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ABSTRACT

The Renner monoids, cross section lattices and cell decompositions of the clas-

sical algebraic monoids are studied.

The Renner monoid is extremely important in the theory of reductive algebraic

monoids. It is well know that the Renner monoid Rn of Mn(K) is the monoid of

all zero-one matrices which have at most one entry equal to one in each row and

column, i.e., Rn consists of injective partial maps on a set of n elements. We obtain

that the Renner monoids of the symplectic algebraic monoids and special orthogonal

algebraic monoids turn out to be submonoids of Rn consisting of symplectic and

special orthogonal 1-1 partial maps, respectively. The cardinalities of the Renner

monoids are obtained, as well.

The cross section lattice is another very important concept in the theory of

irreducible algebraic monoids. The cross section lattices of the symplectic and

special orthogonal algebraic monoids are explicitly characterized.

The cell decompositions of symplectic algebraic monoids and special orthogonal

monoids are explicitly determined. Each cell here turns out to be an intersection of

the monoid with some cell of Mn(K).

KEYWORDS: Renner monoid, reductive monoid, cross section lattice, cell decom-

position, symplectic algebraic monoid, special orthogonal algebraic monoid, the

Weyl group, Borel subgroup.
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CHAPTER I

INTRODUCTION

The objective of this thesis is to determine the Renner monoids and cell decom-

positions of the symplectic monoids and special orthogonal monoids.

The two pioneers in the development of the theory of linear algebraic monoids are

M. Putcha and L. Renner. They originated this area independently around 1980.

Over the last two decades the Putcha-Renner theory of linear algebraic monoids

has made possible significant progress in a number of areas: algebraic groups, Lie

theory, abstract semigroups, algebraic combinatorics, Hecke algebras, etc. [see 5, 9

11–22].

1. The Renner Monoids

The Renner monoid is an extremely important concept in the theory of reductive

monoids. It generalizes the Weyl group from algebraic groups to monoids. Actually,

the unit group of the Renner monoid is a Weyl group. Let M be a reductive algebraic

monoid, T ⊆ G a maximal torus of the unit group G, B ⊆ G a Borel subgroup with

T ⊆ B, N the normalizer of T in G, N the Zariski cloure of N in M . Then N is a

unit regular inverse monoid which normalizes T , so R = N/T is a monoid. Thus

R = N/T ⊇ N/T = W, the Weyl group.

Not only did Renner [17] define this concept, now called the Renner monoid, but he

also found an analogue of the Bruhat decomposition for reductive algebraic monoids

and obtained a monoid version of the Tits System which is now a central idea in

the structure theory of linear algebraic monoids.
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If M = Mn, then the Renner monoid Rn of M may be identified with the

monoid of all zero-one matrices which have at most one entry equal to one in

each row and column, i.e., Rn consists of all injective, partial maps on a set of n

elements. The cardinality of Rn is |Rn| =
∑n

r=0

(

n
r

)2
r!. The unit group of Rn is

the group Pn of permutation matrices. Let G0 be the symplectic algebraic group

Spn or the special orthogonal algebraic group SOn (char K 6= 2, if G0 = SOn, see

Humphreys [7]). Let G = K∗G0 ⊂ GLn. Then G is a connected reductive group

and M = G, Zariski closure of G in Mn, is a reductive algebraic monoid called

symplectic or special orthogonal depending on whether G0 = Spn or G0 = SOn. In

this thesis we study the Renner monoids of the symplectic monoids and the special

orthogonal monoids. They turn out to be submonoids of Rn. Their unit groups

are the Weyl groups of the symplectic algebraic groups and the special orthogonal

algebraic groups respectively. We established their cardinalities as well.

2. Cross Section Lattices

The cross section lattice is another key concept in the theory of irreducible alge-

braic monoids. It was first introduced by M. Putcha [13]. If M is reductive, then

the cross section lattice is defined as follows

Λ = Λ(B) = {e ∈ E(T )|Be = eBe}.

We discuss the cross section lattices of the symplectic and the special orthogonal

algebraic monoids in detail.

3. Cell Decompositions

The most commonly studied cell decmopositions in algebraic geometry are the
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ones obtained by the method of Bialynicki-Birula: Let K be an algebraically closed

field. If S = K∗ acts on a smooth complete variety X with finite fixed point set

F ⊆ X , then X =
⊔

α∈F Xα, where Xα = {x ∈ X | limt→0 tx = α}. Furthermore,

Xα is isomorphic to an affine space. If, further, a semisimple group G acts on X

extending the action of S, we may assume (replacing S if necessary) that each Xα

is stable under the action of some Borel subgroup B of G with S ⊆ B. In case X is

a complete homogeneous space for G, each cell Xα turns out to consist of exactly

one B-orbit.

In case X = M , a reductive algebraic monoid with the two-sided G-action on it,

we encounter the following challenging difficulties:

(i) Each [BB]-cell is an intriguing finite union of B × B-orbits, yet there is no

explicit algorithm for deciding how each cell is made up from the B×B-orbits. On

the other hand, the set of B ×B-orbits has been calculated explicitly [17, 18].

(ii) One hopes to find a good “cell” decomposition for any reductive monoid.

However, the [BB]-procedure has not been developed to yield discriminating results

in the presence of singularities. What we need in this situation is a more direct

definition of cells; initially for reductive algebraic monid M where M \ {0} has

exactly one minimal nonzero G ×G-orbit J (eg: M = Mn(K) and J = {x ∈ M |

rank(x) = 1}).

The more direct definition of cells is as follows (due to L. Renner). Let B ⊆M be

a Borel subgroup with T ⊆ B a maximal torus and let r ∈ R(1), rank one elements

in the Renner monoid. Then there exist unique e, f ∈ E1(T ), the set of rank one

idempotents in T , such that r = erf . Define Cr = {y ∈M | eBy = eBey ⊆ rB}.

L. Renner has already obtained the following results:
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(i) M \ {0} =
⊔

r∈R(1) Cr.

(ii) Any [BB]-decomposition of (M \ {0})/K∗ with finite fixed point set has

exactly |R(1)| cells.

(iii) For M = Mn(K) let r = Eij , the matrix unit, where i, j = 1, ..., n. Then

Cij(K) = CEij
=

{

(apq) ∈Mn(K)

∣

∣

∣

∣

aij 6= 0; apq = 0, if i < p ≤ n,
or if p = i and 1 ≤ q ≤ j − 1

}

.

We explicitly determine cell decompositions of the symplectic algebraic monoids

and the special orthogonal algebraic monoids. Each cell turns out to be an inter-

section of the monoid with a cell Cij(K) of Mn(K).
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CHAPTER II

FACTS ABOUT THE MATRIX MONOIDS

Let K be an algebraically closed field. Let Mn = Mn(K) denote the set of all

n × n matrices over K. Then Mn is an algebraic monoid with the general linear

group GLn = GLn(K) as its unit group, and GLn = Mn, the Zariski closure of

GLn in Mn. Let

Bn = Bn(K) = {(aij) ∈Mn(K)| aij = 0, if i > j}

be a Borel subgroup of GLn. The monoid Dn = Dn(K) consists of diagonal

matrices in Mn. The subgroup Tn = Tn(K) of Dn consisting of all invertible

diagonal matrices is a maximal torus of GLn, and Tn = Dn is the Zariski closure

of Tn in Mn. We use Rn = Rn(K) to denote the Renner monoid of Mn. Then

Rn =

{

(aij) ∈Mn

∣

∣

∣

∣

aij is 0 or 1, and at most one non-
zero entry in each row and column

}

.

The set of the idempotents of Rn is:

E(Rn) = {(aij) ∈ Dn| aij = 0 or 1, for all i, j}.

The cross section lattice of Mn is

Λ = Λ(Bn)

= {e ∈ E(Tn) | Bne = eBne}

=



















1 . . . 0
...

. . .
...

0 . . . 1



 ,









1 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 0









, ... ,









1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0









, (0)















.
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It is well known that the unit group of Rn is the Weyl group of GLn which

is isomorphic to the symmetric group Sn on n letters. Let Pn ⊆ GLn be the

group of permutation matrices. Then Sn is isomorphic to Pn by the mapping π 7−→

∑n

j=1 Eπj,j where π ∈ Sn and Eπj,j is a matrix unit.
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CHAPTER III

SYMPLECTIC MONOIDS MSpn

In this chapter we determine the Renner monoids and the cell decompositions of

the symplectic algebraic monoids.

Let n = 2l be even and Jl =

(

0 J
−J 0

)

∈ Mn be the nonsingular and skew

symmetric matrix, where J =

( 1

·

·

1

)

of size l. The symplectic group is by

definition

G0 = Spn = {g ∈ GLn| g
T Jlg = Jl}

which is connected and reductive.

Remark 1. The definition of Spn here is what J. Humphreys used in his book [7].

It is different from that of L. Solomon [22].

Let T0 = G0 ∩Tn. Elements in T0 have the shape

t = diag(t1, ..., tl, t
−1
l , ..., t−1

1 )

where t1, ..., tl are arbitrary in K∗. Thus T0 is a maximal torus of dimension l. Let us

recall some facts about the Weyl group W (G0, T0) which will be simply denoted by

W if there is no confusion in the context. If π ∈ Sn let pπ =
∑n

i=1 Eπi,i ∈ Pn be the

corresponding permutation matrix. Then pπ(aij) = (aπ−1i,j), and (aij)pπ = (ai,πj)

where (aij) is any n × n matrix. It follows that pπ−1(aij)pπ = (aπi,πj). Define an

involution θ : i 7−→ ī of {1, 2, ..., n} by

ī = 2l + 1− i, for 1 ≤ i ≤ 2l.
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Let C denote the centralizer of θ in Sn. Then pπ normalizes T0 if and only if

π ∈ C. The group C is a semidirect product C = C1C2 where C1 is a normal

abelian subgroup of order 2l generated by the transpositions (11̄), ..., (ll̄) and C2 '

Sl consists of all permutations π ∈ Sn which stablize {1, ..., l} and act on the

complement {l + 1, ..., 2l} in the unique manner consistent with the assertion that

π ∈ C. Then W is isomorphic to C1C2 which is also isomorphic to (Z2)
l
o Sl.

If n = 4, then θ = (11̄)(22̄) = (14)(23), and C1 is a subgroup of CS4
(θ) generated

by (14) and (23). So

C1 = {1, (14), (23), (14)(23)}.

Taking π = (12)(34), we see that θπ = πθ which means that π ∈ CS4
(θ). It is clear

that π stablizes {1, ..., l} = {1, 2} and π /∈ C1. Let C2 be a subgroup of CS4
(θ)

generated by π. Then

C2 = {1, (12)(34)}.

Thus the Weyl group

W = C1C2 = {1, (14), (23), (14)(23), (12)(34), (1243), (1342), (13)(24)}.

The corresponding matrix form of the Weyl group is

W =

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






,







0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0






,







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






,







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






,







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






,







0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0






,







0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0






,







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

















.

= {1, ρ, σ, θ, π, ρπ, σπ, θπ}.
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4. The Renner Monoids of the Symplectic Monoids MSpn

We compute the Renner monoids of the symplectic algebraic monoids MSpn in

this section. Some by-products are obtained as well, such as the cardinalities of the

Renner monoids.

Let G = K∗G0 ⊆ GLn where n = 2l. Then G is a connected reductive group

with rank r = l + 1 and semisimple rank l. Let T = K∗T0. Then T is a maximal

torus of G, and the Weyl group W (G, T ) is isomorphic to W (G0, T0) (see [22]). We

identify them in what follows and let W denote either of these groups. The Weyl

group plays an important role in identifying the Renner monoids.

4.1. Definition. The monoid G, Zariski closure of G in Mn(K), is called the

symplectic monoid which will be denoted by MSpn.

In this section we compute the Renner monoid R of the symplectic monoid. To

do so, we need the following definition (due to Solomon [22]).

4.2. Definition. A subset I ⊆ {1, ..., n} is called admissible if j ∈ I implies j̄ /∈ I,

where j̄ = θ(j) as above; the empty set φ and the whole set {1, ..., n} are also

considered to be admissible.

If n = 4, then all the admissible subsets of {1, 2, 3, 4} are

φ, {1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 3}, {2, 4}, {1, 2, 3, 4}.

An admissible subset I is referred to as standard if I = φ, or there is an integer

i ∈ {1, ..., l, 2l} such that I = {1, ..., i}.

The standard admissible subsets of {1, 2, 3, 4} are φ, {1}, {1, 2}, {1, 2, 3, 4}.
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A similar discussion to [22, p336] gives the following lemma describing the rela-

tionship between admissible subsets and idempotents in T . We omit those details.

4.3. Lemma.

a) W maps admissible sets to admissible sets, and w−1e
I
w = ewI , for w ∈W .

b) The map

I 7−→ e
I

=
∑

j∈I

Ejj

is bijective from the admissible subsets of {1, ..., n} to E(T ), where eI = 0, if I = φ.

c) The set E(T ) of idempotents in T is

E(T ) = {e
I
| I ⊆ {1, ..., n} is admissible}.

d) e
I1
· e

I2
= e

I1∩I2
, for any e

I1
, e

I2
∈ E(T ).

Proof. For a), b) and c), see [22, p336]. By checking directly, we get d). �

If n = 4, the set of idempotents of MSp4 is

E(T ) = {0, 1, E11, E22, E33, E44, E11 + E22, E33 + E44, E11 + E33, E22 + E44}.

Remark 2. Rank one elements in E(T ) are in one to one correspondence with

the admissible subsets containing exactly one element of {1, ..., n}. There are no

admissible subsets with size k (l < k < 2l).

4.4. Proposition.

|E(R)| = |E(T )| =

l
∑

i=0

i
∑

j=0

(

l

j

)(

l − j

i− j

)

+ 1.

Proof. It is true by counting the number of admissible subsets of {1, ..., n} and

[17, Proposition 3.2.1]. �
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For i = 1, ..., l, let Ei(R) ⊆ E(R) (resp. Ei(T ) ⊆ E(T )) denote the set of rank

i idempotent elements in R (resp. T ). Then by Lemma 4.3 and [17, Proposition

3.2.1] we have the following

4.5. Proposition.

a) E1(R) = E1(T ) = {Eii| i = 1, ..., n}.

b) |E1(R)| = |E1(T )| = n.

We now find the set of rank one elements in R. To this end, let R(i) denote the

set of rank i elements in the Renner monoid R, for i ∈ {1, ..., n},

4.6. Lemma. Under the notation above, one has

a) R(1) = {Eij | i, j = 1, ..., n}.

b) |R(1)| = n2.

Proof. For any j ∈ {1, ..., n}, let

w =

{

(11̄), if j = 1̄

(1j)(1̄j̄), if j 6= 1̄ = 2l.

Then w is in the Weyl group W and j = w(1). It follows that

E1j = E1,w1 = E11w ∈ E11W, for j = 1, ..., n.

Thus E11W = {E1j| j = 1, ..., n}.

Similarly, EiiW = {Eij | j = 1, ..., n}, for i = 2, ..., n. Therefore, the set of rank

one elements in the Renner monoid R is {Eij | i, j = 1, ..., n} which proves a).

It is clear that b) follows from a). �

Remark 3. The lemma above shows that R(1) = Rn(1). However, R(2) 6= Rn(2),

since {1, 2l} is not an admissible subset of {1, ..., n}, but E11 + E2l,2l ∈ Rn(2). For

the same reason, we know R(i) 6= Rn(i), for i = 3, ..., n.
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4.7. Theorem. For any admissible subset I ⊆ {1, ..., n} with |I| = i, where i =

1, ..., l, 2l, there exist w ∈W and a unique standard admissible subset I0 = {1, ..., i}

such that wI = I0.

Proof. If I = {1, ..., n}, then I0 = I and w = 1 ∈ W and we are done. Now let

I be admissible and I 6= {1, ..., n}. Then |I| = i ∈ {1, ..., l}. We use induction on

the size i of the admissible subset I. If i = 1, then I = {j} for some j ∈ {1, ..., n}.

From Lemma 4.6 there exists w ∈ W such that w(I) = {w(j)} = {1}, i.e., wI = I0.

Suppose that I ⊆ {1, ..., n} is any admissible subset with 1 < |I| ≤ l. Then

I = J ∪ {k} where J is a subset of I with |J | = i − 1 and k ∈ I \ J . It follows

that J is admissible. By the induction hypothesis there exist w′ ∈W and a unique

standard admissible subset I ′ = {1, ..., i−1} such that w′J = I ′. Then w′I = I ′∪{p}

where p = w′(k), and hence w′I = {1, ..., i− 1} ∪ {p} is a disjoint union. If p = i,

then I0 = I ′ ∪ {i} and w = w′ are what we want. If p 6= i, let

w1 =

{

(īi), if p = ī

(ip)(̄ip̄), if p 6= ī = 2l + 1− i.

It follows that w1 ∈ W and w1(p) = i. Note that p̄ /∈ w′I, since p ∈ w′I which is

admissible. It follows that p, i, p̄, ī /∈ I ′, and so w1(j) = j, for j ∈ I ′ = {1, ..., i− 1}.

Taking w = w1w
′, we obtain

w(I) = w1(w
′(I))

= w1({1, ..., i− 1} ∪ {p})

= {1, ..., i}.

