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RESEARCH ARTICLE

Characterization of RanBPMMolecular
Determinants that Control Its Subcellular
Localization
Louisa M. Salemi, Sandra O. Loureiro, Caroline Schild-Poulter*

Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The
University of Western Ontario, London, Ontario, Canada

* cschild-poulter@robarts.ca

Abstract
RanBPM/RanBP9 is a ubiquitous, nucleocytoplasmic protein that is part of an evolutionary

conserved E3 ubiquitin ligase complex whose function and targets in mammals are still un-

known. RanBPM itself has been implicated in various cellular processes that involve both

nuclear and cytoplasmic functions. However, to date, little is known about how RanBPM

subcellular localization is regulated. We have conducted a systematic analysis of RanBPM

regions that control its subcellular localization using RanBPM shRNA cells to examine ec-

topic RanBPMmutant subcellular localization without interference from the endogenously

expressed protein. We show that several domains and motifs regulate RanBPM nuclear

and cytoplasmic localization. In particular, RanBPM comprises two motifs that can confer

nuclear localization, one proline/glutamine-rich motif in the extreme N-terminus which has a

dominant effect on RanBPM localization, and a second motif in the C-terminus which mini-

mally contributes to RanBPM nuclear targeting. We also identified a nuclear export signal

(NES) which mutation prevented RanBPM accumulation in the cytoplasm. Likewise, dele-

tion of the central RanBPM conserved domains (SPRY and LisH/CTLH) resulted in the relo-

calization of RanBPM to the nucleus, suggesting that RanBPM cytoplasmic localization is

also conferred by protein-protein interactions that promote its cytoplasmic retention. Indeed

we found that in the cytoplasm, RanBPM partially colocalizes with microtubules and associ-

ates with α-tubulin. Finally, in the nucleus, a significant fraction of RanBPM is associated

with chromatin. Altogether, these analyses reveal that RanBPM subcellular localization re-

sults from the combined effects of several elements that either confer direct transport

through the nucleocytoplasmic transport machinery or regulate it indirectly, likely through in-

teractions with other proteins and by intramolecular folding.

Introduction
Transport in and out of the nucleus of proteins above 50KDa is an active process that requires
the nucleocytoplasmic transport machinery [1]. Import to the nucleus is mediated by a nuclear
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localization signal (NLS) that is recognized by an import receptor (importin) which transports
its cargo through the nuclear membrane in an energy-dependent process [2]. Conversely, nu-
clear export is dependent on a nuclear export sequence (NES) that is recognized by exportins,
which transport the protein out of the nucleus. Nuclear localization sequences fall into three
classes: a short stretch of basic amino acids, a bipartite NLS consisting of two short stretches
of basic residues separated by 10–12 amino acids and a combination of charged/polar and
non-polar residues flanked by proline and aspartic acid residues [3,4]. The most common char-
acterized NES consists of a non-conserved motif made up of hydrophobic residues and is leu-
cine-rich [2]. Nucleocytoplasmic transport is a tightly monitored process regulated at many
different stages [2,3]. One mechanism of regulation includes importin protein expression, as
different importins recognize different cargoes. Another mechanism of regulation involves
alteration of sequence affinity to karyopherins, for example by phosphorylation of the signal
sequence. A third mechanism of regulation involves intermolecular or intramolecular masking
of signal sequences. This occurs through protein-protein interactions and conformational
changes, respectively, which prevent signal recognition by karyopherins [2,3]. In addition,
non-conventional mechanisms exist which do not rely on importins/karyopherins but
on interaction with other transporters, or through direct binding to nuclear pore complex
components [5].

Ran binding protein M (RanBPM, also referred to as RanBP9), is a ubiquitous, nucleocyto-
plasmic 90kDa protein whose function is poorly understood. RanBPM contains three con-
served domains (Fig. 1A), none of which confers enzymatic activity or is indicative of any
specific function, apart from protein interactions. The SPRY (SplA and Ryanodine receptor)
domain is a protein interaction domain present in protein families regulating a wide range of
functions, including regulation of cytokine signaling, RNA metabolism and protein degrada-
tion [6]. The LisH/CTLH (LIS1-homology motif/C-terminal to LisH) domain is found in pro-
teins associated with microtubule dynamics, cell migration and chromosome segregation, and
mediates dimerization [7–9]. The CRA (CT11-RanBPM) domain is an α-helical structure of
unknown function but is structurally reminiscent of the death domain superfamily [10].

RanBPM has been shown to interact with numerous proteins, implicating it in a variety of
cellular processes including cell adhesion, migration, microtubule dynamics, and gene tran-
scription [11–19]. It has been hypothesized that RanBPM functions as a scaffolding protein
that may be part of a large complex [20–22]. RanBPM has been identified as a phosphoprotein
and its phosphorylation is increased in response to stress stimuli, such as osmotic shock, ultra-
violet light (UV), and ionizing radiation (IR) [23,24]. Thus, RanBPM is involved in both nucle-
ar and cytoplasmic processes, but how its subcellular localization is regulated has not
been characterized.

RanBPM is well conserved in mammals, in fact the mouse and human proteins are over
90% identical and their differences fall within the N-terminus [20]. The yeast homolog of
RanBPM, called Gid1 (glucose-induced degradation-deficient 1) or Vid30 (vacuole import and
degradation 30) was found to be part of an E3 ubiquitin ligase complex that functions to ubi-
quitinate fructose-1,6-bisphosphatase (FBPase), a key enzyme in the gluconeogenesis pathway
[25–27]. Recent phylogenetic and sequence analyses revealed that the components of the Gid
complex are conserved in eukaryotic genomes, suggesting an ancient and conserved function
for this ubiquitin ligase complex in eukaryotes, with RanBPM being one of the most conserved
proteins in the complex [28]. In mammalian cells, RanBPM was found in a large cytoplasmic
complex together with the mammalian counterparts of all Gid proteins (except Gid4) [22].
This complex was named CTLH complex [22], but is also referred to as the muskelin/
RanBPM/CTLH complex (MRCTLH) [28]. The subunits of the complex are present to differ-
ent extents in both the cytoplasm and the nucleus, yet how their subcellular localization is
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regulated is still poorly understood [15,21,22,28]. Domain deletion analyses of RanBPM and
complex members Twa1, MAEA and RMND5a revealed that several domains in each protein
contribute differentially to their localization [28]. Previous investigations showed that the
muskelin C-terminal domain is important for both RanBPM interaction and cytoplasmic local-
ization, suggesting that RanBPM regulates the subcellular localization of muskelin [15]. How-
ever, how the nucleocytoplasmic localization of RanBPM itself is regulated is still
largely unknown.

Here we have carried out a systematic analysis of RanBPM deletion mutants to investigate
the determinants of RanBPM subcellular localization. Our results establish that RanBPM sub-
cellular localization is dependent on several domains/motifs, relying on NLS and NES for direct
transport by nucleocytoplasmic transport machinery and on protein domains which may

Fig 1. Deletion of RanBPMC-terminus does not alter its subcellular localization. A) Schematic diagram of full length wild-type (WT) human RanBPM.
The conserved domains are indicated. The red asterisk represents the point mutations conferring siRNA resistance. B) Schematic diagram of C-terminal
mutant RanBPM constructs. C) Analysis of RanBPM deletion mutant subcellular localization. Hela RanBPM shRNA cells fixed 24h after transfection were
incubated with an HA antibody and then with an Alexa Fluor 555 secondary antibody. Nuclei were stained with DAPI. Subcellular localization was scored as
either, N>C (nuclear greater than cytoplasmic), N = C (nuclear equal to cytoplasmic), or C>N (cytoplasmic greater than nuclear). Data represent averages
from three separate experiments, each assessing approximately 100 cells. Error bars represent standard error (SD). Mutant RanBPM constructs versusWT,
***, P<0.001; **, P<0.01; *, P<0.05.D) Representative images of transfected mutant RanBPM localization. Scale bar: 10μm.

doi:10.1371/journal.pone.0117655.g001
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function to retain RanBPM to specific subcellular compartments through interaction with
other proteins.

