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Abstract

Dielectric elastomer transducers with large deformation, high energy output, light weight

and low cost have been drawing great interest from both the research and industry

communities, and shown potential for versatile applications in biomimetics, dynamics,

robotics and energy harvesting. However, in addition to multiple failure modes such as

electrical breakdown, electromechanical instability, loss-of-tension and fatigue, the

performance of dielectric elastomer transducers are also strongly influenced by the

hyperelastic and viscoelastic properties of the material. Also, the interplay among these

material properties and the failure modes is rather difficult to predict. Therefore, in order

to provide guidelines for the optimal design of dielectric elastomer transducers, it is

essential to first develop accurate and reliable models, and efficient numerical methods to

investigate their performance.

First, this thesis purposes a boundary-constraint method to eliminate the

electromechanical instability of dielectric elastomer actuators under voltage-control

loading condition and improve their actuation deformation. Second, based on the finite-

deformation viscoelasticity model, the natural frequency tuning process of viscoelastic

dielectric elastomer resonators is examined in this work. It is found that the tuned natural

frequency is highly affected by the material viscoelasticity. Also, it is concluded that the

electrical loading rate only influences the tunable frequency range and the safe operation

voltage of the resonator, but not the tuned natural frequency when the applied voltage is

within the safe range. Third, with the finite-deformation viscoelasticity model, the energy

conversion efficiency of dielectric elastomer generators under equi-biaxial loading is also

investigated in this work. Simulation results show that increasing the maximum stretch

ratio and the rate of deformation, and choosing a proper bias voltage can lead to an

improvement of the energy conversion efficiency. Furthermore, the fatigue life of

dielectric elastomer devices under cyclic loading is explored in this work for the first time.

Simulation results have demonstrated that the energy conversion efficiency of dielectric

elastomer generators is compromised by their fatigue life.



iii

To tackle the critical challenges for the development and design of dielectric elastomers

transducers, this research develops theoretical models and numerical methods that are

able to capture the nonlinear electromechanical coupling, the material properties, the

typical failure modes and different operating conditions of dielectric elastomer

transducers. With more accurate and reliable modeling methods, this work is expected to

provide a comprehensive understanding on the fundamentals and technologies of

dielectric elastomer transducers and trigger more innovative and optimal design of such

devices.

Keywords

Dielectric elastomer transducers, electromechanical instability, boundary constraints,

electrical breakdown, viscoelasticity, frequency tuning, energy harvesting, fatigue.
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Chapter 1

1 Introduction

1.1 Dielectric elastomers

Dielectrics are insulating materials that can be polarized when subject to an electric field.

As a category of dielectrics, dielectric elastomers (DEs) are soft electroactive materials

that can be developed as electromechanical transducers and convert energy from one

form to another. When acting in the actuator mode, DEs transduce electrical energy to

mechanical energy, while they can also convert (mechanical energy to electrical energy

in a reverse mode, i.e., generator mode). Crosslinked above the glass transition

temperature of polymer materials, dielectric elastomers have lower shear moduli (a few

kilopascal) and are more mechanically compliant compared with the stiff or hard

dielectrics with moduli of a few gigapascal and achievable strains typically less than 1%

(like piezoelectric crystals and ceramics) (Carpi et al., 2008; Saito et al., 2004). Under an

applied voltage, DEs are capable of undergoing large voltage-induced deformation over

100% (Pelrine et al., 2000). Due to their large deformation capability, high energy

density, softness and flexibility, DEs have been developed and explored for applications

such as artificial muscles, programmable haptic surfaces, conformal loudspeakers, energy

harvesters, tunable lens, soft robots, sensors of force and pressure, active noise control

devices, oscillators, resonators and adaptive optical elements (Carpi et al., 2008; Heydt et

al., 2006; Huang et al., 2013; Karsten et al., 2013; Kornbluh et al., 2002; McKay et al.,

2010; O’Halloran et al., 2008; Pelrine et al., 2002).

As shown in Figure 1.1, the basic element of a DE-based transducer is a dielectric

elastomer membrane coated with two compliant electrodes on its two surfaces. When

subject to a voltage , most of opposite charges from the power source accumulate on

the compliant electrodes while part of them leak through the membrane due to the defects

or impurities in the elastomer. The opposite charges accumulating on the electrodes

induce an electric field and polarize the electric charges in the DE, which then induces
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attractive electrostatic forces that make the DE membrane contract along thickness and

expands in area. Depending on particular device  applications, the basic element of a DE

transducer shown in Figure 1.1 can be further developed into different configurations

such as tube, plate, stacks, extenders, roll, bimorphs, unimorphs, etc (see Figure 1.2)

(Kornbluh et al., 2002; Pei et al., 2004; Carpi et al., 2007; Cameron et al., 2008; Ahmadi

et al., 2013; Biggs et al., 2010).

Figure 1.1 Actuation of a dielectric elastomer.

Figure 1.2 Dielectric elastomers in different configurations (Kornbluh et al., 2002).
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1.2 Large deformation capability and typical failure modes

of dielectric elastomers

Among the merits of DEs, their large-deformation capability draws most interest from the

research communities and shows promise for various applications. However, it has been

found that the voltage-induced deformation of DEs is strongly affected by multiple

failure modes (Pelrine et al., 1998; Kofod et al., 2003; Plante and Dubowsky 2006;

Wissler et al., 2007). In addition to the material rapture, the actuation of DEs is also

limited by electrical breakdown (EB) failure like any other dielectric materials (Huang et

al., 2012a; Plante and Dubowsky 2006). Electrical breakdown occurs when the electric

field induced by the applied voltage exceeds the dielectric strength of the material. In

fact, determining the dielectric strength of DEs has always been challenging since

experiments have shown that they are influenced by quite a few factors. Huang et al.

(2012a) and Gatti et al. (2013) observed that the dielectric strength of DEs monotonically

increased with the increasing stretch ratio while decreased with the increasing thickness.

Sheng et al. (2012) found that the dielectric constant of DEs is non-monotonic to the

temperature. Also, Trols et al. (2013) reported that even the configuration of the

electrodes on the DEs and the loading rate of the applied voltage have an significant

effect on the dielectric strength of DEs. Since the mechanisms behind these phenomena

are still not well understood, a constant dielectric strength is commonly assumed in the

theoretical analysis on DEs.

As shown in Figure 1.1, the compliant electrodes coated on the DE membrane exert no

constraint to both the top and bottom surfaces. When an electric voltage is applied to the

electrodes, the induced electric field along the thickness direction forces the

unconstrained DE membrane to contract in thickness and stretch in area. The thickness

reduction of the DE membrane in turn causes a higher electric field under the same

applied voltage, resulting in a higher attractive electrostatic force to further thin down the

DE membrane. At a particular level of the applied voltage, this feedback mechanism may

lead to excessive thinning of the DE and result in the electromechanical instability (EMI)

(or pull-in instability) (Plante and Dubowsky 2006; Keplinger et al., 2012). Depending

on the dielectric strength of the DE, this excessive thinning may cause a premature
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electrical breakdown, or result in a desirable large deformation. To illustrate this

phenomenon, Figure 1.3 (Koh et al., 2011) shows a typical electromechanical response

curve (the applied voltage  versus the equi-biaxial stretch ratio ) and an electrical

breakdown curve (the electrical breakdown voltage B versus ) of a DE membrane

under a monotonically increasing voltage. As the stretch ratio increases, the applied

voltage first increases, reaches a peak (the onset of EMI), then drops to a trough and

dramatically rises when the DE is close to its extensibility. On the contrary, the electrical

breakdown curve is monotonic to the stretch ratio. Thus there are three possibilities for

the interaction of these two curves. In Figure 1.3(a), as the applied voltage reaches the

level of the breakdown voltage (the intersection point) before the peak, the actuation of

DE fails by the electrical breakdown. For Figure 1.3(b) and (c), the applied voltage

reaches the peak before the electrical breakdown occurs. Right after the peak, the stretch

ratio snaps to the other side of response curve (dotted arrow) since the interval between

the peak and trough is proven to be unstable by a perturbation analysis (Leng et al., 2009;

Huang and Suo, 2011). This snap-through behavior indicates the EMI of DEs. A

premature electrical breakdown occurs if the snap-through intersects with the electrical

breakdown curve (Figure 1.3(b)), while the actuation survives the EMI if the snap-

through does not intersect with the electrical breakdown curve (Figure 1.3(c)), leading to

large deformation of the DE. According to the intersection point between the

electromechanical response curve and the electrical breakdown curve, Zhao and Suo

(2010), and Koh et al. (2011) categorized DEs into three types: (I) for DEs with low

dielectric strength, EB occurs before the EMI and only small deformation of DEs can be

achieved; (II) for DEs with medium dielectric strength, EMI occurs first and leads to a

premature EB; (III) for DEs with exceptional high dielectric strength, EMI occurs first

but does not result in a premature EB, in which case large deformation of the DE is

achieved.
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Figure 1.3 Electromechanical response and electrical breakdown of a DE membrane. The

DEs are categorized into three groups based on the intersection point of the

electromechanical response curve and the electrical breakdown curve: (a) Type I; (b)

Type II; (c) Type III (Koh et al., 2011).

Since the merit of dielectric elastomers mainly lies in their capability of undergoing large

deformation, much effort has been devoted to tackling the EMI for improving the

actuation performance, or even harnessing the EMI for giant voltage-induced

deformation of DEs. For example, Pelrine et al. (2000) improved the in-plane actuation

strain of a DE plate from about 30% (Kornbluh et al., 1999) to over 100% by pre-

stretching the elastomer. Later, Koh et al. (2011) theoretically proved that the EMI of

DEs could be eliminated by the application of pre-stretch. Lu et al. (2012) and Huang et

al. (2012b) found that dielectric elastomers reinforced by stiff fibers do not exhibit EMI.

Kollosche et al. (2012) demonstrated that clamping the elastomer along one direction can

also eliminate the EMI. Researchers also managed to switch a DE from Type II to Type

III by swelling the elastomer with a solvent and harness the EMI to achieve large

deformation of the DE (Shankar et al., 2007). Alternatively, actuation strains of DEs over
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100% have been attained by using elastomers with interpenetrating networks (Ha et al.,

2006) and by using electrode-free elastomers with sprayed-on charges (Keplinger et al.,

2010). However, these methods are either limited to some particular applications or

difficult to implement. Therefore, there is still much room for seeking alternatives to

improve the actuation strains of DEs.

Furthermore, in addition to the hyperelastic behavior (large deformation), DEs are also

known to exhibit viscoelastic properties (Zhang et al., 2004; Plante and Dubowsky, 2007;

Bai et al., 2014; Kollosche et al., 2015), which may induce other failure modes

depending on particular applications of DEs. Take DE membrane oscillators and

resonators for example, the material viscoelasticity of DEs not only strongly affect their

dynamic performance but can also cause loss-of-tension of the DE membrane (Li et al.,

2012). Also, for DE membrane energy harvesters, both the loss-of-tension failure and the

fatigue failure should be examined since the viscoelastic DE membranes are under cyclic

loading condition. However, compared to the works on DE actuators, much less studies

are available in the literature for DE oscillators and energy harvesters, especially

investigation of the influence of the material viscoelasticity on the performance of these

DE devices. Therefore, there is a lack of guidance available for the optimal design of

these devices.

1.3 Objectives

As introduced above, due to the large-deformation and energy transduction capability,

DEs have shown promise for a number of potential applications. However, the nonlinear

electromechanical response of DEs is rather complicated and strongly affected by the

typical failure modes and the material properties such as viscoelasticity. Moreover, for

different DE-based devices, other particular issues depending on the applications could

make it more difficult to manage the performance of such devices. Therefore, objective

of this work is to provide a comprehensive understanding on the performance of DEs and

guidelines to the optimal design of DE-based devices. Attention will be focused on:
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(1) Examining the nonlinear electromechanical response of DE actuators with different

configurations and uncovering possible alternatives to eliminate EMI of the DE actuators

while attaining large deformation;

(2) Studying the dynamic behavior of viscoelastic DEs and developing theoretical models

that can make reliable prediction on the frequency tuning and dynamic response of DE-

based resonators and oscillators;

(3) Investigating the energy harvesting performance of dissipative DEs and developing

possible approaches to improve the energy harvesting efficiency of DE-based generators.

1.5 Thesis Structure

Following the general introduction and objectives in Chapter 1, a literature review is

given in Chapter 2. Then the nonlinear electromechanical response of a DE plate actuator

with and without boundary constraints is modelled and a boundary-constraint method to

eliminate EMI is proposed in Chapter 3. In Chapter 4, the boundary-constraint method is

further verified on a constrained DE tube actuator. In the second half of this thesis,

modeling work is further developed to cover the dynamic and viscoelastic effects of the

DEs. In Chapter 5, based on the finite-deformation viscoelasticity theory, the in-plane

oscillation of viscoelastic DE membrane resonator and its natural frequency tuning

process is investigated. In Chapter 6, by examining the energy harvesting performance of

a dissipative DE membrane generator, the effect of fatigue on DE-based devices under

cyclic loading is investigated for the first time and uncover possible approaches to

improve the efficiency of DE generators. Last but not least, Chapter 7 summarizes the

thesis and suggests avenue for the future work on the modeling of DEs and DE-based

devices.
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Chapter 2

2 Literature review

In order to predict the performance of DEs and DE-based transducers, and provide

guidelines for their optimal design, over a decade, extensive studies have been devoted to

investigating the electromechanical response of the DEs, and the complex interplay

among the electromechanical response, the typical failure modes, the dynamic behavior

and the material properties of DEs. This section presents a review of literature on the

modeling of the nonlinear electromechanical response, the dynamic behavior and the

finite-deformation viscoelasticity of the DEs.

2.1 Electromechanical coupling of dielectric elastomers

The first model to describe the voltage-induced Maxwell stresses in dielectric elastomers

was developed by Pelrine et al. (1998), which expresses the Maxwell stresses with an

equivalent Maxwell pressure P =0E2, where  is the dielectric constant, 0 is the

permittivity of free space, and E is the voltage-induced electric field. This Maxwell

pressure is then considered to be balanced by the local elastic stress of the elastomer,

which is assumed to be linear to the strain of the elastomer (Pelrine et al., 1998; Kornbluh

et al., 1999). Nevertheless, based on linear elasticity, this model is only rather accurate

for small-deformation cases, whereas it is inadequate to tackle the large deformation and

significant nonlinear behavior of the DEs. To account for the nonlinear electromechanical

response of the DEs, hyperelasticity theories with the addition of an empirical Maxwell

stress were adopted in the later studies. For example, Goulbourne et al. (2005) proposed a

nonlinear model for dielectric elastomer membranes, in which the local elastic stress was

derived from a mechanical strain energy density function. Considering uniform DEs

(isotropic, incompressible and homogeneous), Wissler and Mazza (2005) modeled the

electromechanical response of a pre-strained circular DE actuator with the local elastic

stress derived from different hyperelastic models. However, the models proposed in these

works can only explain some experimental phenomena, leaving many issues unsettled.

Later, with the development of the fully coupled field theories for dielectric elastomers
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(McMeeking and Landis, 2005; Dorfmann and Ogden, 2005; Suo et al., 2008) which

obtain the Cauchy stress from a coupled free energy density function associated with both

the strain and the polarization, and are capable of adopting most of the hyperelastic

constitutive models (Ogden, 1972; Gent, 1996; Boyce and Arruda, 2000), the nonlinear

electromechanical response and electromechanical coupling behavior of the DEs were

further studied and better understood.

Figure 2.1 A dielectric body with free charges subject to body forces and surface
tractions

With the fully coupled field theories, two main difficulties (First, unlike the electric force

in a vacuum, force between electric charges inside a dielectric solid is not a measurable

quantity. Second, to make a unique distinction between the deformation caused by the

electrical forces and that caused by the mechanical forces is a difficult matter) of

modeling deformable dielectrics can be circumvented. Figure 2.1 illustrates a dielectric

body with free charges subject to body forces b(X, t) and surfaces tractions T(X, t) in the

current state, where x is the positon of a material particle in the dielectric body in the

current state and X is its position in the reference (undeformed) state. The dielectric body

occupies a volume V0 and is surrounded by a surface S. The free charge per unit volume

within V0 is denoted as Q(X, t) and the free charge per unit area on surface S is denoted as

(X, t). Also the electric potential of the material particle is denoted as V(X, t). The
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deformation gradient tensor of the current state with respect to the reference state is

defined as

i
ik

k

x
F

X



 . (2.1)

Considering any test functions  i X and   X ,

i ik
ik 0 i i i 0

k kV S V

s
s dV T dS dV

X X


 

 
 

    , (2.2)

k
k 0 0

k kV S V

D
D dV dS dV

X X


 


  

   


, (2.3)

where iks is the first Piola-Kirchhoff stress (nominal stress) and kD is nominal electric

displacement. The equilibrium equation of the current state is expressed as

ik
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k
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s
b
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 . (2.4)

Combining equations (2.2) and (2.4),
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According to Maxwell’s laws, the electric field must be curl-free, which leads to

k
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V
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
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where kE is the nominal electric field. According to Gauss’s law, the divergence of the

electric displacement is equal to the free charge per unit volume, which results in

k

k

D
Q

X







. (2.7)

Combining equations (2.3) and (2.7) results in,

k 0 0
kV S V

D dV dS QdV
X


 


  

   . (2.8)

When subject to a perturbation, the change of the total free energy of the dielectric body

in the current state caused by the small changes of the deformation and the free charges is

expressed as

f 0 i i 0 i i 0δ δ δ δ δ δ
V V S V S

G WdV b x dV T x dS QVdV VdS         , (2.9)

where Gf is the total free energy and ( , )W F D is the Helmholtz free energy density. In

equation (2.9), xi and V can be considered as two test functions  i X and   X in

equations (2.5) and (2.8), respectively, which further results in

f 0 ik ik 0 k k 0
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which gives that
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For an ideal elastic dielectric body, its Helmholtz free energy density can be expressed as

   
KM KL

s M L, ( )
2 deto

F F
W W D D
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 F D F

F
   , (2.14)

where s ( )W F is the strain energy density and the second term on the right side is

associated with the polarization energy (Zhao et al., 2007). When a specific s ( )W F is

selected, the nominal stress and nominal electric field in equations (2.12) and (2.13) can

be obtained. Then the true stress  and true electric field E can be obtained by adopting

the well-established relations between the true and nominal quantities as follows

jk
ij ikdet( )

F
s 

F
, (2.15)

ik
i kdet( )

F
D D

F
 , (2.16)

i ik kE H E  , (2.17)

where Hik is the inverse of Fik (FikHik=1). When true stress  and true electric field E are

obtained, the electromechanical response of the dielectric body can be determined.

Based on the fully coupled field theories introduced above, Zhao et al. (2007) showed

that regions of two different states (one being thick and the other thin) can coexist during

the deformation of a DE membrane, which eventually leads to wrinkles in the membrane.

Later, Huang and Suo (2011) further discussed this electromechanical state transition and

coexistence phenomenon under various conditions and identified the critical point for the
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transition. Zhao and Suo (2007 and 2008) analyzed the electromechanical stability with

the Hessian matrix of the free energy density function and proposed methods to attain

programmable deformation of DEs. Suo and Zhu (2009) theoretically explained why DEs

with interpenetrating networks can survive the electromechanical instability (EMI) and

achieve large voltage-induced deformation. The EMI and the corresponding

inhomogeneous deformation of DEs was further investigated by Park et al. (2012) by

using a dynamic finite element model. Vertechy et al. (2012) presented a monolithic

finite element formulation to model the large out-of-plane axisymmetric deformation of

the buckling DE actuators. Adopting the neo-Hookean hyperelastic model, Zhu et al.