Hence, the result is as stated. �
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4.8. Proposition. The cross section lattice

Λ = {e
I
∈ E(T ) | I is a standard admissible subset of {1, ..., n}}.

=

{

I2l,

(

Il 0
0 0

)

,

(

Il−1 0
0 0

)

, ... ,

(

I1 0
0 0

)

, (0)

}

.

' {I| I is a standard admissible subset of {1, ..., n}}, under the inclusion.

' {0, 1, ..., l, l + 1}, under the linear order. �

The cross section lattice of MSp4 is

Λ =

















0
0

0
0






,







1
0

0
0






,







1
1

0
0






,







1
1

1
1

















.

The Hasse diagram of the partial order structure for the cross section lattice in

Proposition 4.8 is given by

•

•
···
•

•

Figure 1.

.....

.....

.....

.....

.....

.....

.....

......

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

4.9. Theorem. With the notation above, the Renner monoid of the symplectic

monoid MSp2l is as follows

R =







∑

i∈I,w∈W

Ei,wi ∈ R2l | I ⊆ {1, ..., 2l} is admissible







.

Proof. Since R = E(T )W by [17, Proposition 3.2.1], it suffices to compute e
I
w

for every e
I
∈ E(T ), w ∈ W , where I is admissible. From Lemma 4.3 b) we know

e
I

=
∑

i∈I Eii. Thus e
I
w =

∑

i∈I Eiiw =
∑

i∈I Ei,wi, and so the Theorem. �
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4.10. Corollary.

R =







∑

i∈I,w∈W

Ewi,i ∈ R2l | I ⊆ {1, ..., 2l} is admissible







.

Proof. This result comes from the fact that R = WE(T ) and

w−1e
I

=
∑

i∈I

w−1Eii =
∑

i∈I

Ewi,i. �

Now we think of R2l, the Renner monoid of Mn(K), as the set of partial 1-1

maps from {1, ..., 2l} to itself. In other words, x ∈ R2l is a 1-1 map from a subset

of {1, ..., 2l} to {1, ..., 2l}.

4.11. Theorem.

R \W =

{

x ∈ R2l

∣

∣

∣

∣

x is singular; both D(x)
and R(x) are admissible

}

where D(x) is the domain of x, and R(x) is the range of x.

Proof. Let R′ denote the set of the right hand side in the Theorem. It follows

from Theorem 4.9 that R \W ⊆ R′, since W maps admissible sets to admissible

sets.

We now prove the other inclusion. For any x ∈ R′, one knows |D(x)| = |R(x)|

which will be denoted by i. Then i ≤ l, since x is singular and both D(x) and R(x)

are admissible. It follows from Theorem 4.7 that there exist a unique standard

admissible set I0 = {1, ..., i}(i ≤ l) and w1, w2 ∈W such that

w1D(x) = w2R(x) = I0.

Thus w−1
1 xw2 = eI0 ∈ Λ ⊆ R, and hence x = w1eI0w

−1
2 ∈ R, since R = WE(T ) =

E(T )W . But x /∈W , because x ∈ R2l is singular. So, R′ ⊆ R \W .

Therefore, R \W = R′, i.e., the Theorem is true. �
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Remark 4. In the proof above we obtain R = WΛW as well.

Now let us consider some examples. If n = 2, then all the admissible subsets

of {1, 2} are φ, {1}, {2}, {1, 2}. Note that they are all standard except {2}. So, the

cross section lattice of MSp2 by Proposition 4.8 is

Λ =

{(

0 0
0 0

)

,

(

1 0
0 0

)

,

(

1 0
0 1

)}

.

From Theorem 4.11, the Renner monoid of MSp2 is

R =

{(

0 0
0 0

)

,

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

,

(

1 0
0 1

)

,

(

0 1
1 0

)}

.

On the other hand, note that Sp2 = SL2 by checking the definitions directly.

Then MSp2 = M2. The Renner monoid of M2 was obtained first by L. Renner

in 1986 (see [17, Proposition 4.1.1]). Our result here for MSp2 matches that of L.

Renner for M2.

The Renner monoid of MSp4 is given by

R = { 0, E11, E12, E13, E14, E21, E22, E23, E24, E31, E32, E33, E34,

E41, E42, E43, E44, E11 + E22, E22 + E41, E11 + E32, E32 + E41,

E34 + E42, E12 + E31, E21 + E42, E12 + E21, E33 + E44, E14 + E33,

E23 + E44, E14 + E23, E13 + E24, E24 + E43, E13 + E34, E34 + E43,

E11 + E33, E33 + E41, E11 + E23, E23 + E41, E13 + E31, E31 + E43,

E13 + E21, E21 + E43, E22 + E44, E14 + E22, E32 + E44, E14 + E32,

E24 + E42, E12 + E24, E34 + E42, E12 + E34, E11 + E22 + E33 + E44,

E14 + E22 + E33 + E41, E11 + E23 + E32 + E44, E14 + E23 + E32 + E41,

E13 + E24 + E31 + E42, E12 + E24 + E31 + E43, E13 + E21 + E34 + E42,

E12 + E21 + E34 + E43 }.
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We now express the Renner monoid of MSp4 in terms of matrices.

R =











0,







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






,







0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0






,







0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0






,







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






,







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






,







0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0






,







0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0






,







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0






,







0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0






,







0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0






,







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1






,







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0






,







1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






,







0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0






,







0 0 1 0
1 0 0 0
0 0 0 0
0 0 0 0






,







0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0






,







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 0 1 0
0 0 0 0






,







1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0






,







0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 1 0 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0






,







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0













0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






,







0 0 0 0
0 0 0 0
0 0 1 0
1 0 0 0






,







0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1






,







0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0






,







0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 1 0 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0






,
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





0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1






,







0 0 0 0
0 1 0 0
0 0 0 0
1 0 0 0






,







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1






,







0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0






,







0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 1
0 0 0 0
0 0 1 0






,







0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0






,







0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0






,







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






,







0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0






,







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






,







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






,







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0






,







0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0






,







0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0






,







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

















.

The following result is an analogue of Proposition 7.3 of [17].

4.12. Proposition. For any e
I
∈ Λ with |I| = i, where i = 0, 1, ..., l,

We
I
W = {x ∈ R | rank(x) = i}

= {x ∈ R | x has i nonzero rows}

= {x ∈ R2l | D(x) and R(x) are admissible with |D(x)| = |R(x)| = i },

where D(x) is the domain of x and R(x) the range of x. Furthermore,

|We
I
W | =





i
∑

j=0

(

l

j

)(

l − j

i− j

)





2

i!.

Proof. Observe that Ge
I
G =

⊔

x∈WeIW BxB consists of n× n matrices of rank i

in MSp2l where i = |I| = 0, 1, ..., l. We obtain the first part of the Proposition.

Now there are
∑i

j=0

(

l
j

)(

l−j
i−j

)

ways to choose i of the n rows such that D(x) is

admissible. There are the same number of ways to choose i of the n columns making
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R(x) admissible. For each of these choices there are i! elements of R, of rank i,

with a nonzero entry in each of the i rows and each of the i columns chosen. Thus

there are
[

∑i

j=0

(

l
j

)(

l−j
i−j

)

]2

i! possibilities. �

4.13. Corollary. |R| =
∑l

i=0

([

∑i

j=0

(

l
j

)(

l−j
i−j

)

]2

i!

)

+ 2ll!, for l ≥ 1.

For example, the Renner monoid of symplectic monoid MSp4 has 57 elements.

5. Cell Decompositions of the Symplectic Monoids MSpn

The main purpose of this section is to determine the cell decompositions of the

symplectic algebraic monoids MSpn. Each cell turns out to be an intersection of

MSpn with a cell Cij(K) of Mn(K).

Let B0 = Bn ∩ Spn. Then B0 is a Borel subgroup of Spn, and B = K∗B0 is a

Borel subgroup of G = K∗Spn. A simple calculation tells us that

B0 =

{(

b1 b2

0 b3

)

∈ Sp2l

∣

∣

∣

∣

b1, b3 ∈Ml(K) are upper triangular,
bT
3 Jb1 = J, bT

3 Jb2 = bT
2 Jb3

}

.

More concretely,

B0 =

{(

b1 b2

0 b3

)

∈ Sp2l

∣

∣

∣

∣

b1 ∈Ml(K) is upper triangular, b2 = b1aJ for
some a ∈Ml(K) symmetric, b3 = J(b−1

1 )T J

}

.

We can now find a relationship among the Borel subgroup B, idempotents and

rank one elements in E(T ).

5.1. Theorem. Let T = K∗T0 ⊆ B be a maximal torus in G. Then for every

non-zero idempotent e
I
∈ E(T ), there exists a unique ei = Eii ∈ E1(T ) such that

eiBe
I

= eiBei, where i is the maximal number in I.
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Proof. Let e
I
∈ E(T ) where I = {i1, i2, ..., im} ⊆ {1, ..., n} is admissible with

i1 < i2 < ... < im. For any upper triangular matrix b = (bjk) ∈ B ⊆ G, the matrix

be
I

is an upper triangular matrix whose k-th column is exactly the k-th column of

b = (bjk) for k = i1, ..., im, and the other columns of be
I

are all zero. Let i = im

which is maximal in I. Taking ei = Eii, we get eibeI
= EiibeI

is a matrix whose

(i, i)−entry is bii and the other entries are all zero. It follows that eibeI
= eibei by

calculating directly. Therefore, eiBe
I

= eiBei. From the procedure above we also

see the uniqueness of such ei = Eii ∈ E1(T ). �

5.2. Definition. For any ei = Eii ∈ E1(T ), define

R(ei) = {x ∈ R | eiBx = eiBeix 6= 0}.

5.3. Corollary. The set of non-zero elements of the Renner monoid has a decom-

position

R× =
⊔

ei∈E1(T )R(ei) =
⊔2l

i=1R(Eii).

Applying Theorem 5.1, we can now get a surjective map τ from the set E(T ) of

idempotents in T onto the set E1(T ) of rank one elements. This map can also be

extended to R× to E1(T ).

5.4. Theorem.

a) There is a surjective map τ from E(T ) onto E1(T ) by

e
I
7−→ τ(e

I
) = ei, if eiBe

I
= eiBei 6= 0.

b) The map τ extends to R× = R \ {0} by, for every x ∈ R×, defining,

τ(x) = ei, if x ∈ e
I
W and τ(eI) = ei,
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where I 6= φ is admissible and i is maximal in I.

Proof. a) is clear. To prove b), note that for any x ∈ R×, there exist w ∈ W

and a unique e
I
∈ E(T ) such that x = e

I
w. It follows that there is a unique

ei = Eii ∈ E1(T ) = E1(R) such that eiBeI = eiBei 6= 0. Then we obtain the map

from R× to E1(R) = E1(T ) by τ(x) = ei, as required. �

For i = 1, ..., 2l, denote by I(i) the set of all the admissible sets I ⊆ {1, ..., 2l}

such that the i is maximal in I. Then we have the following proposition

5.5. Proposition.

a) R(ei) = τ−1(ei) =
⊔

I∈I(i) e
I
W, for i = 1, ..., 2l.

b) R× =
⊔2l

i=1 τ−1(ei), a disjoint union.

Proof. It is straightforward. �

For MSp4, E1(T ) = {e1 = E11, e2 = E22, e3 = E33, e4 = E44}, and

R(e1) =
⊔

I∈I(1)

eIW

= E11W

=

















1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






,







0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

















,

R(e2) =
⊔

I∈I(2) eIW

= E22W ∪ (E11 + E22)W

=

















0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0






,







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






,







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






,







0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0






,
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





1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0






,







1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






,







0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0






,







0 0 1 0
1 0 0 0
0 0 0 0
0 0 0 0






,







0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

















,

R(e3) =
⊔

I∈I(3) eIW

= E33W ∪ (E11 + E33)W

=

















0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0






,







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0






,







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 0 1 0
0 0 0 0






,







1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0






,







0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 1 0 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0






,







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

















,

R(e4) =
⊔

I∈I(4) eIW

= E44W ∪ (E33 + E44)W ∪ (E22 + E44)W ∪W

=

















0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0






,







0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0






,







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1






,







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






,







0 0 0 0
0 0 0 0
0 0 1 0
1 0 0 0






,







0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1






,







0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0






,







0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 1 0 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0






,







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1






,







0 0 0 0
0 1 0 0
0 0 0 0
1 0 0 0






,







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1






,







0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0






,
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





0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 1
0 0 0 0
0 0 1 0






,







0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0






,







0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0






,







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






,







0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0






,







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






,







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






,







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0






,







0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0






,







0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0






,







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

















.

To get our cell decomposition of MSp2l, we first determine the cell decomposition

of the symplectic Renner monoid. Note that for any r = Eij ∈ R(1), there exist

unique er = Eii and fr = Ejj in E1(T ) such that r = errfr.

5.6. Definition. For any r = errfr ∈ R(1), call Cr = {x ∈ R(er) | erxfr = r} a

cell of the Renner monoid R corresponding to the rank one element r.

Remark 5. L. Renner has shown that

Cr = {x ∈ R(er) | erxfr 6= 0}

= {x ∈ R(er) | erx = r}.

5.7. Proposition. For any e ∈ E1(T ) and x ∈ R(e), there is a unique r = ex ∈

R(1) such that x ∈ Cr.

Proof. Let x ∈ R(e) where e ∈ E1(T ). Then eBx = eBex 6= 0 where B is the

Borel subgroup of G ⊆MSpn. Since r = ex, r ∈ R(1) and r = erfr for the unique

e, fr ∈ E1(T ). For if r = errfr and er 6= e, then r = ex = e(ex) = er = e(er)rfr =

(eer)rfr = 0, since eer = 0. Thus x ∈ R(e) and exfr = rfr = (erfr)fr = erfr = r,

i.e., x ∈ Cr.
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Suppose there is another r′ ∈ R(1) such that x ∈ Cr′ = {x ∈ R(e) | exf ′ = r′},

where r′ = er′f ′ for the unique e, f ′ ∈ E1(T ). If f ′ 6= fr then r′ = exf ′ = (ex)f ′ =

rf ′ = (exfr)f
′ = ex(frf

′) = 0, since frf
′ = 0 ∈ E(T ), which is a contradiction.

Therefore, the uniqueness. �

By Corollary 5.3 and the above proposition we get the following

5.8. Corollary. a) R(e) =
⊔

r∈R(1)
er=r

Cr, where e ∈ E1(T ).

b) R× =
⊔

r∈R(1) Cr.

Now, we can establish a surjective map ϕ from R× to the set R(1) consisting of

rank one elements in R by declaring ϕ(x) = r if x ∈ Cr where x ∈ R× and r ∈ R(1).

It is an extension of τ . Furthermore, ϕ−1(r) = Cr for r ∈ R(1).

5.9. Theorem. The above surjective map ϕ from R× to R(1) satisfies ϕ(x) = eiw

if x = e
I
w ∈ R× and τ(e

I
) = ei, where e

I
∈ E(T ) and w ∈W .

Proof. Since R× =
⊔

ei∈E1(T )R(ei) where R(ei) =
⊔

I∈I(i) e
I
W , there is a unique

ei ∈ E1(T ) such that x ∈ R(ei). It follows that if x = e
I
w ∈ R× and τ(e

I
) = ei,

then I ∈ I(i). Thus ϕ(x) = eix = ei(eI
w) = (eieI

)w = eiw, the required result. �

5.10. Theorem. For any r = Eij ∈ R(1), i, j = 1, ..., 2l,

Cr = CEij
= {(xpq) ∈ R | xij = 1; xpq = 0, if i < p ≤ 2l, 1 ≤ q ≤ 2l}.

Proof. If x = (xpq) ∈ R is an n×n matrix, then Eiix = Eij if and only if xiq = δqj,
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for i, q, j = 1, ..., n. Then

Cr = CEij
= {(xpq) ∈ R(ei) | Eii(xpq) = Eij}

= {(xpq) ∈ R(ei) | xij = 1}

=
⊔

I∈I(i)

{(xpq) ∈ eIW | xij = 1}

= {(xpq) ∈ R | xij = 1; xpq = 0, if i < p ≤ 2l, 1 ≤ q ≤ 2l},

which proves the Theorem. �

In the sequel, the cells in Theorem 5.10 will be simply denoted by Cij .

If n = 4, the cells of the Renner monoid of MSp4 are:

C11 =

















1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

















, C12 =

















0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

















.

C13 =

















0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

















, C14 =

















0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

















.

C21 =

















0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0






,







0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0






,







0 0 1 0
1 0 0 0
0 0 0 0
0 0 0 0

















.

C22 =

















0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






,







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0

















.

C23 =

















0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






,







1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

















.
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C24 =

















0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0






,







0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

















.

C31 =

















0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 1 0 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

















.

C32 =

















0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0






,







1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0

















.

C33 =

















0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






,







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 0 1 0
0 0 0 0

















.

C34 =

















0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0






,







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0






,







0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0

















.

C41 =

















0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0






,







0 0 0 0
0 1 0 0
0 0 0 0
1 0 0 0






,







0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0






,







0 0 0 0
0 0 0 0
0 0 1 0
1 0 0 0






,







0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0






,







0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0






,







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

















.

C42 =

















0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0






,







0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 1 0 0






,







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0






,







0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

















.
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C43 =

















0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0






,







0 0 0 0
0 0 0 1
0 0 0 0
0 0 1 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0






,







0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0






,







0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0






,







0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0






,







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

















.