Materials and Methods

Plasmid Expression Constructs
pCMV-HA-RanBPM shRNA mutant construct (HA-RanBPM si-mt), pCMV-HA-RanBPM-
ΔN (ΔN1), pCMV-HA-RanBPM-ΔN2 (ΔN2) and pCMV-HA-RanBPM-ΔC (ΔC1) were previ-
ously described [29]. pCMV-HA-RanBPM-Δ212 (Δ212), pCMV-HA-RanBPM-Δ360 (Δ360)
and pCMV-HA-RanBPM-ΔC4 (ΔC4) were previously described [30]. pCMV-HA-RanBPM-
ΔC2 (ΔC2), pCMV-HA-RanBPM-ΔC3 (ΔC3), pCMV-HA-RanBPM-ΔN3 (ΔN3), pCMV-
HA-RanBPM-ΔN4 (ΔN4), pCMV-HA-RanBPM-Δ1-66 (Δ1-66), pCMV-HA-RanBPM-Δ1-25
(Δ1-25) mutant constructs were generated by polymerase chain reaction (PCR) amplification
of RanBPM and cloned into digested pCMV-HA-RanBPM si-mt. pCMV-HA-RanBPM-ΔLisH
(ΔLisH) and pCMV-HA-RanBPM-ΔCTLH (ΔCTLH) mutant constructs were generated in
pCMV-HA-RanBPM si-mt using inverse PCR using tail-to-tail primers on each side of the re-
gion to be deleted (367–393 and 393–460, respectively). pCMV-HA-RanBPM-NLS1 (NLS1
Mut), pCMV-HA-RanBPM-NES (NES Mut), and pCMV-HA-RanBPM-NLS2 (NLS2 Mut)
point mutations were introduced by site-directed mutagenesis with primers bearing the tar-
geted point mutations. pHM830-WT NLS1/NES, pHM830-MUT NES, pHM830-WT NLS2,
pHM830-MUT NLS2, pHM830-1-25, pHM840-WT NLS1/NES, pHM840-MUT NES,
pHM840-WT NLS2, pHM840-MUT NLS2, and pHM840-1-25 were produced using annealed
oligos that generated overhangs that could be ligated with digested pHM830 and pHM840
([31], obtained from Addgene). pHM830-LisH/CTLH and pHM840-LisH/CTLH was generat-
ed by PCR amplification of RanBPM (aa 360–460) digested and ligated with digested pHM830
and pHM840. All PCR reactions were done using PfuTurbo from Agilent Technologies (Mis-
sissauga, ON, Canada) or KOD polymerase (Novagen, Germany) and primers from Sigma-Al-
drich (Oakville, ON, Canada), BioCorp UWOOligo Factory (London, ON, Canada) and
Integrated DNA Technologies (Coralville, Iowa, USA).

Cell Culture, Transfections and Treatments
Hela control shRNA and RanBPM shRNA stable cell lines (2–7 and 2–6) were described previ-
ously [29,32] and were cultured in high glucose Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) and 0.35 mg/ml G418 (Geneticin, Bioshop
Canada, Burlington, ON, Canada) at 37°C in 5% CO2. 3T3 mouse embryonic fibroblasts
(MEFs) were cultured in high-glucose DMEM supplemented with 10% FBS. Plasmid transfec-
tions were carried out with ExGen500 (Fermentas, Burlington, ON Canada), TurboFect Trans-
fection Reagent (Thermo Fisher Scientific, Burlington, ON, Canada) or jetPRIME (Polypus
Transfection) according to the manufacturer’s protocol. Leptomycin B (LMB, Bioshop Canada,
Burlington ON, Canada) was added to the cells’media at 20nM concentration for the times in-
dicated in the figure legends. Nocodazole (Abcam) was added to the cell’s media at 10μM for 4
hours as previously described [33,34].

Extract preparation, subcellular fractionation, western blot and
immunoprecipitations
Whole cell extracts were prepared as described [29] and resolved by SDS-PAGE (between 8%
and 12%). Subcellular fractionation and chromatin extractions were adapted from [35]. Briefly,
cells were washed twice in PBS, and lysed in buffer A (10 mMHEPES buffer (pH 7.9), 5 mM
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MgCl, 1 mMDTT, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 μg/ml of aprotinin, 10 μg/ml
of peptatin, 1 μg/ ml of leupeptin and 10 mM KCl), for 25 min and centrifuged at 1000 rpm for
5 min at 4°C and the supernatant (cytosolic fraction) was collected. The pellet was washed in
PBS, lysed in buffer B (20 mMHEPES buffer (pH 7.9), 25% glycerol, 5 mMMgCl, 0.2% NP-40,
1 mM DTT, 1 mM PMSF, 1 μg/ml of aprotinin, 10 μg/ml of pepstatin, 1 μg/ ml of leupeptin
and 150 mMKCl) for 15 min and centrifuged at 3000 rpm for 5 min at 4°C to collect the super-
natant (soluble nuclear fraction). The resulting pellet was washed in PBS and lysed in buffer C
(20 mMHEPES buffer (pH 7.9), 25% glycerol, 5 mMMgCl, 0.2% NP-40, 1 mM DTT, 1 mM
PMSF, 1 μg/ml of aprotinin, 10 μg/ml of peptatin, 1 μg/ ml of leupeptin and 420 mM KCl) for
15 min and centrifuged at 14000 rpm for 10 min at 4°C, to yield the supernatant which is the
chromatin-associated fraction. Samples were resolved on 10% SDS-PAGE and transferred on
polyvinylidene difluoride (PVDF) membranes. Samples were analyzed with the following anti-
bodies: HA (HA-7, Sigma-Aldrich), β-actin (I-19, Santa Cruz, Santa Cruz, CA, USA), RanBPM
(5M, Bioacademia, Japan), α-tubulin (Sigma-Aldrich), α-tubulin (ab15246, Abcam) and Ku70
(N3H10, Santa Cruz, CA USA). Quantifications were done using ImageJ software. Co-immu-
noprecipitation experiments were performed in 0.5% NP-40 and 100mM KCl lysis buffer and
were carried out overnight at 4°C with α-tubulin (Sigma-Aldrich). Immunoprecipitates were
isolated with Dynabeads protein G (Invitrogen, Life Technologies, Burlington, ON, Canada).

