as

a result of that, the properties of this system change. During the studies of this model, a tem-

perature called the critical temperature was identified as the temperature which differentiate

the configurations of spins into two categories, order and disorder. In previous work related

to neuroscience and modelling, the two-dimensional classical Ising model has been studied at

different temperatures and has been compared with the dynamics of the brain function, which

resulted in providing a good match between the model and the empirical data at the critical

temperature. Thus we use the two-dimensional classical Ising model and generalize it by in-

troducing the structural connectivity of the brain for the simulations of the model.

Therefore, briefly, the problem we are investigating in this research is: can the generalized

Ising model be used to explain the structure-function relationship of the brain at the critical

temperature? If so, can this model be used to predict the functional changes in the brain in the

presence of a brain disorder by using the observed structural changes? Initially we are carrying

out this research on healthy subjects, and later on, we can expand our limits towards patients

with brain disorders due to severe brain injuries in order to answer the second question.

1.3 Thesis Outline

This thesis contains five chapters organized as follows. The first chapter gives a general intro-

duction. The second chapter will provide the necessary understanding of the background of the

research. It will describe the basics of neuronal communication as well as the neuroimaging

techniques. Furthermore, detailed descriptions of computational models that have been used

will be given. The third chapter will explain the experimental methodology, including the com-

puter simulations of the models. The results of the simulations are shown in the next chapter.

Finally, the last chapter will contain the conclusions of the work followed by a discussion. This

will include possible directions for future research.



Chapter 2

Background & related work

2.1 Overview

This chapter intends to provide the background of the research. At the beginning, we will

explain the neuronal communication in the brain with a brief explanation of the nature of func-

tional and structural connectivity. Then we will talk about two different brain imaging tech-

niques, one of which is being used to study the behaviour of the brain, the functional Magnetic

Resonance Imaging (fMRI), and the other of which is being used to study the structure of the

brain, Diffusion Weighted Imaging (DWI). This discussion will be followed by an introduc-

tion to two computer-simulated models that have been used in the past in order to model the

dynamics of the brain. The reason for choosing the Ising model out of the two models will be

presented as well. After that, the generalized Ising model will be introduced as the model we

propose to model the dynamics of the brain as well as to find the structure-function relation-

ship in the brain. This will be followed by an introduction to the graph theory that we apply

in order to compare the classical Ising model and the generalized Ising model in this context.

This description will include an introduction to some important graph theoretical properties.

4



2.2. Neuronal Communication 5

2.2 Neuronal Communication

The human brain is made up of billions of neurons, which are the foundation of all the thoughts,

feelings and memories that constitute our sense of identity. The most important thing to main-

taining a high efficiency while performing any task is ’communication’, and it is maintained

in our brains via neurons. They are used to communicate among different regions of the brain

that are functionally specialized for different tasks. Thus, by integrating the work of separate

regions, it is possible to coordinate different functions of different organs in the body.

Neurons are sensors that can pass information through electrochemical signals. They can

generate electrical impulses in response to different types of signals they receive, and transmit

those signals to other cells. In order to do this, a neuron is comprised of two basic parts: the

cell body and the axon (Figure 2.1). The cell body contains several dendrites distributed much

like the branches of a tree. This branching architecture of the dendrites allows the cell body to

receive signals from a number of cells. The signals entering the neurons are received via the

dendrites, and an action potential is generated according to the received signals. The action

potential is generated due to the charged atoms (ions) in the cells.
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Figure 2.1: Main components of a neuron [1]

A cell is made out of chambers that contain various types of ions. Depending on the in-

coming signals, these chambers release different amounts of ions in different types. Due to

this, a voltage difference is created which gives rise to a small current. Therefore, when the

neuronal impulse begins, the potential of the cell changes dramatically. This change is called

the action potential. The action potentials are transmitted to the axon terminals through rela-

tively long axons. At the end of the neuron (i.e. axon terminal), a chemical messenger called

a neurotransmitter is then released to the synapses, which is the junction between two nerve

cells (Figure 2.1). This neurotransmitter binds with the receptors at the dendrites of the next

cell. The receptors act as the source of the action potential of that cell. This process is repeated

billions of times, and the electrical impulses are transmitted throughout.

However, it is a well-known fact that the neurons do not function as individual units. In-

stead, hundreds of neurons, which are synchronized together, collectively form a patch of cor-

tex. Apparently, inside the brain there exist large groups of such patches of cortices, which

can either be synchronized or desynchronized abruptly, creating various sizes of temporary
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systems based on the behaviour of the brain. The functional connectivity, which does not carry

information related to the directionality of the information transfer, could be used to describe

the interactions between these patches of cortices. Neurons pass signals very fast (i.e even

with a speed greater than 100ms−1 sometimes) compared to the time window chosen in imag-

ing (which varies from 0.3s − 4s depending on the type of the image). Therefore, even though

there is a directionality in the interactions of the patches of cortices, the functional connectivity

can be used because we are studying the interactions in a time window over which the effects

of directionality might be washed away. Thus a brief explanation about the functional connec-

tivity will be provided in the next section, followed by an explanation about the anatomical

(structural) connectivity.

2.2.1 Functional Connectivity

Functional connectivity in the brain is a concept that is still up for debate in neuroscience re-

lated research. However, the most popular definition used especially in fMRI is that functional

connectivity in the brain is the correlation between spatially separated neurophysiological units

or in other words patches of cortices [4]. The measured temporal correlation of the activity

of these patches of cortices is considered to be the signature of functional connectivity. These

correlations emerge from the task-specific patches of cortices, which have emergent properties

that individual neurons do not have [5].

That being said, functional Magnetic Resonance Imaging (fMRI) is a good tool discussed

so far that could be used to understand the insights of functional connectivity. In fMRI, a Blood

Oxygen Level Dependent (BOLD) signal is recorded from a volumetric pixel (voxel) with an

average size of 55 mm3. Following the statistics, this voxel contains 5.5 million neurons and

2 − 5 × 1010 synapses [6]. Thus, the BOLD time variation observed for a single voxel in

fMRI results due to a population of neurons, instead of a single neuron. Then, the emerging

question is, will this spatial resolution be enough to understand the functional connectivity of
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the brain? The answer depends on the scale of the problem that we are looking at. If we want

to understand the functional connectivity in the scale of a patch of cortex, instead of the single

neuronal level, the given fMRI spatial resolution could be used. Using that, the mean activity

of a group of neurons can be captured. This could be relevant to understand phenomena like

consciousness, which also emerges from a collective behaviour of neurons.

2.2.2 Structural Connectivity

Structural connectivity provides details about the connections the neurons or the patch of cor-

tices in the brain hold. In other words, it gives the structure of the neuronal connections. The

interconnectivity pattern of the brain at the neuronal level is one of the most complex envi-

ronments. Its complexity varies from the single neuronal level to the connections of brain

regional levels through different models of connectivity. Studying structural connectivity at

the neuronal level or micro-scale, has not been feasible due to its complexity. It might not be

necessary either, as there is an enormous degree of confirmation for the fact that the cognitive

functions of humans depend on the collective activity of large populations of neurons, instead

of individual neurons [7]. In addition to this, it is known there are momentary plastic changes

in neuronal levels including structural remodelling [8, 9]. There is much variability associated

with the connections at the micro-scale and these variabilities could be multiplied by orders of

billions as there are as many neurons in the brain. Thus, we focus on structural connectivity in

more technically feasible, as well as meaningful, level of scale. In fact, there are wide ranges

of experimental techniques at the macro-scale that could be used to study the pathways among

brain regions. One of the techniques is Diffusion Tensor Imaging (DTI), which we used for

this research and will be discussed further in this context. As a brief note, DTI captures the

tracks of white matter in the brain using the diffusion of water molecules. However, structural

connectivity is a critical determinant of the dynamics of the brain. In contrast, the functional

behaviour of the brain has the ability to redesign the anatomical structure during developmental

stages [10].
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2.3 Brain Imaging

Brain imaging is an important portion of research in several fields, including biology, physics

and psychology. There are lot of ongoing research for the development of different brain

imaging techniques. Some of them include Magnetic Resonance Imaging (MRI), functional

Magnetic Resonance Imaging (fMRI), Diffusion Tensor Imaging (DTI) and Positron Emis-

sion Tomography (PET). We are interested in fMRI and DTI because we are investigating the

relationship between the structure and the function of the brain. Therefore, fMRI and DTI

techniques will be discussed further.

