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Abstract 

Bubble column reactors, with or without solid particles, have a number of applications in the 

chemical, petrochemical, biochemical and environmental industries. A number of these industrial 

applications require internals such as baffles, heat transfer surfaces and special distributors to meet 

demands.  Proper selection and design of these internals can lead to the improved performance and 

efficiency of a bubble column reactor. Several experiments are carried out in a bubble column 

equipped with a concentric tube bundle (CT) and an internal combination consisting of a 

concentric tube bundle and concentric baffle (or static mixer) (CTB) respectively. Neutrally 

buoyant particles are used to determine the effect of the CT and CTB internals on the local flow 

structures in the equipped column respectively. More upward, near-linear particle movements are 

observed with the CTB internal over the CT internal. Several non-linear particle movements are 

also observed. Overall bulk liquid circulation flow patterns are proposed for the intermediate to 

high gas velocity range based on the observed local flow structures for both internals. Comparisons 

are made between the gas holdups obtained during internal equipment and that of a comparable 

hollow bubble column from the literature. Both internals increase the gas holdup of a hollow 

bubble column. However, the increases with the CT internal are higher by more than 25% of that 

obtained with the CTB internal on average. The effect of the internals on average bubble size is 

investigated for the small bubble class. Smaller average diameters are obtained when the CT 

internal is used. The interfacial area in the presence of the two internals is determined respectively. 

Higher interfacial areas are obtained with the CT internal. The average difference in interfacial 

area is 54.0 m2/m3. The effect of the internals on mixing time is determined through dye and 

aqueous salt tracer studies. In both instances, higher mixing times are obtained with the CTB 

internal. Liquid backmixing is quantified through the axial dispersion coefficients obtained from 

the salt tracer studies. The axial dispersion coefficients obtained with the CT internal are higher 

than that of the CTB internal by about 15% on average. 

 

Keywords 

Bubble column, Internal design, Hydrodynamics, Local flow structure, Bulk liquid circulation, 

Gas holdup, Bubble fractions, Bubble sizes, Interfacial area, Mixing time, Liquid backmixing  



iii 

 

Acknowledgement  

 

I would like to thank my supervisor, Dr. Anand Prakash, for all of his guidance throughout my 

studies. This work would not have been possible without his advice and knowledge. I am also 

thankful to Anil Jhawar for his assistance during experimentation and for his support during this 

period.  

 

A very special thanks to the administrative staff of the chemical and biochemical engineering 

department, Ashley Jokhu, Ingrid Timusk and Sarah Williams for their kind-hearted support in 

numerous aspects. I would also like to thank the staff of Engineering Store and the University 

Machine Shop for their assistance and patience.  

 

This thesis is dedicated to my father Joshua, my mother Fidelis, my sister Londa, my aunts 

Beverlyann and Leana, my grandmother Esther and my deceased grandmother Theodora. Without 

their boundless support and unconditional love, both past and current, I would have been unable 

to complete this work.  

 

 

  

“I can do all things through Christ who strengthens me.” Philippians 4:13 

To Him I am most indebted to… 

 

 

 

 

 

 

 

 

  



iv 

 

Table of Contents  

Abstract …………………………………………………………………………………….……. ii 

Acknowledgements …………………………………………………………………………...… iii 

List of Tables………………………………………………………………………………..……vii 

List of Figures…………………………………………………………………………………...viii 

Nomenclature ………………………………………………………………….…………………xi 

1.0 Introduction …………………………………………………………………………………...1 

 1.1 Objective………………………………………………………………………………2 

 1.2 Thesis Structure………………………………………………………………………..3 

2.0 Literature Review …………………………………………………………………………….. 4 

2.1 Flow Regimes in Bubble Columns …………………………………………………….6 

 2.1.1 Bubble Flow Regime ………………………………………………………..7 

2.1.2 Transition Flow Regime …………………………………………………….8 

2.1.3 Coalesced Bubble Flow Regime ………………………...………………..…8 

2.1.4 Slug Flow Regime ………………………………………………………..…9 

2.1.5Characterization of Flow Regimes ………………………………………….10 

2.2 Gas Holdup in Bubble Columns ……………………………………………………..13 

2.2.1 Effect of Continuous Phase Properties ……………………………………..14 

2.2.2 Effect of Operating Parameters …………………………………………….15 

2.2.3 Effect of Design Parameters ………………………………………………..16 

2.2.4 Effect of Superficial Gas Velocity …………………………………………17 

2.2.5 Effect of Internals ………………………………………………………….17 

2.3 Gas Holdup Measurement Techniques ………………………………………………18 

2.3.1 Axial Dispersion Profile Technique ……………………………………….18 

2.3.2 Dynamic/Static Height Technique …………………………………………19 

2.3.3 Bed pressure Drop Technique ………………………………………….…..20 

2.3.4 Dynamic Gas Disengagement Technique ………………………………….21 

2.4 Bubble Size Measurements Techniques ……………………………………………...21 

2.4.1 Photography-based Techniques ……………………………………………22 

2.4.2 Conductivity-based Techniques …………………………………………...23 

2.4.3 Optical Techniques ………………………………………………………...23 



v 

 

2.5 Liquid Mixing ………………………………………………………………………..24 

2.5.1 Mixing Time ……………………………………………………………….24 

2.5.2 Liquid Backmixing ………………………………………………………...26 

2.5.3 Factors Influencing Mixing Time/Liquid Backmixing …………………….28 

2.5.3.1 Effect of Continuous Phase Properties …………………………...29 

2.5.3.2 Effect of Operating Parameters …………………………………..30 

2.5.3.3 Effect of Design Parameters ……………………………………...30 

2.5.3.4 Effect of Internals ………………………………………………..31 

2.6 Tracer Techniques …………………………………………………………………...35 

2.6.1 Dyestuff Tracers …………………………………………………………...36  

2.6.2 Acidic and Basic Tracers …………………………………………………..36 

2.6.3 Aqueous Salt Tracers ………………………………………………………37 

2.6.4 Heat Tracers ………………………………………………………………..37 

2.6.5 Radioactive Tracers ………………………………………………………..37 

2.7 Estimation of Mixing Time through Tracers …………………………………………38 

2.8 Estimation of Liquid Backmixing through Tracers ………………………………….42 

3.0 Experimental ………………………………………………………………………………...47 

3.1 Gas Holdup from Bed Pressure Drop Technique ……………………………………47  

3.2 Bubble Fractions from Dynamic Gas Disengagement Technique …………………..51 

3.3 Small Bubble Sizes from Photography-based Technique ……………………………53 

3.4 Liquid Circulation from Neutrally Buoyant Particle Technique ………………….…54 

3.5 Mixing Time from Dye Tracer Technique ……………………………………….….56 

3.6 Mixing Time and Axial Dispersion Coefficient from Salt Tracer Technique …….…60 

4.0 Results and Discussion ………………………………………………………………………63 

4.1 Local Flow Structures in the Presence of Internals …………………………………..63 

4.1.1 The Distributor and Baffle Regions ……………………………………......67  

4.1.2 The Entrance Region ……………………………………………………….71 

4.1.3 The Core Region …………………………………………………………...72 

4.1.4 The Annular Region ………………………………………………………..74 

4.1.4.1 Near-linear Particle Movements …………………………………75 

4.1.4.2 Non-line Particle Movements ……………………………………77 



vi 

 

4.1.5 The Exit Region ……………………………………………………………84 

4.1.6 Combined Flow Patterns …………………………………………………...85 

4.2 Interfacial Area and Gas Holdup Structure …………………………………………..88 

4.2.1 Gas Holdup ………………………………………………………………...89 

4.2.2 Bubble Fractions …………………………………………………………...89 

4.2.3 Small Bubble Sizes ………………………………………………………...94 

4.2.4 Interfacial Area …………………………………………………………….98 

4.3 Liquid Phase Mixing ………………………………………………………………..102 

4.3.1 Liquid Phase Mixing Time ………………………………………………..102 

4.3.2 Axial Dispersion Coefficient ……………………………………………..104 

5.0 Conclusions and Recommendations ………………………………………………………..109 

5.1 Conclusions ………………………………………………………………………...109 

5.2 Recommendations ………………………………………………………………….110 

Appendix A – Calibration of Sonic Nozzles ……………………………………………………111 

Appendix B – Calibration of Pressure Transducers …………………………………………….121 

Appendix C – Neutrally Buoyant Particle Design ………………………………………………123 

Appendix D – Calibration of Pump ……………………………………………………………..127 

Appendix E – Injection System Design ………………………………………………………...128 

References ……………………………………………………………………………………...132 

Curriculum Vitae ……………………………………………………………………………….139        

 

 

 

 

 

 

 

 

 

 

 

  



vii 

 

List of Tables   

 

Table 3.1: Summary of internal properties ………………………………………………………51 

Table 3.2: Summary of selected near-neutrally buoyant particle properties ……………………..56 

Table 4.1: Summary of measured liquid velocities……………………………………………….76 

Table A.1: Summary of sonic nozzles, upstream pressures and superficial gas velocity…….….113 

Table C.1: Summary of materials used in near-neutrally buoyant particle construction ………..125 

Table C.2: Complete summary of near-neutrally buoyant particle properties …………………..125 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



viii 

 

List of Figures   

   

Figure 2.1: Schematic of Bubble Column Reactor ……………………………………………...…5 

Figure 2.2: Schematic of flow regimes in bubble column ……………………………………..….7 

Figure 2.3: Flow regime map presented by Deckwer et al. (Deckwer et al., 1980)……………... 11 

Figure 2.4: Schematic of bubble column reactor internals: (from left to right) partition plates, 

concentric draft tube internal loop, packing, concentric centrally mounted baffle and concentric 

tube bundle....…………………………………………………………...………………………..32 

Figure 2.5: Sample C – curve (Levenspiel: 1988), adapted ………………………………………40 

Figure 2.6: Schematic of Plug Flow Reactor …………………………………………………….43 

Figure 3.1: Schematic Showing Experimental Setup 1 …………………………………………..49 

Figure 3.2: Top View of Baffle Internal ………………………………………………………….50 

Figure 3.3: Top View of Tube Bundle Internal …………………………………………………..50 

Figure 3.4: Schematic of sparger used in tracer injection ………………………………………..58 

Figure 3.5: Schematic Showing Experimental Setup 2 …………………………………………..59 

Figure 3.6: Picture of a) Inlab 731 ISM probe (top) and b) SevenExcellence Multiparameter meter 

(bottom) ………………………………………………………………………………………….62 

Figure 4.1: Regions in bubble column equipped with a) CTB internal (left) and b) CT internal 

(right) ……………………………………………………………………………..…………….. 66 

Figure 4.2: Picture series of particle in distributor region (Vg ~ 0.02 m/s, magnification: ~ 0.35%) 

……………………………………………………………………………………………………68 

Figure 4.3: Schematic of particle in distributor region (Vg ~0.02 m/s) …………………………69 

Figure 4.4: Schematic of particle in baffle region (Vg ~0.02 m/s (left) and ~0.15 m/s (right)) …70 

Figure 4.5: Schematic of particle in the distributor region (Vg ~0.02 m/s (left) and ~0.20 m/s 

(right)) …………………………………………………………………………………………...71 

Figure 4.6: Picture series of particle entering core region (Vg~ 0.02 m/s, magnification: ~ 0.35%) 

……………………………………………………………………………………………………73 

Figure 4.7: Picture series of particle exiting core region (Vg~ 0.02 m/s, magnification: ~ 0.50%) 

……………………………………………………………………………………………………73 

Figure 4.8: Schematic of particle entering core region (Vg ~0.02 m/s) ………………………….74 



ix 

 

Figure 4.9: Schematic of a) particle caught in vortex (Vg ~0.02 m/s) (top, left) and b) helical particle 

movements (Vg ~0.02 m/s) (top, right) c) wide loop (Vg ~ 0.02 m/s) (bottom)………………..….78 

Figure 4.10: Picture series of helical particle movements (Vg~ 0.02 m/s, magnification: ~ 0.35%) 

……………………………………………………………………………………………………79 

Figure 4.11: Picture series of particle in turbulence (Vg~ 0.10 m/s, magnification: ~ 0.20%) …79 

Figure 4.12: Schematic of a) particle in turbulence (Vg ~0.10 m/s) (left) and b) bouncing 

movements (Vg ~0.10 m/s) (right) ……………………………………………………………….81 

Figure 4.13: Schematic of a) moderate “S” - movements (Vg ~0.25 m/s) (left) and b) exaggerated 

“S” - movements (Vg ~0.25 m/s) (right) …………………………………………………………82 

Figure 4.14: Picture series of bouncing movements (Vg~ 0.20 m/s, magnification: ~ 0.25%) ….83 

Figure 4.15: Picture series of exaggerated “S” - movements (Vg~ 0.25 m/s, magnification: ~ 

0.20%) …………………………………………………………………………………………...83 

Figure 4.16: Schematic of zigzag movements (Vg ~0.25 m/s)..………………………………….84  

Figure 4.17: Gross flow patterns in presence of a) CT internal (left) and b) CTB internal (right) .87 

Figure 4.18: Effect of internals on hollow bubble column systems ………………………………90 

Figure 4.19: Sample of dynamic gas disengagement curve (Vg ~ 0.20 m/s, CTB) ………………91 

Figure 4.20: Effects of internals on small bubble holdup ………………………………………..93 

Figure 4.21: Effect of internals on large bubble holdup …………………………………………93 

Figure 4.22: Effect of internals on small and large bubble rise velocities ………………………94 

Figure 4.23 Effect of Internals on the theoretical size estimates of the large bubble …………….95 

Figure 4.24: Effect of Internals on small bubble class size measurements ………………………97 

Figure 4.25: Effect of internals on small bubble size distributions at high and low gas velocities 

……………………………………………………………………………………………………98 

Figure 4.26: Effect of internals on total interfacial area …………………………………………99 

Figure 4.27: Effect of internals on large and small bubble contributions to interfacial area …….100 

Figure 4.28: Visualization of a) CT (left) and b) CTB (right) internals on small bubble holdup 

…………………………………………………………………………………………………..101  

Figure 4.29: Comparison of liquid mixing obtained by two methods for two respective internals 

…………………………………………………………………………………………………..103 

Figure 4.30: Tracer response curves derived from the diffusion model (Ohki and Inoue 1969)...106 



x 

 

Figure 4.31: Sample of conductivity-time curve (Vg ~ 0.10 m/s, CT) ………………………….107 

Figure 4.32: Effect of internals on axial dispersion …………………………………………….108 

Figure A.1: Schematic showing experimental layout …………………………………………..111 

Figure A.2: Schematic of sonic nozzle, modified (Baker 2005) ………………………………..113 

Figure A.3: Schematic of orifice plate, modified (Baker 2005) ………………………………..116 

Figure A.4: Measured vs theoretical superficial gas velocity …………………………………...119 

Figure A.5: Upstream pressure vs superficial gas velocity ………………………………….…..120 

Figure B.1: Pressure transducer voltage vs hydrostatic pressure ………………………….…….122 

Figure C.1: Schematic of particle model ………………………………………………………..126 

Figure D.1: Pump flow rate vs voltage …………………………………………………………127 

Figure E.1: Schematic of tracer injection system design ………………………………………..128 

 

  



xi 

 

Nomenclature 

 

a  

A 

Ac 

c 

C 

Da 

db  

E 

f 

Fg 

g  

H 

hL 

K 

Kb 

L 

m  

Mo 

MW 

n 

N 

�̇� 

Pea 

P 

Q 

rc 

t 

T 

𝑡̅ 

Interfacial area, m2 

Area, m2 

Cross-sectional area, m2 

Intercept of disengagement slope or 1.2 (constant) 

Concentration or 0.61 (orifice constant) 

Axial dispersion coefficient, m2/s  

Average bubble diameter, m 

Exit age distribution function 

Friction factor 

Mass flow, kg/s 

Acceleration due to gravity, m/s2 

Bed height, m 

Headloss, m 

Coefficient for energy loss due to geometry 

max(14.7Mo-0.038, 12) 

Length, m 

Gradient of disengagement slope 

Morton Number (Mo), 𝑔𝜇4∆𝜌/𝜌𝑐
2𝜎3  

Molecular weight, g/mol 

0.8 (constant) 

Moles, mols or whole number  

Molar flow, mols/s 

Peclet number, Lv/Da 

Pressure, Pa 

Volumetric flow, m3/s 

Critical Ratio 

Time, s 

Temperature, K 

Residence Time, s 



xii 

 

Ub 

v 

V 

Vg 

�̇� 

Y 

z 

Bubble rise velocity, m/s 

Superficial liquid velocity, m/s 

Volume, m3 

Superficial gas velocity, m/s 

Volumetric flow, m3/s 

1 (expansion coefficient at low pressures) 

Axial displacement, m

 

Greek Letters 

 

β 

Δ  

Δθ 

ε 

εb  

ρ 

θ 

σ 

σ2 

π 

γ 

Ration of diameters 

Change in … 

Dimensionless constant  

Gas holdup 

Bubble fraction holdup 

Density, kg/m3  

Dimensionless time, t/𝑡̅ 

Surface tension, N/m 

Variance 

Dimensionless constant, 3.1416 (5 significant figures) 

1.4 for air (constant)

 

Subscripts 

  

0 

1 

2 

b 

bed 

Pertaining to steady state operation  

Pertaining to the first disengagement period or arbitrary point 1 

Pertaining to the second disengagement period or arbitrary point 2 

Bubble 

Pertaining to the reactor’s bed 

 



xiii 

 

dist 

dyn 

E 

g 

i 

l 

L/lg 

o 

p 

S/sm 

st 

T 

Distributor 

Dynamic 

Equilibrium 

Gas 

Tracer 

Liquid  

Pertaining to the large bubble class  

Orifice  

Pipe 

Pertaining to the small bubble class 

Static  

Total 

 

Superscripts 

‘ Dimensionless

  



1 

 

1.0 Introduction 

The bubble column is an extremely useful reactor type due to the numerous advantages associated 

with its operation and design. The high degree of mixing that takes place within a bubble column 

ensures desirable heat and mass transfer within the vessel, while the column’s simple design and 

its lack of moving parts ensures low maintenance and little operating cost (Kantarci et al., 2005 

Deckwer and Schumpe, 1993; Li and Prakash, 2002; Li et al., 2003,). Reduced plugging during 

operation, high catalyst durability as well as online catalyst addition and withdrawal (Degaleesan 

et al., 2001) are all benefits specifically associated with the use of slurry bubble columns within 

industry. Naturally, the numerous advantages associated with the bubble column makes it an 

attractive choice for many applications. Common industrial applications include hydrogenation, 

oxidation, chlorination, fermentation, biological waste water treatment, Fischer-Tropsch synthesis, 

methanol synthesis, dimethyl ether production (DME) and heavy oil upgrading (Shah et al., 1982, 

Duduković and Devanathan, 1992, Deckwer and Schumpe, 1993, Prakash et al., 1999, Duduković 

et al., 2002, Degaleesan et al., 2001, Miller, 1980, Shah et al., 1982, Merchuk et al., 1994). 