C44 =

















0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1






,







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






,







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1






,







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1






,







0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1






,







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






,







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

















.

Notice the fact that the cells Cij(K) of the Renner monoid R2l of M2l(K) are

Cij(K) = {(xpq) ∈ R2l | xij = 1, xpq = 0, if i < p ≤ 2l, 1 ≤ q ≤ 2l},

where i, j = 1, ..., 2l. We can now get

5.11. Theorem. Cij = Cij(K) ∩R, where i, j = 1, ..., 2l.

We begin to describe the cell decomposition of the symplectic algebraic monoid

MSpn using the following definition.

5.12. Definition. The sets Cij = BCijB for i, j = 1, ..., n are called the cells for

the symplectic monoid with respect to the Borel subgroup B.

5.13. Theorem. The cells of the symplectic monoid are

Cij =

{

(apq) ∈MSpn

∣

∣

∣

∣

aij 6= 0; aiq = 0 if 1 ≤ q < j;
apq = 0, if i < p ≤ 2l and 1 ≤ q ≤ 2l

}
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where i, j = 1, ..., 2l.

Proof. Since Cij =
⋃

x∈Cij
(K∗B0)x(K∗B0) = K∗

(

⋃

x∈Cij
B0xB0

)

, for i, j =

1, ..., 2l, we need only to consider elements in B0xB0, where x ∈ Cij and

B0 =

{(

b1 b2

0 b3

)

∈ Sp2l

∣

∣

∣

∣

b1, b3 ∈Ml(K) are upper triangular,
bT
3 Jb1 = J, bT

3 Jb2 = bT
2 Jb3

}

.

Now for every element b =

(

b1 b2

0 b3

)

∈ B0, suppose that b = (bpq)2l×2l which

is upper triangular. Then bpp 6= 0, for p = 1, ..., 2l. For any x = (xpq) ∈ Cij ⊆

R(Eii) ⊆ R, let I = {i1, ..., im−1, im} denote the index set of non-zero rows of x

where i1 < ... < im−1 < im and im = i. Let J = {j1, ..., jm−1, jm} denote the index

set of non-zero columns such that jm = j and xikjk
= 1, for k = 1, ..., m. Generally,

we do not have j1 < ... < jm−1 < jm.

Thus bx is a matrix whose jk-th column is the ik-th of b where k = 1, ..., m, and

all rows under row i are zero. The shape of bx is

i-th row←−























∗ . . . ∗ b1i ∗ . . . ∗
...

...
...

...
...

∗ . . . ∗ bi−1i ∗ . . . ∗
0 . . . 0 bii 0 . . . 0
0 . . . 0 0 0 . . . 0
...

...
...

...
...

0 . . . 0 0 0 . . . 0























,

↓

j-th column

where bii 6= 0 is the (i, j)-entry of bx. Taking any b′ = (b′pq)2l×2l ∈ B0, one obtains
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the shape of bxb′ is

i-th row←−























∗ . . . ∗ ∗ ∗ . . . ∗
...

...
...

...
...

∗ . . . ∗ ∗ ∗ . . . ∗
0 . . . 0 biib

′
jj biib

′
jj+1 . . . biib

′
j2l

0 . . . 0 0 0 . . . 0
...

...
...

...
...

0 . . . 0 0 0 . . . 0























,

↓

j-th column

where biib
′
jj 6= 0 is the (i, j)-entry of bxb′. From the arbitrariness of b, b′ ∈ B0 and

x ∈ Cij , we get

Cij =

{

(apq) ∈MSpn

∣

∣

∣

∣

aij 6= 0; aiq = 0 if 1 ≤ q < j;
apq = 0 if i < p ≤ 2l and 1 ≤ q ≤ 2l

}

where i, j = 1, ..., 2l, since B = K∗B0. �

It follows from the Bruhat-Renner decomposition [17, Corollary 5.8] of MSp2l

and Corollary 5.8 that

5.14. Corollary. Keeping the notation above, we have

MSp2l \ {0} =

2l
⊔

i,j=1

Cij .

From the shapes of elements in the cells Cij(K) of Mn(K) we obtain the following

5.15. Theorem. Cij = Cij(K) ∩MSpn, for i, j = 1, ..., 2l.

6. Submonoids of the Symplectic Algebraic Monoids MSpn
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The main purpose of this section is to establish some properties of the submonoid

(MSpn)e = {y ∈ MSpn| ye = ey = e} of MSpn where e ∈ E(MSpn) and n = 2l.

We simply denote by Me the submonoid (MSpn)e. Let Ge = Me ∩ G where G =

K∗Spn is the unit group of MSpn. Then by [15, Theorem 6.11] one has Me = Ge.

Thus, saying something about Ge is necessary.

6.1. Lemma. Let y =





1 0 0
0 y1 0
0 0 1





2l×2l

∈ MSpn. Then y ∈ Sp2l if and only if

y1 ∈ Sp2l−2.

Proof. Recall Jl =

(

0 J
−J 0

)

∈M2l(K) be the nonsingular and skew symmetric

matrix, where J =

( 1

·

·

1

)

of size l. Rewrite Jl to be Jl =





0 0 1
0 Jl−1 0
−1 0 0



.

Then

y ∈ Sp2l ⇐⇒ yT Jly = Jl

⇐⇒





0 0 1
0 yT

1 Jl−1y1 0
−1 0 0



 =





0 0 1
0 Jl−1 0
−1 0 0





⇐⇒ yT
1 Jl−1y1 = Jl−1

⇐⇒ y1 ∈ Sp2l−2. �

6.2. Theorem. Let e1 = E11 ∈ Λ and G = K∗Sp2l. Then Ge1
is isomorphic to

K∗Sp2l−2. Furthermore, Me1
is isomorphic to MSp2l−2.

Proof. Suppose that y = tx ∈ G with x = (xij)
2l
i,j=1 ∈ Sp2l and t ∈ K∗. Then

ye1 = e1y = e1 is equivalent to xe1 = e1x = (1/t)e1. So

x =

(

1/t 0
0 x1

)

∈ Sp2l,
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where x1 = (xij)
2l
i,j=2 is a 2l−1×2l−1 matrix. Let A = (0, ..., 1)1×2l−1 and rewrite

Jl =

(

0 A
−AT J ′

)

. Notice that

xT Jlx =

(

0 (1/t)Ax1

(−1/t)xT
1 AT xT

1 J ′x1

)

.

Thus xT Jlx = Jl gives us (1/t)Ax1 = A, (−1/t)xT
1 AT = −AT and xT

1 J ′x1 = J ′. It

follows that x2l,2 = ... = x2l,2l−1 = 0 and x2l,2l = t, which shows that x1 has the

shape

x1 =

(

x2 X
0 t

)

2l−1×2l−1

,

where x2 = (xij)
2l−1
i,j=2 is a 2l − 2 × 2l − 2 matrix and X = (x2,2l, ..., x2l−1,2l)

T .

Since J ′ =

(

Jl−1 0
0 0

)

and xT
1 J ′x1 =

(

xT
2 Jl−1x2 xT

2 Jl−1X
XT Jl−1x2 XT Jl−1X

)

, it follows from

xT
1 J ′x1 = J ′ that xT

2 Jl−1x2 = Jl−1, xT
2 Jl−1X = 0, XT Jl−1x2 = 0 and XT Jl−1X =

0. Thus X = 0 and x1 =

(

x2 0
0 t

)

, where x2 ∈ Sp2l−2. Therefore,

x =





1/t
x2

t



 ∈ Sp2l,

where t ∈ K∗ and x2 ∈ Sp2l−2. It follows easily that

Ge =







t ·





1/t
x2

t





∣

∣

∣

∣

∣

∣

t ∈ K∗, x2 ∈ Sp2l−2







=











1
tx2

t2





∣

∣

∣

∣

∣

∣

t ∈ K∗, x2 ∈ Sp2l−2







.

Define a mapping f from Ge1
to K∗Sp2l−2 by

y =





1
tx2

t2



 7−→ tx2 ∈ K∗Sp2l−2
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Then f is an algebraic group isomorphism from Ge1
to K∗Sp2l−2. Hence, Ge1

is isomorphic to K∗Sp2l−2 which is MSp2l−2. But it follows from [15, Theorem

6.11] that Me1
= Ge1

. Therefore, Me1
is isomorphic to MSp2l−2. This proves the

Theorem. �

6.3. Corollary.

a) For any e ∈ E1(T ), Me is isomorphic to MSp2l−2.

b) For any e ∈ E1(MSp2l), the rank one elemenets in E(MSp2l), Me is isomor-

phic to MSp2l−2.

Proof. To prove a), note that E1(T ) = {w−1e1w | w ∈W}, where e1 = E11. Then

for any e ∈ E1(T ), there exists w ∈ W such that e = w−1e1w. Since ye = ey = e

is equivalent to (wyw−1)e1 = e1(wyw−1) = e1, it follows that Me is isomorphic

to Me1
by the mapping y 7−→ wyw−1. From Theorem 6.2 one obtains that Me is

isomorphic to MSp2l−2. Similar recipes of a) apply to b) by using E1(MSp2l) =

{g−1e1g | g ∈ G}. �

A similar discussion to that of Theorem 6.2 gives the following

6.4. Theorem. Let G = K∗Sp2l and eI ∈ Λ with I = {1, ..., i} standard ad-

missible, where eI =
∑

j∈I Ejj ∈ Λ and i = 1, ..., l. Then Ge
I

is isomorphic to

K∗Sp2l−2i. Furthermore, Me
I

is isomorphic to MSp2l−2i.
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6.5. Corollary. Keeping the same notations in Theorem 5.4, we have

a) For every eJ ∈ Ei(T ) with J admissible and |J | = i, for i = 1, ..., l; MeJ
is

isomorphic to MSp2l−2i.

b) For every e ∈ Ei(MSp2l), the rank i elements in E(MSp2l), Me is isomorphic

to MSp2l−2i, for i = 1, ..., l.

Proof. For a), note that the W acts transitively on the set Ei(T ) of rank i (i =

1, ..., l) idempotents in E(T ). Then for every eJ ∈ Ei(T ), there exist w ∈ W and

e
I
∈ Λ such that e

J
= we

I
w−1. It follows that ye

J
= e

J
y = e

J
is equivalent

to (w−1yw)e
I

= e
I
(w−1yw) = e

I
, and hence Me

J
is isomorphic to Me

I
by the

mapping y 7−→ w−1yw. But, by Theorem 6.4, Me
I

is isomorphic to MSp2l−2i.

Applying a) and [17, Corollary 6.10 (ii)] one gets b) easily. �
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CHAPTER IV

SPECIAL ORTHOGONAL MONOIDS MSO2l

In this chapter we discuss the Renner monoids and the cell decompositions of

the special orthogonal algebraic monoids, even case. Throughout this chapter we

assume that the characteristic of K is not 2.

Let n = 2l be even and Jl =

(

0 J
J 0

)

∈ Mn be the symmetric matrix, where

J =

( 1

·

·

1

)

is an l × l matrix. The special orthogonal group is by definition

G0 = SOn = {g ∈ SLn| g
T Jlg = Jl}

which is connected and reductive.

Remark 6. The definition of SOn here is from [7, pp.52-53].

Let T0 = G0 ∩Tn. Elements in T0 have the shape

t = diag(t1, ..., tl, t
−1
l , ..., t−1

1 )

where t1, ..., tl are arbitrary in K∗. Thus T0 is a maximal torus of dimension l. Let us

recall some facts about the Weyl group W (G0, T0) which will be simply denoted by

W if there is no confusion in the context. If π ∈ Sn, let pπ =
∑n

i=1 Eπi,i ∈ Pn be the

corresponding permutation matrix. Then pπ(aij) = (aπ−1i,j), and (aij)pπ = (ai,πj)

where (aij) is any n×n matrix. It follows that p−1
π (aij)pπ = pπ−1(aij)pπ = (aπi,πj).

Define an involution θ : i 7−→ ī of {1, 2, ..., n} by

ī = 2l + 1− i, for 1 ≤ i ≤ 2l.
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Let C denote the centralizer of θ in Sn. Then pπ normalizes T0 if and only if

π ∈ C. The group C is a semidirect product C = C1C2 where C1 is a normal

abelian subgroup of order 2l generated by the transpositions (11̄), ..., (ll̄) and C2 '

Sl consists of all permutations π ∈ Sn which stablize {1, ..., l} and act on the

complement {l + 1, ..., 2l} in the unique manner consistent with the assertion that

π ∈ C. Note that permutation matrices in C need not be in SO2l. So, let C′
1 be a

subgroup of C1 generated by (11̄)(22̄), (22̄)(33̄), ..., (l−1 l − 1)(ll̄). Then C′
1 consists

of even permutations in C1. Let C′
2 = C2 and C′ = C′

1C
′
2. It follows that C′ ⊂ SO2l

and |C′| = 2l−1l!. But ω1T0 = ω2T0 if and only if ω1 = ω2 for any ω1, ω2 ∈ C′.

Thus W is isomorphic to C′ ⊂ Sn. Also, W is isomorphic to (Z2)
l−1

o Sl.

If n = 4, then θ = (11̄)(22̄) = (14)(23), and C′
1 is a subgroup of CS4

(θ) generated

by (14)(23). So

C′
1 = {1, (14)(23)}.

Taking π = (12)(34), we see that θπ = πθ which means that π ∈ CS4
(θ). It is clear

that π stablizes {1, ..., l} = {1, 2} and π /∈ C1. Let C′
2 be a subgroup of CS4

(θ)

generated by π. Then

C′
2 = {1, (12)(34)}.

Thus the Weyl group W = C′
1C

′
2 = {1, (14)(23), (12)(34), (13)(24)}. The corre-

sponding matrix form of the Weyl group is

W =

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






,







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






,







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






,







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

















.

= {1, θ, π, θπ = πθ}.
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7. The Renner Monoids of the Special Orthogonal Monoids MSO2l

The main purpose of this section is to determine the Renner monoids of the

special orthogonal algebraic monoids, even case. We get some by-products as well,

such as the cardinalities of the Renner monoids.

Let G = K∗G0 ∈ GLn where n = 2l. Then G is a connected reductive group

with rank r = l + 1 and semisimple rank l.

7.1. Definition. The monoid G, the Zariski closure of G in Mn(K), is called the

special orthogonal monoid which will be denoted by MSOn, where n = 2l.

7.2. Definition. A subset I ⊆ {1, ..., n} is called admissible if j ∈ I implies j̄ /∈ I,

where j̄ = θ(j) as above; the empty set φ and {1, ..., n} are also considered to be

admissible.

If n = 4, then the admissible subsets of {1, 2, 3, 4} are

φ, {1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 3}, {2, 4}, {1, 2, 3, 4}.

An admissible subset I is referred to as standard if there is an integer i ∈

{1, ..., l, 2l} such that I = {1, ..., i}; the empty set and the set {1, ..., l − 1, l + 1}

are also considered to be standard. For example, the standard admissible subsets

of {1, 2, 3, 4} are φ, {1}, {1, 2}, {1, 3}, {1, 2, 3, 4}.

Remark 7. The standard admissible subsets here are a little different from that

of the symplectic situation.

A similar discussion to [22, p336] gives the following lemma describing the rela-

tionship between admissible subsets and idempotents in T with T = K∗T0.
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7.3. Lemma.

a) W maps admissible sets to admissible sets, and w−1e
I
w = ewI for any w ∈ W .

b) The map

I 7−→ e
I

=
∑

j∈I

Ejj

is bijective from the admissible subsets of {1, ..., n} to E(T ), where eI = 0, if I = φ.

c) The set E(T ) of idempotents in T is

E(T ) = {e
I
| I is admissible}.

d) e
I1
· e

I2
= e

I1∩I2
for any e

I1
, e

I2
∈ E(T ).

Proof. For a), b) and c), see [22, p336]. By checking directly, we get d). �

If n = 4, the set of idempotents of MSO4 is

E(T ) = {0, 1, E11, E22, E33, E44, E11 + E22, E33 + E44, E11 + E33, E22 + E44}.

Remark 8. There are no admissible subsets with size k (l < k < 2l), and the rank

one elements in E(T ) are in one to one correspondence with the admissible subsets

containing exactly one element of {1, ..., n}.

7.4. Proposition.

|E(R)| = |E(T )| =

l
∑

i=0

i
∑

j=0

(

l

j

)(

l − j

i− j

)

+ 1.

Proof. By counting the number of admissible subsets of {1, ..., n} and applying

[17, Proposition 3.2.1], we know the result is true. �

Let E1(R) ⊆ E(R) (resp. E1(T ) ⊆ E(T )) denote the set of rank one idempotent

elements in R (resp. T ). Then by Lemma 7.3 and [17, Proposition 3.2.1] we have

the following
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7.5. Proposition.

a) E1(R) = E1(T ) = {Eii| i = 1, ..., n}.

b) |E1(R)| = |E1(T )| = n.

We now find the set of rank one elements in R. To this end, let R(i) denote the

set of rank i elements in the Renner monoid R, for i ∈ {1, ..., n}.

7.6. Lemma. R(1) = {Eij| i, j = 1, ..., n}, and |R(1)| = n2.

Proof. It suffices to show that {Eij | i, j = 1, ..., n} ⊆ R(1).