2.3.1 Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI), is an MRI technique that is being used to

measure the functional behaviour of the brain by measuring the BOLD signal. Since the dis-

covery of fMRI in the 1990s, it has been a very popular method for brain imaging for several

reasons. One reason is that it does not require the injection of radioactive substances into the

brain as in PET. Another reason is that the fMRI technique has better spatial resolution than

PET [11]. However, there are basic hardware requirements in MRI devices. First and foremost,

it should have a magnet capable of having high magnetic field strengths. This magnet acquire

its strength by an external power supply. Next, it should contain a gradient coil that can pro-

duce a field gradient. The gradient coil produces a secondary magnetic field when the current

passes through it, which will distort the main magnetic field. This allows the spatial identifi-

cation of the MR signal. Furthermore, there should be a radio frequency coil that can transmit

and receive radio frequency oscillations, and a computer to acquire signals and compose the

MR images [12]. A schematic diagram of these components in an MRI device is shown in

Figure 2.2.
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Figure 2.2: Main components of an MRI system. Image courtesy of the National Magnetic

Field Laboratory [2]

The MRI signal is generated from the highly abundant protons in brain tissues in the form

of water or fat. Depending on the amount of protons in the tissue, the strength of the MR signal

varies. In the absence of a magnetic field, the magnetic moments of these protons are randomly

oriented. When a strong magnetic field is applied, they interact with the applied field and par-

tially align with the field behaving like tiny bar magnets. Due to this alignment, a small amount

of magnetization is created. Then using a radio frequency signal, a perturbation is introduced

to these protons and when it is removed, the protons will take some time (relaxation time) to

reposition. In the meantime, the observed magnetization will vary and it will gives rise to a

detectable signal in the MRI device. If the relaxation time is long, then the MR signal will be

strong and it will be weak otherwise.

The MRI technique was extended to fMRI in order to obtain information about the biolog-

ical functions of the brain in the 1990s [13]. The basic principle of the fMRI is defined as the

detection of changes in the level of oxygen in the blood. This is called the BOLD effect. When
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there is neuronal activation in the brain, the blood flow into that activated area increases as de-

manded by neurons to supply energy [14]. The energy needed is provided by supplying more

oxygenated blood. Thus, when a set of neurons activates, more oxyhaemoglobin (which is

diamagnetic) is delivered than deoxyhaemoglobin (which is paramagnetic). Oxyhaemoglobin

can be magnetized by applying an external magnetic field, in the same direction as the external

field (diamagnetic), and deoxyhaemoglobin can be magnetized by applying an external mag-

netic field, in the opposite direction of the external field (paramagnetic). Thus, the increase

of oxyhaemoglobin concentration will reduce the local magnetic field with a corresponding

increase in the MRI signal [15].

When the imaging techniques are being used, first the brain is divided into voxels, and data

are recorded for each of these voxels. There are millions of neurons in each of the voxels that

are collectively responsible for the observed BOLD signal. This signal oscillates with time as

shown in Figure 2.3. This particular time course was acquired from a brain at rest where the

subject was instructed to have eyes closed and not to be involved in any mental task.
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Figure 2.3: BOLD time course of a patch of cortex from a brain at rest.

2.3.2 Diffusion Tensor Imaging (DTI)

With the advent of MRI, brain imaging has benefited from sophisticated technologies. Imaging

techniques have been developed with more research and, in 1994, the first measurement of the

diffusion tensor in the human brain was made [16]. Following that finding, Diffusion Tensor

Imaging (DTI) was developed step by step to the point that now axonal fibers can be tracked

in the human brain in an accurate manner. DTI is considered a very reliable method to observe

the micro-structural changes in the brain, and it is becoming a popular technique because of

its high sensitivity to the changes at that level. However, there is continuous development to

increase the accuracy and the spatial resolution of DTI.

The fundamental principle behind DTI is the measurement of diffusion (the microscopic

random movements) of water molecules along the axonal fibers in the brain. Diffusion of wa-

ter is considered because water is an essential, as well as commonly present, source in our
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bodies, and 50-75% of the volume of our bodies is made up of water, reaching 75% in the

brain. This huge amount of water is distributed in blood, bones and tissues in the body, but

the amount of water the bones have is much less than that in blood or tissues. Due to the high

abundance of water in tissues, it is a helpful substance to track down information about the

micro-structure of the human body.

Water molecules diffuse as a result of thermal fluctuations. This diffusion is stimulated

by an applied magnetic field gradient and at the same time by interactions with neighbouring

molecules or atoms as well as interactions between molecules and cell membranes. Addition-

ally, it is influenced by the structure of these cells containing water [17]. As diffusion depends

on the structure, it is possible to visualize the diffusion of water inside the axons as well as

along the fibers, giving us the opportunity to track down the path of diffusion. White matter

is one type of matter in the brain which is made up of the axons of neurons in which water

molecules can diffuse more freely along the fiber than across the fiber. Thus, the studies of

diffusion in white matter will result in white matter tracts or fiber pathways. This kind of re-

sult could provide valuable information about the biological micro-structures of the brain [17].

Out of the several techniques available, one of the most commonly used DTI technique is

pulsed-gradient, spin-echo pulse sequence, echo-planar imaging [18]. It is an MR technique

that uses an additional magnetic field gradient. As described in the previous section, a strong

homogeneous magnetic field is applied continuously to acquire the MR image. In DTI, the

homogeneity of the magnetic field is disturbed using two magnetic field gradients of opposite

directions, applied one after the other with a time delay. When the first linear magnetic field

gradient is applied, the precession frequency of the protons will change depending on the mag-

nitude of the magnetic field gradient. When it is removed, protons will have different phases.

Then the next magnetic field gradient is applied with the same magnitude but in the opposite

direction to refocus the phases of protons. In between the application of these two pulses, if
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the protons’ movement is restricted, the second gradient will allow them to be refocused to the

same phase again. Thus the produced MR signal will be strong. However, if the water diffuses

in this time gap, the second gradient will not be able to restore the phase shifts that have been

created by the first gradient. Thus, it will produce a weak MR signal [19]. To produce a com-

plete signal using this technique, the diffusion gradient is applied to all the x, y and z directions

in DTI. Afterwards, applying the fiber tractography [20] technique to this diffusion data, the

details about the physical connections in the micro-structure of the brain could be extracted.

Figure 2.4 indicates the fiber tract orientation of the default mode network of the brain.

Figure 2.4: Lateral view of the white matter tracts in the brain, created by DTI. The colors, red,

blue and green represent the fibers along the x, y and z directions respectively in the cartesian

coordinates (DR Paula et al. in prep.)

2.4 Modelling the Brain

2.4.1 Kuramoto Model

The Kuramoto model was introduced by Yoshiki Kuramoto and used to model the synchro-

nization of coupled phase oscillators [21]. Phase oscillators are a type of oscillator whose
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states lie in the path of a circle where the phase is a variable. The model considers N number

of coupled phase oscillators with natural frequencies distributed in space with a defined prob-

ability density. The model considers two states, synchronized and anti-synchronized states.

In the synchronized state, all the phase oscillators, oscillate with the same frequency and in

the anti-synchronized state, they oscillate with different frequencies. The objective of the Ku-

ramoto model is to explain how the synchronized state and the anti-synchronized state of these

phase oscillators can be distinguished starting with a group of unsynchronized phase oscilla-

tors. These oscillators try to oscillate with their natural frequencies, but the coupling between

them always trys to synchronize the oscillations [22]. The globally coupled oscillators are

defined in the model using equation 2.1:

θ̇i = ωi +
K
N

N∑
j=1

sin(θ j − θi) (2.1)

where θi (θ̇i) and ωi are the phase (rate of change of the phase) and the natural frequency of the

ith oscillator respectively, and N is the total number of oscillators in the system, while K is a

constant related to the coupling in the system. There are some assumptions in the analysis of

the Kuramoto model which are:

1. All the oscillators are globally coupled (each oscillator affects every other oscillator).

2. Oscillators are identical except for their different natural frequencies [23].

Using this model, it has been found that there is a critical value for the coupling in the

system, and this critical value Kc, is such that for K < Kc the probability of the system being

synchronized is much less and when K increases past the Kc the number of oscillators synchro-

nized increases until all of them are synchronized [24]. This critical value was able to identify

a transition between an unsynchronized state and a synchronized state. However, the critical

coupling constant depends on the distribution of the natural frequencies of oscillators, which

adds another variability to the model.
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Nevertheless, the Kuramoto model has provided a mathematical basis to model some im-

portant phenomena in real life, like simulations of neurons in the brain by modeling the ob-

served oscillations in the BOLD signal. It is used to study some behavioural aspects of neurons

because of the limited variability of the states it has. Additionally, a synchronized behaviour

was also observed in neurons in the brain [25], which motivates the use of the Kuramoto model

to describe the synchronization phenomena in the brain. However, the outstanding problem is

that the model talks about a system that has a constant coupling parameter together with sinu-

soidal phase oscillations as is stated under the assumptions above. In addition to that, according

to the Kuramoto model, the natural frequencies of the oscillators follow the same distribution

all the time, which might not be applicable to the neural activations of the brain.