 

Although especially advantageous, the bubble column is not devoid of limitations. Complex, scale-

dependent hydrodynamic interactions make the scale-up of an existing bubble column reactor 

challenging, while the contained discontinuous phase typically travels very quickly within the 

reactor and thus, possesses a short residence time. Although the slurry bubble column allows for 

some degree of catalyst addition/withdrawal, the volumetric rate at which catalyst addition can 

take place is quite low. Lastly, the continuous phase of the reactor is subject to significant 

backmixing which can be particularly disadvantageous for reaction-containing systems (Shah et 

al., 1978). In order to obtain the desired performance for a given application, bubble columns often 
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need to be modified to overcome specific limitations. The addition of internals is one of the most 

promising means through which reductions to bubble column limitations, such as short gaseous 

phase residence time as well as liquid backmixing, can be achieved. These include internals such 

as baffles and heat transfer tubes. The configuration of the particular gas/liquid distributors can 

also affect the reactor’s productivity.  

 

1.1 Objective 

The presence and arrangement of the internals in a bubble column affects its hydrodynamics and 

mixing patterns and thus, affects the reactor’s performance and heat transfer characteristics.  Only 

a limited number of literature studies have investigated the effects of internals on bubble column 

hydrodynamics (Jhawar and Prakash, 2014; Youssef and Al-Dahhan, 2009; Larachi et al., 2006; 

Chen et al., 1999; Schlüter et al., 1995; Saxena et al., 1992). To systematically determine the 

effects of internal type and arrangement on the limitations of a bubble column, quantification of 

the internals’ effects on important design parameters such as gas holdup, interfacial area for mass 

transfer and liquid backmixing is mandatory. In this study, attempts have been made to gain insight 

into the local hydrodynamics and flow structure changes by tracking the motion of near-neutrally 

buoyant particles with a high speed camera. The effects of internals are also quantified through 

overall gas holdup, bubble population and liquid mixing measurements for selected configurations. 

Internals with little impact on the cross-sectional area of the reactor and offered low pressure drops 

were selected for the investigation. 
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1.2 Thesis Format 

This thesis consists of 5 chapters and follows the “monograph” format as outlined by the Master’s 

Programs of GENERAL THESIS REGULATIONS by the School of Graduate and Postdoctoral 

Studies (SGPS) in the University of Western Ontario. A summary of each chapter is listed below: 

 

In Chapter 1, a general introduction to the bubble column reactor is provided. The motivation for 

this work as well as its contributions are also clearly stated. Finally, the thesis structure is outlined. 

 

In Chapter 2, a literature review summarizes some of the research available on gas holdup, liquid 

mixing time and liquid backmixing. Measurement techniques to determine gas holdup, bubble 

fractions, average small bubble size and liquid mixing time/axial dispersion are reviewed.  

 

In Chapter 3, the experimental procedures used to determine gas holdup, bubble fractions, average 

small bubble size and mixing time/axial dispersion are presented, along with the materials used. A 

few of the equations used during data analysis are also shown.  

 

In Chapter 4, the experimental results pertaining to the effect of the internals on gas holdup, bubble 

fractions, bubble sizes, interfacial area, liquid circulation, mixing time and axial dispersion are 

discussed. 

 

In Chapter 5, the conclusions and recommendations for this study are summarized.  
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2.0 Literature Review 

Bubble column reactors are types of multiphase reactors that facilitate substantial interactions 

between a continuous liquid/slurry phase and discontinuous gaseous phase by promoting 

distribution of the discontinuous phase within the continuous phase. In a typical bubble column, 

gas continuously enters a cylindrical vessel (Degaleesan et al., 2001) from its bottom where it is 

immediately distributed into the enclosed continuous phase through the use of a sparger. Naturally, 

the less dense of the two phases rises and in so doing, the continuous phase is circulated. When 

steady state is achieved, circulation of the continuous phase becomes structured and flow patterns 

are set up in the column. A schematic showing a typical bubble column reactor can be seen in 

Figure 2.1. 

 

In general, there are two modes of operation for bubble columns. In the first mode, semibatch 

operation (Deckwer and Schumpe, 1993), the continuous phase stays within the bubble column 

while the gaseous phase enters at a particular superficial gas velocity, Vg. In continuous operation 

however, the continuous phase enters at a superficial “liquid” velocity Vl (Deckwer and Schumpe, 

1993) in which Vl is less then Vg (Kantarci et al., 2005). The continuous phase portion of the 

effluent leaving the column is typically recycled (Kantarci et al., 2005) while the gaseous phase 

portion may be vented (Miller, 1980). It is important to note that continuous operation may be 

performed concurrently, in which the continuous and gaseous phases move in the same direction, 

or countercurrently, in which the continuous and gaseous phases move against each other 

(Deckwer and Schumpe, 1993). Although countercurrent operation is generally more 

advantageous than concurrent operation in many systems, neither mode offers any unique 

advantages in the case of bubble columns. Low superficial liquid velocities as well as substantial 
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inter-phase mixing make the outcomes of both the concurrent continuous and countercurrent 

continuous operations comparable (Deckwer and Schumpe, 1993). 

 

 

Figure 2.1: Schematic of a bubble column reactor 
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Although bubble columns are relatively simple to construct (Alvaré and Al-Dahhan, 2006), the 

interactions between the continuous and gaseous phases contained within are complex, intimate 

and difficult to predict or scale. For these reasons, characterization and quantification of the 

gaseous and liquid phase interactions is of great importance. There are two different methods that 

can be used to gain an understanding of bubble column systems (Deckwer and Schumpe, 1993). 

The first category refers to empirically-based methods in which rules and guidelines for bubble 

column design and scale-up are derived from trends in experimental data. The second category 

refers to model-based methods in which theoretical models are applied to the system of interest 

after flow regime analysis has been carried out. It is not uncommon to find a mix of both methods 

in an industrial setting. However, a greater dependence on model-base methods is encouraged 

(Deckwer and Schumpe, 1993) as they provide additional insight to a reactor’s performance and a 

basis for reactor design. 

 

2.1 Flow Regimes in Bubble Columns 

The hydrodynamic behavior of a bubble column is strongly dependent on the flow regime in which 

it is operating within (Hyndman et al., 1997). There are three major flow regimes that can exist 

within a bubble column. These regimes are the bubbly, coalesced bubble and slug flow regimes 

(Kantarci et al., 2005) which can be seen in Figure 2.2. A transition period also exists between 

flow regimes. 
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Figure 2.2: Schematic of flow regimes in bubble column 

 

2.1.1 Bubbly Flow Regime 

The bubbly flow regime (also called the homogeneous flow regime), is characterised by the 

presence of bubbles that are small and about uniformly sized (Schumpe and Grund, 1986). All 

bubbles have similar, small rise velocities due the dependence of bubble rise velocity on bubble 

size (Schumpe and Grund, 1986) and rise vertically with little transverse and axial oscillations 

(Throat and Joshi, 2004). The size distribution of this regime is also quite narrow since bubble 

coalescence and bubble break up are not common occurrences (Shaikh and Al-Dahhan, 2007). 

Bubble size is mainly dictated by the nature of the gas distributor and the physical properties of 

the continuous phase (Shaikh and Al-Dahhan, 2007). The bubbly flow regime is characterised by 
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“gentle mixing” or insignificant circulation within the continuous phase (Shaikh and Al-Dahhan, 

2007). This “gentle mixing” is due to the radially uniform gas holdup profiles within the column 

(Shaikh and Al-Dahhan, 2007). Bubbly flow regimes have been found to occur at low superficial 

gas velocities, particularly at superficial gas velocities less than 0.05 m/s under semibatch 

operation (Fan, 1989, Hills, 1974). 

 

2.1.2 Transition Flow Regime 

Bubble columns shift from one flow regime to another when superficial gas velocity is 

manipulated adequately. However, these transitions do not occur as soon as a specific superficial 

gas velocity is exceeded. Instead, the column enters a “transition regime” before changing from 

the bubbly to the coalesced bubble or from the coalesced bubble to the slug flow regimes. Several 

observations have been made on the hydrodynamic behavior of a bubble column as it transitions 

from the bubbly to the coalesced bubble flow regime. In most cases, this regime is characterised 

by an increase in the presence of gaseous phase near the center of the column as well as bubble 

coalescence and an increase in liquid circulation (Kantarci et al., 2005, Olmos et al., 2003, Ohki 

and Inoue, 1970). 

 

2.1.3 Coalesced Bubble Flow Regime 

If superficial gas velocity sufficiently exceeds 0.05 m/s, the coalesced bubble flow regime (also 

called the heterogeneous or turbulent flow regime) is observed. The coalesced bubble flow regime 

is characterised by a wide range of bubble sizes (Schumpe and Grund, 1986), with each bubble 

having its own unique bubble rise velocity. In general, two classes of bubbles can be found within 
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the coalesced bubble flow regime – the large and small bubble classes. Typically, the small bubble 

class contains small bubbles with average diameters ranging from 3 mm to 6 mm (Daly et al., 

1992, Schumpe and Grund, 1986). These bubbles are reliably spherical when average diameter is 

less than 5 mm (Deckwer, 1992). Bubbles with diameters greater than 5 mm are slightly deformed 

and ellipsoidal in shape. The bubbles of the large bubble class have a minimum diameter of 10 

mm (Daly et al., 1992, Schumpe and Grund, 1986). When the diameter of a bubble is greater than 

20 mm, the bubble’s shape can be described as a ‘spherical cap’ (Krishna and Van Baten, 2001). 

 

The wide range of bubble sizes found within the coalesced bubble flow regime is due to the 

continuous coalescence of small bubbles and the continued breakup of large bubbles (Kantarci et 

al., 2005). Average bubble size is dependent on the frequency with which bubble coalescence and 

bubble breakup occur within the system (Throat and Joshi, 2004). It is important to note that the 

breakup of larger bubbles occurs not long after the bubbles are formed. This phenomenon results 

in larger bubbles having short residence times (Kantarci et al., 2005). In addition to the variations 

in bubble sizes and bubble rise velocities, the coalesced bubble flow regime is characterised by 

increased turbulent motion of gaseous phase as well as increased liquid recirculation (Kantarci et 

al., 2005). Both phenomena result in the occurrence of unsteady flow patterns (Kantarci et al., 

2005) and vigorous mixing (Hyndman et al., 1997). Liquid circulation is due to the radial, non-

uniform gas holdup distributions within the column (Shaikh and Al-Dahhan, 2007). 

 

2.1.4 Slug Flow Regime 

When column diameter is small and gas throughput is high, a bubble column may shift from the 

coalesced bubble flow regime to the slug flow regime. The slug flow regime (also another type of 
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heterogeneous flow regime) is characterized by large, elongated bubbles called Taylor bubbles 

which have diameters slightly smaller than that of the bubble column (Shiea et al., 2013). Although 

Taylor bubbles are large, breakup of Taylor bubbles does not occur because the column walls have 

a stabilizing effect on the bubbles (Kantarci et al., 2005). Slug flow regimes have been observed 

in column diameters of up to 15 cm (Miller, 1980). 

 

2.1.5 Characterization of Flow Regimes 

One of the most efficient ways of presenting the possible regime boundaries of a bubble column 

system is through the use of flow regime maps. Figure 2.3 is one such map presented by Deckwer 

et al. (1980) for semibatch operated bubble and slurry bubble columns with low viscosity 

continuous phases. The chart shows the influence of both column diameter and superficial gas 

velocity on regime transition.  

 

While helpful, flow regime maps are generally limited to two or three parameters. This makes it 

impossible to predict exactly the onset of transition for any system using a single map, a property 

that is extremely important in biotechnological systems which require operation within flow 

regimes with little shear (Merchuk et al., 1994). In addition, the superficial gas velocity at which 

a bubble column begins to transition depends on operating parameters such as temperature and 

pressure, which fluctuate greatly during non-steady state operation, particularly at reactor start-up 

and shut-down. Several parameters have been found to influence the superficial gas velocity at 

which the column enters the transition regime. These parameters may be classified generally as 

continuous phase properties, operating parameters and bubble column design parameters. 
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Unfortunately, little work has been carried out on the effects of internals on regime transition. As 

stated earlier, more systematic study is required in this area. 

 

 

Figure 2.3: Flow regime map presented by Deckwer et al. (1980) 

 

The effects of certain continuous phase properties such as viscosity, solids concentration and 

surface tension), have been studied in bubble columns transitioning from the bubbly to the 

coalesced bubble flow regime. Increases in continuous phase viscosity (Ruzicka et al., 2001, 

Wilkinson, 1991), solids concentration (for slurry bubble columns) (Shaikh and Al-Dahhan, 2006, 

Mena et al., 2005, Vandu et al., 2004) and surface tension (Urseanu, 2000) properties have been 

found to lower the superficial gas velocity at which transition is first observed (Shaikh and Al-
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Dahhan, 2007). This occurs because increases in those continuous phase properties stabilizes the 

surfaces of the contained bubbles. The stabilized bubbles coalesce at rates greater than their 

unstabilized counterparts and are less likely to undergo breakup. Larger bubbles are experienced 

at lower superficial gas velocities (Shaikh and Al-Dahhan, 2007) and thus, an advance in regime 

transition is observed.  

 

Operating parameters such as temperature, pressure and static height have significant effects on 

the onset of transition within bubble column systems. In general, increases in operating 

temperature (Lin et al., 1999, Bukur et al., 1987), operating pressure (Lin et al., 1999, Wilkinson 

et al., 1992, Krishna et al., 1991) and the continuous phase static height (Ruzicka et al., 2001, 

Sarrafi et al., 1999) increases the superficial gas velocity at which regime transition is observed 

and thus, delays transition. Higher operating temperatures tend to reduce the viscosity of the 

continuous phase. A reduction in viscosity destabilizes the larger bubbles in the system and as 

discussed earlier, delays transition. Increases in the operating pressure of a bubble column reactor 

increases the rate of bubble breakup within the system while simultaneously decreasing the rate of 

bubble coalescence, also delaying transition. Increases in the static height of the continuous phase 

generally results in transition delays since the probability of successful bubble coalescence 

increases along with it. However, static height was only observed to have an effect on transition 

below a certain critical reactor length (Sarrafi et al., 1999).  