Immunofluorescence
Cells were plated on coverslips and transfected following overnight incubation. Cells trans-
fected with pHM830 and pHM840 vectors were fixed with 3% paraformaldehyde and mounted
with DAPI (Invitrogen). Cells transfected with pCMV-HA-RanBPM constructs were fixed
with 3% paraformaldehyde, permeabilized in 0.5% Triton-X100 for 10 min and pre-blocked in
5% FBS diluted in PBS. Coverslips were incubated overnight with primary antibodies (see
below), washed in PBS and incubated with secondary antibodies: anti-goat Alexa Fluor 488,
anti-mouse Alexa Fluor 488, anti-mouse Alexa Fluor 555, anti-rabbit Alexa Fluor 647 or anti-
mouse Alexa Fluor 647 (Invitrogen). Cells were mounted with ProLong Gold antifade with
DAPI (Invitrogen). Visualization was done using an Olympus BX51 microscope with a 40x ob-
jective and images were captured with the Image-Pro Plus software (Media Cybernetics Inc.,
Bethesda, MD, USA). Primary antibodies used in immunofluorescence: RanBPM (Ab5295,
Abcam and K-12, Santa Cruz), HA (HA-7, Sigma-Aldrich), Cyclin B1 (Cell Signaling) and α-
tubulin (Sigma-Aldrich). For quantification analysis, images were blinded by a third party and
coded images were scored independently by two individuals. For each treatment, at least 100
cells (for HA-RanBPMmutant analyses) or 50 cells (for pHM830/pHM840 analyses) per sam-
ple were scored by each individual and results were averaged from at least three separate exper-
iments. Quantitative subcellular localization was performed using ImageJ. Whole cell and
nuclear fluorescence signal intensity was measured and subtracted to calculate cytoplasmic
fluorescence signal intensity. Nuclear and cytoplasmic intensity was calculated as a percent of
whole cell intensity. Confocal images were acquired using an inverted IX51 Olympus micro-
scope equipped with a Perkin Elmer Spinning Disk Confocal attachment with a 60x objective
using Velocity software and image analyses were done using Imaris software (Bitplane, Zurich,
Switzerland).

Statistical analyses
Differences between multiple groups were compared using analysis of variance (ANOVA) and
differences between two groups were compared using unpaired two-tailed t test. Results were
considered significant when P<0.05.
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Results

Analysis of RanBPM deletion mutants
To start evaluating the regions of RanBPM that regulate its subcellular localization, we engi-
neered a series of deletion mutants lacking N-terminal, C-terminal and internal domain re-
gions (Figs. 1–3). All constructs contained an N-terminal HA tag to assess expression and
subcellular localization by indirect immunofluorescence. Mutants were transiently transfected
in Hela cells stably expressing a RanBPM shRNA (clone 2–7), in which we have previously
shown that RanBPM expression is effectively downregulated to near undetectable levels
[29,32,36]. The design of this strategy was prompted by the fact that previous studies have doc-
umented that the LisH domain can mediate protein dimer and tetramer formation [7–9]. In-
deed a recent report suggested that RanBPM is able to form homo-dimeric or -multimeric
complexes [37]. We reasoned that if this were to occur, the RanBPMmutants that retain the
LisH domain would not show a substantial change in subcellular localization upon transfection
in normal Hela cells as they would be localized based on their interaction with endogenous
RanBPM. Thus, expressing the RanBPMmutants in cells lacking endogenous RanBPM would
circumvent this possible limitation and also minimize potential artefacts arising from overex-
pression of the RanBPM protein. To prevent degradation of the transfected constructs by the
RanBPM siRNA (which targets a specific sequence located in the extreme C-terminal region,
Fig. 1A), all mutants containing the C-terminal region comprised a point mutation in the se-
quence targeted by the siRNA, as previously described [29].

To quantify RanBPM localization through indirect immunofluorescence, we employed a local-
ization scoring protocol that we have described previously [29]. Using this approach, RanBPM
full-length (wild-type, WT) expressed in RanBPM shRNA cells was determined to present nuclear
and cytoplasmic distribution similar to what has been reported for endogenous RanBPM (Fig. 1)
[29]. To verify the accuracy of our scoring evaluation, we repeated our measurements of nucleocy-
toplasmic distribution by quantifying the signal intensity of the whole cell and the nuclear com-
partment and calculating the resulting cytoplasmic intensity (S1A Fig.). This yielded a similar
distribution for WT RanBPM and two RanBPMmutants (described later in Figs. 2 and 4).

Progressive deletion of the C-terminal region (ΔC1-C4) did not alter this nuclear and cyto-
plasmic distribution, suggesting that the C-terminal region does not primarily contribute to
RanBPM subcellular localization (Fig. 1).

N-terminal deletions revealed to have a much greater impact on regulating RanBPM locali-
zation. First, a large (251 aa) N-terminal deletion (ΔN1) resulted in a near complete relocaliza-
tion of RanBPM to the nucleus (Fig. 2B,C). Smaller deletions resulting in truncation of the first
138 and 209 aa (ΔN3 and ΔN4) had a similar effect. However, deletion of the first 101 aa (ΔN2)
had a completely reverse effect, resulting in near complete cytoplasmic localization (Fig. 2B,C).
This suggested that while the first 101 aa contain sequences required for RanBPM nuclear lo-
calization, elements in RanBPM sequences C-terminal to aa 251 can also promote nuclear lo-
calization. Interestingly, the region included between aa 102 and aa 138 appeared to contain
elements that retain or promote RanBPM localization to the cytoplasm, since its deletion elic-
ited RanBPM relocalization to the nucleus.

To further investigate which region between aa 1 and 102 is responsible for nuclear localiza-
tion, smaller deletions within this region were generated (Fig. 2). Deletion of the first 66 amino
acids (Δ1-66) resulted in an increased cytoplasmic localization similar to that of RanBPM ΔN2,
suggesting that nuclear localization determinants were located in the very N-terminal region of
the protein (Fig. 2D, E). A smaller deletion of the first 25 amino acids (Δ1-25) still resulted in
decreased nuclear and increased cytoplasmic localization, suggesting that the first 25 amino
acids contain determinants that direct or retain RanBPM in the nucleus.

Regulation of RanBPM Subcellular Localization
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Fig 2. RanBPM N-terminal region contains several determinants that regulate its subcellular localization. A) Schematic diagram of N-terminal mutant
RanBPM constructs. B)Mutant RanBPM (ΔN1-4) were transfected and scored as described in Fig. 1. Data represent averages from three separate
experiments, each assessing a minimum of 100 cells. Error bars represent SD. Mutant RanBPM constructs versusWT, ***, P<0.001; **, P<0.01; *,
P<0.05.C) Representative images of transfected mutant RanBPM localization quantified in B. D) Identification of a nuclear targeting sequence in the
extreme N-terminal region. Mutants with various deletions of N-terminal sequences (as indicated) were transfected and processed as above. E)
Representative images of the localization of the transfected mutant RanBPM quantified in D. Scale bar: 10μm.

doi:10.1371/journal.pone.0117655.g002
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We next examined the potential contribution of the SPRY and LisH/CTLH domains to
RanBPM subcellular localization. Internal deletion of the SPRY domain (Δ212) resulted in
increased nuclear localization compared to WT suggesting that this region plays a role in
cytoplasmic targeting of the protein (Fig. 3). The SPRY domain is known to mediate protein-
protein interactions [6], suggesting that interaction of RanBPM through this domain with yet
unidentified partner(s) may be responsible for cytoplasmic retention. In addition, and in
contrast to full length RanBPM and all other mutants examined so far which showed diffuse
staining in both the nucleus and cytoplasm, most cells expressing RanBPM Δ212 displayed a
speckled nuclear staining, with small aggregates present throughout the nucleus. These aggre-
gates could be the result of misfolding, indicating that this domain may also be needed for cor-
rect folding of the protein.

