
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-13-2015 12:00 AM 

Examining the Nucleotide Preference of the Linker Domain in Examining the Nucleotide Preference of the Linker Domain in 

Engineered Tev-mTALENs Engineered Tev-mTALENs 

Brendon C. McDowell 
The University of Western Ontario 

Supervisor 

Dr David Edgell 

The University of Western Ontario 

Graduate Program in Biochemistry 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science 

© Brendon C. McDowell 2015 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Biochemistry Commons, and the Biotechnology Commons 

Recommended Citation Recommended Citation 
McDowell, Brendon C., "Examining the Nucleotide Preference of the Linker Domain in Engineered Tev-
mTALENs" (2015). Electronic Thesis and Dissertation Repository. 3195. 
https://ir.lib.uwo.ca/etd/3195 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3195&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=ir.lib.uwo.ca%2Fetd%2F3195&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/111?utm_source=ir.lib.uwo.ca%2Fetd%2F3195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/3195?utm_source=ir.lib.uwo.ca%2Fetd%2F3195&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


EXAMINING THE NUCLEOTIDE PREFERENCE OF THE LINKER DOMAIN IN 

ENGINEERED TEV-MTALENS 
 

(Thesis format: Monograph) 
 
 
 

by 
 
 
 

Brendon C McDowell 
 
 
 
 

Graduate Program in Biochemistry 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of  

Master of Science 
 
 
 
 

The School of Graduate and Postdoctoral Studies 
The University of Western Ontario 

London, Ontario, Canada 
 
 
 
 

© Brendon C McDowell 2015 

 



 

ii 

 

Abstract 

Tev-mTALENs are genome-editing nucleases which combine the nuclease and linker 

domains of I-TevI with the DNA-binding domain of a TAL effector.  The linker domain 

interacts with a portion of the Tev-mTALEN target site called the DNA Spacer, 

facilitating DNA cleavage.  Linker-DNA Spacer interactions are poorly understood but 

necessary for Tev-mTALEN activity.  I examined the DNA Spacer sequence 

requirements of the linker by assaying Tev-mTALEN activity on targets with mutated 

DNA Spacer sequences.  I also performed activity assays using Tev-mTALENs with 

mutations to the I-TevI linker domain.  My results indicate that the linker DNA Spacer 

sequence requirements are highly cryptic.  No single nucleotide requirements exist at any 

position in the DNA Spacer.  However, assays with mutant Tev-mTALENs have shown 

that small amino acid mutations to the linker domain can alter or relax the sequence 

requirements of Tev-mTALENs, increasing their targeting potential. 
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Chapter 1  

1 Introduction 

Genome engineering is the process of making specific, heritable modifications to the 

DNA of an organism (1, 2).  Genome engineering techniques can be used to introduce 

novel DNA sequences, generate deletions, or make corrections to the DNA of an 

organism (1).  Genome engineering has a broad range of academic, clinical, and 

industrial applications, but has been limited by the tools and methods available.  The 

earliest genome engineering technique involved transformation of the target cell with a 

donor DNA template, relying on homologous recombination between the donor DNA and 

the target chromosomal DNA (3, 4, 5).  This technique was first demonstrated in yeast, 

when a functional LEU2 gene was restored to a leu2- strain through transformation and 

integration of a LEU2-containing plasmid (3).  Though efficient in yeast, this technique is 

extremely inefficient in mammalian cells (4, 6, 7, 8), which do not readily perform 

homology-directed repair outside of cell division.  The low success rate of conventional 

recombination techniques is a limiting factor for genome engineering in mammalian 

cells.  Engineered viruses (9, 10, 11, 12, 13, 14) and transposons (15, 16, 17) can also be 

used to insert novel DNA into a target genome; however, these methods are limited by 

the precision of their insertion and the ability to re-engineer their targeting specificity (18, 

19).    In 1997, two papers examining the effects of over-expressed Translation 

Elongation Factor 1α on fruit fly longevity had to be retracted after it was shown that the 

transposon-delivered gene was not being expressed in the modified flies (18).  Viral 

delivery has been successfully used to treat X-linked Severe Combined 

Immunodeficiency by restoring a functional IL2RG gene to patients with the disease 

(19); however, several of the patients subsequently developed leukemia as a result of 

integration of the virus near proto-oncogenes (20, 21, 22).  Genome editing tools must 

therefore be both efficient, simple to engineer, and minimize the occurrence of potentially 

toxic off-target mutagenesis.   
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1.1 Site-Specific Nucleases for Precise Genome-Editing 

Over the past two decades, site-specific nucleases have become a tool of choice for 

targeted genome editing.  By directing nuclease-induced DNA damage to a specific target 

site, cellular DNA repair pathways can be stimulated, increasing the frequency of 

recombination or deletion events at that site (6, 23) (Figure 1.1).  Sequence-specific 

DNA-binding allows nuclease activity to be directed to the desired target site while 

limiting off-target binding and cleavage.  Minimizing off-target DNA cleavage is critical 

as it could potentially lead to undesired mutagenesis.  The potential utility of site-specific 

nucleases was first demonstrated in the 1980s with the enzymes HO and I-SceI.  These 

enzymes, members of the meganuclease family, were shown to efficiently stimulate 

recombination in several yeast genes when their respective recognition sites were 

integrated into the target genes (23, 24).  These experiments provided the proof-of-

principle for nuclease-mediated genome-editing by showing that targeted DNA damage 

could stimulate mutagenic repair several orders of magnitude more efficiently than 

unassisted recombination techniques (6, 23, 24).  However, the complex nature of the 

overlapping DNA binding and cleavage activity of meganucleases makes them laborious 

to re-engineer for non-wildtype targets.  The experiments performed with HO and I-SceI 

required prior integration of their wildtype target sites into the target genes in yeast.  In 

order for nuclease-mediated genome editing to be feasible, enzymes must be easily re-

engineered to target a wide variety of non-engineered, non-integrated target sequences.  

Efforts are being made to improve the breadth of meganuclease targeting through 

directed mutagenesis (25, 26), but difficulty in re-engineering target site specificity is still 

a limiting factor in their application. 
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Figure 1.1: Nuclease-Mediated Genome Editing 

Nuclease-mediated genome editing involves precisely targeting DNA damage in order to 

stimulate cellular repair pathways.  End-recession followed by NHEJ (non-homologous 

end joining) will result in a loss of sequence information, ideal for targeted gene 

knockouts.  If a donour template is provided homology-directed repair can lead to 

insertion of new or corrected sequence information. 
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The practical barrier to nuclease targeting potential was overcome with the development 

of engineered, site-specific nucleases (27).  Engineered nucleases are proteins that 

combine the DNA-binding domain and nuclease domain of two different proteins, 

allowing nuclease activity to be directed to target sites specified by the DNA-binding 

domain.  Engineered nucleases require components that are modular – able to retain their 

individual functions when fused to non-native domains.  If a nuclease or DNA-binding 

domain is heavily influenced by neighboring domains, fusing it to a non-native domain 

will likely impair or alter its function in ways that are difficult to predict.  The first family 

of broadly-targetable engineered nucleases were the Zinc Finger Nucleases (ZFNs).  

Described in 1996 (27), ZFNs combine the nuclease domain of the type IIs restriction 

enzyme, FokI, with a DNA-binding domain consisting of several tandem zinc finger (ZF) 

subunits (Figure 1.2A).  Unlike the complex DNA-binding mechanics of the 

meganucleases, each zinc finger interacts with 3 base pairs (28).  A DNA-binding domain 

with multiple zinc fingers will target a sequence that corresponds to the combined 3 base 

specificity of each subunit (Figure 1.2B and 1.2F)(29, 30).   Because the activity of the 

FokI nuclease domain is modular, it remains active when fused to non-native DNA 

binding domains such as a zinc finger array (27, 31, 32).  The FokI nuclease domain 

alone possesses no specific base requirements for DNA cleavage (33), allowing ZFNs to 

cleave any DNA substrate to which the ZF domain binds.  FokI functions most efficiently 

as a dimer (34), necessitating the design of two ZFNs that position their respective FokI 

domains at the target (Figure 1.2F)(35), leading to dimerization and subsequent cleavage.  

Despite the simplicity of their design, ZFN targeting is complicated by the fact that the 

base-specificity of individual zinc finger subunits is not entirely modular.  Interactions 

between adjacent zinc finger subunits frequently leads individual subunits to take on new 

base-specificities, resulting in the failure of many ZFN pairs to effectively target their 

intended substrate (36, 37).  Of further concern is the strictness of zinc finger specificity 

– zinc finger arrays are tolerant of mismatches in their target sites (1, 38).  Efforts are 

underway to predict context-dependencies (39) and alternate methods of assembling zinc 

finger arrays have been developed in order to minimize the occurrence of off-target 

breaks (40).  In spite of the complications in ZFN targeting, clinical trials 
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Figure 1.2: FokI-based Engineered Nucleases 

(A)  Structural layout of a ZFN.  (B) Crystal structure of three adjacent ZF domains 

interacting with a DNA target.  (C)  Structural layout of a TALEN.  (D)  Crystal structure 

of the central DNA-binding domain of TAL effector PthXo1 interacting with its DNA 

target, each RVD-containing repeat is coloured separately.  (E)  Example of a cytosine-

binding TAL effector repeat with RVD sequence HD.  Residue D13 is shown engaging in 

a hydrogen bond and a van der waals interaction with the cytosine base.  (F)  Basic 

schematics of dimeric ZFN and TALEN targeting.  (A-E) Crystal structures were adapted 

from Mak et al (41), Elrod-Erickson et al (42), and Wah et al (43). 
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are already underway to test the efficacy of ZFNs in generating HIV-resistant stem cells 

(44).   

Another family of FokI-based engineered nucleases known as TAL effector nucleases 

(TALENs) have gained attention as genome-editing reagents (45).  TALENs replace the 

zinc finger domain of ZFNs with a DNA-binding domain from virulence proteins known 

as Transcription Activator-Like (TAL) effectors (Figure 1.2C) (45).  Originally 

discovered in the bacterial plant pathogen, Xanthomonas, TAL effectors are secreted into 

the host cell and localized to the nucleus, where they bind specific plant promoters, 

activating expression of genes that increase susceptibility to infection (46, 47).  A TAL 

effector DNA-binding domain consists of a series of 33-35 amino acid DNA-binding 

helix-loop-helix repeats, each of which interacts with a single target DNA base (Figure 

1.2D)(41, 47, 48).  The repeats are largely identical, with the exception of the 12th and 

13th amino acids located in the inter-helical loop.  These variable amino acids, termed the 

repeat variable di-residue (RVD), target one DNA base to determine the specificity of 

each TAL repeat (41, 48, 49).  Although many RVDs occur naturally, artificial TAL 

domains are typically assembled using RVDs with the amino acid sequence HD to target 

cytosine, NG to target thymine, NI to target adenine, and NN for targeting guanine (41, 

45, 48, 49).  Figure 1.2E shows the interaction of an HD RVD repeat with a target 

cytosine.  This one-to-one correspondence of TAL effector RVD repeats to DNA base 

makes the theoretical basis of TALEN targeting extremely simple, and functional 

TALENs can be designed to target sequences as long as 30 nucleotides (45, 51).  

Conventional TAL effectors typically require a thymidine immediately 5’ to the target 

sequence (49, 52); however, the discovery of non-xanthomonas TAL effectors as well as 

mutation of certain amino acids in the N-terminal region of the protein have led to novel 

TAL domains which do not have this requirement (52, 53, 54).  Like ZFNs, TALENs 

utilize the FokI nuclease domain to catalyze DNA hydrolysis, necessitating the design of 

two TALEN monomers that will align their active sites over the desired target (Figure 

1.2F)(45).   

The most recently developed family of site-specific nucleases to be used for genome 

editing are the clustered regularly interspaced short palindromic (CRISPR)-associated 
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(Cas) nucleases (55).  The CRISPR-Cas system is a form of adaptive bacterial immune 

system that protects against invasive foreign DNA by recognizing and cleaving specific 

sequences (56).  Unlike ZFNs and TALENS, which achieve sequence-specificity through 

protein domains, the CRISPR-Cas system uses a guide RNA (gRNA) with 20 base pairs 

of complementarity to the target sequence (56).  The gRNA binds to the complementary 

target sequence, stimulating cleavage by the Cas9 nuclease.  One significant constraint on 

CRISPR-Cas targeting is the requirement for a short motif (NGG), known as a 

protospacer adjacent motif (PAM), located immediately 3’ to the target sequence (55, 57, 

58).  The PAM sequence must be located adjacent to the target sequence in order to 

facilitate Cas9 nuclease activity.  A further constraint on CRISPR-Cas targeting is the 

need for a G or GG at the 5’ end of the target site (58).  This is not a requirement of 

CRISPR-Cas biology but instead the promoters used to transcribe gRNAs (58).  The 

CRISPR-Cas system has generated great interest as a genome-editing system because of 

the incredibly facile nature of gRNA targeting.  As long as the 3’ PAM and 5’ G/GG are 

present, nearly any sequence can be targeted if a complementary gRNA is designed.  As 

promising as the CRISPR system appears, there are concerns regarding the systems 

proneness to off-target cleavage (59, 60, 61, 62, 63).  Studies in human cells have shown 

that the CRISPR-Cas system can generate a substantial degree of off-target mutagenesis, 

with many sites differing by up to 5 bases from the gRNA being readily bound and 

cleaved (59).  In spite of this, promising efforts have been made to reduce off-target 

mutagenesis by the CRISPR-Cas system, including the use of paired CRISPR nickases 

(64), or truncation of the complementary portion of the gRNA (65).  The unmatched 

simplicity of the CRISPR-Cas system has quickly made it a popular genome editing tool. 

1.2 I-TevI as an Alternative to the FokI Nuclease 

Each family of genome-editing nucleases possesses advantageous and disadvantageous 

properties in accordance with their biology.  One potential drawback of conventional 

ZFNs and TALENs is the non-specific activity of the dimeric FokI nuclease domain.  

While the lack of sequence-specificity means the nuclease domain does not impose 

targeting constraints, it also presents the risk of nuclease activity at off-target sites.  ZFNs 

and TALENs are designed to cleave when two monomers bind their separate target sites 
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and align their FokI domains to form a heterodimeric complex (Figure 1.2F); however, a 

single DNA-bound FokI monomer can recruit a second monomer from solution and form 

a functioning homodimer or heterodimer (66, 67, 68, 69).  These can lead to potentially 

toxic cleavage at off-target sites where only a single protein is bound to the DNA.  

Mutations can be made to the FokI dimerization interface to reduce the occurrence of 

homodimers (66, 67, 68, 69), but these may reduce the effectiveness of the enzyme (70) 

and do not eliminate the occurrence of heterodimers.  Recent work by the Edgell lab has 

shown that the common, FokI-based nucleases prevalent in genome-editing literature can 

be replaced by monomeric, cleavage site-specific alternatives (71, 78).  These enzymes 

replace the commonly used FokI with the nuclease domain of the protein I-TevI. I-TevI, 

found in phage T4, is a group I intron-encoded GIY-YIG homing endonuclease (72, 73).  

The GIY-YIG homing endonucleases are named for their characteristic ~100 amino acid 

nuclease domain containing the “GIY” and “YIG” consensus motifs (72).  In phage T4, I-

TevI binds to and cleaves a specific sequence in the thymidylate synthase (td) gene (74).  

Through this process, I-TevI mediates the invasion of its encoding intron into the td gene 

(74, 75).  I-TevI consists of three domains – an N-terminal GIY-YIG nuclease domain, a 

central linker domain containing an atypical zinc finger motif, and a C-terminal DNA-

binding domain (76) (Figure 1.3A).  The I-TevI nuclease domain cuts the DNA substrate 

at a defined CA↑AC↓G motif upstream of the DNA-binding site (arrows indicate the sites 

of lower and upper strand cleavage)(74, 77).  Analyses with mutant DNA substrates have 

shown that both the 5’ C and 3’ G residues of the cleavage motif are essential for 

efficient I-TevI activity (77, 78, 79).   Substitutions within the central 3 nucleotides of the 

cleavage motif are generally tolerated, with a few exceptions (78, 79).  The zinc finger-

containing linker domain wraps around the minor groove of the DNA spacer sequence, 

located between the CNNNG cleavage motif and the binding site (80).  Through this 

interaction, the linker positions the nuclease domain over the cleavage motif, facilitating 

I-TevI activity.  The zinc finger of the linker domain acts as a molecular ruler, allowing I-

TevI to discriminate between CNNNG motifs based on their distance from the binding 

site (76, 81, 82, 83, 84).  The C-terminal portion of I-TevI includes an α-helix and a 

helix-turn-helix motif and acts as the primary DNA-binding domain (80, 81).  Similar to 

FokI, the DNA-binding and nuclease activity of I-TevI are physically separate (71, 78, 
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79, 85), allowing the nuclease domain to be fused to novel DNA-binding domains and 

retain its activity (71, 78, 79).  However, I-TevI possesses two potentially advantageous 

properties compared to FokI.  First, I-TevI functions as a monomer, meaning that only a 

single artificial nuclease has to be designed for each targeted sequence (71, 78, 79, 86).  

Second, is the requirement for an appropriately positioned CNNNG cleavage motif (71, 

77, 78, 79).  The requirement for the short cleavage motif offers a compromise between 

the lengthy recognition sites of the meganucleases and the completely non-specific 

activity of the FokI nuclease domain.  A small degree of nuclease sequence-specificity 

should not be a major targeting constraint, but will reduce the likelihood of off-target 

cleavage when compared to the non-specific FokI domain.   

1.3 I-TevI-based Engineered Nucleases 

The genome-editing potential of the I-TevI nuclease domain was first demonstrated with 

the development of Tev-zinc finger endonucleases (Tev-ZFEs)(71) and Tev-

meganuclease fusions (Mega-Tevs)(71, 79).  These enzymes consist of the nuclease and 

linker domains of I-TevI fused to a C-terminal zinc finger domain or a catalytically 

inactive meganuclease, respectively (71, 79).  Both families of enzymes have target site-

specific activity comparable to the conventional FokI-based nucleases (71, 79).  Activity 

assays with mutant DNA substrates show that these I-TevI-based nucleases require both a 

compatible DNA-binding sequence and an appropriately positioned CNNNG motif for 

efficient cleavage – indicating that I-TevI confers an additional level of target site-

discrimination which FokI does not.  Following the development of Tev-ZFEs and Mega-

Tevs, it was shown that the I-TevI nuclease was also compatible with TAL effector 

DNA-binding domains (78, 87).  These enzymes (referred to as Tev-mTALENs in this 

report) combine the N-terminal nuclease and linker domains of I-TevI with a C-terminal 

TAL effector DNA-binding domain (Figure 1.3B).  Tev-mTALENs combine the 

monomeric, site-specific activity of I-TevI with the simple, versatile targeting of TAL 

effector domains.   

