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Abstract

from noise.

Background: Studies involving the analysis of structural variation including Copy Number Variation (CNV) have
recently exploded in the literature. Furthermore, CNVs have been associated with a number of complex diseases
and neurodevelopmental disorders. Common methods for CNV detection use SNP, CNV, or CGH arrays, where the
signal intensities of consecutive probes are used to define the number of copies associated with a given genomic
region. These practices pose a number of challenges that interfere with the ability of available methods to
accurately call CNVs. It has, therefore, become necessary to develop experimental protocols to test the reliability of
CNV calling methods from microarray data so that researchers can properly discriminate biologically relevant data

Results: We have developed a workflow for the integration of data from multiple CNV calling algorithms using the
same array results. It uses four CNV calling programs: PennCNV (PC), Affymetrix® Genotyping Console™ (AGC),
Partek® Genomics Suite™ (PGS) and Golden Helix SVS™ (GH) to analyze CEL files from the Affymetrix® Human SNP
6.0 Array™. To assess the relative suitability of each program, we used individuals of known genetic relationships.
We found significant differences in CNV calls obtained by different CNV calling programs.

Conclusions: Although the programs showed variable patterns of CNVs in the same individuals, their distribution in
individuals of different degrees of genetic relatedness has allowed us to offer two suggestions. The first involves the
use of multiple algorithms for the detection of the largest possible number of CNVs, and the second suggests the
use of PennCNV over all other methods when the use of only one software program is desirable.

Keywords: Microarrays, Copy number variation, Genetic relatedness, CNV calling methods, Monozygotic twins

Background

Copy number variants (CNVs) are defined as DNA seg-
ments (often 50 bp or larger) that are present in variable
numbers in a genome [1-3]. Although common in the
human genome, some CNVs have no apparent pheno-
typic effect [1,4,5], while others are implicated in a var-
iety of phenotypic effects including disease phenotypes
[6-8]. As such, the search for CNVs associated with dis-
ease phenotypes has emerged as a productive approach
to identify genetic factors underlying a number of
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common and complex neurodevelopmental disorders
[9-13]. There are two reasons for this productivity.
Firstly, CNVs are a major contributor to genomic vari-
ation, with approximately 13% of the human genome af-
fected by CNVs [5], and over 100,000 CNVs have been
mapped to specific genomic locations and are docu-
mented in the Database of Genomic Variants (DGV)
[14]. Secondly, advances in technology, including micro-
arrays, permit high-throughput methods to identify
CNVs. Such technologies are now relatively common
and are economically feasible alternatives to methods
like whole genome sequencing. With a number of array
platforms and bioinformatic algorithms available, it is
necessary to identify optimal analytical pipelines to make

© 2014 Castellani et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:ssingh@uwo.ca
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Castellani et al. BMC Bioinformatics 2014, 15:114
http://www.biomedcentral.com/1471-2105/15/114

inferences regarding specific genomic regions and their
copy number identity.

On genome-wide microarrays, such as the Affymetrix°
Genome-Wide Human SNP Array 6.0, sets of probes
are designed to determine which allele is present at gen-
omic sites of known single nucleotide polymorphism
(SNP probes). The arrays may also include additional
probes designed for genomic sites where there is no
known variance (known as copy number probes). Nor-
mally, CNVs are identified by fluorescent signals gener-
ated by SNP probes on the microarray. The fluorescent
signals emitted by both SNP probes and copy number
probes (if present on the array) are summarized and an-
alyzed for variance in signal intensity using bioinfor-
matic tools, typically in comparison to a set of reference
samples. Consecutive markers that exhibit altered signal
intensity from the reference are interpreted as copy
number variants (CNVs). There are a number of algo-
rithms that have been developed to identify putative
CNVs. Unfortunately, not all putative CNVs called by
any existing algorithm can be viewed as biologically rele-
vant. The application of multiple software programs that
are designed to call CNVs from the same microarray
data often yield differing results [7,15-18]. The use of
multiple algorithms has been shown to increase the reli-
ability of observations with different degrees of confi-
dence. For example, Kim et al. used three calling
algorithms (PennCNYV, QuantiSNP, and Birdsuite) on a
set of results from Affymetrix® arrays. They found that
only 1.5% of total CNV calls could be identified by all
three distinct algorithms [16]. Furthermore, their at-
tempt to confirm putative CNV calls using qPCR pro-
duced differing results; 38.3% of CNVs called by a single
algorithm, 57.6% of CNVs called by two algorithms and
71.4% of CNVs called by three algorithms could be con-
firmed by qPCR [16].