(2010c) examined the large deformation of DE tube actuators and identified the critical

actuation strain for the EMI. Instead of the voltage-control operation, Lu et al. (2014)

investigated the charge-control operation of dielectric elastomer actuators and the charge

localization instability. Koh et al. (2009) proposed a method to analyze the

electromechanical cycles and the energy conversion mechanism of a DE generator.

2.2 Stability of dielectric elastomers subject to mechanical

and electrical fields

As introduced in Chapter 1, the actuation of DEs is susceptible to the electromechanical

instability, which can cause a premature electrical breakdown of DEs (Plante and

Dubowsky 2006; Keplinger et al., 2012). It is thus essential to identify the stable and

unstable states of DEs during actuation, which can be realized by perturbation analysis

(Zhao et al., 2007; Huang and Suo, 2011). When a DE under electromechanical loading

is perturbed, the system changes from a state ( ,F D ) to a nearby sate ( ,  F F D D  ).

Correspondingly, the change of the total free energy density is expressed as
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d δ d δ d

G W W V
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, (2.18)

where ( δ , δ ) ( , )W W  F F D D F D   is the change of the Helmholtz free energy density.

Expanding W into Taylor series up to the second order leads to
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Combining equations (2.18) and (2.19),
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When the state ( ,F D ) is stable against a small perturbation, its total free energy density

Gf has to be a local minimum. This requires Gf to be positive-definite for any ( , F D ).

More specifically, the first derivatives in equation (2.20) has to vanish and the sum of the

second derivatives in equation (2.20) must be positive-definite, which recovers equations

(2.12) and (2.13) and requires the Hessian matrix of the Helmholtz free energy density to

be positive-definite. The Hessian matrix of the Helmholtz free energy density W( ,F D ) is

given as
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Therefore, to ensure state ( ,F D ) is a stable state, it is required that

2

ik jl
0

W

F F


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 
, (2.22)

det( ) 0H . (2.23)
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Using equations (2.22) and (2.23), it is found that the range between the peak and the

trough of a typical electromechanical response curve is unstable and a snap-through

deformation occurs right after the peak (see figure 1.3) (Zhao et al., 2007; Huang and

Suo, 2011; Koh et al., 2011)

2.3 Material models of hyperelastic materials

As shown in equation (2.14), a specific strain energy density function Ws(F) needs to be

selected before the electromechanical response of the dielectric body can be determined.

Moreover, a strain energy density function should be selected based on the

macromolecular network structure and stress-strain behavior of the material. For

hyperelastic materials that can be viewed as incompressible (like dielectric elastomers),

there are quite a few material models available in the literature to describe their strain

energy density. The development of these hyperelastic material models are mainly based

on three approaches: statistical mechanics treatments, invariant-based continuum

mechanics treatments and stretch-based continuum mechanics treatments (Boyce and

Arruda, 2000).

For the statistical mechanics approaches, it is assumed that the material is a structure of

randomly-oriented long polymer chains (Treloar, 1975). When the elongation of the

polymer chains is significantly less than their fully extended length, the strain energy

density of the material can be described with the Gaussian model (Treloar, 1944)

 2 2 2
G 1 2 3

1
3

2
W Nk       , (2.24)

where N is the number of chains, k is Boltzmann’s constant,  is the absolute

temperature, 1, 2 and 3 are the principal stretch ratios (In this section, the deformation

of material is considered in a principal stretch state). However, when the elongation of

the polymer chains approaches to their extensibility, the prediction by the Gaussian

model significantly differs from the observation in experiments. To account for the non-

Gaussian nature of the polymer chains and more accurate individual chain statistics,

material models that based on the assumption of a representative network structure have
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been proposed, such as the “3-chain” model (Wang and Guth, 1952), the four chain

tetrahedral model (Flory and Rehner, 1943) and the “8-chain” model (Arruda and Boyce,

1993). As given below, polymer chains in the “8-chain” model are assume to rotate

towards the principal axes of the stretching.

 
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2 2 2
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where n is the number of links in the chain and L-1 is the inverse Langevin function.

Although these “chain” models adopting non-Gaussian treatments can tackle large

deformation of the material (close to its extensibility), they are not so accurate for small

to moderate deformation.

As introduced above, the strain energy density of an isotropic and hyperelastic material

can also be modeled under continuum mechanics treatments, for which the strain energy

density of the material is always a function of three invariants I1, I2 and I3.

2 2 2
1 1 2 3I      , (2.28)

2 2 2 2 2 2
2 1 2 2 3 1 3I         , (2.29)

2 2 2
3 1 2 3I    . (2.30)

Moreover, for incompressible materials, 1 2 3 1    and 3 1I  . As proposed by Rivlin

(Rivlin, 1948), a general form of the strain energy density based on these three invariants

is expressed as
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   R 1 2
, 0

3 3i j
ij

i j

W C I I



   , (2.31)

where Cij are material constants. When only invariant I1 is retained, the neo-Hookean

model is obtained,

 NH 10 1 3W C I  . (2.31)

When only (i, j) = (0, 1) and (i, j) = (1, 0) are considered, the Mooney-Rivlin model

(Mooney, 1940) is obtained,

   MR 10 1 01 23 3W C I C I    . (2.32)

In addition to the neo-Hookean and Mooney-Rivlin models, researchers have also

attempted to develop some higher order I1 models and found that they work better in

capturing moderate to large deformation, such as the Yeoh model (Yeoh, 1993):

     2 3
Y 10 1 20 1 30 13 3 3W C I C I C I      . (2.33)

From equations (2.31), (2.32) and (2.33), it can be noticed that these models do not take

the extensibility of the material (the limit of the stretch ratios) into account. While in a

real polymer network, there is a limit of the extension of the polymer chains. To account

for the extensibility of hyperelastic materials, Gent (Gent, 1996) proposed an alternate

high order I1 model which is in the form

 lim
Gent 1 limln 1 3 /

2

GJ
W I J      , (2.34)

where G is the shear modulus of the material, material parameter Jlim indicates the

stretching limit of the material. Due to the logarithm function in equation (2.34), the

stretch ratios have to satisfy  1 lim1 3 / 0I J     and the maximum stretch ratios are

limited by the value of Jlim.
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In addition to the invariant-based continuum mechanics treatments, stretch-based

continuum mechanics treatments are alternatives to model the strain energy density of

hyperelastic materials. Under stretch-based continuum mechanics treatments, the strain

energy density consists of three same functions of the principal stretch ratios, i.e.,

  1,2,3i i
w   , where   1,2,3i i

w   are experimentally obtained. One model of this type is

the Ogden model (Ogden, 1972) with the strain energy given as

 O 1 2 3 3n n nn

nn

W   
  


    , (2.35)

where the n and n are material constants. The advantage of this type of model is that

the degree of the sum (the value of n in equation (2.35)) can be adjusted to fit different

experimental data.

2.4 Dynamic behaviors of dielectric elastomers

Focusing on the electromechanical coupling of the DEs, the modeling works above

mainly studied their electromechanical deformation under the quasi-static assumption,

without specifically considering the effect of inertia and the dynamic response. On the

other hand, as DEs have been developed as resonators and oscillators in recent years

(Zhang et al., 2005; Bonwit et al., 2006; Biggs and Hitchcock, 2010; O’Brien et al., 2012;

O’Brien and Anderson, 2012), much interest has been drawn to study the dynamic

behavior of DEs. For example, Mockensturn and Goulbourne (2006), Fox and

Goulbourne (2008 and 2009), and Zhu et al. (2010a) examined the dynamic behaviors of

the axisymmetric DE membranes. Son and Goulbourne (2010) proposed a numerical

model for the dynamic response of tubular dielectric elastomer transducers. Yong et al.

(2011) and Zhu et al. (2010b) investigated the nonlinear oscillation of balloon-like DE

membranes. Moreover, one of the key merits of DE-based resonators and oscillators lies

in the fact that their natural frequency can be actively tuned by changing the applied

voltage on the DEs, which enables DE oscillators to have a wide range of resonant

frequency and compensate for fabrication imperfection and environmental changes

(Dubois et al., 2008). To better understand this useful feature, researchers have also
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conducted parametric studies on the natural frequency tuning process of DE-based

resonators and oscillators. For example, Feng et al. (2011) investigated the active

frequency tuning of a DE micro-beam resonator using the Euler-Bernoulli beam model.

Li et al. (2012a) analyzed the nonlinear oscillation of a tunable DE membrane resonator

by adopting the Gent model.

Another recent application of dielectric elastomers in dynamics is the tunable waveguides

capable of actively filtering waves in the prescribed ranges of frequencies (Gei et al.,

2011). These ranges of frequencies corresponding to the filtered waves are within the

“bandgaps” of the device, which can be determined from the dispersion diagrams of the

waveguide. To change the bandgaps of a waveguide in a conventional way, one has to

change the geometry of the structure, usually through adjustment of the pre-stress, phase

transformation and thermal expansion. With the development of DE waveguides,

controlling the bandgaps can be realized in a more active way, by changing the applied

voltage on the DE. The modeling of dielectric elastomer waveguides can be tracked back

to the studies on electrostatic wave propagation in finitely deformed dielectric solids.

With reference to the propagation of small amplitude waves in electroactive materials,

Dorfmann and Ogden (2010) proposed an electromechanical coupling theory to describe

the plane waves propagating in a finitely deformed dielectric material. Shmuel et al.

(2012) investigated the Rayleigh-Lamb wave propagation in the dielectric elastomer

membranes undergoing large deformation. Based on these studies, Shmuel and deBotton

(2012) investigated the voltage-controlled bandgaps in dielectric elastomer laminates

using Bloch-Floquet theorem along with the transfer matrix method. Later, Shmuel and

deBotton (2013) further analyzed the axisymmetric wave propagation in a dielectric

elastomer tube subject to large deformation. Moreover, Shmuel (2013) has also explored

the electrostatically tunable bandgaps in square dielectric elastomer composites with

circular fibers.

2.5 Material viscoelasticity of dielectric elastomers

In addition to the hyperelastic behavior, the performance of DEs is also affected by their

viscoelastic properties (Zhang et al., 2004; Plante and Dubowsky, 2007; Bai et al., 2014;

Kollosche et al., 2015). In fact, over a decade, various models have been developed to
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capture the material viscoelasticity of DEs. At the early stage, Wissler Mazza (2005b)

proposed a quasi-linear viscoelasticity model to investigate the time-dependent response

of a circular DE membrane. Based on the Christensen’s theory of viscoelasticity

(Christensen, 1980), Yang et al. (2005) developed a non-linear viscoelastic model for

finite deformation of DE membranes. Later, Plante and Dubowsky (2007) studied the

dynamic performance of DEs using a modified hyperelasticity theory to deal with the

finite-deformation viscoelasticity. However, these models are either only congruous with

relatively small deformation or could only explain some of the finite-deformation

experimental phenomena.

Recently, based on the finite-deformation viscoelasticity theory by Reese and Govindjee

(1998) and the fully coupled field theory for dielectric solids by Suo et al. (2008), Hong

(2011) developed a model that can account for the effects of both electrostatics and finite-

deformation viscoelasticity, which is capable of adopting most hyperelastic constitutive

models and evolution laws for viscoelastic solids. Figure 2.2 shows the rheological model

of the material regarding the finite-deformation viscoelasticity theory for dielectric

elastomers by Hong (Hong, 2011). The rheological model illustrates two types of

polymer chains in dielectric elastomers. The upper one (spring 1) is purely elastic while

the lower one (spring 2 and the dashpot) relaxes with time and dissipates energy. For this

rheological model, the strain energy of the material consists of two parts, i.e., the strain

energy stored in spring 1 and the strain energy stored in spring 2. Due to possible large

deformation of the elastomers, hyperelastic material models introduced above are

commonly adopted to describe the strain energy density of the two springs in figure 2.2.

With the framework of Hong’s theory (Hong, 2011), Park and Nguyen (2013) presented a

computational study on the electromechanical behavior of viscoelastic DEs. Wang et al.

(2013) analyzed the inhomogeneous viscoelastic deformation of a DE membrane.
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Figure 2.2 Rheological model of the material

In addition, it has been proven that the time-dependent inelastic deformation and stress

relaxation induced by the material viscoelasticity can affect the dynamic response of the

DEs (Hong, 2011; Foo et al., 2012a; Liu et al., 2014). Sheng et al. (2013) found that the

influence of the material viscoelasticity on the dynamic response of the DE was more

significant when the applied electric voltage was at low frequencies. Moreover, in

addition to alternating electric load, Zhang et al. (2014) further investigated the dynamic

performance of the dissipative DEs subject to alternating mechanical load, which

provides useful information for comprehensively evaluating the performance of

viscoelastic DE resonators and oscillators. Another typical application of DEs that

strongly affected by the material viscoelasticity is DE generators and energy harvesters

(Pelrine et al., 2001; Huang et al., 2013; Shian et al., 2014). Due to the material

viscoelasticity of the DE, part of the scavenged energy from external sources dissipates

through the inelastic deformation, which lowers the efficiency of the DE generator. In

order to improve their efficiency, effort has also been devoted to the modeling of

viscoelastic DE generators. For example, focusing on the viscoelasticity and current

leakage, Foo et al. (2012b) studied the electromechanical conversion cycles of dissipative

DE generators. Li et al. (2012b) presented an analytical model to characterize the energy

harvesting of the viscoelastic DE generators under inhomogeneous fields.

From the introduction and review above, although much effort has been devoted to

investigating the actuation, dynamic and energy harvesting performance of DEs, many of

the critical issues in the applications of DEs have not been well settled yet. Therefore,

further investigations regarding these issues will be discussed in the following chapters.
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Chapter 3

3 Failure analysis of a dielectric elastomer plate actuator

considering boundary constraints

3.1 Introduction

Compared with traditional smart materials in actuation (e.g. piezoelectric ceramics),

which are known for their high electromechanical coupling and brittleness, dielectric

elastomers (DEs) are characterized by their softness, flexibility, large deformation

capability, lightweight and high coupling efficiency. As reviewed by Bar-Cohen and

Zhang (2008), these properties make DEs an interesting alternative to conventional

technologies in transduction and have extensive potential applications, such as artificial

muscles, adaptive optical elements, energy harvesting, programmable haptic surfaces,

active noise control, frequency tuning, conformal loudspeakers, binary actuation and

sensors of force and pressure, and other biomimetic applications (Carpi et al., 2008;

Pelrine et al., 1998, 2002; Stoyanov et al., 2008). The actuation performance of DE

actuators with a variety of configurations has been experimentally studied, including

stack, extender, bimorph, unimorph, diaphragm and tube actuators (Cameron et al., 2008;

Carpi et al., 2008; Zhu et al., 2010c).

The actuation mechanism of DE actuators can be explained by a simple configuration: a

planar DE actuator, as shown in Figure 3.1. The actuator is envisaged as a plate of DE,

coated with compliant electrodes. Subject to a voltage between the electrodes, the DE

planar actuator expands in area and exhibits a reduction in thickness. This expansion in

area can produce strains from 30% to 40% (Kornbluh et al., 1999). It has been

experimentally demonstrated that the application of pre-stretch can further improve the

actuation performance of the planar DE actuators. For example, more than 100% in-plane

strain of a DE plate has been achieved by pre-stretching the elastomer (Pelrine et al.,

2000). Alternatively, using the elastomer with interpenetrating networks (Ha et al., 2006),

swelling the elastomer with a solvent (Shankar et al., 2007) or controlling the electric
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charge during actuation (Bochobza-Degani et al., 2003; Keplinger et al., 2010) can also

increase the actuation strains of the DE actuators. Some studies have even shown that it is

possible to achieve actuation strains over 500% by choosing or designing a DE with a

suitable stress–strain curve (Zhao and Suo, 2010). In order to clarify the actuation

mechanisms of the DE actuators, hyperelastic constitutive models were used to illustrate

the large and non-linear deformation of DE planar actuators. Kofod (2001) adopted the

neo-Hookean, Mooney–Rivlin and Ogden models to investigate this non-linear

deformation. Furthermore, Suo and colleagues used the Arruda–Boyce model and Gent

model to investigate the electromechanical response of DEs (Koh et al., 2011b; Li et al.,

2011; Suo, 2010; Suo and Zhu, 2009; Zhao et al., 2007)

Figure 3.1 Actuation of a DE plate actuator: (a) undeformed state and (b) deformed state

due to an electric voltage  with mechanical pre-stretch force P. DE: dielectric elastomer

The actuation of the planar DE actuators, however, is limited by multiple failure modes

of the DEs (Plante and Dubowsky, 2006). In addition to material strength and electrical

breakdown (EB), DE actuators are also susceptible to electromechanical instability (EMI),

that is, the applied voltage causes excessive thinning of the DE, resulting in a premature

EB. As reported by Plante and Dubowsky (2006), the EMI, also known as pull-in

instability, may also cause the DE to deform into a complex wrinkling pattern. Both the

EMI and the EB inhibit the full potential deformation actuation of DEs, warranting

considerable attention recently.
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Zhao and Suo (2010) categorized DEs into three groups by using an ideal dielectric

model to interpret the diverse failure modes observed in experiments: the dielectric may

suffer EB prior to EMI with only small deformation of actuation, fail at limited stretch

when the voltage reaches the peak or survive the snap-through EMI with a large

deformation of actuation. Another type of DE has been further identified by Koh et al.

(2011b), which demonstrates a monotonic increase in actuation strain with voltage.

Correspondingly, EMI does not occur during actuation, and the maximum actuation

strain is simply limited by the dielectric strength. It is now well established that the EMI

can be suppressed or eliminated by pre-stretching the DEs or restricting the stretch limit

of the DEs, which could be realized by adding interpenetrating networks in the polymers

(Koh et al., 2011b; Li et al., 2011; Wissler and Mazza, 2005).

Obviously, large deformation actuation without failure is desirable for the DE actuators.

Therefore, this work aims to uncover possible mechanisms for a DE plate actuator to

avoid EMI while achieving large actuation.

3.2 Actuation of an unconstrained DE plate under uniaxial

stretch

As mentioned in the previous section, the EMI may inhibit the full potential actuation of

DE actuators. In order to investigate how the EMI can be controlled by boundary

constraints, the electromechanical response of a DE plate actuator with and without

boundary constraints is considered. For an actuator without constraints, as illustrated in

Figure 3.1(a), in the undeformed state, the dimensions of the plate are X1, X2 and X3.

When the plate is pre-stretched by a uniaxial force P, it elongates in the X1-direction and

contracts in the other two directions. The plate is then subject to an electric voltage 

between the two electrodes, which induces electric charges on both electrodes.

Meanwhile, the applied electric voltage causes a reduction in the X3-direction, leading to

an expansion of the area of the plate. Under the pre-stretch mechanical load and the

applied electric voltage, the DE plate deforms to the current state as shown in Figure

3.1(b) with x1, x2 and x3 being the current dimensions. The stretch ratios are defined as 1

= x1/X1, 2 = x2/X2 and 3 = x3/X3, respectively. For the DE actuator shown in Figure 3.1,
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the stresses 1, 2 and 3 along the x1, x2 and x3 directions satisfy the following (Huang

and Suo, 2011; Zhao et al., 2007)

   s 1 2 3 s 1 2 32
1 3 0 1 3

1 3

, , , ,W W
E

     
    

 
 

   
 

, (3.1)
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, (3.2)

where 0 is the permittivity of air or vacuum,  is the relative dielectric constant of the

material, E is the electric field induced by the applied voltage and  s 1 2 3, ,W    is the

elastic strain energy density function of the elastomer. As stated by Huang and Suo (2011)

that when an elastomer undergoes large deformation, the change in the shape of the

elastomer is much more significant than the change in the volume. Under this condition,

the DE can be assumed as incompressible with stretching ratios satisfying 3 = 1/(12).