Generalized Kuramoto Model

Since the Kuramoto model was first introduced, it has been used in several areas of research,

including studying biological systems like the brain. When using the Kuramoto model to model

the dynamics of the brain, Deco and his group introduced some advancements to generalize the

model in order to better capture the effects of structural connectivity in the brain [26]. Two

changes they introduced to overcome the above indicated drawbacks and to generalize the

Kuramoto model were:

1. The coupling strength between each pair of oscillators was extracted using the white mat-

ter tracks of the brain. In other words, it was extracted from the structural connectivity

of the brain instead of being considered a constant.

2. The time delays of the oscillators were being scaled using the structural distance between

the corresponding regions of the brain.

By applying these changes to the original Kuramoto model, Deco et al. generated a rela-

tionship between the generalized Kuramoto model and the brain without keeping it completely



2.4. Modelling the Brain 17

isolated from the brain. Thus modelling the brain dynamics using the generalized Kuramoto

model became more relevant.

2.4.2 Ising model

Two dimensional (2D) Classical Ising Model

The classical Ising model was introduced by Wilhelm Lenz in 1920. The 1D Ising model was

solved by his student, Ernest Ising, in 1925, and the 2D Ising model (in the absence of an exter-

nal magnetic field) was solved by Onsager in 1944 [27]. The 2D Ising model was introduced to

explain the interactions of magnetic spins mathematically. The physical system (a magnet) is

represented by a lattice configuration in the Ising model. Each lattice site has a spin ’s’ which

could take only two possible values, either up (+1) or down (−1) (Figure 2.5). Thus, it is a

collection of +1 and −1s representing the spins. This configuration is kept in a thermal bath

of temperature T. Interactions between the spins are always influenced by this temperature and

allow the system to reach an equilibrium energy state while resulting in different equilibrium

spin configurations with different properties at different temperatures.
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Figure 2.5: Representation of a two-dimensional lattice arrangement. Each lattice site has a

spin, either up or down. The nearest neighbours of the lattice site in green are represented in

red.

The energy of this spin system at any state x in the absence of an external magnetic field

can be calculated using Equation 2.2:

E(x) = −J
N∑

i, j=nn(i)

sis j (2.2)

where J is the coupling constant, si and s j represent the spins of the ith and jth site respectively,

and N is the size of the lattice. For the calculation of energy in the Ising model, only the nearest

neighbour interactions are considered together with equal coupling (J = 1). The probability of

finding the system in the state x with energy E(x) is given by Equation 2.3:

P(x) =
1
Z

e
−

E(x)
kBT (2.3)

where kB is the Boltzmann constant, T is the temperature of the heat bath and Z is the partition

function. Equation 2.4 illustrates the partition function of the system which describes the

statistical properties of the spin system in thermodynamic equilibrium. The summation is over
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all possible 2N spin configurations.

Z =
∑
{x}

e
−

E(x)
kBT (2.4)

When a 2D lattice configuration is considered, there are two extreme equilibrium configura-

tions of spins it can hold, one for lower temperatures and the other one for higher temperatures.

When the temperature is very low, all the spins can be aligned along the same direction, with

very large clusters of the same spin, either up or down (ordered) resulting in high magnetiza-

tion even in the absence of an external magnetic field (Figure 2.6 (a)). In the other end, when

the temperature is very high, the spins are a mixture of up spins as well as down spins (disor-

dered) without any order which will result in zero magnetization (Figure 2.6 (c)). In between

these two extremes of temperature, there exists a critical temperature (Tc) [3] where the system

exhibits transition from ordered phase to the disordered phase (Figure 2.6 (b)). As the figure

illustrates, at this temperature there is a mixture of ordered spins as well as disordered spins.

Additionally, the system acquires its maximum susceptibility or the maximum change in mag-

netization at Tc. Even a single spin flip can change the entire system [28], and the perturbation

introduced by a single spin flip can spread over the entire system rapidly. Therefore, with dif-

ferent temperatures of the heat bath, the system could exhibit completely different properties

[27] which depend only on the temperature of the system.
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Figure 2.6: Representation of the equilibrium spin configuration for (a) T < Tc, (b) T = Tc and

(c) T > Tc for a two-dimensional lattice arrangement. Red color is for the up spins (+1) and

blue color is for the down spins (−1) [3].

To simulate the dynamics of the classical Ising model, the Metropolis Monte Carlo algo-

rithm is used. The Metropolis algorithm involves the construction of a new state based on the

current state of the system with a transition probability. It is used in the Ising model to find

the equilibrium energy state starting from a random spin configuration for a constant tempera-

ture. Monte Carlo simulations are used to describe or to solve systems which change in time

without any predefined dynamical pattern but depending on random numbers created along the

simulations [29]. These algorithms are used in the classical Ising model with the periodic

boundary conditions. Periodic boundary conditions were introduced to the system to restrain

the finite size effects. The application of these algorithms in order to construct the equilibrium

spin states, and then the time fluctuations of the spins for a range of temperatures, will be dis-

cussed in detail in the methodology section (Chapter 3).

An important question that arises next is why it is possible to use the dynamics of the Ising

model which were introduced by using the Metropolis Monte Carlo algorithm to explain the

dynamics of the brain. In the simplest way, spins of the Ising model can be considered as

equivalent to the BOLD activity in the brain with +1 for the activity higher than the baseline

activity and −1 for the activity lower than the baseline activity. Additionally, it is a very sim-
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ple model that explains the phase separation. Furthermore, Fraiman et al. [30] state the Ising

model can be used to explain the behaviour of the brain at the critical temperature because of

the similarities it has shown in its dynamics and the brain’s spatio-temporal patterns. The clas-

sical Ising model exhibits long range correlations at the critical temperature, which explains

the observed interactions of the spins that are spatially distant from each other. This fact can be

compared with the functional integration observed in the brain. The brain maintains a balance

between the functional integration and segregation in order to perform efficiently. As observed

in the behaviour of the brain, there are separate regions which are specialized to perform certain

functions. While functioning separately, these regions need to exchange information with each

other in order to function as a complete system. This process is explained as the functional

integration and can be compared with the long range correlations observed in the Ising model.

Thus the classical Ising model was chosen to model the oscillations observed in BOLD signal

for comparison.

Generalized Ising model

The generalized Ising model is an advancement from the classical Ising model. The general-

ization was performed by including the information related to the structure of the brain in the

classical Ising model following the work of Marinazzo et al. [31]. They implemented the gen-

eralized Ising model by using the structural connectivity of the brain, without introducing the

dynamics to the spins variables. By analysing the results they claimed that, the total informa-

tion transfer between spin variables in the model is maximized at the critical state. Similarly,

we implement the generalized Ising model using the structural connectivity; but in addition, we

introduce the dynamics to the spins using the Metropolis Monte Carlo algorithm. The method-

ology will be discussed in details in Chapter 3. However, there are two differences between the

classical Ising model and the generalized Ising model.
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1. According to the generalized Ising model, all the lattice points are interacting with all

the other lattice points with different strengths. This is true in the sense of the structure

of the brain. In the brain, there are some regions that are highly structurally connected

with larger numbers of fibers and some regions that are poorly connected.

2. When using Equation 2.5 to calculate the energy of the system, normalized structural

information is used for Ji j instead of equal coupling as in the classical Ising model (ex-

plained in detail in Chapter 3). Due to this modification, the strength of connection held

between two regions is taken into account by the generalized Ising model.

These two points are illustrated in Equation 2.5:

E(x) = −

N∑
i, j;i, j

Ji jsis j (2.5)

where Ji j is the coupling constant between the ith site and the jth site. The summation is over

all the sites, without the restriction of the nearest neighbour coupling as in the classical Ising

model.

However, due to these two modifications, the spin sites in the generalized Ising model has

a one-to-one relationship with the patches of cortices in the brain. Hence, it could be used to

study the dynamics of the brain not only on a global level, but also on a local level. Neverthe-

less, the classical Ising model, as described earlier, is a 2-dimensional model, and each spin site

has four nearest neighbours. But in the generalized Ising model, we propose that each region

is connected with every other region, resulting in each site having n - 1 (number of regions -

1) nearest neighbours. This makes the model more realistic because, as it is understood from

the structural connectivity data of the brain, there are connections between most of the regions

and not just between the nearest neighbours. Notice that, the dimension of the generalized

Ising model is unknown. However, in order to extract the effective dimension of the model, the
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critical exponents could be studied at the criticality.