Although SNP arrays have become popular for ascer-
taining copy number data in addition to SNP genotypes,
there are many issues intrinsic to the use of SNP arrays
for the identification of CNVs. Theoretically, it is pos-
sible to resolve some of these issues through the use of
sensitive analytical methods. In fact, the past ten years
have seen a boom in the development of algorithms and
technical resolution that have been applied across plat-
forms and programs [19]. Quality control measures such
as batch effect correction, normalisation methods, and
reference group choice seem like simple considerations
when compared to the choices available in both algo-
rithms and CNV identification software, as well as in
post-analysis filters like marker density and minimum
marker thresholds. The reality of limited biological valid-
ity in the use of microarrays to call copy number vari-
able regions is concerning for this area of research that
may hold exceptional promise in clinical applications
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[20]. The need for best practices in the workflow for
CNV calling protocols has never been more essential.

This study is aimed at assessing putative CNV calls made
using the Affymetrix® Human SNP 6.0 Array™ using four
CNV calling programs: PennCNV [21], Affymetrix® Geno-
typing Console™ [22], Partek” Genomics Suite™ (Partek Inc.,
St. Louis, MO, USA), and Golden Helix SNP and Variation
Suite™ (Golden Helix, Bonzeman, MT, USA). Using individ-
uals of known relatedness, we have identified overlapping
copy number variants across the four algorithms. Using the
dataset generated, we have assessed the relative sensitivity
of each of the four methods from the following compari-
sons: between unrelated individuals, between parents and
offspring, and between monozygotic twins, that are known
to share 0%, 50%, and 100% genetic relatedness, respect-
ively. We argue that the most biologically relevant CNVs
will be expected to follow this relationship, with the excep-
tion of de novo events. The results showed that overall,
Affymetrix® Genotyping Console™ identified the most differ-
ences between unrelated individuals, while Partek® yielded
the most similarity between identical twins. On average,
PennCNV called CNVs that were comparable to Affyme-
trix® Genotyping Console™ across unrelated individuals and
CNVs that were similar to the Partek® results. Assessments
using Golden Helix did not follow the trends expected from
the known genetic relatedness of individuals. We argue that
a combination of three programs (Affymetrix® Genotyping
Console™, Partek, and PennCNV) may be optimal to iden-
tify biologically relevant CNV calls due to their ability to re-
solve copy number variations across different biological
relatedness.

Methods

This study received ethics approval by the University of
Western Ontarios Committee on Research Involving
Human Subjects. Written informed consent was obtained
from all participants. A total of 16 genomic DNA samples
were isolated from whole blood representing the study par-
ticipants that included six pairs of MZ twins (three female
pairs and three male pairs) and two sets of parents for two
of the twin pairs (r = 16). The six twin pairs ranged in age
from 20 to 53 years at the time of sample collection. Gen-
omic DNA was extracted from whole blood using the Per-
fectPure™ DNA Blood Kit following the manufacturer’s
protocol (Invitrogen, Carlsbad, CA). Whole genome micro-
array analysis was performed using the Affymetrix®
Genome-Wide Human SNP Array 6.0™ at the London Re-
gional Genomics Center (London, ON) following the man-
ufacturer’s protocol. Sixteen arrays (one array per sample)
were processed and analyzed as a single batch and scanned
to produce CEL files. The CEL files were used to generate
CNV calls on all 16 individuals using four programs: Affy-
metrix® Genotyping Console 4.1.1™ (AGC), Partek® Genom-
ics Suite™ (PGS) PennCNV (PC), and Golden Helix® SVS
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Suite 7.0™ (GH). In Affymetrix® Genotyping Console, we
used both the Birdsuite package (version 2) and the Canary
algorithm for CNV detection. Birdseye, which is found in
Birdsuite, was used for the detection of rare CNVs via a
Hidden Markov Model (HMM) and Canary was used to
call copy number state in genomic regions with known
copy number polymorphism. In Partek’, HMM Region De-
tection using default parameters was selected. In PennCNV,
the default HMM algorithm was selected. In Golden Helix”
we used the CNAM optimal segmenting algorithm. HMM-
based algorithms use prior probabilities of copy number
states in conjunction with array-derived normalized fluores-
cent intensity values to call the most likely copy number
state in a given genomic region. The copy number states
determined by HMM are discrete and they include 0, 1, 2,
3, and 4. On the other hand, genomic segmentation scans
two adjacent regions of the genome to find differences in
copy number using two specific t-tests. CNAM optimal
segmenting uses genetic marker map information alongside
log2 ratios to discover regions in which log2 ratios vary sig-
nificantly between adjacent segments. We used the univari-
ate method of optimal segmenting which segments each
sample in the study separately. Canary, which was used in
Affymetrix Genotyping Console, calculates CNP copy num-
ber state for over 1,100 regions of known copy number
polymorphism (frequency in the population greater than
one percent).