Tev-mTALEN targeting involves three distinct interactions between the modular 

domains of the enzyme and their corresponding DNA targets – the interaction of the I-

TevI nuclease domain with the CNNNG cleavage motif, the interaction of the central I-  
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Figure 1.3: I-TevI and Artificial Tev-mTALEN Nucleases 

(A) Structure of the GIY-YIG homing endonuclease, I-TevI.  Two separate crystal 

structures of I-TevI (80, 88) have been combined to show the basic structural layout of I-

TevI when it is bound to its substrate.  (B) Tev(N169)-PthXo1(T120), an example of a 

Tev-mTALEN nuclease.  Partial crystal structures of I-TevI (80, 88) and the TAL 

effector PthXo1 (41) have been combined to show the modular structure of a Tev-

mTALEN nuclease.  Shown below is the wildtype TP15 target site.  Each of the three 

domains in the Tev-mTALEN interacts with a corresponding portion of the target site. 
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TevI linker domain with the DNA spacer, and the interaction of the C-terminal TAL 

effector domain with the TAL binding site (Figure 1.3B).  The interactions of the TAL 

domain and the I-TevI nuclease domains with their targets are well characterized, but the 

interaction of the linker domain with the DNA spacer is poorly understood.  Previous 

work with native I-TevI demonstrated that many target sites with non-wildtype DNA 

spacer sequences are not cleaved efficiently; however, no single DNA spacer nucleotide 

was identified as critical for activity (89).  Jason Wolfs of the Edgell Lab has generated 

similar results with Mega-Tevs.  Based on these data, it is likely that the DNA spacers of 

potential Tev-mTALEN target sites will not support efficient cleavage.   

1.4 Hypothesis 

Without a predictive model of DNA spacer compatibility, selecting robust Tev-mTALEN 

target sites will be imprecise.  I hypothesized that the I-TevI linker domain has 

preferences for certain nucleotides in the DNA spacer, and that these preferences are 

important for Tev-mTALEN activity. To identify any Tev-mTALEN preferences for 

specific nucleotides in the DNA spacer of the target site, I performed assays using a Tev-

mTALEN nuclease referred to as the N169-T120 construct.  In vitro and in vivo assays 

were performed to confirm the modular function of the I-TevI nuclease, probe the 

sequence requirements of the I-TevI linker domain for its spacer DNA target, and explore 

mutations to the I-TevI linker as a way of broadening Tev-mTALEN targeting potential. 
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Chapter 2  

2 The I-TevI Nuclease Domain Retains its Activity in a 
Modular Fashion when Fused to a TAL Effector Domain 

In order for the I-TevI nuclease domain to be broadly applicable for genome-editing 

applications, it must retain activity when fused to non-native DNA-binding domains.  

This section describes experiments that assess whether the I-TevI nuclease domain 

retains its CAACG site-specific activity when fused to the non-native TAL binding 

domain. 

2.1 Tev-mTALENs Retain the Cleavage Motif Requirements 
of Native I-TevI Enzyme 

To determine if the I-TevI nuclease domain retains its function when fused to a TAL 

effector domain, in vivo yeast reporter assays were performed to measure the activity of 

the N169-T120 Tev-mTALEN construct on several control substrates.  The N169-T120 

construct (Figure 1.3B) is named for its two components, the N-terminal 169 amino acids 

of I-TevI (ending in asparagine 169), and the TAL effector PthXo1 lacking residues 1-

119 of the N-terminus and residues 1319-1373 of the C-terminus, such that the TAL 

domain beings at threonine 120 and ends at proline 1318.  The N169 fragment of I-TevI 

was selected because it comprises a minimal functional portion of I-TevI that excludes all 

known amino acids that make base-discriminant contacts to DNA, while still including 

the important distance-determining zinc finger of the linker domain.  The T120/P1318 

truncation of PthXo1 contains the essential RVD-containing DNA-binding domain and 

nuclear localization signals, while excluding the N-terminal type III secretion signal and 

C-terminal activation domain of the native protein.  The N169-T120 construct activity 

was tested on a DNA target referred to as the TP15 (Figure 1.3B).  This target site 

consists of, in the 5’ to 3’ direction, - the wildtype CAACG I-TevI cleavage motif, 15 

nucleotides of the td DNA spacer sequence, and the binding sequence of the PthXo1 TAL 

effector.   Work performed previously by Ben Kleinstiver showed that 15 nucleotides is 

the optimal DNA spacer length for N169-T120 construct activity (78).  The yeast β- 
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Figure 2.1: In Vivo Yeast Reporter Assays with the N169-T120 Tev-mTALEN 

Construct 

Yeast β-Galactosidase reporter assays were performed using the N169-T120 Tev-TAL 

construct and zinc finger nuclease, Zif268.  Activity values are measured in Miller units 

normalized to the activity of the Tev-TAL construct on the TP15 substrate.  (A)  Control 

assays with the N169-T120 and Zif268 constructs.  Each nuclease was screened against 

the TP15 and ZF target sites.  (B) Tev-TAL target site discrimination assays.  Tev-TAL 

activity was measured against the wildtype TP15 target and three TP15 variants with one 

or both of the critical cleavage motif nucleotides mutated (TAACA/TAACG/CAACA).  

Activity was also measured against the empty target vector (pCP5.1), ZiF268 target (ZF), 

and mega-Tev target site (TO15). (A + B) All assays were performed using three 

biological replicates, each with 3 technical replicates.  Error bars indicate standard 

deviations. 
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Galactosidase assay reports on nuclease activity through repair of a LacZ gene interrupted 

by the nuclease target site.  The LacZ gene is also is partially duplicated, so cleavage of 

the target site by the nuclease stimulates single-strand annealing DNA repair, restoring a 

functional LacZ gene that is measured by β–Galactosidase degradation of the colorimetric 

substrate, ONPG.  Initial β-Galactosidase reporter assays were performed with the N169-

T120 construct and control Zif268.  The Zif268 enzyme is a dimeric FokI-based ZFN.  

Activity measurements were normalized to either the activity of the Zif268 construct on 

its ZF substrate (Figure 2.1A) or the Tev-mTALEN construct on the TP15 substrate 

(figure 2.1B).    Zif268 and N169-T120 activity were each measured against the ZF and 

the TP15 target sites (Figure 2.1A).  Against the TP15 substrate, the Tev-mTALEN 

construct cleaved with an efficiency greater than that of the ZFN control on its respective 

target site.  This confirms that the I-TevI nuclease domain remains functional in the 

presence of the non-native TAL effector domain and, importantly, with activity 

comparable to that of the commonly used FokI nuclease.  To determine if the Tev-

mTALEN retains the requirement for the CAACG cleavage motif, activity was measured 

on three TP15 target sites with mutated cleavage motifs – TAACA, CAACA, and 

TAACG (Figure 2.1B).  Tev-mTALEN activity on all three cleavage site mutants was at 

background levels.  These results confirm that in addition to being active in vivo, Tev-

mTALENs possess the same strict cleavage site requirements of the native I-TevI 

enzyme. 

Targeting of Tev-mTALENs should be determined by the TAL DNA binding domain. To 

determine if the I-TevI nuclease and linker domains affect DNA targeting, Tev-mTALEN 

activity was measured on the TO15 substrate – a target site that replaces the PthXo1 TAL 

binding site with that of I-OnuI, a meganuclease. The PthXo1 TAL site and the I-OnuI 

site are different lengths (25bp versus 22bp) and share 47.06% identity. The TO15 

substrate retains the CAACG cleavage motif and spacer DNA of the TP15 substrate.  

Activity on the TO15 substrate was at background levels, indicating that the I-TevI 

nuclease and linker domains do not influence targeting by the TAL domain (Figure 

2.1B). 
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2.2 Tev-mTALENs Nick the Target DNA at the Same Top 
and Bottom Strand Sites as the Native I-TevI Enzyme 

In vitro cleavage site-mapping was performed to determine if the Tev-mTALEN 

construct nicks the CAACG cleavage site at the same bottom and top strand positions as 

native I-TevI.  The N169-T120 was His-tagged at the C-terminal end, over-expressed in 

E. coli, and purified using Ni2+ affinity and size exclusion chromatography.  The identity 

of the most prominent polypeptide in the eluted sample was confirmed by MALDI 

analysis (Figure 2.2).  Cleavage assays were performed to determine if the construct is 

active in vitro.  Purified N169-T120 protein was incubated with plasmid pSP72 

containing the TP15 target site, as well as empty pSP72.  The reactions were resolved on 

agarose gel and the extent of plasmid linearization was compared between the two 

samples.  Varying reaction conditions were tested in order to maximize cleavage of the 

TP15 target plasmid while minimizing cleavage of the empty plasmid.  Reactions were 

initially performed in standard Tev-mTALEN reaction buffer (Chapter 6.3, Materials and 

Methods) with protein-substrate ratios of 1:1 and 2:1 (Figure 2.3).  Reactions were 

incubated at 37⁰C for 20 minutes and samples were taken at 3, 7, 15, and 20 minutes 

(Figure 2.3).  With 2-fold excess protein, the majority of the TP15 was linearized (88%) 

after 20 minutes, however, the empty pSP72 vector was also linearized to 17%.  Using a 

2-fold excess of protein and a 20 minute reaction time, cleavage assays were then 

performed with salt levels ranging from 25mM-150mM and with KCl or the standard 

NaCl of NEBuffer2 (Figure 2.4).  Plasmid linearization was greatest at lower salt 

concentrations, with a sharp decrease in activity occurring from 100mM to 150mM.  

Compared to NaCl buffers, KCl buffers increased TP15 linearization to 100% for all but 

the 150mM buffer, however pSP72 linearization was also increased substantially (nearly 

75% with 25mM KCl buffer).  None of the salt variant buffers improved on the activity 

of standard NEBuffer 2 (50mM NaCl).  In order to reduce promiscuous cleavage, 

cleavage reactions were performed with the non-specific DNA competitor substrate, poly 

dI/dC (Figure 2.5).  20 minute reactions were performed with 2-fold molar excess of 

protein with or without 20ng/µl poly dI/dC.  Addition of poly dI/dC reduced TP15 

linearization (77% vs 93%) but also reduced activity on the empty pSP72 vector (1% vs 

25%).   Cleavage reactions were performed using poly dI/dC as shown in Figure 2.5 and 
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the linearized TP15 product was isolated via gel extraction and sent for run-off 

sequencing using bottom and top strand mapping primers (Figure 2.6A).  The ABI traces 

from the sequencing reaction of the linearized TP15 product (Figure 2.6B) show that the 

N169-T120 Tev-mTALEN nicks each strand of the cleavage motif at the same positions 

(CA↑AC↓G) as the wild-type I-TevI on its cognate DNA substrate. 

2.3 Summary 

In vitro and in vivo assay data show that the I-TevI nuclease domain retains its function 

when fused to a TAL DNA-binding domain.  In the yeast-based assay, Tev-mTALEN 

activity was comparable to that of the dimeric FokI-ZFN, suggesting that Tev-mTALENs 

can achieve cleavage efficiencies comparable to the more commonly used FokI-based 

engineered nucleases.  Yeast reporter assays and cleavage mapping have also shown that 

the I-TevI nuclease domain retains the strict CAACG site-specificity of native I-TevI.  

These data indicate that the I-TevI nuclease domain (along with the ancillary linker) is 

modular in function - making Tev-mTALENs a viable alternative to FokI-based 

TALENs. 
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Figure 2.2: Purification of the Tev-mTALEN Construct 

2-step purification of the Tev-mTALEN construct.  Cell lysate was first run over a Ni2+ 

column.  The purest samples were then eluted over a Superose 12 size exclusion gel 

column.  Identity of the Tev-mTALEN construct was confirmed by MALDI. 
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Figure 2.3: Cleavage Assays with Varying Protein:DNA Ratios 

Timecourse cleavage assays were performed using equimolar or 2-fold molar excess of 

enzyme to DNA.  Samples were taken and stopped at the time points indicated along the 

bottom.  Graphs show the percentage of plasmid linearized, as measured by gel imaging 

software. 
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Figure 2.4: Cleavage Assays with Varying Buffer Salt Concentrations 

20 minute endpoint cleavage assays were performed using varying concentrations of 

either NaCl or KCl in the reaction buffer.  Graphs show the average and standard 

deviation of 3 replicate reactions.  Graphs show the percentage of plasmid linearized, as 

measured by gel imaging software.   
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Figure 2.5: Cleavage Assays with Poly dI/dC as a Non-Specific Competitor 

20 minute endpoint cleavage assays with 2-fold molar excess of protein to DNA and 

50mM NaCl buffer in the absence or presence of the non-specific DNA substrate, 

polydI/dC.  Graphs show the average and standard deviation of 3 replicate reactions.  

Graphs show the percentage of plasmid linearized, as measured by gel imaging software.   
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Figure 2.6: Mapping of Tev-mTALEN Top and Bottom Strand Nick Sites 

(A)  Outline of the cleavage mapping process.  Bottom strand cleavage is mapped by 

synthesizing the top strand, which terminates at the nucleotide opposite the bottom strand 

nick site.  Top strand cleavage is mapped by synthesizing the bottom strand, up to the 

nucleotide opposite the site of top strand nicking.  (B) Sequencing traces from cleavage 

mapping.  ABI traces indicate that the sites of lower and upper strand nicking match the 

pattern of the wildtype I-TevI enzyme (CA↑AC↓G).  Note that the additional A residue at 

the 3’ end of each strand is a product of Taq polymerase extension. 
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Chapter 3  

3 Tev-mTALENs are Sensitive to the Identity of Several 
Nucleotides in the DNA Spacer 

Interaction of the I-TevI linker with the target DNA spacer is critical for Tev-mTALEN 

activity, and many DNA spacer sequences do not promote efficient cleavage (78).  An 

understanding of the nucleotide preferences of the I-TevI linker for its DNA spacer will 

allow for more accurate prediction of whether or not a putative target site can be cleaved 

efficiently.  To identify nucleotide positions in the DNA spacer that are important for 

Tev-mTALEN target site cleavage, I examined the effects of single base substitutions in 

the wildtype DNA spacer on Tev-mTALEN activity.  I also screened a library of Tev-

mTALEN target sites with a fully randomized DNA spacer sequence in order to enrich 

well-cleaved targets and identify trends in their nucleotide sequences. 

3.1 Effects of Single Nucleotide Substitutions in the DNA 
Spacer on Tev-mTALEN Activity 

To determine what positions in the DNA spacer sequence are important for cleavage 

activity, yeast reporter assays were performed to measure the activity of the Tev-

mTALEN against each of the 45 possible single-nucleotide DNA spacer mutations of the 

TP15 target site (Figure 3.1).  Nuclease activity on each of the mutant substrates was 

compared to that of the TP15 target in order to determine the mutations that impaired 

Tev-mTALEN activity.  Assay results show that the Tev-mTALEN is sensitive to 

mutations at several positions in the DNA spacer.  At position C1, substitution of A or T 

reduced activity to 14% and 33% respectively.  Substitution of a G increased activity to 

an average of 258%.  At position T2, substitution of any other base reduced activity, 

though an A was tolerated to a greater degree than a C or G.  Activity on the T2A 

substrate was 19%, while the T2C and T2G were cleaved at 6% and <1% respectively. At 

position C3, substitution of T consistently reduced activity to ~5%.  The C3A and C3G 

mutants were cleaved with 57% and 71% efficiency respectively.  Substitution of G5 to 

an A reduced activity by 50%.  At position T6 substitution of a C or G reduced activity to 

12% and substitution of an A reduced activity to 7%.  At position G8, substitution of A,  
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Figure 3.1: DNA Spacer Single Nucleotide Substitution Assays 

Yeast B-Galactosidase reporter assays were performed to measure Tev-TAL activity on 

each of the 45 possible single nucleotide TP15 spacer mutants.  Activity measurements 

are normalized to the activity of the N169-T120 construct on the TP15 substrate.  The 

wildtype nucleotide and spacer positions (with 1 being directly adjacent to the cleavage 

motif) are shown along the top, with nucleotide substitutions indicated along the bottom 

axis.  Average activity and error bars are based on three biological replicates each with 2 

technical replicates.  The thick dashed line indicates the average activity of the Tev-

mTALEN on the TP15, with small dashes indicating 1 standard deviation. 
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C, and T reduced activity to 25%, 39%, and 11% respectively.  At position A9, 

substitution of G reduced activity to 24%.  The A9C and A9T substrates were cleaved 

with 66% and 76% efficiency respectively.  Activity on the T14C substrate was 77%.  All 

other single base substitutions were tolerated.  Several mutant substrates were cleaved 

more efficiently than the TP15 – most noticeably the C1G and A4T, which were cleaved 

at 258% and 263% respectively.  These data show that the identity of several nucleotides, 

primarily within the first 9 positions of the DNA spacer sequence, are important for Tev-

mTALEN activity.  