All the observables in the classical Ising model behave according to the Equation 2.6 when

reaching the critical temperature, as explained by Lilian and Manuel in [32]:

O(T ) ∝|
T − Tc

Tc
| α (2.6)

where O(T ) is any observable, α is the critical exponent and Tc is the critical temperature.

Thus, we could find the critical exponents for all the observables, such as the magnetization,

magnetic susceptibility, specific heat, correlation function and correlation length. Those critical

exponents should follow the scaling relations given in Equation 2.7 as described in [32]:

(2 − η)ν = γ

ν

2
(η + d − 2) = β

2 − νd = α

(2.7)

where β, γ, α, η, ν are the critical exponents of magnetization, magnetic susceptibility, specific

heat, correlation function and correlation length, while d is the dimension of the system. There-

fore, by extracting the critical exponents of the generalized Ising model, we will be able to find

the dimensionality d of the generalized Ising model (Das et al., in prep.) using the above scal-

ing relations.

2.4.3 Generalized Kuramoto Model versus Generalized Ising model

As explained in the previous sections, the Kuramoto model takes a network of coupled oscil-

lators into account and finds a critical point in between the unsynchronized and synchronized

states of these coupled oscillators. The Ising model takes a spin configuration into account and

finds a critical state where the phase transition of the spins occurs from the ordered to disor-
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dered phase. Both of these phenomena at the critical states are compared with the dynamics of

the brain even though there is no one-to-one relationship between either of the oscillator or the

spin lattice sites and the position of the patch of cortex in the brain.

Sometime after the introduction of the Kuramoto model, it was generalized such that the

coupled oscillators represent the structural regions of the brain, as described in section 2.4.1.

The generalized Kuramoto model could give a detailed explanation of the functional networks

of the brain, starting with the structural connectivity [33]. However, as Deco et al. [26]

explained in the paper, the generalized Kuramoto model still has four main free parameters,

which are mean delay, global coupling strength and two standard deviations from two Gaus-

sian distributions (one modelled for the dispersion of oscillation frequencies and the other one

modelled for the noise of the local networks). Similarly, we are generalizing the Ising model

using the anatomical structure of the brain in place of the constant coupling in the classical

Ising model; but the model has only one controlling parameter, the temperature of the heat

bath.

2.5 Graph Theory

Graph theory is a mathematical tool that can be used to study networks with complex topolo-

gies. It reveals important information about the connectivities in terms of single units and sub

groups as well as a complete network. Graph theory has been used broadly to study highly

complex networks like the internet and air craft flight patterns as it is a simple tool, which ex-

plains the complexity of the subjected networks. Therefore, we use graph theoretical analysis

of the complex brain network. In this context, a graph is a network with source nodes and

edges that connect the nodes. Using graph theory to analyse the complex network of the brain

simplifies the analysis and provides a more general understanding. As Bullmore and Sporns

reviewed [34], the increasing demand of analysing more complex network structures is very
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well handled by the use of graph theory. The equivalent of an edge in a graph could be ex-

plained by a structural or functional connection in the brain network and a node by a region or

a collection of regions in the brain. There are several measures in graph theory being used to

study this complex connectivity.

The degree of a node in the network is one of the simplest measures. It is defined as the

number of links a node has and can be calculated using Equation 2.8:

ki =
∑
jεN

ai j (2.8)

where ki is the degree of the ith node, N is the number of nodes in the network and ai j is the

connection status between the ith node and the jth node (it is equal to 1 if the nodes are con-

nected and 0 if they are not, in a binary network) [35]. The degree averaged over all the nodes

is defined as the global degree of that network. An understanding about how dense or sparse

the network is could be gained from the average degree of the network.

Following that, we calculated the efficiency for these networks, which is discussed as a

measure of functional integration. The global efficiency of a binary network can be calculated

using Equation 2.9:

EFF =
1
n

∑
iεN

EFFi =
1
n

∑
iεN

∑
jεN, j , i d−1

i j

n − 1
(2.9)

where EFFi is the local efficiency, di j is the shortest path length between nodes i and j and

n is the total number of nodes in the network [36]. The efficiency of a network provides an

understanding about the information propagation through the network, or in other words, the

ability of the network to handle information integration.
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Equation 2.10 was used to calculate the small-world property for each network:

S =
C/Crand

L/Lrand
(2.10)

where C and Crand are the clustering coefficients, and L and Lrand are the characteristic path

lengths of the network being tested and a random network respectively. A random network

is created by preserving the degree distribution of the tested network. Small-world networks

are characterized by the average short path lengths and high clustering coefficients [37]. It

is a measure of the balance between information integration and segregation. Average path

length is a measure of integration which is defined as the average of shortest distance between

each pair of nodes. Clustering coefficient is a measure of the segregation or in other words it

measures the tendency of the nodes to cluster together. In neuroscience, it has been shown in

several analyses that the brain network shows small-world network properties, implying that

it maintains a balance between integration and segregation. Small-world networks often have

values greater than 1 for S [38, 35]; but the value of S could easily be misinterpreted without

knowing about the connectivity of the network. For an example, the average path length can be

very small for networks with lower number of edges and lower number of participating nodes.

Although the clustering coefficient can be high for these type of networks because of the small

number of nodes in the network. This can result in higher small-world property which stands

for an efficient network with a well balanced information integration and segregation.
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Methodology

3.1 Overview

In this chapter, we focus on the procedure for generating the two types of data sets we used:

brain data and simulations. In the first section, we would like to focus on the method of ex-

traction of the functional brain data from fMRI. The methodology used for the acquisition and

extraction of structural data using DTI will then be explained, followed by a section with a de-

tailed explanation of numerical simulations of the models. The acquisition and preprocessing

of fMRI data and DTI data was performed by Erik Ziegler (University of Liege, Liege, Bel-

gium). In section 3.3, we will describe the methodology for the simulation of the generalized

Ising model. The simulations of the classical Ising model will be described after that followed

by a description of the methodology used for the analysis of these data.

3.2 Empirical Data from MRI

3.2.1 Subjects

For the collection of data, 14 healthy subjects with mean age 43 ± 15 were studied, including

seven women. The study was approved by the Ethics Committee of the Medical School of the

27



28 Chapter 3. Methodology

University of Liege. In addition, informed approval to participate in the study was obtained

from all the subjects. From these healthy subjects, the resting state fMRI (rsfMRI) and DTI

data were acquired and preprocessed using the methods described below.

3.2.2 Acquisition & Preprocessing

Functional Data

Resting state BOLD data were acquired on a 3-T MR scanner with a gradient-echo echo-planar

imaging sequence using axial slice orientation and covering the whole brain (32 slices, voxel

size: 3 × 3 × 3 mm3; matrix size 64 × 64 × 32; repetition time = 2000 ms; echo time = 30

ms; flip angle = 780). Data preprocessing was performed using Statistical Parametric Mapping

(SPM) 8 (www.fil.ion.ac.uk/spm). Preprocessing steps included realignment and adjustment

for movement related effects, co-registration of functional images with structural images, seg-

mentation of structural data, spatial and functional normalization and spatial smoothing of the

fMRI data.

Segmentation of images for each subject was performed with the FreeSurfers Desikan-

Killiany atlas [39]. This atlas provides the ability to separate the brain into gyral-based regions

of interest (ROI) automatically. Thus using the atlas, the images could be segmented. Further

parcellation, using the Lausanne 2008 atlas and its 83 individually labelled regions, was done

with functions from the Connectome Mapping Toolkit [40, 41, 42]. The labels of the 83

regions are presented in Appendix C followed by a figure representing the 83 regions (Figure

.3).

Structural Data

Diffusion Weighted Images (DWI) were acquired from each subject, and the Fractional Anisotropy

(FA) maps which quantify diffusion-weighted effects at the voxel level were generated. After
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that, orientation distribution functions were obtained for each voxel. Probabilistic tractogra-

phy [43] was performed throughout the whole brain using randomly placed seeds inside a

subject-specific white-matter mask. The set of points representing each fiber track were then

affine-transformed into the subjects’ structural spaces which results in the connectivity maps.

Finally, connectivity matrices with the number of fibers connecting each of the 83 regions with

all the others were obtained for 14 subjects, and the normalized mean connectivity was used as

an input of the generalized Ising model.