The user-defined analytical parameters were kept consist-
ent across the analysis. Specifically, the HapMap 270 6.0
Array reference was used as a reference file and variants
were identified as DNA regions, which were called as copy
number state of 0, 1, 3, or 4+ covering a minimum of 10
consecutive markers on the array. Only variants greater
than 1 kb in size were included in subsequent analysis. The
CNV calls made by each of the four software programs
were merged with adjacent CNV calls that may represent
the same CNV event. The criteria used to merge were 1)
CNVs had to be adjacent on the same chromosome (no
other CNV call between them); 2) CNVs had to share the
same gain/loss status; and 3) adjacent calls were <20% of
the total length, that is, if there were three consecutive gen-
omic segments A, B and C, where A and C are both losses
and B is unchanged, we divided the length of the gap B by
the length of A + B + C. If this fraction was <20%, then we
merged A + B+ C as a single CNV call If there were mul-
tiple consecutive CNVs, each with 20% or less length be-
tween one and all of the others, then we extended the
formula to the next CNV and merged all of the CNVs into
one event. When multiple smaller CNVs were merged into
one large CNV event, we identified the event as a merged
CNV. We then labeled our newly merged CNVs and any
CNVs that remained unmerged as either “CNV-Gain” or
“CNV-Loss” within the calls from all four software pro-
grams in all individuals.
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To compare CNV calls made by different software
programs, we used a 50% reciprocal overlap (RO) criter-
ion to compare the calls made within an individual from
the four software programs. The use of 50% RO for
comparing calls is consistent with other reports [23-25].
Two CNV events were considered to pass the 50% RO
criterion if at least half of the length of the first CNV
overlapped with the second CNV and vice versa. If the
50% RO criterion was met, the two events were then
considered to be the same event (called by different al-
gorithms but identified in the same individual) as long
as their call states also matched. We calculated the re-
ciprocal overlap (O) (=50% criteria) as follows:

Where x and y are both CNVs, L is length in base
pairs that the two CNVs (x and y) overlap, end indicates
the end base pair position of the given CNV, and start
indicates the start base pair position of the given CNV.

L
o4 =— -
Kend —Xstart + 1
L
O(B)

B Yend ~Vstart +1

CNVs met the >50% RO criteria if O(A) and O(B)
were both 250%. CNVs that did not meet this criterion
were considered to be different events.

Finally, the same RO definition (>50%) was used to
compare shared and unshared calls in a pairwise com-
parison between individuals in the following categories
of genetic relatedness: between MZ twins in a twin pair,
between parent and child, and between unrelated indi-
viduals. Following RO comparisons, we calculated the
average difference (d) within each group (where d is the
total number of unshared CNVs across the two com-
pared individuals, divided by the total number of CNVs
called across the two compared individuals). Specifically,
we looked at three comparisons within each group, that
is, three MZ twin comparisons, three parent—child com-
parisons and three unrelated pair comparisons. This cal-
culation was used to test the relationship within each
group in relation to their expected genetic relatedness.
To perform the reciprocal overlap formula, HD-CNV
was used with 50 as the identified RO merge criteria
[26]. The d value was averaged for each type of related-
ness in each individual software program. The results
were assessed to compare the effectiveness of each indi-
vidual algorithm in the identification of biologically rele-
vant CNVs.

Results and discussion

Supplementary Table S1 (see Additional File 1) shows
the total number of unmerged CNVs representing gains
and losses identified by each of the four software pro-
grams for 16 individuals using the same CEL files from
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Affymetrix® Human SNP 6.0 Arrays™. The 16 individuals
included in this analysis represent six pairs of MZ twins
and the two parents for twin pairs 2 and 3. The results
show that the number of raw CNVs identified in each
individual varies depending on the program used. This
variability is apparent in the numbers of gains and losses
as well as the total numbers. Although AGC, PGS, and
PC identified similar numbers of CNVs for most individ-
uals (average of ~78 CNVs per individual), GH yielded
more CNVs in each individual (average of ~317 CNVs
per individual). While PGS yielded relatively more gains
than losses, the other programs (AGC, PC and GH)
yielded relatively more losses than gains. The differences
in the number of gains and losses called between pro-
grams have suggested that each method may highlight
some aspects of CNV calling but not others. We
attempted to gain an insight into this variability by
assessing the distribution of CNV calls in different
contexts.