3.2 In Vivo Screen of Tev-mTALEN Target Sites with a 
Randomized DNA Spacer Sequence 

While the assays performed on the DNA spacer single mutants provide insight into the 

nucleotide preferences of the linker, the effects of individual substitutions were examined 

in the context of a DNA spacer that had an otherwise identical sequence to that of the 

TP15 target. To determine if nucleotide context in the DNA spacer influences cleavage 

activity, I constructed a library of TP15 target site variants in which the DNA spacer 

sequence was completely randomized.   The DNA spacer library, referred to as the N15, 

was transformed into yeast.  Individual yeast clones were grown in 96 well plate format 

to isolate a single DNA spacer sequence per well.  Clones harbouring the target site 

plasmid were mated with the yeast strain expressing the Tev-mTALEN, and β-

Galactosidase reporter assays were performed in triplicate on a total of 753 clones from 

the random library (Figure 3.2A and B).  Each 96 well plate included a well with the 

TP15 target and a well with the Zif268 target to act as positive and negative controls 

respectively.  In each plate replicate, activity of the Tev-mTALEN on each of the N15 

clones was normalized to the positive control for the plate.  PCR was performed to 

amplify the target sequence from 62 non-active and 50 active clones, and the nucleotide 

content in the randomized DNA spacer region was analyzed by DNA sequencing (Figure 

3.2C).  N15 clones were considered active if the average activity of 3 replicates was not 

less than 2 standard deviations below the activity of the TP15 target.  Figure 3.3A shows 

the relative nucleotide frequency at each position of the DNA spacer for the sequenced  
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Figure 3.2: In Vivo Screen of Tev-mTALEN Randomized DNA Spacer Targets 

(A)  Schematic of a standard 96-well plate used to screen N15 DNA Spacer clones.  Each 

well (aside from A12 and B12) contains a unique clone from the N15 random DNA 

spacer library.  Wells A12 and B12 contain the TP15 and Zif268 target sites which act as 

positive and negative controls, respectively.  Activity on each substrate is measured in 

Miller units, determined by the intensity of the yellow tint in each well.  (B)  Average 

normalized activity for all 753 N15 library clones in order of increasing activity.  Clones 

that were sequenced are highlighted in red.  (C)  Sequences of all active and inactive 

clones.  Active clones are shown in order of increasing average activity from top to 

bottom. 
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Figure 3.3: Analysis of Sequenced N15 DNA Spacer Clones 

(A)  Nucleotide frequencies at each DNA spacer position in the sequenced inactive and 

active N15 clones.  (B)  Comparison of the nucleotide frequencies for active and inactive 

N15 clones.  Differences in nucleotide frequency are measured by as the ratio of the 

nucleotide frequency in the active clones over the nucleotide frequency in the inactive 

clones, converted to log2 scale. 
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Figure 3.4: Sequence LOGOs of Active and Inactive N15 DNA Spacer Clones 

Sequence LOGOs were generated for the sets of active and inactive clones identified in 

the random library screens.  LOGOs were generated using the WebLogo tool provided by 

the Computational Genomics Research Group at the University of California, Berkeley 

(90).  Values along the Y axis measure information content of the DNA spacer 

sequences. 
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active and inactive clones.  Figure 3.3B shows a comparison of the nucleotide 

frequencies at each position between the active and inactive clones.   Differences in 

nucleotide frequency are expressed as the log2 of the ratio of the frequency in the active 

clones over the frequency in the inactive clones.  A value of 0 indicates that the 

nucleotide occurs at a specific position with equal frequency in the active and inactive 

pools.  Positive values indicate that the nucleotide occurs more frequently in the active 

clones, while negative values indicate that a nucleotide occurs less frequently in the 

active clones.  Comparison of the nucleotide frequencies between the two groups showed 

preferences for and against certain nucleotides at several positions along the DNA spacer.  

Several of the nucleotide preferences observed agree with those identified in the DNA 

spacer single nucleotide substitution assays (Figure 3.1).  At position 1, active clones 

showed a 3-fold enrichment of G and 4-5 fold less A, T, and C.  The observed preference 

for a G nucleotide is consistent with the spacer single substitution assays, in which the 

C1G was consistently cleaved more efficiently than the TP15 target.  The reduced 

frequencies of A and T are also consistent with single substitution data - substitution of 

an A or T substantially reduced Tev-mTALEN activity.   The wildtype C nucleotide is 

also under-represented in active clones.  At position 2, active clones showed a 2.5-fold 

enrichment of A and T, a 3-fold reduction in G and a 6-fold reduction in C.  The 

reduction in C and G nucleotide frequencies is consistent with the results of single 

substitution assays, in which the T2C and T2G substrates were cleaved with 6% and <1% 

normalized activity, respectively.  The enrichment of A at position 2, by comparison, is 

not consistent with single substitution data as the T2A mutant was also cleaved much less 

efficiently than the TP15 substrate.   At position 3, active clones showed a 2-fold 

reduction in T, consistent with the results of spacer single substitution assays.  A similar 

reduction in T was also observed at position 4.  This result is in contrast to the spacer 

single substitution data, where the A4T substrate was cleaved with an average of 263% 

normalized activity.  No significant nucleotide preference was observed at position 5.  At 

position 6, where all single nucleotide substitutions of the wildtype T substantially 

reduced Tev-mTALEN activity (Figure 3.1), only a minor preference against G was 

observed (less than a 2-fold reduction in active clones).  At position 7 active clones 

showed a 3-fold increase in C and a 4-fold reduction in the wildtype A.  At position 8 
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only a minor (< 2-fold) preference against C was observed, in spite of the spacer single 

substitution data showing a strong preference for the wildtype G.  At position 9 a 2-fold 

increase in the wildtype A was observed.  No significant preferences were observed from 

positions 10-12.  Positions 13 and 14 showed a 2-fold reduction in C, while position 15 

showed a 2-fold increase in C.  A < 2-fold increase in A was observed at position 14. 

Figure 3.4 shows sequence LOGOs of the active and inactive clones.  Although the 

sample sizes (50 active and 62 inactive) are too small to identify a consensus sequence, 

the LOGOs show that the linker domain is tolerant of non-wildtype nucleotides across the 

DNA spacer.  The preference for G at position 1 and T at position 2 can be seen, but even 

these are clearly not essential for activity.  In agreement with data from native I-TevI and 

Mega-Tevs, sequencing of the active clones reveals that no single nucleotide at any 

position in the DNA spacer is absolutely required for Tev-mTALEN activity - nor does a 

single nucleotide at any position universally inhibit activity.  While there are nucleotide 

preferences at several positions along the DNA spacer, the sequence requirements are 

context-dependent.  This means that Tev-mTALEN cleavage of a putative target site 

cannot be predicted simply by examining the identity of individual nucleotides in the 

DNA spacer independent of each other. 

3.3 Summary 

Analyses of Tev-mTALEN DNA spacer requirements have identified nucleotide 

preferences at several positions in the DNA spacer.  The DNA spacer single nucleotide 

substitution assays have identified preferences for and against certain nucleotides at DNA 

spacer positions 1, 2, 3, 5, 6, 8, 9, and 14.  Screens of fully randomized DNA spacers 

from the N15 library have also identified nucleotide preferences in a broader context.  

Sequencing of Tev-mTALEN targets with cleavage-promoting DNA spacers has shown 

enrichment and reduction of certain nucleotides at positions 1, 2, 3, 6, 7, 8, 9, 13, 14, and 

15.  Many of the preferences identified in the N15 library screen agree with the results of 

the single substitution assays, such as the enrichment of G at position 1 and the position 2 

preference for a T.  However, many preferences were observed in the single substitution 

assays which were not observed in the N15 library screen.  Two examples of this are the 

preferences at positions 6 and 8 – DNA spacer single nucleotide substitution data showed 
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that mutation of either of these positions to non-wildtype nucleotides substantially 

reduced activity.  However, no substantial enrichment of either wildtype nucleotide was 

observed in the 50 active clones isolated from the N15 library.  Conversely, nucleotide 

preferences were observed in the N15 library screen which were not apparent in the 

single substitution assays.  Active clones from the N15 library had nearly a nearly 3-fold 

greater abundance of A at position 2 than the inactive clones, even though the single 

substitution data showed that the T2A mutant target was cleaved 5-fold less efficiently 

than the TP15.  The contrast between the results of the single nucleotide substitution 

assays and the N15 library screen indicate that nucleotide context is important in 

determining which DNA spacer sequences promote efficient Tev-mTALEN activity.  

Predicting which DNA spacer sequences will support robust cleavage by Tev-mTALENs 

is not possible by examining the identity of nucleotides at specific positions 

independently. 

Interestingly, the results of these assays agree qualitatively with studies of the I-TevI 

linker preference in the context of Mega-Tev nucleases.  Jason Wolfs performed in vitro 

assays designed to enrich Mega-Tev targets with cleavage-promoting DNA spacer 

sequences from a randomized library.  These assays have identified base preferences at 

the same positions for Mega-Tevs as those observed for Tev-mTALENs.  Furthermore, 

preferences for specific bases at these positions are largely the same between the two 

families of enzymes.  This suggests that like the nuclease domain, the I-TevI linker also 

functions in a largely modular fashion, retaining its nucleotide preferences in the 

presence of non-native DNA-binding domains.   
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Chapter 4  

4 Novel I-TevI Linker Domains with Altered Specificity can 
Broaden Tev-mTALEN Targeting Potential 

Single nucleotide substitution assays and screening of the N15 DNA spacer library have 

shown a preference for certain nucleotides at several positions.  These preferences mean 

that many potential Tev-mTALEN targets will not be cleaved efficiently due to the DNA 

spacer sequence.  Using Mega-Tev nucleases, Jason Wolfs has isolated I-TevI variants 

from a partially randomized library of the linker domain that facilitate activity on DNA 

spacer substrates that are poorly cleaved by the wildtype enzyme.  The similarities 

between the DNA spacer preferences in Tev-mTALENs and Mega-Tevs suggested that 

these mutations might also confer altered sequence preferences to Tev-mTALENs.  Thus, 

Tev-mTALENS bearing these same linker mutations were generated and screened against 

the DNA spacer single substitution target sites to determine if the nucleotide preferences 

of the linker could be similarly altered. 

4.1 Spacer Single Nucleotide Substitution Assays with Tev-
mTALEN Linker Variants 

Four Tev-mTALEN constructs with mutations in the N169 I-TevI domain were 

generated, S134G, S134G/N140S, V117F/D127G, and K135R/N140S/Q158R.  The 

spacer single nucleotide substitution assay described in chapter 3 was repeated using each 

of the mutant Tev-mTALENs.  Activity measurements were normalized to that of the 

mutant Tev-mTALEN on the TP15 substrate and plotted alongside the wildtype enzyme 

measurements from chapter 2 for comparison.   

The S134G mutant linker was isolated from screen of the partially randomized I-TevI 

linker against the T6G DNA spacer substrate that is poorly cleaved by the wild-type I-

TevI linker.  Figure 4.1 shows the activity of the Tev-mTALEN S134G variant on each 

of the 45 single nucleotide substitution TP15 substrates, normalized to the activity of the 

S134G on the TP15 substrate (with wildtype data from Chapter 3 for comparison).  On 

most mutant substrates, including the T6G, relative activity of the S134G was 

comparable or slightly lower than the wildtype enzyme.  However, the S134G showed 
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improved relative activity on several mutant substrates which the wildtype enzyme 

cleaved poorly.  Activity on the C1T substrate was 65% TP15 normalized, twice the 

32.5% of the wildtype enzyme.  Relative activity on all three T2 mutant substrates was 

improved, most notably the T2C mutant which the S134G cleaved at 50% average 

normalized activity, compared with the 6% of the wildtype enzyme.  Relative activity on 

the T6C substrate was improved from 12% to 42%.  At position 8, the S134G cleaved the 

G8T substrate with an average of 24% normalized, double that of the wildtype enzyme.   

Like Tev-mTALENs, Mega-Tevs are sensitive to substitution of spacer nucleotide G8 to 

any other base, although to a much greater degree.  The S134G/N140S and 

K135R/N140S/Q158R mutants (Figure 4.2 and 4.3 respectively) were both isolated in 

screens against the G8A mutant spacer substrate.  Both sets of mutations relieved 

sensitivity to the G8A substitution, with the Tev-mTALEN variants cleaving the mutant 

substrate more efficiently than the TP15 (211% activity for the S134G/N140S and 437% 

activity for the K135R/N140S/Q158R).  Additionally, both variants were not sensitive to 

several position 1, 2, 3, 6, 7, 8, and 9 substitutions which reduced wildtype Tev-

mTALEN activity.    

The V117F/D127G linker mutant (Figure 4.4) was isolated in a screen against a substrate 

with multiple non-wildtype spacer nucleotides.  Based on the DNA spacer sequence, this 

substrate was predicted to be cleaved efficiently by the wildtype Mega-Tev nuclease, but 

when assayed was cleaved poorly.  Against the majority of mutant substrates, 

V117F/D127G activity was equal to or greater than activity on the TP15, including 

position 1, 2, 3, 6, 8, and 9 mutants to which the wildtype enzyme is particularly 

sensitive.  This relaxation of nucleotide preferences was most apparent at positions 2 and 

6.  The wildtype Tev-mTALEN is sensitive to all single base substitutions at positions T2 

and T6, but the V117F/D127G variant cleaves all substrates with equal or greater 

efficiency compared to the TP15. 

While the results of chapter 3 have shown that data from DNA spacer single substitution 

assays (Figure 3.1) are not completely indicative of the nucleotide preferences in a 

broader context (Figure 3.3B), many nucleotide preferences observed for the wildtype 
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Tev-mTALEN in single substitution assays were also observed in a screen of fully 

randomized N15 DNA spacer substrates.  Based on this, it is likely that the altered 

nucleotide preferences of the four mutant linker variants examined here are similarly 

reflective of their DNA spacer compatibility on a broader scale.  This means that the 

targeting constraints imposed by the wildtype enzyme’s DNA spacer requirements can be 

overcome by the development of mutants which effectively cleave those targets which 

the wildtype does not.  However, the activity measurements for the mutant constructs and 

the wildtype Tev-mTALEN in figures 4.1-4.4 are each normalized to their own activity 

on the TP15.  This allows for a comparison on nucleotide preferences, relative to each 

enzymes activity on the TP15 target, but it does not provide a direct comparison of actual 

activity.  Many of the linker variants examined cleaved the TP15 target poorly, so their 

relaxed nucleotide preferences do not necessarily indicate an actual improvement in 

activity compared to the wildtype Tev-mTALEN. 

Figures 4.5-4.8 show a direct comparison of mutant and wildtype Tev-mTALEN activity 

on each of the DNA spacer targets.  Mutant and wildtype enzyme activity was 

normalized to the activity of the wildtype enzyme on the TP15, to allow for a direct 

comparison of activity on each substrate (Figure 4.5A/4.6A/4.7A/4.8A).  Figures 

4.5B/4.6B/4.7B/4.8B show the Log2 of the ratio of mutant construct activity over 

wildtype Tev-mTALEN activity for each of the DNA spacer substrates.  A value of 0 

indicates that the mutant Tev-mTALEN cleaved the substrate with the same activity as 

the wildtype enzyme.  Values above 0 indicate that the linker variant cleaved the 

substrate with greater activity than the wildtype, while negative values indicate that the 

mutant construct was less efficient than the wildtype.   

The K135R/N140S/Q158R variant was 11-fold less active on the TP15 substrate than the 

wildtype enzyme and 2- to 16-fold less active on the majority of mutant substrates 

(Figure 4.7B).  The S134G/N140S variant was also generally less active than the 

wildtype enzyme.  S134G/N140S activity on the TP15 was ~40% of the wildtype (Figure 

4.6A) and activity on most mutant substrates was 2- to 4-fold less than the wildtype; 

however, the mutations slightly improved activity on several position 2, 6, and 8 single 

substitution substrates which the wildtype enzyme cleaved poorly (Figure 4.6B).  The 
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V117F/D127G mutations tended to reduce activity compared to the wildtype enzyme.  

Activity on the TP15 was 4-fold less than wildtype and, similar to the S134G/N140S 

variant, activity on most other substrates was reduced 2- to 4-fold (Figure 4.8B).  The 

V117F/D127G mutations improved activity on all the position 2 and 6 single substitution 

substrates as well as the C3T substrate.  The most noticeable improvements in activity 

were on the T2C and T2G substrates.  The wildtype enzyme cleaved these substrates 

extremely poorly, with 6% and <1% TP15-normalized activity respectively; however, the 

V117F/D127G variant cleaved both of these substrates with ~40% of the activity of the 

wildtype enzyme on the TP15 (Figure 4.8A).  

Unlike the other three Tev-mTALEN variants, the S134G was generally more active than 

the wildtype enzyme.  Activity on the TP15 was twice that of the wildtype, and on the 

majority of mutant substrates the S134G had greater activity than the wildtype (Figure 

4.5A and B).  The S134G mutation significantly improved Tev-mTALEN activity on 

several substrates which the wildtype enzyme cleaved poorly.  Mutation of DNA spacer 

nucleotide C1 to an A or T reduced wildtype Tev-mTALEN activity to 14% and 33% 

normalized, respectively.  S134G activity on the C1A substrate was more than 3-fold 

greater at 47% normalized, and activity on the C1T improved 4-fold from 33% to 129%.  

Activity on all of the position 2 mutants was improved compared to the wildtype: activity 

on the T2A substrate was increased 4-fold from 19% to 82%; activity on the T2C 

substrate increased 16-fold from 6% to 95%; and activity on the T2G was 23%, 

compared with the background levels of activity seen for the wildtype enzyme.  Activity 

on the C3A substrate increased from 56% to 144%, and activity on the C3T substrate 

increased 3-fold from 6% to 19%.  S134G activity on the T6C substrate was 92%, more 

than a 7-fold increase compared to the wildtype enzyme which cleaved with ~12% 

normalized activity.  The S134G mutation also improved activity on the T6G target from 

12% to 28%.  The S134G cleaved all of the DNA spacer G8 mutants more efficiently 

than the wildtype enzyme: activity on the G8A substrate increased 2-fold from 25% to 

48%; activity on the G8C increased more than 3-fold from 39% to 129%; and activity on 

the G8T increased 5-fold from 11% to 54%.  Interestingly, the S134G was not 

significantly less active on any of the DNA spacer single substitution substrates than the 

wildtype, with the exception of the T10A.  Average wildtype activity on the T10A was 
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222%, while the S134G cleaved it with ~100% normalized activity.  Overall, mutation of 

serine 134 in the I-TevI linker to a glycine broadly increased average Tev-mTALEN 

activity against most of the substrates assayed, without rendering the enzyme ineffective 

against any substrates which the wildtype was not.  These results agree with assay data 

from Jason Wolfs, which showed that the S134G linker mutant also improved Mega-Tev 

activity. 

Even though three of the linker variants generally reduced Tev-mTALEN activity, the 

assays with the mutant enzymes still demonstrate that mutations to amino acids in the I-

TevI linker domain can alter the DNA spacer nucleotide preferences of the enzyme.  