This assumption has been widely used in studying the electromechanical coupling of DEs

in literature (Koh et al., 2011b; Wissler and Mazza, 2005). The electric field E in the x3-

direction is related to the applied voltage  by E = 1 2/X3, and the stress in the x1-

direction can be expressed as 1 1 2 3/P X X  under homogeneous deformation

assumption. Among the constitutive models of rubber elasticity (Boyce and Arruda,

2000), a particular one is the Gent model (Gent, 1996), in which the strain energy density

function is expressed as

2 2 2
1 2 3lim

s
lim

3
ln 1

2

GJ
W

J

     
   

 
, (3.3)

where G is the shear modulus and Jlim is a dimensionless parameter related to the

stretching limit of the material. Since the elastomer is free in the X2- and X3-directions,

2 = 3 = 0. Combining equations (3.1), (3.2) and (3.3) results in
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These non-linear coupled equations govern the electromechanical response of the DE

actuator, in which 2 3/P GX X is the normalized mechanical load denoted as P* and

 3 0/ /X G  is the normalized electrical load denoted as *. Once these loads are

prescribed, the stretch ratios 1 and 2 in the current state of the planar DE can be

determined by solving these nonlinear equations

The typical electromechanical response for the DE actuator with various pre-stretches

(P*), i.e., *–1, is plotted in Figure 3.2. Here, Jlim may vary within a large range of

values depending on the extensibility limit of the polymer chains of the DE. However, it

is set as Jlim = 125 in this work (Kollosche et al., 2012). As shown in Figure 3.2, for small

applied voltage (*), the DE stretch response 1 increases with the * for any fixed P*.

Once the * reaches a peak value, the electromechanical response curve then drops down.

However, as the stretch becomes very large, * increases again. When the DE reaches its

limit of extensibility, the response curves become almost vertical. Following the

perturbation analysis (Huang and Suo, 2011; Leng et al., 2009), the interval between the

peak and the trough of the response curve reflects EMI, and the stretch ratio

corresponding to the peak of the * is the onset of the EMI. Under an *-control

actuation, at the onset of the EMI, 1 may snap through the unstable interval from a small

value to a very large value as shown by the dotted arrow in Figure 3.2, which is desirable

for the DE actuator to achieve large actuation. However, the DE may not survive the

snap-through due to the EB.
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Figure 3.2 Electromechanical response curves (*–1 curve) and electrical breakdown

curves of a DE plate actuator without boundary constraints.

As a typical failure mode of DEs, EB occurs when the electric field exceeds the dielectric

strength EB. Although the dielectric strength may change during deformation (Kofod et

al., 2003; Plante and Dubowsky, 2006), it is still reasonable to assume a fixed EB in a

theoretical treatment (Koh et al., 2011b; Li et al., 2011; Zhao and Suo, 2010). The

voltage corresponding to the EB is 3 3B BE X  . Introducing a dimensionless parameter

0 /Bd E G (Koh et al., 2011b), the voltage, according to the EB of the actuator in

Figure 3.1, is determined from

1 10
1 2

3

B d
X G


   . (3.6)

The  3 0 1/ /B X G   curves are also plotted in Figure 3.2 with different P* and d =

2. With the considered values of the material constants, the snap-through line interacts

with the EB curve, which indicates that the EB occurs during the snap-through process.

In other words, the DE actuator does not survive the snap-through due to the EB, and its
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stretch limit is at the onset point. It should be noted that the value of the dimensionless

parameter d depends on the material properties since the dielectric strength EB is regarded

as independent of deformation (Zhao and Suo, 2010). As discussed by Zhao and Suo

(2010), for the DE with a smaller d, the DE actuator may fail before it reaches the onset

of the EMI. However, for a DE with exceptionally large dielectric strength, the actuator

may survive the snap-through and reach a stable state.

Koh et al. (2011b) showed that larger actuation can be obtained by minimizing the

magnitude of the snap-through or eliminating the EMI. This can be realized, e.g., by

moving the material limiting stretch ratio lim closer to the peak of * or applying pre-

stretch (P*). Obviously, with the increase in the P*, the peak is effectively suppressed as

in Figure 3.2. In this work, whether the EMI could be suppressed by applying boundary

constraints to the DE actuator is investigated.

3.3 Actuation of a constrained DE plate under uniaxial

stretch

In order to see the effect of the boundary constraints on the electromechanical response of

a planar DE actuator, a sliding constraint along the X1-direction is artificially set by

attaching rollers at the ends of the DE actuator as in Figure 3.3. In the undeformed state

(Figure 3.3(a)), some space is left between the fixed wall and the DE in the X2-direction

in order for the free deformation of the DE in this direction. The distance h between the

DE actuator and the walls can be controlled by setting it relative to a particular stretch

ratio x2/X2 = , that is, 2h= (-1) X2, where  is the value of 2 when the DE reaches

the onset point of the EMI (i.e. 1 = onset). Once the DE actuator is subject to the electric

voltage  in the X3-direction and the pre-stretching mechanical force P in the X1-

direction, the actuator deforms to the current state (Figure 3.3(b)) with dimension x1x2x3.

Before the actuator reaches the walls, its electromechanical response is governed by

equations (3.4) and (3.5). However, when the DE actuator reaches the walls, the

deformation in the X2- direction is constrained with x2/X2 =  thereafter, while the

deformation in the other two directions keeps changing since the actuator can still slip in
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the X1-direction. With x2/X2 =  and 1 = P/x2x3, combining equations (3.1) and (3.3)

results in

 
 

   

23 *
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, (3.7)

which governs the electromechanical response of the DE after it touches the constrained

walls. For the actuator in Figure 3.3, if the EB occurs before the actuator touches the

constrained walls, the electrical breakdown voltage is the same as that in equation (3.6).

Otherwise, such a voltage for 2 =  is determined as

  11 *0
1

3

B d
X G


 

 . (3.8)

Figure 3.3 Actuation of a DE plate actuator constrained in X2-direction: (a) undeformed

state; (b) deformed state due to an electric voltage  with a mechanical pre-stretch force

P.

Figure 3.4 depicts the electromechanical response for a constrained DE. The

monotonicity of the response curves indicates that EMI has been eliminated by

constraining the DE actuator. Compared with Figure 3.2, all the intersection points

between the electrical breakdown curves and the electromechanical response curves have
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been shifted significantly to a larger deformation 1. These results indicate that the

actuation performance in one direction is improved by constraining the deformation in

the perpendicular direction.

Figure 3.4 Electromechanical response curves (*–1 curve) and electrical breakdown

curves of a DE plate actuator constrained in X2-direction (2=).

To see the maximum actuation stretch in the X1-direction due to the electromechanical

coupling, EB–pre as a function of P* is plotted in Figure 3.5, in which EB and pre

represent the stretch ratio at the electrical breakdown and stretch ratio caused by the pre-

stretching mechanical load, respectively. Compared to the DE that is free in the X2-

direction, the constrained DE has a much higher actuation stretch, particularly with

smaller pre-stretch P*. For example, when P* = 1, the voltage-induced stretch ratio varies

from 0.29 to 1.07. The dramatic increase in the stretch indicates that the DE actuation

performance could be significantly improved by applying boundary constraints.

Nevertheless, the buckling failure mode should be taken into account for the DE with

boundary constraints, which may reduce the actuation stretch improvement as shown in

Figure 3.5.
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Figure 3.5 Actuation stretch (αEB-αpre) in X1-direction for a DE plate actuator at electrical

breakdown.

As constrained by the walls, the DE is no longer free in the X2-direction when 2 = . As

a consequence, a compressive reaction will be generated by the walls to the actuator in

the X2-direction. Such a compression stress is determined as

 *2 2 * 2
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2 02 *2 2 * 2
lim 1 1 3
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E

J

  
 

   
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 


 

   
. (3.9)

Correspondingly, the reaction force from the walls is expressed as

*
2 2 1 3 /F X X   . (3.10)

Substituting equation (3.9) into equation (3.10) results in
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. (3.11)
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It should be noted that this compression may cause another failure mode of the structure,

that is, the mechanical buckling of the actuator, which needs further investigation. The

critical force for plate buckling with different boundary conditions is in general expressed

as (Akesson, 2007; Brush and Almroth, 1975)

 32
c Y 3 3

c 2
1 112(1 )

k E X
F

X

 

 



(3.12)

where EY is Young’s modulus,  is Poisson’s ratio and kc is the buckling coefficient that

depends on the panel aspect ratio X22 /X11, the buckled mode and the boundary

conditions. Recalling that the stretch ratios of the plate satisfy 3 = 1/(1) gives

4 * 3c
1

1 3
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X X G
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. Once the reaction compressive force F2 from the boundary

constraints reaches the critical buckling force in equation (3.13), mechanical buckling of

the DE actuator occurs.

When buckling occurs, the maximum stretch ratio MB in the X1-direction can be

obtained by combining equations (3.11) and (3.13) and is smaller than the values

determined by the EB. Figure 3.6 shows MB–pre versus P* for various buckling

parameter c. For smaller P*, it is observed from Figure 3.6 that the constrained DE

actuator has a higher actuation stretch ratio than the DE actuator without constraints,

especially when P* is relatively low. However, as P* increases to a certain level, the

maximum actuation stretch ratio for a constrained DE actuator is not significantly

different from that for a DE actuator without constraints. From equation (3.13), it is

observed that a higher value of c indicates a higher resistance against buckling. As shown

in Figure 3.6, the constrained DE has a better actuation performance with an increase in c.
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For example, when c = 2 and P* = 1 (Figure 3.6(b)), the actuation stretch ratio is

improved over 18% by constraining the DE actuator.
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Figure 3.6 Actuation stretch (MB-pre) in X1-direction for a DE plate actuator at buckling:

(a) c=1; (b) c=2; (c) c=3.

For a DE plate actuator constrained in the X2-direction, the comparison results as shown

in Figures 3.5 and 3.6 indicate that the actuation stretch is limited, either by the electrical

breakdown or the possible mechanical buckling. Therefore, it is necessary to identify

which failure mode occurs first during the actuation process of the DE actuator. Once the

material properties and the dimensions of the DE actuator are selected (i.e. the parameters

c and d defined previously are determined), one can find the critical stretch ratios for

these two failure modes. Based on these critical stretch ratios, phase diagrams can be

drawn to define the regions of the electrical breakdown and mechanical buckling at

various levels of the P* as shown in Figure 3.7. These phase diagrams indicate that under

a certain P*, if the values of c and d for the actuator fall into the region on the left, it fails

predominantly by EB, otherwise, it fails by mechanical buckling. For example, for a

constrained DE with c = 2 and d = 2 subject to P* = 1, its failure mode as the mechanical

buckling can be determined from Figure 3.7(a). Correspondingly, the maximum

obtainable actuation stretch of the actuator is the critical stretch ratio for buckling. These

phase diagrams also show that the DE actuator is more prone to buckling due to the large

thickness reduction caused by the high in-plane mechanical stretch. Therefore, with the
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increase in the P*, the buckling failure mode tends to be more dominant by comparison of

Figure 3.7(a) to 3.7(c). The results in these figures also suggest that the failure mode of

this constrained DE planar actuator can be switched by choosing suitable values of c and

d. In other words, choosing appropriate materials or modifying the initial dimensions of

the DE actuator opens new avenues for improving the actuation performance of the DE

actuators. It should be mentioned that d may change with the deformation of the DE since

the electrical breakdown field EB may vary with strains as evidenced by the experimental

data (Kofod et al., 2003). However, the variation mechanisms have not been well

understood as discussed by Zhao and Suo (2010). In addition, c depends on the boundary

constraints of the DE system, which may vary within a scattered range. All these factors

should be considered in the realistic DE actuators. This work aims to theoretically predict

the actuation performance of a DE system through a parametric study by choosing

representative values of c and d; however, how to realize the boundary constraints for

better actuation performance of the DE system in reality is challenging and should be

further explored through experiments.

This work focuses on a plate model of the DE, which may sustain compression during the

actuation deformation. It is concluded that the boundary constraints for the plate may

significantly improve the actuation performance of the DE actuator. For some membrane

configurations of the DE actuators in the literature (Koh et al., 2011a, 2011b; Li et al.,

2011; Wissler and Mazza, 2007), the current analysis is limited in application since the

membrane cannot sustain compression. However, the results from this work suggest that

the performance of the membrane actuators can be enhanced if the structures can be

altered to sustain compression, for example, by adding reinforcing elements into the

membrane. It should also be mentioned that this work focuses on DEs that have small to

intermediate values of parameter d. If a DE has a larger d value, it may survive the snap-

through deformation and reach a stable state at a large stretch (Koh et al., 2011b). Under

this condition, it is unnecessary to constrain the boundaries in order to achieve a large

actuation. Moreover, further experimental work should be developed to validate against

the theoretical modeling presented in this article.
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Figure 3.7 Phase diagrams for failure modes of a constrained DE plate actuator: (a) P*=1;

(b) P*=2; (c) P*=3.

3.4 Conclusion

Based on the Gent model for hyperelastic materials, the electromechanical responses of a

DE plate actuator are investigated in this study. The mechanisms of the EMI are

elucidated, suggesting that the EMI may severely inhibit the full actuation of a DE plate

actuator with some particular material properties. In order to eliminate the EMI, boundary

constraints are applied to obtain monotonic response behaviour of the actuation for the

DE actuator. It is observed that the actuation strains can be improved by constraining the

boundaries of a DE actuator. With control of the boundary conditions, considerations

should be given to the possible mechanical buckling failure mode that may occur.

Therefore, two possible failure modes, EB and mechanical buckling, are investigated and

interpreted via phase diagrams. Simulation results based on Gent model suggest that the

failure modes of a constrained DE actuator can be controlled by choosing the appropriate

material properties and dimensions of the actuator. This work is envisaged to be useful

for understanding the electromechanical responses of the DEs and guiding the

optimization design of planar DE actuators with desirable actuation deformation.
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Chapter 4

4 Electromechanical response and failure modes of a

dielectric elastomer tube actuator with boundary

constraints

4.1 Introduction

As one of the promising actuation materials capable of converting electrical energy to

mechanical energy, dielectric elastomers (DEs) have received much attention in recent

years. DEs are generally characterized by their softness, flexibility, and large deformation

capability that are not possessed by conventional materials in transduction technologies,

such as piezoelectric materials. Due to these unique properties desirable for actuation,

DEs have been widely used to design functional DE actuators with different

configurations in practical applications, such as MEMS, artificial muscles, soft robots,

adaptive optical elements, programmable haptic surfaces, portable force feedback device,

binary actuation, prosthetics, orthotics and other biomimetic applications (Carpi et al.,

2008; Kornbluh et al., 2002; O’Halloran et al., 2008; Carpi et al., 2007; Pei et al., 2004).

Depending on the particular application, the DE actuators have been designed as stack,

extender, bimorph, unimorph, diaphragm, plate, tube, etc (Carpi et al., 2008; Kornbluh et

al., 2002; O’Halloran et al., 2008; Carpi et al., 2007; Pei et al., 2004; Zhu et al., 2010a

and 2010b; Cameron et al., 2008; Pelrine et al., 2002).

In order to achieve reliable designs of DE actuators, significant efforts have been devoted

to understanding their actuation mechanisms. Early models simplified the

electromechanical coupling of the materials by extending elasticity theory (Pelrine et al.,

1998) for small deformation and hyperelasticity theory (Pelrine et al., 2000; Goulbourne

et al., 2005) for finite deformation into dielectrics with the addition of an empirical

Maxwell stress. The analyses based on these models could only explain experimental

phenomena for some particular cases. Later, fully coupled nonlinear field theories for

dielectric elastomers with the capability of capturing finite deformation were developed
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(McMeeking and Landis, 2005; Dorfmann and Ogden, 2005; Suo et al., 2008). These

coupled nonlinear theories have been implemented to rigorously predict the actuation

performance of selected actuator configurations (Zhao et al., 2007; Zhao and Suo, 2007;

Zhao and Suo, 2008a; Zhou et al., 2008). Moreover, these nonlinear field theories have

laid the foundation for employing finite-element methods to computationally simulate

homogeneous and especially inhomogeneous deformation of DEs (Zhao and Suo, 2008a;

Zhou et al., 2008; Park et al., 2012). Based on the nonlinear field theory proposed by Suo

et al. (2008), recent models accounted for the DEs’ viscoelastic properties, which were

shown to strongly affect their dynamic performance (Hong, 2011; Park and Nguyen,

2013) in some experimental studies. Regardless of mechanical rupture, it was reported in

these existing studies that the failure modes of DE actuators were mainly governed by

electrical breakdown (EB) and electromechanical instability (EMI). Electrical breakdown

occurs once the electric field in the dielectric exceeds its electrical strength.

Electromechanical instability, also known as the pull-in instability, is the result of the

applied voltage causing excessive thinning of the DE, leading to premature electrical

breakdown, which inhibits further mechanical deformation.  The EMI of planar DE

actuators has been well studied in the open literature (Lu et al., 2012 Li et al., 2011;

Plante and Dubowsky, 2006; Zhao and Suo, 2008b; Wissler and Mazza, 2005).

Among various configurations of DE actuators is the cylindrical one, first proposed by

Pelrine et al. (1998), which is also called as DE tube actuator. DE tube actuators have

wider applications, and are less bulky compared to DE actuators with other

configurations (for example, plate or membrane actuators) (Cameron et al., 2008;

Stoyanov et al., 2008; Huang et al., 2012; Arora et al., 2007). Figure 4.1(a) depicts a DE

tube hanging on a fixed wall and coated with compliant electrodes on both its inner and

outer surfaces, which is based on the schematic of the DE tube actuator in the work of

Zhu et al. (2010b). When subject to a voltage between the two electrodes, the DE tube

exhibits a reduction in its thickness and an elongation in the axial direction. The

elongation ratio of the DE tube depends on its dimensions (Pelrine et al., 1998; Huang et

al., 2012). Early modeling of the DE tube actuator by Carpi and Rossi (2004) was based

on the theory of infinitesimal deformation. Such a model, which assumes a linear stress-

strain constitutive relation of the material, is reliable only when the actuation deformation
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is relatively small. Recently, Zhu et al. (2010b) conducted a theoretical analysis on a DE

tube actuator with finite deformation by employing the neo-Hookean constitutive model.

Their work revealed that the DE tube actuator was also susceptible to the EMI. Since the

merit of DE actuators mainly lies in their large deformation capability in applications,

uncovering possible methods to avoid the EMI while achieving larger actuation is a

crucial issue, which has attracted much interest. It is well established that the EMI can be

suppressed or eliminated either by pre-stretching the DEs before the voltage is applied

(Lu et al., 2012; Koh et al., 2011; Pelrine et al., 2000), or restraining the stretch limit of

the DEs by adding interpenetrating networks (Ha et al., 2006; Suo and Zhu, 2009).

However, the EMI issue is still not entirely settled because these two methods are either

limited to a particular range of applications or difficult to manage (Suo and Zhu, 2009;

Zhao and Suo, 2010). Therefore, an alternative method to avoid the EMI of a DE tube

actuator is the main focus of the current work. The tube configuration studied by Zhu et

al. (2010b) will be revisited to uncover possible mechanisms of the DE tube actuators

without the EMI failure. Following the methodology previously developed for a DE plate

actuator (Zhou et al., 2013), the electromechanical response of a DE tube actuator with

and without boundary constraints will be investigated to reveal how the EMI is affected

by boundary constraints. Meanwhile, some other possible failure modes that may occur

during the actuation of the DE tube will also be analyzed.
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Figure 4.1 Actuation of a DE tube actuator: (a) undeformed state; (b) pre-stretched state

under a mechanical pre-stretch force Ppre; (c) deformed state under a mechanical pre-

stretch force Ppre and an electric voltage .