Firstly, we prove that {E1j | j = 1, ..., n} ⊆ R(1). There are three cases,

a) If j ∈ {1, ..., l}, let w = (1j)(1̄j̄). Then w stablizes {1, ..., l} and wθ = θw. It

follows that w ∈W2 ⊆W and w(j) = 1.

b) If j = 1̄ = 2l ∈ {l +1, ..., 2l}, let w = (1j)(22̄) = (11̄)(22̄). Then w ∈W1 ⊆W

and w(j) = 1.

c) If j ∈ {l + 1, ..., 2l} but j 6= 1̄ = 2l, let w2 = (j1̄)(j̄1). Then w2 stablizes

{1, ..., l} and w2θ = θw2. So w2 ∈W2 ⊆W and w2(j) = 1̄. Let w1 = (11̄)(22̄) ∈W1

and w = w1w2. Then w ∈W and w(j) = w1(w2(j)) = w1(1̄) = 1.

So, E1j = E1,w1 = E11w ∈ E11W for j = 1, ..., n. Thus {E1j | j = 1, ..., n} =

E11W which is a subset of R(1).

Similarly, {Eij | j = 1, ..., n} = EiiW ⊆ R(1) for i = 2, ..., n.

Therefore, R(1) = {Eij | i, j = 1, ..., n} with size n2. �

Remark 9. The lemma above shows that R(1) = Rn(1). However, R(2) 6= Rn(2),

since {1, 2l} is not an admissible subset of {1, ..., n}, and so E11+E2l,2l /∈ R(2) , but

E11 + E2l,2l ∈ Rn(2). For the same reason, we know R(i) 6= Rn(i), for i = 3, ..., n.
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7.7. Theorem. For any admissible subset I ⊆ {1, ..., n} with |I| = i, where

i = 1, ..., l − 1, 2l, there exist w ∈ W and a unique standard admissible subset

I0 = {1, ..., i} such that wI = I0.

Proof. If I = {1, ..., n}, then I0 = I and w = 1 ∈ W and we are done. Now let I

be admissible and I 6= {1, ..., n}. Then |I| = i ∈ {1, ..., l− 1}. Use induction on the

size i of the admissible subset I. If i = 1, then I = {j} for some j ∈ {1, ..., n} and

I0 = {1}. By Lemma 7.6 we know there exists w ∈W such that w(I) = I0.

Now suppose that I ⊆ {1, ..., n} is any admissible subset with 1 < |I| = i ≤ l−1.

Then I = J ∪ {k} where J is a subset of I with |J | = i − 1 and k ∈ I \ J . It

follows that J is admissible. By the induction hypothesis there exist w′ ∈ W and

a unique standard admissible subset I ′ = {1, ..., i− 1} such that w′J = I ′. Then

w′I = I ′ ∪ {p} where p = w′(k) /∈ I ′. There are four cases for p,

1) If p = i, then I0 = I ′ ∪ {i} and w = w′ are what we want.

2) If p ∈ {1, ..., l}, and p 6= i, let w1 = (pi)(p̄̄i). Then w1θ = θw1 and w1 stablizes

{1, ..., l}. Thus, w1 ∈W2 ⊆ W . Note that w1(j) = j, for j ∈ I ′. Taking w = w1w
′,

we obtain that w ∈W and w(I) = w1(I
′ ∪ {p}) = I ′ ∪ {w1(p)} = {1, ..., i} = I0.

3) If p = ī = 2l + 1 − i ∈ {l + 1, ..., 2l}, let w1 = (īi)(ll̄) with i ≤ l − 1. Then

w1 ∈ W1 ⊆ W and w1|I′ = 1. Let w = w1w
′. We obtain that w ∈ W and

w(I) = w1(I
′ ∪ {p}) = w1(I

′) ∪ {w1(p)} = I0.

4) If p ∈ {l + 1, ..., 2l} but p 6= ī = 2l + 1 − i. Let w1 = (p̄i)(p̄i). Then

w1 ∈ W2 ⊆ W and w1(j) = j for j ∈ I ′. Taking w = (īi)(ll̄)w1w
′, we get w ∈ W

and w(I) = (īi)(ll̄)w1(I
′ ∪ {p}) = (īi)(ll̄)(I ′ ∪ {̄i}) = I ′ ∪ {i} = I0.

This proves the Theorem. �
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7.8. Corollary. The Weyl group W acts on Ei(T ), by w−1e
I
w = e

wI
, transitively,

for i = 1, ..., l− 1.

7.9. Theorem. Let I ⊆ {1, ..., 2l} be admissible with |I| = l. Then there is a

w ∈W such that either w(I) = {1, ..., l} or w(I) = {1, ..., l− 1, l + 1}.

Proof. Since I ⊆ {1, ..., n} is an admissible subset with |I| = l. Then I = J ∪ {k}

where J is a subset of I with |J | = l − 1 and k ∈ I \ J . It follows that J is

admissible. By Theorem 4.7 there exist w ∈ W and a unique standard admissible

subset I ′ = {1, ..., l−1} such that wJ = I ′. Then wI = I ′∪{p} where p = w(k) /∈ I ′.

We claim that p = l or l + 1. Otherwise, p ∈ {l + 2, l + 3, ..., 2l}. It follows that

θ(p) = p̄ = 2l+1−p ∈ I ′ ⊆ w′(I), i.e., p and p̄ are both in w′(I), which is impossible

since w′(I) is admissible. This proves the Theorem. �

7.10. Corollary. Under the action, by conjugation, of W on El(T ), there are

exactly two orbits. One is We
J1

W , and the other is We
J2

W , where J1 = {1, ..., l}

and J2 = {1, ..., l− 1, l + 1}.

We will use the following definition soon.

7.11. Definition. An admissible subset I of size l is called type I if there exists w

in W such that wI = J1 = {1, ..., l− 1, l}; type II if wI = J2 = {1, ..., l− 1, l + 1}.

7.12. Proposition. The cross section lattice of MSO2l is

Λ = {e
I
∈ E(T )| I is a standard admissible subset of {1, ..., n}}.

=































I2l,

(

Il

0

)

,

















Il−1

0
1

0
. . .

0

















,

(

Il−1

0

)

, ... ,

(

I1

0

)

, 0































.
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The cross section lattice of MSO4 is

Λ =











(0),







1
0

0
0






,







1
1

0
0






,







1
0

1
0






,







1
1

1
1

















.

The Hasse diagram of the cross section lattice of MSO2l is as follows

•

• •

•

•

·
·
·

•

•

Figure 2.
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........................................................................................................
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7.13. Theorem. With the notation above, the Renner monoid of the special or-

thogonal monoid MSO2l is as follows

R =











∑

i∈I
w∈W

Ei,wi ∈ R2l | I ⊆ {1, ..., 2l} is admissible











.

Proof. Since R = E(T )W by [17, Proposition 3.2.1], it suffices to compute e
I
w

for every e
I
∈ E(T ), w ∈ W , where I is admissible. From Lemma 7.3 b) we know

e
I

=
∑

i∈I Eii. Thus e
I
w =

∑

i∈I Eiiw =
∑

i∈I Ei,wi, and so the Theorem. �

7.14. Corollary.

R =











∑

i∈I
w∈W

Ewi,i ∈ R2l | I ⊆ {1, ..., 2l} is admissible











.

Proof. This result comes from the fact that R = WE(T ), and

w−1e
I

=
∑

i∈I Ewi,i. �
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7.15. Theorem.

R \W =

{

x ∈ R2l

∣

∣

∣

∣

x is singular; D(x) and R(x) are admissible,
and of the same type if |D(x)| = |R(x)| = l

}

where D(x) is the domain of x, and R(x) is the range of x.

Proof. Let R′ denote the set of the right hand side in the Theorem. It follows

from Theorem 7.12 that R\W ⊆ R′, since W maps admissible sets I to admissible

sets and both wI and I are of the same type if |I| = l.

We now prove the other inclusion. For any x ∈ R′, one knows |D(x)| = |R(x)|

which will be denoted by i. Then i ≤ l, since x is singular and both D(x) and R(x)

are admissible.

a) If i 6= l, it follows from Theorem 7.7 that there exist w1, w2 ∈W and a unique

standard admissible set I0 = {1, ..., i}(i ≤ l − 1) such that

w1D(x) = w2R(x) = I0.

Thus w−1
1 xw2 = eI0 ∈ Λ ⊆ R, and hence x = w1eI0w

−1
2 ∈ R \ W , since R =

WE(T ) = E(T )W and x is singular.

b) If i = l, then D(x) and R(x) are of the same type because of x ∈ R′. There

are w1 and w2 in W such that

w1D(x) = w2R(x) =











J1, if D(x) and R(x) are of type I

J2, if D(x) and R(x) are of type II.

where J1 = {1, ..., l−1, l} and J2 = {1, ..., l−1, l+1}. It follows that w−1
1 xw2 = e

J1
∈

Λ ⊆ E(T ) or w−1
1 xw2 = e

J2
∈ Λ ⊆ E(T ). That is, x = w1eJ1

w−1
2 or x = w1eJ2

w−1
2 .

Hence, x ∈ R \W , since R = WE(T ) = E(T )W and x is singular.

Therefore, R \W = R′, i.e., the Theorem is true. �



42

Remark 10. In the proof above we obtain R = WΛW as well.

We now consider some examples. If n = 2, then all the admissible subsets of

{1, 2} are

φ, {1}, {2}, {1, 2}.

They are all standard. So, the cross section lattice of MSO2 by Proposition 7.12 is

Λ =

{(

0 0
0 0

)

,

(

1 0
0 0

)

,

(

0 0
0 1

)

,

(

1 0
0 1

)}

.

From Theorem 7.15, the Renner monoid of MSO2 is

R =

{(

0 0
0 0

)

,

(

1 0
0 0

)

,

(

0 0
0 1

)

,

(

1 0
0 1

)}

.

Let us now consider the Renner monoid of MSO4. The idempotent set E(R) =

E(T ) of MSO4 is a union of sets of rank i idempotent elements in T , for i = 0, 1, 2, 4.

E(T ) = E0(T ) ∪ E1(T ) ∪E2(T ) ∪ E4(T ).

where E0(T ) = {0}, E1(T ) = {E11, E22, E33, E44}, E2(T ) = {E11 + E22, E33 +

E44, E11 + E33, E22 + E44}, E4(T ) = {E11 + E22 + E33 + E44}.

Since R = E0(T )W ∪E1(T )W ∪ E2(T )W ∪E4(T )W, we get

R = { 0, E11, E12, E13, E14, E21, E22, E23, E24, E31, E32, E33, E34,

E41, E42, E43, E44, E11 + E22, E14 + E23, E12 + E21, E13 + E24,

E33 + E44, E32 + E41, E34 + E43, E31 + E42, E11 + E33, E14 + E32,

E12 + E34, E13 + E31, E22 + E44, E23 + E41, E21 + E43, E24 + E42,

E11 + E22 + E33 + E44, E14 + E23 + E32 + E41, E12 + E21 + E34 + E43,

E13 + E24 + E31 + E42}.
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The matrix expression of the Renner monoid R of MSO4 is

R =

















1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






,







0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0






,







0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0






,







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






,







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






,







0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0






,







0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0






,







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0






,







0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0






,







0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0






,







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1






,







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






,







0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0






,







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0






,







0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0






,







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






,







0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0






,







0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0






,







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1






,







0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0






,







0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0






,







0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0






,







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






,







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






,







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0






,







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

















.
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The following result is an analogue of Proposition 7.3 of [17].

7.16. Proposition. For any eI ∈ Λ with |I| = i, where i = 0, 1, ..., l− 1,

WeIW = {x ∈ R| rank(x) = i}

= {x ∈ R| x has i nonzero rows}

= {x ∈ R2l| D(x) and R(x) are admissible with |D(x)| = |R(x)| = i }.

Furthermore,

|WeIW | =





i
∑

j=0

(

l

j

)(

l − j

i− j

)





2

i!,

where D(x) is the domain of x and R(x) the range of x.

Proof. Observe that GeIG =
⊔

x∈WeIW BxB consists of n× n matrices of rank i

in MSO2l where i = |I| = 0, 1, ..., l− 1. One gets the first part of the Proposition.

Now there are
∑i

j=0

(

l
j

)(

l−j
i−j

)

ways to choose i of the n rows making D(x) admis-

sible. There are the same number of ways to choose i of the n columns such that

R(x) is admissible. For each pair of the choices of the rows and columns there are

i! elements of R, of rank i, with a nonzero entry in each of the i rows and each of

the i columns chosen. Thus, there are
[

∑i

j=0

(

l
j

)(

l−j
i−j

)

]2

i! possibilities. �

Similarly, we get the following

7.17 Proposition. Let J1 = {1, ..., l}, and J2 = {1, ..., l− 1, l + 1}. Then

We
J1

W ∪We
J2

W = {x ∈ R| rank(x) = l}

= {x ∈ R| x has l nonzero rows}

=

{

x ∈ R2l

∣

∣

∣

∣

D(x) and R(x) are admissible and of
the same type with |D(x)| = |R(x)| = l

}

.



45

Furthermore,

|We
J1

W ∪We
J2

W | =
1

2





l
∑

j=0

(

l

j

)





2

l!,

where D(x) is the domain of x and R(x) the range of x.

Proof. The first part follows from Theorem 7.15 above.

Now there are 1
2

∑l

j=0

(

l
j

)

ways to choose l of the n rows such that the resulting

subsets are of type I (resp. II). There are the same number of ways to choose l

of the n columns. For each pair of the choices of the rows and columns there are

l! elements of R of rank l with a nonzero entry in each of the l rows and each of

the l columns chosen. Thus there are 1
4

[

∑l

j=0

(

l
j

)

]2

l! possibilities for elements on

We
J1

W (resp. We
J2

W ). Hence, the number of elements in We
J1

W ∪We
J2

W is

as stated. �

7.18. Corollary. |R| =
∑l−1

i=0

(

[

∑i

j=0

(

l
j

)(

l−j
i−j

)

]2

i!

)

+(2l+1)2l−1l!, for l ≥ 1.

Proof. It is clear that

|R| =

l−1
∑

i=0

([ i
∑

j=0

(

l

j

)(

l − j

i− j

)]2

i!

)

+ |WeI1W ∪WeI2W |+ |W |

=
l−1
∑

i=0

([ i
∑

j=0

(

l

j

)(

l − j

i− j

)]2

i!

)

+
1

2

[ l
∑

j=0

(

l

j

)]2

l! + 2l−1l!

=

l−1
∑

i=0

([ i
∑

j=0

(

l

j

)(

l − j

i− j

)]2

i!

)

+
1

2
22ll! + 2l−1l!

=

l−1
∑

i=0

([ i
∑

j=0

(

l

j

)(

l − j

i− j

)]2

i!

)

+ (2l + 1)2l−1l!. �

For instance, the Renner monoid of MSO4 has 37 elements.
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8. Cell Decompositions of the Special Orthogonal Monoids MSO2l

The main purpose of this section is to determine the cell decompositions of the

special orthogonal monoids, even case.

Let B0 = Bn ∩ SOn. Then B0 is a Borel subgroup of SOn, and B = K∗B0 is a

Borel subgroup of G = K∗SOn. A simple calculation tells us that

B0 =

{(

b1 b2

0 b3

)

∈ SO2l

∣

∣

∣

∣

b1, b3 ∈Ml(K) are upper triangular,
bT
3 Jb1 = J, bT

3 Jb2 = −bT
2 Jb3

}

.

The following theorem states a relationship among the Borel subgroup B, idem-

potents and rank one elements in E(T ).

8.1. Theorem. Let T = K∗T0 ⊆ B be a maximal torus in G. Then for every

e
I
∈ E(T ), there exists a unique ei = Eii ∈ E1(T ) such that eiBe

I
= eiBei, where

i is the maximal number in I.

Proof. Let e
I
∈ E(T ) where I = {i1, i2, ..., im} ⊆ {1, ..., n} is admissible with

i1 < i2 < ... < im. For any upper triangular matrix b = (bjk) ∈ B ⊆ G, the matrix

be
I

is an upper triangular matrix whose k-th column is exactly the k-th column of

b = (bjk) , for k = i1, ..., im, and the other columns of be
I

are all zero. Let i = im

which is maximal in I. Taking ei = Eii, we get eibeI
= EiibeI

, a matrix whose

(i, i)−entry is bii and the other entries are all zero. It follows that eibeI
= eibei by

calculating directly. Therefore, eiBe
I

= eiBei. From the procedure above we also

see the uniqueness of such ei = Eii ∈ E1(T ). �

8.2. Definition. For any ei = Eii ∈ E1(T ), define

R(ei) = {x ∈ R| eiBx = eiBeix 6= 0}.
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8.3. Corollary. The set of non-zero elements of the Renner monoid has a decom-

position

R× =
⊔

ei∈E1(T )R(ei) =
⊔2l

i=1R(Eii).

It follows from Theorem 8.1 that there is a surjective map τ from the set E(T ) of

idempotents in T onto E1(T ) of rank one elements. This map can also be extended

to a map of R× to E1(T ).