3.2.3 Resting State Network (RSN) extraction

After using Independent Component Analysis (ICA) [44] for BOLD decomposition in an in-

dependent data set of 19 healthy controls, nine Resting State Networks (RSNs) were identified

in each subject, and an average template was created for each RSN. Subsequently, by setting

a separate threshold for each RSN, the region of interests (ROIs) out of the 83 parcellated re-

gions belonging to the network were extracted. Extracted ROIs for each network are presented

in Appendix D. Finally, the lines of the correlation matrix corresponding to each ROI for the

same RSN were averaged in order to obtain the linear-correlation maps plotted in Figure 4.9.

3.3 Numerical Simulations

3.3.1 Generalized Ising Model

The generalized Ising model was developed by starting with a 1D-random spin configuration

of lattice of size 83, which is assumed to be in contact with a thermal bath of temperature T.

The steps below have been followed according to the Metropolis Monte Carlo algorithm to

obtain the equilibrium spin configuration, for a particular temperature starting with random

spin states. The connectivity matrix used for the simulation of the generalized Ising model is

presented in Figure 3.1 (c).
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1. A random spin configuration was defined with the lattice size of 83.

2. Initial energy Ein of the system was calculated using Equation 2.5.

3. Next, one spin was selected randomly from the spin configuration and was flipped.

4. The new energy Enew was calculated.

5. Then Ein and Enew were compared.

• If Enew < Ein, the spin flip was accepted and the new configuration was considered

the initial configuration with Ein = Enew. Then the simulation was continued starting

from Step 3.

• If Enew > Ein, the Boltzmann factor B = e
−

∆E
kBT was calculated and a random num-

ber r was drawn from a normal distribution. Then these two values were compared.

– If B > r, the spin flip was accepted and Ein was replaced with Enew. Then the

procedure was repeated starting from Step 3.

– If B < r, the spin flip was rejected, and the simulation was started over from

Step 3.

The steps starting from Step 3 were repeated until we obtained an equilibrium spin configu-

ration with an equilibrium energy for a particular temperature. At the equilibrium state, energy

of the system fluctuates within a small range. The random configuration can evolve into this

state by following single-spin-flip dynamics as explained in the algorithm. This equilibrium

configuration was considered as the configuration at time t = 0. After that, by following the

Metropolis Monte Carlo simulations, the time evolution of the equilibrium spin configuration

was obtained as follows;

• Equilibrium spin configuration = the configuration at time t = 0.
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• Next, all the spins in the configuration were tested for flip by flipping one at a time

and comparing Ein and Enew to decide whether to accept or to reject the flip using the

Metropolis Monte Carlo algorithm. After all the spins had been checked, the new con-

figuration was considered the configuration at time t = 1.

• After that, all the spins of this new configuration were checked for flip as in the previous

step. When all the spins had been checked, the new configuration was taken as the

configuration at time t = 2.

• These steps were repeated until we found as many time points as needed to compare with

the empirical data.

By the end of this process, the time evolution of the spins for each spin site was obtained.

Using these time series data, and Equation 3.1, the correlation between each pair of sites in the

lattice was calculated:

ρi j =
< si(t)s j(t) > − < si(t) >< s j(t) >

σsi(t)σs j(t)
(3.1)

where ρi j is the correlation between the ith and jth spin time series, si(t) and s j(t) stands for the

spin time courses of the ith and jth region, σ2
si(t)

= < s2
i (t) > − < si(i) >2 and < . > is the average

over time.

Starting from a random configuration, this complete procedure was repeated for different

temperatures ”T” ranging from 0.5 to 3 in increments of 0.01. Additionally, kB was equated to

one, in the simulations. This was repeated for ten iterations, and data were recorded separately

each time. We performed the simulation for ten iterations to observe the effect of randomiza-

tion of the spins at the first step of the simulations. An illustration of the variation with respect

to the iteration is presented in Figure .1 in the Appendix B.
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Figure 3.1: Connectivity matrices used for the simulations of the classical Ising model (a) 9 ×

9 , (b) 10 × 10, and (c) the generalized Ising model.

During these simulations, the energy (E), magnetization (M) and susceptibility (χ) of the

system were calculated using Equations 2.5, 3.2 and 3.3 respectively at each temperature:

M =
1
N

N∑
i=1

si (3.2)

χ =
1

NT
[< M2 > − < M >2] (3.3)

where N = 83 and si is the spin of the ith region. Derivation of Equation 3.3 is presented in

[45]. These quantities were plotted as a function of temperature, and the susceptibility versus

temperature plot was used to extract the critical temperature (Tc), which gives the highest

susceptibility. Super critical (T > Tc) and sub critical (T < Tc) temperatures were chosen

relative to the critical temperature. The MATLAB code which was used for the simulations of

the generalized Ising model is attached in Appendix A.

3.3.2 2D Classical Ising Model

The classical Ising model was developed by following the same steps, and using Equation 2.2

instead of Equation 2.5 to calculate energy, which includes equal coupling as well as only the
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nearest neighbour interactions. The 2D Ising model was simulated using two lattice sizes 9× 9

(L = 9) & 10 × 10 (L = 10) which result in 81 and 100 spin sites respectively. These two sizes

were chosen to make the 2D Ising model comparable with the empirical data, which has 83

spin sites. Given this choice, two separate data sets were obtained for each lattice size with

temperature ranging from 0.5 to 4. The connectivity matrix used for the simulations of the

classical Ising model is presented in Figure 3.1 (a) and (b).

In a similar manner, Equations 3.2 and 3.3 were used to calculate the magnetization and

susceptibility of the system, where N = L × L in the classical Ising model. After extracting the

critical temperature for both of the lattice sizes, those values were verified using Equation 3.4

[32]:

Tc = (20.28) ×
1
L2 + 2.26 (3.4)

where L is the length of the square lattice (either 9 or 10).

3.4 Comparison of data

As explained in the previous sections, the functional correlation was obtained for the regional

parcellation of 83 regions in the brain using rsfMRI, which will be hereafter called the empiri-

cal data. The structural connectivity was obtained by the extraction of white matter tracts from

DTI. In addition to that, we generated three sets of data from the mathematical simulations of

the Ising model: one from the generalized Ising model using the structural connectivity, and

the other two sets from the classical Ising model for two different lattice sizes.

The mean data over the ten iterations were considered to perform our analysis. A compar-

ison of the correlations of the empirical data, generalized Ising model data and the classical

Ising model data was performed first. After observing the correlation maps for three different

temperatures, we calculated the Kolmogorov Smirnov (KS) test statistic at each temperature
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to find the temperature which minimizes the distance between two cumulative distributions for

each model. KS test is a non-parametric test which has been used to test two distributions. The

test statistic calculates the maximum distance between two cumulative distributions and this

has been used to find the temperature which minimizes the distance between two distributions

in our data. Thereafter, graph theoretical measures as explained in Chapter 2 have been used

to compare the classical Ising model and generalized Ising model data with the empirical data.

The results will be presented in the next chapter.



Chapter 4

Results

4.1 Overview

In this chapter, we will present our results obtained using the methodology explained in Chapter

3.

4.2 The Classical Ising model versus the Generalized Ising

model

Three correlation data sets were obtained by following the procedure explained in Chapter 3.

During the process of creating these, the energy, magnetization and susceptibility of the sys-

tems were calculated as a function of temperature. Hence, these quantities were plotted for the

classical Ising model, as well as for the generalized Ising model, as shown in Figure 4.1.

35
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Figure 4.1: Magnetization, susceptibility and Energy as a function of temperature for the Clas-

sical Ising model with (a) 9 × 9 and (b) 10 × 10 lattice size, and (c) the Generalized Ising

model. Red dashed line indicates the Tc.

The critical temperature was extracted in both models using the susceptibility versus tem-

perature plot (second row of the Figure 4.1). Relative to the critical temperature, a sub-critical

and a super-critical temperature was selected such that for both of the models the selected tem-

peratures maintain the same distance with the critical temperature (Table 4.1).

The equilibrium spin configurations were then obtained by following the Metropolis Monte
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Model T < Tc T = Tc T > Tc

Generalized Ising model 0.64 ± 0.06 1.79 ± 0.06 2.89 ± 0.06
Classical Ising model (9 × 9) 1.40 ± 0.10 2.55 ± 0.10 3.65 ± 0.10
Classical ising model (10 × 10) 1.35 ± 0.06 2.50 ± 0.06 3.60 ± 0.06

Table 4.1: Extracted temperature values for the three cases in the two models

Carlo Algorithm, and used to calculate the correlations among the spin sites. An illustration

of the correlations relative to the extracted three temperatures is presented in Figure 4.2 for the

classical Ising model and for the generalized Ising model.