4.2 Actuation of an unconstrained DE tube under axial

stretch

To investigate how the EMI is affected by boundary constraints, the DE tube actuator

studied by Zhu et al. (2010b) is revisited by first considering its electromechanical

response without boundary constraints. As shown in Figure 4.1(a), in the undeformed

state, L, A and B denote the length, the inner radius and the outer radius of the tube,

respectively. Under an axial load Ppre (Figure 4.1(b)), the tube deforms to the pre-

stretched state with the length lp, the inner radius ap, the outer radius bp and the pre-

stretch ratio pre=lp/L. Then, a voltage  is applied between the inner and outer surfaces

of the tube, forcing the tube to deform to the current state (Figure 4.1(c)) with the length l,

the inner radius a, the outer radius b and the axial stretch ratio z=l/L. During the

deformation process, an arbitrary material point moves from radial position R in the

undeformed state to radial position r in the current state. The DEs are commonly assumed
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to be incompressible (Zhu et al., 2010b; Koh et al., 2011; Pelrine et al., 2000; Huang and

Suo, 2011). Thus,

   2 2 2 2
zB A b a   . (4.1)

From equation (4.1), the hoop stretch of the tube, defined by =r/R for a material point,

can be written in terms of the axial stretch as

 2 2 2
z

r

A r a





 
. (4.2)

Moreover, the incompressibility of the material, i.e., rz=1, gives the radial stretch of

the tube in terms of the axial stretch.

The applied voltage, =V(b)-V(a), induces an electric field E in the radial direction,

which can be expressed in terms of the electric potential V(r) according to Maxwell’s law:

d / dE V r  . (4.3)

Also, the electric field is associated with the electric displacement D as (Zhu et al., 2010b;

Huang and Suo, 2011)

0D E , (4.4)

where 0 is the permittivity of air or vacuum and  is the relative dielectric constant of the

DE. Gauss’s law requires that the divergence of the electric displacement equals to the

density of free charge in the volume of the dielectric medium. Since the electric

displacement D is only in the radial direction in this case, the free charge density q equals

to dD/dr, which leads to

2 z

Q
D

r L 
 (4.5)
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for the electric displacement distribution, with Q being the charge on the outer surface of

the tube (Zhu et al., 2010b). Combining equations (4.3), (4.4) and (4.5), and integrating

equation (4.3) from the inner radius a to the outer radius b yields

0

ln
2 z

Q b

L a


 
 (4.6)

For the DE tube actuator in Figure 4.1, the constitutive equation relates the stress

components in the r-, -, z-directions through (Zhu et al., 2010b; Huang and Suo, 2011)

 s2
0

, z
r

W
E 

 


 
   




  


, (4.7)
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   



  


. (4.8)

W(, z) is the elastic strain energy density function of the elastomer. Among the

constitutive models of rubber elasticity (Boyce and Arruda, 2000), the Gent model (Gent,

1996) is one that accounts for the effect of extensibility, with the strain energy density

function given by

2 2 2 2
lim

s
lim

3
ln 1

2
z zGJ

W
J

        
   

 
. (4.9)

where G is the shear modulus, and Jlim is a dimensionless parameter related to the

extensibility (stretching limit) of the material (Boyce and Arruda, 2000; Gent, 1996). The

value of Jlim may change corresponding to the extensibility of the polymer chains in the

DE. For example, Kollosche et al. (2012) set Jlim=125 for an acrylic elastomer VHB4905

produced by 3M. Lu et al. (2012) used Jlim =120 for both VHB4905 and VHB4910

produced by 3M. Nevertheless, Huang and Suo (2011) set Jlim =69 for a dielectric

elastomer for theoretical modeling purpose. As VHB4905 and VHB4910 are the most
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commonly studied dielectric elastomers in literature, Jlim=125 is set in our work for

simulation purpose. Combining equations (4.7), (4.8) and (4.9) gives that

2 2 2
2

lim 02 2 2 2
lim z 3

z
r

z

GJ E
J

 
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   

 

 


  

   
, (4.10)
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In the deformed state of the DE tube actuator in Figure 4.1(c), the mechanical equilibrium

requires:

d
0

d
rr

r r
  

  . (4.12)

Substituting equation (4.10) into equation (4.12), replacing  and E through equations

(4.2), (4.4) and (4.5), and integrating equation (4.12) from a to b yields that

   
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Since the inner and outer surfaces of the DE tube are assumed to be stress free, i.e.,

r(a)=r(b)=0, then equation (4.13) gives

1
0 lim 2 2

2 2zQ L GJ
a b

F
   


, (4.14)

where
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m1=A2/z-a2 and m2=Jlimz+3z-z
3-2. Inserting expression (4.14) into equation (4.6), the

applied voltage can be related to the tube deformation, i.e.,

 
0 lim

2
1

2 2

2
ln

Jb

B A G a

F

B aA b


 
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. (4.15)

Similarly, the radial stress r(r) can be obtained at any position. Then inserting r(r) into

equations (4.10) and (4.11), the distribution of the axial stress z(r) and hoop stress (r)

can be determined. Correspondingly, the equivalent axial force Ppre is expressed as
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Equation (4.16) relates the mechanical load Ppre to the deformation of the DE tube. The

coupled equations (4.15) and (4.16) govern the electromechanical response of the DE

tube actuator. Noting that b is a function of a and z from equation (4.1), once Ppre and 

are prescribed, the deformation of the tube can be determined by solving for a and z

from equations (4.15) and (4.16). Here, it is more convenient to prescribe the pre-stretch

load Ppre by defining a pre-stretch ratio pre. Due to the homogeneous deformation in the

pre-stretched state (Figure 4.1(b)), the stretching of the tube is determined as pre=lp/L

and r==z
-1/2. Correspondingly, the pre-stretch load Ppre can be expressed in terms of

the pre-stretch ratio pre by combining equations (4.1), (4.11) and (4.16) with the

condition that =0, i.e.,

   
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Figure 4.2 displays the electromechanical response curves of a DE tube at several levels

of pre-stretch, namely the  0.5
0 / / ( )z G B A    curves, in which the applied

voltage is expressed as a normalized electrical load  0.5
0 / / ( )G B A   . As shown in

Figure 4.2, for a small applied electrical load, the induced axial stretch increases very

slowly with the voltage for any pre-stretch ratios. Once the electrical load reaches a peak

value, the electromechanical response curve starts to drop down. After the peak, the axial

stretch continues to increase until the DE reaches its limit of extensibility, at which the

electromechanical response curve becomes vertical. The typical behavior of such an

electromechanical response is that the interval between the peak and the trough is

unstable, which has been well investigated from perturbation analysis (Huang and Suo,

2011; Leng et al., 2009). Therefore, under a voltage-controlled actuation, z may snap

through the unstable interval from the peak to the other side of the response curve,

following the red arrow as show in Figure 4.2, resulting in a very large actuation strain.

Although this snap-through is desirable for achieving large strain, the DE tube may not

survive it because of a pre-mature electrical breakdown due to the sudden decrease in the

tube thickness. Under this situation, the EMI occurs and the peak of the

electromechanical response curve corresponds to the onset of the EMI. From our

numerical calculation, the voltage-induced deformation in the radial direction can be

interpreted as an “inflation” of the tube, i.e., both a and b increase as the voltage

increases, while a increases at a higher rate than b, leading to the reduction of the tube

thickness.
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Figure 4.2 Electromechanical response curves and electrical breakdown curves of an

unconstrained DE tube.

The electrical breakdown represents a scenario that the voltage-induced electric field

exceeds the dielectric strength EB of the DE, which limits the actuation performance of

the DE tube actuator. Although the value of EB was found to depend on both the

thickness and stretch ratios of the DE (Huang et al., 2012 Kofod et al., 2003), it is still

reasonable to use a fixed value in theoretical simulations for the simplification purpose

(Li et al., 2011; Koh et al., 2011; Zhao and Suo, 2010). For the DE tube in Figure 4.1, the

voltage corresponding to the electrical breakdown is determined as  ln /B BaE b a  .

In order to comply with the format of equation (4.15), the breakdown voltage is rewritten

as

0
ln

B

b
da

a
B A G B A




 
, (4.18)

by introducing a dimensionless parameter 0 /Bd E G (Koh et al., 2011). The

 0.5
0 / / ( )Bz G B A    curves of the DE tube actuator with different pre-stretch

ratios are also plotted in Figure 4.2. In the current work, d=3 is assumed in our numerical
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calculations to investigate the situation that the EB curve intersects with the unstable

interval of the electromechanical response curve, which means that a premature electrical

breakdown occurs during the snap-through process. In fact, the EB curve may intersect

with the response curve before the EMI onset point when d is very small or after the

unstable interval when d is exceptionally large (Koh et al., 2011; Zhao and Suo, 2010).

By setting d=3, the failure of the DE tube actuator is purely governed by the premature

electrical breakdown caused by the EMI if no mechanical rupture occurs and the axial

stretching limit is at the onset of the EMI. Since the stretch at the onset of the EMI is very

close to the pre-stretch as observed in this figure, large voltage-induced deformation of

such a DE tube is inhibited by the EMI. As mentioned in the previous section, there may

be still room to improve the performance of such a DE tube actuator by applying

different pre-stretch to the DE tube or changing the material stretching limit Jlim (Lu et al.,

2012; Koh et al., 2011; Pelrine et al., 2000).  In this work, however, we will explore an

alternative way to suppress the EMI and improve the performance by controlling the

boundary constraints of the DE tube actuator.

4.3 Actuation of n constrained DE tube under axial stretch

To see how electromechanical response of a DE tube actuator can be affected by

boundary constraints, a rigid sleeve is artificially set around the DE tube after the pre-

stretch (Figure 4.3(b)). The inner radius of the sleeve rs is set as rs=bonset, where bonset is

the outer radius of the unconstrained tube when it reaches the onset of the EMI under an

electrical load. The inner surface of the sleeve is assumed to be perfectly smooth that the

DE tube can slide along the sleeve without being affected by friction. After the sleeve is

placed, a voltage is applied between the two surfaces of the tube, resulting in the inflation

of the tube. During the inflation, the outer surface of the DE tube keeps increasing with

the increase of the applied voltage until it reaches the sleeve. Before the DE tube touches

the sleeve, the electromechanical response is still governed by equations (4.15) and (4.16).

Once the DE tube is against the sleeve, the outer surface of the tube is no longer free and

the charge Q on the outer surface cannot be expressed as that in equation (4.14). However,

after obtaining z(r) as that in the previous section, Qc at the constrained state can be

solved from the following condition,
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and Ppre is prescribed by equation (4.17). Substituting equation (4.20) into equation (4.6),

we can obtain
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which governs the electromechanical response of the DE tube after the tube reaches the

sleeve. Note that a can be expressed as a function of z by letting b=bonset in equation

(4.1). For a constrained DE tube shown in Figure 4.3, the electrical breakdown voltage

can still be determined by equation (4.18) if the EB happens before the tube reaches the

sleeve. Otherwise, the electrical breakdown voltage is determined as

0
ln onset

B

b
da

a
B A G B A




 
. (4.22)
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The electromechanical response of a constrained DE tube is illustrated in Figure 4.4. The

monotonic response curves indicate the elimination of the EMI. In comparison with

Figure 4.2, it is observed that all the intersection points between the electrical breakdown

curves and the electromechanical response curves have been shifted significantly to a

larger axial stretch ratio. Therefore, the EB is postponed for a constrained DE tube

compared to an unconstrained one. The results in this figure reflect an improvement of

the actuation performance in the axial direction by constraining the DE tube boundary in

the radial direction.

Figure 4.3 Actuation of a DE tube actuator constrained on its outer surface: (a)

undeformed state; (b) a rigid sleeve is placed around the pre-stretched DE tube under

force Ppre; (c) deformed state under a mechanical pre-stretch force Ppre and an electric

voltage .
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Figure 4.4 Electromechanical response curves and electrical breakdown curves of a DE

tube actuator with boundary constraints on its outer surface.

In order to see how the boundary constrain improve the actuation performance of the DE

tube actuator, we plot in Figure 4.5 EB-pre as a function of pre. Here, EB is the axial

stretch ratio when the EB occurs and EB-pre represents the voltage-induced stretch ratio,

namely, the actuation stretch ratio. As shown in this figure, the actuation performance of

the constrained DE tube is significantly improved, especially for the tube with small

mechanical pre-stretch or even without pre-stretch. For example, when the pre-stretch

ratio is set as pre=1 (no pre-stretch), the actuation stretch ratio increases from 0.26 to

1.87 i.e., it is improved over 600%.
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Figure 4.5 Comparison of actuation stretch at EB (EB-pre) for a DE tube actuator with

and without boundary constraints.

It should be mentioned that the predicted performance improvement in Figure 4.5 is

based on the assumption that the failure of the DE tube actuator is governed by the EB.

However, as the rigid sleeve restraints the inflation of the tube, the DE tube is under

uniform radial pressure generated by the rigid sleeve. Such a radial pressure may cause

the tube to collapse because of mechanical buckling. Inserting equations (4.2), (4.4), (4.5)

and (4.10) into equation (4.12) and conducting integration of r from a to bonset, the radial

pressure is determined as,
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, (4.23)

In this case, the buckling of the constrained tube can be treated as the buckling of a thin-

walled cylindrical shell under uniform radial pressure. According to studies on the
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stability of thin-walled cylindrical shells (Teng and Rotter, 2004; Ross, 2011; Brush and

Almroth, 1975), although a great number of methods are available for estimating the

critical stress of the buckling of cylindrical shells with different dimensions, some

methods appear to be more accurate for some particular cases. Among these methods for

buckling of cylindrical shells under uniform radial pressure, a solution based on the

Donnell stability equations is relatively accurate for short or shallow cylindrical shells, in

which the critical stress of buckling was given as
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, (4.24)

where EY is the Young’s modulus,  is the Poisson’s ratio, and n is the number of

circumferential waves into which the tube buckles (Brush and Almroth, 1975). The value

of n corresponding to the minimum value of the critical stress is selected in our numerical

calculation. When in=cr, buckling occurs and the axial stretch ratio at failure can be

obtained by combining equations (4.24) and (4.25). Figure 4.6 plots fail-pre as a function

of pre, where fail refers to the axial stretch ratio at mechanical buckling for a constrained

DE tube while it refers to the EB for an unconstrained DE tube. For a constrained DE

tube in this case, the actuation stretch in Figure 4.6 is much smaller than that in Figure

4.5, which indicates that the actual failure mode for such a DE tube is mechanical

buckling. However, the performance of the actuation is still improved by employing

boundary constraints even with the consideration of the mechanical buckling, particularly

when the pre-stretch is small. For example, when pre=1, the actuation stretch ratio

increases over 20%. As the pre-stretch increases to some extent, the actuation stretch of a

constrained DE tube does not significantly differ from that of an unconstrained DE tube.

It should be mentioned that the Donnell equations are accurate when the tube is relatively

short or shallow; longer cylindrical shells are less resistant against uniform radial

pressure and more susceptible to the mechanical buckling failure. When considering

tubes with different dimensions, say, long tubes, one may employ other buckling
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solutions to obtain the critical buckling stress (Teng and Rotter, 2004; Ross, 2011; Brush

and Almroth, 1975). However, the resistance against the mechanical buckling of the

tubes can be enhanced by applying reinforcement to the DE tube, for example, by

introducing stiffening rings to the relatively long tubes. Alternatively, using a stack of

short tubes instead of a single long tube can also improve the performance of the

constrained DE tube actuators. Based on the analysis above, we can conclude that

applying boundary constraints to the DE tube can offer an alternative to eliminating the

EMI failure and improving the actuation performance, as was also theoretically verified

on a DE plate actuator (Zhou et al., 2013). It should be mentioned that there is no existing

experimental work in literature that can directly confirm the results of the boundary

constraint method as proposed in the current work. However, the simulation results in

this work could be in-directly verified by the experimental observation (Huang et al.,

2012). It was found in their work that a larger axial actuation was achieved by using stiff,

parallel fibers to constrain the tube deformation in the radial direction of the DE tube

actuator. In fact, both the fiber constraints employed in the work of Huang et al. (2012)

and boundary-constraint method in the current work intend to use a similar idea to restrict

the radial deformation in order to realize a larger axial strain of a DE tube under an

applied voltage. It is anticipated that these two methods will lead to similar results.

Nevertheless, the realization of applying boundary constrains is challenging,

experimental validation against the theoretical modeling in the current work still needs to

be further pursued, which is our future concentration.
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Figure 4.6 Comparison of actuation stretch at failure (fail-pre) for a DE tube actuator

with and without boundary constraints.

4.4 Conclusion

This work investigates the electromechanical response of a DE tube actuator based on the

Gent model for hyperelastic materials. The performance of the DE tube actuator is found

to be significantly affected by the EMI, which inhibits the full actuation by causing a

premature EB. In order to eliminate or suppress the EMI, a boundary-constraint method

is proposed. By applying boundary constraints to the DE tube, monotonic response

curves are obtained and larger axial actuation stretch can be achieved. Because of the

boundary constraints, consideration has also been given to the possible mechanical

buckling failure that may occur during the actuation process. Simulation results indicate

that the actuation stretch can be improved by boundary constraints even if buckling

failure is taken into account. However, it should also be mentioned that how to realize the

boundary constraints in reality is challenging and further experiments are needed to

validate the theoretical modeling results. This work is expected to provide a better

understanding on the electromechanical responses of the DEs and thus lead to better

design of the DE actuators with desirable actuation performance.



71

References

Arora, S., Ghosh, T. and Muth, J., 2007. Dielectric elastomer based prototype fiber

actuators. Sens. Actuator A 136, 321-328.

Boyce, M. C. and Arruda, E. M., 2000. Constitutive models of rubber elasticity: a review.

Rubber Chem. Technol. 73, 504–523.

Brush, D. O. and Almroth, B. O., 1975. Buckling of Bars, Plates, and Shells. McGraw-

Hill, New York. pp 142-166.

Cameron, C. G., Szabo, J. P., Johnstone, S., Massey, J. and Leidner, J., 2008. Linear

actuation in coextruded dielectric elastomer tubes. Sens. Actuator A 147, 286–291.

Carpi, F. and Rossi, D. D., 2004. Dielectric elastomer cylindrical actuators:

electromechanical modelling and experimental evaluation. Mater. Sci. Eng. C 24, 555-

562.

Carpi, F., Rossi, D. D., Kornbluh, R., Pelrine, R. and Sommer-Larsen, P., 2008.

Dielectric Elatomers as Electromechanical Transducers. Elsevier, Amsterdam.

Carpi, F., Salaris, C. and Rossi, D. D., 2007. Folded dielectric elastomer actuators Smart

Mater. Struct. 16, S300–305.

Dorfmann, A. and Ogden, R. W., 2005. Nonlinear electroelasticity. Acta Mech. 174,

167–183.

Gent, A. N., 1996. A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59-

61.

Goulbourne, N., Mockensturm, E. and Frecker, M., 2005. A nonlinear model for

dielectric elastomer membranes. J. Appl. Mech. 72, 899-906.

Ha, S. M., Yuan, W., Pei, Q., Pelrine, R. and Stanford, S., 2006. Interpenetrating polymer

networks for high-performance electroelastomer artificial muscles. Adv. Mater. 18, 887–

891.