 

The aspect ratio and sparger design of a bubble column can affect the manner in which the gaseous 

and continuous phases interact with each other and by extension, the superficial gas velocity at 

which a bubble column begins to transition. Increases in aspect ratio generally lead to advances in 
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transition (Shaikh and Al-Dahhan, 2007, Throat and Joshi, 2004, Ruzicka et al., 2001) since the 

probability of successful coalescence increases. However, more research is required before a 

conclusive relationship can be established (Shaikh and Al-Dahhan, 2007). Decreases in sparger 

hole diameters and increases in perforation pitch have been found to delay regime transition below 

certain critical values (Jamialahmadi et al., 2000, Sarrafi et al., 1999).  As mentioned earlier, the 

bubbles of the bubbly flow regime move vertically with little transverse or axial oscillations and 

do not coalesce. Thus, the size of these bubbles and their spatial arrangements are fully dependent 

on the sparger’s design. As a result, bubble columns equipped with spargers which produce 

smaller, well-spaced bubbles require higher superficial gas velocities to experience coalescence 

and transition. 

 

2.2 Gas Holdup in Bubble Columns 

Gas holdup refers to the total volume fraction of gas found within a bubble column at any point 

during its operation. It is a dimensionless quantity and is used in bubble column design and analysis 

because it characterizes the transport phenomena of the system (Kantarci et al., 2005). Gas holdup 

can be used to characterize bubble column systems because it is dependent on the liquid phase 

properties of that system as well as certain operating and design parameters. These factors 

influence bubble size, which affects bubble rise velocity and ultimately the volume of gaseous 

phase (as gas bubbles) within the reactor. If the aforementioned properties favor the formation of 

small bubbles, the gas holdup of the particular system would be large because small bubbles have 

small bubble rise velocities and thus, longer residence times. However, if the formation of larger 

bubbles is supported, gas holdup will be smaller since larger bubbles have larger bubble rise 

velocities and thus, spend less time within the column. 
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Although gas holdup provides invaluable information with respect to reactor design, further 

analysis based on bubble sizes and spatial arrangements can yield useful information regarding a 

reactor’s performance. Small bubble holdup, the fraction of total gas holdup due to small bubbles, 

has a great influence on the total interfacial mass transfer which occurs within the reactor 

(Deckwer, 1992) due to their high surface area- to-volume ratios. Their small bubble rise velocities 

also afford them enough time to engage in significant interfacial mass transfer with the liquid phase 

as they traverse the reactor. The gas holdup due to large bubbles (large bubble holdup) influences 

the occurrence of phenomena such as liquid entrainment, axial and radial liquid circulation and the 

presence of high energy eddies. In turn, these phenomena affect liquid mixing properties such as 

backmixing and mixing time (Deckwer, 1992). Such properties affect the productivity of a bubble 

column, the specific manner in which dependent on the reactor’s application.  

 

The gas holdup within a system can be affected by numerous factors. A summary of the effects of 

various liquid phase properties and operating and design parameters will be presented in following 

subsections. The effect of superficial gas velocity and various internals on gas holdup will be more 

thoroughly explored.  

 

2.2.1 Effect of Continuous Phase Properties  

Continuous phase properties, such as viscosity, solids concentration, solids diameter and surface 

tension, have considerable effects on the gas holdup of bubble column systems. Increasing the 

viscosity of the liquid phase generally results in the system experiencing a lowered gas holdup (Li 

et al., 1997). This occurs because viscous liquid phases are able to stabilize the larger bubbles that 
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are formed within the system and support bubble coalescence. Larger bubbles have shorter 

residence times and spend less time within the column, reducing gas holdup. Increases in the solids 

concentration of a slurry phase generally lead to decreases in gas holdup (Krishna et al., 1997) due 

to an increase in the system’s ‘pseudo-viscous’ properties. The effect of particle size on gas holdup 

has also been investigated in slurry bubble columns. Although dependent on several system 

properties, Saxena et al. (1990) found that for a fixed superficial gas velocity and solids 

concentration, increasing the solids diameter decreased gas holdup within the system, particularly 

for lower slurry concentrations. Decreasing the surface tension properties of a continuous phase 

leads to increases in gas holdup (Urseanu, 2000). Decreased surface tension destabilizes the gas-

liquid (or gas-slurry) interface of bubbles, which limits coalescence and increases bubble breakup. 

 

2.2.2 Effect of Operating Parameters  

The effect of operating parameters, such as temperature and pressure, on gas holdup has been the 

subject of several investigations. In general, increasing the operation pressure of bubble column 

reactors tends to increase gas holdup (Kantarci et al., 2005, Luo et al., 1999, Krishna et al., 1994) 

by increasing rate of bubble breakup within the system. The effect of temperature on bubble 

column systems is still undetermined, although it has been the subject of much research (Kantarci 

et al., 2005, Deckwer et al., 1980, Saxena et al., 1990). A significant number of studies concluded 

that gas holdup is independent of operation temperature (Kantarci et al., 2005). However, 

researchers such as Deckwer et al. (1980) and Saxena et al. (1990) made other observations. 

Deckwer et al. observed decreases in gas holdup up until a certain “critical” temperature was 

reached. However, when temperature was increased beyond this critical point, gas holdup 

remained unchanged. It is important to note that Deckwer et al. carried out this experiment in a 
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small diameter column which does not allow the influence of “wall effects” on their results to be 

ignored (Kantarci et al., 2005). Saxena et al. investigated the effects of temperature on both two– 

and three–phase bubble column reactors within temperatures ranging from 297 – 343 K. They 

found that gas holdup was dependent on temperature for the two–phased system. The three–phased 

system was found to be independent of operation temperature. 

 

2.2.3 Effect of Design Parameters  

The effects of several design parameters, such as aspect ratio, column diameter, column height, 

sparger design and sparger type, have been well documented in the literature. In general, gas 

holdup has been found to be a function of aspect ratio, column diameter and column height only 

when certain critical values are not exceeded. Luo et al. (1999) found gas holdup to be independent 

of column height when heights of 1 – 3 m were surpassed and aspect ratio was greater than 5. Shah 

et al. (1982) found that gas holdup was independent of column diameter when diameter was larger 

than 0.10 to 0.15 m. The type of sparger used and its respective properties have been found to 

influence the overall bubble sizes that are seen within an operating bubble column. Bouaifi et al. 

(2001) found that smaller orifice gas distributors yielded higher gas holdup values. They justified 

their findings by stating that the smaller the bubbles produced by a sparger, the higher the 

associated gas holdup values. Luo et al. (1999) and Schumpe and Grund (1986) have investigated 

the effects of several different spargers on gas holdup. Luo et al. found that gas holdup was strongly 

affected by sparger type at low superficial gas velocities (less than 0.06 m/s). Schumpe and Grund 

compared the gas holdups when two different types of spargers (ring type and perforated plate) 

were used. They found that the ringed type distributor yielded a lower total gas holdup than 

perforated plate distributors for the same 1 mm hole diameter. 
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2.2.4 Effect of Superficial Gas Velocity  

Gas holdup is mostly dependent on the superficial gas velocity of an operating bubble column 

(Shah et al., 1982). In general, gas holdup has been found to increase with increases in superficial 

gas velocity (Krishna et al., 1997, Saxena et al., 1990, Schumpe and Grund, 1986, Deckwer et al., 

1980), the extent to which dependent on the operating flow regime. In the bubbly flow regime, gas 

holdup increased proportionally with increases in superficial gas velocity (Kara et al., 1982, 

Lockett and Kirkpatrick, 1975). Gas holdup in the turbulent flow regime also increased with 

increases in superficial gas velocity, however the relationship with which was less defined (Koide 

et al., 1984, Kara et al., 1982). Hyndman et al. (1997) investigated the contributions of each of the 

two bubble classes to the total gas holdup for a hollow bubble column system throughout a variety 

of flow regimes. The group found that in the bubbly flow regime, the gas holdup for the small 

bubble class increased significantly until the transition regime was reached. However, in the 

turbulent flow regime, the contributions of the small bubble class experienced no further increases 

and remained equal to that experienced at transition. Thus, the increases in total gas holdup 

observed in the turbulent flow regime were due to increases in large bubble holdup only. 

 

2.2.5 Effect of Internals  

The gas holdup experienced in bubble column systems can be significantly altered by the presence 

of internals. As mentioned earlier, a wide variety of internal designs are under current 

investigation, though unsystematic. A summary of the effects of these internals on gas holdup will 

be presented in the following paragraph. However, more details on the particular internal will be 

given in a subsequent section. 
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In general, the addition of internals to a hollow bubble column reactor leads to increases in the gas 

holdup experienced. Internals such as partition plates (Van Baten and Krishna, 2003, Dreher and 

Krishna, 2001, Deckwer, 1992) and baffles of all types (Jhawar, 2011, Yamashita, 1987, 

Yamashita, 1985) increase gas holdup by filtering out and breaking up the larger bubbles found in 

the system. Internals such as packing ensure high gas holdup (Bhatia et al., 2004, Deckwer, 1992) 

by limiting the maximum stable size of the bubbles that pass through it. The packing internal can 

also increase gas holdup by increasing the residence time of the gaseous phase within the internal. 

The tube bundle internal has been found to have positive effects on gas holdup (Youssef, 2010) 

which are most likely due to a decrease in the average size of the small bubble class that occurs in 

its presence. Lastly, the presences of draft tubes within bubble column systems can be used to 

increase the system’s interfacial area (and thus gas holdup) through the jet loop reactor 

configuration (Deckwer, 1992). 

 

2.3 Gas Holdup Measurement Techniques 

The overall gas holdup of a bubble column reactor can be estimated using three major techniques 

– techniques based on axial pressure profiles (Gandhi, 1997), techniques based on dynamic/static 

height (Gandhi, 1997, Deckwer, 1992) and techniques based on bed pressure drop (Gandhi, 1997). 

The specific contributions of the small and large bubble classes to gas holdup as well as other 

bubble class properties can be obtained through the dynamic gas disengagement technique (Li and 

Prakash, 2000). 

 

2.3.1 Axial Pressure Profile Technique 

An estimation of gas holdup through techniques based on the axial pressure profile require at least 

two static pressure measurements along the axial plane of the reactor for each gas velocity 
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investigated. It is important to note that although an estimate can be obtained using two static 

pressure measurements only, the accuracy of the obtained pressure gradient increases with an 

increase in the number of static pressure measurements taken. Pressure measurements are 

facilitated through the use of installed pressure taps and static pressure can be measured using a 

variety of pressure measuring devices, the simplest being a U-tube manometer. A plot of static 

pressure vs. axial displacement can be used to determine the pressure gradient while gas holdup 

can be estimated using the obtained gradient as well as Equation 2.1 and Equation 2.2 below. 

 

 휀𝑙 + 휀𝑔 = 1 (2.1) 

 

 𝛥𝑃

𝛥𝑧
= 𝑔(𝜌𝑙휀𝑙 + 𝜌𝑔휀𝑔) 

(2.2) 

 

In these equations, 휀𝑙 is the fraction of liquid in the system, 휀𝑔 is the fraction of gas in the system 

or gas holdup, 𝜌𝑙 is the liquid phase density, 𝜌𝑔 is the gaseous phase density, 𝑔 is acceleration due 

to gravity, 𝛥𝑃 is the change in pressure and  𝛥𝑧 is the bed height. Although axial static pressure 

profiles yield reasonable results at low superficial gas velocities, use of this method at higher gas 

velocities is subject to substantial error due to the occurrence of large pressure fluctuations within 

the system. To increase the accuracy of this method at high gas velocities, a means through which 

fluctuations could be adequately dampened should be applied. 

 

2.3.2 Dynamic/Static Height Technique 

To estimate gas holdup using methods based on the dynamic/static height of a working bubble 

column reactor of constant cross-sectional area, knowledge of the bed’s static height and an 
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estimate of the beds dynamic height is required. This method is based on the principle of 

conservation of mass since it assumes that the total volume of the reactor’s bed is equal to the sum 

of the volume of all its contained phases. When the cross-sectional area of the reactor is constant, 

the relationship which exists between the volumes of the liquid and gaseous phases within the 

reactor also exists between the heights of each phase if completely segregated. As a result, the gas 

holdup for a constant cross-sectional area bubble column can be obtained via Equation 2.3. 

 

 
휀𝑔 =  

ℎ𝑑𝑦𝑛 − ℎ𝑠𝑡

ℎ𝑑𝑦𝑛
 

(2.3) 

 

In this equation, 휀𝑔 is gas holdup, ℎ𝑑𝑦𝑛 is the dynamic height of the dispersion and ℎ𝑠𝑡 is the static 

height of the continuous phase. While relatively simple, methods based on the dynamic/static 

height of a system are not without their limitations, particularly for operation at high superficial 

gas velocities. At high gas velocities, the bed surface of a bubble column is subject to severe 

fluctuations due to the frequent occurrence of large bubble eruptions which reduce the accuracy of 

the dynamic height estimate. The bed also produces a foam layer which further reduces the 

accuracy of the dynamic height reading. 

 

2.3.3 Bed Pressure Drop Technique 

Gas holdup estimations based on bed pressure drop are obtained by first acquiring an estimate of 

the pressure drop experienced over a certain portion of the bed. This is achieved by measuring the 

pressure at two different axial positions in the bed and taking the difference between the values. 

The distance between which the pressure measurement points should also be noted. Using the fact 

that the bed density is equal the sum of the product of the individual phase densities and their 
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respective phase fractions as well as the relationship defined in Equation 2.1 above, an estimate of 

gas holdup from bed pressure drop can be obtained using Equation 2.4 below. 

 

 
휀𝑔 =  

−∆𝑃 − 𝜌𝑙𝐻𝑏𝑒𝑑𝑔

𝐻𝑏𝑒𝑑𝑔(𝜌𝑔 − 𝜌𝑙)
 

(2.4) 

 

In this equation, 휀𝑔 is gas holdup, ∆𝑃 is the pressure drop across two points in the bed, 𝐻𝑏𝑒𝑑 is the 

distance between the two points, 𝜌𝑔 is density of the gaseous phase, 𝜌𝑙 is density of the liquid 

phase and 𝑔 is acceleration due to gravity.  Methods based on the overall bed pressure drop are 

quite advantageous as the errors associated with fluctuations and foam layer buildups are 

eliminated. However, the accuracy of the obtained estimations are fully dependent on the method 

used to determine the pressure drop across the given section of the bed. 

 

2.3.4 Dynamic Gas Disengagement Technique 

The dynamic gas disengagement technique is a unique technique which allows for further analysis 

of the overall gas holdup of a system based on its large and small bubble classes. For this technique, 

the pressure fluctuations which occur when gas flow to the column is suddenly stopped are 

recorded and analysed. Analysis of the fluctuations provides information on bubble class 

properties such as superficial gas velocity allocations, holdups and average bubble rise velocities 

(Li and Prakash, 2000; Schumpe and Grund, 1986).  

 

2.4 Bubble Size Measurement Techniques 

Although the dynamic gas disengagement technique provides important information about the 

bubble classes in gas-liquid dispersions, it provides no direct information about the size of the 
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bubbles in each class. As a result, several techniques have been developed for estimating the size 

of the small bubble class. Three major methods are used to determine the sizes of bubbles in a gas-

liquid dispersion (Deckwer, 1992) – techniques based on visual observations/photography, 

techniques based on the insertion of probes/conductivity and techniques based on sample 

analysis/optics. These techniques can be found in the literature, a summary of which will be 

presented in following subsections. 

 

2.4.1 Photography-based Techniques 

Photography-based techniques provide bubble size measurements based on photographs of the 

phase mixture that have been recorded for further analysis with particle sizing software. This 

technique is facilitated by using clear material to construct the reactor’s walls or through the 

addition of ‘windows’ which allow access to the reactor’s innards. A light source may be added 

for additional clarity and all photographs should be taken against a standard of known dimension. 

Although simple to execute, the photographic method is subject to several limitations. The 

technique only allows for analysis of bubbles near the wall of the reactor while bubbles with 

diameters larger than 5 mm are not guaranteed to be spherical in shape and may be ellipsoidal or 

indented. These limitations make it difficult to determine the true average bubble diameter of the 

system since samples are limited to the wall region and the sizes measured are dependent on the 

bubble’s orientation. In addition, analysis of the obtained photographs can be tedious for large 

samples. Wall curvature has been found to distort the shape of the bubbles within the reactor. 

However, the effects of wall curvature can be reduced through the use of plane parallel windows 

or by fitting the reactor with a transparent box that has been filled with the same liquid that makes 

up the continuous phase. 
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2.4.2 Conductivity-based Techniques 

Bubble size measurement techniques based on conductivity can be used to measure the average 

size of a bubble class as well as its holdup and average bubble rise velocity provided that the 

continuous phase has good electrical conductivity. The technique is based on the principle in which 

reduced conductivity is associated with the presence of a poor conductor which is, in this case, the 

discontinuous gaseous phase, and that longer breaks in signal are associated with larger bubbles. 

There are two types of probes that are commonly used when carrying out this technique – the two-

point and the four-point conductivity probes. Each probe consists of well-insulated detectors which 

are made out of noble metals (typically platinum and iridium) of different lengths. The two-point 

conductivity probe contains only two detectors of varying lengths. However, the four-point 

conductivity probe contains four detectors, the central detector being the shortest while the three 

remaining outer detectors being equal in length. To obtain accurate measurements, head-on contact 

between the probe and a bubble is a necessity and it is for this reason that probes are typically 

oriented vertically downward in the system of interest. However, head-on collisions with the 

probe, although more likely with the four point conductivity probe, are not guaranteed due to the 

random nature of a bubble’s trajectory. 