8.4. Theorem.

a) There is a surjective map τ from E(T ) onto E1(T ) by

e
I
7−→ τ(e

I
) = ei, if eiBe

I
= eiBei 6= 0

b) The map τ extends to R× = R \ {0} by, for every x ∈ R×, defining,

τ(x) = ei, if x ∈ e
I
W and τ(eI) = ei,

where I 6= φ admissible and i is maximal in I.

Proof. a) is clear. To prove b), note that for any x ∈ R×, there exist w ∈ W

and a unique e
I
∈ E(T ) such that x = e

I
w. It follows that there is a unique

ei = Eii ∈ E1(T ) = E1(R) such that eiBeI = eiBei 6= 0. Then we obtain the map

from R× to E1(R) = E1(T ) by τ(x) = ei, as required. �

8.5. Proposition. Let I(i) = {I ⊆ {1, ..., 2l}| I admissible with i =max(I)},

where i = 1, ..., 2l. Then

a) R(ei) = τ−1(ei) =
⊔

I∈I(i) e
I
W, for i = 1, ..., 2l.

b) R× =
⊔2l

i=1 τ−1(ei), a disjoint union.

Proof. It is straightforward. �
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For MSO4, E1(T ) = {e1 = E11, e2 = E22, e3 = E33, e4 = E44}, and

R(e1) =
⊔

I∈I(1)

eIW

= E11W

=

















1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






,







0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

















R(e2) =
⊔

I∈I(2) eIW

= E22W ∪ (E11 + E22)W

=

















0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0






,







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






,







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






,







0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0






,







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






,







0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

















R(e3) =
⊔

I∈I(3) eIW

= E33W ∪ (E11 + E33)W

=

















0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0






,







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0






,







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0






,







0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

















R(e4) =
⊔

I∈I(4) eIW

= E44W ∪ (E33 + E44)W ∪ (E22 + E44)W ∪W
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=

















0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0






,







0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0






,







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1






,







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






,







0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0






,







0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0






,







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1






,







0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0






,







0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0






,







0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0






,







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






,







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






,







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0






,







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

















Our task now is to find the cell decomposition of the special orthogonal Renner

monoid. Note that for any r = Eij ∈ R(1), there exists a unique er = Eii and

fr = Ejj in E1(T ) such that r = errfr.

8.6. Definition. For any r = errfr ∈ R(1), call Cr = {x ∈ R(er) | erxfr = r} a

cell of the Renner monoid R of MSO2l corresponding to the rank one element r.

8.7. Proposition. For any e ∈ E1(T ) and x ∈ R(e), there is a unique r ∈ R(1)

such that x ∈ Cr where r = ex.

Proof. Let x ∈ R(e) where e ∈ E1(T ). Then eBx = eBex 6= 0 where B is the Borel

subgroup of G ⊆ MSOn. Let r = ex. Then r ∈ R(1) and r = erfr for the unique

e, fr ∈ E1(T ). For if r = errfr and er 6= e, then r = ex = e(ex) = er = e(er)rfr =

(eer)rfr = 0, since eer = 0. Thus x ∈ R(e) and exfr = rfr = (erfr)fr = erfr = r,

i.e., x ∈ Cr.
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Suppose that there is another r′ ∈ R(1) such that x ∈ Cr′ = {x ∈ R(e) | exf ′ =

r′} where r′ = er′f ′ for the unique e, f ′ ∈ E1(T ). If f ′ 6= fr then r′ = exf ′ =

(ex)f ′ = rf ′ = (exfr)f
′ = ex(frf

′) = 0, since frf
′ = 0 ∈ E(T ), which is a

contradiction. Therefore, the uniqueness. �

8.8. Corollary.

a) R(e) =
⊔

r∈R(1)
er=r

Cr, where e ∈ E1(T ).

b) R× =
⊔

r∈R(1) Cr.

Proof. It is straightforward by Corollary 8.3 and the above proposition �

Now, we can establish a surjective map ϕ from R× to the set R(1) consisting of

rank one elements in R by declaring ϕ(x) = r if x ∈ Cr where x ∈ R× and r ∈ R(1).

It is an extension of τ . Furthermore, ϕ−1(r) = Cr for r ∈ R(1).

8.9. Theorem. The above surjective map ϕ from R× to R(1) satisfies ϕ(x) = eiw

if x = e
I
w ∈ R× and τ(e

I
) = ei, where e

I
∈ E(T ) and w ∈W .

Proof. Since R× =
⊔

ei∈E1(T )R(ei) where R(ei) =
⊔

I∈I(i) e
I
W , there is a unique

ei ∈ E1(T ) such that x ∈ R(ei). It follows that if x = e
I
w ∈ R× and τ(e

I
) = ei,

then I ∈ I(i). Thus ϕ(x) = eix = ei(eI
w) = (eieI

)w = eiw, the required result. �

8.10. Theorem. For any r = Eij ∈ R(1), i, j = 1, ..., 2l,

Cr = CEij
= {(xpq) ∈ R | xij = 1; xpq = 0, if i < p ≤ 2l, 1 ≤ q ≤ 2l}.

Proof. If x = (xpq) ∈ R is an n×n matrix, then Eiix = Eij if and only if xiq = δqj,
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for i, q, j = 1, ..., n. Then

Cr = CEij
= {(xpq) ∈ R(ei) | Eii(xpq) = Eij}

= {(xpq) ∈ R(ei) | xij = 1}

=
⊔

I∈I(i)

{(xpq) ∈ eIW | xij = 1}

= {(xpq) ∈ R | xij = 1; xpq = 0, if i < p ≤ 2l, 1 ≤ q ≤ 2l}.

which proves the Theorem. �

In the sequel, the cells in Theorem 7.10 will be simply denoted by Cij .

If n = 4, the cells of the Renner monoid of MSO4 are:

C11 =

















1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

















, C12 =

















0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

















.

C13 =

















0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

















, C14 =

















0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

















.

C21 =

















0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0






,







0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

















.

C22 =

















0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






,







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

















.

C23 =

















0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






,







0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

















.
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C24 =

















0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

















.

C31 =

















0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0






,







0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

















.

C32 =

















0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0






,







0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0

















.

C33 =

















0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






,







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

















.

C34 =

















0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0






,







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

















.

C41 =

















0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0






,







0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0






,







0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0






,







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

















.

C42 =

















0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0






,







0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0






,







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

















.

C43 =

















0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0






,







0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0






,







0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0






,







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

















.

C44 =

















0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1






,







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






,







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1






,







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















.
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Notice the fact that the cells Cij(K) of the Renner monoid R2l of Mn(K) are

Cij(K) = {(xpq) ∈ R2l | xij = 1, xpq = 0, if i < p ≤ 2l, 1 ≤ q ≤ 2l}.

where i, j = 1, ..., 2l. We can now get

8.11. Theorem. Cij = Cij(K) ∩R, where i, j = 1, ..., 2l.

We begin to describe the cell decomposition of the special orthogonal algebraic

monoid MSOn using the following definition.

8.12. Definition. The sets Cij = BCijB for i, j = 1, ..., n are called cells for

special orthogonal monoids MSO2l with respect to the Borel subgroup B.

8.13. Theorem. The cells of the special orthogonal monoid are

Cij =

{

(apq) ∈MSOn

∣

∣

∣

∣

aij 6= 0; aiq = 0 if 1 ≤ q < j;
apq = 0, if i < p ≤ 2l and 1 ≤ q ≤ 2l

}

where i, j = 1, ..., 2l.

Proof. Since Cij = ∪x∈Cij
BxB = ∪x∈Cij

(K∗B0)x(K∗B0) = K∗
(

∪x∈Cij
B0xB0

)

,

for i, j = 1, ..., 2l, we need only to consider elements in B0xB0, where x ∈ Cij and

B0 =

{(

b1 b2

0 b3

)

∈ SO2l

∣

∣

∣

∣

b1, b3 ∈Ml(K) are upper triangular,
bT
3 Jb1 = J, bT

3 Jb2 = −bT
2 Jb3

}

.

Now for every element b =

(

b1 b2

0 b3

)

∈ B0, suppose that b = (bpq)2l×2l which

is upper triangular. Then bpp 6= 0, for p = 1, ..., 2l. For any x = (xpq) ∈ Cij ⊆

R(Eii) ⊆ R, let I = {i1, ..., im−1, im} denote the index set of non-zero rows of x

where i1 < ... < im−1 < im and im = i. Let J = {j1, ..., jm−1, jm} denote the index

set of non-zero columns such that jm = j and xikjk
= 1, for k = 1, ..., m. Generally,

we do not have j1 < ... < jm−1 < jm.
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Thus bx is a matrix whose jk-th column is the ik-th of b where k = 1, ..., m, and

all rows under row i are zero. The shape of bx is

i-th row←−























∗ . . . ∗ b1i ∗ . . . ∗
...

...
...

...
...

∗ . . . ∗ bi−1i ∗ . . . ∗
0 . . . 0 bii 0 . . . 0
0 . . . 0 0 0 . . . 0
...

...
...

...
...

0 . . . 0 0 0 . . . 0























,

↓

j-th column

where bii 6= 0 is the (i, j)-entry of bx. Taking any b′ = (b′pq)2l×2l ∈ B0, one obtains

the shape of bxb′ is

i-th row←−























∗ . . . ∗ ∗ ∗ . . . ∗
...

...
...

...
...

∗ . . . ∗ ∗ ∗ . . . ∗
0 . . . 0 biib

′
jj biib

′
jj+1 . . . biib

′
j2l

0 . . . 0 0 0 . . . 0
...

...
...

...
...

0 . . . 0 0 0 . . . 0























,

↓

j-th column

where biib
′
jj 6= 0 is the (i, j)-entry of bxb′. From the arbitrariness of b, b′ ∈ B0 and

x ∈ Cij , we get

Cij =

{

(apq) ∈MSOn

∣

∣

∣

∣

aij 6= 0; aiq = 0 if 1 ≤ q < j;
apq = 0 if i < p ≤ 2l and 1 ≤ q ≤ 2l

}

where i, j = 1, ..., 2l, since B = K∗B0. �
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8.14. Corollary. Keeping the notation above, we have

MSO2l \ {0} =

2l
⊔

i,j=1

Cij .

Proof. The statement is true by Corollary 7.8 and the Bruhat-Renner decomposi-

tion of MSp2l. See [17, Corollary 5.8]. �

8.15. Theorem. Cij = Cij(K) ∩MSOn, for i, j = 1, ..., 2l.

Proof. From Theorem 8.13 and the shapes of elements in the cells Cij(K) of

Mn(K) we know the result is as stated. �

9. Submonoids of the Special Orthogonal Monoids MSO2l

The main purpose of this section is to establish some properties of the submonoid

(MSOn)e = {y ∈ MSOn | ye = ey = e} of MSOn, where e ∈ E(MSOn) and

n = 2l. We simply denote by Me the submonoid (MSOn)e. Let Ge = Me ∩ G

where G = K∗SOn is the unit group of MSOn. Then by [15, Theorem 6.11] one

has Me = Ge. Thus, unveiling some properties of Ge is necessary.

9.1. Lemma. Let y =





1 0 0
0 y1 0
0 0 1





2l×2l

∈MSOn. Then y ∈ SO2l if and only if

y1 ∈ SO2l−2.

Proof. Recall that Jl =

(

0 J
J 0

)

∈ M2l(K) is a symmetric matrix, where J =
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( 1

·

·

1

)

of size l. Rewrite Jl to be Jl =





0 0 1
0 Jl−1 0
1 0 0



. Then

y ∈ Sp2l ⇐⇒ yT Jly = Jl

⇐⇒





0 0 1
0 yT

1 Jl−1y1 0
1 0 0



 =





0 0 1
0 Jl−1 0
1 0 0





⇐⇒ yT
1 Jl−1y1 = Jl−1

⇐⇒ y1 ∈ SO2l−2. �

9.2. Theorem. Let e1 = E11 ∈ Λ and G = K∗SO2l. Then Ge1
is isomorphic to

K∗SO2l−2. Furthermore, Me1
is isomorphic to MSO2l−2.

Proof. Suppose that y = tx ∈ G with x = (xij)
2l
i,j=1 ∈ SO2l and t ∈ K∗. Then

ye1 = e1y = e1 is equivalent to xe1 = e1x = (1/t)e1. So

x =

(

1/t 0
0 x1

)

∈ SO2l,

where x1 = (xij)
2l
i,j=2 is a 2l−1×2l−1 matrix. Let A = (0, ..., 1)1×2l−1 and rewrite

Jl =

(

0 A
AT J ′

)

. Notice that

xT Jlx =

(

0 (1/t)Ax1

(1/t)xT
1 AT xT

1 J ′x1

)

.

Thus xT Jlx = Jl gives us (1/t)Ax1 = A, (1/t)xT
1 AT = AT and xT

1 J ′x1 = J ′. It

follows that x2l,2 = ... = x2l,2l−1 = 0 and x2l,2l = t, which shows that x1 has the

shape

x1 =

(

x2 X
0 t

)

2l−1×2l−1

,

where x2 = (xij)
2l−1
i,j=2 is a 2l − 2 × 2l − 2 matrix and X = (x2,2l, ..., x2l−1,2l)

T .

Since J ′ =

(

Jl−1 0
0 0

)

and xT
1 J ′x1 =

(

xT
2 Jl−1x2 xT

2 Jl−1X
XT Jl−1x2 XT Jl−1X

)

, it follows from
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xT
1 J ′x1 = J ′ that xT

2 Jl−1x2 = Jl−1, xT
2 Jl−1X = 0, XT Jl−1x2 = 0 and XT Jl−1X =

0. Thus X = 0 and x1 =

(

x2 0
0 t

)

, where x2 ∈ SO2l−2. Therefore,

x =





1/t
x2

t



 ∈ SO2l,

where t ∈ K∗ and x2 ∈ SO2l−2. It follows easily that

Ge =







t ·





1/t
x2

t





∣

∣

∣

∣

∣

∣

t ∈ K∗, x2 ∈ SO2l−2







=











1
tx2

t2





∣

∣

∣

∣

∣

∣

t ∈ K∗, x2 ∈ SO2l−2







.

Define a mapping f from Ge1
to K∗SO2l−2 by

y =





1
tx2

t2



 7−→ tx2 ∈ K∗SO2l−2

Then f is an algebraic group isomorphism from Ge1
to K∗SO2l−2. Hence, Ge1

is isomorphic to K∗SO2l−2 which is MSO2l−2. But it follows from [15, Theorem

6.11] that Me1
= Ge1

. Therefore, Me1
is isomorphic to MSO2l−2. This proves the

Theorem. �

9.3. Corollary.

a) For any e ∈ E1(T ), Me is isomorphic to MSO2l−2.

c) For any e ∈ E1(MSO2l), the rank one elements in E(MSO2l), Me is isomor-

phic to MSO2l−2.

Proof. For a), note that E1(T ) = {w−1e1w | w ∈ W}. Then for any e ∈ E1(T ),

there exists w ∈ W such that e = w−1e1w, where e1 = E11. Since ye = ey = e
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is equivalent to (wyw−1)e1 = e1(wyw−1) = e1, it follows that Me is isomorphic

to Me1
by the mapping y 7−→ wyw−1. From Theorem 9.2 one obtains that Me is

isomorphic to MSO2l−2. Similar recipes of a) apply to b) by using E1(MSO2l) =

{g−1e1g | g ∈ G}. �

9.4. Theorem. Let G = K∗SO2l and eI ∈ Λ with I standard admissible, where

eI =
∑

j∈I Ejj ∈ Λ and i = 1, ..., l. Then Ge
I

is isomorphic to K∗SO2l−2i. Fur-

thermore, Me
I

is isomorphic to MSO2l−2i.

Proof. It is similar to that of Theorem 9.2. �

9.5. Corollary. Keeping the same notations in Theorem 8.4, we have

a) For every eJ ∈ Ei(T ) with J admissible and |J | = i, for i = 1, ..., l, MeJ
is

isomorphic to MSO2l−2i.

b) For every e ∈ Ei(MSO2l), the rank i elements in E(MSO2l), Me is isomor-

phic to MSO2l−2i, for i = 1, ..., l.

Proof. For a), note that for every eJ ∈ Ei(T ), the set of rank i (i = 1, ..., l)

idempotents of E(T ), there exist unique eI ∈ Λ and w ∈W such that e
J

= we
I
w−1.

But ye
J

= e
J
y = e

J
is equivalent to (w−1yw)e

I
= e

I
(w−1yw) = e

I
. Hence Me

J
is

isomorphic to Me
I

by the mapping y 7−→ w−1yw. It follows from Theorem 9.4 that

MeJ
is isomorphic to MSO2l−2i. Applying a) and [17, Corollary 6.10 (ii)] one gets

b) easily. �
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CHAPTER V

SPECIAL ORTHOGONAL MONOIDS MSO2l+1

In this chapter we consider the Renner monoids and the cell decompositions of

the special orthogonal monoid, odd case. Throughout this section the characteristic

of the base field K is not two, unless otherwise stated.

Let n = 2l + 1 and Jl =





0 0 J
0 1 0
J 0 0



 ∈ Mn be the symmetric matrix, where

J =

( 1

·

·

1

)

of dimension l × l. The special orthogonal group is by definition

G0 = SOn = {g ∈ SLn| g
T Jlg = Jl}

which is a closed, connected and reductive subgroup of the linear algebraic group.