72

Hong, W., 2011. Modeling viscoelastic dielectrics. J. Mech. Phys. Solids 59, 637-650.

Huang, J., Lu, T., Zhu, J., Clarke, D. R. and Suo, Z., 2012. Large, uni-directional

actuation in dielectric elastomers achieved by fiber stiffening. Appl. Phys. Lett. 100,

211901.

Huang, J., Shian, S., Diebold, R. M., Suo, Z. and Clarke, D. R., 2012. The thickness and

stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer.

Appl. Phys. Lett. 101 122905.

Huang, R. and Suo, Z., 2011. Electromechanical phase transition in dielectric elastomers.

Proc. R. Soc. A 468, 1014–1040.

Kofod, G., Sommer-Larsen, P., Kornbluh, R. and Pelrine, R., 2003. Actuation response of

polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 24, 1667–1674.

Koh, S. J. A., Li, T., Zhou, J., Zhao, X., Hong, W., Zhu, J. and Suo, Z., 2011.

Mechanisms of large actuation strain in dielectric elastomers. J. Polym. Sci. B 49, 504–

515.

Kollosche, M., Zhu, J., Suo, Z. and Kofod, G., 2012. Complex interplay of nonlinear

processes in dielectric elastomers. Phys. Rev. E 85, 051801.

Kornbluh, R., Pelrine, R., Pei, Q., Heydt, R., Stanford, S., Oh, S. and Eckerle, J., 2002.

Electroelastomers: applications of dielectric elastomer transducers for actuation,

generation and smart structures. Proc. SPIE 4698, 254–270.

Leng, J., Liu, L., Liu, Y., Yu, Kai. And Sun, S., 2009. Electromechanical stability of

dielectric elastomer. Appl. Phys. Lett. 94, 211901.

Li, B., Liu, L. and Suo, Z., 2011. Externsion limit, polarization saturation, and snap-

through instability of dielectric elastomers. International Journal of Smart and Nano

Materials 2, 59-67.



73

Lu, T., Huang, J., Jordi, C., Kovacs, G., Huang, R., Clarke, D. R. and Suo, Z., 2012.

Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial

constraint of stiff fibers. Soft Matter 8, 6167–6173.

McMeeking, R. M. and Landis, C. M., 2005. Electrostatic forces and stored energy for

deformable dielectric materials. J. Appl. Mech. 72, 581–590.

O’Halloran, A., O’Malley, F. and McHugh, P., 2008. A review on dielectric elastomer

actuators, technology, applications and challenges. J. Appl. Phys. 104, 071101.

Park, H. S. and Nguyen, T. D., 2013. Viscoelastic effects on electromechanical

instabilities in dielectric elastomers. Soft Matter 9, 1031-1042.

Park, H. S., Suo, Z., Zhou, J. and Klein, P. A., 2012. A dynamic finite element method

for inhomogeneous deformation and electromechancial instability of dielectric elastomer

transducers. Int. J. Solids Struct. 49, 2187–2194.

Pei, Q., Rosenthal, M., Stanford, S., Prahlad, H. and Pelrine, R., 2004. Multiple-degrees-

of-freedom electroelastomer roll actuators. Smart Mater. Struct. 13, N86–92.

Pelrine, R. E., Kornbluh, R. D. and Joseph, J. P., 1998. Electrostriction of polymer

dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A 64, 77-

85.

Pelrine R, Kornbluh R, Joseph J, Heydt R, Pei Q and Chiba S 2000 High-field

deformation of elastomeric dielectrics for actuators Materials Science and Engineering C

11 89-100

Pelrine, R., Kornbluh, R., Pei, Q. and Joseph, J., 2000. High-speed electrically actuated

elastomers with greater than 100%. Science 287, 836-839.

Pelrine, R., Kornbluh, R.D., Pei, Q., Stanford, S., Oh, S., Eckerle, J., Full, R., Rosenthal,

M. and Meijer, K., 2002. Dielectric elastomer artificial muscle actuators: toward

biomimetic motion. Proc. SPIE 4695, 126-137.



74

Plante, J. and Dubowsky, S., 2006. Large-scale failure modes of dielectric elastomer

actuators. Int. J. Solids Struct. 43, 7727-7751.

Ross, C. T. F., 2011. Pressure Vessels: External Pressure Technology. Woodhead

Publishing, Cambridge. pp 100-102.

Stoyanov, H., Kodod, G. and Gerhard, R., 2008. A co-axial dielectric elastomer actuator

Advances in Science and Technology 61, 81-84.

Suo, Z. and Zhu, J., 2009. Dielectric elastomers of interpenetrating networks. Appl. Phys.

Lett. 95, 232909.

Suo, Z., Zhao, X. and Greene, W. H., 2008. A nonlinear field theory of deformable

dielectrics. J. Mech. Phys. Solids 56, 467–486.

Teng, J. G. and Rotter, J. M., 2004. Buckling of Thin Metal Shells. Spon Press, London.

pp 154-158.

Wissler, M. and Mazza, E., 2005 Modeling of a pre-strained circular actuator made of

dielectric elastomers. Sens. Actuators A 120, 184-192.

Zhao, X. and Suo, Z., 2007. Method to analyze electromechanical stability of dielectric

elastomers. Appl. Phys. Lett. 91, 061921.

Zhao, X. and Suo, Z., 2008a. Method to analyze programmable deformation of dielectric

elastomer layers. Appl. Phys. Lett. 93, 251902.

Zhao, X. and Suo, Z. 2008b. Electrostriction in elastic dielectrics undergoing large

deformation. J. Appl. Phys. 104, 123530.

Zhao, X. and Suo, Z., 2010. Theory of dielectric elastomers capable of giant deformation

of actuation. Phys. Rev. Lett. 104, 178302.

Zhao, X., Hong, W. and Suo, Z., 2007. Electromechanical hysteresis and coexistent states

in dielectric elastomers. Phys. Rev. B 76, 134113.



75

Zhou, J., Hong, W., Zhao, X., Zhang, Z. and Suo, Z., 2008. Propagation of instability in

dielectric elastomers. Int. J. Solids Struct. 45, 3739-3750.

Zhou, J., Jiang, L. and Khayat, R. E., 2013. Failure analysis of a dielectric elastomer plate

actuator considering boundary constraints. J. Intell. Mater. Syst. Struct. 24, 1667–1674.

Zhu, J., Cai, S. and Suo, Z., 2010a. Resonant behavior of a membrane of a dielectric

elastomer. Int. J. Solids Struct. 47, 3254-3262.

Zhu, J., Stoyanov, H., Kofod, G. and Suo, Z., 2010b. Large deformation and

electromechanical instability of a dielectric elastomer tube actuator. J. Appl. Phys. 108,

074113.



76

Chapter 5

5 Viscoelastic effects on frequency tuning of a dielectric

elastomer membrane resonator

5.1 Introduction

Dielectric elastomers (DEs), as a category of electroactive polymers, which deform under

electrical stimuli, have received significant attention due to their flexibility and capability

of large deformation. Recent studies have shown that DEs hold promise for extensive

potential applications, such as resonators, sensors, and actuators for robots, artificial

muscles, energy harvesting systems, MEMS devices, programmable haptic surfaces,

biomimetic applications, and adaptive optical elements (Huang et al., 2013; Carpi et al.,

2008; Chiba et al., 2011; Kornbluh et al., 2002; Ahmadi et al., 2013; Lai et al., 2012;

O’Halloran et al., 2008; Karsten et al., 2013; Anderson et al., 2010; Heydt et al., 2010).

The electromechanical coupling of DEs with quasi-static deformation has been widely

studied in the literature (Pelrine et al., 2000; Zhu et al., 2010; Lu et al., 2012; Zhao et al.,

2007; Zhao and Suo, 2008; Plante and Dubowsky, 2006; Wissler and Mazza, 2005; Koh

et al., 2011; Zhao and Suo, 2010; Zhou et al., 2012; Huang and Suo, 2012; Zhao and Suo,

2007; Kollosche et al., 2012). However, relatively less work has been done on

investigating their dynamic behavior. In recent years, DEs have been developed as

resonators and oscillators which have been regarded as a potential alternative to the

traditional silicon-based devices in MEMS (Zhang et al., 2005; Biggs and Hitchcock,

2010; O’Brien et al., 2012; Bonwit et al., 2006). The merit of a DE-based resonator

mainly lies in the fact that its natural frequency could be actively tuned by applying an

electric voltage, while the natural frequency of a silicon-based resonator is basically fixed

after fabrication (Dubois et al., 2008). This property not only enables DE-based

resonators to have a wide range of resonant frequency but also provides a desirable

solution to the challenges of traditional resonators, such as compensation for fabrication

and environmental imperfection caused by aging, temperature, uniformity and
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contamination. Depending on specific applications, DE resonators and oscillators are

designed in different shapes, such as micro-beam and membrane, on which most existing

analyses for DE resonators and oscillators focus. For example, the dynamic response of

axisymmetric DE membrane resonators was investigated by Mockensturn and

Goulbourne (2006), Fox and Goulbourne (2008 and 2009) and Zhu et al. (2010) The

nonlinear oscillation of spherical DE membrane resonators was studied by Zhu et al.

(2010) and Yong et al. (2011) The active tuning of resonant frequency of a DE micro-

beam resonator was explored by Feng et al. (2011) with the consideration of squeeze-film

damping. Li et al. (2012) investigated the nonlinear oscillation of a tunable DE plate

membrane resonator using a hyperelastic model.

Nevertheless, most existing studies ignored the intrinsic viscoelastic property of the DEs,

which was proven to exert a significant effect on their dynamic and resonant performance

(Plante and Dubowsky, 2007; Wissler and Mazza, 2005; Hong, 2011). Early studies on

the viscoelasticity of DEs are limited to the linear theories and only congruous with

relatively small deformation (Yang et al., 2005). However, most applications of DEs

utilize their large-deformation capacity, for which the linear theories are not applicable.

Later, a modified hyperelasticity theory was employed with an addition of the Maxwell

stress to model the viscoelastic effect of the DE with finite-deformation (Plante and

Dubowsky, 2007), which could only explain experimental phenomena for a particular

category of cases, leaving many viscoelastic issues of DEs unsettled. Recently, based on

the fully coupled field theory for elastic dielectrics by Suo et al. (2008) and the finite-

deformation viscoelastic theory by Reese and Govindjee (1998) a model that accounts for

both the finite inelastic deformation and the electromechanical coupling of the DEs was

proposed by Hong (2011), which was claimed as a theoretical framework capable of

adopting most finite-deformation constitutive models and evolution laws of viscoelastic

solids. Park and Nguyen (2013) developed a finite formulation for the DEs involving

both finite-deformation and viscoelastic effects. The dynamic performance of viscoelastic

DEs under alternating mechanical load was investigated by Zhang et al. (2014). Wang et

al. (2013) investigated the inhomogeneous viscoelastic deformation of an axisymmetric

DE membrane subject to a combination of pressure and voltage. Based on the finite

element model developed by Park and Nguyen (2013), the electrostatically driven creep
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and instabilities of the DEs were studied by Wang et al. (2014). These studies reported

that the viscoelasticity had a strong effect on the dynamic performance of the DEs.

Therefore, it is essential to examine the viscoelastic behavior of the DE-based resonators

in order to provide a better design guideline for their potential applications.

To explain how the viscoelasticity of the DEs affects the dynamic behavior of the DE-

based resonators, problem investigated by Li et al. (2012) for a membrane resonator with

its configuration referred as the ReflexTM HIC Slide Actuator HIC-512 by Artificial

Muscle Inc. (Biggs and Hitchcock, 2010) will be revisited. This configuration was

designed as a haptic module for mobile handsets and expected to provide tactile effects

when used as mobile devices. Without considering the viscoelasticity, the nonlinear

oscillation and frequency tuning of such a DE membrane resonator were elucidated in the

work of Li et al. (2012) based on the Gent model. By re-examining such a DE resonator,

this work aims to illustrate the complex interplay of the material viscoelasticity, the pre-

stretch influence and the failure modes of the DE-based resonators, thus providing a

better understanding on their nonlinear and rate-dependent vibration behavior. It should

be mentioned that some typical failure modes occur during the resonator oscillation, such

as the electromechanical instability, the electrical breakdown and the loss of tension of

the membrane. However, the electromechanical instability is not considered here since it

is eliminated by the boundary constraints of the current resonator configuration (Zhou et

al., 2013; Kollosche et al., 2012).

Figure 5.1 Configuration of a DE membrane resonator: (a) Undeformed state; (b) Pre-

stretched state; (c) The pre-stretched membrane is bonded to a rigid frame with its two

edges and sandwiched with two rigid mass bars; (d) Current state, in which membrane A

is actuated by an electric voltage .
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5.2 Formulation of the problem

The schematics of a DE membrane resonator are displayed in Figure 5.1 (Biggs and

Hitchcock, 2010; Li et al., 2012). Figure 5.1(a) shows an undeformed state with

dimensions L1, L2 and L3 (
3 1 2,L L L ). The undeformed membrane is then

instantaneously pre-stretched to l1 in 1-direction and l2 in 2-direction with the

corresponding pre-stretch ratios 1p 1 1/l L  and 2p 2 2/l L  (Figure 5.1(b)). The pre-

stretched membrane is further bonded to a rigid frame with its two edges along 2-

direction and clamped by two rigid bars with a mass of m, which separate the membrane

into two parts: membrane A and B (Figure 5.1(c)). Part A is coated with compliant

electrodes on its two surfaces as the active part, while part B acts as the passive part

which deforms following the electrical stimulation of part A. The undeformed lengths of

membrane A and B in 1-direction are denoted as L1A and L1B with the length ratio

k=L1A/L1B. Then an electric voltage  is applied between the two electrodes of membrane

A to force membrane A and B to deform to the current state with length l1A and l1B in 1-

direction (Figure 5.1(d)). Constrained by the rigid frame and bars, membrane A is subject

to the tensile forces P1A and P2A in 1- and 2-directions, respectively, as well as the

applied voltage , while membrane B is solely subject to the tensile forces P1B and P2B in

the current state.

From the configuration of the resonator and its applied loads, the deformation gradients

of the current state with respect to the underformed state for membrane A and B are

described respectively as

1A

A 2A

3A

0 0

0 0

0 0






 
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and
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However, due to the intrinsic viscoelasticity of the DE, the deformation of the DE

induced by the mechanical loads and the electric voltage may not be fully elastic, but

consists of inelastic component as well. As originally suggested by Lee (1969), the total

deformation gradients of a viscoelastic material can be multiplicatively decomposed into

two parts: the elastic part and the inelastic part (Hong, 2011; Reese and Govindjee, 1998).

This decomposition yields e i
A A AF F F and e i

B B BF F F , where
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Here, the superscripts ‘e’ and ‘i’ represent the elastic part and the inelastic part,

respectively. In this work, the DE is assumed to be incompressible for both the elastic

and inelastic deformation as commonly treated in other studies (Zhu et al., 2010; Lu et al.,
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2012; Zhao et al., 2007; Plante and Dubowsky, 2006; Wissler and Mazza, 2005; Koh et

al., 2011; Zhao and Suo, 2010; Zhou et al., 2013; Huang and Suo, 2012; Zhao and Suo,

2007; Hong, 2011), which gives the stretch ratios in 3-direction for both membranes A

and B, i.e., 3A 1A 2A1 /   , e e e
3A 1A 2A1/   , i i i

3A 1A 2A1/   , 3B 1B 2B1 /   ,

e e e
3B 1B 2B1/   and i i i

3B 1B 2B1/   .

Based on the finite-deformation viscoelastic theory proposed by Reese and Govindjee

(1998), the Helmholtz free energy density W of the DE membrane in the current state can

also be split into two parts: the non-equilibrium Helmholtz free energy density WNEQ

which is only related to the elastic deformation, and the equilibrium Helmholtz free

energy density WEQ which is determined by the total deformation and the electric

displacement D of the DE membrane (Hong, 2011). Therefore, taking membrane A for

example, we express the Helmholtz free energy density in the form

   EQ NEQ e e
A 1A 2A 1A 2AA A, , ,W W D W     . (5.2)

in which it is assumed that the electric field is always in equilibrium. This is due to the

fact that the electric field reaches the equilibrium state much faster than the mechanical

deformation. Following the work of Huang and Suo (2012) and Hong (2011) the

equilibrium Helmholtz free energy density consists of the contributions from the total

stretching and the polarization, i.e.,

 
2

EQ
A s 1A 2A

0

,
2

D
W W  


  , (5.3)

where  s 1A 2A,W   is the strain energy density function of the DE and 2
0/ 2D  is the

Helmholtz free energy related to the polarization. Also, the voltage-induced electric

displacement D and the electric field E satisfy the material law 0D E (Zhao et al.,

2007; Huang and Suo, 2012), where 0 is the permittivity of the vacuum and  is the

relative dielectric constant of the DE. Assuming uniform distribution of the electric field
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in the DE (Lu et al., 2012; Koh et al., 2011), E is further associated with the applied

voltage  as
1A 2A 3/E L   . Therefore, substitution of equation (5.3) into equation

(5.2) gives

   
2

NEQ i i 2 20
A s 1A 2A 1A 1A 2A 2A 1A 2AA

3

, / , /
2

W W W
L

 
       

 
    

 
. (5.4)

During the actuation process of the resonator, the variation of the kinetic variables 1A

and 1A of membrane A results in the corresponding variation of the Helmholtz free

energy, which  equals to the work done by the tensile forces and the inertia force,

   

3 2
A A 1A 1A

1 2 3 1A 2A 1A 1A 1A 2A 2 2A 2 3 1A2
1A 2A

23
3

1A 2 2

-1 1
1A 2 -1 -1

1A 2A

3

3
A

A

W W L d
L L L P L P L L L

dt

dL
L L

dt

 


     

 

  


  
     




, (5.5)

where  is the density of the DE membrane. Since the membrane is very thin  3 1L L ,

the last term in equation (5.5) could be omitted (Li et al., 2012). Neglecting the last term

in equation (5.5) and substituting equation (5.4) into equation (5.5), we obtain

 

 

2NEQ 3 21i 2s A 1 1A
1A 0 1A 2A 1A 1A 2 3 1Ae 2

1A 31A

2NEQ 1i 2s A
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2A 3

2 3
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2 3
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
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 


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 


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       
 
  
 
 

 

      
               

 
 
 

. (5.6)

Because 1A and 2A are any arbitrary small variation of the stretch ratios, equation

(5.6) requires

 
2NEQ 3 21i 2s A 1 1A

1A 0 1A 2A 1A 1A 2 3e 2
1A 31A

A 2 3 0
3

WW L d
P L L L

L
L L L

dt


    

 

  
    

 
  
 
 
    , (5.7)
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 
2NEQ 1i 2s A

2A 0 2AA 2 3 1A 2A 2e
2A 32A

0L L L
WW

P L
L


   

 

  
   

 
 
 
 

    . (5.8)

Once sW and NEQ
AW are specified, the deformation of the membrane A can be described

by equations (5.7) and (5.8) in terms of the tensile forces and the electrical voltage. In

this work, the Gent model (Gent, 1996) is adopted, in which the strain energy density

function is related to the total stretching of the DE as

2 2 -2 -2
lim 1A 2A 1A 2A

lim

3
ln 1

2

EQ

s
G J

W
J

      
    

 
, (5.9)

where GEQ is the equilibrium shear modulus as introduced in the work of Hong (2011)

and Jlim is a dimensionless parameter determined by the stretching limit of the DE. As

previously stated, the non-equilibrium Helmholtz free energy density is simply a function

of the elastic deformation of the DE. Therefore, we can also assume the non-equilibrium

Helmholtz energy density as a strain energy density function that is simply related to the

elastic stretching of the DE following the finite-deformation viscoelasticity theory for

dielectrics developed in the work of Hong (2011), i.e.,

     2 2 2e e e eNEQ 1A 2A 1A 2ANEQ lim
A
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3
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  

, (5.10)

where GNEQ is the non-equilibrium shear modulus. Substituting equations (5.9) and (5.10)

into equations (5.7) and (5.8) results in
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. (5.12)
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where two material parameters EQ NEQG G G  and are introduced. Physically, is an

indicator of the fraction of the polymer networks that has time-independent deformation

(Bergstrom and Boyce, 1998). =1 represents an elastic material, while =0 represents a

viscous fluid for limiting cases.