 

2.4.3 Optical Techniques 

Techniques based on sampling and analysis through optical means are ideal for systems in which 

photography and conductivity are challenging due to visibility limitations and the absence of a 

good conducting continuous phase. In this technique, samples of the bed are taken and passed 

through a capillary tube of known dimensions as plugs of continuous and discontinuous phase. A 

beam of light is shone on the capillary tube and the absorbance, which depends on the phase being 
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analysed, is recorded with time. The length of a gaseous plug, and thus the volume and diameter 

of the respective bubble, can then be determined.  

 

Like the other methods discussed earlier, this sampling technique is not without its limitations, the 

most pressing of which being the maintenance of isokinetic suction of the bed for analysis. Suction 

speed that are too high lead to dissociation of the large bubbles within the capillary tube while 

suction speeds that are too low can lead to the coalescence of the smaller bubbles at the inlet. This 

limitation makes the sampling technique unsuitable for systems in which the bubble size 

distribution is considerable. Thus, to obtain accurate results, this technique should be applied to 

systems in which the bubble size distribution is expected to be narrow. 

 

2.5 Liquid Mixing  

The phase interactions experienced in a bubble column reactor influence the properties of the 

bubble classes which in turn affect gas holdup, mass transfer and liquid circulation. Due to the 

great influence of phase interactions on those system parameters, a means through which the 

interactions could be accurately predicted and quantified is necessary. Several quantification 

means can be found in the current literature, the most popular of which being mixing time and the 

quantification of liquid backmixing through the axial dispersion coefficient. The topics are 

expounded upon in the following subsections. 

 

2.5.1 Mixing Time 

The amount of time required for a system to return to uniformity after perturbation can be referred 

to as the mixing time for that system. Like backmixing, the mixing time experienced within a 



25 

 

bubble column is dependent on its hydrodynamics – phenomena such as axial and radial liquid 

recirculation, turbulent eddies and liquid entertainment are all phase interactions found to influence 

mixing time (Camacho Rubio et al., 2004). The occurrence of such phenomena is attributed to the 

presence of a particular class of discontinuous, gaseous phase – the large bubble class (Deckwer, 

1992). As they rise, the large bubbles entrain fluid elements from lower axial positions within the 

reactor. The initially entrained fluid becomes the wake of a large bubble and continues to grow as 

it is carried upwards. If the wake of the bubble gets too heavy for the bubble to carry before 

reaching the bed’s surface, it is shed where it exist as a high energy eddy within the system for a 

period of time. If successfully carried however, the wake of the bubble is left at the bed’s surface 

after bubble eruption. The law of conservation of mass is maintained within the system as a 

comparable volume of fluid is forced downward along the reactor’s wall since large bubbles tend 

to travel along the bed’s central axis. This continuous fluid displacement sets up liquid circulation 

within the axial plane of the reactor (Deckwer, 1992). Radial circulation, on the other hand, is 

achieved when large bubbles displace any fluid in their paths as they rise (Deckwer, 1992).  

 

The extent of axial dispersion that occurs within a bubble column system is justifiably related to 

the amount of time required for the reactor to attain uniformity after perturbation (Muhsin and 

Abid, 2008). For completely statistical systems that are defined by larger axial dispersion 

coefficients, large amounts of backmixing occur within their continuous phases and thus, a smaller 

amount of time is required to regain uniformity after perturbation. Conversely, systems defined by 

small axial dispersion coefficients experience lesser amounts of backmixing and thus require more 

time to regain uniformity after perturbation. 
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2.5.2 Liquid Backmixing 

The dynamics between the phases contained within a bubble column reactor greatly affects the 

performance of that reactor due to the influence of phase dynamics on various physical rate 

processes (Shah et al., 1978). Those physical rate processes (such as interphase and heat and mass 

transfer) along with the inherent kinetics of the contained reactants are the major factors 

influencing reactant conversion and product selectivity (Degaleesan, 1998, Shah et al., 1978). 

Bubble column reactors always contain a liquid continuous phase and a gaseous discontinuous 

phase who’s mixing dynamics, in the simplest sense, may be modelled as completely mixed and 

plug flow respectively. Although the plug flow assumption for the discontinuous phase may be 

reasonable, the assumption of complete mixing for the continuous phase usually deviates 

significantly from reality, and often leads to considerable over sizing of reactors in cases of nearly-

complete conversion (Degaleesan, 1998). 

 

The mixing that a fluid experiences is due to two major phenomena – micromixing and 

macromixing. Micromixing can be simply defined as mixing on a molecular level. It is the mixing 

that occurs between the molecules or entities that make up a flow system. This class of mixing is 

independent of the residence time distribution of the fluid within a reactor. It is instead a function 

of the time association between the various molecules that make up the fluid. The extent of 

micromixing ranges from complete segregation to maximum mixedness. For the case of complete 

segregation, molecular mixing within the system is delayed to as late as possible while for the case 

of maximum mixedness, molecular mixing occurs almost instantly (Shah et al., 1978). 
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Macromixing, the second phenomenon, considers fluid mixing on a scale much greater than the 

molecular level. Instead, it considers the mixing that a fluid experiences as a complete, independent 

entity. This class of mixing is primarily the result of convective and diffusive transport and like 

micromixing, ranges from two extremes – plug flow to complete mixing. For the case of plug flow, 

mixing in the axial direction is non-existent, while fluid in the radial direction experiences 

complete mixing. As a result, all fluid elements have identical residence times and identical 

velocities. For the case of complete mixing, fluid elements experience complete axial and radial 

mixing, making the composition product stream identical to that in the reactor. The residence time 

distribution of the complete mixing case decays exponentially (Shah et al., 1978). 

 

The degree of deviation from either of the extremes of macromixing is due to the degree of 

convective diffusion or ‘dispersion’ (Davis and Davis, 2003). Convective diffusion may result 

from non-uniform velocity profiles, short circuiting, bypassing and channeling, velocity 

fluctuations due to molecular and turbulent diffusion, reactor shape and internals, backflow of fluid 

due to velocity differences between phases, and recycling due to agitation (Shah et al., 1978). The 

deviation may also be due to another phenomenon – backmixing – which differs from channeling 

and recirculation in that it is a completely random case of axial mixing. Shah et al. (1978) presents 

the following definition of backmixing – “Backmixing is a specific case of axial mixing in which 

random movement of fluid is superimposed on and is in the direction of the main flow stream, and 

where the transverse mixing (that is, mixing in the direction perpendicular to the flow) is 

complete.” 
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The degree of backmixing which occurs in a statistical system can be quantified through the use 

of models, with the model of choice depending heavily on that system’s degree of deviation from 

either of the macromixing ideals. Systems in which plug flow is believed to occur may be 

adequately modelled by the plug flow model, while systems characterized by complete mixing 

may be modelled as continuous stirred tank reactors (CSTRs). Unfortunately, a real reactor is often 

neither fully plug flow or completely mixed in nature, and thus requires a model that is able to 

quantify its degree of mixing with respect to either of the mixing ideals. Dispersion models are 

plug flow models which justify the inherent non-ideality of the systems they describe through the 

superimposition of a diffusion-like spreading mechanism (Davis and Davis, 2003, Gupta et al., 

2001, Levenspiel, 1998). This diffusion-like process accounts for the degree of backmixing found 

within individual plugs of fluid and is quantified through the model’s axial dispersion coefficient. 

A large axial dispersion coefficient is indicative of rapid tracer spreading or large dispersion. This 

is indicated by a severely-altered outlet tracer signal when an ideal tracer pulse is injected at the 

reactor’s inlet. A small axial dispersion coefficient indicates little dispersion and thus, a mildly 

altered outlet tracer signal. An axial dispersion coefficient equal to zero indicates the occurrence 

of no dispersion and hence, plug flow. As a result, the tracer signal obtained at the outlet is identical 

to that of the inlet. 

 

2.5.3 Factors Influencing Mixing Time/Liquid Backmixing  

Like all other hydrodynamic properties, liquid backmixing and liquid mixing time can be alter 

when certain continuous phase properties and operating and design parameters are altered. A 

summary of those effects will be presented below, with special emphasis being placed on the effect 
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of internals on the experienced mixing time. It is useful to keep the inverse relationship between 

liquid backmixing and liquid mixing time in mind when considering the following subsections. 

 

2.5.3.1 Effect of Continuous Phase Properties 

The effect of viscosity and surface tension have been studied in both hollow and modified bubble 

column reactors. Addition of surface acting agents and thus, decreases in the surface tension 

properties of the continuous phase lead to increases in the mixing time experienced in hollow 

bubble column reactors (Pandit and Joshi, 1982) as well as bubble column reactors that have been 

equipped with partition plates (Doshi and Pandit, 2005) and draft tubes (Bando et al., 1998). This 

occurrence could be accounted for using energy balances (Doshi and Pandit, 2005). Mixing time, 

like many other hydrodynamic properties, is dependent on the liquid circulation velocity of the 

continuous phase under given operating conditions. In the presence of electrolytes, gas holdup 

increases due to the bubble de-stabilization mentioned in a prior section. A corresponding increase 

in energy dissipation occurs due to the increase in gas-liquid interface and thus, less energy is 

available for liquid motion. The reduction in energy is reflected in the liquid velocities of the 

continuous phase and subsequent increases in mixing time occur.  

 

Increases in viscosity have been found to increase the mixing time experienced in a hollow bubble 

column reactor (Pandit and Joshi, 1982) by increasing the internal friction of the continuous phase 

and thus, the amount of energy it dissipates. Less energy becomes available for liquid motion and 

a corresponding increase in mixing time is observed. It is interesting to note that decreases in 

mixing time with increases in viscosity have been reported for bubble column reactors that have 

been equipped with draft tube internals (Bando et al., 1998). For this case, increases in viscosity 
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lead to increases in the overall bed density of the downcomer since bubbles are less likely to be 

entrained due to an increase in the average bubble size of the system. As a result, circulation 

between the riser and downcomer increases and mixing time decreases (Bando et al., 1998). 

 

 Mixing time was also observed to increase in the presence of drag reducing agents for hollow 

bubble column systems, and increase with increases in the flow consistency index for various non-

Newtonian continuous phases (Pandit and Joshi, 1982). 

 

2.5.3.2 Effect of Operating Parameters  

Mixing time was generally found to decrease with increases in superficial gas velocity for hollow 

bubble column systems (Pandit and Joshi, 1982) and bubble column systems that had been 

equipped with partition plates (Doshi and Pandit, 2005). However, an increase in mixing time was 

recorded for hollow bubble column systems after a critical superficial gas velocity was reached. 

The decreases in mixing time observed results from increases in the liquid circulation velocity that 

occurred as superficial gas velocity increased. However, the eventual decrease in mixing time 

experienced by the hollow bubble column system may be due to dominance of an opposing effect 

at higher superficial gas velocities, the most likely being bed dispersion height. Typically, 

increases in dispersion height lead to increases in mixing time since mixing takes place over a 

greater length (Pandit and Joshi, 1982). 

 

2.5.3.3 Effect of Design Parameters  

Mixing time was observed to increase with increases in aspect ratio for both the hollow bubble 

column system (Pandit and Joshi, 1982) and the bubble column system equipped with the draft 
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tube internal (Bando et al., 1998). The observation is justified by the fact that more time would be 

required for mixing since mixing takes place over greater lengths for higher aspect ratios. Mixing 

time was observed to increase with increases in column diameter for both systems. However, it is 

important to note that although total mixing time increases, the mixing time per unit volume of 

fluid experiences a decrease (Pandit and Joshi, 1983, Bando et al., 1998). The design of the sparger 

(in terms of open area) was found to have no effect on the mixing time experienced in the 

sectionalized bubble column reactor (Doshi and Pandit, 2005). However, decreases in the free area 

of the partition plate as well as decreases in hole size increased the mixing time experienced in the 

column (Doshi and Pandit, 2005).  

 

2.5.3.4 Effect of Internals  

Internals such as partition plates (Van Baten and Krishna, 2003, Dreher and Krishna, 2001, 

Deckwer, 1992), packing (Bhatia et al., 2004, Deckwer, 1992), tube bundles (Jhawar, 2011, 

Youssef, 2010), baffle plates (Jhawar, 2011, Yamashita, 1987, Yamashita, 1985) and the inserted 

loop/draft tube (Deckwer, 1992) have all been found to have effects on bulk liquid circulation as 

well as other hydrodynamic properties such as gas hold up. A schematic of these internals can be 

found in Figure 2.4. 
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Figure 2.4: Schematic of bubble column reactor internals: (from left to right) partition plates, 

concentric draft tube internal loop, packing, concentric centrally mounted baffle and concentric 

tube bundle 

 

The partitioned plate internal is a unique internal type as it is a means through which the continuous 

phase of a hollow bubble column reactor could be made to approach plug flow (Van Baten and 

Krishna, 2003, Deckwer, 1992) and thus, experience a reduced amount of backmixing and a 

corresponding increase in mixing time. The system also experiences an increase in gas holdup 

since coalesced bubbles are continuously filtered-out and broken at each plate. A feature of this 

internal type is that there exists an accumulation of gaseous material (called a gas cap) under each 

partition plate, with the degree of accumulation being dependant on the percentage of open plate 

area and the superficial gas velocity at which the column is operating under (Van Baten and 

Krishna, 2003). There are however, several disadvantages to the use of such internals in bubble 

column reactors. The formation of the gas cap beneath partition plates ‘wastes’ reactor space for 

bubble column systems operated in a semibatch manner (Dreher and Krishna, 2001) while 
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mechanical reinforcement of the plates may become challenging for very large reactors operating 

under extreme temperature and pressure conditions. Plugging, deposition and attrition are also 

disadvantages that are associated with the use of partition plates in slurry bubble column systems. 

 

The addition of packing to a bubble column reactor has proven to be an effective means through 

which backmixing can be reduced within the system (Bhatia et al., 2004, Deckwer, 1992), despite 

the associated increase in mixing time. In addition, the presence of packing within bubble column 

reactors improves gas holdup and increases interfacial area by encouraging the formation of 

smaller bubbles within the column (Bhatia et al., 2004). However, like fixed beds, the packed 

bubble column reactor is unsuitable for heat generating/heat consuming reactions as the presence 

of the packing hinders effective temperature control. The packing internal may also be unsuitable 

for slurry bubble column reactors since particle deposition within the packing is likely to be 

unavoidable and undesirable.  

 

Although the effect of the tube bundle internal on bubble column hydrodynamics has been 

investigated to some degree within the literature (due to the importance of heat exchanger tubes in 

the temperature control of reaction containing systems), more systematic studies are required to 

better understand its effects. Nonetheless, insertion of vertical heat exchanger tubes has been found 

to increase the gas holdup and interfacial area  observed in equipped, working bubble columns 

(Jhawar, 2011, Youssef, 2010), with the increases most likely being due to a decrease in average 

bubble size. Although advantageous, the use of tube bundle internals has also been found to 

increase the degree of backmixing experienced in equipped columns to higher levels than that 
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occurring in their comparable, hollow counterparts (Youssef, 2010). However, a reduction in 

mixing time is expected given the inverse relationship between backmixing and mixing time. 

 

Centrally positioned baffle plate internals are unique in that they allow for varying degrees of gas 

holdup to be achieved by manipulating the placement of the baffle plates along the axial plane for 

a given segment of reactor length, from the reactor’s bottom (Jhawar, 2011, Yamashita, 1985). 

The degree of gas holdup achieved could also be controlled by increasing the area of the baffle 

plates or by increasing the number of baffle plates within the system (Yamashita, 1985). Although 

little work has been done on the effect of centrally located baffle plates on bubble column reactor 

backmixing, the presence of such is expected to reduce the occurrence of this hydrodynamic 

phenomenon (Yamashita, 1987) and increase mixing time. Side-mounted baffles, on the other 

hand, have been found to reduce the backmixing that occurs within bubble column systems 

(Albright, 2008) by disrupting the overall bulk liquid circulation that takes place in the reactor. 

However, the specific configuration of the side-mounted baffle can make it susceptible to dead 

zones which wastes reactor space. Both centrally positioned and side-mounted baffles face 

challenges with respect to mechanical reinforcement under extreme operating conditions. 