First, we assessed the size distribution of CNVs called by
the four programs. We found that the four programs vary
in the number of CNVs called and that CNVs fall into dif-
ferent size categories (Figure 1). CNVs in the range of 1-
100 kb were most frequent in AGC calls (>80% of total
calls) and least frequent in PGS calls (<60% of total calls).
Similarly, the largest CNVs (1-10 Mb) were observed at
higher frequency in PGS calls (>10%) as compared to the
other three programs (range 1-5%). The chromosomal dis-
tribution of CNVs identified by the four programs showed
that GH calls more CNVs on all chromosomes as would be
expected with the higher number of calls overall (Figure 2).
Also, this number is closely followed by PGS calls particu-
larly on chromosome 2, 9, 14 and 15. Otherwise, the
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distribution of CNVs across chromosomes is proportional
to chromosome size, as expected.

Next, we assessed the overlaps in CNV calls made by
each of the four programs in the twelve monozygotic
twins (Figure 3). Most CNVs called by GH were not
shared by calls made by any other program. The low de-
gree of overlap suggests that the underlying assumptions
of CNV calling by GH are different from the other three
methods. Also, a significant number of CNV calls called
by the other three methods (AGC, PGS and PC) showed
overlaps. The CNV calls by PGS and AGC showed the
most overlap (59%), closely followed by the overlap be-
tween PC and PGS (54%), and between AGC and PC
(46%). CNV calls that overlapped between AGC, PGS,
and PC represented 27% of the total number of CNV
calls made by the three programs. When calls made by
GH were included, all four programs shared only 0.32%
(12/3713) of total CNV calls made. These results are
similar to other reports involving comparison of differ-
ent CNV calling programs [15,16].

We expected that differences and similarities in CNV
calls would follow the genetic relatedness of individuals.
For example, monozygotic twins would be expected to
share the most CNV calls, while CNV calls for two unre-
lated individuals will show the highest amount of diver-
gence. Similarly, pairs of individuals (parent and child) with
presumed genetic relatedness would be expected to fall be-
tween 100% (MZ twins) and 0% (unrelated individuals).
Figure 4 shows the degree of CNV difference d involving
randomly selected pairs of unrelated individuals (n=3),
parent—child pairs (n = 3), and MZ twins (n = 3) for each of
the four software programs. The estimate of difference (d)
for CNVs called by GH has no relationship to the genetic

Percentage

100% 7
90% -
80% A
70% A
60% -
50% -
40%
30% A
20% A
10% 1

0% - T T T

">1-10 Mb
#>500-1000 kb
®>100-500 Kb
"21-100 kb

Partek Affymetrix

PennCNV

Figure 1 Raw copy number variant calls by size. Size distribution of 3957 raw copy number variants across six pairs of monozygotic twins.
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Figure 2 Raw copy number variant chromosomal distribution. Distribution of 3957 raw copy number variants in 22 autosomes across six

relatedness between individuals. Conversely, CNV calls
made by the other three programs (AGC, PGS, and PC)
follow the known genetic relatedness. The largest difference
between unrelated individuals was identified by AGC (82%)
and followed closely by PC (80%). The smallest difference
found between MZ twins is reflected by PGS (18%)
followed by PC (21%). Interestingly, the parent—child

Figure 3 Overlap of copy number calls across programs. Venn
diagram showing CNV (post merging of adjacent calls into one
event) calls made by each software program across six pairs of
monozygotic twins (numbers in parenthesis), as well as the number
of CNVs shared in common between three software programs and
between four software programs (3 CNVs). The total number of
non-unique CNVs identified post-merge across four software
programs was 3713.

differences for the three methods PGS, PC, and AGC were
estimated to be ~56%, ~61%, and ~72%, respectively. Even
though the standard deviations associated with these means
(based on only 3 comparisons) are relatively large, the over-
all trends for the pairwise comparisons made by PGS, PC,
and AGC follow the expected pattern based on the known
genetic relatedness. These findings, in combination with
the relatively high degree of overlap in CNV calls among
these methods, support the likelihood that PGS, PC, and
AGC are identifying biologically relevant CNV calls. Calls
made by all programs provide a greater likelihood that the
underlying CNV may be real. At the same time, if one is
forced to choose only one method, our analysis based on
the ability to resolve varying degrees of genetic relatedness
favours the use of PC. The reason for this choice is based
on the fact that it has a relatively high d value for unrelated
individuals, a low d value between MZ twins, and an inter-
mediate degree of difference involving parent and child, as
is expected.