Similarly, the deformation of the passive membrane B is described as

         2 2-3
2 21B
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Due to the actuation of the membrane A, the resonator is modeled with the oscillation of

the rigid bars, for which the equation of motion is expressed as

2
1A 1B 1A 1A

2
2 3 2 3 2 3

0
P P mL d

GL L GL L GL L dt


   , (5.15)

in which m is the total mass of the two rigid bars.

In particular, when the resonator is static in the current state, the inertia terms in

equations (5.11) and (5.13) vanish and the forces on the two the sides of the rigid bars are

balanced off, i.e.
1A 2 3 1B 2 3/ /P GL L P GL L , which yields
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When  =1, equations (5.11) to (5.16) model a purely elastic DE membrane, which

recover the formulation in the work of Li et al. (2012). In the current study, L2 is set to be

much longer than L1 so that we can assume 2A=2B=2p until the loss of tension in 2-

direction, i.e., when
2 0AP  or

2 0BP  , wrinkling occurs in the membrane. In the

undeformed state, the length ratio of membrane A to B in 1-direction is taken as

L1A/L1B=k. In the current state, the stretch ratios for these two membrane parts satisfy

1B=1p+k(1p-1A).

To obtain the inelastic stretch ratios in the equations above, the evolution equation

proposed by Reese and Govindjee (1998) is adopted in the current work. Taking

membrane A for example, the deformation gradient tensors defined above must satisfy

the following equation

 
i 1

1A T e 1 NEQ
A A A

( )1 γ :
2

d

dt


 

 
   

C
F F b σ . (5.17)

where  Ti i i
A A AC F F ,  Te e e

A A Ab F F ,  NEQ

NEQ
Te e

A Ae
A

2
W




σ F F
C

,  Te e e
A A AC F F and

is an isotropic rank-four mobility tensor. In addition, equation (5.17) requires to be

positive-definite. Due to the assumption that the DE membrane is incompressible,

takes the form (Reese and Govindjee, 1998)

1 41 1

2 3v




     
 

I I I , (5.18)

where v is the shear viscosity, I4 is the fourth order symmetric identity tensor and I is

the second order identity tensor. Substituting AF , i
AF , e

AF , NEQW and equation (5.18) into

equation (5.17) results in the expression of the time-dependent inelastic stretch ratios of

membrane A,
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, (5.19)
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where NEQ / vtG  is the viscoelastic relaxation time. Similarly, we can obtain the

time-dependent inelastic stretch ratios for membrane B as follows,
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It should be mentioned that the DE membranes have to be in tension during the operation

of the resonator since membranes cannot sustain any compression. As a result, we have to

ensure that
1A 2 3/ 0P GL L  ,

2A 3/ 0AP G L L  ,
1B 2 3/ 0P GL L  and

2 3/ 0B BP G L L  during

the actuation process. Furthermore, considerations should also be given to the electrical

breakdown (EB) that may occur during the actuation of membrane A, which represents a

failure mode when the voltage-induced electric field in membrane A exceeds its dielectric

strength EEB. At the EB point of membrane A, the corresponding applied voltage B is

determined as (Koh et al., 2011; Zhou et al., 2013)

-1 -10B
1A 2A

3

d
L G


  , (5.23)
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where EB 0 /d E G is a material parameter. Although the value of d may vary for

different DE materials, we use a medium value d=5 (Koh et al., 2011) in this work for

simulation purpose.

5.3 Natural frequency of the DE membrane resonator

Substituting equations (5.11) and (5.13) into the motion equation (5.15) of the rigid bars

and noting that 1B=1p+k(1p-1A) and 2A=2B=2p , we obtain
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The natural frequency of the DE resonator will be determined following the standard

method employed in existing studies for nonlinear vibration analysis of both elastic and

viscoelastic DE resonators (Zhu et al., 2010; Li et al., 2012; Zhang et al., 2014). At time t,

with a small perturbation of amplitude  t , the total stretch ratio of membrane A in 1-

direction is expressed as

 1A 1A ( )t t     , (5.25)
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where
1A takes the value of

1A in the kinetic equilibrium state before the perturbation is

applied. Due to the instant and small amplitude of the perturbation, it is assumed that the

inelastic stretch ratios remain the same as those in the kinetic equilibrium state.

Meanwhile, function  i i i i
1A 1A 2A 1B 2B, , , , ,g       is expanded into Taylor series up to the

first order as,

     i i i i
1A 1A 2A 1B 2Bi i i i i i i i

1A 1A 2A 1B 2B 1A 1A 2A 1B 2B
1A

, , , , ,
, , , , , , , , , ,

g
g g

     
            




 


. (5.26)

Combining equations. (5.24), (5.25) and (5.26) leads to

 i i i i
1A 1A 2A 1B

2

2

2B

1A

, , , , ,
0

d

dt

g      








 . (5.27)

From equation (5.27), the natural frequency of the DE membrane resonator is determined

as

 i i i i
1A 1A 2A 1B 2B2

n
1A

, , , , ,g      








. (5.28)

According to equation (5.28), the natural frequency of the resonator depends on the

inelastic stretch ratios. Therefore, the natural frequency of the resonator is time-

dependent and can be determined by solving the set of differential-algebraic equations

(5.16), (5.19), (5.20), (5.21), (5.22) and (5.28) when the pre-stretches of the membrane

and the applied voltage are prescribed.

5.3 Results and discussion

To illustrate the process of the actuation and natural frequency tuning of the DE

membrane resonator, a scenario where the pre-stretching, framing and clamping of the

DE membrane are instantaneously completed, and a voltage is then applied at a loading

rate of */r d d  to membrane A is first considered, where 0 3* / /G L   is the
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dimensionless voltage. Figure 5.2 depicts the typical electromechanical response of the

resonator (
1A *  ) for different values of viscoelastic material parameter  when the

voltage loading rate, the length ratio and the pre-stretch ratios are set as r = 0.3, k = 1, 1p

= 2 and 2p = 4, respectively. Under the same conditions, Figure 5.3 shows the

dimensionless natural frequency /n n   of the resonator as a function of the

dimensionless voltage * . In Figures 5.2 and 5.3, the curves with 0 < < 1 correspond

to a viscoelastic membrane while the curves with = 1 are for a purely elastic membrane.

Also, in these two figures, the applied voltage is increased from 0 to the point where the

resonator fails by the loss of tension, either in 1-direction (denoted by the dots) or in 2-

direction (denoted by the triangles). It is observed that the electromechanical response in

Figure 5.2 is monotonic while the frequency in Figure 5.3 is non-monotonic with respect

to the voltage. During the actuation, the stiffness of the membrane keeps changing, which

is indicated by the variation of the slope of the stretch-voltage curves in Figure 5.2. The

variation of the membrane stiffness is due to both the stress relaxation and the

electromechanical coupling for a viscoelastic DE, while such a variation is only in

response to the electromechanical coupling for an elastic DE. For a small voltage, the

stiffness of the membrane decreases, and the membrane approaches a softer state as the

applied voltage increases. Correspondingly, the natural frequency of the membrane drops

as shown in Figure 5.3. As the voltage continues to increase, the electromechanical

response curve reaches an inflection point at which voltage level the natural frequency

reaches a minimum. Beyond this voltage, the membrane becomes stiffer (as the slope

decreases) and the natural frequency rises sharply until the membrane fails. Because the

stress in a viscoelastic membrane is relaxed by the inelastic deformation during the

actuation, a larger 1A is induced by the same applied voltage compared to that of a

purely elastic membrane. In other words, a viscoelastic membrane approaches different

states of stiffness of the material faster than a purely elastic membrane during the

actuation. It is also observed from these two figures that the critical electric voltage

corresponding to the failure point of the resonator decreases as  decreases (or the

material viscosity increases). The trends for = 1 in Figures 5.2 and 5.3 are in agreement

with those in the work of Li et al. (2012). It is found that, if a higher electrical loading
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rate is used instead of r = 0.3, the electromechanical response for the DE membrane is

essentially uninfluenced by the values of . This is illustrated in Figure 5.4 for r = 10.

The reason behind this insensitivity to the material viscosity is due to the fact that the

material has no sufficient time to relax before failure occurs. Comparing the results in

Figures 5.2 and 5.4, it is also found that the electrical loading rate significantly influences

the critical electric voltage corresponding to the failure of a viscoelastic resonator, i.e.,

with the increase of the loading rate, the critical voltage gets higher.

Figure 5.2 Electromechanical response  1 *A  of a DE membrane resonator for k = 1,

1p = 2, 2p = 4 and different values of . The voltage is applied at the rate of r = 0.3.
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Figure 5.3 The dimensionless natural frequency of a DE membrane resonator for k = 1,

1p = 2, 2p = 4 and different values of . The voltage is applied at the rate of r = 0.3.

Figure 5.4 Electromechanical response  1 *A  of a DE membrane resonator for k = 1,

1p = 2, 2p = 4 and different values of . The voltage is applied at the rate of r = 10.

In Figures 5.2, 5.3 and 5.4, the voltage was assumed to be applied immediately after the

pre-stretching, framing and clamping processes of the membrane. However, in reality, the
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voltage may not be immediately applied. In this case, upon setting  = 0, equation (5.28)

indicates that the natural frequency of the resonator becomes solely a function of the

inelastic deformation induced by the pre-stretch. Figure 5.5 typically illustrates how the

natural frequency n can change with time under pre-stretched conditions in the presence

and absence of the electrical loading. The applied voltage is also shown for reference.

Figure 5.5(a) depicts the variation of the natural frequency in the initial time interval,

during which no voltage is applied. At = 0, the DE membrane with = 0.5 is assumed

to be instantaneously pre-stretched (1p = 2 and 2p = 4), framed and clamped with the

rigid mass bars (the length ratio k = 1). From Figure 5.5(a), it is observed that the natural

frequency first drops to a minimum, then rises, and eventually reaches a constant value.

During this process, the stress in the membrane relaxes over time under a constant pre-

stretch condition. When the deformation of the membrane becomes fully inelastic, the

natural frequency becomes steady state. After a sufficient long time period for the

membrane to fully relax, for example, at 9  , a voltage is applied to membrane A.

Figure 5.5(b) shows the change of the natural frequency of the resonator during the

actuation interval. As illustrated in this figure, the membrane deforms again and the

natural frequency of the resonator varies with both the inelastic deformation and the

applied voltage, according to equation (5.28). During the actuation, the voltage is

increased at a very high rate (r = 10 for example), until the dimensionless voltage reaches

a certain prescribed value p* (= 0.2 at  = 9.02 in this case). When the applied voltage is

maintained at p*, as illustrated in Figure 5.5(c), the natural frequency of the resonator

will continue to change until the membrane is in thermodynamic equilibrium again. It is

observed that the natural frequency increases and eventually reaches a final steady value.

This value is the actual natural frequency of the DE membrane resonator after the tuning

process. Combining Figures 5.5(a), 5.5(b) and 5.5(c), Figure 5.5(d) summarizes the entire

tuning process, and exhibits the variation of the natural frequency from the pre-stretching

stage to the point where the frequency reaches a final steady value. From Figure 5.5(d),

three main stages of the natural frequency tuning can be identified: the initial evolution

stage under pre-stretched conditions in the absence of the electrical loading, the actuation

stage, and the final evolution stage under a prescribed electrical loading. In addition, the

difference between the final steady value and the initial steady value of the natural
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frequency in Figure 5.5(d) represents the frequency tuned by the applied voltage. The

effect of the electrical loading rate on the frequency tuning process is also illustrated in

Figure 5.5(d) by changing the loading rate to an extremely small value r = 0.05 and a

moderate value r = 0.3. By comparing these results in Figure 5.5(d), it is found that the

starting point of the final evolution is delayed when the electrical loading rate is

decreased. A higher loading rate results in a higher instant frequency during the final

evolution process. However, the final steady values of the natural frequency under the

prescribed voltage are the same for different loading rates. It is thus concluded that the

frequency tuned by the applied voltage is independent of the electrical loading rate. It

should be mentioned that this prescribed voltage p* = 0.2 for the frequency tuning is

selected as a safe operation voltage without causing any failure of the DE membrane (i.e.,

the loss-of-tension or the electrical breakdown). Recalling the results in Figures 5.2 and

5.4 that the electrical loading rate influences the critical voltage, we expect that the safe

operation voltage range and the tunable frequency range vary with the loading rate and

will discuss this issue later.
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Figure 5.5 Variation of the natural frequency of a DE membrane resonator in the

presence and absence of electrical loading, for k = 1, 1p = 2 and 2p = 4. The applied

voltage is shown in dashed line. (a) The initial evolution stage under pre-stretched

conditions in the absence of the electrical load; (b) The actuation stage (the voltage is

applied at the rate of r = 10); (c) The evolution stage under a prescribed electrical loading;

(d) Natural frequency tuning process (the voltage is applied at the rate of r = 10, r = 0.3

and r = 0.05).

The frequency tuning process in Figure 5.5(d) is governed by six parameters, namely the

pre-stretch ratios 1p and 2p, the prescribed dimensionless voltage p*, the

viscoelasticity parameter , the length ratio k, and the electrical loading rate r. Here, we

introduce the tuned frequency nΔ as the difference between the final and initial steady

values of the natural frequency (see Figure 5.5(d)), which is simply a function of p*

when the values of r, k, 1p and 2p are fixed. Under different electrical loading rates (r

= 10 and r = 0.05 for example), Figure 5.6(a) illustrates how nΔ changes with p* for a

viscoelastic DE resonator (with k = 1, 1p = 2, 2p = 4. Figure 5.6(b) depicts the

n pΔ *  dependence for an elastic DE resonator (1). The values of the voltage

p* range from 0 to the point where the membrane fails either by the loss-of-tension in

the membrane or by the electrical breakdown of the DE. Typically, the nΔ curve
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displays a minimum. Therefore, one can denote the nΔ range between the minimum

 minΔ n and the failure level  Δ f
n as the tunable frequency range of the DE

membrane resonator. The voltage range between 0 and the failure point is defined as the

safe operation voltage range. Consequently, once the material and geometrical parameters

of the resonator are given, the tunable frequency range and the safe operation voltage

range of the resonator can be determined. For applications of DE resonators with any

configurations, these two ranges are very important since they can identify the range of

electrical loading limit and the performance of a DE resonator. Figure 5.6(a) shows that

the tunable frequency range corresponds entirely to the safe operation range since the

minimum is essentially nonexistent. It is also found in Figure 5.6(a) that both the tunable

frequency range and the safe operation voltage range of the viscoelastic DE resonator

become larger if the electrical loading rate is higher. This is due to the fact that a higher

electrical loading rate raises the critical electric voltage at which the material fails by the

loss of tension as shown in Figures 5.2 and 5.4. A pronounced minimum is predicted for

a purely elastic membrane (= 1), as shown in Figure 5.6(b). Moreover, the tunable

frequency range for a viscoelastic DE membrane resonator (= 0.5) is larger than that of

a purely elastic DE membrane resonator (= 1), while the safe operation voltage range of

the viscoelastic resonator is much narrower. Therefore, neglecting the viscoelastic effect

of the DE may lead to substantial errors in predicting the dynamic performance of the DE

resonator.
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Figure 5.6 Tunable frequency range and safe operation voltage range of a DE membrane

resonator with prescribed parameters k = 1, 1p = 2, 2p = 4. (a) = 0.5 (the voltage is

applied at the rate of r = 10 and r = 0.05); (b) = 1 (the voltage is applied at the rate of r

= 10).

In Figure 5.6, each tunable frequency range corresponds to a set of material and

geometrical parameters (k, 1p and 2p) when the electrical loading rate is fixed.

Therefore, when the material of the resonator is selected (is fixed), a different set of

geometrical parameters k, 1p and 2p will result in a different tunable frequency range.

Figure 5.7 depicts the change of the tunable natural frequency range of a viscoelastic DE

membrane resonator (= 0.5) for different geometrical parameters when the loading rate

is set as r = 0.3. In Figures 5.7(a) and 5.7(b), we set k = 2 and plot and for

any combinations of 1p and 2p, ranging from 1 to 4. As shown in Figures 5.7(a) and

5.7(b), by choosing certain pre-stretch ratios, the can be lowered to -0.2, while

can be raised to about 3. To investigate how the aspect ratio k affects the tunable

natural frequency range, we also plot and for k = 1 in Figures 5.7(c) and

5.7(d), and k = 0.3 in Figures 5.7(e) and 5.7(f), respectively. As indicated in Figure 5.7,

the maximum value of the increases as the value of k increases, while no obvious

minΔ n Δ f
n

minΔ n

Δ f
n

minΔ n Δ f
n

Δ f
n
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trend for is observed as k varies. In addition, the tunable frequency range is

dominated by the up-tuning side for any examined values of k. Therefore, such a DE

membrane resonator appears to be more suitable for applications in which the frequency

needs to be raised. We also examined the combined effects of the loading rate r with the

pre-stretches 1p and 2p upon the frequency tuning. It was found that with the considered

range of the pre-stretches in Figure. 5.7, a higher loading rate increases but has no

effect on . This is consistent with the conclusion drawn from Figure 6(a), while

these results are not plotted here to keep the clarity of the 3D figures.

Finally, it should be mentioned that during the natural frequency tuning process, the

deformation of the membrane can be inhomogeneous. For example, the pre-stretching,

framing and clamping process may cause inhomogeneous deformation in the membrane,

particularly in the vicinity of the clamps. Also, the voltage-induced deformation can be

inhomogeneous if the voltage is applied at a relatively low rate. However, for illustration

purpose, we assumed homogeneous deformation with the aim to provide a theoretical

prediction of the trend of the natural frequency tuning process when considering material

viscoelasticity.

minΔ n

Δ f
n

minΔ n
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Figure 5.7 and of the tunable frequency range of a viscoelastic DE

membrane resonator (= 0.5) for various combinations of the pre-stretch ratios. In

actuation interval, the voltage is applied at the rate of r = 0.3.  (a) for k= 2; (b)

for k = 2; (c) for k = 1; (d) for k = 1; (e) for k = 0.3; (f)

for k = 0.3.