 

The addition of an inserted loop/draft tube to a hollow bubble column reactor can be effectively 

used to control the direction of liquid recirculation within the reactor (Deckwer, 1992) as well as 

the intensity of the recirculation experienced through the manipulation of superficial gas velocity 

and the direction of gas flow. While several variations to this modified bubble column exist, a 

common operational principle is shared between the variants. For all cases, liquid circulation is 

controlled through the creation and maintenance of a density gradient within the bed (Deckwer, 
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1992). This is achieved through the restriction of gas to one specific region of the reactor, a regime 

maintained by the presence of the segregation-supporting inserted loop. The remaining region 

denied of gas flow contains continuous phase only and is thus the denser region of the bed. The 

resulting density imbalance sets up and sustains liquid circulation within the reactor in which 

downward flow occurs within the denser region and upward flow within the aerated, less dense 

region.  

 

The addition of an inserted loop to a hollow bubble column greatly affects the operation of the 

reactor, the extent to which being dependent on the specific application. However, two major 

advantages of inserted loops have been observed and documented in the literature. The presence 

of the inserted loop has been found to heighten liquid circulation within the hollow bubble column 

system and thus, reduce the time required for liquid mixing (Deckwer, 1992). This property is 

quite advantageous in systems which require uniformity despite perturbations. The airlift reactor 

is also subject to reduced backmixing when compared to that experienced in a bubble column 

reactor, for certain operating conditions (Yang, 2007,   Kadic and Heindel, 2014).  

 

2.6 Tracer Techniques 

Estimates of the axial dispersion coefficient can be obtained from the distorted tracer concentration 

curve that is recorded at a reactor’s outlet after the injection of a particular tracer at its inlet. 

Throughout the literature, a large variety of tracers have been used to carry out these experiments. 

These tracers can be placed into five general categories – dyestuffs (Deckwer, 1992), acidic/basic 

solutions (Deckwer, 1992), salts (Deckwer, 1992), heat (Deckwer, 1992) and radioactive powders 

(Gupta et al., 2001) – and are summarized in the following subsections.   
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2.6.1 Dyestuff Tracers 

The first tracer category, dyestuffs, refers to coloured, pigmented materials (Deckwer, 1992) that 

are typically suspended in a liquid carrier. If such a tracer is used, the outlet tracer concentration 

can be determined by taking absorption measurements using a device such as a spectrophotometer. 

The use of dyestuff tracers can be advantageous as it allows for both qualitative and quantitative 

assessments to be carried out on the system without affecting the system’s properties. Dye 

pigments of various colours are also readily available and are relatively inexpensive. However, 

this method can be limited by the frequency with which samples can be collected and/or analysed.  

 

2.6.2 Acidic and Basic Tracers 

The second class of tracers, acidic or basic solutions (Deckwer, 1992), are advantageous tracers 

since the properties of a bubble column reactor have been shown to remain relatively unchanged 

with the addition of such solutions to its system. These solutions are also readily available and can 

be cheaply acquired. However, the acidity of a system is typically measured with pH meters which 

generally have long response times. A long response time can have an effect on the 

concentration/time curve acquired, a property which is extremely important for the estimation of 

the axial dispersion coeffecient. The use of acidic or basic solutions as tracers may also be 

unsuitable for certain reactor systems that are sensitive to pH, such as bubble column systems 

containing biological organisms.  
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2.6.3 Aqueous Salt Tracers 

Aqueous salt tracers (Deckwer, 1992), the third tracer category, can be an advantageous tracer 

class as the instantaneous concentration of salt at the reactor outlet can be measured using 

conductivity probes which tend to have very short response times. Unfortunately, the addition of 

salts to a bubble column system can influence the hydrodynamics of the reactor (Kantarci et al., 

2005) and can make it difficult to determine the dispersion occurring within the system unaffected 

by salt.  

 

2.6.4 Heat Tracers 

Heat (Deckwer, 1992), provided from a point source, is a unique and beneficial tracer class since 

bubble column hydrodynamics are only mildly affected by temperature (Kantarci et al., 2005). In 

addition, the continuous phase can also be easily regenerated through appropriate cooling means 

(Deckwer, 1992). On the other hand, use of heat as a tracer requires excellent temperature control 

through insulation as well as the means to provide a constant flux of heat at the heating source 

(Deckwer, 1992). Lack of control in both areas can increase the difficulty associated with acquiring 

measurements and can also lead to erroneous results. The instantaneous concentration of heat 

within the system can be determined by measuring the temperature of the continuous phase using 

devices such as thermocouples. 

 

2.6.5 Radioactive Tracers 

The last tracer class is the most recently developed of all of the methods implemented in current 

experimentation. Radioactive tracers (Gupta et al., 2001) refer to materials that have been enriched 



38 

 

with radioactive matter. These tracers can be injected into the continuous phase of a bubble column 

reactor through the use of a carrier medium. The concentration/time curve obtained using such 

tracers can be attained through the use of scintillation-base meters. These meters fluoresce 

according to the amount of radioactive matter that they are exposed to. Radioactive tracers can be 

an advantageous tracer class since they can be used for both continuous and discontinuous phase 

investigations when used with a carrier medium or as a powder respectively. Also, radioactive 

materials do not affect the properties of the systems that they are added to. Conversely, radioactive 

tracers are not easily accessible and are the most expensive of all the tracers outlined above. 

Several health risks can be associated with the use of such tracers and thus implementation of 

additional safety procedures and protocols may be necessary. Lastly, a radioactive tracer with an 

appropriate half-life needs to be properly selected since the tracer should be able to last the duration 

of the experiments without spending an excessively long time in the environment after 

experimentation has been completed. 

 

2.7 Estimation of Mixing Time through Tracers 

As mentioned earlier, the macromixing taking place within real reactor vessels falls somewhere 

between the extremes of plug flow and complete mixing. It is important to note that the fluid 

elements all spend different amounts of time within the reactor for varying shades of macromixing, 

with the exception of the plug flow ideal. The amount of time spent by a fluid element within the 

reactor is called the residence time of that element. This property is dependent on the specific path 

taken by the fluid element travelling from the reactor’s entrance to its exit (Levenspiel, 1998). The 

distribution of those times is called the residence time distribution and it has units of time. The 

residence time distribution of fluid elements may be represented by the exit age distribution 



39 

 

function, ‘E’. The ‘E’ distribution function is limited to closed vessel boundary conditions and as 

a result, fluid elements can only cross the entrance and exit boundaries of the system once. As a 

result, no manifestations of convective diffusion should take place at the vessel boundaries. The 

normalized form of this function is shown below: 

 

 
∫ 𝐸 𝑑𝑡

∞

0

= 1 
(2.5) 

 

The fraction of fluid elements spending less than some arbitrary time “t1” within the reactor may 

be found from the following expression: 

 

 

 
∫ 𝐸 𝑑𝑡

𝑡1

0

 
(2.6) 

 

The fraction of fluid element ages equal to or greater than t1 can be obtained by subtracting the 

above result from 1. 

 

 
∫ 𝐸 𝑑𝑡

∞

𝑡1

= 1 − ∫ 𝐸 𝑑𝑡
𝑡1

0

 
(2.7) 

 

The E-curve is one of the most helpful properties with respect to a reactor’s deviation from ideality. 

A system’s E-curve may be determined from tracer experiments using physical or non-reactive 

liquid tracers. Tracers may be injected in four different manners – pulse input, step input, periodic 
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input and random input – with each having its own unique means of interpretation. The following 

paragraphs explore the analysis of one of the most simple tracer input methods, the pulse input. 

 

The pulse input approach involves the instantaneous injection of a known amount of tracer at the 

entrance of reactor, along with the entering fluid. This method also requires the continuous 

recording of the tracer concentration with time at the reactor’s outlet. For explanatory purposes, 

consider Figure 2.5. 

 

Figure 2.5: Sample C-curve (Levenspiel: 1988), adapted 

 

The area under the graph could be found through simple integration (Levenspiel, 1988), 

 

𝐴 = ∫ 𝐶𝑝𝑢𝑙𝑠𝑒 𝑑𝑡
∞

0

 ≅  ∑ 𝐶𝑖∆𝑡𝑖 =  
𝑁𝑖,𝑇

�̇�
 

(2.8) 

 

where 𝐴 is the area under the graph, 𝐶𝑝𝑢𝑙𝑠𝑒 is the instantaneous tracer concentration, 𝑁𝑖,𝑇 is the 

total number of moles of tracer introduced to the system and �̇� is the volumetric flow of the liquid 

 

𝑁𝑖 ,𝑇

�̇�
 



41 

 

through the system. ∆𝑡𝑖 is a discrete, specified time interval and 𝐶𝑖 is the corresponding 

instantaneous tracer concentration. The average time spent by the tracer and hence, the mean of 

the C-curve (𝑡̅), may be found from the following (Levenspiel, 1988): 

 

𝑡̅ =  
∫ 𝑡𝐶𝑝𝑢𝑙𝑠𝑒 𝑑𝑡

∞

0

∫ 𝐶𝑝𝑢𝑙𝑠𝑒
∞

0
 𝑑𝑡

 ≅  
∑ 𝑡𝑖𝐶𝑖∆𝑡𝑖

∑ 𝐶𝑖∆𝑡𝑖
=  

𝑉

�̇�
 

(2.9) 

 

where 𝑡̅ is the mean residence time of the tracer and 𝑉 is the volume of the reactor. The C-curve 

may be converted into the E-curve by altering the tracer concentration scale in a manner that makes 

the area under the C-curve unity. This is achieved through the following expression (Levenspiel, 

1988): 

 

 
𝐸 =  

𝐶𝑝𝑢𝑙𝑠𝑒

𝑁𝑖,𝑇
�̇�

⁄
 

(2.10) 

 

A second type of curve in which time is measured as multiples of mean residence time, Eθ, can be 

generated using the following substitution:

 

 

 

 

 

𝜃 =  𝑡
𝑡̅⁄  

 

(2.11)

Thus, 
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Eθ = 𝑡̅E =  
𝑉

�̇�
  

𝐶𝑝𝑢𝑙𝑠𝑒

𝑁𝑖,𝑇
�̇�

⁄
=  

𝑉

𝑁𝑖,𝑇
𝑐𝑝𝑢𝑙𝑠𝑒 

(2.12) 

 

The extent of spreading or the variance of the tracer as it passes through a particular system, 𝜎2, 

can be obtained from the following equation (Levenspiel, 1988): 

 

𝜎2 =  
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∞

0
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(2.13) 

Or, 

𝜎2 =  
∑(𝑡𝑖 − 𝑡�̅�)

2𝐶𝑖𝛥𝑡𝑖

∑ 𝐶𝑖 𝛥𝑡𝑖
=  

𝑡𝑖
2𝐶𝑖𝛥𝑡𝑖

𝐶𝑖𝛥𝑡𝑖
−  𝑡̅2 

(2.14) 

 

𝑡̅ and σ2 have been theoretically linked to the dispersion properties of a reactor that has been 

modelled using the axial dispersion model. The following subsection further expands on this 

relationship. 

 

2.8 Estimation of Liquid Backmixing through Tracers 

The model chosen to represent a particular flow system is primarily based on that system’s degree 

of deviation from either of the macromixing ideals. Dispersion models are plug flow models which 

justify the inherent non-ideality of the systems they describe through the superimposition of a 

diffusion-like spreading mechanism (Degaleesan, 1998, Shah et al., 1978, Fogler, 2006, Davis and 

Davis, 2003). This diffusion-like process accounts for the degree of backmixing found within 

individual plugs of fluid. Backmixing is due to random disturbances within flow systems, such as 

eddies. This leads to the redistribution of material within individual plugs and thus, implies the 
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non-existence of stagnant zones or gross fluid recirculation through short-circuiting and bypassing 

(Shah et al., 1978). 

 

  

 

 

 

Figure 2.6: Schematic of Plug Flow Reactor 

 

Based on Figure 2.6, the equation of conservation of mass for the pulse injection of a tracer, 𝑖, into 

any reactor system may be written as follows, 

 

 𝛿𝑁𝑖

𝛿𝑡
=  �̇�𝑖,𝑖𝑛 −  �̇�𝑖,𝑜𝑢𝑡  

(2.15) 

 

Where 𝑡 is time, 𝑁𝑖 is the number of moles of tracer and �̇�𝑖 the molar flow of tracer into and out 

of the system. When a system is completely plug flow in nature, molar flow is only due to 

convective molar flow and can be defined as follows, 

 

 𝑛𝑖̇ =  𝐴𝑐𝑣𝐶𝑖 (2.16) 

 

where 𝐴𝑐 is the cross-sectional area of the reactor, 𝑣 the velocity of the liquid within the reactor 

and 𝐶𝑖 the concentration of tracer within the reactor. However, for real systems with imperfect 

plug flow properties, molar flow within the system may be described as convective molar flow 

superimposed with dispersion in the axial direction (Degaleesan, 1998, Shah et al., 1978, Fogler, 

z z + δ 
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2006, Davis and Davis, 2003). Thus, the molar flow within real systems can be defined as follows 

(Fogler, 2006, Davis and Davis, 2003), 

 

 
𝑛𝑖̇ =  𝐴𝑐𝑣𝐶𝑖 −  𝐴𝑐𝐷𝑎

𝛿𝐶𝑖

𝛿𝑧
 

(2.17) 

 

where the latter term represents the degree of backmixing or axial dispersion occurring within the 

system. From prior studies, the dispersion occurring within real flow systems has been found to 

occur frequently enough to be considered statistical in nature. This property allows dispersion to 

be treated in a manner similar to that of the molecular diffusion in Fickian systems. As a result, 

the dispersion term contains a dispersion coefficient, 𝐷𝑎, and tracer concentration, 𝐶𝑖, is described 

as a function of the axial direction, 𝑧. 

 

Substituting the expression for molar flow in real reactors into the equation of conservation of 

mass yields the following expression, 

 

𝛿𝑁𝑖

𝛿𝑡
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𝛿𝐶𝑖

𝛿𝑧
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𝛿𝐶𝑖

𝛿𝑧
+  𝜕 (𝐴𝑐𝑣𝐶𝑖 − 𝐴𝑐𝐷𝑎

𝛿𝐶𝑖

𝛿𝑧
)) 

(2.18) 

 

Simplifying this expression yields, 

 

𝛿𝑁𝑖

𝛿𝑡
=  −𝜕 (𝐴𝑐𝑣𝐶𝑖 −  𝐴𝑐𝐷𝑎

𝛿𝐶𝑖

𝛿𝑧
) 

(2.19) 
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If Ni is rewritten in terms of concentration and cross-sectional area, and 𝑣 and 𝐷𝑎 are assumed to 

be constant variables, the above equation can be further simplified to,  

 

𝐴𝑐𝜕𝑧
𝛿𝐶𝑖

𝛿𝑡
=  −𝐴𝑐𝑣𝜕𝐶𝑖 +  𝐴𝑐𝐷𝑎

𝛿2𝐶𝑖

𝛿𝑧
 

(2.20) 

 

 𝛿𝐶𝑖

𝛿𝑡
=  −𝑣

𝜕𝐶𝑖

𝛿𝑧
+  𝐷𝑎

𝛿2𝐶𝑖

𝛿𝑧2
 

(2.21)

 

The dimensionless form of the above equation can be obtained through the following substitutions, 

 

 𝑍 =  𝑧
𝐿⁄  (2.22) 

 

 𝜃 = 𝑡
𝑡̅⁄   (2.23) 

 

 𝑃𝑒𝑎 = 𝐿𝑣
𝐷𝑎

⁄   (2.24)

 

in which 𝑍 is dimensionless length, 𝐿 is the length of the reactor, 𝜃 is dimensionless time, 𝑡̅ is 

mean residence time and 𝑃𝑒𝑎 is Peclet number. Substituting and rearranging yields,  

 

 

 1

𝑃𝑒𝑎

𝛿2𝐶𝑖

𝛿𝑍2
 =

𝛿𝐶𝑖

𝛿𝜃
+  

𝜕𝐶𝑖

𝛿𝑍
 

(2.25) 
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The magnitude of the axial dispersion coefficient offers valuable information on the extent of 

dispersion within the system as well as the nature of the C-curve obtained. As Peclet number tends 

to infinity, dispersion within a particular flow system becomes negligible and that system 

approaches plug flow. When Peclet number tends to zero, dispersion is large and the system 

approaches complete mixing.  
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3.0 Experimental 

 

3.1 Gas Holdup from Bed Pressure Drop Technique 

All experiments were carried out in a 0.15 m diameter Plexiglas bubble column reactor. The height 

of the reactor was 2.50 m. To minimize mechanical vibrations, the column was supported by a 

rigid metal structure, which also kept it vertically oriented. A schematic of the experimental setup 

is shown in Figure 3.1. Gas was added to the reactor using a coarse sparger with four arms. Each 

arm had five, downward facing holes that were 1.90 mm in diameter. The specific sparger design 

has been outlined in previous work (Gandhi, 1997). Experiments were carried out in the presence 

of two different internals. A top view of the first internal, the centrally-mounted concentric baffle 

(a static mixer), can be found in Figure 3.2 while the top view of the second internal, the concentric 

tube bundle, can be found in Figure 3.3. Experiments were carried out with the tube bundle internal 

(CT) and a combination of the tube bundle and baffle internals (CTB). Specifications concerning 

the internals’ design and orientation can be found in Table 3.1.  Oil free, compressed dry air was 

used as the discontinuous phase for all experiments. Its flow rate was controlled using three 

calibrated sonic nozzles of varying diameters (0.60 mm, 1.50 mm and 2.50 mm). Experiments 

were carried out at superficial gas velocities ranging from 0.01 m/s to 0.30 m/s. The continuous 

phase used in all experiments was tap water which was maintained at a static height of about 1.40 

m. 