Deletion of the LisH/CTLH domains (Δ360) also resulted in predominant nuclear redistri-
bution of RanBPM, suggesting that this region promotes cytoplasmic localization. Individual
deletions of either the LisH or the CTLH domain did not significantly alter RanBPM nucleocy-
toplasmic distribution (Fig. 3B,C). Altogether, it appears that disruption of both the LisH and
CTLH domains perturbs RanBPM subcellular localization by promoting its recruitment to
the nucleus.

Fig 3. Deletion of RanBPM SPRY and LisH/CTLH domains promotes RanBPM nuclear localization. A) Schematic diagram of internal deletion mutant
RanBPM constructs. B)Cells were fixed 24h after transfection of the RanBPMmutants indicated and incubated with an HA antibody and then with an Alexa
Fluor 555 secondary antibody. Nuclei were stained with DAPI. Subcellular localization was scored as either, N>C (nuclear greater than cytoplasmic), N = C
(nuclear equal to cytoplasmic), or C>N (cytoplasmic greater than nuclear). Data represent averages from three separate experiments, each assessing
approximately 100 cells. Error bars represent SD. Mutant RanBPM constructs versusWT, ***, P<0.001; **, P<0.01; *, P<0.05.C) Representative images
of transfected mutant RanBPM localization. Scale bar: 10μm.

doi:10.1371/journal.pone.0117655.g003
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To confirm that the localization of the RanBPMmutants was not influenced by cell-specific
properties of the clonal cell line expressing RanBPM shRNA, the subcellular localization of
RanBPMWT, ΔN2 and Δ360 was assayed in another RanBPM shRNA cell line (RanBPM
shRNA 2–6). The results revealed no differences in the subcellular localization of these mutants
between the two clonal cell lines (S1B Fig.).

Identification of RanBPM NLS and NES motifs
RanBPM deletion mutant analyses indicated that several regions of RanBPM are involved in
regulating its subcellular localization. The RanBPM C-terminal deletions did not affect
RanBPM nucleocytoplasmic distribution, which initially suggested that this region did not

Fig 4. Identification of RanBPM NLS and NES. A) Schematic diagram indicating the position of RanBPM putative NLS and NES which are represented by
green and yellow flags, respectively. The amino acid sequence of these elements is indicated below, with the WT sequences on the left, and the mutated
sequences on the right. Conserved basic residues are underlined, the leucines present in the putative NES are boxed and the alanine point mutations are
marked in red. The asterisk represents the point mutations conferring siRNA resistance.B)Cells were transfected with the RanBPMmutants indicated and
immunofluorescence and scoring was performed as described in Fig. 1. Data represent averages from three separate experiments, each assessing
approximately 100 cells. Error bars represent SD. Mutant RanBPM constructs versusWT, ***, P<0.001; **, P<0.01; *, P<0.05.C) Representative images
of transfected mutant RanBPM localization. Scale bar: 10μm.

doi:10.1371/journal.pone.0117655.g004
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contain elements contributing to the localization of the protein. However, intriguingly, various
deletions of the N-terminal region (ΔN1, ΔN3, ΔN4) caused the relocalization of RanBPM to
the nuclear compartment (Fig. 2). This suggested that the C-terminal region contains elements
directing RanBPM in the nucleus, even though these may be subordinate to primary nuclear lo-
calization signals present in the N-terminus. A search for clusters of basic residues (which are
typical of NLS) revealed two potential NLS for RanBPM, in the N-terminus (NLS1, 140–155)
and in the C-terminus (NLS2, 635–649) (Fig. 4A). Interestingly, the N-terminal potential NLS1
also features characteristics of a leucine-rich NES, suggesting that this element could be confer-
ring both import and export properties, which has been previously reported for similar se-
quences [38,39].

Point mutations of residues assumed to confer either nuclear (K/R) or cytoplasmic (L) local-
ization in the putative NLS1/NES (NLS1 mut and NES mut) in the N-terminal region of the
protein resulted in both cases in near complete relocalization of RanBPM to the nucleus, sug-
gesting that this element functions as a NES (Fig. 4B,C). Introduction of point mutations in the
putative C-terminal NLS (NLS2 mut) resulted in a slight, albeit significant decrease in nuclear
localization (Fig. 4B,C). However this mutant still displayed predominant nucleocytoplasmic lo-
calization, suggesting that this element only partly contributes to RanBPM nuclear targeting. To
further characterize these motifs, we investigated whether they were able to confer specific local-
ization to a Green Fluorescent Protein-β-galactosidase (GFP-β-gal) fusion protein. For these ex-
periments, we subcloned RanBPMmotifs in the pHM830 and pHM840 vectors which encode a
GFP-β-gal fusion protein. When expressed from pHM830 (830 EV), GFP-β-gal is cytoplasmic
as its size precludes passive diffusion to the nucleus, but addition of a Simian virus 40 (SV40)
NLS sequence in the pHM840 (840 EV) vector promotes its localization to the nucleus [31]
(Fig. 5A). Fusion of the RanBPMNLS1/NES sequence in pHM830 (830WTNLS1/NES) did not
affect GFP-β-gal cytoplasmic localization (Fig. 5B). However, NLS1/NES was able to promote
cytoplasmic export of the nuclear GFP-β-gal expressed from pHM840 (840 WT NLS1/NES),
and this was prevented by point mutations in this element (MUT NES, Fig. 5C), confirming
that this element functions as a NES. Interestingly, the NLS2 sequence in the C-terminal region
of RanBPM was able to promote nuclear localization of cytoplasmic GFP-β-gal (Fig. 5D), and
this was prevented by point mutations of three basic residues (MUT NLS2, Fig. 5E). This sug-
gested that this element can function as a NLS, even though its deletion or mutation in the con-
text of the RanBPM protein only mildly affects RanBPM recruitment to the nucleus.

Consistent with the results of the RanBPM deletion mutant experiments, RanBPM 1–25
was able to direct GFP-β-gal to the nucleus, thus suggesting the presence of a nuclear targeting
element in this region (Fig. 5F). Altogether, these analyses suggest that RanBPM possesses two
elements capable of conferring nuclear localization. However, only the 1–25 NLS appears to ef-
ficiently function to direct RanBPM in the nucleus. While NLS2 has the properties of a NLS, it
appears to be marginally functional in the context of the full-length RanBPM protein.

Finally, the RanBPM LisH/CTLH domain was able to prevent nuclear localization of the nu-
clear GFP-β-gal expressed from pHM840 (840 LisH/CTLH), suggesting that the LisH/CTLH
domain promotes localization to the cytoplasm, possibly by conferring cytoplasmic retention
(Fig. 5G).