5.4 Conclusion

By studying the in-plane oscillation and the actuation of a DE membrane resonator, this

work aims to provide a better understanding of the influence of material viscoelasticity

minΔ n Δ f
n

Δ f
n

minΔ n Δ f
n minΔ n Δ f

n

minΔ n
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on the natural frequency tuning of a DE resonator. Based on the finite-deformation

viscoelasticity theory for dielectrics and the Gent model for hyperelasticity, a comparison

of the natural frequency variation between a purely elastic DE membrane resonator and a

viscoelastic DE membrane resonator is presented. The natural frequency of a purely

elastic DE membrane resonator is solely changed by the applied voltage, while the

natural frequency of a viscoelastic DE membrane resonator is time-dependent and

affected by both the applied voltage and the inelastic deformation. With the consideration

of possible failure modes such as the loss of tension and the electrical breakdown, the

natural frequency tuning process, the tunable frequency range and the safe operation

voltage range of a viscoelastic DE membrane resonator are investigated through

parametric studies. Due to the material viscoelasticity, the electrical loading rate is found

to influence both the tunable frequency range and the safe operation voltage range of the

viscoelastic DE resonators. The study suggests that a viscoelastic DE resonator tends to

be more suitable for applications in which the natural frequency needs to be tuned up, and

provides the extent of the viscoelastic effect on the dynamic performance of DE-based

resonators, as well as guidance for further experimental work.
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Chapter 6

6 Investigation on the performance of a viscoelastic

dielectric elastomer membrane generator

6.1 Introduction

Among most promising electroactive polymers for transduction technologies, dielectric

elastomers (DEs) are attractive for energy harvesting applications due to their flexibility,

large deformation capacity and high energy density compared with piezoelectric and

electromagnetic materials. Recently, various prototypes of dielectric elastomer generators

(DEGs) have been developed to harvest electricity by scavenging mechanical energy

from diverse sources including ocean waves (Kornbluh et al., 2012; Jean et al., 2012;

Chiba et al., 2011), wind and human movements (Kornbluh et al., 2012; Carpi et al.,

2008; Jean-Mistral et al., 2008; Jean-Mistral et al., 2012). As an inverse operation mode

of dielectric elastomer actuators (Pelrine et al., 2000), DEGs convert mechanical energy

into electrical energy by transferring charges from low to high voltage in harvesting

circuits when the DE is stretched and shrinks back during electromechanical cycles

(Pelrine et al., 2001).

The energy harvesting performance of DEGs with different designs and materials has

been reported in quite a few experimental works since the DEG was first proposed by

Pelrine et al. (2001). From those studies (Kornbluh et al., 2012; Pelrine et al., 2001;

McKay et al., 2010a; McKay et al., 2010b; McKay et al., 2011; Huang et al., 2013;

Kaltseis et al., 2011), it was found that the both the energy density achieved per cycle and

the average efficiency of the DEGs are quite scattered. For example, the very first

prototype of a plate DEG proposed by Pelrine et al. (2001) has an energy density up to

400 J/kg. The DEGs with integrated self-priming circuits can provide electrical energy

with density from 2.8J/kg to 12.6 J/kg (McKay et al., 2010a; McKay et al., 2010b;

McKay et al., 2011). An energy density of 300 J/kg has been achieved from the DEG

embedded in shoes, which can harvest mechanical energy from human body movement
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(Kornbluh et al., 2012). The sea trial of an ocean wave DEG developed by Kornbluh et al.

(2012) shows an energy density of about 50 J/kg. By applying equi-biaxial loading,

Huang et al. (2013) have experimentally demonstrated that an energy density of 560 J/kg

can be achieved from a membrane DEG. They also found that an average efficiency of

the first nine cycles reaches up to 27%, which was significantly improved from 7.5% of a

balloon-like DEG (Kaltseis et al., 2011) using the same dielectric elastomer. Recently, by

optimizing the electromechanical harvesting cycle, Shian et al. (2014) have achieved an

even higher energy density of 780J/kg with a similar efficiency as that in the work of

Huang et al. (2013) Although some of these values of energy density are already at least

one order of magnitude higher than those of piezoelectric and electromagnetic generators,

they are still far less than the theoretical maximum energy density values predicted in the

literature (1700 J/kg) (Koh et al., 2011).

As argued in earlier studies on DEGs, the performance of the DEGs is not only limited by

various failure modes such as electrical breakdown (EB) and loss of tension, but is also

strongly affected by the material properties and other mechanisms such as material

extensibility, material viscoelasticity, current leakage and loading configurations (Huang

et al., 2013; Koh et al., 2009; Koh et al., 2011; Hoffstadt et al., 2013). The energy

harvesting mechanism of a DEG, in fact, lies in the cyclic change of the capacitance,

which is realized by stretching the DE and allowing it to recover. The larger the

deformation of the DE is, the more the capacitance changes and thus higher energy

density is achieved. Moreover, the capacitance change could also be maximized by

changing loading configurations as demonstrated by Huang et al. (2013). Particularly, it

was reported by Huang et al. (2013) that the efficiency of the DEG is mainly limited by

the viscous loss if the DEG operates in the safe range where electrical breakdown does

not occur. However, most existing modeling works on the DEGs ignore the intrinsic

viscoelasticity of the elastomers and only consider their hyperelastic properties (Koh et

al., 2009; Koh et al., 2011; Hoffstadt et al., 2013), which leaves many issues unsettled

and may need further investigation. During the energy harvesting cycles of the DEGs, it

is expected that the material viscoelasticity results in the change of the performance with

the stretching and shrinking rates of the elastomer, as well as the stretch ratios. Since the

DEGs may undergo large deformation in the energy harvesting process, it is essential to
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examine their finite-deformation viscoelastic behavior. Among the viscoelastic models, a

particular one proposed by Hong (2011) based on the fully coupled field theory for

dielectrics by Suo et al. (2011) and the finite-deformation viscoelastic theory by Reese

and Govindjee (1998), accounts for both the large inelastic deformation and the

electromechanical coupling of the dielectric elastomers. Such a model is expected to

make reliable prediction on the dynamic performance of the DEGs under general loads

and constraints. Recently, based on these theories, Foo et al. (2012) investigated the

dissipative process of the DEGs; Li et al. (2012) examined the viscoelastic deformation

of the DEGs considering inhomogeneous deformation; Park and Nguyen (2013)

developed finite element formulation for the DEs and Wang et al. (2014) further

investigated the electrostatically driven creep and instabilities of the DEs.

Given the significant discrepancy of the energy density between the experimental results

and the theoretical prediction, the energy harvesting performance of the DEGs may have

large room for improvement with optimal design of the harvesting system. Adopting

Hong’s viscoelastic model (Hong 2011), this work presents a parametric study on the

energy harvesting performance of a membrane DEG and aims to provide increased

understanding on the effects of the material viscoelasticity, the failure modes, the bias

voltage in the harvesting circuit, and the mechanical loading configurations on the energy

harvesting process, thus leading to better guidance on the optimal design of the DEGs.

We also propose a hypothesis on the fatigue life of the dielectric elastomers under cyclic

loading condition to interpret the discrepancy between the theoretical modeling and the

experimental observation.

6.2 Model and formulation of viscoelastic DEGs

The schematics of a typical DE membrane generator are shown in Figure 6.1. Figure

6.1(a) illustrates a typical energy harvesting circuit of the generator (Huang et al., 2013),

which mainly consists of three parts: the power supply battery, the large harvesting

capacitor and the DE membrane coated with compliant electrodes on its top and bottom

surfaces (i.e., a DE capacitor). In an energy harvesting cycle or an electromechanical

cycle, the DE membrane is continuously deformed, causing the change in its capacitance,
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and thus delivering charges from the low-voltage (L) power supply to the high-voltage

(H) harvesting capacitor. The two diodes work as switches to only allow charge flow in

one direction. In this case, charges (Qin) flow from the power supply to the DE membrane

when  < L, and charges (Qout) flow from the membrane to the harvesting capacitor

when  > H, the latter being the charges harvested by the generator. In other words, the

diodes connect and disconnect these three parts automatically, depending on the level of

voltage  applied across the DE membrane. Figure 6.1(b) displays the DE membrane in

the undeformed state with length L, thickness H and a mass of m. When subjected to a

voltage  between the electrodes and stretching in 1- and 2-directions, the membrane

deforms to the state with thickness h, length l1 and l2 (Figure 6.1(c)). Due to the voltage

across the DE membrane, charges accumulate on the two electrodes, i.e., Q C  ,

where C is the capacitance of the DE membrane and it varies during the energy

harvesting cycle.

Figure 6.1 Schematics of a dielectric elastomer generator (DEG): (a) energy harvesting

circuit diagram; (b) undeformed state of the dielectric elastomer membrane; (c) deformed

state of the dielectric elastomer membrane when subject to voltage and in-plane

stretching.

During the energy harvesting cycles, the homogeneous deformation of the membrane is

denoted by the stretch ratios, which are defined as 1=l1/L, 2=l2/L and 3=h/H. The

deformation gradient is thus expressed as



110

1

2

3

0 0

0 0

0 0






 
   
 
 

F

.

Following the work of Reese and Govindjee (1998) and Hong (2011), the stretch ratios of

the deformed DE membrane are further multiplicatively decomposed into an elastic part

and an inelastic part, i.e., e iF F F , with
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where the superscripts “e” and “i” represent elastic and inelastic, respectively.

As commonly adopted in the literature (Koh et al., 2011; Hong 2011; Foo et al., 2012;

Zhao and Suo, 2007; Zhou et al., 2014), the dielectric elastomer is assumed to be

incompressible for both the elastic and inelastic deformations. Thus, the stretch ratios

satisfy 3 1 21 /   , e e e
3 1 21/   and i i i

3 1 21/   . Furthermore, the Helmholtz free energy

density W of the membrane is split into two parts: A non-equilibrium part WNEQ related

only to the elastic deformation, and an equilibrium part WEQ in response to both the total

deformation and the applied electric voltage , i.e.,

   EQ NEQ e e
1 2 1 2, , ,W W W      . (6.1)

It should be mentioned that the electric field is assumed to be in equilibrium as the

electric field always reaches the equilibrium state much faster than the mechanical

deformation (Hong, 2011). According to the work by Huang and Suo (2012), the

equilibrium Helmholtz free energy density WEQ takes the form

 
2

EQ 2 20
s 1 2 1 2,

2
W W

H


   

    
 

, (6.2)
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where  s 1 2,W   is the strain energy density function of the elastomer and the second

term is the Helmholtz free energy associated with the polarization; is the permittivity

of the vacuum and  is the relative dielectric constant of the DE. Accounting for the finite

deformation of the DE, the Gent model (Gent 1996) is adopted in the current work with

the strain energy density given as

EQ EQ 2 2 -2 -2
lim 1 2 1 2

EQ
lim

3
ln 1

2s
G J

W
J

      
    

  , (6.3)

where GEQ is the equilibrium shear modulus and EQ
limJ is a dimensionless parameter

determined by the extensibility of the elastomer. Since the non-equilibrium Helmholtz

free energy is only determined by the elastic deformation of the elastomer, following

Hong (2011), it is assumed that the non-equilibrium Helmholtz energy density also takes

the same form of the strain energy density function, i.e.,

     2 2 2e e e eNEQ NEQ
1 2 1 2NEQ lim

NEQ
lim

3
ln 1

2

G J
W

J

   
       

   , (6.4)

where GNEQ is the non-equilibrium shear modulus and NEQ
limJ is  a constant related to the

limiting stretch of the elastic part.

Due to the stretching of the elastomer membrane, tensile forces in 1- and 2- direction (P1

and P2) are induced during the electromechanical cycles of the DEG. Moreover, the

variation of the total stretch ratios 1 and 2 of the elastomer results in the change of

the total Helmholtz free energy, which is equal to the work done by the tensile forces, i.e.,

2
1 2 1 1 2 2

1 2

W W
L H P L P L   

 
  

   

 . (6.5)
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Inserting equations (6.1), (6.2), (6.3) and (6.4) into equation (6.5) and considering the fact

that 1 and 2 are any arbitrary small variations, we obtain
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where G=GEQ + GNEQ is the instantaneous shear modulus, and the material parameter

=GEQ/G indicates the fraction of the polymer networks that have time-independent

behavior (Bergstrom and Boyce, 1998). Correspondingly, the material is a viscous fluid

when =0, while =1 represents a purely elastic material.

The inelastic stretch ratios 1
i and 2

i in equations (6.6) and (6.7) can be obtained through

the evolution equation proposed by Reese and Govindjee (1998):

 
i 1

1T e 1 NEQ
( )1 γ :

2

d

dt


 

 
   

C
F F b σ

, (6.8)

where  Ti i iC F F ,  Te e eb F F ,  NEQ

NEQ
Te e

e
2

W



σ F F

C
,  Te e eC F F and is an

isotropic rank-four mobility tensor. Here takes the form

1 41 1

2 3v




     
 

I I I
, (6.9)
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where v is the shear viscosity, I4 is the fourth order symmetric identity tensor and I is

the second order identity tensor. Expanding equation (6.8) for the current case gives the

inelastic stretch ratios as

2 2 2i NEQ i
1 lim 1 1 2 1 2

i i i i2 2 2 2
1 2 1 2NEQ 1 2 1 2

lim i i i i
1 2 1 2

2

6 3
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dt
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   
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 
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          , (6.11)

where NEQ
v / G  is defined as the viscoelastic relaxation time. Experiments have

suggested that elastomers have a wide range of multiple relaxation times. To demonstrate

particular ideas, we only assumed a single relaxation time  =1s (based on the time scale

of the energy harvesting cycles) in our simulation for simplification purpose, similar to

the work of Foo et al. (2012). It can be observed from equations (6.10) and (6.11) that the

inelastic stretch ratios  i
1 t and  i

2 t of the DE membrane can be obtained if  1 t and

 2 t are given. When  i
1 t ,  i

2 t ,  1 t and  2 t are known, then the  tensile forces

P1 and P2 can be obtained as a function of time t by combining equations (6.6) and (6.7).

The initial conditions are        i i
1 2 1 20 0 0 0 1       without pre-stretch, or

   i
1 1 pre10 0    and    i

2 2 pre20 0    with pre1 and pre2 as the pre-stretch ratios.

During the electromechanical cycles, the applied electric voltage on the DE may cause

the electrical breakdown (EB) of the material, which is a typical failure mode of the

dielectric elastomers when the electric field induced in the membrane exceeds its

dielectric strength EEB. Following Zhou et al. (2013), and Koh et al. (2011) the

breakdown voltage B is determined as,
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-1 -10B
1 2d

H G


  , (6.12)

where EB 0 /d E G is a material parameter which may vary for different materials.31

Such a failure mode must be avoided during the operation of the DEG. In this work, a

medium value d=2 is selected for simulation purpose.

6.3 Model and formulation of viscoelastic DEGs

In this section, the model established above will be employed to analyze the complex

energy harvesting mechanism of the DEG with equi-biaxial loading configuration

( 1 2    , i i i
1 2    ), which demonstrates the highest energy density yet reported

from the experimental work in the literature (Huang et al., 2013; Shian et al., 2014). My

simulation results are then compared with the experiment results obtained by Huang et al.

(2013). When the DE membrane is under (triangular) cyclic loading (see the λ variation

with time in Figure 6.4), Figure 6.2 shows the four intervals of a typical energy

harvesting cycle for both the voltage-stretch response curve and the charge-stretch

response curve. As shown in Figure 6.2(a), in interval 1, starting from the condition when

the voltage across the dielectric elastomer is at the high-voltage of the harvesting

capacitor, i.e., 5kVH   in this case, the membrane is then stretched at a rate of

/ 4 .2d d t  , which results in the increase of the capacitance ( 4 2
0 /C L H  ) and the

decrease of the voltage across the DE membrane. As the stretching continues, the voltage

across the DE membrane keeps decreasing until it reaches the level of the low-voltage

power supply, i.e., 2kVL   in this case, where the DE membrane is then connected

to the power supply. In interval 2, the membrane is further stretched to the prescribed

maximum stretch ratio, max 5.4  , during which time the charges (Qin) flow from the

power supply to the membrane while the voltage remains constant. During interval 3, the

stretch is decreased and the DE membrane shrinks back at a rate of / 4.2d dt   .

Once the DE membrane begins to shrink, its capacitance decreases. Consequently, the

voltage across the DE membrane increases and the membrane is disconnected from the
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power supply. At the end of interval 3, the voltage across the DE membrane increases

back to the level of the high-voltage of the harvesting capacitor ( H  ), and the

membrane is connected to the harvesting capacitor again. In interval 4, the membrane

continues to recover and some charges (Qout) on the DE membrane are transferred to the

harvesting capacitor. The corresponding variation of the charges on the two electrodes of

the DE membrane during the four intervals of the electromechanical cycle is reported in

Figure 6.2(b). In fact, the starting point and the ending point of a cycle may not always be

coincident due to the loss of tension of the DE. It should be mentioned that over 10 cycles

are examined in our simulation and a complete cycle (cycle 6) is selected to show in

Figure 6.2 for illustration purpose. This issue will be further discussed later. In this

simulation, the geometrical parameters and the material constants are selected as H = 0.5

mm, L = 35 mm, mass density  = 960 kg/m3, G = 600 kPa,  = 0.5, =3.5, NEQ
lim 55J  ,

and EQ
lim 110J  .21, 32-34
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Figure 6.2 A typical energy harvesting cycle of the DEG. (a) The voltage-stretch

response curve, (b) the charge-stretch response curve.

Furthermore, from the voltage-stretch response curve and the charge-stretch response

curve for an energy harvesting cycle in Figure 6.2, the net electrical energy eE

harvested as well as the energy density ED can be obtained, i.e., e out H in LE Q Q    and

D e /E E m . As mentioned before, the harvested electrical energy is converted from the

mechanical work done during the stretching-shrinking process. Therefore, to determine

the harvesting efficiency of the DEG, the mechanical work also needs to be determined.

Figure 6.3 depicts the equi-biaxial force P induced by stretching as a function of the

displacement of the membrane L (-1.2) for the first two energy harvesting cycles (Note

that the membrane is pre-stretched to pre 1.2  before the first cycle). Due to the material

viscous character, the force P drops to 0 (where loss of tension occurs) before the DE

membrane recovers to the starting point for both cycles 1 and 2. Since the membrane

cannot sustain any compression, the membrane is stretched again once P = 0. Also,

during a harvesting cycle, the difference between the work done by the equi-biaxial force

P on the loading path and the unloading path is the mechanical energy consumed by the

membrane, which is denoted as mE . Part of the consumed energy will be converted to

the electrical energy while the rest may be dissipated due to the viscous character of the

material, the possible plastic deformation, and the friction in reality. Thus, the efficiency
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 of the DEG for a single cycle is defined as e m/E E   , which is the ratio of the

electrical energy harvested to the mechanical energy consumed in the cycle.

Figure 6.3 The equi-biaxial force P versus the displacement of the DE for the first two

energy harvesting cycles.

From Figure 6.3, it is also noticed that the first two cycles do not overlap, which indicates

that energy harvesting cycles of the DEG may not be the same at the beginning of the

energy harvesting process. To investigate whether steady cycles of the DEG can be

achieved as the harvesting process continues, we plot the total stretch ratio and the

inelastic stretch ratio of the membrane for the first ten cycles in Figure 6.4. It is observed

that the harvesting cycles become identical after a few cycles, i.e., steady energy

harvesting cycles can be achieved in our simulation, which is essential for the long-term

use of the DEG. This steady harvesting performance can also be validated from the

variation of the energy density shown in Figure 6.5 and the variation of the efficiency

depicted in figure 6 for the first ten cycles, i.e., both the energy density and the efficiency

become constant as the harvesting process continues in our simulation. It is also observed

that the energy density and the efficiency demonstrated in Figures 6.5 and 6.6 are higher

than the experimental measurements in the work by Huang et al. (2013) This might be

mainly due to the fact that the current leakage, the energy dissipated through the possible

plastic deformation, and the friction in reality are not considered in the current simulation.
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In addition, due to the particular experiment setup, loss of tension was not avoided in the

work by Huang et al. (2013), which may also cause more energy dissipation.