We compared four programs to call CNVs (AGC, PGS,
PC, and GH) from the same microarray data for 16 individ-
uals using the Affymetrix®* Human SNP 6.0 Array™ The
CNV calls are different across the four methods, but some
overlap was observed. It follows a number of other reports
in the literature that have also reported similar discrepan-
cies [27]. It is therefore not surprising that the results are
different across the four methods and particularly between
the three methods that use a HMM (AGC, PGS, and PC)
versus the method that uses a segmentation approach
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Parent/Child

Figure 4 Copy number call differences categorized by relatedness. Mean difference (d) £ SEM between three pairwise comparisons between
two unrelated individuals, parent and child, and monozygotic twins as determined by each software program (PennCNYV, Affymetrix: Affymetrix
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Genotyping Console, Partek: Partek Genomics Suite, GH: Golden Helix SNP and Variation Suite).

Identical Twins

(GH). Unlike HMMs that assume the means of different
copy number states to be consistent, optimal segmenting
delineates CNV boundaries with increased sensitivity.
Overall, we have found that some CNV calling methods
can appropriately distinguish known levels of genetic re-
latedness and some have more difficulty doing so. We also
note that some differences between related individuals, in-
cluding monozygotic twins would be expected due to som-
atic mosaicism; however, these differences would be
expected to be relatively small in number.

The results presented in this report suggest that
microarray experiments are prone to errors in CNV
calls. Further, our results are likely to include false posi-
tive as well as false negative calls found in our arrays.
Also, many of the CNV databases populated with en-
tries over the past half-decade may include results that
have not been confirmed [7,27-29]. In fact, research in-
volving CNV calling from microarray results would
benefit from better microarray technologies, better al-
gorithms for CNV calling and better methods for inde-
pendent confirmation.

All steps in a microarray experiment, from the isolation
of DNA from tissue samples to the calling of CNVs from
CEL files, are points at which error can be introduced.
These and other confounding factors could affect the ac-
curacy of biologically-significant CNV detection. Inferring
copy number from array data is notoriously plagued with
high false-positive rates that may vary depending on the al-
gorithm used [27]. Given the clinical implications for accur-
ate CNV detection [19] as well as the introduction of
ascertainment bias into future studies via microarray de-
sign, algorithm parameters, and database entries [30,31], it
is necessary to identify well-performing CNV calling
programs.

Conclusions

The results presented here offer a number of insights
with respect to the total number of CNVs across individ-
uals including gains and losses, program-specific distri-
butions of CNV size, and CNV distribution across
chromosomes. As expected, the number of CNVs was
related to the size of the chromosome. The major obser-
vation from the collective results is that the number of
CNVs identified by Golden Helix (GH) software was
much higher than the number called by the other three
programs (AGC, PC, PGC). Also, Golden Helix identi-
fied vastly different CNVs when compared to those iden-
tified by Affymetrix® Genotyping Console™ (AGC),
Partek® Genomic Suite (PGS), and PennCNV (PC). Ex-
cluding GH as an outlier, AGC yielded more CNV calls
than PGS and PC. As expected, AGC, PGS, and PC
yielded a relatively large number of overlapping CNVs.
These results are consistent with a number of reports in-
cluding Pang et al. [23].

Further assessment of the four CNV calling methods
was considered in the context of similarities and differ-
ences involving individuals of differing genetic related-
ness. As it stands, three of the four methods met such
expectations to different degrees. The results offer two
conclusions. First, overlapping CNV calls by three of the
programs (AGC, PGS, and PC) will offer the highest
likelihood of discovering biologically relevant calls as
compared to any other group of the four programs used
in this report. The combination of AGC and PC identi-
fied the most differences among unrelated individuals
whereas PGS and PC showed the least differences be-
tween MZ twins. The results from GH showed a higher
number of CNVs than would be expected and also did
not follow the expected pattern when groups of known
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relatedness were compared. For this reason, we do not
recommend GH and suggest that further research
should explore the unexpected profile generated from
the software. Secondly, the PC calls best reflect the ex-
pectations at all three levels involving unrelated individ-
uals, parent—child, and MZ twins. Our results and
conclusions support other groups, which have found
that without independent validation using bench con-
firmation techniques such as qPCR, CNVs calls should
not be assumed to be truly valid variants [16,32]. Finally,
we suggest that incorporation of family data will help in
improving the quality of CNV calls alongside the use of
multiple CNV calling methods.

Availability of supporting data

The data set supporting the results of this article is avail-
able in the Gene Expression Omnibus (GEO) repository,
[GSE33598, http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE33598] [33].
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