These results suggested a very complex regulation of RanBPM cytoplasmic localization
since deletions of the SPRY and the LisH/CTLH domains as well as mutation of the NES se-
quence all resulted individually to a relocalization of RanBPM to the nucleus. To determine
whether RanBPM cytoplasmic localization was subject to a CRM1-export dependent regula-
tion, we treated cells with leptomycin B (LMB) to inhibit CRM1-dependent nuclear export.
Surprisingly, standard LMB treatment (20nM, 3h) had no effect on RanBPM localization,
while it significantly affected cyclin B1, which undergoes LMB-sensitive nuclear export [40]
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Fig 5. Characterization of RanBPMmotifs that confer nuclear or cytoplasmic localization of GFP-β-gal. A-G)RanBPM shRNA Hela cells were
transfected with either pHM830 (830) or pHM840 (840) empty vectors (EV) or vectors containing various motifs or domains of RanBPM fused to GFP-β-gal.
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and accumulated in the nucleus under the same conditions (S2 Fig.). However, treatment of
840 WT NLS1/NES with LMB prevented cytoplasmic accumulation of GFP-β-gal and resulted
in its nuclear localization, which suggested that the RanBPM NES activity in this context is sen-
sitive to CRM1 inhibition (Fig. 6A). One possibility to explain these seemingly contradictory

The identity of the RanBPMmotif/domain fused to GFP-β-gal is indicated above each panel. Left, pHM830 fusion constructs, right, pHM840 fusion
constructs. Cells were fixed 24 hours after transfection and nuclei stained with DAPI. GFP-β-gal subcellular localization was scored as either N>>C
(completely nuclear), N>C (nuclear greater than cytoplasmic, N = C (nuclear equal to cytoplasmic), C>N (cytoplasmic greater than nuclear, or C>>N
(completely cytoplasmic). Data represent averages from three separate experiments, each assessing a minimum of 50 cells. Error bars represent SD.
RanBPMmotifs versus EV, ***, P<0.001; **, P<0.01; *, P<0.05. Inset, representative images of transfected pHM830 or 840 fusion constructs alone (EV)
or subcloned with RanBPMmotifs. Scale bar: 10μm.

doi:10.1371/journal.pone.0117655.g005

Fig 6. Effect of Leptomycin B (LMB) treatment on RanBPM nuclear export. A) RanBPM shRNA Hela cells transfected with 840WT NLS1/NES were
treated with ethanol (EtOH) or 20nM LMB, fixed following 3h of treatment and stained with DAPI. Subcellular localization was scored as either N>>C
(completely nuclear), N>C (nuclear greater than cytoplasmic, N = C (nuclear equal to cytoplasmic), C>N (cytoplasmic greater than nuclear, or C>>N
(completely cytoplasmic). Data represent averages from three separate experiments, each assessing approximately 50 cells. Error bars represent SD. ***,
P<0.001; **, P<0.01; *, P<0.05.B) Hela cells were treated with EtOH or 20nM LMB and incubated for 16h. Cells were fixed and processed for
immunostaining with antibodies to RanBPM and cyclin B1 and nuclei stained with DAPI. At least 100 cells were scored as N>C (nuclear greater than
cytoplasmic), N = C (nuclear equal to cytoplasmic), or C>N (cytoplasmic greater than nuclear). Data represent averages from three separate experiments,
each assessing approximately 100 cells. Error bars represent SD. Scale bar: 10μm.

doi:10.1371/journal.pone.0117655.g006
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results is that only a small fraction of RanBPM is shuttling and thus longer treatment would be
needed to reach a detectable accumulation in the nucleus. Thus, we tested the effect of pro-
longed LMB treatment on endogenous RanBPM localization and found that 16h incubation
with LMB induced a significant nuclear accumulation of RanBPM (74.1%) when compared to
vehicle treatment (42.6%) (Fig. 6B). These results suggest that RanBPM undergoes CRM1-de-
pendent nuclear export but that the activity of the NES is limited in the context of the RanBPM
protein possibly due to the fact that a large proportion of the RanBPM cellular pool is not
actively shuttling. Altogether, it appears that RanBPM cytoplasmic localization is dependent
on the integrated action of several domains and sequences and that the function of these regu-
latory regions may be modulated by specific RanBPM protein folding which
remains uncharacterized.

Effect of RanBPM deletions on protein expression
To assess the effect of RanBPM deletions on protein expression, we analyzed the levels of ex-
pression of all mutants by western blot. As previously reported, endogenous RanBPM expres-
sion is severely reduced in RanBPM shRNA cells (Fig. 7A) [29,32,36]. RanBPMmutants
bearing either C-terminal deletions or internal deletions of the SPRY and LisH/CTLH domains
were found expressed at levels similar to WT (Fig. 7B,D,E). However, N-terminal mutants
showed significantly reduced expression levels, particularly the ΔN1, ΔN3 and ΔN4 deletion
mutants, while ΔN2 expression was somewhat decreased (Fig. 7C). It should be noted that, as
reported previously for ΔN1 and ΔN2 [29], the expression levels of the ΔN1-4 mutants in indi-
vidual cells was not noticeably different than WT RanBPM or any other mutant and this is re-
flected by the fact that exposure times for image capture was similar for all mutants. However,
we consistently obtained a lower number of cells transfected with the ΔN1-4 mutants com-
pared to the other mutants, which explains the lower level of expression of these mutants ob-
served by western blot analysis, although the reason for this phenomenon remains unclear. As
all mutants are ectopically expressed from the same promoter and the extreme N-terminal de-
letions (Δ1-66, Δ1-25 Fig. 7D) resulted in protein levels comparable to WT, this suggests that
sequences between 102 and 139 are particularly important for this effect. Also, while all the low
expressing mutants are predominantly nuclear, localization of RanBPM in the nucleus is likely
not the cause of the reduced expression, as other mutants comprising domain deletions that re-
localize RanBPM to the nucleus, such as Δ212 and Δ360 are expressed at levels comparable to
WT (Fig. 7E). Finally, point mutations in either NES or NLS2 did not affect expression
(Fig. 7E). A summary of level of expression and subcellular localization of the mutants tested
in this study is shown in Table 1.

Examination of the N-terminal region revealed the presence of two putative USP7 (ubiqui-
tin-specific protease 7) binding sites at residues 39–42 and 125–128. USP7, also known as
HAUSP (herpes virus associated ubiquitin-specific protease), is a member of the superfamily
of deubiquitinating enzymes that are responsible for the removal of ubiquitin from their target
proteins [41]. USP7 was previously shown to interact with and stabilize p53 and Mdm2 [42].
USP7 interacts with p53 at two closely spaced USP7 binding sites and both sites are needed for
USP7 binding [43]. Therefore USP7 N-terminal sites appeared to be good candidates to regu-
late RanBPM stability. One or both USP7 sites were mutated by site-directed mutagenesis re-
sulting in point mutations or deletion of the USP7 binding consensus sequences, and protein
expression was assessed by western blot analysis (S3 Fig.). Since all resulting mutants were ex-
pressed at levels similar to that of wild-type, we concluded that the USP7 sites do not regulate
RanBPM protein expression.
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Fig 7. RepresentativeWestern blot analysis of endogenous RanBPM in control and RanBPM shRNA
cell lines and RanBPMmutant protein expression. A) Left, Whole cell extracts prepared from control and
RanBPM shRNA cells were analyzed by western blot with a RanBPM antibody. Right, quantification of
endogenous RanBPM normalized to β-actin loading control. Data represent averages from three
experiments. Error bars represent standard error.B) Expression of wild-type (WT) and ΔC deletion
constructs. Left, whole cell extracts were prepared from RanBPM shRNA Hela cells transfected with pCMV-
HA-RanBPMWT and mutant constructs 24h after transfection. An HA antibody was used to detect HA-
RanBPM and a β-actin antibody was used as a loading control. Right, quantification of pCMV-HA-RanBPM
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Next, we examined WW binding motifs present at positions 17–22 and 117–122 of
RanBPM. Binding motifs of class IVWW domains such as the ones found at these positions
are characterized by two proline residues and a phosphorylated serine/threonine residue [44].
This particular motif was chosen because class IVWWmotifs have been shown to be a target
of the peptidyl-prolyl cis-trans isomerase Pin-1 and isomerization of these WWmotifs is key
as kinases, phosphatases and ubiquitin ligases specifically recognize the cis or trans conforma-
tion of the prolyl peptide bond of their substrate, ultimately resulting in modulation of protein
stability [45,46]. Mutation of critical residues within both WWmotifs resulted in protein ex-
pression similar to that of WT RanBPM (S3 Fig.), suggesting that these WWmotifs do not af-
fect RanBPM protein expression.