Each of the mutant Tev-mTALEN enzymes examined here have altered DNA spacer 

nucleotide preferences compared to the wildtype enzyme.  In spite of their reduced 

average activity, both the V117F/D127G and S134G/N140S mutations improved Tev-

mTALEN activity on several position 2, 6, and 8 DNA spacer substitution targets which 

the wildtype enzyme cleaved poorly.  The most striking assay result were those of the 

S134G variant.  Compared to the wildtype Tev-mTALEN, the S134G linker variant had 

improved activity on the TP15 target and most mutant substrates, including many poorly 

cleaved position 1, 2, 3, 6, 8, and 9 single substitution substrates.  The mutant I-TevI 

linkers examined here represent only a few of the variants isolated in the original Mega-

Tev screen performed by Jason Wolfs.  Furthermore, the initial screen was performed 

only on a small selection of poorly-cleaved mutant substrates.  It is likely that further 

selection on other wildtype-poor substrates will yield new I-TevI linker mutations which 

can modulate altered or relaxed Tev-mTALEN DNA spacer preferences.   

4.2 Summary 

Examination of several mutant Tev-mTALENs has shown that as little as 1 amino acid 

mutation in the I-TevI linker domain can relax or alter the DNA spacer nucleotide 

preference of Tev-mTALENs.  While these data do not elucidate the mechanism of Tev-

mTALEN targeting specificity, they do demonstrate that mutations to the I-TevI linker 

domain can produce enzymes with altered or relaxed DNA spacer sequence-

compatibility.  A sufficient repertoire of functional linker variants with altered DNA 
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spacer nucleotide preferences will improve the targeting potential of Tev-mTALENs 

beyond that of the wildtype enzyme. 
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Figure 4.1: Spacer Single Nucleotide Substitution Assays with the S134G Tev-

mTALEN Variant 

Spacer single nucleotide substitution assays (Chapter 3.1) were performed with the 

S134G Tev-mTALEN linker variant.  Activity measurements are normalized to the 

activity of the S134G on the TP15 target.  Wildtype Tev-mTALEN measurements from 

chapter 3 are shown in red alongside the corresponding S134G measurements for 

comparison.  Errors bars indicate the standard deviation of three replicates. 
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Figure 4.2: Spacer Single Nucleotide Substitution Assays with the S134G/N140S 

Tev-mTALEN Variant 

Spacer single nucleotide substitution assays (Chapter 3.1) were performed with the 

S134G/N140S Tev-mTALEN linker variant.  Activity measurements are normalized to 

the activity of the S134G/N140S on the TP15 target.  Wildtype Tev-mTALEN 

measurements from chapter 3 are shown in red alongside the corresponding 

S134G/N140S measurements for comparison.  Errors bars indicate the standard deviation 

of three replicates. 
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Figure 4.3:  Spacer Single Nucleotide Substitution Assays with the 

K135R/N140S/Q158R Tev-mTALEN Variant 

Spacer single nucleotide substitution assays (Chapter 3.1) were performed with the 

K135R/N140S/Q158R Tev-mTALEN linker variant.  Activity measurements are 

normalized to the activity of the K135R/N140S/Q158R on the TP15 target.  

Measurements from chapter 3 are shown in red alongside the corresponding 

K135R/N140S/Q158R measurements for comparison.  Errors bars indicate the standard 

deviation of three replicates. 
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Figure 4.4: Spacer Single Nucleotide Substitution Assays with the V117F/D127G 

Tev-mTALEN Variant 

Spacer single nucleotide substitution assays (Chapter 3.1) were performed with the 

V117F/D127G Tev-mTALEN linker variant.  Activity measurements are normalized to 

the activity of the V117F/D127G on the TP15 target.  Measurements from chapter 3 are 

shown in red alongside the corresponding V117F/D127G measurements for comparison.  

Errors bars indicate the standard deviation of three replicates. 
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Figure 4.5: Comparison of Wildtype and S134G Tev-mTALEN Activity 

(A) Comparison of spacer single nucleotide substitution data for the S134G construct 

(blue bars) and the wildtype enzyme (black bars).  Wildtype Tev-mTALEN activity 

measurements are taken from Figure 3.1.  S134G Tev-mTALEN activity measurements 

are taken from the data set used for figure 4.1 and adjusted so that activity is normalized 

to the wildtype Tev-mTALEN on the TP15.  (B) Relative activity of the S134G on the 

DNA spacer single substitution targets compared to the wildtype Tev-mTALEN.  

Relative activities are expressed as the ratio of mutant construct activity over wildtype 

activity on each substrate, in Log2 scale.   
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Figure 4.6: Comparison of Wildtype and S134G/N140S Tev-mTALEN Activity 

(A) Comparison of spacer single nucleotide substitution data for the S134G/N140S 

construct (golden bars) and the wildtype enzyme (black bars).  Wildtype Tev-mTALEN 

activity measurements are taken from Figure 3.1.  S134G/N140S Tev-mTALEN activity 

measurements are taken from the data set used for figure 4.2 and adjusted so that activity 

is normalized to the wildtype Tev-mTALEN on the TP15.  (B) Relative activity of the 

S134G/N140S on the DNA spacer single substitution targets compared to the wildtype 

Tev-mTALEN.  Relative activities are expressed as the ratio of mutant construct activity 

over wildtype activity on each substrate, in Log2 scale.   
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Figure 4.7: Comparison of Wildtype and K135R/N140S/Q158R Tev-mTALEN 

Activity 

(A) Comparison of spacer single nucleotide substitution data for the 

K135R/N140S/Q158R construct (purple bars) and the wildtype enzyme (black bars).  

Wildtype Tev-mTALEN activity measurements are taken from Figure 3.1.  

K135R/N140S/Q158R Tev-mTALEN activity measurements are taken from the data set 

used for figure 4.3 and adjusted so that activity is normalized to the wildtype Tev-

mTALEN on the TP15.  (B) Relative activity of the K135R/N140S/Q158R on the DNA 

spacer single substitution targets compared to the wildtype Tev-mTALEN.  Relative 

activities are expressed as the ratio of mutant construct activity over wildtype activity on 

each substrate, in Log2 scale.   
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Figure 4.8: Comparison of Wildtype and V117F/D127G Tev-mTALEN Activity 

(A) Comparison of spacer single nucleotide substitution data for the V117F/D127G 

construct (green bars) and the wildtype enzyme (black bars).  Wildtype Tev-mTALEN 

activity measurements are taken from Figure 3.1.  V117F/D127G Tev-mTALEN activity 

measurements are taken from the data set used for figure 4.4 and adjusted so that activity 

is normalized to the wildtype Tev-mTALEN on the TP15.  (B) Relative activity of the 

V117F/D127G on the DNA spacer single substitution targets compared to the wildtype 

Tev-mTALEN.  Relative activities are expressed as the ratio of mutant construct activity 

over wildtype activity on each substrate, in Log2 scale.   
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Chapter 5  

5 Discussion and Conclusion 

For the most advanced applications, nuclease-mediated genome editing requires tools that 

have highly precise sequence specificity and are simple to engineer.  An enzyme may 

cleave its intended target with high efficiency, but also cleave similar sequences with 

nearly equal efficiency, making it unsuitable for sensitive applications.  Conversely, an 

enzyme family may possess exquisite sequence discrimination but be extremely laborious 

to re-engineer for non-wildtype target sequences, making its use impractical.  Tev-

mTALENs have the potential to be both simple to engineer and minimally toxic; 

however, the cryptic DNA spacer sequence requirements of the I-TevI linker domain 

complicate the otherwise simple targeting process.  Work presented here has shown that, 

unlike the relatively simple sequence requirements of the I-TevI nuclease domain and the 

TAL effector DNA-binding domain, the sequence requirements of the I-TevI linker are 

more complex.   

5.1 Summary 

Assays on the DNA spacer single substitution substrates have shown that Tev-mTALENs 

are sensitive to the identity of several nucleotides in the DNA spacer.  Substitution of one 

or more non-wildtype nucleotides at DNA spacer positions 1, 2, 3, 5, 6, 8, and 9 was 

shown to reduce average activity relative to the TP15 target.  Screening of the 

randomized N15 DNA spacer library has confirmed many of these preferences.  

However, many preferences observed in the single substitution assays were not observed 

in the library screen.  Similarly, many preferences seen in the N15 screen were not 

identified in the single substitution assays.  These results indicate that the DNA spacer 

sequence requirements are context-dependent, and no single nucleotide requirements 

exist at any position in the DNA spacer.  However, sequencing data has identified clear 

nucleotide preferences at several positions in the DNA spacer.  Understanding these will 

improve the success of Tev-mTALEN target site selection.   
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Analysis of mutant Tev-mTALEN variants has identified several amino acids in the I-

TevI linker domain which can alter Tev-mTALEN DNA spacer nucleotide preferences.  

These mutants represent only a handful of potential linker variants, but have shown that 

small mutations to the I-TevI linker domain can significantly alter or relax the nucleotide 

preferences of Tev-mTALENs.  Of the linker variants examined, the S134G stands out 

for its broadly increased activity and relaxed DNA spacer nucleotide preferences.  

Because many DNA spacer sequences fail to promote efficient cleavage by the wildtype 

Tev-mTALEN, mutant I-TevI linker domains with a broader tolerance for DNA spacer 

sequences such as the S134G will be essential for broadening Tev-mTALEN targeting 

potential in the future.   

5.2 Limitations and Future Directions 

5.2.1 Limitations of Yeast Reporter Assays 

A major limitation of the data presented here is the assay used to measure Tev-mTALEN 

activity.  Activity measurements obtained from the β-galactosidase reporter assay tended 

to vary significantly.  In a single 96 well plate replicate, the standard error of wildtype 

Tev-mTALEN activity on the TP15 target was anywhere from 20% to 40% of the value 

of the average measurement.  In some technical replicates, activity on the TP15 was at 

background levels.  Similar variation was observed for the majority of the DNA spacer 

single substitution targets, with the standard error of some well-cleaved substrates 

exceeding 100% of average TP15 activity.  The high degree of variation in measurements 

makes it difficult to determine if minor differences in average activity on different 

substrates are a genuine result of linker nucleotide preferences or just inherent assay 

variation.  Average activity on many of the DNA spacer single substitutions was greater 

than the TP15, however, reliably identifying which of these are true preferred substrates 

and which are simply a result of assay error is not possible.  Substrates which were 

poorly cleaved compared to the TP15 (<50% normalized activity) tended have more 

consistent measurements, so the assay in its current form can only reliably identify 

substrates which are noticeably less efficient than the TP15.  There are likely more subtle 

nucleotide preferences at other positions in the DNA spacer which were not determined 

in this report, due to the poor precision of the reporter assay.  A similar degree of 
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variation was observed in the assays performed with the Tev-mTALEN linker mutants.  

Many average activity and error measurements were skewed by a single replicate which 

was unusually high or low compared to the others.  Furthermore, comparison of activity 

measurements between linker variants is dependent on the precision of the positive 

control measurements in each plate.  Each of the four Tev-mTALEN linker variants was 

assayed against the TP15 target and 45 DNA spacer mutants in separate batches of plate 

replicates.  In each plate, the wildtype Tev-mTALEN was tested against the TP15 target, 

acting as a positive control.  Linker variant activity measurements against each substrate 

were normalized to the wildtype-TP15 positive control in their respective plates.  The 

four linker variants were then compared to one another and the wildtype enzyme based 

on how efficiently they cleaved the DNA spacer substrates, relative to the positive control 

(Figure 4.5).  This means that plate-to-plate variations in wildtype activity on the TP15 

target will alter how efficient each Tev-mTALEN linker variant appears compared to the 

others.  Low positive control activity in a plate will exaggerate the efficiency of the Tev-

mTALEN linker variant on each of the DNA spacer targets, while an unusually high 

positive control measurement will make the variant appear generally less active than it 

actually is.  The linker variant experiments were performed in sets of 3 plate replicates, 

with 2 technical replicates per plate in order to mitigate the effects of plate-to-plate 

variation; however, variation inherent to the assay is still a concern.  

One factor that may contribute to the high degree of variation in activity measurements is 

the amount of nuclease expressed in each culture.  The reporter assay measures cleavage 

of a target site indirectly through β-Galactosidase cleavage of ONPG.  Yeast diploids 

harbouring the nuclease expression plasmid and the target site plasmid are generated 

through mating and then allowed to grow for 18 hours.  During this time, the nuclease is 

expressed under the control of the strong, constitutive glyceraldehyde-3-phosphate 

dehydrogenase (GPD) promoter.  Cleavage of the target site stimulates repair of a 

functional LacZ gene.  A well-cleaved target site will result in more repair events in the 

yeast culture and more β-Galactosidase expression.  When the yeast are lysed during the 

assay phase, cultures with well-cleaved targets will release more β-Galactosidase 

enzyme, resulting in more ONPG degradation and an increase in the OD405nm reading of 

the culture.  The basic assumption of this assay is that differences in the OD405nm reading 
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of each well are a direct result of varying cleavage efficiency.  OD595nm readings are 

taken for each culture and factored into the activity calculation, in order to account for the 

effect of cell density on the frequency of repair events.  Both the nuclease and the 

repaired LacZ gene are under the control of the GPD promoter.  By accounting for cell 

density and using a strong, constitutive promoter for both the nuclease and the reporter 

enzyme, the protocol attempts to minimize the impact of variable protein expression on 

target site cleavage and β-Galactosidase expression - making target site cleavage the 

primary determinant of OD405nm readings.  However, no direct measurement of nuclease 

expression is performed.  It is possible that expression of the nuclease may vary 

significantly from culture to culture without being accounted for, increasing the standard 

error of activity measurements.  A possible improvement to the reporter assay may be the 

use of a reporter tag, such as a fluorescent protein fusion, to directly measure enzyme 

levels.  This would allow for correction of OD405nm readings by normalizing to the levels 

of nuclease expression in each culture. 

5.2.2 Limitations of the N169T120 Tev-mTALEN Architecture 

The construct used in this report consists of the N169 truncation of I-TevI and the T120 

N-terminal truncation of PthXo1; however, other functional truncations for both proteins 

exist.  Alternate I-TevI truncations, such as the D184 and S206, can be used to create 

functional Tev-mTALENs, both of which tend to have greater activity on their optimal 

substrates than the N169 fragment (78).  As well, multiple functional truncations of the 

TAL domain N-terminus exist – Tev-mTALENs and FokI TALENs constructed with the 

V152 TAL effector truncation are among the most active (78, 91).  Furthermore, the 

assays described here were only performed on target sites with a DNA spacer length of 

15bp.  This length was chosen because it is the optimal length for N169-T120 activity; 

however, the enzyme can also cleave targets with DNA spacers of varying lengths (78).  

Because many TAL binding sites will not have a CNNNG motif exactly 15 bp upstream,  

being able to target Tev-mTALEN activity to motifs within a broader window of distance 

from a TAL site would increase the number of potential Tev-mTALEN targets 

significantly.  Previous work by Ben Kleinstiver (78) has shown that, in addition to the 

N169-T120, each of the three Tev-mTALEN truncation variants: S206-V152, N169-
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V152, and D184-V152, function optimally on substrates with different spacer lengths.  

Between these four constructs, a CNNNG motif located anywhere from 13-31bp 

upstream of a TAL binding site could be cleaved with efficiency comparable to or greater 

than the N169-T120 on the TP15 target.  For this reason, future work should involve 

examining the I-TevI linker preferences in the context of alternate nuclease architectures 

and with varying spacer lengths.  Although 15bp is the optimal length for the N169-T120 

construct, the enzyme can also target substrates with spacers ranging in length from 13-

19bp and 25-29bp (78).  Examining the nucleotide preferences of the enzyme for shorter 

and longer spacers would be a suitable follow-up to the experiments presented here.  As 

well, all three of the alternative Tev-mTALEN truncation variants mentioned are active 

on the TP15 target (78) – based on this, a natural follow-up experiment would be to 

repeat the TP15 DNA spacer single substitution assays described in Chapter 3 using the 

S206-V152, N169-V152, and D184-V152 Tev-mTALEN constructs, for a direct 

comparison of nucleotide substitution sensitivity between the four constructs.   

Another follow-up experiment to consider would be to repeat the N15 DNA spacer 

library screen in Chapter 3 using the mutant linker variants examined in Chapter 4 – 

particularly the S134G variant.  Results from Chapter 4 seem to indicate that the S134G 

mutation relaxes several of the nucleotide preferences of the wildtype enzyme, and 

increases the activity of the enzyme in general.  Screening the S134G construct against 

the same N15 clones assayed in Chapter 3 (or at least the sequenced clones) would 

determine whether or not the relaxed nucleotide preferences observed in the single 

substitution screen are reflective of relaxed preferences in general.  In Chapter 3, N15 

DNA spacer clones were considered active if the activity of the Tev-mTALEN on the 

target site was no less than 2 standard deviations below average activity on the TP15.  

Based on this cut-off, roughly 22% of the random DNA spacer targets screened can be 

considered active.  If the S134G linker mutation can improve this success rate, it would 

demonstrate the potential of linker mutations to broaden Tev-mTALEN targeting.   

An alternative to mutagenic screening is identifying new GIY-YIG domains similar to I-

TevI.  I-TevI is the most well-characterized of the GIY-YIG family of homing 

endonucleases, however, numerous other GIY-YIG homing endonucleases exist.  A 
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search of the Interpro database for “group I intron endonuclease” (IPR006350) yields 

hundreds of confirmed or putatively identified GIY-YIG homing endonucleases similar 

to I-TevI.  Several of these enzymes, such as I-BmoI(92), I-TevII(93), I-BanI(94), and I-

BthII(95) have been characterized to varying degrees.  These enzymes have the same 

basic structure of I-TevI: an N-terminal GIY-YIG nuclease domain; a central domain 

containing 1-3 beta-turn-loop-helix motifs (NUMOD3 – nuclease associated modular 

domain 3); and a C-terminal helix-turn-helix motif (NUMOD1) (96).  Each of these 

enzymes binds and cleaves a sequence that differs from the I-TevI homing site (92, 93, 

94, 95).  It is likely that the nuclease and linker domains from many of these proteins can 

be substituted for I-TevI, resulting in mTALENs with new cleavage motifs and DNA 

spacer requirements.   

5.2.3 Limitations of Single Nucleotide Preference Analysis 

Activity assays on non-wildtype DNA spacer substrates have identified certain nucleotide 

preferences for the DNA spacer sequence, but no absolute requirements at any position.  