Remark 11. The definition of SOn here is different than what J. Humphreys used

in his book [7].

From now on we assume n = 2l+1. Let T0 = G0 ∩Tn. Let t = diag(t1, ..., t2l+1)

be an element in T0. Then by tT Jlt = Jl one obtains that

t = diag(t1, ..., tl,±1, t−1
l , ..., t−1

1 ).

Since SOn ⊂ SLn, elements in T0 have the shape

t = diag(t1, ..., tl, 1, t−1
l , ..., t−1

1 ).

where t1, ..., tl are arbitrary in K∗. Thus T0 is a maximal torus of dimension l.

Let us recall some facts about the Weyl group W (G0, T0). If π ∈ Sn, let pπ =

∑2l+1
i=1 Eπi,i ∈ Pn be the corresponding permutation matrix, where Eij are the
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matrix unit. Then pπ(aij) = (aπ−1i,j), and (aij)pπ = (ai,πj), where (aij) is any

n× n matrix. It follows that p−1
π (aij)pπ = pπ−1(aij)pπ = (aπi,πj).

Define an involution θ : i 7−→ ī of {1, 2, ..., l, l + 1, l + 2, ..., 2l + 1} by

ī = 2l + 2− i, for 1 ≤ i ≤ 2l + 1,

Since p−1
π diag (t1, ..., t2l+1)pπ = diag(tπ(1), ..., tπ(2l+1)), pπ normalizes T0 if and

only if πθ(i) = θπ(i), for i = 1, ..., 2l+1. Taking i = l +1, one finds that π(l +1) =

l + 1. Let C denote the centralizer of θ in Sn. Then pπ normalizes T0 if and

only if π ∈ C. The group C is a semidirect product C = C1C2 where C1 is a

normal abelian subgroup of order 2l generated by the transpositions (11̄), ..., (ll̄)

and C2 ' Sl consists of all permutations π ∈ Sn which fix l + 1, stablize {1, ..., l}

and act on {l+2, ..., 2l+1} in the unique manner consistent with the assertion that

π ∈ C. Then W (G0, T0) ' C1C2. Also, W ' (Z2)
l
o Sl.

If n = 5, then θ = (11̄)(22̄) = (15)(24) ∈ S5, and C1 is a subgroup of CS5
(θ)

generated by (15) and (24). So

C1 = {1, (15), (24), (15)(24)}.

Taking π = (12)(45) ∈ S5, we see that θπ = πθ which means that π ∈ CS5
(θ). It

is clear that π(3) = 3 and π stabilizes {1, ..., l} = {1, 2}. Let C2 be a subgroup of

CS5
(θ) generated by π. Then

C2 = {1, (12)(45)}.

Thus the Weyl group

W (G0, T0) = C1C2 = {1, (15), (24), (15)(24), (1254), (1452), (14)(25), (12)(45)}.
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The corresponding matrix form of the Weyl group is

W (G0, T0) =





























1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1











,











0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0











,











1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1











,











0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0











,











0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0











,











0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0











,











0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0











,











0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0





























.

= {1, ρ, σ, θ, θπ, ρπ, σπ, π}.

We will use the Weyl group to describe the Renner monoid of the special orthog-

onal monoid in the following section.

10. The Renner Monoids of the Special Orthogonal Monoids MSO2l+1

We now compute the Renner monoid R of the special orthogonal monoid, odd

case.

Let G = K∗G0 ∈ GLn, where n = 2l+1. Then G is a connected reductive group

with rank r = l + 1 and semisimple rank l. Let T = K∗T0. Then T is a maximal

torus of G. The Weyl group W (G, T ) is isomorphic to W (G0, T0) (see [22]). We

identify them in what follows and let W denote either of these groups.

10.1. Definition. The monoid G, Zariski closure of G in Mn(K), is called the

special orthogonal monoid which will be denoted by MSOn with n = 2l + 1.
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10.2. Definition. A subset I ⊆ {1, ..., 2l + 1} is called admissible if j ∈ I implies

j̄ /∈ I, where j̄ = θ(j) as above; the empty set φ and the whole set {1, ..., 2l + 1} are

also considered to admissible.

An admissible subset I is referred to as standard if I = φ, or there is an integer

i ∈ {1, ..., l, 2l + 1} such that I = {1, ..., i}.

If n = 5, then the admissible subsets of {1, 2, 3, 4, 5} are

φ, {1}, {2}, {4}, {5}, {1, 2}, {4, 5}, {1, 4}, {2, 5}, {1, 2, 3, 4, 5},

The standard admissible subsets of {1, 2, 3, 4, 5} are φ, {1}, {1, 2}, {1, 2, 3, 4, 5}.

A similar discussion to [22, p336] gives the following lemma stating the rela-

tionship between admissible subsets and idempotents in T . We omit those simple

details.

10.3. Lemma.

a) W maps admissible sets to admissible sets, and w−1e
I
w = ewI for any w ∈ W .

b) The map

I 7−→ e
I

=
∑

j∈I

Ejj

is bijective from the admissible subsets of {1, ..., 2l + 1} to E(T ), where e
I

= 0, if

I = φ.

c) The set E(T ) of idempotents in T is

E(T ) = {e
I
| I is admissible}.

d) e
I1
· e

I2
= e

I1∩I2
for any e

I1
, e

I2
∈ E(T ).

Proof. For a), b) and c), see [22, p336]. By checking directly, we get d). �
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If n = 5, the set of idempotents in T of MSO5 is

E(T ) = { 0, E11, E22, E44, E55, E11 + E22, E44 + E55,

E11 + E44, E22 + E55, E11 + E22 + E33 + E44 + E55}.

Remark 12. The rank one elements in E(T ) are in one to one correspondence

with the admissible subsets containing exactly one element of {1, ..., 2l + 1}. There

are no admissible subsets with size k (l < k ≤ 2l).

10.4. Corollary.

|E(R)| = |E(T )| = 1 +

l
∑

i=0

i
∑

j=0

(

l

j

)(

l − j

i− j

)

.

Proof. Thanks to [17, Proposition 3.2.1], it is straightforward by counting the

number of admissible subsets of {1, ..., 2l + 1}. �

For i = 1, ..., l, 2l + 1, let Ei(R) ⊆ E(R) (resp. Ei(T ) ⊆ E(T )) denote the

set of rank i idempotent elements in R (resp. T ). Then by Lemma 10.3 and [17,

Proposition 3.2.1] we have the following

10.5. Proposition.

a) E1(R) = E1(T ) =
{

Eii | i ∈ {1, ..., 2l + 1} \ {l + 1}
}

.

b) |E1(R)| = |E1(T )| = 2l.

We now find the set of rank one elements in R. Let R(i) denote the set of rank

i elements in the Renner monoid R, for i ∈ {1, ..., 2l + 1}

10.6. Lemma. R(1) =
{

Eij | i, j ∈ {1, ..., 2l + 1} \ {l + 1}
}

, and |R(1)| = 4l2.
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Proof. For any j ∈ {1, ..., 2l + 1} \ {l + 1}, let

w =

{

(11̄), if j = 1̄

(1j)(1̄j̄), if j 6= 1̄.

Then w ∈ CSn
(θ). In other words, w is in the Weyl group W . It follows from

j = w(1) that

E1j = E1,w1 = E11w ∈ E11W for j ∈ {1, ..., 2l + 1} \ {l + 1}}.

Thus, E11W =
{

E1j | j ∈ {1, ..., 2l + 1} \ {l + 1}
}

.

Similarly, if i 6= l+1, then EiiW =
{

Eij | j ∈ {1, ..., 2l+1}\{l+1}
}

. Therefore,

the set of rank one elements in the Renner monoid R is R(1) =
{

Eij | i, j ∈

{1, ..., 2l + 1} \ {l + 1}
}

. �

Remark 13. The lemma above shows that there is a bijection from R(1) to

R2l(1). But not true for R(2) and R2l(2), since {1, 2l + 1} is not an admissible

subset of {1, ..., 2l + 1}, and so not in R(2), but E11 + E2l+1,2l+1 ∈ R2l(2) up to an

isomorphism. For the same reason, we know R(i) 6= R2l(i) for i = 3, ..., 2l.

10.7. Theorem. For any admissible subset I ⊆ {1, ..., 2l + 1} with |I| = i, where

i = 1, ..., l, 2l + 1, there exist a unique standard admissible subset I0 = {1, ..., i} and

w ∈W such that wI = I0.

Proof. If I = {1, ..., 2l+1}, then I0 = I and w = 1 ∈W and we are done. Now let

I be admissible and I 6= {1, ..., 2l + 1}. Then |I| = i ∈ {1, ..., l}. We use induction

on i. If i = 1, then I = {j} for some j ∈ {1, ..., 2l + 1} \ {l + 1}. From Lemma 10.6

there exists w ∈W such that w(I) = {w(j)} = {1}, i.e., wI = I0.

Suppose that I ⊆ {1, ..., 2l + 1} is any admissible subset with 1 < |I| ≤ l. Then

I = J ∪ {k} where J is a subset of I with |J | = i − 1 and k ∈ I \ J . It follows
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that J is admissible. By the induction hypothesis there exist a w′ ∈ W and a

unique standard admissible subset I ′ = {1, ..., i − 1} such that w′J = I ′. Then

w′I = I ′ ∪ {p} where p = w′(k), and hence w′I = {1, ..., i− 1} ∪ {p} is a disjoint

union. If p = i, then I0 = I ′ ∪ {i} and w = w′ are what we want. If p 6= i, let

w1 =

{

(īi), if p = ī

(ip)(̄ip̄), if p 6= ī.

It follows that w1 ∈W . Note that p̄ /∈ w′I, since p ∈ w′I which is admissible. Then

p, i, p̄, ī /∈ I ′, and so w1(j) = j, for j ∈ I ′ = {1, ..., i − 1}. Taking w = w1w
′, we

obtain

w(I) = w1({1, ..., i− 1} ∪ {p})

= {1, ..., i}

which proves the Theorem. �

10.8. Proposition. The cross section lattice of MSO2l+1

Λ = {e
I
∈ E(T ) | I is a standard admissible subset of {1, ..., 2l + 1}}

=

{

I2l+1,

(

Il 0
0 0

)

,

(

Il−1 0
0 0

)

, ... ,

(

I1 0
0 0

)

, (0)

}

' {I | I is a standard admissible subset of {1, ..., 2l + 1}}

' {0, 1, ..., l, l + 1}, under the linear order.

The cross section lattice of MSO5 is

Λ =



















(0),











1
0

0
0

0











,











1
1

0
0

0











,











1
1

1
1

1





























.



66

The Hasse diagram of the cross section lattice of MSO2l+1 is given by

•

•
···
•

•

Figure 3.

.....

.....

.....

.....

.....

.....

.....

......

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

10.9. Theorem. With the notation above, the Renner monoid of the special or-

thogonal monoid MSOn is as follows

R =











∑

i∈I
w∈W

Ei,wi ∈ Rn | I ⊆ {1, ..., 2l + 1} is admissible











.

Proof. By [17, Proposition 3.2.1] R = E(T )W . It suffices to compute e
I
w for

every e
I
∈ E(T ), w ∈ W , where I is admissible. From Lemma 10.3 b) we know

e
I

=
∑

i∈I Eii. Thus e
I
w =

∑

i∈I Eiiw =
∑

i∈I Ei,wi, and so the Theorem. �

10.10. Corollary.

R =











∑

i∈I
w∈W

Ewi,i ∈ Rn | I ⊆ {1, ..., 2l + 1} is admissible











.

Proof. This result follows from the fact that R = WE(T ) and

w−1e
I

=
∑

i∈I

w−1Eii =
∑

i∈I

Ewi,i. �

10.11. Theorem.

R \W =

{

x ∈ R2l+1

∣

∣

∣

∣

x is singular; both D(x)
and R(x) are admissible

}

where D(x) is the domain of x, and R(x) is the range of x.
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Proof. Let R′ denote the set of the right hand side in the Theorem. It follows

from Theorem 10.9 that R \W ⊆ R′, since W maps admissible sets to admissible

sets.

We now prove the other inclusion. For any x ∈ R′, one knows |D(x)| = |R(x)|

which will be denoted by i. Then i ≤ l, since x is singular and both D(x) and R(x)

are admissible. It follows from Theorem 4.7 that there exist a unique standard

admissible set I0 = {1, ..., i}(i ≤ l) and w1, w2 ∈W such that

w1D(x) = w2R(x) = I0.

Thus w−1
1 xw2 = eI0 ∈ Λ ⊆ R, and hence x = w1eI0w

−1
2 ∈ R, since R = WE(T ) =

E(T )W . But x /∈W , because x ∈ R2l is singular. So, R′ ⊆ R \W .

Therefore, R \W = R′, i.e., the Theorem is true. �

Remark 14. In the proof above we obtain R = WΛW as well.

Now let us consider some examples. If n = 3, then all the admissible subsets of

{1, 2, 3} are φ, {1}, {3}, {1, 2, 3}. Note that they are all standard except {3}. So,

the cross section lattice of MSO3 by Proposition 10.8 is

Λ =











0 0 0
0 0 0
0 0 0



 ,





1 0 0
0 0 0
0 0 0



 ,





1 0 0
0 1 0
0 0 1











.

From Theorem 10.11, the Renner monoid of MSO2 is

R =











0 0 0
0 0 0
0 0 0



 ,





1 0 0
0 0 0
0 0 0



 ,





0 0 1
0 0 0
0 0 0



 ,





0 0 0
0 0 0
1 0 0



 ,





0 0 0
0 0 0
0 0 1



 ,





1 0 0
0 1 0
0 0 1



 ,





0 0 1
0 1 0
1 0 0











.
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The Renner monoid R of MSO5 is as follows

R = { 0, E11, E12, E15, E14, E21, E22, E25, E24, E41, E42,

E44, E45, E51, E52, E54, E55, E11 + E22, E22 + E51,

E11 + E42, E42 + E51, E45 + E52, E12 + E41, E21 + E52,

E12 + E21, E44 + E55, E15 + E44, E24 + E55, E15 + E24,

E14 + E25, E25 + E54, E14 + E45, E45 + E54, E11 + E44,

E44 + E51, E11 + E24, E24 + E51, E14 + E41, E41 + E54,

E14 + E21, E21 + E54, E22 + E55, E15 + E22, E42 + E55,

E15 + E42, E25 + E52, E12 + E25, E45 + E52, E12 + E45,

E11 + E22 + E33 + E55 + E44, E15 + E22 + E33 + E51 + E44,

E11 + E24 + E33 + E55 + E42, E15 + E24 + E33 + E51 + E42,

E14 + E25 + E33 + E52 + E41, E12 + E25 + E33 + E54 + E41,

E14 + E21 + E33 + E52 + E45, E12 + E21 + E33 + E54 + E45}.

We now express the Renner monoid of MSO5 in term of matrices.

R = { 0,










1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0











,
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









0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1











,











1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0











,











1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 1 0 0 0











,











0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0











,











0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1











,











0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1











,











0 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0











,











0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0











,











1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
1 0 0 0 0











,











1 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0











,











0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 1 0











,











0 0 0 1 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0











,











0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1











,











0 0 0 0 1
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 1











,











0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0











,
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









0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0











,











0 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 1 0 0 0











,











0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0











,











1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1











,











0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0











,











1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1











,











0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0











,











0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0











,











0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0











,











0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0











,











0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0





























The following result is an analogue of Proposition 7.3 of [17].

10.12. Proposition. For any e
I
∈ Λ with |I| = i, where i = 0, 1, ..., l,

We
I
W = {x ∈ R | rank(x) = i}

= {x ∈ R | x has i nonzero rows }

= {x ∈ Rn | D(x) and R(x) are admissible with |D(x)| = |R(x)| = i }.

Furthermore,

|We
I
W | =





i
∑

j=0

(

l

j

)(

l − j

i− j

)





2

i!,

where D(x) is the domain of x and R(x) the range of x.

Proof. Observe that Ge
I
G =

⊔

x∈We
I
W BxB consists of n× n matrices of rank i

in MSO2l+1. Thus the first part of the Proposition is true.

Now there are
∑i

j=0

(

l
j

)(

l−j
i−j

)

ways to choose i of the n rows such that D(x) is

admissible. There are the same ways to choose i of the n columns making R(x)

admissible. For each of these choices there are i! elements of R, of rank i, with a
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nonzero entry in each of the i rows and each of the i columns chosen. Hence, there

are
[

∑i

j=0

(

l
j

)(

l−j
i−j

)

]2

i! posibilities. �

10.13. Corollary. |R| =
∑l

i=0

(

[

∑i

j=0

(

l
j

)(

l−j
i−j

)

]2

i!

)

+ 2ll!, for l ≥ 1.

11. Cell Decompositions of the Special Orthogonal Monoids MSO2l+1

The main purpose of this section is to determine the cell decompositions of the

special orthogonal algebraic monoids, odd case.

We first figure out what the Borel subgroup is by using the cross section lattice

of MSO2l+1. From Proposition 10.8, the cross section lattice Λ of MSO2l+1 is

Λ =

{

I2l+1,

(

Il 0
0 0

)

,

(

Il−1 0
0 0

)

, ... ,

(

I1 0
0 0

)

, (0)

}

.

Then B = {g ∈ G | ge = ege for all e ∈ Λ} is a Borel subgroup, where G =

K∗SO2l+1 is the unit group of MSO2l+1.