Figure 4.2: Correlation at T < Tc,T = Tc, and T > Tc for the classical Ising model with (a) 9

× 9 and (b) 10 × 10 lattice sizes, and (c) the generalized Ising model.
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As the correlation matrix of the generalized Ising model at Tc did not match with the em-

pirical correlation matrix, another temperature was calculated using the well known KS test as

explained in the methodology. Figure 4.3 illustrates the KS test statistic which calculates the

distance between the distributions of the correlation for the empirical data, and the simulated

data at different temperatures, for the classical Ising model and for the generalized Ising model

as a function of temperature. Using these three plots, a new temperature T ∗, which minimizes

the distance between two distributions of data was extracted for each model. T ∗ for the classi-

cal Ising model for 9 × 9 was 2.63 and for 10 × 10 was 2.58, and T ∗ for the generalized Ising

model was 2.02.
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Figure 4.3: KS test statistic for the classical Ising model with (a) 9 × 9 and (b) 10 × 10

lattice sizes and (c) the generalized Ising model as a function of temperature. Red dashed line

indicates the critical temperature for each model.

The simulated correlation matrices for the classical Ising model and for the generalized

Ising model at T ∗ are shown in Figure 4.4.
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Figure 4.4: Simulated correlation matrices at T ∗ for the classical Ising model with (a) 9 × 9

and (b) 10 × 10 lattice sizes and (c) the generalized Ising model together with (d) the empirical

correlation matrix.

After determining T ∗, the distributions of correlations with respect to the extracted four

temperatures were plotted and are presented in Figure 4.5 with the distribution of correlation

for the empirical data. In the classical Ising model, correlation values at both the critical tem-

perature and T ∗ is similar to the empirical data even though they did not show a similarity of

the pattern in the correlation maps. For the generalized Ising model, correlation map at T ∗ is

more comparable with the empirical data in terms of the values of correlations as well as the

pattern observed in the correlation map.
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Figure 4.5: Distribution of the correlation at T < Tc,T = Tc,T > Tc and T = T ∗ for the

classical Ising model with (a) 9 × 9 and (b) 10 × 10 lattice sizes, and (c) the generalized Ising

model with the distribution of the correlation for empirical data (EMP). The frequency in the

y-axis is the normalized frequency.

Graph theoretical properties, such as the global degree and the global efficiency were cal-

culated as explained in the method section for these three types of data, after creating the

connectivity matrices. A range of thresholds were selected at first to create the connectivity

matrices. In Figure 4.6, the global degree is plotted as a function of the selected thresholds for

the positive and negative correlations with respect to the two models. When the positive cor-

relation is considered, the generalized Ising model shows a similar behaviour to the empirical

data at T ∗. However, the average degree of the positively correlated networks at Tc or T ∗ in the

classical Ising model deviates from that of the empirical data than the generalized Ising model.
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Figure 4.6: Variation of the average degree as a function of the threshold. Top three panels

give the average degree with positive correlation for the (a) Classical Ising model: 9 × 9, (b)

Classical Ising model: 10 × 10 and (c) Generalized Ising model. The bottom three panels

show the average degree for the negative correlation for (d) Classical Ising model: 9 × 9, (e)

Classical Ising model: 10 × 10 and (f) Generalized Ising model.

The correlations were binarized after selecting a threshold, and the global degree and global

efficiency were calculated for a binary graph as a function of temperature (Figure 4.7). These

quantities were plotted for three different thresholds along with the results from the empirical

data. It is evident in these plots, for the generalized Ising model the maximum average degree

and the efficiency were obtained near the T ∗ value. For the classical Ising model, the maximum

values were obtained near the critical temperature. In these figures, the same quantities for the

empirical data are plotted as straight lines for the three different thresholds.
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Figure 4.7: Graph theoretical properties as a function of temperature for the classical Ising

model with (a) 9 × 9 and (b) 10 × 10 lattice sizes, and (c) the generalized Ising model. The

thick solid line represents threshold = 0, the dashed line represents threshold = 0.07 and the

thin solid line represents threshold = 0.14. The black lines represent the properties of the

empirical data for the above thresholds. The red and green vertical lines represent the Tc and

T ∗ respectively.

In Figure 4.8, the connectivity graphs of these networks, which were extracted from the

generalized Ising model, have been plotted for the four temperatures along with the empirical

brain network. These maps were created by binarizing the correlation matrices at each temper-
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ature by applying a threshold. That allows to determine which regions are connected and which

are not connected. In these graphs, each point represents a brain region and in this study there

were 83 regions. It can be seen that the connectivity in the network grows as the temperature

reaches T ∗ and has reduced at T > Tc. Furthermore, when the euclidean distances between

these four graphs and the empirical graph were calculated, the connectivity graph at T ∗ resulted

the lowest distance of 5.1 while the distances for the graphs at T < Tc, T = Tc and T > Tc

resulted in 8.1, 7.1 and 7.0 respectively. The connectivity graphs could not be implemented for

the classical Ising model as there was no one-to-one match between the regions of the classical

Ising model and the regions of the brain.
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T=T* Empirical Data

T < Tc T = Tc T > Tc

Figure 4.8: Connectivity graphs for the generalized Ising model for four temperatures, along

with the connectivity graph of the empirical network, thresholded at 0.07. The color and the

size of the nodes represent the degree. The darker the color and larger the size, the higher the

degree of each node in the network.

Figure 4.9 illustrates the correlation maps of the 9 RSNs extracted from the generalized

Ising model for four different temperatures, as well as the RSNs extracted from the empirical

data. From these maps, it is evident that the correlation of the corresponding regions of each

network emerges from the generalized Ising model at T ∗ rather than at Tc as observed in the

brain maps of the empirical data.
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Figure 4.9: Brain maps of the resting state networks in generalized Ising model at four different

temperatures, together with the empirical brain networks. Networks: DMN = Default Mode

Network, ECN l = External Control Network left, ECN r = External Control Network right,

Visua o = Visual Occipital Network, Visual m = Visual Medial Network, Visual l = Visual

Lateral Network.
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Discussion and Conclusions

The square lattice Ising model is one of the simplest models by which to show phase transition

at the critical temperature. Using this simple model, it has been shown that a brain at rest could

be simulated at the critical temperature of the model where the phase transition occurs [30].

This was justified by observing the behaviour of the model at the critical temperature which

has a mixture of ordered and disordered states with long range correlations comparable with

the brain’s information integration and segregation. Thus we chose the two dimensional square

lattice Ising model in our simulations. The simulations include two lattice sizes, 9 × 9 and

10 × 10 which were chosen because they result in 81 and 100 spin sites respectively, which

then could be compared with the brain’s 83 parcellations even though there is no one-to-one

match. As expected, both of these configurations show the phase transition at the extracted crit-

ical temperature, which was validated with the prior results using the Equation 3.4 in Chapter 3.

We determined the critical temperature of the 2D classical Ising model from its magnetic

susceptibility versus temperature graph as described in the methodology. The critical tempera-

ture value resulting from these plots agrees with the critical temperature described in [32] for

the two lattice sizes 9 × 9 and 10 × 10. The behaviour of the energy and magnetization with

temperature also agrees with previous results for the classical Ising model showing a phase

46
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transition at the critical temperature.

Comparisons between the correlation in each model provide an overall insight into the data.

As the classical Ising model is a more general model and does not have any spatial correspon-

dence with the human brain, this model could be a good global measure by which to interpret

the data. The nearest neighbour coupling is evident in the correlation maps of the classical

Ising model shown in Figure 4.2. On the other hand, structural connectivity enhances the cor-

relation patterns observed in the generalized Ising model in the same figure. As evident from

the correlation maps, at T < Tc the correlations are almost zero which is controversial to the

fact that at low temperatures the spin configurations are ordered. If they are ordered, they

should be highly correlated in terms of the spin time series due to the fact that they are highly

unlikely to flip when tested for flip. Thus there will not be a variation of the spins as a function

of time. When we use the Equation 3.1 to calculate the correlation of such two time series, the

result will be undefined because of zero variance which is the denominator of the equation. To

overcome this result, we added noise to the spin time series and when the correlation is calcu-

lated for such two noises it results in zero correlation, which explains the correlation maps for

T < Tc. Furthermore, when the correlation maps of the generalized Ising model were analysed

as a function of temperature, at Tc it did not provide a very good match with the empirical

correlation. Thus, the distance between the correlation distributions were taken into account to

find a temperature that minimizes the distance between the two cumulative distributions, and

the results suggest that temperature is greater than Tc for the generalized Ising model. The

analysis was continued by considering Tc as well as the new temperature T ∗. The generalized

Ising model gives a better match with the empirical correlation at T ∗ (Figure 4.4).