These results are consistent with previous studies of the native I-TevI enzyme.  While I-

TevI does make a small number base-discriminant DNA contacts (80), no single 

nucleotide at any position of the wildtype td target site is essential for binding and 

cleavage (89).  It is possible that identifying a defined Tev-mTALEN DNA spacer motif 

is impossible because linker-DNA spacer compatibility is not a result of direct readout of 

individual base identities.  Crystal structure data and footprinting analyses have shown 

that the linker and DNA-binding domains of native I-TevI wrap primarily around the 

minor groove of the target site (80, 89), with the majority of contacts occurring at the 

minor groove and phosphate backbone (89).   Major groove-binding proteins, such as 

zinc finger-based transcription factors, tend to achieve sequence recognition primarily 

through base-specific hydrogen bonding (97).  Minor groove-binding proteins, in 

contrast, often recognize target sites through differences in sequence-dependent DNA 

structural properties, such as minor groove compression, asymmetric charge 

neutralization in the phosphate backbone, and bending stiffness (97, 98, 99).   It is 

possible that Tev-mTALEN DNA spacer preferences are a result of variable target site 

bending stiffness.   
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Introduction of a bend at the cleavage site is an important step in I-TevI activity (86).  I-

TevI catalysis involves two sequential nicks to the target DNA, performed by the single 

active site within the GIY-YIG domain.  The first nick occurs on the bottom strand of the 

CAACG cleavage site (CA↑ACG).  Following the first nick, a ~38° bend is introduced at 

the cleavage site and the second nick (CAAC↓G) occurs.  This distortion is believed to 

assist I-TevI catalysis by making the top strand nick site more accessible to the active site 

(86).  The bend was mapped to the cleavage motif and the first 9 nucleotides of the DNA 

spacer, centered on DNA spacer nucleotide 2 (89).  Interestingly, this includes a region of 

the native I-TevI td target site identified as DI (89, 100).  DI consists of DNA spacer 

nucleotides 2-9, and represents a region of the target site in which native I-TevI is 

particularly sensitive to mutations (89, 101).  DI also corresponds to a region of the target 

site in which I-TevI makes extensive minor-groove and phosphate backbone contacts 

(89).  These enzyme-substrate contacts are directly associated with formation of the bend 

during I-TevI catalysis (86, 89).  Based on these data, the authors proposed a model in 

which the I-TevI linker assists I-TevI catalysis through primarily minor groove and 

backbone interactions which facilitate bending at the cleavage site following the bottom 

strand nick (86).  This distortion makes the top strand nick site accessible to the nuclease 

domain (86).  Substitution of the critical C or G nucleotides of the CAACG motif with 

any other nucleotide (mutations which compromise I-TevI activity) resulted in both a 

significant reduction in bend formation and a reduction in the angle of the bend (86).   In 

contrast, mutation of the A nucleotide in the central triplet (CAACG) to a C had no 

apparent effect on bend formation or bend angle (86).  These data highlight the 

importance of target site bending in I-TevI catalysis, and suggests that the linker domain 

interacts with the DNA spacer sequence to facilitate this distortion.  This means that the 

differences in Tev-mTALEN activity on the N15 DNA spacer substrates may be a result 

of varying target site flexibility.  A reduction in target site bend formation and the 

maximum angle of the bend will likely impair the ability of the I-TevI nuclease to 

perform its two-step nicking activity.   Interestingly, the majority of Tev-mTALEN 

nucleotide preferences identified in this report occur within the first 9 positions of the 

DNA spacer, corresponding to DI – the region in which substrate bending, minor groove 

and backbone contacts, and mutation-sensitivity were observed for the native I-TevI 
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enzyme.  The connection between nucleotide sequence and target site distortion has been 

observed for other proteins.  Mutations in the binding site of E. coli Catabolite Activator 

Protein (CAP) were shown to alter the flexibility of the binding site DNA, and a strong 

correlation between target site bending and CAP binding affinity was observed (101).  A 

similar correlation between sequence-dependent DNA distortion and binding affinity was 

observed for the eukaryotic TATA binding protein (102).  Structural readout of the 

cleavage motif and DNA spacer by the linker domain would explain why identifying 

preferences according to individual nucleotide identities is so difficult.  DNA bending 

stiffness is primarily a product of interactions between adjacent base pairs (103), so 

nucleotide identities must be examined in the context of adjacent nucleotides. 

Future experiments should examine the possible relationship between target site 

distortion and Tev-mTALEN activity.  The assays performed with native I-TevI (86, 89) 

should be repeated with Tev-mTALENs to determine if there is a relationship between 

how efficiently a substrate is cleaved and how readily the substrate is distorted at the 

target site.  Control assays on a small number of well-cleaved and poorly-cleaved targets 

would be a suitable starting point for confirming any possible connection.  If it is shown 

that poorly-cleaved DNA spacer mutants are also less prone to cleavage site distortion, 

this would provide strong evidence that Tev-mTALEN DNA spacer preferences are not 

primarily a result of direct base readout.  This would change the approach taken to 

predicting Tev-mTALEN target site cleavage, shifting the focus to prediction of cleavage 

motif and DNA spacer bending stiffness. 

5.3 Advantages of Tev-mTALENs 

Each of the existing genome-editing nuclease families has specific advantages and 

disadvantages based on their biology.  CRISPRs and FokI-based TALENs have quickly 

become the two most commercially popular systems due to the simple nature of their 

sequence-specificity; however, at this point no single tool can be regarded as universally 

superior to others.  There are a number of factors to consider, including the method of 

delivery, cell type, and type of modification desired, so tool selection must be done on a 

case-by-case basis.  In addition to their monomeric and site-specific activity, a major 

advantage of Tev-mTALENs is the high degree of precision with which TAL effector 
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binding can be targeted.  Early guidelines for TAL effector targeting outlined 5 rules for 

selecting robust binding sites: a T nucleotide at position 0 of the target site, position 1 V 

(not T), position 2 B (not A), a T nucleotide at the 3’-most position, and an overall 

nucleotide composition that does not differ by more than two standard deviations from 

that of naturally occurring TAL sites (104, 105).  These guidelines were an early estimate 

based on examination of identified Xanthomonas TAL effector binding sites.  However, a 

large-scale screen of TALEN activity against 48 target sites in the eGFP sequence and 96 

human gene targets subsequently showed that the latter 4 guidelines are unnecessary 

(105).  Only the presence of a position 0 T showed any correlation to TALEN activity 

(105).  The discovery of TAL effector N-terminal domains with altered position 0 

nucleotide preferences (52, 53) or none at all (54) means that this does not have to be a 

targeting constraint either.  The lack of any theoretical sequence constraints makes TAL 

effectors the most precise DNA-binding domains available.  This level of precision may 

not be necessary for gene knockout, since frameshift mutations can be equally effective 

across a broad window of DNA targets; however, when sequence insertions or 

corrections are needed, precision is critical.  Homology-directed repair is naturally 

inefficient in mammalian cells (4, 6, 7, 8), and tends to be less efficient the further away 

the DSB is from the site of the intended mutation (106, 107, 108).  Given that the average 

GC content of the human genome is ~41% (109), the CRISPR motifs GN19NGG and 

GGN18NGG can be expected to occur once every ~63 and ~313 bp, respectively.  If 

paired CRISPR nickases are used, then two of these sites have to be located typically 

within 100bp and on opposite strands of each other (64), closer if efficient homology-

directed repair is necessary.  In the case of Tev-mTALENs, the only major targeting 

constraints are the CNNNG cleavage motif and DNA spacer requirements.  A CNNNG 

motif will occur on average every ~13 bases.  If ~22% of DNA spacers sequences are 

permissive of wildtype Tev-mTALEN activity (based on the results of Chapter 3), then 

this means a compatible site will occur every ~57bp.  These numbers are only estimates, 

as the targeting requirements of both families are not completely understood.  Some 

TALENs and CRISPRs will fail to efficiently bind and cleave perfect-match target sites, 

indicating that the sequence requirements of both families are more nuanced than current 

targeting models suggest (105, 110).  Furthermore, the full targeting potential of both 
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families has yet to be explored.  Recent work with the CRISPR/Cas system has shown 

that mutated Cas9 nuclease variants can be engineered to target new PAM sequences, 

expanding the number of potential target sites significantly (111).  Similarly, the use of 

new/mutated GIY-YIG nuclease and linker domains may allow for targeting of new 

cleavage motifs and DNA spacer sequences, further expanding the targeting breadth and 

precision of the mTALEN family.   

5.4 Conclusion 

Tev-mTALEN activity assays with non-wildtype spacers have shown that examining 

base preferences alone cannot fully account for the complex linker-DNA spacer 

requirements.  Regardless of the observed preferences, a putative target site may have a 

combination of spacer bases that make it seem like a viable target, yet still be cleaved 

poorly.  Conversely, a target site may appear to be a poor substrate according to 

individual base preferences, yet be cleaved more efficiently than the TP15 target.  With 

over a billion potential 15bp DNA spacer sequences (415) and a lack of any absolute base 

requirements at any position, exhaustive assaying of positional base preferences alone is 

not a feasible way of developing an accurate targeting model.  Future work should 

include investigating what role, if any, target site distortion plays in determining Tev-

mTALEN DNA spacer requirements.  Published work on I-TevI has established a strong 

connection between target site distortion and I-TevI catalysis - the modular activity of the 

I-TevI nuclease and linker domains suggests that they may behave in the same manner 

when fused to the non-native TAL domain.  Furthermore, additional Tev-mTALEN 

linker mutants with relaxed sequence requirements must be examined, in order to 

maximize the potential number of robust Tev-mTALEN targets.  An accurate model of 

DNA spacer compatibility, combined with a sufficient repertoire of linker mutants with 

relaxed DNA spacer preferences, would eliminate the last practical barrier in Tev-

mTALEN targeting prediction and, as a result, the need for control screening of each 

putative target.  With all the modular sequence requirements understood, a program could 

be designed to scan a target for compatible CNNNG motifs and adjacent DNA spacer 

sequences, and a Tev-mTALEN enzyme with an appropriate TAL domain and I-TevI 

linker variant could be assembled for the target site.  Monomeric, cleavage site-specific 
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activity, in combination with a predictable targeting system would make mTALEN 

enzymes a promising tool for sensitive genome editing applications, even capable of 

competing with the popular CRISPR nucleases. 
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Chapter 6 

6 Materials and Methods 

6.1 Bacterial and Yeast Strains 

Bacterial strain E. coli DH5α (Invitrogen) was used for all plasmid propagation.  Strain E. 

coli ER2566 (New England Biolabs) was used for purification of the Tev-mTALEN 

construct.  All β-galactosidase reporter assays were performed with strains S. cerevisiae 

YPH499 and YPH500 (104).  All in vivo nuclease target sites were ligated into plasmid 

pCP5.1 and transformed into YPH499.  All nuclease constructs were expressed in vivo 

from plasmid pGPD, which was transformed into YPH500.  See Appendix A for detailed 

strain information. 

6.2 Target-Site Plasmid Construction 

6.2.1 In Vitro Cleavage Assays (Chapter 2.2) 

The in vitro Tev-mTALEN substrate, pSP72-TP15, was generated by annealing of 

oligonucleotides DE1811/DE1812, phosphorylation with T4 PNK (New England 

Biolabs), and ligation into BglII/XbaI digested pSP72. 

6.2.2 Control Targets and Cleavage Motif Mutants (Chapter 2.1) 

The Zif268 target site plasmid, pCP5.1-ZF, was received from the lab of Dr Adam 

Bogdanove.  The Mega-Tev target site plasmid, pCP5.1-TO15, was received from Jason 

Wolfs.  Other substrates were generated by annealing of complementary 

oligonucleotides, phosphorylation with T4 PNK, and ligation into BglII/SpeI digested 

pCP5.1.  Oligonucleotides DE1811/DE1812 were used to generate target vector pCP5.1-

TP15.  Oligonucleotides DE1612/DE1613, DE1734/DE1735, and DE1736/DE1737 were 

used to generate mutant cleavage motif vectors pCP5.1-TP15(TAACA), pCP5.1-

TP15(TAACG), and pCP5.1-TP15(CAACA), respectively. 



57 

 

6.2.3 DNA Spacer Single Substitution Targets (Chapters 3.1 and 4) 

pCP5.1-TP15 with positions 1 and 7-15 DNA spacer single substitutions were generated 

by annealing of consecutive oligonucleotide pairs from DE1546-DE1551 and DE1734-

DE1791, with even numbers corresponding to top strand oligos and odd numbers 

corresponding to bottom strand oligos (full oligonucleotide pairings can be found in 

Appendix B).  Oligos were phosphorylated with T4 PNK and ligated into BglII/SpeI 

digested pCP5.1.  pCP5.1-TP15 with positions 2-6 DNA spacer single substitutions were 

generated by annealing of DE1496 to each of DE1715-DE1729, extension via Klenow 

Fragment exo- (New England Biolabs), digestion of extended product with BglII/SpeI, 

and ligation into BglII/SpeI digested pCP5.1.   

6.2.4 N15 DNA Spacer Library (Chapter 3.2) 

The N15 DNA spacer library was generated by annealing of DE1496 to DE1333, 

extension with Klenow fragement exo-, digestion with BglII/SpeI, and ligation into 

BglII/SpeI digested pCP5.1.   

6.3 Expression Plasmid Construction 

6.3.1 Bacterial Expression Plasmid Construction 

Bacterial expression vector pACYC.Pci-N169T120(12RVD) was cloned by Ben 

Kleinstiver.  The 12RVD variant of the N169T120 construct is otherwise identical to the 

full protein, but with 12 RVDs instead of the wildtype 23. 

6.3.2 Yeast Expression Plasmids 

Expression vectors pGPD, pGPD-N169T120, and pGPD-Zif268 were all received from 

the lab of Dr Adam Bogdanove.  The Tev-mTALEN linker variants were generated using 

mutated I-TevI linkers from plasmids pACYC.Pci-N169ONU(S134G), pACYC.Pci-

N169ONU(S134G/N140S), pACYC.Pci-N169ONU(K135R/N140S/Q158R), and 

pACYC.Pci-N169ONU(V117F/D127G), provided by Jason Wolfs.  Site-directed 

mutagenesis was performed on each of the obtained plasmids using primers DE1175 and 

DE1176, in order to eliminate a PciI site located in the I-TevI coding sequence – this step 

is necessary in order to use an upstream 5’ PciI site in subsequent cloning steps, but does 
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not alter the amino acid sequence of the enzyme.  PciI restriction digests were performed 

to confirm the elimination of the PciI site from the plasmids (the number of sites in the 

plasmids is reduced from 2 to 1, if successful).  After confirming successful elimination 

of the internal PciI site, the mutant I-TevI N169 domains were PCR-amplified using 

primers DE1013 and DE1213, then digested with enzymes PciI and BamHI.  

pACYC.Pci-N169T120 was digested with PciI and BamHI, to remove the wildtype I-

TevI N169 domain, and the corresponding mutant N169 domains were each ligated in its 

place, generating plasmids pACYC.Pci-N169T120(S134G), pACYC.Pci-

N169T120(S134G/N140S), pACYC.Pci-N169T120(K135R/N140S/Q158R), and 

pACYC.Pci-N169T120(V117F/D127G).  Each of the pACYC.Pci mutant plasmids was 

digested with PciI/XhoI to isolate the complete mutant Tev-mTALEN sequences.  The 

mutant constructs were subsequently ligated into PciI/XhoI digested pGPD, substituting 

the wildtype Tev-mTALEN for the mutant constructs.  The resulting yeast expression 

plasmids were named pGPD-N169T120(S134G), pGPD-N169T120(S134G/N140S), 

pGPD-N169T120(K135R/N140S/Q158R), and pGPD-N169T120(V117F/D127G).  

6.4 Purification of the 6xHis-tagged Tev-mTALEN  

Expression vector pACYC.Pci-N169T120(12RVD) was transformed into chemically-

competent E. coli ER2566 using the standard heat-shock protocol.  Cultures were grown 

in 1L LB broth (+100µg/ml ampicillin) to OD600nm ~0.5, at which point expression was 

induced by addition of IPTG to a final concentration of ~1mM.  Induction was allowed to 

proceed at 16°C for 16 hours, at 200rpm in a baffled flask.  Induced cultures were 

pelleted and resuspended in Buffer A (200mM NaCl, 20mM Tris-HCl pH 7.6, 1mM 

DTT, 1mM EDTA, 5% glycerol) at 4°C, then lysed in an EmulsiFlex cell homogenizer 

(Avestin).  Cell lysate was spun in a pre-chilled JA25.50 rotor (Beckman Coulter) at 

13000rpm for 25 minutes to pellet cellular debris.  Clarified supernatant was run through 

a 1ml HisTrap-FF Ni2+ column (GE Healthcare) at a rate of 0.3ml/min.  The column was 

washed with 10ml of Buffer A.  Elutions were then performed with 2ml of Buffer A with 

increasing concentrations of imidazole - in order, elutions were performed with 2ml of 

30mM buffer, 2ml of 50mM buffer, 5ml of 60mM buffer, and 5ml of 70mM buffer.  

Elution samples were taken in 1ml fractions.  Small samples of each elution fraction were 
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run on SDS PAGE to examine fraction purity.  The cleanest fractions were pooled and 

then spun down to 1ml using Vivaspin sample concentrators (GE Healthcare) in a JS5.3 

rotor (Beckman Coulter) at 5300rpm.  Concentrated samples were spun at 4°C and 

maximum speed in a tabletop centrifuge to pellet any precipitate.  Clarified protein 

sample was loaded onto a Superose 12 10/300 GL size exclusion column (GE 

Healthcare) pre-equilibrated with Buffer A using an AKTA FPLC (GE Healthcare).  1 

column volume (~24ml) of Buffer A was run over the column at a rate of 0.3ml/min with 

fractions taken in 0.25ml fractions.  Using the AKTA chromatogram, peak fractions were 

selected and run on SDS PAGE.  The purest samples were pooled and split into 20µl 

aliquots, then stored at -80°C.  Samples of the primary polypeptide were sent for MALDI 

analysis at the UWO MALDI MS Facility, and confirmed to be the N169T120(12RVD) 

construct. 

6.5 In vitro Cleavage Assays with the Purified Tev-mTALEN  

In vitro cleavage assays were performed in 20µl reactions using a standard Tev-

mTALEN reaction buffer based on NEBuffer 2 (New England Biolabs).  The standard 

buffer consists of 50mM NaCl, 20mM Tris-HCl pH 8.0, 10mM MgCl2, and 1mM DTT.  