 

Gas holdup was estimated from pressure fluctuations recorded within the column. Two pressure 

transducers (OMEGA Type PX541-7.5GI and Type PX541- 45 15GI) were used to measure the 

pressure fluctuations. The response time of the transducers was 2 ms. The transducers were located 

in distributor and disengagement sections of the column at elevations of z = 0.027 m and z = 1.318 
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m respectively. This can be seen in Figure 3.1. Pressure was measured in voltage since the 

transducers were connected to a DC power supply that generated a voltage proportional to 

measured pressure. The readings were later converted to pressure units using the calibration found 

in Appendix B. Pressure fluctuations were measured at a rate of 60 Hz for 180 s. All readings were 

obtained through the use of LabVIEW 8. The Pressure difference was calculated by averaging the 

difference between the two transducer readings. The average gas holdup was obtained using 

Equation 3.1. 

 

 
휀𝑔 =  

−∆𝑃 + 𝜌𝑙𝐻𝑏𝑒𝑑𝑔

𝐻𝑏𝑒𝑑𝑔(𝜌𝑔 − 𝜌𝑙)
 

(3.1) 

 

In this equation, 휀𝑔 is gas holdup, ∆𝑃 is the pressure drop across the pressure transducers, 𝐻𝑏𝑒𝑑 is 

the distance between the pressure transducers, 𝜌𝑔 is density of the gaseous phase, 𝜌𝑙 is density of 

the liquid phase and 𝑔 is acceleration due to gravity. The experiment was repeated three times for 

each internal at all the superficial gas velocities investigated. The gas holdup results presented in 

the following section are averages of the data obtained over multiple days. 
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Figure 3.1: Schematic Showing Experimental Setup 1 

Key: 
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Figure 3.2: Top View of Baffle Internal 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Top View of Tube Bundle Internal 
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Table 3.1: Summary of internal properties 

Internal Combination Type Details 

Circular Tube Bundle (CT) 

Tube Bundle: 

No. of tubes: 15 

Tube diameter: 0.95 cm 

Tube length: 150 cm 

Wall to wall spacing between tubes: 4.4 mm 

z = 0.5 m (from bottom) 

Circular Tube Bundle +  Concentric Baffle 

(CTB) 

Tube Bundle: Same as above 

 

Concentric Baffle: 

No. of blades: 6 

Length of blade: 3.5 cm 

Width of blade: 1.9 cm 

Blade angle: 60o from axis 

z = 0.36 m (from bottom) 

 

 

3.2 Bubble Fractions from Dynamic Gas Disengagement Technique 

All experiments were carried out in a 0.15 m diameter Plexiglas bubble column reactor. The height 

of the reactor was 2.50 m. To minimize mechanical vibrations, the column was supported by a 

rigid metal structure, which also kept it vertically oriented. A schematic of the experimental setup 

is shown in Figure 3.1. Gas was added to the reactor using a coarse sparger with four arms. Each 

arm had five, downward facing holes that were 1.90 mm in diameter. The specific sparger design 

has been outlined in previous work (Gandhi, 1997). Experiments were carried out in the presence 

of two different internals. A top view of the first internal, the centrally-mounted concentric baffle 

(a static mixer), can be found in Figure 3.2 while the top view of the second internal, the concentric 

tube bundle, can be found in Figure 3.3. Experiments were carried out with the tube bundle internal 

(CT) and a combination of the tube bundle and baffle internals (CTB). Specifications concerning 
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the internals’ design and orientation can be found in Table 3.1.  Oil free, compressed dry air was 

used as the discontinuous phase for all experiments. Its flow rate was controlled using three 

calibrated sonic nozzles of varying diameters (0.60 mm, 1.50 mm and 2.50 mm). Experiments 

were carried out at superficial gas velocities ranging from 0.01 m/s to 0.30 m/s. The continuous 

phase used in all experiments was tap water which was maintained at a static height of about 1.40 

m. 

 

To carry out the dynamic gas disengagement technique, gas flow to the column was suddenly shut 

and the resulting pressure fluctuations were recorded. The distributor section pressure transducer 

(OMEGA Type PX541- 45 15GI) was used to measure the pressure fluctuations. The response 

time of the transducer was 2 ms. The transducer was located at an elevation of z = 0.027 m. 

Pressure was measured in voltage since the transducers were connected to a DC power supply that 

generated a voltage proportional to measured pressure. The readings were later converted to 

pressure units using the calibration found in Appendix B. Pressure fluctuations were measured at 

a rate of 60 Hz for 180 s. All readings were obtained through the use of LabVIEW 8. The dynamic 

gas disengagement curve for each case was obtained from the readings of the axially lower 

pressure transducer. The equations used to analyse the data can be found in the following chapter. 

The experiment was repeated three times for each internal at all of the superficial gas velocities 

investigated. The bubble fraction results presented in the following section are the results obtained 

from the second repeat for each of the investigated internals. A single day’s result is compared 

since the difference between the results from the two internals is expected to be significant. This 

assumption is reasonable since statistical differences were obtained for the results from the related, 

overall gas holdup experiments. 
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3.3 Small Bubble Sizes from Photography-based Technique 

All experiments were carried out in a 0.15 m diameter Plexiglas bubble column reactor. The height 

of the reactor was 2.50 m. To minimize mechanical vibrations, the column was supported by a 

rigid metal structure, which also kept it vertically oriented. A schematic of the experimental setup 

is shown in Figure 3.1. The pressure transducers and data acquisition system were not used in this 

experiment. Gas was added to the reactor using a coarse sparger with four arms. Each arm had 

five, downward facing holes that were 1.90 mm in diameter. The specific sparger design has been 

outlined in previous work (Gandhi, 1997). Experiments were carried out in the presence of two 

different internals. A top view of the first internal, the centrally-mounted concentric baffle (a static 

mixer), can be found in Figure 3.2 while the top view of the second internal, the concentric tube 

bundle, can be found in Figure 3.3. Experiments were carried out with the tube bundle internal 

(CT) and a combination of the tube bundle and baffle internals (CTB). Specifications concerning 

the internals’ design and orientation can be found in Table 3.1.  Oil free, compressed dry air was 

used as the discontinuous phase for all experiments. Its flow rate was controlled using three 

calibrated sonic nozzles of varying diameters (0.60 mm, 1.50 mm and 2.50 mm). Experiments 

were carried out at superficial gas velocities ranging from 0.01 m/s to 0.30 m/s. The continuous 

phase used in all experiments was tap water which was maintained at a static height of about 1.40 

m. 

 

To obtain estimates for the average bubble sizes of the small bubble class, short video clips of the 

previously explained dynamic gas disengagement process were taken using a Canon PowerShot 

SX50 HS Camera. From these videos, five frames in which the bubbles could be clearly identified 

were saved for further analysis with Image-Pro Premiere 9.1.All frames were obtained using 
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CyberlinkPowerDirector 12. As a precaution, a reference clip containing a particle of known size 

was captured at the same camera orientation and zoom settings that would be used to capture the 

disengagement process. The sizes of the bubbles and reference particle were determined (in pixels) 

using Image-Pro Premier 9.1. These bubble sizes were later scaled to length dimensions based on 

that of the reference particle. A sample of 55 bubbles size measurements were obtained for 

analysis. An average small bubble size will be presented in the following sections. No repeats were 

taken for this experiment. However, the experiment was carried out for each of the investigated 

internals. 

 

3.4 Liquid Circulation from Neutrally Buoyant Particle Technique 

All experiments were carried out in a 0.15 m diameter Plexiglas bubble column reactor. The height 

of the reactor was 2.50 m. To minimize mechanical vibrations, the column was supported by a 

rigid metal structure, which also kept it vertically oriented. A schematic of the experimental setup 

is shown in Figure 3.1. The pressure transducers and data acquisition system were not used in this 

experiment. Gas was added to the reactor using a coarse sparger with four arms. Each arm had 

five, downward facing holes that were 1.90 mm in diameter. The specific sparger design has been 

outlined in previous work (Gandhi, 1997). Experiments were carried out in the presence of two 

different internals. A top view of the first internal, the centrally-mounted concentric baffle (a static 

mixer), can be found in Figure 3.2 while the top view of the second internal, the concentric tube 

bundle, can be found in Figure 3.3. Experiments were carried out with the tube bundle internal 

(CT) and a combination of the tube bundle and baffle internals (CTB).  Specifications concerning 

the internals’ design and orientation can be found in Table 3.1.  Oil free, compressed dry air was 

used as the discontinuous phase for all experiments. Its flow rate was controlled using three 
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calibrated sonic nozzles of varying diameters (0.60 mm, 1.50 mm and 2.50 mm). Experiments 

were carried out at superficial gas velocities ranging from 0.01 m/s to 0.30 m/s. The continuous 

phase used in all experiments was tap water which was maintained at a dynamic height of about 

2.18 m. 

 

To obtain a visual on the hydrodynamics occurring within a working bubble column, several near-

neutrally buoyant particles of different colours and sizes were added to the system. The properties 

of the two major beads used in all experiments can be found in Table 3.2. However, details of the 

near-neutrally buoyant particle design could be found in Appendix C. For each case, videos were 

taken with the Canon PowerShot SX50 HS Camera and observations were noted. The most 

frequent particle motions have been reported in the results section. The particles were observed at 

the various gas velocities on at least five separate occasions for both of the investigated internals. 

 

Estimates of the local liquid velocity were also obtained from the videos of the near-neutrally 

buoyant particles. Clips in which the particles moved upward or downward in a relatively straight 

manner were selected for the analysis. The vertical displacement of the particle was determined 

from the initial and final particle positions in the clips. This was obtained from the tape measure 

that had been attached to the column and captured in the videos. The time taken for the 

displacement to occur was determined from the frame rate and the number of frames within which 

the displacement had occurred. 
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Table 3.2: Summary of selected near-neutrally buoyant particle properties 

Particle 
Diameter, 

mm 
Mass, kg 

Density, 

kg/m3 
Sphericity 

Settling 

Velocity, m/s 

Particle 1 9.64 0.467 996.4 0.999 – 0.69 

Particle 2 5.52 0.083 1046.2 0.850 0.89 

 

 

3.5 Mixing Time from Dye Tracer Technique 

All experiments were carried out in a 0.15 m diameter Plexiglas bubble column reactor. The height 

of the reactor was 2.50 m. To minimize mechanical vibrations, the column was supported by a 

rigid metal structure, which also kept it vertically oriented. A schematic of the experimental setup 

is shown in Figure 3.5. The probe and data acquisition system were not used in this experiment.  

Gas was added to the reactor using a coarse sparger with four arms. Each arm had five, downward 

facing holes that were 1.90 mm in diameter. The specific sparger design has been outlined in 

previous work (Gandhi, 1997). Experiments were carried out in the presence of two different 

internals. A top view of the first internal, the centrally-mounted concentric baffle (a static mixer), 

can be found in Figure 3.2 while the top view of the second internal, the concentric tube bundle, 

can be found in Figure 3.3. Experiments were carried out with the tube bundle internal (CT) and a 

combination of the tube bundle and baffle internals (CTB). Specifications concerning the internals’ 

design and orientation can be found in Table 3.1.  Oil free, compressed dry air was used as the 

discontinuous phase for all experiments. Its flow rate was controlled using three calibrated sonic 

nozzles of varying diameters (0.60 mm, 1.50 mm and 2.50 mm). Experiments were carried out at 

superficial gas velocities ranging from 0.01 m/s to 0.30 m/s. The continuous phase used in all 

experiments was tap water which was maintained at a static height of about 2.18 m. 
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Blue dye tracer solution was made by adding 500 drops of food colouring to 0.0005 m3 of water. 

The solution was later added to the injection system, a schematic of which is shown in Figure 3.5. 

The tracer injection system consists of an open loop and a closed loop. Before injection, the dye 

was circulated within the closed loop labelled a to d in Figure 3.5 for at least 5 minutes. This step 

was added to ensure steady tracer circulation within the injection system. After steady tracer 

circulation had been reached, the dye solution was directed to the column and thus, entered the 

open loop labelled a to f in Figure 3.5. The dye was added to the top of the column using a ring-

type sparger containing four, 1.3 mm diameter holes. The sparger was positioned 0.38 m from the 

top of the column. A schematic of the tracer injection sparger can be seen in Figure 3.4. Further 

details on the design of the injection system can be found in Appendix E. About 0.0075 mm3 of 

the dye solution was injected into the working column within a 10 second time span. As mixing 

occurred, videos of the system’s distributor region were taken using the Canon PowerShot SX50 

HS Camera. For clarity, a white background was placed behind the part of the column being 

videotaped. Complete mixing was defined as the time within which the column first appeared to 

be uniformed in colour from the onset of dye tracer injection. The time required for complete 

mixing was obtained by determining the point in which the column’s colour first seemed to remain 

unchanged in the respective video clips. This was determined using CyberlinkPowerDirector 12. 

This experiment was repeated at least three times for each superficial gas velocity investigated, for 

each internal. The mixing times presented in the results section are an average of the mixing times 

obtained during each repeat. 
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Figure 3.4: Schematic of sparger used in tracer injection 
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Figure 3.5: Schematic Showing Experimental Setup 2 

Key: 

1. Column 

2. Inlab 731 ISM 

Probe 

3. Gas Distributor 

4. Baffle Internal 

5. Tube Bundle 

Internal 

6. Sonic Nozzles 

Drain

Drain Air 

0.15 m 

2.50 m 

m2.500 

1.50 m 

m1.500 

0.36 m 

1

1 

3

3 

4

4 

5

5 

6

6 

7

7 

2 

 

LabX 

direct pH DAQ 

8 

9 

10 

11 

12 

7. Gas Flow Controller 

8. Tracer Injection 

Sparger 

9. Tracer Storage 

10. Pump 

11. SevenExcellence 

Multiparameter meter 

12. Computer 

0.38 m 

0.50 m 

a 

b 

c d 
e 

f 



60 

 

3.6 Mixing Time and Axial Dispersion Coefficient from Salt Tracer Technique 

All experiments were carried out in a 0.15 m diameter Plexiglas bubble column reactor. The height 

of the reactor was 2.50 m. To minimize mechanical vibrations, the column was supported by a 

rigid metal structure, which also kept it vertically oriented. A schematic of the experimental setup 

is shown in Figure 3.5. Gas was added to the reactor using a coarse sparger with four arms. Each 

arm had five, downward facing holes that were 1.90 mm in diameter. The specific sparger design 

has been outlined in previous work (Gandhi, 1997). Experiments were carried out in the presence 

of two different internals. A top view of the first internal, the centrally-mounted concentric baffle 

(a static mixer), can be found in Figure 3.2 while the top view of the second internal, the concentric 

tube bundle, can be found in Figure 3.3. Experiments were carried out with the tube bundle internal 

(CT) and a combination of the tube bundle and baffle internals (CTB). Specifications concerning 

the internals’ design and orientation can be found in Table 3.1.  Oil free, compressed dry air was 

used as the discontinuous phase for all experiments. Its flow rate was controlled using three 

calibrated sonic nozzles of varying diameters (0.60 mm, 1.50 mm and 2.50 mm). Experiments 

were carried out at superficial gas velocities ranging from 0.01 m/s to 0.30 m/s. The continuous 

phase used in all experiments was tap water which was maintained at a static height of about 2.18 

m. 