RanBPM is associated with microtubules in the cytoplasm and with
chromatin in the nucleus
We next investigated whether RanBPM is associated with particular structures in the nucleus
and in the cytoplasm. Several lines of evidence suggest that RanBPMmay be associated with
microtubules. First, the LisH/CTLH domain is a domain present in proteins that are associated
with microtubules [8,9]. In addition, RanBPM was reported to cofractionate with components

constructs normalized to β-actin loading control. Data represent averages from three experiments. Error bars
represent standard error. Mutant RanBPM constructs versusWT, ***, P<0.001; **, P<0.01; *, P<0.05.C)
Expression of RanBPM ΔN deletion constructs. Analysis and quantifications are as described above.D)
Expression of RanBPM Δ1-66, Δ1-25, ΔLisH and ΔCTLH. Analysis and quantifications as described in B. E)
Expression of Δ212, Δ360 and point mutation constructs. Analysis and quantifications as described in B.

doi:10.1371/journal.pone.0117655.g007

Table 1. Summary of protein expression and subcellular localization for RanBPM mutants.

Mutant Expression Subcellular Localization

WT *** N = C

ΔC1 *** N = C

ΔC2 *** N = C

ΔC3 *** N = C

ΔC4 *** N = C

ΔN1 * N>C

ΔN2 ** C>N

ΔN3 * N>C

ΔN4 * N>C

Δ1-66 *** C>N

Δ1-25 *** C>N

Δ212 *** N>C

Δ360 *** N>C

ΔLisH *** N = C

ΔCTLH *** N>C

NLS1 Mut (150, 152, 153) *** N>C

NES Mut (147, 151) *** N>C

NLS2 Mut (635, 636, 640) *** N = C

*low, **medium ***high expression, N = C nucleocytoplasmic, N>C mostly nuclear, C>N

mostly cytoplasmic

doi:10.1371/journal.pone.0117655.t001
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of microtubules, such as dynactin and dynein [47]. Moreover, our findings that the LisH/CTLH
domain can promote cytoplasmic localization of a nuclear protein and that deletion of the
RanBPM LisH/CTLH domain results in its nuclear accumulation suggested that this domain
could be mediating cytoplasmic retention through microtubule binding. Thus we investigated
whether RanBPM colocalizes with α-tubulin, a main component of microtubules [48] using
confocal microscopy analyses of endogenous RanBPM and α-tubulin (Fig. 8). RanBPM dis-
played a punctate pattern throughout the cytoplasm which indeed revealed partial colocaliza-
tion with α-tubulin at specific microtubule structures in both Hela (Fig. 8A) and 3T3 mouse
embryonic fibroblasts (MEFs, Fig. 8B). To substantiate the colocalization of RanBPM with α-
tubulin, we performed co-immunoprecipitation experiments which revealed that endogenous
RanBPM co-immunoprecipitated with endogenous α-tubulin (Fig. 8C). To determine whether
microtubule depolymerization would affect RanBPM subcellular localization, we analyzed the
effect of microtubule disruption on RanBPM subcellular localization. Treatment with nocoda-
zole, which interferes with microtubule polymerization, surprisingly did not alter the subcellu-
lar localization of RanBPM (data not shown), indicating that RanBPM cytoplasmic localization
is not sensitive to microtubule depolymerization. Overall, these data show that cytoplasmic
RanBPM is partially associated with microtubules and suggest that RanBPM cytoplasmic local-
ization could be conferred, at least in part, through retention of RanBPM via
microtubule interaction.

To assess the status of RanBPM in the nucleus, we performed subcellular fractionations.
Consistent with our immunofluorescence evaluations and previous analyses [22,29], quantifi-
cation of endogenous RanBPM in Hela cytoplasmic and nuclear fractions showed that about
70% of RanBPM was present in the nucleus versus 30% in the cytoplasm (Fig. 9A). While most
of nuclear RanBPM was present in the nuclear soluble fraction, approximately 20% of RanBPM
was detected in the chromatin fraction, suggesting its association with DNA. We obtained
identical results with ectopically expressed HA-RanBPM in Hela RanBPM shRNA cells
(Fig. 9B). Overall, these results suggest that RanBPM can associate with microtubules in the cy-
toplasm and with chromatin in the nucleus.

Discussion
Determining the physiological role played by RanBPM and its associated CTLH complex re-
quires a detailed understanding of how its subcellular localization is regulated and contributes
to its activity. In this study, we have investigated the contribution of various RanBPM protein
regions to its subcellular localization using RanBPM shRNA cells, which allowed the analysis
of ectopically expressed RanBPMmutants without interference from the endogenously ex-
pressed protein. Our results reveal that multiple regions and motifs regulate RanBPM nuclear
and cytoplasmic localization and that in particular the RanBPM N-terminal domain is critical
for both localization and protein stability.

RanBPM determinants of nuclear localization
We determined that RanBPM possesses two motifs that confer nuclear localization: one se-
quence present at the extreme N-terminus (aa 1–25, hereafter called 1–25 poly-P/Q motif),
and a non-canonical NLS located near the C-terminus (NLS2, Fig. 4). The 1–25 poly-P/Q
motif functions as a NLS as it was able to promote nuclear localization of a cytoplasmic GFP-β-
gal fusion construct. This region contains two proline stretches flanking a series of glutamines
(S4 Fig.), but, to our knowledge, does not contain any sequence matching previously character-
ized NLS consensus. The most likely possibility is that this region interacts with a partner pro-
tein that promotes its translocation to the nucleus. A search for conserved motifs indicates that
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the 1–25 poly-P/Q motif contains four non-canonical class I-type SH3 binding motifs, and one
overlapping WW class IV Peptidyl-Prolyl Isomerase (Pin1) binding motif. Future investiga-
tions will be needed to identify protein(s) interacting with this region. It is worth noting that
Pin1 has been shown to promote nuclear localization of Rel proteins [49] and the adenosine
deaminase ADAR2 [50], however how this is achieved remains unknown.