Several variations of this buffer with altered salt or addition of the competitive DNA 

substrate, poly dI/dC, are outlined in Chapter 2.2.  The DNA substrate (either pSP72 or 

pSP72-TP15) was maintained at a final concentration of 10nm.  The substrate and 

reaction buffer were mixed on ice prior to addition of the protein.  N169T120(12RVD) 

Tev-mTALEN protein samples were thawed on ice, diluted in reaction buffer, and added 

to the mixture.  Reaction mixtures were then incubated at 37°C for 20 minutes and 

quenched with stop solution (100mM EDTA, 0.1% SDS).  Stopped reactions were 

resolved on 1% agarose gel.  Cleavage mapping was performed using a 5X larger 

reaction (100µl) and the excised linear band was purified using the Biobasic EZ-10 spin 

column protocol.  Purified linear DNA was sequenced at the London Regional Genomics 

Center using oligos DE1114 and DE1452 and the resulting ABI traces were used for 

cleavage site mapping.   
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6.6 Yeast β-Galactosidase Reporter Assays 

In vivo activity of the Tev-mTALEN constructs against target site substrates was 

measured using a modified version of the yeast reporter assay described by Christian et al 

(45), designed for 96-well microtitre plates.  Yeast strain YPH499 was transformed with 

vector pCP5.1 containing the indicated target site and plated on minimal medium agar 

lacking tryptophan and uracil (Trp-/Ura-)(0.75% yeast nitrogenous base, 2% glucose, 

0.6% casein hydrolysate, 0.01% adenine).  Yeast strain YPH500 was transformed with 

vector pGPD containing the indicated Tev-mTALEN construct (wildtype or linker 

variant) or Zif268 and plated on minimal medium agar lacking histidine (His-)(0.75% 

yeast nitrogenous base, 2% glucose, 0.01% adenine, 0.01% leucine, 0.01% lysine, 

0.0025% uracil, 0.005% tryptophan).  Single clones of each YPH499 target site 

transformant and YPH500 expression transformant were grown overnight in Trp-/Ura- 

and His- liquid media, respectively.  In each well of a 96 well plate, 50µl of expression 

strain culture and 50µl of target site culture were added to 1ml of YPD medium and 

allowed to mate at 30⁰C for 4 hours.  Cells were then pelleted and resuspended in 

medium lacking both tryptophan and histidine (His-/Trp-)(0.75% yeast nitrogenous base, 

2% glucose, 0.01% adenine, 0.01% leucine, 0.01% lysine, 0.0025% uracil) and grown for 

18 hours to select for diploids harbouring both the expression and target plasmids.    

Following growth of diploid cultures, cells were resuspended in 1ml LacZ reaction buffer 

(60mM Na2HPO4, 40mM NaH2PO4, 10mM KCl, 1mM MgSO4, 35mM β-

mercaptoethanol).  OD595nm readings were taken by plate reader to determine cell 

density.  Chloroform and SDS were added to 0.06% and 0.01% respectively to lyse the 

cells.  Plates were incubated at 30⁰C for 1 hour after addition of chloroform and SDS.  

After cells were lysed, ONPG solution was added to a final concentration of 0.3mg/ml 

and reactions were incubated for a duration of 30 minutes at 30⁰C.  Reactions were then 

stopped by the addition of NaCO3 to a concentration of 0.2M.  Plates were spun at 

2000xG for 5 minutes to pellet cellular debris.  OD405nm readings were taken on the 

clarified reaction solutions.  All assays were performed in biological triplicates, with 2 

technical replicates each. 
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Activity in each well was measured according to the following equation: 

Activity = 2500*[OD405nm-Neg]/(T*(D/2.5)*V) 

Where: [OD405nm-Neg] indicates the OD405nm reading of the well, minus the OD405nm 

reading of the negative control well for the plate; T indicates the reaction duration (30 

minutes), D indicates the cell density of the well, as measured by OD595nm readings; and 

V indicates the volume of the reaction (1ml).  Activity measurements were then 

normalized to the positive control value for the plate. 
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Appendices 

Appendix A: Strains and Plasmids 

Strains Description Source 

E. coli - ER2566 

F- λ- fhuA2 [lon] ompT lacZ::T7 gene 1 gal sulA11 Δ(mcrC-

mrr)114::IS10 R(mcr-73::miniTn10-TetS)2 R(zgb-

210::Tn10)(TetS) endA1 [dcm] 

New 

England 

Biolabs 

E. coli – DH5α 
F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG 

Φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK
- mK

+), λ– 
Invitrogen 

S. cerevisiae – YPH499 
MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 

his3-Δ200 leu2-Δ1 

Dr Adam 

Bogdanove 

(90) 

S. cerevisiae – YPH500 
MATα ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 

his3-Δ200 leu2-Δ1 

Dr Adam 

Bogdanove 

(90) 

 Target-site Plasmids Description Source 

pSP72 AmpR, pBR322 origin Promega 

pSP72-TP15 pSP72 with the TP15 target site ligated in via BglII/XbaI This report 

pCP5.1 

Derivative of vector pCP5, AmpR, ColE1 origin, target-site 

plasmid used in yeast reporter assays, nuclease target sites are 

cloned in between a fragmented LacZ gene via restriction 

sites BglII/SpeI, contains the selectable markers URA3 and 

TRP1 

Dr Adam 

Bogdanove 

(90) 

pCP5.1-TP15 pCP5.1 containing the TP15 target site This report 

pCP5.1-ZF pCP5.1 containing the Zif268 target site 

Dr Adam 

Bogdanove 

(90) 

pCP5.1-TO15 pCP5.1 containing the TO15 (Mega-Tev) target site Jason Wolfs 

pCP5.1-TP15(TAACA) 
pCP5.1 containing the TP15 target site with the mutated 

cleavage motif, TAACA 
This report 

pCP5.1-TP15(TAACG) 
pCP5.1 containing the TP15 target site with the mutated 

cleavage motif, TAACG 
This report 

pCP5.1-TP15(CAACA) 
pCP5.1 containing the TP15 target site with the mutated 

cleavage motif, CAACA 
This report 

pCP5.1-TP15(C1A) 
pCP5.1 containing the TP15 target site with the C1A DNA 

spacer mutation 
This report 

pCP5.1-TP15(C1G) 
pCP5.1 containing the TP15 target site with the C1G DNA 

spacer mutation 
This report 

pCP5.1-TP15(C1T) 
pCP5.1 containing the TP15 target site with the C1T DNA 

spacer mutation 
This report 

pCP5.1-TP15(T2G) 
pCP5.1 containing the TP15 target site with the T2G DNA 

spacer mutation 
This report 

pCP5.1-TP15(T2C) 
pCP5.1 containing the TP15 target site with the T2C DNA 

spacer mutation 
This report 

pCP5.1-TP15(T2A) 
pCP5.1 containing the TP15 target site with the T2A DNA 

spacer mutation 
This report 

pCP5.1-TP15(C3G) 
pCP5.1 containing the TP15 target site with the C3G DNA 

spacer mutation 
This report 

pCP5.1-TP15(C3A) 
pCP5.1 containing the TP15 target site with the C3A DNA 

spacer mutation 
This report 

pCP5.1-TP15(C3T) 
pCP5.1 containing the TP15 target site with the C3T DNA 

spacer mutation 
This report 

pCP5.1-TP15(A4G) 
pCP5.1 containing the TP15 target site with the A4G DNA 

spacer mutation 
This report 
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pCP5.1-TP15(A4C) 
pCP5.1 containing the TP15 target site with the A4C DNA 

spacer mutation 
This report 

pCP5.1-TP15(A4T) 
pCP5.1 containing the TP15 target site with the A4T DNA 

spacer mutation 
This report 

pCP5.1-TP15(G5C) 
pCP5.1 containing the TP15 target site with the G5C DNA 

spacer mutation 
This report 

pCP5.1-TP15(G5A) 
pCP5.1 containing the TP15 target site with the G5A DNA 

spacer mutation 
This report 

pCP5.1-TP15(G5T) 
pCP5.1 containing the TP15 target site with the G5T DNA 

spacer mutation 
This report 

pCP5.1-TP15(T6G) 
pCP5.1 containing the TP15 target site with the T6G DNA 

spacer mutation 
This report 

pCP5.1-TP15(T6C) 
pCP5.1 containing the TP15 target site with the T6C DNA 

spacer mutation 
This report 

pCP5.1-TP15(T6A) 
pCP5.1 containing the TP15 target site with the T6A DNA 

spacer mutation 
This report 

pCP5.1-TP15(A7G) 
pCP5.1 containing the TP15 target site with the A7G DNA 

spacer mutation 
This report 

pCP5.1-TP15(A7C) 
pCP5.1 containing the TP15 target site with the A7C DNA 

spacer mutation 
This report 

pCP5.1-TP15(A7T) 
pCP5.1 containing the TP15 target site with the A7T DNA 

spacer mutation 
This report 

pCP5.1-TP15(G8C) 
pCP5.1 containing the TP15 target site with the G8C DNA 

spacer mutation 
This report 

pCP5.1-TP15(G8A) 
pCP5.1 containing the TP15 target site with the G8A DNA 

spacer mutation 
This report 

pCP5.1-TP15(G8T) 
pCP5.1 containing the TP15 target site with the G8T DNA 

spacer mutation 
This report 

pCP5.1-TP15(A9G) 
pCP5.1 containing the TP15 target site with the A9G DNA 

spacer mutation 
This report 

pCP5.1-TP15(A9C) 
pCP5.1 containing the TP15 target site with the A9C DNA 

spacer mutation 
This report 

pCP5.1-TP15(A9T) 
pCP5.1 containing the TP15 target site with the A9T DNA 

spacer mutation 
This report 

pCP5.1-TP15(T10G) 
pCP5.1 containing the TP15 target site with the T10G DNA 

spacer mutation 
This report 

pCP5.1-TP15(T10C) 
pCP5.1 containing the TP15 target site with the T10C DNA 

spacer mutation 
This report 

pCP5.1-TP15(T10A) 
pCP5.1 containing the TP15 target site with the T10A DNA 

spacer mutation 
This report 

pCP5.1-TP15(G11C) 
pCP5.1 containing the TP15 target site with the G11C DNA 

spacer mutation 
This report 

pCP5.1-TP15(G11A) 
pCP5.1 containing the TP15 target site with the G11A DNA 

spacer mutation 
This report 

pCP5.1-TP15(G11T) 
pCP5.1 containing the TP15 target site with the G11T DNA 

spacer mutation 
This report 

pCP5.1-TP15(T12G) 
pCP5.1 containing the TP15 target site with the T12G DNA 

spacer mutation 
This report 

pCP5.1-TP15(T12C) 
pCP5.1 containing the TP15 target site with the T12C DNA 

spacer mutation 
This report 

pCP5.1-TP15(T12A) 
pCP5.1 containing the TP15 target site with the T12A DNA 

spacer mutation 
This report 

pCP5.1-TP15(T13G) 
pCP5.1 containing the TP15 target site with the T13G DNA 

spacer mutation 
This report 

pCP5.1-TP15(T13C) 
pCP5.1 containing the TP15 target site with the T13C DNA 

spacer mutation 
This report 

pCP5.1-TP15(T13A) 
pCP5.1 containing the TP15 target site with the T13A DNA 

spacer mutation 
This report 

pCP5.1-TP15(T14G) 
pCP5.1 containing the TP15 target site with the T14G DNA 

spacer mutation 
This report 



72 

 

pCP5.1-TP15(T14C) 
pCP5.1 containing the TP15 target site with the T14C DNA 

spacer mutation 
This report 

pCP5.1-TP15(T14A) 
pCP5.1 containing the TP15 target site with the T14A DNA 

spacer mutation 
This report 

pCP5.1-TP15(T15G) 
pCP5.1 containing the TP15 target site with the T15G DNA 

spacer mutation 
This report 

pCP5.1-TP15(T15C) 
pCP5.1 containing the TP15 target site with the T15C DNA 

spacer mutation 
This report 

pCP5.1-TP15(T15A) 
pCP5.1 containing the TP15 target site with the T15A DNA 

spacer mutation 
This report 

pCP5.1-N15 
pCP5.1 with the library of N15 DNA spacer sequences (oligo 

DE1333) 
This report 

 Nuclease Expression Plasmids Description Source 

pACYC.PciI 

Modified version of pACYC-Duet1 (Novagen) with the NcoI 

site in MCS1 replaced with a PciI site, constructs are cloned 

in and expressed via restriction sites PciI/XhoI, CmR 

Ben 

Kleinstiver 

pACYC.Pci-N169T120 
pACYC-PciI, containing the N169-T120 Tev-mTALEN, 

cloned in via PciI and XhoI 

Ben 

Kleinstiver 

pACYC.Pci-N169T120(12RVD) 
pACYC-PciI, containing the 6x his-tagged N169-T120 Tev-

mTALEN with 12RVDs, cloned in via PciI and XhoI 

Ben 

Kleinstiver 

pACYC.Pci-N169T120(S134G) pACYC-PciI expressing the S134G Tev-mTALEN mutant This report 

pACYC.PciI-

N169T120(S134G/N140S) 

pACYC-PciI expressing the S134G/N140S Tev-mTALEN 

mutant 
This report 

pACYC.Pci-

N169T120(K135R/N140S/Q158R) 

pACYC-PciI expressing the K135R/N140S/Q158R Tev-

mTALEN mutant 
This report 

pACYC.Pci-

N169T120(V117F/D127) 

pACYC-PciI expressing the V117F/D127G Tev-mTALEN 

mutant 
This report 

pACYC.Pci-N169ONU(S134G) pACYC-PciI expressing the S134G Mega-Tev mutant Jason Wolfs 

pACYC.Pci-

N169ONU(S134G/N140S) 
pACYC-PciI expressing the S134G/N140S Mega-Tev mutant Jason Wolfs 

pACYC.Pci-

N169ONU(K135R/N140S/Q158R) 

pACYC-PciI expressing the K135R/N140S/Q158R Mega-

Tev mutant 
Jason Wolfs 

pACYC.Pci-

N169ONU(V117F/D127G) 
pACYC-PciI expressing the V117F/D127G Mega-Tev mutant Jason Wolfs 

pGPD 

Modified version of yeast expression vector p416GPD, 

AmpR, nuclease constructs are cloned in via PciI/XhoI sites, 

contains the selectable HIS3 marker 

Dr Adam 

Bogdanove 

(90) 

pGPD-N169T120 (pLWN37) pGPD expressing the N169-T120 Tev-mTALEN 
Dr Adam 

Bogdanove 

pGPD-Zif268 pGPD expressing the dimeric Zif268 ZFN 

Dr Adam 

Bogdanove 

(90) 

pGPD-N169T120(S134G) pGPD expressing the S134G Tev-mTALEN This report 

pGPD-N169T120(S134G/N140S) pGPD expressing the S134G/N140S Tev-mTALEN This report 

pGPD-K135R/N140S/Q158R pGPD expressing the K135R/N140S/Q158R Tev-mTALEN This report 

pGPD-V117F/D127G pGPD expressing the V117F/D127G Tev-mTALEN This report 
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Appendix B: Oligonucleotides 

Oligonucleotides Sequence (5’-3’ direction) Description 

DE1013 
GCGACATGTCTAAAAGCGGAATTTATCA

GATT 

Forward PCR primer for I-TevI (1-169) 

in pACYC-Pci, with 5’PciI overhang 

DE1114 GTCGTTAGAACGCGGC 
Reverse sequencing/PCR primer for 

pSP72 

DE1175 
GCAACGTTTGGTGATACGTGTTCTACGCA

TCCATTAAAAG 

Site-directed mutagenesis primer to 

eliminate the PciI site in I-TevI 

DE1176 
CTTTTAATGGATGCGTAGAACACGTATCA

CCAAACGTTGC 

Site-directed mutagenesis primer to 

eliminate the PciI site in I-TevI 

DE1213 
CGCGGATCCACCAGAACCACCATTTCTG

CATTTACTACAAG 

Reverse PCR primer for I-TevI (1-169) 

in pACYC-Pci, with 3’ BamHI 

DE1333 

GCAATGAGATCTCAACGNNNNNNNNNN

NNNNNTGCATCTCCCATTACTGTAAAACA

C 

Upper oligo for the N15 DNA spacer 

library 

DE1452 CGTATTACCGCCTTTGAG 
Forward sequencing/PCR primer for 

pSP72 

DE1496 
GCTATGACTAGTGTGTTTTACAGTAATGG

GAGA 

Lower strand extension primer for 

oligos DE1333 and DE1715-DE1729 

(SpeI) 

DE1546 
GATCTGCCAACGATCAGTAGATGTTTTTG

CATCTCCCATTACTGTAAAACACA 

Top strand oligo for the  TP15(C1A) 

target (BglII/SpeI) 

DE1547 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATCTACTGATCGTTGGCA 

Bottom strand oligo for the  TP15(C1A) 

target (BglII/SpeI) 

DE1548 
GATCTGCCAACGGTCAGTAGATGTTTTTG

CATCTCCCATTACTGTAAAACACA 

Top strand oligo for the  TP15(C1G) 

target (BglII/SpeI) 

DE1549 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATCTACTGACCGTTGGCA 

Bottom strand oligo for the  TP15(C1G) 

target (BglII/SpeI) 

DE1550 
GATCTGCCAACGTTCAGTAGATGTTTTTG

CATCTCCCATTACTGTAAAACACA 

Top strand oligo for the  TP15(C1T) 

target (BglII/SpeI) 

DE1551 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATCTACTGAACGTTGGCA 

Bottom strand oligo for the  TP15(C1T) 

target (BglII/SpeI) 

DE1612 
GATCTTAACACTCAGTAGATGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Top strand oligo for the TP15(TAACA) 

target (BglII/SpeI) 

DE1613 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATCTACTGAGTGTTAA 

Bottom strand oligo for the 

TP15(TAACA) target (BglII/SpeI) 

DE1736 
GATCTCAACACTCAGTAGATGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Top strand oligo for the TP15(CAACA) 

target (BglII/SpeI) 

DE1737 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATCTACTGAGTGTTGA 

Bottom strand oligo for the 

TP15(CAACA) target (BglII/SpeI) 