 

A solution of 100 Kg/m3 aqueous sodium chloride solution was made by adding 0.05 Kg of table 

salt to 0.0005 m3 of distilled water. The solution was later added to the injection system, a 

schematic of which is shown in Figure 3.5. The tracer injection system consists of an open loop 

and a closed loop. Before injection, the salt solution was circulated within the closed loop labelled 

a to d in Figure 3.5 for at least 5 minutes. This step was added to ensure steady tracer circulation 
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within the injection system. After steady tracer circulation had been reached, the salt solution was 

directed to the column and thus, entered the open loop labelled a to f in Figure 3.5. The salt solution 

was added to the top of the column using a ring-type sparger containing four, 1.3 mm diameter 

holes. The sparger was positioned 0.38 m from the top of the column. A schematic of the tracer 

injection sparger can be seen in Figure 3.4. Further details on the design of the injection system 

can be found in Appendix E. About 0.0075 mm3 of the salt solution was injected into the working 

column within a 10 second time span. The conductivity was measured using a SevenExcellence 

Multiparameter meter equipped with an Inlab 731 ISM probe. The probe was positioned 0.005 m 

from the bottom of the reactor. Measurements were taken at 1 second intervals and were obtained 

using the LabX direct pH software. As a precaution, all readings were taken after the meter 

reported stable temperature values. Photos of the probe and meter can be found in Figure 3.6a and 

Figure 3.6b respectively. Complete mixing was defined as the time in which the conductivity 

readings became constant from the time in which salt solution injection had first commenced. The 

time required for complete mixing was obtained by determining the point at which the column’s 

conductivity first became constant from the onset of aqueous salt injection. This was obtained from 

a plot of instantaneous conductivity with time. The time required for the reactor to attain ninety 

percent mixing has been reported in the results section. Estimates of the axial dispersion coefficient 

were obtained from the method outlined in Ohki and Inoue (1970). No repeats were taken for this 

experiment due to time limitations. However, the experiment was carried out for each of the 

investigated internals. 
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Figure 3.6: Picture of a) Inlab 731 ISM probe (top) and b) SevenExcellence Multiparameter 

meter (bottom) 

5 mm 
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4.0 Results and Discussion 

The results of this study are presented in three major sections (sections 4.1 to 4.3). Section 4.1 

compares the effects of the CT and CTB internals on the local flow structure of the bubble column 

reactor. Bulk flow patterns, based on the local flow structures, are also proposed for both internals. 

Section 4.2 reviews the effect of the CT and CTB internals on the gas holdup experienced in a 

bubble column reactor. The effect of the internals on various bubble class properties (average 

bubble holdup, average rise velocity and small bubble size) is also reviewed. Lastly, a comparison 

between the effect of the CT and CTB internals on interfacial area is made. Section 4.3 compares 

the effect of the CT and CTB internals on mixing time and axial dispersion. 

 

4.1 Local Flow Structures in the Presence of Internals 

Bulk liquid circulation refers to the overall liquid circulation pattern that can be observed in a 

bubble column reactor under steady state operation. Although a single bulk circulation pattern 

exists for a particular reactor design under specific operating conditions, a variety of local flow 

structures can be observed. Local flow structures are quite complex since they can vary with both 

time and space. But like bulk circulation patterns, the nature of those local flow structures can be 

greatly influenced by the design of a bubble column reactor, particularly with the addition of 

internals. This section explores the effect of the CT and CTB internals on the local flow structures 

of a bubble column reactor. The local flow structures presented in this subsection were observed 

multiple times over several experimentation periods. The section will conclude with bulk liquid 

circulation propositions for the bubble column equipped with the CT and CTB internals 

respectively.  
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Local flow structures were observed through the use of near-neutrally buoyant beads, the design 

of which has been outlined in Appendix C. To accurately describe the observations, the column 

was separated into defined regions based on the internal used.  When equipped with the CTB 

internal, the bubble column reactor was divided into six different regions – the distributor region, 

the baffle region, the tube bundle entrance region (called entrance region), the tube bundle inner 

core region (called core region), the tube bundle outer annular region (called annular region) and 

the tube bundle exit region (called exit region). These regions have been labelled regions 1 to 6 

respectively in Figure 4.1a. When equipped with the CT internal, the bubble column reactor was 

divided into five different regions – the distributor region, the entrance region, the core region, the 

annular region and the exit region. These regions have been labelled region 1 to 5 respectively in 

Figure 4.1b. 

 

The investigations carried out with the CT and CTB internals have yielded several interesting 

differences that can be qualitatively analysed through the use of neutrally buoyant particles. In 

general, the bubble column equipped with the CT internal could be described as containing two 

main circulation cells - cell one, the distributor region, and cell two, an amalgamation of the four 

remaining regions. This could be seen at all superficial gas velocities, although the circulation cells 

seem to merge at higher superficial gas velocities. Circulation cells were not observed in the bubble 

column when equipped with the CTB internal. Instead, the particles were seen randomly moving 

within the visible regions of the column. This difference implies that the presence of the baffle 

internal within the reactor disrupts overall liquid circulation and indirectly reduces backmixing.  
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Many interesting observations were made for the circulation cells which occurred during CT 

investigations. At low superficial gas velocities, the particles spent equal amounts of time in both 

cells, with the only exchange between cells occurring when the particles exited cell one through 

the core region and entered cell two through the annular region. As superficial gas velocity 

increased, the particles spent more time in circulation cell two over circulation cell one, and a 

breakdown of the two circulation cells developed. The breakdown was validated by increased 

occurrences of the particles exiting cell one and entering cell two via the annular region. This was 

first observed at a superficial gas velocity of 0.15 m/s, although the particles could be seen 

oscillating about the entrance region at a superficial gas velocity of 0.10 m/s. As superficial gas 

velocity increased, the distance traversed by the particles into the annular region experienced a 

general increase and the occurrences became more frequent. 
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Figure 4.1: Regions in bubble column equipped with a) CTB internal (left) and b) CT internal 

(right) 
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4.1.1 The Distributor and Baffle Regions 

For all the flow conditions investigated with the CT and CTB internals, the residence time of the 

particles that entered the distributor region was typically very short, whether the particles settled 

to the reactor’s bottom or remain suspended in the surrounding fluid. In both cases, the particles 

were re-suspended by streams of upward moving dispersion that had been reflected off of the 

reactor’s bottom by the gas exiting the downward pointing sparger holes within a few seconds. 

This observation indicates the occurrence of substantial mixing in the distributor region which can 

be attributed to the sparger’s specific design and orientation. A picture series outlining the particle 

movements can be seen in Figure 4.2. A typical trajectory is shown in Figure 4.3. It is important 

to point out that the particles approached the distributor from all sides during investigations with 

both internals.  This occurrence may indicate symmetrical flow in this region.  

 

After leaving the immediate vicinity of the distributor, the particles enter the baffle region during 

CTB investigations or remain in the upper part of the distributor region during CT investigations. 

The following paragraphs summarizes the observations made for each case. 
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Figure 4.2: Picture series of particle in distributor region (Vg ~ 0.02 m/s, magnification: ~ 0.35%) 
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Figure 4.3: Schematic of particle in distributor region (Vg ~ 0.02 m/s) 

 

The baffle region was the most turbulent of all the regions outlined in the bubble column equipped 

with the CTB internal. In this region, the particles traversed the column axially, radially and 

azimuthally in a random manner. At low superficial gas velocities, particle movements were 

relatively circular in nature. However, as superficial gas velocity increased, the particles changed 

directions more frequently in an angular, random manner, as can be seen in Figure 4.4. At all 

investigated gas velocities, the particles were seen vertically oscillating between a variety of points 

above and below the baffle. This oscillatory motion was irregular since the particles seemed to 

spend more time in the area below the baffle. At low superficial gas velocities, particle oscillations 

were primarily contained within the baffle region. However, as superficial gas velocity increased, 

the particles travelled to the lower annular region before rapidly dropping beneath the baffle once 

again. In general, the particles spent significant amounts of time in the baffle region in spite of its 

relatively small volume. However, the time spent travelling this region decreased slightly with 

increases in superficial gas velocity.  
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Figure 4.4: Schematic of particle in baffle region (Vg ~ 0.02 m/s (left) and ~ 0.15 m/s (right)) 

 

After re-suspension, the particles could be seen making a variety of smooth but random movements 

within the upper portions of the distributor region during experimentation with the CT internal. As 

superficial gas velocity increased, those movements became quicker and shorter, but remained 

smooth. This could be seen in Figure 4.5. The particles could also be seen making quick, vertical 

drops within this region at higher superficial gas velocities.  

 

Several differences exist between the observations for the baffle/upper distributor regions when 

equipped with the CT and CTB internals respectively. As seen above, the particle movements at 

high superficial gas velocities were angular (baffle region) during CTB investigations and 

remained rounded (distributor region) during CT investigations. However, the major difference 

observed between the baffle/distributor regions when equipped with the different internals was 

that equipment with the CT internal seemed to separate the reactor into two separate circulation 
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cells while equipment with the CTB internal did not. The details of the circulation cell behavior 

have been addressed in the previous subsection.  

 

 

Figure 4.5: Schematic of particle in the distributor region (Vg ~ 0.02 m/s (left) and ~ 0.20 m/s 

(right)) 

 

4.1.2 The Entrance Region 

The entrance region, amongst having its own properties, is the site at which the particles enter 

either the core or the annular regions. Unfortunately, clear observations could not be made for 

neither the CTB nor the CT internals due to visibility that resulted from the system’s design. 

However, at higher superficial gas velocities, the particles were found around the exit region more 

frequently for both internals. This can be attributed to an increase in the frequency with which the 

particles entered the baffle/upper distributor regions.  
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4.1.3 The Core Region 

Although particle motion could not be tracked while the particles traversed the core region (due to 

visibility and design limitations), a few important observations were made. For both internals, the 

time spent by the particles travelling the core region seemed to decrease with increases in 

superficial gas velocity. At moderate superficial gas velocities however (0.08 – 0.12 m/s), particles 

in the CTB equipped column could be seen making their way to the exit region through the annular 

region. Disfavor for the core region route may be due to the transient nature of the column under 

these conditions. No such observations were made in the bubble column reactor equipped with the 

CT internal.  

 

At the lowest superficial gas velocity, smaller particles (with maximum radius less than 4.4 mm) 

were seen entering and exiting the core region through the spaces of the tube-bundle internal, 

primarily at its ends. This was observed for both of the investigated internals, although more 

frequent during CTB investigations. The occurrence indicates an exchange of material between 

the core and annular regions and can be seen in Figure 4.6 to Figure 4.8. When superficial gas 

velocity is high, passage of the small particles through the spaces of the tube bundle was 

nonexistent for both the CT and CTB internals. This indicates more structured exchanges between 

the core and annular regions (via the exit region).  
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Figure 4.6: Picture series of particle entering core region (Vg ~ 0.02 m/s, magnification: ~ 0.35%) 

 

 

 

Figure 4.7: Picture series of particle exiting core region (Vg ~ 0.02 m/s, magnification: ~ 0.50%) 
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Figure 4.8: Schematic of particle entering core region (Vg ~ 0.02 m/s) 

 

4.1.4 The Annular Region 

Each superficial gas velocity investigated was associated with a few characteristic particle 

motions. These particle motions are due to the existence of eddies which are created by the rapidly 

moving bubbles that traverse the system. Eddies can be generated within bubble columns through 

two major means – shear instabilities and wake shedding. Eddies generated by the first means, 

shear instabilities, are created at the interface of two fluids of different densities moving past each 

other at different velocities. Thus, passage of the gaseous phase within the continuous phase 

naturally creates eddies in bubble column systems. The second means through which eddies can 

be generated in a bubble column is through bubble wake shedding. When a bubble rises, a region 

of low pressure is created behind that bubble and any surrounding liquid is pulled into its energetic 

wake. As the bubble continues to rise, liquid is constantly absorbed into the bubble’s wake until 

the wake becomes too heavy for the bubble to carry. The wake of that bubble is then shed and it 

exists as a high energy eddy within the system. 
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The nature of the eddies dominating the annular region can be affected by both the continuous 

phase and discontinuous phase properties. In this system, variations in the superficial gas velocity 

of the discontinuous phase affects a bubble’s size, shape, rise velocity, trajectory and eventually, 

the type of eddy dominating the annular region of the column. The following subsections discuss 

the most frequently observed characteristic ‘near-linear’ and ‘non-linear’ particle movements at 

specific superficial gas velocities in the presence of the CT and CTB internals respectively. 

 

4.1.4.1 Near-linear Particle Movements 

‘Near-linear’ particle movements refer to all observed particle movements that were straight or at 

worst, mildly curved in appearance. These observations were made for both the CT and CTB 

internals, although the specifics surrounding the particle movements in each case were quite 

different. During CTB investigations, at all superficial gas velocities, the particles could be seen 

rapidly making independent upward or downward linear movements at a variety of trajectories. 

Quick, upward movements were frequently observed when operating at a superficial gas velocity 

of 0.02 m/s and suggests the existence of a weakly developed flow pattern. The rapid downward 

movements of the particles were observed to last the entire length of the annular region at times, 

particularly at low superficial gas velocities. This observation is suggestive of gulf streaming. In 

general, the distance traversed by particles during upward and downward movements decreased 

with increases in superficial gas velocity. This may be due to the existence of high energy eddies 

that are able to intercept gulf streams at those gas velocities. 

 

Many phenomena were observed within the annular region during investigations with the CT 

internal. For most superficial gas velocities, the primary direction of flow within the annular region 
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was observed to be downward. However, as superficial gas velocity increased, upward flow within 

the annular region increased. At all superficial gas velocities, the particles could frequently be seen 

making a large, single loop. This has been illustrated in Figure 4.9c. As superficial gas velocity 

increased, the overall diameters of the loops increased while the number of loops created seemed 

to decrease slightly.  

 

At lower superficial gas velocities (Vg ≤ 0.10 m/s), the maximum velocity at which particles 

moved upward was observed to be slightly higher than that at which they moved downward during 

CTB investigations. This can be seen in Table 4.1. When superficial gas velocity exceeded 0.10 

m/s however, the downward moving particles generally traversed the reactor at higher velocities 

than their upward moving counterparts. During CT investigations, no near-linear upward particle 

movements were observed for the lowest superficial gas velocity investigated. Also, the downward 

particle velocities tended to be higher than their upward moving counterparts. This can be seen in 

Table 4.1. It is important to point out that these values are only rough estimates since the 

measurement method was subjected to visibility limitations and particle trajectory changes. 

 

Table 4.1: Summary of measured liquid velocities 

Maximum Liquid Velocities, m/s 

Vg 
CT CTB 

Upward Downward Upward Downward 

0.01 0.00 -0.32 0.49 -0.25 

0.10 0.63 -0.66 0.61 -0.31 

0.15 0.61 -0.61 0.61 -0.76 

0.20 0.46 -1.09 0.53 -0.70 

0.25 0.53 -0.51 0.51 -0.53 
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The type of internal used was found to significantly affect the behavior of the particles and thus, 

the hydrodynamics of the reactor’s system. During CTB investigations, the particles experienced 

more frequent, near-linear upward motions at all superficial gas velocities. During CT 

investigations however, the particles only made individual upward movements during operation at 

high superficial gas velocities. Several non-linear particle movements were observed in the annular 

region during investigations with the CTB internal at low to intermediate gas velocities. However, 

during CT investigations at comparable gas velocities, more structured, downward flows were 

observed. These differences indicate reduced backflow during CTB investigations, a desired 

property for certain bubble column applications.  

 

4.1.4.2 Non-linear Particle Movements 

“Non-linear” particle movements refer to all observed particle movements that deviated 

significantly from a straight-line motion. The behavior of the particles in the presence of the CT 

and CTB internals was quite different with respect to the non-linear movements observed, although 

particle behavior became more similar at higher gas velocities. At the lowest superficial gas 

velocity investigated with the CTB internal (about 0.02 m/s), particles were seen moving upwards 

or downwards and then returning to the initial start in a circular manner, for several revolutions. 

This movement suggests the prevalence of vortexes at low superficial gas velocities and can be 

seen in Figure 4.9a. The particles were also observed to be relatively stagnant for about a second 

or two before moving off at a tangent with substantial velocity. This stagnation period indicates 

that the particles may have been caught between opposing eddies of near-equal magnitudes. Lastly, 

the particles were seen moving in a helical manner, as can be seen in Figure 4.9b. A series of 

pictures outlining a particle’s helical motions can be seen in Figure 4.10. 
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During CT investigations, the only characteristic particle movement observed at a superficial gas 

velocity of 0.02 m/s was the wide loop. This can be seen in Figure 4.9c. 

 

     

 

 

 

Figure 4.9: Schematic of a) particle caught in vortex (Vg ~ 0.02 m/s) (top, left) and b) helical 

particle movements (Vg ~ 0.02 m/s) (top, right) c) wide loop (Vg ~ 0.02 m/s) (bottom) 
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Figure 4.10: Picture series of helical particle movements (Vg~ 0.02 m/s, magnification: ~ 0.35%) 

 

 

 

Figure 4.11: Picture series of particle making short, random movements (Vg ~ 0.10 m/s, magnification: ~ 0.20%) 
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At superficial gas velocities of about 0.10 m/s, the aforementioned upward and downward 

movements of the particles was the major observation made during CTB investigations. However, 

the particles were periodically caught making short, random movements and occasionally 

displayed mild ‘bouncing’ characteristics while moving. The schematic showing the particle 

caught making the short, random movements can be seen in Figure 4.12a while a picture series of 

the same occurrence can be seen in Figure 4.11. 

 

During CT investigations, superficial gas velocities of about 0.10 m/s were characterized by wide 

loops within the annular region along with oscillations about the entrance region. While this 

superficial gas velocity could be considered the true point of circulation cell breakdown, the 

particles never entered cell two through the annular region. Instead, the particles would return to 

the distributor region after a series of oscillations where they would remain for some time before 

entering the core region. The major characteristic particle movement observed at this superficial 

gas velocity was the occurrence of the wide loop depicted in Figure 4.9c. In addition to the wide 

loops, the particles were also seen making a series of smaller loops as they neared the lower end 

of the annular region. 