The RanBPM aa 635–649 sequence (NLS2) appeared to present some of the characteristics
of a bi-partite NLS, with two clusters of basic amino acids. However, while mutations in the
first cluster (R635A, R656A and K640A) did inhibit its ability to direct cytoplasmic GFP-β-gal
to the nucleus, surprisingly, alanine substitutions of the three lysines in the second cluster of
the motif (K645A, K646A and K649V) did not prevent NLS activity (data not shown). This

Fig 8. RanBPM is associated with microtubules. A)Hela andB) 3T3 MEFs were fixed and incubated with antibodies against RanBPM and α-tubulin.
Shown are single plane confocal images. Insets are enlarged images of the boxed regions from the above panels and arrows indicate areas of colocalization.
The right panels showmerged images (RanBPM, green; α-tubulin, red). Scale bar: 10μm.C) Hela whole cell extracts were incubated with either an α-tubulin
antibody or mouse IgG control. Immunoprecipitates were analyzed by western blot using RanBPM and α-tubulin antibodies and compared with 5% of
input proteins.

doi:10.1371/journal.pone.0117655.g008

Fig 9. Quantitative analysis of RanBPM in cytoplasmic and nuclear fractions and its association with
chromatin. A) Hela cell extracts were partitioned in cytoplasmic, nuclear soluble and chromatin fractions as
described in Materials and Methods. Proportional amounts of each fraction were analyzed by western blot
with the indicated antibodies. Left, representative western blot, with the percentage of each fraction loaded
indicated above each lane. Right, bar graph representing the percentage of RanBPM protein present in each
fraction. Data represent averages from three separate experiments with error bar representing SD. B)Hela
RanBPM shRNA cells were transfected with pCMV-HA-WT-RanBPM and processed as in A.

doi:10.1371/journal.pone.0117655.g009
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suggests that NLS2 activity is dependent on determinants present in the first cluster of basic
residues, in the sequence “RRDCGK”. Interestingly, this motif has similarities to that of a non-
canonical NLS recently identified in a BRCA1 splice variant (KRAAER) [51], with two basic
residues separated from a third basic residue by three amino acids.

Both the 1–25 poly-P/Q motif and NLS2 elements were able to direct a cytoplasmic GFP-β-
gal construct to the nucleus. However, our results suggest that RanBPM nuclear localization is
primarily dependent on the 1–25 poly-P/Q motif and that the C-terminal NLS2 does not ap-
preciably contribute to RanBPM localization in normally cycling cells, conditions used in our
experiments. This conclusion is supported by two observations: first, deletion of the C-terminal
region containing NLS2 and mutation of the NLS2 sequence had little effect on RanBPM sub-
cellular localization, and second, deletion of aa 1–25 poly-P/Q motif prevented RanBPM nucle-
ar localization. One possibility to explain why NLS2 is not functional in the context of the full
length RanBPM protein is that it is masked by protein folding. Indeed, we observed a dramatic
shift in RanBPM localization from cytoplasmic to nuclear upon deletion of the 102–138 region
(in the ΔN3 mutant) compared to the ΔN2 mutant. Thus, we postulate that this region normal-
ly folds over RanBPM C-terminus and masks NLS2, and that its deletion relieves the inhibition
on NLS2. This folding could serve to modulate the activity of sequences such as NLS2 that are
present in the C-terminal region in response to stress or physiological stimuli. A previous
study identified this element as a putative NLS [37]. This study also reported that an N-termi-
nal proteolytic fragment of RanBPM (aa 1–392) displayed cytoplasmic localization and this
was attributed to the loss of that element in the C-terminal region of the protein. Since we have
demonstrated that NLS2 is not imperative for nuclear localization, this is unlikely to be the
case, however the reason for the cytoplasmic localization of this proteolytic fragment remains
to be elucidated.

Our analysis showed that about 20% of total RanBPM, which represents about a third of the
RanBPM nuclear pool, is associated with chromatin. RanBPM does not appear to comprise se-
quences conferring DNA binding properties, thus we postulate that its association with chro-
matin is mediated through interaction(s) with chromatin-associated partners. RanBPM was
previously reported to interact with the Transcription Factor IID (TFIID) subunit TAF4 and
with the glucocorticoid, androgen and thyroid receptors [11,13,14]. The thyroid receptor was
suggested to interact with the C-terminal region of RanBPM [13], but the localization of the
complex was not evaluated. Interestingly, the interaction of p73 with RanBPM was shown to
promote RanBPM localization to the nucleus [12]. Whether and how RanBPM affects genomic
regulations and DNA metabolism and whether this is in the context of the CTLH complex or
in association with other proteins will need to be investigated.

RanBPM in the cytoplasm
We have identified three motifs or domains that promote cytoplasmic localization: a bona fide
NES, the SPRY domain and the LisH/CTLH domain. RanBPM NES presents the characteristics
of a typical leucine-rich motif [52], but we also noted the presence of basic amino acids which
led us to hypothesize that it may also function as a NLS. However, this element was only able
to direct cytoplasmic localization of a nuclear GFP-β-gal fusion construct, suggesting that it
only functions as a NES. We showed that this NES is readily sensitive to LMB in isolation
(GFP-β-gal) which is further typical of leucine-rich NES which are CRM1/Exportin1-depen-
dent [2,52]. But, while mutation of the NES promoted RanBPM nuclear accumulation, endoge-
nous RanBPM was only sensitive to LMB treatment when subjected to LMB for longer periods
of time, suggesting that only a small fraction of RanBPM is actively shuttling. In parallel, we
found that deletion of both SPRY and LisH/CTLH domains promoted RanBPM nuclear
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accumulation. Since neither domain contains any identifiable NES, cytoplasmic localization
through these domains most likely occurs through protein-protein interactions. As we have
shown that RanBPM is associated with microtubules, it is possible that the LisH/CTLH domain
could mediate RanBPM recruitment to microtubules and that this serves to retain RanBPM in
the cytoplasm. As for SPRY domains, they are found in a wide array of proteins and are known
to engage in protein-protein interactions. SPRY domain-containing proteins have been suggested
to function as adaptors and play roles as scaffold proteins in a variety of signaling pathways [6].
Several proteins have been shown to interact with RanBPM through the SPRY domain in both
the nuclear and cytoplasmic compartments. In the nucleus RanBPM has been shown to interact
with cyclin-dependent kinase 11 CDK11(p46) [53], the immediate-early protein Rta of Epstein-
Barr virus [54], and the ubiquitin-specific protease USP11 [55]. The SPRY domain of RanBPM
has been demonstrated to interact with cytoplasmic or membrane bound proteins such as the
TNF receptor associated factor TRAF6 [56], the receptor tyrosine kinase MET [57], the neural
cell adhesion molecule L1 [58], and the neurotrophin receptor TrkA [59]. However, the contribu-
tion of these interactions to RanBPM subcellular localization was not investigated. Our results
imply that the SPRY domain functions as a cytoplasmic restraint, suggesting that it mediates in-
teraction of RanBPMwith cytoplasmic protein(s), although this remains to be confirmed.

RanBPM has long been suspected to associate with microtubules, and was previously re-
ported to cofractionate with components of the microtubules dynein and dynactin and dyna-
mitin [47]. We show here that RanBPM indeed colocalizes and associates with α-tubulin.
However, it is not clear whether this reflects a direct interaction with microtubule components,
or if it is due to RanBPM association with microtubule-interacting proteins. Studies of the mi-
crotubule motor-regulating protein LIS1, the most extensively studied LisH-containing pro-
tein, suggest that the N-terminal LisH domain of LIS1, which is necessary for microtubule
association, is not involved in dynein binding (which occurs through the C-terminal of LIS1),
but that dimerization of LIS1 through the LisH domain is essential for dynein motility [60].
Therefore, we speculate that RanBPM is associating with microtubules through the LisH do-
main, however this remains to be determined. Interestingly, we recently reported that RanBPM
forms a complex with the histone deacetylase HDAC6 [30]. HDAC6 is a microtubule-associat-
ed deacetylase that regulates α-tubulin acetylation and participates in microtubule metabolism
[61–63], so the possibility exists that RanBPM is recruited to microtubules through HDAC6.