As expected, the distribution of the correlation in the classical Ising model shows a good

match with the empirical data as it describes the global behaviour of the function. At Tc and T ∗

the models show some positive correlation that emphasizes the formation of clusters. From the
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neurobiological perspective, neurons communicate with each other every second. The separate

regions of the brain cannot work independently (even though they are structurally separated).

Thus, they create clusters and networks to increase functional segregation, resulting in the

positive correlation observed for the empirical data in Figure 4.5. On the other hand, the gener-

alized Ising model does not show the expected behaviour at the critical temperature, which was

determined from the susceptibility peak. However, it shows positive correlations as observed

in empirical data at T ∗.

We followed a data driven strategy to extract the graph theoretical networks from the corre-

lation data. To do this, a threshold has to be selected such that it will allow accurate visualiza-

tion of the networks. Thus, the thresholds play an important role in creating the networks using

the correlations. From Figure 4.6, it is evident that the higher the threshold, the sparser the net-

work will be as the average degree reduces as a power law while the threshold increases. Even

though the classical Ising model acquires the maximum possible degree at the critical temper-

ature, or at T ∗ with zero threshold, the generalized Ising model and the empirical network do

not achieve such. This verifies the mixture of both positive and negative correlations observed

for the fMRI data and generalized Ising model data in Figure 4.5. However, calculated global

variables, such as the average degree and global efficiency, verify the match between the empir-

ical data and the generalized Ising model at T ∗, resulting in the highest functional integration

measures.

Additionally, small-worldness plotted as a function of temperature in Figure 4.7 provides

confirmation of the idea that the brain represents a small-world network with high clustering

and low characteristic path lengths, representing high integration and segregation as described

in [34, 35]. When the temperature reaches Tc for the classical Ising model and T ∗ for the

generalized Ising model, both of the models converge to small-worldness as exhibited by the

dynamical function of the brain. This small-world property depends on the clustering coeffi-
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cient and the characteristic path length of the network being considered and a random network,

as explained in Equation 2.10. The random network was created by preserving the degree dis-

tribution of the tested network to calculate the small-worldness. To explain the behaviour of

the small-world property, clustering coefficients and the average path lengths are plotted as a

function of temperature in Figure .2 in Appendix B. As the figure illustrates, even though the

clustering coefficient is the highest at Tc or T ∗ for the models, the ratio of C/Crand clearly shows

a peak at a temperature less than Tc for the classical Ising model. However the ratio gives

a minimum around Tc or T ∗. On the other hand, when we consider the average path length,

it clearly minimizes at Tc or T ∗ as expected. Nevertheless, due to a higher number of nodes

governed by few connections, the average distance increases in the T < Tc region. These facts

result in the higher small-worldness for T , Tc or T ∗ as seen in Figure 4.7.

The connectivity graphs of the generalized Ising model allow its visualization. When the

graph at Tc and the graph of empirical data is compared, it is evident that the generalized Ising

model does not exhibit similar behaviour with the empirical data as expected at the Tc (Figure

4.8). However, this implies that at T ∗ it creates more connections and the connectivity of the

network is similar to that of the functional brain network. This result provides a platform for

building the relationship between the structure and function of the brain, as the generalized

Ising model was built based on structural connectivity (see the methodology).

Furthermore, studies of the resting state of the brain have provided information regarding

possible functionally specialized resting state networks (RSNs). Figure 4.9 shows the brain

maps of those nine resting state networks for the empirical data as well as for the simulated

data, which shows a direct correspondence between the two types of data at T ∗. Being able

to extract these correlations with respect to the RSNs provide insight to the higher correlation

lengths which allow the interactions between regions at a distance from each other, exhibited

by the generalized Ising model. However, Figure 4.8 and 4.9 were created only for the gen-
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eralized Ising model as it takes the 83 parcellations of the brain into account and the classical

Ising model does not have any correspondence with the spatial parcellations of the brain.

Even though the Classical Ising model is able to explain the behaviour of the brain at the

global level without any spatial specification, we need a better model to predict the connectivity

of the structure and the function of the brain in a spatially accountable manner. As introduced in

this research, the generalized Ising model better predicts the functional behaviour of the brain

in relation to spatial positions of the brain than the classical Ising model. Additionally, the

generalized Ising model, together with graph theory, is proven to facilitate the understanding

of the relationship between the structure and the function of the brain. However, as discussed,

the generalized Ising model provides the best fit for the empirical data at T ∗, which is different

from the critical temperature (Tc) which can be explained as below.

As observed in Figure 4.2, the classical Ising model resulted in positive correlations at Tc

while the generalized Ising model had the majority of the correlations equal to zero at Tc. This

was verified in Figure 4.5 with the mean of the distribution of correlation lying at zero for the

generalized Ising model at Tc, while it was non-zero for the classical Ising model. However, at

T ∗ the generalized Ising model was able to acquire the desired non-zero correlations similar to

the empirical data (Figure 4.4), and the mean of the correlation distribution was shifted to 0.2

giving a better match with the empirical data which has a mean correlation of 0.3. Therefore, it

could be sufficient to have only the critical temperature for the classical Ising model to obtain

non-zero correlations as observed in the empirical data. However, to reproduce the behaviour

of the empirical data the generalized Ising model should have an optimum temperature (T ∗) as

well as a given structural connectivity.
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5.1 Future Directions

This research on the generalized Ising model was carried out together with graph theory only

for healthy subjects. The results of this research demonstrate the possibility of applying this

methodology to investigate the brain function of patients suffering from brain disorders due to

severe brain injuries. The study would show the changes occurring in the functional activity of

the brain through the changes in structural connectivity, which are extracted using DTI from

patients. The comparison of the data between healthy subjects and patients would direct us to

explore the connections necessary for rehabilitation of the injured brain. This could be very

relevant in understanding the mechanism necessary to re-establish a normal structure-function

relationship after injury and help in guiding the treatments for recovery of these patients.
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.1 Appendix A: MATLAB code for simulations of the gener-

alized Ising model

(The code was modified from a previous version written by Dr. T. K. Das)

%==================================================================

%
% Monte C a r l o Methods f o r t h e e v a l u a t i o n o f t h e thermodynamic
% p r o p e r t i e s o f t h e g e n e r a l i z e d I s i n g model w i th c o u p l i n g d e f i n e d
% by t h e c o n n e c t i v i t y m a t r i x o b t a i n e d from DTI
% =================================================================

c l e a r a l l ;

l o a d M J a l l . mat ;

MJ = MJ al l mn ( : , : ) ;
J = MJ . / max ( max (MJ ) ) ; % N o r m a l i z i n g t h e c o u p l i n g

N = 8 3 ; % Dimension of t h e c o n n e c t i v i t y m a t r i x

% S e l e c t i o n o f t h e r a n g e of t e m p e r a t u r e f o r t h e model
temp = 0 . 5 : 0 . 0 1 : 3 . 0 1 ;

[m1 , m2]= s i z e ( J ) ;
t i m e c o r r =198; % P r e d e f i n i n g t h e number o f t ime p o i n t s needed

% P r e d e f i n i n g t h e number o f f l i p s needed t o e q u i l l i b r a t e
t e q =m1∗m2∗100 ;

n o f l i p = t e q ; % No of f l i p a t each t e m p e r a t u r e

% O b t a i n i n g t h e e q u i l l i b r i u m c o n f i g u r a t i o n n o b i n t i m e s
n o b i n = 5 ;

% A c o o r d i n a t e m a t r i x i s g e n e r a t e d from random p e r m u t a t i o n o f N
r a n d c o o r d = randperm (N ) ;

c o u n t = 0 ;
t e m p l e n = l e n g t h ( temp ) ;
Ener = z e r o s ( 1 , t e m p l e n ) ;
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Mag = z e r o s ( 1 , t e m p l e n ) ;
Spec Hea t= z e r o s ( 1 , t e m p l e n ) ;
Sus = z e r o s ( 1 , t e m p l e n ) ;
Corr DTI = z e r o s (N, N, t e m p l e n ) ;
S = z e r o s (N, t i m e c o r r , t e m p l e n ) ;

f o r T = temp ;

% I n i t i a l s p i n c o n f i g u r a t i o n
s p i n v e c = ( r and (N, 1 ) > 0 . 5 ) ∗2 − 1 ;

c o u n t = c o u n t + 1 ;
mag = sum ( s p i n v e c ) ;
f o r b = 1 : n o b i n ;

ener sum = 0 ;
e n e r s q r s u m = 0 ;
mag sum = 0 ;
mag sqr sum = 0 ;
nn = 0 ;
f o r i = 1 : n o f l i p ;