Let y ∈ B. Then y = tb, for some t ∈ K∗, b = (bij)
2l+1
i,j=1 ∈ SO2l+1. Thus

be = ebe, for all e ∈ Λ. So, b has the shape

b =

































b11 b12 b13 . . . b1l b1,l+1 b1,l+2 . . . b1,2l+1

0 b22 b23 . . . b2l b2,l+1 b2,l+2 . . . b2,2l+1

0 0 b33 . . . b3l b3,l+1 c3,l+2 . . . b3,2l+1

...
...

...
. . .

...
...

...
...

0 0 0 . . . bll bl,l+1 bl,l+2 . . . bl,2l+1

0 0 0 . . . 0 bl+1,l+1 bl+1,l+2 . . . bl+1,2l+1

0 0 0 . . . 0 bl+2,l+1 bl+2,l+2 . . . bl+2,2l+1

...
...

...
...

...
...

...
0 0 0 . . . 0 b2l+1,l+1 b2l+1,l+2 . . . b2l+1,2l+1

































.

Let X = (b1,l+1, ..., bl,l+1)
T , Y = (bl+1,l+2, ..., bl+1,2l+1), Z = (bl+2,l+1, ..., b2l+1,l+1)

T .



72

Then

b =





b1 X b2

0 bl+1,l+1 Y
0 Z b3



 ,

where b1 =









b11 b12 . . . b1l

0 b22 . . . b2l+1

...
...

. . .
...

0 0 . . . bll









, b2 =







b1,l+2 . . . b1,2l+1

...
...

bl,l+2 . . . bl,2l+1






and

b3 =







bl+2,l+2 . . . bl+2,2l+1

...
...

b2l+1,l+2 . . . b2l+1,2l+1






.

By xT Jlx = Jl, one has




0 bT
1 JZ bT

1 Jb3

0 b2
l+1,l+1 + XT JZ bl+1,l+1Y + XT Jb3

bT
3 Jb1 bT

3 JX + Y T bl+1,l+1 + bT
2 JZ Y T Y + bT

3 Jb2 + bT
2 Jb3



=





0 0 J
0 1 0
J 0 0



 .

It follows that






bT
1 Jb3 = J bT

1 JZ = 0
b2
l+1,l+1 + XT JZ = 1 bl+1,l+1Y + XT Jb3 = 0

bT
3 JX + Y T bl+1,l+1 + bT

2 JZ = 0 Y T Y + bT
3 Jb2 + bT

2 Jb3 = 0,

and hence b1 and b3 are upper triangular and invertible, Z = 0 and bl+1,l+1 = 1.

Thus the Borel subgroup B0 of SO2l+1 is

B0 =











b1 X b2

0 1 Y
0 0 b3





∣

∣

∣

∣

∣

∣

b1, b3 ∈ Ml(K) are upper triangular,
bT
1 Jb3 = J, Y T Y + bT

3 Jb2 + bT
2 Jb3 = 0,

Y + XT Jb3 = 0







.

Therefore, B = K∗B0 = {tb | b ∈ B0, t ∈ K∗} is a Borel subgroup of G and

B = G ∩Bn.

We can now find the important relationship involving the Borel subgroup B,

idempotents and rank one elements in E(T ).

11.1. Theorem. Let T = K∗T0 ⊆ B be a maximal torus in G. Then for every

e
I
∈ E(T ), there exists a unique ei = Eii ∈ E1(T ) such that eiBe

I
= eiBei, where

i is the maximal number in I.
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Proof. Let e
I
∈ E(T ) where I = {i1, i2, ..., im} ⊆ {1, ..., 2l + 1} is admissible with

i1 < i2 < ... < im. For any upper triangular matrix b = (bjk) ∈ B ⊆ G, the matrix

be
I

is an upper triangular matrix whose k-th column is exactly the k-th column of

b = (bjk) for k = i1, ..., im, and the other columns of be
I

are all zero. Let i = im

which is maximal in I. Taking ei = Eii, we get eibeI
= EiibeI

is a matrix whose

(i, i)−entry is bii and the other entries are all zero. It follows that eibeI
= eibei by

calculating directly. Therefore, eiBe
I

= eiBei. From the procedure above we also

see the uniqueness of such ei = Eii ∈ E1(T ). �

11.2. Definition. For any ei = Eii ∈ E1(T ), define

R(ei) = {x ∈ R | eiBx = eiBeix 6= 0}.

11.3. Corollary. The set of non-zero elements of the Renner monoid has a de-

composition

R× =
⊔

ei∈E1(T )R(ei) =
⊔2l+1

i=1 R(Eii).

Applying Theorem 11.1, we can now get a surjective map τ from the set E(T )

of idempotents in T onto the set E1(T ) of rank one elements. This map can also

be extended to a map of R× to E1(T ).

11.4. Theorem.

a) There is a surjective map τ from E(T ) onto E1(T ) by

e
I
7−→ τ(e

I
) = ei, if eiBe

I
= eiBei 6= 0

b) The map τ extends to R× = R \ {0} by, for every x ∈ R×, defining,

τ(x) = ei, if x ∈ e
I
W and τ(e

I
) = ei,

where I 6= φ admissible and i is maximal in I.
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Proof. a) is clear. To prove b), note that for any x ∈ R×, there is a w ∈ W

and a unique e
I
∈ E(T ) such that x = e

I
w. It follows that there is a unique

ei = Eii ∈ E1(T ) = E1(R) such that eiBe
I

= eiBei 6= 0. Then we obtain the map

from R× to E1(R) = E1(T ) by τ(x) = ei, as required. �

11.5. Proposition.

Let I(i) = {I ⊆ {1, ..., 2l + 1} | I are admissible with i =max(I)}, where i =

1, ..., 2l + 1. Then

a) R(ei) = τ−1(ei) =
⊔

I∈I(i) e
I
W, for i = 1, ..., 2l + 1.

b) R× =
⊔2l+1

i=1 τ−1(ei), a disjoint union.

Proof. It is straightforward. �

For MSO5, E1(T ) = {e1 = E11, e2 = E22, e4 = E44, e5 = E55}, and

R(e1) =
⊔

I∈I(1) e
I
W = E11W =





























1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





























R(e2) =
⊔

I∈I(2) e
I
W = E22W ∪ (E11 + E22)W =





























0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,
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









1 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 1 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 1
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





























R(e4) =
⊔

I∈I(4) e
I
W = E44W ∪ (E22 + E44)W =





























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0











,











1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0











,











0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0











,











0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0











,











0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0











,











1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0











,











0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0











,











0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0











,











0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0





























R(e5) =
⊔

I∈I(5) e
I
W = E55W ∪ (E44 + E55)W ∪ (E11 + E55)W ∪W =





























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1











,











0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 1 0 0 0











,











0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1











,











0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1











,











0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0











,
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









0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
1 0 0 0 0











,











0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 1 0











,











0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0











,











0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 1











,











0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 1 0 0 0











,











1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1











,











0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0











,











1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1











,











0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0











,











0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0











,











0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0











,











0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0











,











0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0





























Our task now is to find the cell decomposition of the special orthogonal Renner

monoid. Note that for any r = Eij ∈ R(1), there exists a unique er = Eii and

fr = Ejj in E1(T ) such that r = errfr.

11.6. Definition. For any r = errfr ∈ R(1), call Cr = {x ∈ R(er) | erxfr = r} a

cell of the Renner monoid R of MSO2l+1 corresponding to the rank one element r.

11.7. Proposition. For any e ∈ E1(T ) and x ∈ R(e), there is a unique r ∈ R(1)

such that x ∈ Cr, where r = ex.

Proof. Let x ∈ R(e) where e ∈ E1(T ). Then eBx = eBex 6= 0 where B is the Borel

subgroup of G ⊆ MSOn. Let r = ex. Then r ∈ R(1) and r = erfr for the unique

e, fr ∈ E1(T ). For if r = errfr and er 6= e, then r = ex = e(ex) = er = e(er)rfr =

(eer)rfr = 0, since eer = 0. Thus x ∈ R(e) and exfr = rfr = (erfr)fr = erfr = r,

i.e., x ∈ Cr.
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Suppose that there is another r′ ∈ R(1) such that x ∈ Cr′ = {x ∈ R(e) | exf ′ =

r′} where r′ = er′f ′ for the unique e, f ′ ∈ E1(T ). If f ′ 6= fr then r′ = exf ′ =

(ex)f ′ = rf ′ = (exfr)f
′ = ex(frf

′) = 0, since frf
′ = 0 ∈ E(T ), which is a

contradiction. Therefore, the uniqueness. �

By Corollary 11.3 and the above proposition we get the following

11.8. Corollary.

a) R(e) =
⊔

r∈R(1)
er=r

Cr, where e ∈ E1(T ).

b) R× =
⊔

r∈R(1) Cr.

Now, we can establish a surjective map ϕ from R× to the set R(1) consisting of

rank one elements in R by declaring ϕ(x) = r if x ∈ Cr where x ∈ R× and r ∈ R(1).

It is an extension of τ . Furthermore, ϕ−1(r) = Cr for r ∈ R(1).

11.9. Theorem. The above surjective map ϕ from R× to R(1) satisfies

ϕ(x) = eiw, if x = e
I
w ∈ R× and τ(e

I
) = ei,

where e
I
∈ E(T ) and w ∈W .

Proof. Since R× =
⊔

ei∈E1(T )R(ei) where R(ei) =
⊔

I∈I(i) e
I
W , there is a unique

ei ∈ E1(T ) such that x ∈ R(ei). It follows that if x = e
I
w ∈ R× and τ(e

I
) = ei,

then I ∈ I(i). Thus ϕ(x) = eix = ei(eI
w) = (eieI

)w = eiw, the required result. �

11.10. Theorem. For any r = Eij ∈ R(1), i, j = 1, ..., 2l + 1, but i, j 6= l + 1,

Cr = CEij
= {(xpq) ∈ R | xij = 1; xpq = 0 if i < p ≤ 2l + 1, 1 ≤ q ≤ 2l + 1}.

Proof. If x = (xpq) ∈ R is an n×n matrix, then Eiix = Eij if and only if xiq = δqj,
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for i, q, j = 1, ..., 2l + 1. Then

Cr = CEij
= {(xpq) ∈ R(ei) | Eii(xpq) = Eij}

= {(xpq) ∈ R(ei) | xij = 1}

= {(xpq) ∈ R | xij = 1; xpq = 0 if i < p ≤ 2l + 1, 1 ≤ q ≤ 2l + 1}.

which proves the Theorem. �

In the sequel, the cells in Theorem 11.10 will be simply denoted by Cij .

If n = 5, the cells of the Renner monoid of MSO5 are:

C11 =





























1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





























, C12 =





























0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





























.

C14 =





























0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





























, C15 =





























0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





























.

C21 =





























0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 1 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





























.

C22 =





























0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 1
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





























.

C24 =





























0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











1 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





























.



79

C25 =





























0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











,











0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0





























.

C41 =





























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0











,











0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0











,











0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0





























.

C42 =





























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0











,











1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0











,











0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0





























.

C44 =





























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0











,











1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0











,











0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0





























.

C45 =





























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0











,











1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0











,











0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0





























.

C51 =





























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0











,











0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
1 0 0 0 0











,











0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0











,











0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0











,











0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0




























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C52 =





























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 1 0 0 0











,











0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0











,











0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 1 0 0 0











,











0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0











,











0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0





























C54 =





























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0











,











0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 1 0











,











0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0











,











0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0











,











0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0





























C55 =





























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1











,











0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1











,











0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1











,











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 1











,











1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1











,











1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1





























Notice the fact that the cells Cij(K) of the Renner monoid Rn of Mn(K) are

Cij(K) = {(xpq) ∈ Rn| xij = 1, xpq = 2l + 1 if i < p ≤ n, 1 ≤ q ≤ n}.

where i, j = 1, ..., n. We can now get

11.11. Theorem. Cij = Cij(K) ∩R, where i, j ∈ {1, ..., 2l + 1} \ {l + 1}.
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We begin to describe the cell decomposition of the special orthogonal monoid

MSOn using the following definition.

11.12. Definition. The sets Cij = BCijB for i, j ∈ {1, ..., 2l + 1} \ {l + 1} are

called the cells for the special orthogonal monoid with respect to the Borel subgroup

B.

To find the relationship between the cells of the special orthogonal monoid and

those of Mn, the following theorem about the structure of the cells of MSO2l+1 is

necessary.

11.13. Theorem. The cells of the special orthogonal monoid are

Cij =

{

(cpq)
2l+1
p,q=1 ∈MSOn

∣

∣

∣

∣

cij 6= 0; ciq = 0 for 1 ≤ q < j;
cpq = 0, for i < p ≤ 2l +1, 1 ≤ q ≤ 2l +1

}

.

where i, j ∈ {1, ..., 2l + 1} \ {l + 1}.

Proof. Since Cij = ∪x∈Cij
BxB = ∪x∈Cij

(K∗B0)x(K∗B0) = K∗
(

∪x∈Cij
B0xB0

)

,

for i, j ∈ {1, ..., 2l+1} \ {l +1}, we need only to consider elements in B0xB0, where

x ∈ Cij and

B0 =











b1 X b2

0 1 Y
0 0 b3





∣

∣

∣

∣

∣

∣

b1, b3 ∈ Ml(K) are upper triangular,
bT
1 Jb3 = J, Y T Y + bT

3 Jb2 + bT
2 Jb3 = 0,

Y + XT Jb3 = 0







.

Now let b = (bpq)
2l+1
p,q=1 =





b1 X b2

0 1 Y
0 0 b3



 ∈ B0. Then b00 = 1 and bpp 6= 0, for

p = 1, ..., 2l + 1. For any x = (xpq) ∈ Cij ⊆ R(Eii) ⊆ R, let I = {i1, ..., im−1, im}

denote the index set of non-zero rows of x where i1 < ... < im−1 < im and im = i.

Let J = {j1, ..., jm−1, jm} denote the index set of non-zero columns such that jm = j

and xikjk
= 1, for k = 1, ..., m. Generally, we don’t have j1 < ... < jm−1 < jm.
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Thus bx is a matrix whose jk-th column is the ik-th of b where k = 1, ..., m, and

all rows under row i are zero. The shape of bx is

i-th row←−























∗ . . . ∗ b1i ∗ . . . ∗
...

...
...

...
...

∗ . . . ∗ bi−1i ∗ . . . ∗
0 . . . 0 bii 0 . . . 0
0 . . . 0 0 0 . . . 0
...

...
...

...
...

0 . . . 0 0 0 . . . 0























,

↓

j-th column

where bii 6= 0 is the (i, j)-entry of bx and neither i and j are l + 1. Taking any

b′ = (b′pq)n×n ∈ b0, one obtains the shape of bxb′ is

i-th row←−























∗ . . . ∗ ∗ ∗ . . . ∗
...

...
...

...
...

∗ . . . ∗ ∗ ∗ . . . ∗
0 . . . 0 biib

′
jj biib

′
jj+1 . . . biib

′
j2l+1

0 . . . 0 0 0 . . . 0
...

...
...

...
...

0 . . . 0 0 0 . . . 0























,

↓

j-th column

where biib
′
jj 6= 0 is the (i, j)-entry of bxb′. From the arbitrariness of b, b′ ∈ B0 and

x ∈ Cij , observing that B = K∗B0, we get, for i, j = 1, ..., 2l + 1.

Cij =

{

(cpq)
2l+1
p,q=1 ∈MSOn

∣

∣

∣

∣

cij 6= 0; ciq = 0, for 1 ≤ q < j;
cpq = 0, for i < p ≤ 2l + 1, 1 ≤ q ≤ 2l + 1

}

. �

It follows from the Bruhat-Renner decomposition [17, Corollary 5.8] of MSOn

and Corollary 11.8 that
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11.14. Corollary. Keeping the notation above, we have

MSOn \ {0} =
2l+1
⊔

i,j=1
i,j 6=l+1

Cij .

From the shapes of elements in the cells Cij(K) of Mn(K), where i, j = 1..., 2l+1,

we obtain the following

11.15. Theorem. Cij = Cij(K) ∩MSOn, for i, j ∈ {1, ..., 2l + 1} \ {l + 1}. �

12. Submonoids of the Special Orthogonal Algebraic Monoids MSO2l+1

The main purpose of this section is to establish some properties of the submonoid

(MSOn)e = {y ∈ MSOn | ye = ey = e} of MSOn where e ∈ E(MSOn) and n =

2l+1 is odd. We simply denote by Me the submonoid (MSOn)e. Let Ge = Me∩G

where G = K∗SOn is the unit group of MSOn. Then by [15, Theorem 6.11] one

has Me = Ge. Thus, searching for some properties about Ge is necessary.

12.1. Lemma. Let y =





1 0 0
0 y1 0
0 0 1





n×n

∈MSOn. Then y ∈ SOn if and only if

y1 ∈ SOn−2.