Regulatory function of the N-terminal domain
RanBPM N-terminal region has a dual function in regulating RanBPM subcellular localization
as it harbours both nuclear targeting and nuclear export sequences. Interestingly, in addition to
modulating subcellular localization, the N-terminal 102–139 region also appears to affect pro-
tein stability. Progressive deletion of the N-terminal sequences resulted in a gradual decrease in
protein expression, most notably when deleting the 102–139 region (ΔN3). Mutations in this
region (WW and USP7 motifs) did not affect protein stability, suggesting that it is not the se-
quences per se that are important but that the region may function intramolecularly to regulate
stability and localization.

One possibility to explain the changes in protein stability and subcellular localization
observed with N-terminal deletions is that the RanBPM C-terminus is unstable/unfolded
in absence of the N-terminal region. In support of this, a previous study documented that C-
terminal fragments of RanBPM (corresponding to the C-terminal 350 aa) were very weakly ex-
pressed when transfected in mammalian cells [15]. RanBPM N-terminal region contains sever-
al amino acid repeats (proline, glutamine, alanine) that are characteristic of a low complexity
regions (LCR) predicted to be unstructured [64]. LCRs are often found in ‘hub’ proteins and
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C-terminal LCRs have been predicted to have high levels of connectivity and are enriched in
stress-response proteins [65]. While the function of the RanBPM LCR is unknown, our data
suggest that it is critical for RanBPM stability and subcellular localization.

It is puzzling is that the deletion of the 102–139 (ΔN3) results in significant accumulation of
RanBPM in the nucleus, despite the presence of the NES and the central domains, SPRY and
LisH/CTLH, which would be expected to collectively allow cytoplasmic localization. Moreover,
removal of the NES in the ΔN4 mutant and further deletion encompassing part of the SPRY
domain (ΔN1) only marginally increased nuclear localization. Since this prominent nuclear lo-
calization occurs concurrently with the decrease in the level of protein expression, it is possible
that the deletion of the N-terminal domain promotes the degradation of the cytoplasmic pool
of these mutants, leaving the nuclear fraction somewhat stable.

RanBPM is well conserved between eukaryotic species, with the SPRY, LisH, CTLH and
CRA domains being conserved throughout eukaryotes [28]. Both the NES identified within res-
idues 140 and 155 and NLS2 comprising residues 635 and 649 are well conserved in mammals
and in chordates in general, while in arthropods, such as Drosophila, these elements are par-
tially conserved. The N-terminal domain however is the least conserved region of the protein.
In particular, the poly-Q and poly-P repeats present in the human RanBPM N-terminus are
not found in most homologs. Therefore the RanBPM 1–25 poly-P/Q motif is not present in
other species, except in the mouse homolog where it is partially conserved [66]. Thus the regu-
lations conferred by the 1–25 poly-P/Q region and the N-terminal region in general may only
occur in human and possibly in mouse RanBPM, perhaps allowing NLS2 to be the predomi-
nant NLS in other species. In the S. cerevisiae RanBPM homolog Gid1, the domains are con-
served however the NLS/NES motifs that we identified are not conserved.

Finally, one major element that may be contributing to RanBPM localization is its interac-
tion with members of the CTLH complex. All components of the CTLH complex have been
shown to be present within both the nuclear and cytoplasmic compartments with the exception
of MAEA (Macrophage Erythroblast Attacher, also called p48EMLP, or EMP), which is only
present in the nucleus and muskelin, which is mostly cytoplasmic [15,22]. These two proteins
have been demonstrated to influence the localization of the other complex components. Ectop-
ic expression of MAEA was shown to trigger increased recruitment of Twa1, the armadillo-re-
peat protein ARMC8α and RanBPM to the nucleus [22]. MAEA has been shown to contain a
putative NLS between aa 110–113, however whether this element is a functional NLS that im-
ports MAEA to the nucleus has not been determined [67]. Conversely, overexpression of
muskelin resulted in cytoplasmic localization of Twa1, ARMC8α and RanBPM [22]. Previous
analyses suggested that the subcellular distribution of muskelin is also modulated by several
domains, a C-terminal domain that restrains it in the cytoplasm and a LisH domain that, con-
trary to that of RanBPM, has nuclear targeting activity [15]. However, the details of the CTLH
complex formation remain unclear and the effect of RanBPM localization on the other mem-
bers of the CTLH complex remains to be elucidated.

In yeast, RanBPM (Gid1) was found to be a crucial component for the architecture of the
Gid complex as any alteration in this protein was found to disrupt the complex [25]. Given the
high conservation of the members of the complex between yeast and mammals, it will be inter-
esting to determine how the RanBPMmutations that affect its subcellular localization influence
the CTLH complex formation and localization.

Supporting Information
S1 Fig. Validation of subcellular localization scoring protocol. A) Cells were fixed 24h after
transfection of the RanBPMmutants indicated and incubated with an HA antibody and then
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with an Alexa Fluor 555 secondary antibody. Nuclei were stained with DAPI. Subcellular local-
ization was quantified with ImageJ as described in materials and methods. Data represent aver-
ages from three separate experiments, each assessing approximately 100 cells. Error bars
represent standard error. Mutant RanBPM constructs versus WT, ���, P<0.001; ��, P<0.01;
�, P<0.05. B) Cells from two clonal derivatives, Hela RanBPM shRNA 2–7 (employed
throughout the study) or Hela RanBPM shRNA 2–6 were fixed 24h after transfection of the
RanBPMmutants indicated and incubated with an HA antibody and then with an Alexa Fluor
555 secondary antibody. Nuclei were stained with DAPI. Subcellular localization was scored as
either, N>C (nuclear greater than cytoplasmic), N = C (nuclear equal to cytoplasmic), or C>N
(cytoplasmic greater than nuclear). Data represent averages from three separate experiments,
each assessing approximately 100 cells. Error bars represent SD. Statistical analysis was per-
formed to compare RanBPM shRNA clone 2–7 versus RanBPM shRNA clone 2–6 for each
RanBPMmutant construct.
(PDF)

S2 Fig. Effect of short LMB treatment on RanBPM nuclear export. A)Hela cells treated with
EtOH or 20nM LMB were fixed 3h after treatment. Cells were processed for immunostaining
with antibodies to RanBPM and cyclin B1 and nuclei stained with DAPI. At least 100 cells were
scored as N>C (nuclear greater than cytoplasmic), N = C (nuclear equal to cytoplasmic), or
C>N (cytoplasmic greater than nuclear). Data represent averages from three separate ex-
periments. Error bars represent SD. B) RanBPM shRNA Hela cells transfected with pCMV-
HA-WT-RanBPM were incubated O/N and treated with EtOH or 20nM LMB for 3h. Cells
were analyzed as described above. Scale bar: 10μm.
(PDF)

S3 Fig. Mutations of N-terminal USP andWWmotifs do not affect RanBPM expression.
A) Amino acid sequence and position of the USP andWW domains in RanBPM. Mutations
are indicated to the right. The predicted motifs are underlined and mutations are marked in
red and deletions are represented by a dash (-). USP7 1Δ and 2Δmutant is comprised of both
1Δ and 2Δmutations. B)Whole cell extracts were prepared from RanBPM shRNA Hela cells
transfected with pCMV-HA-RanBPMmutant constructs 24h after transfection. An HA anti-
body was used to detect HA-RanBPM and β-actin was used as a loading control. Western blots
show expression of WT and USP mutant constructs. C) Expression of WT and WWmutant
constructs as described in B.
(PDF)

S4 Fig. Amino acid 1–25 of RanBPM. The sequence of the first 25 amino acids of human
RanBPM is shown.
(PDF)
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