As experiments suggest (Huang et al., 2013), the first key factor that affects the energy

density and the efficiency of the generator is the material viscosity of the DE. Figure 6.7

depicts the variation of the energy density and the efficiency as a function of the material

parameter  that indicates the viscosity of a DE (Note that the energy density and

efficiency of a steady cycle for each  value are shown in Figure 6.7). It is found that

with the increase of the material viscosity, i.e., the decrease the material parameter , the

energy density of the DEG increases (Figure 6.7(a)). However, the efficiency does not

follow a monotonic rule (Figure 6.7(b)). This non-monotonic behavior is due to the fact

that the material viscosity also influences the total mechanical work consumed in addition

to the energy dissipated during the energy harvesting cycle, which gives a combined

effect on the efficiency of the DEG. Nevertheless, the efficiency will eventually reaches

unity for pure elastic materials (when  =1) since only energy dissipation due to the

viscosity is considered in our modeling.

It can also be observed that the trends demonstrated in Figures 6.5 and 6.6 are in

agreement with the results by Huang et al. (2013) for the first few cycles during the

energy harvesting process. However, it is found by Huang et al. (2013) that the harvested

energy of the DEG drops down suddenly after a few cycles, instead of becoming constant

as shown in Figures 6.5 and 6.6. Since the typical failure modes of the DEG (such as

electrical breakdown and loss of tension) have been taken into account in the current

simulation model and they were not reported in the work of Huang et al. (2013) as the

cause of the sudden drop of the efficiency. Therefore, the performance degradation of the

DEG may be caused by a new failure mode that has not been investigated thus far. It can

be clearly noticed from the work of Huang et al. (2013) that the current leakage

dramatically increased after a few cycles. In general, the current leakage of a capacitor

increases when cracks nucleate and grow in the capacitor, which was commonly

observed from both ceramic-based and DE-based capacitors (Yeung et al., 1994; Chan et

al., 1995; Teverovsky, 2012; Muffoletto et al., 2012; Gisby et al., 2010). In these studies,

it was found that the cracks can cause current leakage, but not necessarily a short circuit
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unless the cracks are large to some extent. Also, when the cracks are small, they may not

be easily detectable, but they are inevitable to cause current leakage. It is thus reasonable

to propose that under cyclic loading condition, fatigue cracks may nucleate in the

dielectric elastomer and cause current leakage of the DE, thus leading to the performance

degradation of the DEG. As shown in the work by Verron and Adriyana (2008), the

fatigue life of rubbers ranges from a few cycles to thousands of cycles depending on the

loading conditions. In the work of Huang et al. (2013), the authors sought to maximize

the performance of the generator with loading condition close to the mechanical and

electrical limits of the elastomer, without particularly considering the lifetime of the DEG.

Therefore, under this limiting loading situation, crack nucleation could occur just after a

few cycles of operation. Therefore, we hypothesize that the performance degradation of

the DEG in reality is attributed to the fatigue cracks that commonly happens to any

rubber-like material under cyclic loading condition, which may substantially restrict the

performance of the DEGs. Accordingly, the discrepancy between our simulation results

and the experimental results necessitates the consideration of the fatigue failure mode in

the theoretical model.

Figure 6.4 The deformation of the DE during the energy harvesting process.
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Figure 6.5 Variation of the energy density of the DEG during the energy harvesting

process.

Figure 6.6 Variation of the efficiency of the DEG during the energy harvesting process.
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Figure 6.7 Variation of the energy density and the efficiency of the DEG as a function of

. (a) Energy density, (b) efficiency.

To determine the fatigue life of the DE, the crack nucleation criterion recently proposed

by Verron and Adriyana (2008) is adopted in this work, in which the fatigue life (i.e., the

onset of the fatigue crack nucleation) predictor for the DE is expressed as

 * ND
icycle 1,2,3

min , 0
i

d 


   
  , (6.13)
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where  ND
i

1,2,3i
d


are the principal stresses of NDdΣ , and

       1 1T TND i e i idet det
W

W
          

Σ F I F F F
F

(6.14)

is the configurational stress tensor (or Eshelby stress tensor (Eshelby, 1975)) for a

viscoelastic DE (Andriyana and Verron, 2005), which can be obtained from the

deformation fields of the elastomer. Based on the concept of cracking energy density

(Mars, 2002), this predictor is applicable for multiaxial loading conditions compared with

the conventional fatigue crack nucleation predictors. According to the work by Verron

and Adriyana (2008), the value of * for a steady loading cycle can be summarized as a

linear function of fln( )N , where Nf is the number of cycles of the fatigue life. Therefore,

we assume that the predictor of the fatigue life of the DE follows

*
fln( )a N b   , (6.15)

where a and b depend on the material properties. As suggested by Verron and Adriyana

(2008), when * takes a particularly small value * 0  , the value of Nf is exceptionally

large, which means a life-time use of the device (we assume 7
f 10N  here for example).

Moreover, from the experiment results by Huang et al. (2013), the harvesting current

starts to drop from the sixth cycle and we assume that the crack nucleation occurs at that

instant. The corresponding fatigue life predictor is calculated according to equation (6.13)

as * 13.67MPa  under the same loading condition as in the work of Huang et al. (2013).

Combining the results in the works of Verron and Adriyana (2008), and Huang et al.

(2013), a and b in equation (6.15) can be obtained, which gives

*
f0.95ln( ) 15.37N   (6.16)
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for the material VH4905 studied in the work of Huang et al. (2013). Similarly, for other

rubber-like materials, the fatigue life predictor (16) could also be determined if

experimental data are available to represent the onset of the crack nucleation.

With the fatigue life taken into consideration, we can comprehensively evaluate the

performance of the DEG. For a given DE membrane, the generator efficiency , as

observed from other works (Huang et al., 2013; Kaltseis et al., 2011; Foo et al., 2012),

may be affected by various factors, such as the loading configuration, the maximum

stretch ratio, the rate of deformation and the bias voltage. Figure 6.8 depicts the

efficiency of the DEG as a function of the prescribed maximum stretch ratio max with the

consideration of the possible failure modes, i.e., the loss of tension, the electrical

breakdown and the fatigue life of the dielectric elastomer. The loading parameters are set

as pre=1.2, / 2d d t  , L 2kV  and H 5kV  . Here, we introduce  as the

difference between the dimensionless breakdown voltage EB and the dimensionless

applied voltage across the DE, i.e.,    2
EB 0 / GH     (see Figure 6.8(a)).

When  = 0, the DE fails by the electrical breakdown. We also introduce  *
fN as

the difference between the value of the predictor for certain fatigue life Nf (according to

equation (6.16)) and that of a steady cycle during the energy harvesting process

(according to equation (6.13)), i.e.,    * * *
f fN N    , (see Figure 6.8(b)). When

 *
f 0N  , the fatigue life of the DEG is Nf. It is observed from Figure 6.7 that the

generator efficiency could be improved with the increase of the maximum stretch ratio.

However, the maximum stretch ratio that could be applied to the DEG is limited by both

the electrical breakdown and the fatigue failure modes of the dielectric elastomer. For

example, under the current loading condition, the maximum applied stretching ratio is

determined as 6.7 in Figure 6.8(a) when only the electrical breakdown is accounted for.

Accordingly, the maximum efficiency of the DEG could reach up to about 48%.

However, the performance of the DEG is further compromised by considering the fatigue

failure of the dielectric elastomer as shown in Figure 6.8(b). It is observed that with the

increase of the fatigue life expectancy, both the applicable maximum stretch ratio and the

efficiency of the DEG decrease. For example, if the DEG is designed with a fatigue life
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expectancy of Nf =105 for example, the maximum efficiency of the DEG is approximately

25% at max 3.65  . However, with the decrease of the fatigue life expectancy to Nf =10,

the DEG efficiency could reach up to 35% with a maximum stretch ratio max 5.2  . It is

thus concluded that the DEG performance is limited by all these possible failure modes of

the dielectric elastomer, which must be incorporated in the modeling and the optimal

design of the DEGs.

Figure 6.8 Effect of the pre-determined maximum stretch max on the efficiency. (a)

Considering the electrical breakdown failure, (b) considering the fatigue life of the DE.
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Along with the maximum stretch ratio max , the rate of deformation /d d t also affects

the efficiency of the DEG. Figure 6.9 attempts to demonstrate the trend of the efficiency

change with the maximum stretch ratios and the rates of deformation without explicitly

considering the lifetime of the DEG. However, the other possible failure modes, i.e., the

loss of tension and the electrical breakdown are all avoided in the simulation process. The

other loading parameters are set as pre=1.2, L 2kV  and H 5kV  . It is observed from

Figure 6.9 that for any fixed rate of deformation, the efficiency of the DEG rises when

the maximum stretch ratio increases, which is also demonstrated in Figure 6.8. The

reason behind this is mainly linked to the well-boosted harvested electrical energy as max

is increased, since the capacitance C is proportional to 4.  However, for a fixed

maximum stretching ratio max , the efficiency drops to a minimum then rises up with the

increase of  the rate of deformation. The rate of deformation affects the efficiency mainly

through its effect on the inelastic deformation of the DE, which governs the energy

dissipation and changes the stiffness of the DE during the electromechanical cycles. The

efficiency trend in Figure 6.9 as a function of the rate of deformation is an outcome of the

combined effects of the rate of deformation on the dissipated energy and the mechanical

work consumed. Therefore, when optimizing the performance of the DEGs, both the

maximum prescribed stretching ratio and the rate of deformation are significant factors

need to be considered.  In order to consider the fatigue life of the DEG, Figure 6.10

depicts  * 510 as a function of the maximum stretch ratio max and the rate of

deformation /d d t . Here, the DEG is designed to have a particular life expectancy, i.e.,

Nf =105. It is found that the fatigue life of the DEG is dominated by the maximum stretch

ratio while the change of the rate of deformation only exerts slight effect on the fatigue

life. When max takes a small value,  * 510 0  regardless of the value of the rate of

deformation, implying that the DEG has an expected fatigue life of 105 cycles no matter

what the rate of deformation is used. Combining Figures 6.9 and 6.10, theoretically, the

efficiency can be improved to large extend with an exceptional high rate of deformation

without compromising the fatigue life requirement. However, how to realize such a high

rate of deformation may be very challenging in realistic applications.
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Figure 6.9 Effect of the rate of deformation and the maximum stretch ratio on the

efficiency

Figure 6.10 Fatigue life consideration of  the DEG as a function of the rate of

deformation and the maximum stretch ratio ( 5
f 10N  ).

Another factor that may affect the efficiency of the DEG is the bias voltage, namely L

and H. Without considering the lifetime of the DEG, Figure 6.11 illustrates the change

of the efficiency for different values of L and H, in which the other loading parameters

are set as / 2d d t  , max 3.5  and pre=1.2. In our simulation, it is ensured that the
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generator is under the loading within the safe range that loss of tension and electrical

breakdown does not occur. Overall, the efficiency rises with the increase of L and H.

However, when L is relatively low (say L = 1kV), the efficiency slightly rises and

drops as H is increased. Also, when H takes a relative low value (say H = 6kV), the

efficiency rises to a peak and then drops down as L is increased.  As for the fatigue life,

Figure 6.12 depicts  * 510 as a function of L and H. It is observed that the fatigue

life of the DEG is mainly determined by L. When L increases, the fatigue life is

shortened, while only slight change of the fatigue life is observed when H increases with

a fixed L. Combining the results shown in Figures 6.9 and 6.11, it is concluded that the

higher efficiency of the DEG could be achieved by increasing the prescribed maximum

stretch ratio and choosing proper bias voltages. However, when comparing Figures 6.10

and 6.12, it is found that choosing proper bias voltage appears to be a more desirable

method to improve the efficiency, since it does not significantly shorten the fatigue life of

the device.

It should be mentioned that I aim to conduct a comprehensive study to theoretically

evaluate the performance of a dielectric elastomer membrane generator in the current

work. Based on the viscoelasticity theory and the hypothesis on fatigue failure of the

dielectric elastomers, the simulation results are in a similar trend as observed in the

experimental work and could interpret some experimental scenarios. Therefore, the

current modeling work could be claimed to offer useful guidance for the design and

optimization of the DEGs. However, further experimental validation, particularly the

fatigue testing of dielectric elastomers, is a future concentration. In addition, the

characterization of the material properties, such as the viscosity and the material

extensibility, will also benefit the quantitative evaluation on the performance of the

DEGs.



128

Figure 6.11 Effect of the bias voltage on the efficiency.

Figure 6.12 Fatigue life consideration of the DEG as a function of the bias voltage.

( 5
f 10N  ).
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6.4 Conclusions

Based on the finite-deformation viscoelasticity theory for dielectric elastomers, this work

investigates the energy harvesting performance of a dielectric elastomer membrane

generator under equi-biaxial loading condition. By comparing our simulation results with

the experimental results in the work of Huang et al. (2013) and considering the possible

failure modes and extreme loading condition in their experiment, I propose a hypothesis

that the sudden degradation of the performance of the DEG in the work of Huang et al.

(2013) is linked to the early onset of the fatigue cracks. Furthermore, in addition to the

typical failure modes that may occur during the energy harvesting cycles, such as

electrical breakdown and loss of tension which are commonly incorporated in the

literature, this work first considers the fatigue life of the DE-based devices under cyclic

loading. The simulation results in the current work conclude that the efficiency of the

DEG can be improved by increasing the rate of deformation and the maximum stretch

ratio, and choosing a proper bias voltage. However, the fatigue life expectancy of the

device compromises the performance of the DEG, i.e., higher fatigue life expectancy

results in a lower efficiency of the DEG. It is also found that choosing proper bias

voltages can largely improve the efficiency without significantly shortening the fatigue

life of the DEG. This work is expected to provide a general approach for

comprehensively evaluating the performance of the DEGs, as well as guidance on

optimal design of the DEGs.
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Chapter 7

7 Conclusions and future work

7.1 Conclusions

Compared with conventional smart materials in actuation (piezoelectric crystals and

ceramics for example) which are known for their high load capacity and small

deformation, dielectric elastomers are characterized by their softness, flexibility and large

deformation capability. These properties make dielectric elastomers an interesting

alternative to conventional technologies in transduction. In order to make full potential

applications of these soft matters with reliable design, it is necessary to have a better

understanding on their electromechanical coupling behavior. However, modeling the

electromechanical coupling of dielectric elastomers is challenging due to their large

deformation, nonlinear material behavior, diverse failure modes and geometric

configurations. Moreover, the effects of the material viscoelasticity on the actuation,

dynamic and energy harvesting performance of DEs are also rather complicated to

understand. With particular considerations of these material properties and the typical

failure modes of DEs, this work developed theoretical models to tackle the as-mentioned

challenges for the application of DE transducers and provided guidelines for their optimal

design. The contributions of this thesis include:

1. Based on the Gent hyperelastic model, this work investigated the electromechanical

response and the typical failure modes of a DE plate actuator and a DE tube actuator.

By studying the complex interplay among the electromechanical response, the

electrical breakdown failure and the electromechanical instability, a boundary-

constraint method was proposed to eliminate EMI during the voltage-control

actuation process and improve the voltage-induced deformation of the actuators.

Moreover, the possible mechanical buckling failure caused by the boundary

constraints was also examined.
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2. Adopting the finite-deformation viscoelasticity theory for dielectric elastomers, this

work studied the in-plane oscillation and the natural frequency tuning of a

viscoelastic DE membrane resonator. To demonstrate the effects of the material

viscoelasticity, comparisons of the frequency tuning process, the tunable frequency

range and the safe operation voltage range between a resonator with a viscoelastic

membrane and a purely elastic membrane was presented. In addition, the influence of

the electrical loading rate on the frequency tuning and the tuned frequency of the

resonator was also examined.

3. With the finite-deformation viscoelasticity model, this work also investigated the

energy harvesting performance of a viscoelastic DE membrane generator with an

equi-biaxial loading configuration. By examining the consumed mechanical energy

and harvested electrical energy, possible avenues to improve the energy conversion

efficiency of viscoelastic DE generators were uncovered. To reveal the mechanisms

behind the current leakage phenomenon of DE generators, the fatigue life of the DE-

based devices under cyclic loading was considered for the first time in the literature.

Based on our modeling work and simulation results, some concluding remarks of this

work are listed below:

1. The comparison of the electromechanical response between constrained and

unconstrained DE actuators shows that applying boundary constraints to the DE

actuator can eliminate the electromechanical instability and improve the actuation

deformation. This boundary-constraint method is theoretically verified on a DE plate

actuator and a DE tube actuator.

2. For viscoelastic DE oscillators and resonators, their dynamic performance is strongly

influenced by the material viscoelasticity and neglecting the viscoelastic effects can

lead to substantial error in determining the natural frequency of DE-based vibration

devices.



136

3. Our simulation results show that the natural frequency of a viscoelastic DE

membrane resonator is governed by the applied voltage, the total deformation and

the inelastic deformation, and thus time-dependent.

4. It is also found that the electrical loading rate affects the tunable frequency range and

the safe operation voltage range of viscoelastic DE resonators. However, tuned

natural frequency does not vary with the electrical loading rate when the voltage

level is within the safe range.

5. For viscoelastic DE generators for energy harvesting, their energy conversion

efficiency can be improved by increasing the maximum stretch ratio and the rate of

deformation, and choosing an optimized bias voltage.

6. It is also concluded that the fatigue life expectancy of the DE generators

compromises their energy conversion efficiency. In other words, extending the

fatigue life of the DE generators is at the cost of their energy conversion efficiency.

7.2 Future work

This work presents a general methodology to improve the actuation deformation of DE

actuators and develops models to investigate the dynamic and energy harvesting

performance of DE resonators and generators. The modeling work and simulation results

are expected to be helpful for predicting the performance of these DE-based devices and

benefit their optimal design. However, there also exist some limitation of the developed

model and some other aspects of DE-based devices to be further studied. Consequently,

some suggestions for our future work are offered below:

1. Further considerations need to be given to the electrical breakdown failure, which is

a typical failure mode for all DEs and strongly depends on the dielectric strength of

the material. Like most of the theoretical works on DEs in the literature, we assumed

a constant dielectric strength in our models in this work, whereas experiments

suggest that the dielectric strength of DEs changes with several factors such as the

stretch ratios, the thickness and the temperature. Therefore, it will be essential to
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develop a theoretical model with the consideration of the dependence of the

dielectric strength on these factors and combine it with our recent models to provide

more accurate predictions on the performance of DE-based devices.

2. For DE generators, experimental work has shown that their performance can be

improved not only by the loading parameters but also by using an alternative loading

path. In the current work, the “rectangular” loading path has been examined by

mathematical modeling, while other possible loading paths (the “triangular” loading

path, for example) can be further explored in the future work. It is thus can provide a

guidance on choosing an optimal loading condition for improving the mechanical-

electrical conversion efficiency of DE generators.

3. Due to the material viscoelasticity, loss-of-tension of DEs may occur under cyclic

loading condition, which can make the DE wrinkle and difficult to control. Dielectric

elastomer composites (dielectric elastomers with reinforced stiff fibers for example)

may be a solution to this issue and pave the way to more controllable DE-based

devices. Further theoretical study may be pursued to model the performance of DE

composites-based devices for better controllable performance.

4. The tunable waveguide is another recent application of DEs in dynamics. With the

application of the voltage, the range of the filtering frequencies of a DE waveguide

can be actively tuned. Although this recent application of DEs is very promising,

very few studies on investigating the DE waveguides exist in the literature,

particularly with the consideration of the material viscoelasticity that may also

significantly influence their performance. In order to offer guidelines for the

development and design of DE waveguides, it is essential to first develop models

incorporating the material viscoelasticity to describe the electroelastic wave

propagation in deformed DEs.
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