% Run t h r o u g h t h e N p o i n t s o f t h e c o o r d i n a t e m a t r i x once , and
% when t h e c o u n t e r i s l a r g e r t h a n N, i t goes back t o t h e f i r s t
% p o i n t , and t h e c o o r d i n a t e i s r e r a n d o m i z e d b e f o r e i t i s c a l l e d
% upon . Th i s e n s u r e s t h e random b u t u n iq ue c h o i c e o f i n d e x when
% c h e c k i n g t o f l i p .

nn = nn + 1 ;
i f ( nn > N ) ;

nn = nn−N;
r a n d c o o r d = randperm (N ) ;

end
F l i p = r a n d c o o r d ( nn ) ;

% Compute t h e change i n e ne r gy
dE=0;
f o r j =1:N

i f ( j ˜= F l i p )
dE = dE + J ( F l i p , j )∗ s p i n v e c ( j ) ;

end
end
dE=2∗dE∗ s p i n v e c ( F l i p ) ;

% D e s i d i n g whe the r t o a c c e p t o r r e j e c t t h e f l i p
i f ( dE <= 0 ) ;

s p i n v e c ( F l i p ) = − s p i n v e c ( F l i p ) ;
mag = mag + 2∗ s p i n v e c ( F l i p ) ;

e l s e i f ( r and <= exp (−dE / T ) ) ;
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s p i n v e c ( F l i p ) = − s p i n v e c ( F l i p ) ;
mag = mag + 2∗ s p i n v e c ( F l i p ) ;

end
e n e r = 0 ;
f o r i i = 1 :N;

f o r j j = i i +1:N
e n e r = e n e r − J ( i i , j j )∗ s p i n v e c ( i i )∗ s p i n v e c ( j j ) ;
end

end
ener sum = ener sum + e n e r ;
mag sum = mag sum + mag ;
e n e r s q r s u m = e n e r s q r s u m + e n e r ˆ 2 ;
mag sqr sum = mag sqr sum + mag ˆ 2 ;

end
ener mean ( b ) = ener sum / n o f l i p ;
mag mean ( b ) = mag sum / n o f l i p ;
e n e r s q r m e a n ( b ) = e n e r s q r s u m / n o f l i p ;
mag sqr mean ( b ) = mag sqr sum / n o f l i p ;
s p e c h e a t m e a n ( b ) = ( e n e r s q r m e a n ( b ) −( ener mean ( b ) ) ˆ 2 ) / N / T ˆ 2 ;
sus mean ( b ) = ( mag sqr mean ( b ) −( mag mean ( b ) ) ˆ 2 ) / N / T ;

end
Ener ( c o u n t ) = mean ( ener mean ) / N ;
Mag( c o u n t ) = mean ( mag mean ) / N ;
Spec Hea t ( c o u n t )= mean ( s p e c h e a t m e a n ) / N ;
Sus ( c o u n t )= mean ( sus mean ) / N ;

% G e n e r a t i n g 198 t ime p o i n t s f o r each of t h e s p i n s i t e s

mm = 0 ;
f o r j j = 1 : t i m e c o r r ;

f o r i = 1 :N;
% Compute t h e change i n e ne r gy
mm = mm + 1 ;
i f (mm > N ) ;

mm = mm−N;
r a n d c o o r d = randperm (N ) ;

end
F l i p = r a n d c o o r d (mm) ;
dE = 0 ;
f o r j =1:N

i f ( j ˜= F l i p )
dE = dE + J ( F l i p , j )∗ s p i n v e c ( j ) ;

end
end
dE=2∗dE∗ s p i n v e c ( F l i p ) ;
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% D e s i d i n g whe the r t o a c c e p t o r r e j e c t t h e f l i p
i f ( dE <= 0 ) ;

s p i n v e c ( F l i p ) = − s p i n v e c ( F l i p ) ;
e l s e i f ( r and <= exp (−dE / T ) ) ;

s p i n v e c ( F l i p ) = − s p i n v e c ( F l i p ) ;
end

end

% t i m e p o i n t s x s p i n s i t e s x t e m p e r a t u r e
S ( : , j j , c o u n t )= s p i n v e c ;

end

% C o r r e l a t i o n m a t r i x
Corr DTI ( : , : , c o u n t )= c o r r c o e f ( s q u e e z e ( S ( : , : , c o u n t ) ) ’ ) ;
Sus ( c o u n t )= mean ( sus mean ) / N ;
d i s p l a y ( [ num2s t r ( c o u n t ) ] )

end
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.2 Appendix B: Supplementary figures
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Figure .1: Variation of the degree in node 20 for different simulations of the Classical Ising

model (a). 9 × 9 ,(b). 10 × 10 and (c). the Generalized Ising model. µ represents the mean

degree over realizations for the same node.

Figure .1 was plotted to observe the variations in local degree (degree of a single node) as we

repeat the simulations ten times starting with a different initial spin configurations always. It

shows a higher variance in the mean degree of the selected node for the classical Ising model

than the generalized Ising model. The low variance observed in the generalized Ising model

can be explained from the well defined structural connectivity used in the simulations of the

model which was extracted from DTI.
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Figure .2: Clustering coefficient (C) and the average path length (L) of the tested network and a

random network with the ratio for C/Crand and L/Lrand respectively as a function of temperature

for the Classical Ising model (a) 9 × 9 ,(b) 10 × 10 and (c) the generalized Ising model.

Figure .2 was plotted to explain the behaviour of the small-worldness as a function of

temperature in the models. Following equation was used to calculate the clustering coefficient:

C =
1
n

∑
iεN

Ci =
1
n

∑
iεN

2ti

ki(ki - 1)
(1)

where Ci is the clustering coefficient of the ith node, ki is the degree of node i, n is the number

of nodes in the network and ti is the number of triangles around node i. Average distance for
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the netwrok can be calculated using Equation 2:

L =
1
n

∑
iεN

Li =
1
n

∑
iεN

∑
jεN, j , i di j

n − 1
(2)

where Li is the average distance of the ith node, n is the number of nodes in the network and di j

is the shortest path length between the ith and the jth nodes.
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.3 Appendix C: Labels of 83 Parcellations of the Brain

Right hemisphere

1. lateral-orbito-frontal

2. pars-orbitalis

3. frontal-pole

4. medial-orbito-frontal

5. pars-triangularis

6. pars-opercularis

7. rostral-middle-frontal

8. superior-frontal

9. caudal-middle-frontal

10. pre-central

11. para-central

12. rostral-anterior-cingulate

13. caudal-anterior-cingulate

14. posterior-cingulate

15. isthmus-cingulate

16. post-central

17. supra-marginal

18. superior-parietal

19. inferior-parietal

20. precuneus

21. cuneus

22. pericalcarine

23. lateral-occipital

24. lingual

25. fusiform

26. para-hippocampal

27. entorhinal

28. temporal-pole

29. inferior-temporal

30. middle-temporal

31. bankssts

32. superior-temporal

33. transverse-temporal

34. insula

35. thalamus-proper

36. caudate

37. putamen

38. pallidum

39. accumbens-area

40. hippocampus

41. amygdala
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Left hemisphere

42. lateral-orbito-frontal

43. pars-orbitalis

44. frontal-pole

45. medial-orbito-frontal

46. pars-triangularis

47. pars-opercularis

48. rostral-middle-frontal

49. superior-frontal

50. caudal-middle-frontal

51. pre-central

52. para-central

53. rostral-anterior-cingulate

54. caudal-anterior-cingulate

55. posterior-cingulate

56. isthmus-cingulate

57. post-central

58. supra-marginal

59. superior-parietal

60. inferior-parietal

61. precuneus

62. cuneus

63. pericalcarine

64. lateral-occipital

65. lingual

66. fusiform

67. para-hippocampal

68. entorhinal

69. temporal-pole

70. inferior-temporal

71. middle-temporal

72. bankssts

73. superior-temporal

74. transverse-temporal

75. insula

76. thalamus-proper

77. caudate

78. putamen

79. pallidum

80. accumbens-area

81. hippocampus

82. amygdala

83. brainstem (does not belong to the right or the left hemisphere)
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Figure .3: Brain maps for four different views of the 83 parcellations in the brain.
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.4 Appendix D: Representation of the Resting State Networks
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Figure .4: Representation of the resting state networks in the brain: (a) lateral view of the left

hemisphere, (b) lateral view of the right hemisphere, (c) medial view of the left hemisphere

and (d) medial view of the right hemisphere. Red indicates the regions belong to the network

and blue indicates the regions which does not belong to the network.
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Figure .5: Representation of the resting state networks in the brain: (a) lateral view of the left

hemisphere, (b) lateral view of the right hemisphere, (c) medial view of the left hemisphere

and (d) medial view of the right hemisphere. Red indicates the regions belong to the network

and blue indicates the regions which does not belong to the network.
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