DE1715 
GCAATGAGATCTCAACGCGCAGTAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(T2G) target BglII 

DE1716 
GCAATGAGATCTCAACGCCCAGTAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(T2C) target BglII 

DE1717 
GCAATGAGATCTCAACGCACAGTAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(T2A) target BglII 

DE1718 
GCAATGAGATCTCAACGCTGAGTAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(C3G) target BglII 

DE1719 
GCAATGAGATCTCAACGCTAAGTAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(C3A) target BglII 

DE1720 
GCAATGAGATCTCAACGCTTAGTAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(C3T) target BglII 

DE1721 
GCAATGAGATCTCAACGCTCGGTAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(A4G) target BglII 

DE1722 
GCAATGAGATCTCAACGCTCCGTAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(A4C) target BglII 

DE1723 
GCAATGAGATCTCAACGCTCTGTAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(A4T) target BglII 
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DE1724 
GCAATGAGATCTCAACGCTCACTAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(G5C) target BglII 

DE1725 
GCAATGAGATCTCAACGCTCAATAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(G5A) target BglII 

DE1726 
GCAATGAGATCTCAACGCTCATTAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(G5T) target BglII 

DE1727 
GCAATGAGATCTCAACGCTCAGGAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(T6G) target BglII 

DE1728 
GCAATGAGATCTCAACGCTCAGCAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(T6C) target BglII 

DE1729 
GCAATGAGATCTCAACGCTCAGAAGATG

TTTTTGCATCTCCCATTACTGTAAAACAC 

Top strand extension oligo for the 

TP15(T6A) target BglII 

DE1734 
GATCTTAACGCTCAGTAGATGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Top strand oligo for the TP15(TAACG) 

target (BglII/SpeI) 

DE1735 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATCTACTGAGCGTTAA 

Bottom strand oligo for the 

TP15(TAACG) target (BglII/SpeI) 

DE1738 
GATCTCAACGCTCAGTGGATGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(A7G) target 

BglII/SpeI 

DE1739 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATCCACTGAGCGTTGA 

Lower oligo for the TP15(A7G) target 

BglII/SpeI 

DE1740 
GATCTCAACGCTCAGTCGATGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(A7C) target 

BglII/SpeI 

DE1741 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATCGACTGAGCGTTGA 

Lower oligo for the TP15(A7C) target 

BglII/SpeI 

DE1742 
GATCTCAACGCTCAGTTGATGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(A7T) target 

BglII/SpeI 

DE1743 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATCAACTGAGCGTTGA 

Lower oligo for the TP15(A7T) target 

BglII/SpeI 

DE1744 
GATCTCAACGCTCAGTACATGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(G8C) target 

BglII/SpeI 

DE1745 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATGTACTGAGCGTTGA 

Lower oligo for the TP15(G8C) target 

BglII/SpeI 

DE1746 
GATCTCAACGCTCAGTAAATGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(G8A) target 

BglII/SpeI 

DE1747 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATTTACTGAGCGTTGA 

Lower oligo for the TP15(G8A) target 

BglII/SpeI 

DE1748 
GATCTCAACGCTCAGTATATGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(G8T) target 

BglII/SpeI 

DE1749 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATATACTGAGCGTTGA 

Lower oligo for the TP15(G8T) target 

BglII/SpeI 

DE1750 
GATCTCAACGCTCAGTAGGTGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(A9G) target 

BglII/SpeI 

DE1751 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACACCTACTGAGCGTTGA 

Lower oligo for the TP15(A9G) target 

BglII/SpeI 

DE1752 
GATCTCAACGCTCAGTAGCTGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(A9C) target 

BglII/SpeI 

DE1753 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACAGCTACTGAGCGTTGA 

Lower oligo for the TP15(A9C) target 

BglII/SpeI 

DE1754 
GATCTCAACGCTCAGTAGTTGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(A9T) target 

BglII/SpeI 

DE1755 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACAACTACTGAGCGTTGA 

Lower oligo for the TP15(A9T) target 

BglII/SpeI 

DE1756 
GATCTCAACGCTCAGTAGAGGTTTTTGC

ATCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T10G) target 

BglII/SpeI 

DE1757 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACCTCTACTGAGCGTTGA 

Lower oligo for the TP15(T10G) target 

BglII/SpeI 

DE1758 
GATCTCAACGCTCAGTAGACGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T10C) target 

BglII/SpeI 
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DE1759 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACGTCTACTGAGCGTTGA 

Lower oligo for the TP15(T10C) target 

BglII/SpeI 

DE1760 
GATCTCAACGCTCAGTAGAAGTTTTTGC

ATCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T10A) target 

BglII/SpeI 

DE1761 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACTTCTACTGAGCGTTGA 

Lower oligo for the TP15(T10A) target 

BglII/SpeI 

DE1762 
GATCTCAACGCTCAGTAGATCTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(G11C) target 

BglII/SpeI 

DE1763 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAAGATCTACTGAGCGTTGA 

Lower oligo for the TP15(G11C) target 

BglII/SpeI 

DE1764 
GATCTCAACGCTCAGTAGATATTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(G11A) target 

BglII/SpeI 

DE1765 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAATATCTACTGAGCGTTGA 

Lower oligo for the TP15(G11A) target 

BglII/SpeI 

DE1766 
GATCTCAACGCTCAGTAGATTTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(G11T) target 

BglII/SpeI 

DE1767 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAAAATCTACTGAGCGTTGA 

Lower oligo for the TP15(G11T) target 

BglII/SpeI 

DE1768 
GATCTCAACGCTCAGTAGATGGTTTTGC

ATCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T12G) target 

BglII/SpeI 

DE1769 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAACCATCTACTGAGCGTTGA 

Lower oligo for the TP15(T12G) target 

BglII/SpeI 

DE1770 
GATCTCAACGCTCAGTAGATGCTTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T12C) target 

BglII/SpeI 

DE1771 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAGCATCTACTGAGCGTTGA 

Lower oligo for the TP15(T12C) target 

BglII/SpeI 

DE1772 
GATCTCAACGCTCAGTAGATGATTTTGC

ATCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T12A) target 

BglII/SpeI 

DE1773 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAATCATCTACTGAGCGTTGA 

Lower oligo for the TP15(T12A) target 

BglII/SpeI 

DE1774 
GATCTCAACGCTCAGTAGATGTGTTTGC

ATCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T13G) target 

BglII/SpeI 

DE1775 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAACACATCTACTGAGCGTTGA 

Lower oligo for the TP15(T13G) target 

BglII/SpeI 

DE1776 
GATCTCAACGCTCAGTAGATGTCTTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T13C) target 

BglII/SpeI 

DE1777 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAGACATCTACTGAGCGTTGA 

Lower oligo for the TP15(T13C) target 

BglII/SpeI 

DE1778 
GATCTCAACGCTCAGTAGATGTATTTGC

ATCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T13A) target 

BglII/SpeI 

DE1779 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAATACATCTACTGAGCGTTGA 

Lower oligo for the TP15(T13A) target 

BglII/SpeI 

DE1780 
GATCTCAACGCTCAGTAGATGTTGTTGC

ATCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T14G) target 

BglII/SpeI 

DE1781 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AACAACATCTACTGAGCGTTGA 

Lower oligo for the TP15(T14G) target 

BglII/SpeI 

DE1782 
GATCTCAACGCTCAGTAGATGTTCTTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T14C) target 

BglII/SpeI 

DE1783 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAGAACATCTACTGAGCGTTGA 

Lower oligo for the TP15(T14C) target 

BglII/SpeI 

DE1784 
GATCTCAACGCTCAGTAGATGTTATTGC

ATCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T14A) target 

BglII/SpeI 

DE1785 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AATAACATCTACTGAGCGTTGA 

Lower oligo for the TP15(T14A) target 

BglII/SpeI 

DE1786 
GATCTCAACGCTCAGTAGATGTTTGTGC

ATCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T15G) target 

BglII/SpeI 

DE1787 
CTAGTGTGTTTTACAGTAATGGGAGATGC

ACAAACATCTACTGAGCGTTGA 

Lower oligo for the TP15(T15G) target 

BglII/SpeI 
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DE1788 
GATCTCAACGCTCAGTAGATGTTTCTGCA

TCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T15C) target 

BglII/SpeI 

DE1789 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AGAAACATCTACTGAGCGTTGA 

Lower oligo for the TP15(T15C) target 

BglII/SpeI 

DE1790 
GATCTCAACGCTCAGTAGATGTTTATGC

ATCTCCCATTACTGTAAAACACA 

Upper oligo for the TP15(T15A) target 

BglII/SpeI 

DE1791 
CTAGTGTGTTTTACAGTAATGGGAGATGC

ATAAACATCTACTGAGCGTTGA 

Lower oligo for the TP15(T15A) target 

BglII/SpeI 

DE1811 
GATCTCAACGCTCAGTAGATGTTTTTGCA

TCTCCCATTACTGTAAAACACA 

Top strand oligo for the TP15 target 

(BglII/SpeI) 

DE1812 
CTAGTGTGTTTTACAGTAATGGGAGATGC

AAAAACATCTACTGAGCGTTGA 

Bottom strand oligo for the TP15 target 

(BglII/SpeI) 
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Appendix C: Supplementary Data Tables 

 

Enzyme Target 
Average Normalized 

Activity 
Standard Error 

Zif268 ZF 100.00% 52.23% 

Zif268 TP15 0% 31.06% 

Tev-mTALEN ZF 234.17% 82.01% 

Tev-mTALEN TP15 3.22% 26.18% 

Supplementary Table S1: Figure 2.1A Data 

 

Target 
Average 

Normalized 
Activity 

Standard 
Error 

TP15 100.00% 42.74% 

pCP5a 0.00% 2.85% 

Zif 0.39% 3.30% 

TO15 0.00% 2.23% 

TNNNA 0.00% 0.44% 

TNNNG 0.00% 1.29% 

CNNNA 0.98% 3.81% 

Supplementary Table S2: Figure 2.1B Data 

 

 1:1 Ratio 2:1 Ratio 

Time (min) pSP72 pSP72-TP15 pSP72 pSP72-TP15 

0 0% 0% 0% 0% 

3 0% 1.41% 2.8% 51.9% 

7 0% 22.17% 7.3% 77.1% 

15 0.6% 31.65% 15.6% 87.1% 

20 1.08% 35.53% 17.1% 88.4% 

Supplementary Table S3: Figure 2.3 Data 
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 pSP72 pSP72-TP15 

NaCl R1 R2 R3 Avg StDev R1 R2 R3 Avg StDev 

25mM 25% 51% 40% 38.7% 13.1% 100% 100% 100% 100% 100% 

50mM 27% 45% 35% 35.7% 9% 100% 100% 75% 91.6% 91.7% 

75mM 41% 30% 13% 28% 14.1% 100% 100% 72% 90.6% 90.7% 

100mM 10% 0% 0% 3.3% 5.8% 60% 30% 47% 45.6% 45.7% 

150mM 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

KCl R1 R2 R3 Avg StDev R1 R2 R3 Avg StDev 

25mM 76% 69% 70% 71.6% 3.7% 100% 100% 100% 100% 100% 

50mM 73% 57% 52% 60.7% 11% 100% 100% 100% 100% 100% 

75mM 62% 53% 40% 51.7% 11.1% 100% 100% 100% 100% 100% 

100mM 36% 36% 17% 29.8% 11.1% 100% 100% 100% 100% 100% 

150mM 1% 0% 0% 0.5% 0.8% 19% 21% 0% 13.4% 13.4% 

Supplementary Table S4: Figure 2.4 Data 

 

 - Poly dI/dC + 20ng/µl Poly dI/dC 

 Avg StDev Avg StDev 

pSP72 25.25% 93.75% 1.3% 77% 

pSP72-TP15 6.1% 7.5% 2.3% 2.6% 

Supplementary Table S5: Figure 2.5 Data 
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Target Plate 1 Plate 2 Plate 3 Average Standard Error 

TP15 100.00% 100.00% 100.00% 100.00% 0.00% 

pCP5a 0.00% 0.00% 0.00% 0.00% 0.00% 

C1A 11.29% 1.52% 28.07% 13.62% 13.43% 

C1G 286.50% 145.64% 341.06% 257.73% 100.83% 

C1T 44.47% 21.18% 31.94% 32.53% 11.66% 

T2G -2.04% 2.31% -0.04% 0.08% 2.18% 

T2C 10.01% 2.85% 5.73% 6.20% 3.60% 

T2A 28.58% 13.56% 15.50% 19.21% 8.17% 

C3G 141.19% 31.47% 41.57% 71.41% 60.64% 

C3A 92.58% 21.54% 55.54% 56.55% 35.53% 

C3T 6.34% 5.17% 5.30% 5.60% 0.64% 

A4G 197.73% 70.67% 118.17% 128.86% 64.20% 

A4C 92.99% 199.09% 162.74% 151.61% 53.92% 

A4T 268.19% 384.97% 137.29% 263.49% 123.91% 

G5C 60.81% 55.69% 156.41% 90.97% 56.73% 

G5A 50.47% 50.35% 42.30% 47.71% 4.68% 

G5T 75.52% 49.48% 119.08% 81.36% 35.17% 

T6G 10.91% 13.79% 12.54% 12.41% 1.44% 

T6C 1.04% 17.65% 18.51% 12.40% 9.85% 

T6A 12.07% 4.17% 4.87% 7.04% 4.38% 

A7G 112.05% 104.97% 276.72% 164.58% 97.18% 

A7C 116.24% 112.35% 220.99% 149.86% 61.63% 

A7T 116.80% 19.99% 171.24% 102.67% 76.61% 

G8C 57.19% 32.61% 28.47% 39.42% 15.52% 

G8A 34.02% 16.75% 26.66% 25.81% 8.67% 

G8T 5.04% 5.26% 22.63% 10.98% 10.09% 

A9G 15.65% 7.23% 48.39% 23.76% 21.75% 

A9C 97.97% 59.07% 40.56% 65.87% 29.30% 

A9T 75.59% 65.04% 87.79% 76.14% 11.39% 

T10G 132.93% 89.31% 137.99% 120.08% 26.77% 

T10C 125.66% 128.36% 139.67% 131.23% 7.43% 

T10A 159.77% 285.75% 219.97% 221.83% 63.01% 

G11C 203.69% 127.67% 191.88% 174.41% 40.91% 

G11A 62.78% 157.35% 99.26% 106.46% 47.69% 

G11T 71.89% 227.89% 172.84% 157.54% 79.12% 

T12G 160.23% 77.20% 144.50% 127.31% 44.10% 

T12C 161.93% 90.91% 80.70% 111.18% 44.25% 

T12A 208.71% 137.99% 224.91% 190.54% 46.22% 

T13G 56.61% 127.08% 190.02% 124.57% 66.74% 

T13C 74.53% 131.22% 150.22% 118.66% 39.38% 

T13A 187.96% 152.07% 157.97% 166.00% 19.25% 

T14G 167.48% 93.99% 101.77% 121.08% 40.37% 

T14C 65.50% 90.97% 76.70% 77.72% 12.77% 
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T14A 174.91% 180.99% 125.39% 160.43% 30.50% 

T15G 136.39% 196.92% 141.92% 158.41% 33.47% 

T15C 163.10% 133.73% 109.22% 135.35% 26.98% 

T15A 125.41% 144.44% 73.96% 114.61% 36.46% 

Supplementary Table S6: Figure 3.1 Data 
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Inactive Clones Active Clones % Normalized Activity 

CATAGGCGCTACATG GAAAATTGCGTGTCG 17 

ATGACGGGCGTGATT CGAGATGATGGGATC 18 

CGCCACTTTCTAATT AGGCGCGTCTGTTGG 18 

GGGGTTATGTGATGC GAGAGGGGTGAAGGG 23 

CGCGACGCCAGGAGG TAGAGCTTACGCGTT 27 

GTGCCAGTGCGTGAA GAAGAATGGTTTATA 29 

CGCGGCGTGTAAAGT CAAAGTGGTCGCAGT 30 

AGGTGGACGAAAACC GAAGGCGGGGCGCAT 31 

GGGGGCAAGATTACG GTAGGAGGCGGTTGT 35 

TTCAAAGTTCTGTAG AGGTACGGATCAGTG 35 

CCGGGGCCCGGGGGG GTTAACCCCATAGTA 43 

AGACTGTGTCCGACC GAGTGCGCAATATAT 45 

GCTGGAGTGGGCAGC GTGATACGCCAGATT 46 

CGCTGAAAATCCGTA GTAGGGCATTGACGG 47 

AGAGCGTGCCGAGGG GGTCTCTTGACAGCC 48 

TGAAGGATTGCGCGG GTACATGAGTTATAG 49 

CGAGAGTGAGCGTTG GAAGCACAGGAGACA 49 

ATAATCGGGGCGCTT GATCCTGGAAATGGG 49 

AGAGGCGGACGGGTT GAGGAGGGGCGTTAA 51 

TGGTTCATCCGCGCG GTGGCTGAACCTGGT 54 

GTTTGAGCTTTCTAG GTAAATTGCGTGTCG 57 

TTTTGATAATCAAAG GTGCCTCCGTTGGTC 63 

CGACGTAAGACGTCT GAAAGGTATTTGATG 65 

CAGCGGGCTGGTAGG GATACCTTTTCCTGA 69 

GCAGGTGGTGTAGGG GTGGGATCAAGAAAT 81 

TGGTGTGATCTAGGG GTGGTCCTTGTGGGT 82 

TCTTGGTTGGTCGAA GGCGTCAAGTGCGCC 83 

GAGAGGATGTGGGGT GCGGCTCGAATCATG 84 

CCCTTTGATGACTTT GTGGGCATAAACGGG 87 

GGAGGCATTTGCTGA GTAGAGCAAGAAGAC 89 

TATGCCAATCAGAGT GTACTACGACTAGTT 90 

CAATTAACAGGGGGC GAGCGATAGAGGTAC 92 

CTTTTTCTGCTGTTT GTTGTGCAAATGTTG 94 

TGTATGTCCACCAGT GTCGCCAGGAGGGGC 95 

GGTGTGAGTCACGTT GTCGCCTTTAGTTGT 95 

GCGAAGACACGGCTA GTGGGCCGTGCAGGG 96 

GCGGTCAGTAGGGTG AGGATCGCGTGGTGC 104 
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ATTTGCTGTACATGG TGATCCTGATGTGGG 104 