Proof. Recall Jl =





0 0 J
0 1 0
J 0 0



 ∈Mn(K) be the symmetric matrix, where J =



84

( 1

·

·

1

)

of size l × l. Rewrite Jl to be Jl =





0 0 1
0 Jl−1 0
1 0 0



. Then

y ∈ SOn ⇐⇒ yT Jly = Jl

⇐⇒





0 0 1
0 yT

1 Jl−1y1 0
1 0 0



 =





0 0 1
0 Jl−1 0
1 0 0





⇐⇒ yT
1 Jl−1y1 = Jl−1

⇐⇒ y1 ∈ SOn−2. �

12.2. Theorem. Let e1 = E11 ∈ Λ and G = K∗SOn (n = 2l + 1). Then Ge1
is

isomorphic to K∗SOn−2. Furthermore, Me1
is isomorphic to MSOn−2.

Proof. Suppose that y = tx ∈ G with x = (xij)
2l+1
i,j=1 ∈ SOn and t ∈ K∗. Then

ye1 = e1y = e1 is equivalent to xe1 = e1x = (1/t)e1. Thus

x =

(

1/t 0
0 x1

)

∈ SOn,

where x1 = (xij)
n
i,j=2 is a 2l × 2l matrix, A = (0, ..., 1)1×2l and rewrite

Jl =

(

0 A
AT J ′

)

where J ′ =

(

Jl−1 0
0 0

)

2l×2l

. Notice that

xT Jlx =

(

0 (1/t)Ax1

(1/t)xT
1 AT xT

1 J ′x1

)

.

Thus xT Jlx = Jl gives us (1/t)Ax1 = A, (1/t)xT
1 AT = AT and xT

1 J ′x1 = J ′. It

follows that x2l+1,2 = ... = x2l+1,2l = 0 and x2l+1,2l+1 = t, which shows that x1 has

the shape

x1 =

(

x2 X
0 t

)

2l×2l

,
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where x2 = (xij)
2l
i,j=2 is a 2l − 1 × 2l − 1 matrix and X = (x2,2l+1, ..., x2l,2l+1)

T .

Since J ′ =

(

Jl−1 0
0 0

)

and xT
1 J ′x1 =

(

xT
2 Jl−1x2 xT

2 Jl−1X
XT Jl−1x2 XT Jl−1X

)

, it follows from

xT
1 J ′x1 = J ′ that xT

2 Jl−1x2 = Jl−1, xT
2 Jl−1X = 0, XT Jl−1x2 = 0 and XT Jl−1X =

0. Thus X = 0 and x1 =

(

x2 0
0 t

)

, where x2 ∈ SOn−2. Therefore,

x =





1/t
x2

t



 ∈ SOn,

where t ∈ K∗ and x2 ∈ SOn−2. It follows easily that

Ge =







t ·





1/t
x2

t





∣

∣

∣

∣

∣

∣

t ∈ K∗, x2 ∈ SOn−2







=











1
tx2

t2





∣

∣

∣

∣

∣

∣

t ∈ K∗, x2 ∈ SOn−2







.

Define a mapping f from Ge1
to K∗SOn−2 by

y =





1
tx2

t2



 7−→ tx2 ∈ K∗SOn−2

Then f is an algebraic group isomorphism from Ge1
to K∗SOn−2 Hence, Ge1

is

isomorphic to K∗SOn−2 which is MSOn−2. But it follows from [15, Theorem 6.11]

that Me1
= Ge1

. Therefore, Me1
is isomorphic to MSOn−2.

This proves the Theorem. �

12.3. Corollary.

a) For any e ∈ E1(T ), Me is isomorphic to MSOn−2.

c) For any e ∈ E1(MSOn), the rank one elemenets in E(MSOn), Me is isomor-

phic to MSOn−2.
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Proof. For a), note that E1(T ) = {w−1e1w | w ∈ W}. Then for any e ∈ E1(T ),

there exists w ∈ W such that e = w−1e1w, where e1 = E11. Since ye = ey = e

is equivalent to (wyw−1)e1 = e1(wyw−1) = e1, it follows that Me is isomorphic

to Me1
by the mapping y 7−→ wyw−1. From Theorem 12.2 one obtains that Me

is isomorphic to MSOn−2. Similar recipes apply to b) by using E1(MSO2l) =

{g−1e1g | g ∈ G}. �

12.4. Theorem. Let G = K∗SOn and e
I
∈ Λ with I standard admissible, where

e
I

=
∑

j∈I Ejj ∈ Λ and |I| = 1, ..., l. Then Ge
I

is isomorphic to K∗SOn−2|I|.

Furthermore, Me
I

is isomorphic to MSOn−2|I|.

Proof. It is similar to that of Theorem 12.2. �

12.5. Corollary. Keeping the same notations in Theorem 11.4, we have

a) For every e
J
∈ Ei(T ) with J admissible and i = 1, ..., l, Me

J
is isomorphic to

MSOn−2i.

b) For every e ∈ Ei(MSOn), the rank i elements in E(MSOn), Me is isomorphic

to MSOn−2i, for i = 1, ..., l.

Proof. For a), note that for every e
J
∈ Ei(T ), the set of rank i (i = 1, ..., l)

idempotents of E(T ), there exist unique e
I
∈ Λ and w ∈W such that e

J
= we

I
w−1.

But ye
J

= e
J
y = e

J
is equivalent to (w−1yw)e

I
= e

I
(w−1yw) = e

I
. Hence Me

J

is isomorphic to Me
I

by the mapping y 7−→ w−1yw. It follows from Theorem 12.4

that Me
J

is isomorphic to MSOn−2i. Applying a) and [17, Corollary 6.10 (ii)] one

gets b) easily. �
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CHAPTER VI

Gm ACTIONS AND CELL DECOMPOSITIONS

The most interesting cell decompositions in algebraic geometry are the BB-cells

obtained in [1]. If T = K∗ acts on a smooth complete variety X with finite fixed

point set F ⊆ X , then X =
⊔

α∈F Xα, where Xα = {x ∈ X | limt→0 tx = α}.

Furthermore, Xα is isomorphic to an affine space. If, further, a semisimple group G

acts on X extending the action of T , we may assume (replacing T if necessary) that

each Xα is stable under the action of some Borel subgroup B of G with T ⊆ B. In

case X is a complete homogeneous space for G, each cell Xα turns out to consist of

exactly one B-orbit.

However, we can get BB-“cells” even if X is not smooth. They may not be affine

spaces, but cones instead.

13 Basic Definitions and Preliminary Results

The results of this section are the unpublished work of L. Renner. We begin this

section with the following definition

13.1 Definition. Let X be an algebraic variety and K∗ ×X −→ X be an action

of K∗ on the variety X. Then for any x ∈ X, there is a morphism λ : K∗ → X

defined by λ(t) = tx. We say

lim
t→0

tx = x0,

where x, x0 ∈ X, t ∈ K∗, if, there exists an extension λ̄: K → X with λ̄(0) = x0.

Thus, limt→0 tx is unique, if it exists.

Let G0 be one of the classical algebraic groups and G = G0 × K∗. Then G,



88

the Zariski closure of G in Mn, is an irreducible algebraic monoid which will be

denoted by M , i.e., M = G. Let X = (M \ {0})/K∗. Then X =
⊔

α∈F Xα, where

Xα = {x ∈ X | limt→0 tx = α} is referred to as the BB-cells of X (due to A.

Bialynicki-Birula).

13.2 BB-Cells of Mn

In case M = Mn, with the two sided GLn(K)-action on it, X = (Mn \{0})/K∗.

Let Tn be a maximal torus contained in a Borel subgroup Bn of GLn. Suppose

S = Tn×Tn. Then, for any s = (λ, µ) ∈ S and x = (xij) ∈ X with (xij) ∈Mn\{0},

where λ = diag (λ1, ..., λn) and µ = diag (µ1, µ2, ..., µn), define an action of S on

X by sx = λ(xij)µ = (λixijµj). The fixed point set XS =
{

Eij | Eij ∈Mn \ {0}
}

.

Let λ(t) = diag(t(n−1)n, ..., tn, t0) and µ(t) = diag(t1, t2, ..., tn), where t ∈ K∗.

Then λ(t), µ(t) ∈ Tn. So the action of Gm on X is given by

tx = λ(t)(xij)µ(t).

Notice that

λ(t)(xij)µ(t) =



















t(n−1)n+1x11 t(n−1)n+2x12 . . . tn
2

x1n

t(n−2)n+1x21 t(n−2)n+2x22 . . . tn
2−nx2n

...
... . . .

...
t2n+1xn−2,1 t2n+2xn−2,2 . . . t3nxn−2,n

tn+1xn−1,1 tn+2xn−1,2 . . . t2nxn−1,n

txn1 t2xn2 . . . tnxnn



















,

where all the exponents of t’s in the above matrix are distinct.

Let aij = (n− i)n + j, where i, j = 1, 2, ..., n. Then

λ(t)(xij)µ(t) = (taij xij)n×n,
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and hence

tx = x⇐⇒ λ(t)(xij)µ(t) = x

⇐⇒ λ(t)(xij)µ(t) = α(xij), for some α ∈ K∗

⇐⇒ (taij xij) = (αxij).

So there is at most one element xij 6= 0. By the fact that (xij)n×n ∈ Mn \ {0},

it follows that (xij) = xijEij , xij ∈ K∗ and x = Eij for some i, j ∈ {1, 2, , , , n}.

Therefore, XT =
{

Eij | Eij ∈Mn \ {0}
}

, i.e., XT = XS.

Let Xij = {x ∈ X | limt→0 tx = Eij}. Then we have the following

13.3 Theorem. The BB-cells Xij of X are

Xij =

{

(xpq) ∈ X
∣

∣

∣

(xpq) ∈ Mn \ {0}, xij 6= 0, but
xpq = 0, if p > i, or p = i and q < j

}

.

=

































































∗ . . . ∗ ∗ ∗ . . . ∗
...

...
...

...
...

∗ . . . ∗ ∗ ∗ . . . ∗
0 . . . 0 xij ∗ . . . ∗
0 . . . 0 0 0 . . . 0
...

...
...

...
...

0 . . . 0 0 0 . . . 0























∈ X | xij ∈ K∗, ∗ ∈ K











































.

Proof. To establish concretely the BB-cells Xij = {x ∈ X | limt→0 tx = Eij}, we

need the following calculation

λ(t)(xij)µ(t) = taij





















ta11−aij x11 . . . ta1j−aij x1j . . . ta1n−aij x1n

ta21−aij x21 . . . ta2j−aij x2j . . . ta2n−aij x2n

...
...

...
...

...
tai1−aij xi1 . . . xij . . . tain−aij xin

...
...

...
...

...
tan1−aij xn1 . . . tanj−aij xnj . . . tann−aij xnn





















,
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where apq−aij > 0, if p < i, or p = i and q > j, and apq−aij < 0, if p > i, or p = i

and q < j.

Consider elements x = (xpq)n×n
∈ X where (xpq)n×n in Mn with xpq = 0 for

p > i, or p = i and q < j, but xij 6= 0. It follows easily that limt→0 tx = Eij , so

x ∈ Xij. Let

X ′
ij =

{

(xpq) ∈ X
∣

∣

∣

xij 6= 0, but xpq = 0, if
p > i or p = i and q < j

}

.

Then X ′
ij ⊆ Xij and X =

⊔n

i,j=1 X ′
ij . On the other hand, X =

⊔n

i,j=1 Xij, but

then X ′
ij = Xij , for i, j = 1, ..., n.

This proves the theorem. �

Corollary 13.4. Let π be the canonical map of Mn to X = (Mn \ {0})/K∗. Then

we have the following cell decomposition

Mn \ {0} =

2l
⊔

i,j=1

π−1(Xij),

where t ∈ K∗ and π−1(Xij) coincide with the cells Cij(K) of Mn \ {0}, for i, j =

1, ..., n.

14 Gm Action and BB-Cells for MSpn

In case M = MSpn(K), with the two sided K∗Spn(K)-action on it, then X =

(MSpn \ {0})/K∗, where n = 2l. Let T be a maximal torus contained in a Borel

subgroup B of Spn as before. Let S = T × T . Then, for any s = (λ, µ) and
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x = (xij) ∈ X , we define an action of S on X as follows

sx = λ(xij)µ

= (λixijµj) ∈ X.

where λ = diag (λ1, ..., λn), µ = diag (µ1, µ2, ..., µn) and (xij) ∈ MSpn \ {0}. Let

XS denote the fixed point set. It follows that XS =
{

Eij | Eij ∈MSpn \ {0}
}

.

Let

λ(t) = diag(tln
2

, t(l−1)n2

, ..., tn
2

, t−n2

, ..., t−(l−1)n2

, t−ln2

)

µ(t) = diag(t−l, t−(l−1), ..., t−1, t, ..., tl−1, tl),

where t ∈ K∗. Then λ(t), µ(t) ∈ T . Define a Gm action on X by tx = λ(t)(xij)µ(t).

Notice that λ(t)(xij)µ(t) =

































tln
2−lx11 . . . tln

2−1x1l tln
2+1x1,l+1 . . . tln

2+lx1n

. . . . . . . . . . . . . . . . . .

t2n2−lxl−1,1 . . . t2n2−1xl−1,l t2n2+1xl−1,l+1 . . . t2n2+lxl−1,n

tn
2−lxl1 . . . tn

2−1xll tn
2+1xl,l+1 . . . tn

2+lxln

t−n2−lxl+1,1 . . . t−n2−1xl+1,l t−n2+1xl+1,l+1 . . . t−n2+lxl+1,n

t−2n2−lxl+2,1 . . . t−2n2−1xl+2,l t−2n2+1xl+2,l+1 . . . t−2n2+lxl+2,n

. . . . . . . . . . . . . . . . . .

t−ln2−lxn1 . . . t−ln2−1xnl t−ln2+1xn,l+1 . . . t−ln2+lxnn

































,

where all the exponents of t’s in the above matrix are distinct.

Let

aij =































(l − i + 1)n2 − (l − j + 1), for 1 ≤ i ≤ l, 1 ≤ j ≤ l

(l − i + 1)n2 − (l − j), for 1 ≤ i ≤ l, l + 1 ≤ j ≤ n

(l − i)n2 − (l − j + 1), for l + 1 ≤ i ≤ n, 1 ≤ j ≤ l

(l − i)n2 − (l − j), for l + 1 ≤ i ≤ n, l + 1 ≤ j ≤ n.
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Then

λ(t)(xij)µ(t) = (taij xij)n×n,

and hence

tx = x⇐⇒ (λ(t)xµ(t)) = x

⇐⇒ λ(t)(xij)µ(t) = α(xij), for some α ∈ K∗

⇐⇒ (taij xij) = (αxij).

So there is at most one element xij 6= 0. By the fact that (xij) ∈ MSpn \ {0}, it

follows that (xij) = xijEij , xij ∈ K∗ and x = Eij . Therefore, XT = {Eij | Eij ∈

MSpn \ 0}, i.e., XT = XS.

Theorem 14.1. The BB-cells Xij of X are

Xij =

{

(xpq) ∈ X
∣

∣

∣

xij 6= 0, but xpq = 0, if
p > i or p = i and q < j

}

,

=

































































∗ . . . ∗ ∗ ∗ . . . ∗
...

...
...

...
...

∗ . . . ∗ ∗ ∗ . . . ∗
0 . . . 0 xij ∗ . . . ∗
0 . . . 0 0 0 . . . 0
...

...
...

...
...

0 . . . 0 0 0 . . . 0























∈ X | xij ∈ K∗, ∗ ∈ K











































.

Proof. Notice that

λ(t)(xij)µ(t) = taij











ta11−aij x11 . . . ta1j−aij x1j . . . ta1n−aij x1n

. . . . . . . . . . . . . . .
tai1−aij xi1 . . . xij . . . tain−aij xin

. . . . . . . . . . . . . . .
tan1−aij xn1 . . . tanj−aij xnj . . . tann−aij xnn











,

where apq−aij > 0, if p < i, or p = i and q > j, and apq−aij < 0, if p > i, or p = i

and q < j.
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Consider elements x = (xpq)n×n
∈ X where (xpq)n×n in MSpn with xpq = 0 for

p > i, or p = i and q < j, but xij 6= 0. It follows easily that limt→0 tx = Eij . In

other words, x ∈ Xij. Let

X ′
ij =

{

(xpq) ∈ X
∣

∣

∣

xij 6= 0, but xpq = 0, if
p > i or p = i and q < j

}

.

Then X ′
ij ⊆ Xij and X =

⊔n

i,j=1 X ′
ij . On the other hand, X =

⊔n

i,j=1 Xij, but

then X ′
ij = Xij , for i, j = 1, ..., n. �

Corollary 14.2. Let π be the canonical map of MSp2l to X = (MSp2l \ {0})/K∗.

Then we have the following cell decomposition

MSp2l \ {0} =
2l
⊔

i,j=1

π−1(Xij),

where t ∈ K∗ and π−1(Xij) coincide with the cells Cij of MSp2l (see Definition

5.12), for i, j = 1, ..., 2l.

Remark 15. The same λ(t), µ(t) works for MSO2l.

Remark 16. For the case MSO2l+1, we need the following

λ(t) = diag(tln
2

, t(l−1)n2

, ..., tn
2

, 1, t−n2

, ..., t−(l−1)n2

, t−ln2

),

µ(t) = diag(t−l, t−(l−1), ..., t−1, 1, t, ..., tl−1, tl), where t ∈ K∗.

There is much more information that should be possible concerning these cells,

even though they may not be affine spaces. Are they irreducible? What are they

topologically? Unfortunately, these problems are for future work.
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