AGAAACGGTTTGTCT GTAAAGGGACTTAAT 105 

GCGAAGACACGGCTA TGATGACCTAACGTG 105 

TTTCTCTCTAATCGG GTGTGCATTTCGGAT 118 

AAGGTTTTGCTGGCT CTAAGTGGTAGGTTA 118 

TCATCGAGCAGATGG GAGTACCCGATTTTT 122 

CCCCGGGGAGGCTTA GTAAAGGGAcTtgAT 134 

AGACGCACCTTTTTT GTAAAGGGACTTAAT 140 

ACACGCGGTGTAACG GTCATCCTAAAAAAT 170 

AAGATGGGGACGAGG GTGAAGGGGCATAGG 178 

CGGTGTCAGCCTAAG GAGCGATAGAGGTAC 181 

TCCAATAGTTCGACT GTAAGCCAGTTAGAC 248 

GCGCCGGCGGTCGGT GCCGGCGTTTGCGGG 295 

TGGTGCGATGACAAT   

GGTGTGTGGCAAGCG   

GCACGCCAGCATGCA   

TGAGGGCAGCGTGAA   

TGAAGTAAAGGTAAT   

ATGACAACGTTCGAG   

GTAGGCTAATGGGTG   

GCGCTCGCTTGAGGG   

TTGTAGGCAACTACT   

ATGAATCCGTTTATG   

GGGGAAGGGATCGCC   

TGATCTTGTAATTTT   

Supplementary Table S7: Figure 3.2 Data 
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 Nucleotide Abundance 

 Active Clones Inactive Clones 

  A C G T A C G T 

1 0.060 0.060 0.820 0.060 0.226 0.226 0.290 0.258 

2 0.300 0.040 0.160 0.500 0.113 0.242 0.435 0.210 

3 0.400 0.100 0.400 0.100 0.306 0.129 0.371 0.194 

4 0.340 0.160 0.380 0.120 0.242 0.194 0.306 0.258 

5 0.280 0.180 0.380 0.160 0.177 0.129 0.452 0.242 

6 0.180 0.420 0.200 0.200 0.145 0.306 0.355 0.194 

7 0.080 0.300 0.380 0.240 0.323 0.113 0.355 0.210 

8 0.240 0.140 0.420 0.200 0.210 0.258 0.323 0.210 

9 0.320 0.120 0.300 0.260 0.177 0.145 0.339 0.339 

10 0.320 0.200 0.200 0.280 0.210 0.290 0.258 0.242 

11 0.180 0.140 0.340 0.340 0.177 0.210 0.339 0.274 

12 0.260 0.160 0.320 0.260 0.210 0.242 0.355 0.194 

13 0.240 0.040 0.420 0.300 0.339 0.081 0.355 0.226 

14 0.280 0.100 0.340 0.280 0.161 0.210 0.339 0.290 

15 0.120 0.200 0.340 0.340 0.145 0.097 0.419 0.339 

Supplementary Table S8: Figure 3.3A Data 
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 Log2(Factive/FInactive) 

 A C G T 

1 -1.88291 -2.46787 1.527113 -2.07555 

2 1.439022 -2.5674 -1.4154 1.224009 

3 0.339486 -0.33859 0.137853 -0.92355 

4 0.432596 -0.24548 0.339486 -1.07555 

5 0.68741 0.509411 -0.29794 -0.5674 

6 0.339486 0.483876 -0.79802 -0.07555 

7 -1.98244 1.439022 0.04998 0.224009 

8 0.224009 -0.85316 0.339486 -0.03903 

9 0.880055 -0.24548 -0.14594 -0.46787 

10 0.545937 -0.50851 -0.33859 0.239951 

11 0.04998 -0.5536 -0.05283 0.339486 

12 0.339486 -0.5674 -0.21305 0.454964 

13 -0.46787 -0.98244 0.272372 0.339486 

14 0.824913 -1.03903 0.034632 -0.13 

15 -0.50851 1.076452 -0.27349 0.034632 

Supplementary Table S9: Figure 3.3B Data 
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 S134G S134G/N140S K135R/N140S/Q158R V117F/D127G 

 Avg StDev Avg StDev Avg StDev Avg StDev 

TP15 100.00% 61.77% 100.00% 60.82% 100.00% 22.30% 100.00% 66.90% 

C1A 23.14% 17.92% 22.50% 17.15% 74.72% 81.53% 90.24% 72.69% 

C1G 146.72% 89.95% 247.30% 290.96% 600.54% 356.18% 785.71% 748.51% 

C1T 64.73% 29.39% 74.53% 158.50% 132.23% 108.85% 76.93% 38.02% 

T2A 40.19% 11.90% 29.33% 10.47% 74.62% 35.41% 175.64% 119.91% 

T2C 49.31% 71.20% 44.38% 63.20% 73.30% 110.58% 246.18% 274.21% 

T2G 11.92% 16.96% 45.72% 44.02% 93.08% 55.96% 219.55% 372.58% 

C3A 73.69% 67.10% 114.48% 38.60% 177.91% 109.61% 144.88% 62.21% 

C3G 45.42% 22.58% 49.63% 21.96% 60.39% 28.65% 184.06% 101.10% 

C3T 9.04% 3.25% 3.62% 5.93% 8.59% 46.28% 114.86% 234.60% 

A4C 91.94% 51.28% 196.80% 341.38% 196.42% 191.08% 742.96% 842.62% 

A4G 109.05% 20.60% 100.45% 159.49% 80.59% 55.31% 698.67% 1013.00% 

A4T 112.06% 37.05% 259.14% 197.32% 222.46% 176.46% 725.41% 556.38% 

G5A 33.70% 16.79% 101.93% 17.88% 169.38% 95.21% 212.37% 174.32% 

G5C 101.86% 44.82% 231.77% 93.82% 452.75% 340.13% 612.32% 459.94% 

G5T 31.74% 17.82% 144.28% 13.53% 125.56% 61.61% 308.81% 356.03% 

T6A 3.19% 3.08% 64.49% 40.47% 45.93% 43.30% 73.63% 37.02% 

T6C 42.37% 16.98% 88.56% 55.12% 97.43% 41.53% 142.55% 64.75% 

T6G 13.55% 3.91% 83.76% 86.95% 183.49% 91.17% 274.94% 320.33% 

A7C 93.67% 52.46% 180.25% 49.55% 127.37% 62.65% 840.76% 557.69% 

A7G 141.09% 90.87% 221.21% 120.95% 1262.32% 454.01% 551.24% 357.76% 

A7T 78.44% 57.91% 102.60% 58.18% 239.46% 156.97% 220.69% 109.51% 

G8A 22.49% 13.55% 133.25% 130.33% 437.26% 255.32% 103.09% 79.64% 

G8C 53.93% 40.31% 211.96% 251.97% 129.99% 109.46% 109.39% 57.24% 

G8T 23.90% 14.12% 99.32% 93.85% 197.37% 164.82% 38.62% 55.36% 

A9C 53.42% 20.41% 179.75% 146.22% 503.25% 311.61% 386.11% 191.20% 

A9G 8.85% 6.19% 100.88% 30.85% 109.09% 241.34% 148.71% 167.69% 

A9T 79.74% 47.40% 379.80% 294.27% 174.10% 214.26% 237.26% 404.47% 

T10A 56.16% 65.50% 85.11% 33.87% 190.17% 155.07% 131.91% 96.14% 

T10C 76.96% 65.10% 132.20% 87.95% 344.64% 619.94% 175.77% 199.94% 

T10G 114.27% 55.15% 290.56% 249.57% 678.70% 403.48% 983.50% 818.67% 

G11A 133.94% 69.45% 132.24% 110.02% 162.81% 174.20% 157.66% 231.98% 

G11C 149.42% 58.77% 247.65% 85.44% 740.67% 400.83% 653.56% 389.41% 

G11T 62.37% 41.68% 229.81% 116.24% 201.80% 121.26% 492.80% 495.08% 

T12A 129.52% 149.53% 110.06% 86.34% 232.81% 154.06% 202.23% 130.12% 

T12C 68.82% 53.33% 183.10% 191.60% 225.00% 153.64% 169.78% 208.89% 

T12G 146.06% 149.82% 316.50% 171.81% 683.98% 329.37% 884.92% 536.18% 

T13A 91.88% 45.07% 96.26% 56.51% 198.69% 157.74% 221.09% 119.23% 
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T13C 36.04% 20.67% 104.88% 102.85% 136.09% 54.42% 281.59% 326.60% 

T13G 111.30% 63.84% 94.83% 79.56% 245.50% 140.87% 138.52% 96.65% 

T14A 112.73% 88.17% 216.36% 177.93% 585.23% 261.92% 371.81% 259.38% 

T14C 63.00% 7.31% 120.91% 49.33% 139.10% 63.04% 150.72% 103.75% 

T14G 49.72% 23.11% 110.35% 67.51% 130.98% 76.16% 253.78% 179.09% 

T15A 87.45% 50.72% 94.14% 55.36% 108.92% 56.43% 65.41% 43.87% 

T15C 74.54% 65.17% 150.83% 51.43% 332.23% 202.76% 129.57% 103.94% 

T15G 110.51% 90.19% 260.99% 132.15% 536.82% 220.27% 614.12% 513.97% 

Supplementary Table S10: Figure 4.1-4.4 Data 
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 S134G S134G/N140S K135R/N140S/Q158R V117F/D127G 

 Avg StDev Avg StDev Avg StDev Avg StDev 

TP15 214.26% 168.92% 38.44% 24.02% 8.52% 3.75% 27.20% 25.01% 

C1A 46.59% 1.52% 7.87% 8.81% 5.01% 1.95% 22.63% 17.81% 

C1G 279.59% 122.34% 102.05% 145.19% 47.07% 4.24% 191.81% 255.96% 

C1T 128.82% 60.24% 22.88% 38.34% 9.69% 4.72% 17.87% 13.72% 

T2G 22.73% 3.38% 14.75% 9.38% 7.48% 6.74% 39.30% 10.99% 

T2C 95.10% 7.83% 13.65% 14.14% 4.36% 1.83% 41.38% 13.85% 

T2A 81.56% 31.49% 10.59% 4.37% 5.84% 3.19% 36.24% 21.60% 

C3G 90.44% 47.41% 17.29% 8.93% 4.87% 1.93% 44.95% 63.06% 

C3A 144.48% 154.29% 37.01% 19.99% 13.63% 8.75% 35.26% 21.98% 

C3T 19.13% 13.37% 2.49% 4.04% 0.17% 3.35% 13.30% 36.01% 

A4G 240.97% 145.59% 33.02% 40.09% 6.15% 1.03% 105.99% 203.90% 

A4C 213.46% 159.56% 82.64% 164.90% 13.37% 8.90% 116.63% 137.05% 

A4T 250.24% 32.31% 86.63% 48.37% 18.25% 24.66% 126.32% 51.47% 

G5C 218.66% 95.16% 81.39% 11.58% 33.55% 3.80% 89.05% 50.71% 

G5A 76.95% 34.91% 38.18% 15.78% 12.78% 3.56% 43.02% 26.51% 

G5T 72.85% 24.70% 44.83% 8.47% 9.86% 4.63% 48.78% 23.79% 

T6G 28.06% 9.96% 28.21% 19.63% 14.27% 4.75% 54.80% 2.03% 

T6C 91.49% 44.99% 30.47% 12.04% 7.58% 1.97% 30.24% 4.95% 

T6A 7.28% 4.21% 24.44% 9.40% 3.35% 1.89% 15.50% 7.77% 

A7G 291.46% 134.51% 75.68% 15.64% 100.58% 23.33% 89.35% 25.91% 

A7C 190.42% 122.37% 64.19% 9.48% 10.30% 4.19% 162.47% 110.42% 

A7T 157.02% 101.18% 37.11% 8.75% 17.60% 7.32% 41.75% 20.34% 

G8C 128.90% 162.32% 69.94% 62.90% 10.10% 4.32% 26.03% 7.84% 

G8A 47.67% 53.67% 46.89% 29.93% 33.25% 3.53% 16.31% 8.22% 

G8T 54.43% 86.13% 33.51% 22.89% 18.37% 24.71% 4.31% 8.29% 

A9G 17.03% 7.62% 33.33% 2.49% 6.72% 15.98% 28.95% 9.63% 

A9C 108.28% 36.00% 62.26% 29.34% 38.96% 15.77% 74.26% 23.48% 

A9T 152.86% 68.17% 129.97% 36.87% 12.30% 11.80% 46.36% 77.17% 

T10G 232.27% 55.11% 102.88% 56.22% 52.90% 15.71% 174.17% 90.86% 

T10C 143.10% 95.71% 46.45% 10.82% 21.27% 44.42% 36.98% 34.22% 

T10A 102.67% 107.11% 30.84% 0.94% 14.59% 7.70% 26.14% 15.22% 

G11C 297.47% 43.28% 88.09% 4.22% 58.67% 15.79% 125.13% 57.25% 

G11A 298.61% 201.46% 45.74% 16.72% 12.17% 6.28% 27.92% 46.82% 

G11T 119.37% 96.35% 74.29% 34.91% 15.41% 0.76% 95.62% 31.28% 

T12G 286.37% 113.08% 118.53% 37.62% 51.59% 8.44% 162.19% 41.04% 

T12C 128.49% 101.92% 63.04% 47.32% 17.16% 0.83% 36.65% 41.49% 

T12A 247.17% 61.32% 36.56% 28.66% 17.04% 3.93% 42.78% 43.97% 

T13G 214.22% 21.42% 31.76% 16.64% 18.15% 2.00% 36.58% 48.01% 
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T13C 73.64% 53.48% 35.54% 23.83% 10.54% 1.78% 107.67% 289.11% 

T13A 182.19% 88.06% 32.36% 11.36% 13.66% 2.11% 47.03% 28.40% 

T14G 97.53% 65.32% 42.07% 14.90% 10.13% 1.78% 45.40% 17.28% 

T14C 223.38% 83.41% 43.44% 19.46% 10.52% 2.80% 22.43% 8.97% 

T14A 273.96% 296.20% 74.34% 33.09% 44.66% 9.18% 63.56% 30.19% 

T15G 328.98% 277.40% 96.88% 67.36% 41.54% 9.80% 110.60% 98.98% 

T15C 181.35% 160.05% 48.46% 17.93% 24.60% 5.82% 23.11% 12.07% 

T15A 216.30% 176.01% 34.84% 17.48% 8.56% 3.49% 15.60% 22.31% 

Supplementary Table S11: Figure 4.5A/4.6A/4.7A/4.8A Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 

 

   S134G S134G/N140S V117F/D127G K135R/N140S/Q158R 

  TP15 1.09936254 -1.379319759 -1.878675088 -3.584962501 

C - 1 

A 1.773381182 -0.781039925 0.732228836 -1.443550187 

G 0.117433624 -1.336555831 -0.4262012 -2.45279506 

T 1.985476538 -0.507473603 -0.864500322 -1.746210027 

T - 2 

A 2.085753941 -0.859859423 0.915475121 -1.717244339 

C 3.939881072 1.138984332 2.739369376 -0.504959958 

G 4.883383843 4.260038694 5.673404685 3.279464864 

C - 3 

A 1.353119261 -0.611826869 -0.68130684 -2.05317933 

G 0.340888046 -2.045910139 -0.667591048 -3.874132441 

T 1.770976793 -0.605273355 1.247069022 -2.074859073 

A - 4 

C 0.493587497 -0.875421036 -0.3783118 -3.503621554 

G 0.903086367 -1.9645008 -0.281884398 -4.38981912 

T -0.074380072 -1.604717574 -1.060666701 -3.851743338 

G - 5 

A 0.689792933 -0.321373784 -0.149071581 -1.900679389 

C 1.265226571 -0.160421138 -0.030775242 -1.439078087 

T -0.159324696 -0.859640653 -0.737931339 -3.044172483 

T - 6 

A 0.094560937 1.796083427 1.138993847 -1.069296274 

C 2.883221379 1.296891544 1.285958983 -0.708802064 

G 1.176795809 1.184316094 2.142373074 0.201431723 

A - 7 

C 0.345544403 -1.22326981 0.116587592 -3.862432298 

G 0.824508873 -1.120805034 -0.881303217 -0.710493383 

T 0.612870591 -1.468228459 -1.298145082 -2.544461032 

G - 8 

A 0.8850506 0.861350138 -0.661878541 0.365424199 

C 1.709130594 0.827136788 -0.598874453 -1.963742512 

T 2.309962025 1.610008159 -1.122944372 0.743173376 

A - 9 

C 0.717235169 -0.081165726 0.173036774 -0.757431435 

G -0.480536399 0.488344603 0.285064802 -1.82108384 

T 1.005453 0.77145218 -0.715877739 -2.629605333 

T - 10 

A -1.111346121 -2.846579817 -3.085307423 -3.926073128 

C 0.124858892 -1.498243538 -1.8271504 -2.624979554 

G 0.951846994 -0.222946543 0.536512703 -1.182525302 

G - 11 

A 1.487889733 -1.218723238 -1.930813565 -3.128955569 

C 0.770266178 -0.985405585 -0.479121048 -1.571815437 

T -0.400277876 -1.084607721 -0.720283578 -3.354091517 

T - 12 
A 0.37539608 -2.381862222 -2.15494786 -3.482789225 

C 0.208721368 -0.818634134 -1.601012184 -2.695495613 
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G 1.169534619 -0.103052922 0.349309476 -1.303368836 

T - 13 

A 0.134207742 -2.358751127 -1.819530004 -3.602801847 

C -0.688231628 -1.739412892 -0.140266162 -3.492846388 

G 0.78215896 -1.971522442 -1.767829688 -2.778650281 

T - 14 

A 0.450698695 -0.548994278 -0.886121598 -1.879874839 

C 0.780888276 -0.782663505 -0.674623511 -2.943516424 

G -0.312091927 -1.524982552 -1.415302306 -3.57830536 

T - 15 

A 0.568291566 -1.855915846 -2.474299568 -3.637826283 

C 0.002555894 -1.594373042 -2.367955297 -2.643145765 

G 1.3788 -0.814544845 -0.538497257 -2.22970693 

Supplementary Table S12: Figure 4.5B/4.6B/4.7B/4.8B Data 
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