 

At superficial gas velocities near 0.15 m/s, particles may be seen making full ‘bouncy’ movements 

superimposed on tangential and erratic upward or downward movements during CTB 

investigations. This ‘bounciness’ could also be seen superimposed on relatively horizontal particle 

motions and is depicted in Figure 4.12b and Figure 4.14. In addition to the bouncy movements, 

particles were occasionally trapped in small vortexes, particularly in the entrance and lower 

annular regions. 
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Figure 4.12: Schematic of a) particle making short, random movements (Vg ~ 0.10 m/s) (left) and 

b) bouncing movements (Vg ~ 0.10 m/s) (right) 

 

 

At 0.15 m/s during investigations with the CT internal, particle movements were similar to that 

observed at 0.10 m/s, but more intense. The particles were seen making larger, wider loops within 

the annular region, while particle passage through the core region at this superficial gas velocity 

was perceived to be the most frequent of all the superficial gas velocities investigated. 

 

During CTB investigations, superficial gas velocities of about 0.20 m/s were characterized by the 

vortexes and bouncy movements observed in the column operating at 0.15 m/s as well as moderate 

‘S – like’ movement superimposed on relatively vertical, upward or downward motions. The 

downward ‘S – like’ motions were observed to be longer than their upward counterparts. This can 

be seen in Figure 4.13a. At 0.25 m/s, particle movements in the annular region were characterised 

by exaggerated, conjoined ‘S – like’ motions that ranged from completely horizontal to completely 

vertical in orientation. This could be seen in Figure 4.13b and Figure 4.15. 
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Figure 4.13: Schematic of a) moderate “S” - movements (Vg ~ 0.25 m/s) (left) and b) 

exaggerated “S” - movements (Vg ~ 0.25 m/s) (right) 

 

During CT investigations, superficial gas velocities of 0.20 m/s were characterized by oscillations 

about the entrance region while superficial gas velocities of 0.25 m/s were characterized by zigzag 

movements. A schematic of the zigzag movements can be seen in Figure 4.16. However, despite 

those differences, the last two superficial gas velocities investigated shared several commonalities. 

At both gas velocities, the bubble column reactor began to exhibit a wide range of flow phenomena 

that were not present at any of the lower gas velocities. One of the most frequently observed 

phenomena was that the particles displayed an excessive amount of horizontal movements. At 

superficial gas velocities of 0.20 m/s, the horizontal particle movements were relatively straight. 

At 0.25 m/s however, the horizontal movements took on a ‘bouncy’ appearance, such as that 

illustrated in Figure 4.12b. A second commonality was that independent, near-linear upward 

particle movements were observed for the two latter superficial gas velocities. These particle 

movements could be seen at various trajectories and normally occurred over short distances.  
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Figure 4.14: Picture series of bouncing movements (Vg ~ 0.20 m/s, magnification: ~ 0.25%) 

 

 

 

Figure 4.15: Picture series of exaggerated “S” - movements (Vg ~ 0.25 m/s, magnification: ~ 0.20%) 

 



84 

 

     

Figure 4.16: Schematic of zigzag movements (Vg ~ 0.25 m/s) 

 

In general, the length of the annular region travelled by the particles tended to decrease with 

increases in superficial gas velocity during CTB investigations. At the lowest superficial gas 

velocity studied, the particles could be seen travelling from the entrance to the exit regions by way 

of the annular region. However, at the highest superficial gas velocity, the particles were only seen 

travelling from the entrance region to a point that lie about halfway the annular region. During CT 

investigations, the annular region experienced an increase in particle activity at higher superficial 

gas velocities. As a result, the particles tended to spend more time within circulation cell two over 

circulation cell one at those superficial gas velocities. 

 

4.1.5 The Exit Region 

As mentioned earlier, particles were seen in the exit region (without taking any visible paths) more 

frequently at higher superficial gas velocities in the presence of both the CT and CTB internals. 

This occurrence is believed to be due to the existence of well-defined flow fields at higher 



85 

 

superficial gas velocities which move upward in the core region and downward in the annular 

region. 

 

4.1.6 Combined Flow Patterns 

Plausible liquid circulation patterns have been proposed for the modified bubble column systems 

that have been investigated in this study, the justification of which originating from the 

observations made during the neutrally buoyant particle experiments. The suggested flow patterns 

can be found in Figure 4.17 and are valid for intermediate to high superficial gas velocities. The 

flow pattern observed during CT investigations can be justified from the following. Circulation 

between the core and annular regions is proposed based on the repeated occurrence of downward 

particle movements in the annular region and upward particle movements in the core region, both 

of which spanning the entire length of the tube bundle internal. Circulation within the distributor 

region is based on the random, upward and downward movements displayed by the particles over 

short distances. At superficial gas velocities of 0.15 m/s, direct exchange between the distributor 

and core regions were observed. Figure 4.17a accounts for this through the use of orange arrows 

that indicate the direction of fluid flow from the distributor region into the annular region and 

through weak circulation patterns (indicated by broken lines) in the annular region. 

 

The flow structure observed with the CTB internal was more complex in comparison to that 

observed with the CT internal. This comparison can also be seen in Figure 4.17. Circulation within 

the mid-section of annular region is supported by the occurrence of both upward and downward 

particle movements in this region. Upward flow within the core region is proposed since the 

particles were never seen directly entering the baffle region from the core region. However, flow 
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through the core region is expected to be weaker than that experienced during CT investigations 

since more frequent exchanges between the core and annular regions (by way of the exit and 

entrance regions) were observed with the CT internal. This is indicated by a thinner arrow in Figure 

4.17. Weak circulation between the distributor and baffle regions is proposed based on the random, 

upward and downward particle movements that were observed. Direct exchange between the baffle 

and annular regions was a frequent occurrence at higher superficial gas velocities. This is depicted 

using solid green arrows in Figure 4.17b. The deflection of larger bubbles into the annular region 

was encouraged by the presence of the baffle internal. This is depicted by the red arrows in Figure 

4.17b.  
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Figure 4.17: Gross flow patterns in presence of a) CT internal (left) and b) CTB internal (right)  
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4.2 Interfacial Area and Gas Holdup Structure 

Interfacial area can be defined as the amount of area contact between the phases contained within 

a system. It is an important design parameter in all multi-phase reactors because it influences the 

amount of heat, mass and momentum that can be transferred between phases. Interfacial area can 

be related to the properties of the bubbles in a bubble column reactor. In general, two classes of 

bubbles exist within a bubble column – the small and large bubble classes. Bubbles are assigned 

to either class based on their bubble rise velocities (Daly et al., 1992, Schumpe and Grund, 1986). 

Small bubbles can have diameters which range from 3 mm to 6 mm while the smallest large bubble 

has a diameter greater than 1 cm. 

 

The interfacial area can be estimated using equation 4.1 in which 𝑎 is interfacial area, 휀𝑏 is bubble 

class holdup and 𝑑𝑏 is the average bubble class size (Li et al., 2003). The subscripts S and L refer 

to that of the small and large bubble classes respectively. From this equation, it could be seen that 

interfacial area increases with increases in bubble holdup and decreases with bubble size. The 

small bubbles have been found to contribute most to the interfacial area of a bubble column reactor. 

This is intuitive since the surface area-to-volume ratio of a body increases with a decrease in its 

volume. 

 

 
𝑎 =  

6휀𝑏,𝐿

𝑑𝑏,𝐿
+ 

6휀𝑏,𝑆

𝑑𝑏,𝑆
 

(4.1) 

 

The properties of the bubbles formed in a bubble column can be altered by the design of the reactor, 

particularly with the addition of internals to the system. The effect of the CT and CTB internals 

on the gas holdup, average bubble holdup, average bubble rise velocity and average bubble size 
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will be explored in the subsequent subsections. This section will conclude with a discussion on the 

effect of the two internals on interfacial area. 

 

4.2.1 Gas Holdup 

 In general, gas holdup was found to increase with increases in superficial gas velocity for various 

internal conditions. Gas holdup was also found to increase with the addition of internals to the 

bubble column reactor. Figure 4.1 compares the gas holdup of a comparable hollow bubble column 

system (Jhawar, 2011) with that obtained during CT and CTB investigations respectively. 

Equipment with the CT internal yielded the higher increase in gas holdup when compared to that 

of the CTB internal. The increase experienced with the CTB internal was significant and 

comparable to that already existing in the literature (Jhawar, 2011).  Figure 4.1 can easily be 

divided into the three major flow regimes – the bubbly (I), transition (II) and coalesced bubble 

flow (III) regimes. The divisions are shown in Figure 4.18. As can be seen, the bubbly and 

coalesced bubble flow regimes are both characterized by near-linear increases in gas holdup with 

superficial gas velocity, with the rate of increase occurring within the bubbly flow regime 

exceeding that of the coalesced bubble flow regime. The transition regime is characterized by non-

linear increases in gas holdup. 

 

4.2.2 Bubble Fractions 

The data obtained from gas holdup measurements provides information that is useful in both 

defining and designing a bubble column reactor. However, much more could be learnt about gas 

holdup structures from methods such as the dynamic gas engagement technique. In this technique,  
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Figure 4.18: Effect of internals on hollow bubble column systems 

 

bubbles are loosely classified by size into two general groups – the large and small bubble classes 

– based on their bubble rise velocities. Execution of this technique results in the initial escape of 

the larger bubbles from the column within a relatively short amount of time. This causes a set of 

intense pressure fluctuations which form the first disengagement period of the dynamic gas 

disengagement curve in Figure 4.19. The second disengagement period (also seen in Figure 4.19) 

results from the escaping of smaller bubbles from the column. These smaller bubbles have smaller 

bubble rise velocities and do not create large fluctuations in bed pressure drop. As a result, more 

time is required for small bubble travel and its disengagement period increases. 
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Figure 4.19: Sample of dynamic gas disengagement curve (Vg ~ 0.20 m/s, CTB) 

 

Several different dispersed bubble phase properties may be obtained from the analysis of a 

dynamic gas disengagement curve. These include 1) small and large bubble class contributions to 

gas holdup and 2) the average bubble rise velocities of each bubble class (Li and Prakash, 2000). 

A summary of the major equations used is presented below. 

 

 
𝑉𝑔,𝑠𝑚 =  

−𝛥𝐻𝑚2

𝑡1 − 𝑡0
 

(4.2) 

 

 𝑉𝑔,𝑙 =  𝑉𝑔 − 𝑉𝑔,𝑠𝑚 (4.3) 

 

 휀𝑏,𝑠𝑚 =  휀1 = 𝑚2𝑡0 + 𝑐2 (4.4) 
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 휀𝑏,𝑙 =  휀0 − 휀𝑏,𝑠𝑚 (4.5) 

 

 
𝑢𝑏,𝑙𝑔 =  

𝑉𝑔,𝑙𝑔

휀𝑏,𝑙𝑔
 

(4.6) 

 

 
𝑢𝑏,𝑠𝑚 =  

𝑉𝑏,𝑠𝑚

휀𝑏,𝑠𝑚
 

(4.7) 

 

In the above equations, 휀0 is total gas holdup, 𝑉𝑔 is superficial gas velocity, 휀𝑏 is bubble class 

holdup, 𝑢𝑏 is bubble rise velocity and 𝛥𝐻 is the distance between the pressure transducers. 휀1, 𝑡1, 

𝑡0, 𝑚2 and  𝑐2 are shown in Figure 4.19. The subscripts sm and lg pertain to the small and large 

bubble classes respectively. The effect of the CT and CTB internals on the small bubble holdup 

within bubble column systems can be seen in Figure 4.20. From this figure, the presence of 

internals significantly increases small bubble holdup when compared to that of the hollow bubble 

column reactor. Larger increases were obtained when the reactor was equipped with the CT 

internal.  

 

The corresponding data for the large bubble class can be found in Figure 4.21. Large bubble holdup 

decreased significantly in the presence of internals. However, the CTB internal offered a slightly 

lower large bubble holdup than the CT internal. 
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Figure 4.20: Effects of internals on small bubble holdup 

 

Figure 4.21: Effect of internals on large bubble holdup 
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Figure 4.22 shows the relationship between the bubble rise velocities of the two bubble classes 

with superficial gas velocity in the presence of the CT and CTB internals. From this figure, the 

rise velocity of the small bubble class shows a slight decreasing trend while that of the large bubble 

class increases rapidly, for both internals. The rise velocities in the bubble column reactor equipped 

with the CT internal were found to be lower than that observed with the CTB internal, particularly 

for the case of the small bubble class.  

 

 

Figure 4.22: Effect of internals on small and large bubble rise velocities  
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by Li et al. (2003). In this equation, 𝑑𝑏,𝐿 is the average large bubble diameter prediction and 𝑈𝑏,𝐿 

is the average large bubble rise velocity. The equation is shown below. The average large bubble 

size prediction can be found in Figure 4.23. 

 

 
𝑑𝑏,𝐿 =  (

𝑈𝑏,𝐿

17.1
)

1.011

 
(4.8) 

 

 

Figure 4.23 Effect of Internals on the theoretical size estimates of the large bubble class  
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measured values. A summary of the small bubble size estimations from direct measurement can 

be found in Figure 4.24. It could be seen that the average small bubble sizes range from 4.5 mm 

to 5.5 mm and agrees with what already exists in the literature (Daly et al., 1992, Schumpe and 

Grund, 1986). Higher diameters were obtained with the CTB internal when compared to that of 

the CT internal. This observation agrees closely with previous findings since increases in bubble 

size are associated with higher bubble rise velocities.  
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𝜎
)

1
2
 

(4.11) 

 

𝑛 = 0.8,    𝑐 = 1.2,    𝐾𝑏 = max (14.7𝑀𝑜−0.038, 12) (4.12) 

 

In the above equations, 𝑈𝑏
′  is dimensionless average bubble rise velocity, 𝑈𝑏 is average bubble rise 

velocity, 𝑑𝑏
′  is dimensionless average bubble diameter, 𝑑𝑏 is average bubble diameter, ∆𝜌 is the 

difference in phase densities, 𝜌𝑙 is liquid phase density, 𝜎 is liquid phase surface tension, 𝑀𝑜 is 

Morton Number and 𝑔 is acceleration due to gravity. 𝑛, 𝑐 and 𝐾𝑏 are given by equation 4.12. 
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Figure 4.24: Effect of internals on small bubble class size measurements 

 

Histograms of the small bubble size measurements were constructed for samples at high (0.25 m/s) 

and low (0.02 m/s) superficial gas velocities, for both internals. This can be seen in Figure 4.25. 

In general, the size measurements obtained during CT investigations were subject to greater 

variability given the broader width of its histograms at both the high and low gas velocities. 

However, lower variances in size measurements were obtained at the higher superficial gas 

velocity, for both internals. 

 

To ensure that accurate small bubble size estimates were obtained, all size measurements were 

taken during the disengagement of the small bubble class. Measurements taken during this period 

are believed to be less affected by the distortion associated with regular operation. 
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 Figure 4.25: Effect of internals on small bubble size distributions at high and low gas 

velocities 
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contributions to interfacial area were much greater than that of the large bubbles. This can be seen 

in Figure 4.27. The small bubble interfacial area contributions also increased rapidly with 

superficial gas velocity while that of the large bubble tended to decrease. As a result, total 

interfacial area, which can be seen in Figure 4.26, was found to increase with superficial gas 

velocity for both internals. However, larger total interfacial area values were obtained with use of 

the CT internal over the CTB internal. This is expected since interfacial area is favoured by higher 

small bubble holdup values and reduced small bubble diameters, both of which were obtained with 

the CT internal. 

  

 

Figure 4.26: Effect of internals on total interfacial area 
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Figure 4.27: Effect of internals on large and small bubble contributions to interfacial area 
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into the annular region that are able to re-entrain small bubbles and other surrounding fluid as they 

rise. This partially counters the downward fluid flow in the annular region which has already been 

weaken due to the reduced passage of large bubbles through the core of the tube bundle. The 

behavior can be seen in Figure 4.28b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28: Visualization of a) CT (left) and b) CTB (right) internals on small bubble holdup 
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4.3 Liquid Phase Mixing 

Liquid phase mixing is a phenomenon that results from the hydrodynamic interactions between 

the gaseous and liquid phases contained within a bubble column reactor. It is scale dependent and 

varies between two theoretical ideals, namely the plug flow and complete mixedness ideals. The 

extent of liquid phase mixing in a reactor can be quantified through two global mixing indexes – 

mixing time and axial dispersion coefficient. These parameters are inversely related and are 

sensitive to a reactor’s design, particularly the addition of internals. The effect of the CT and CTB 

internals on liquid phase mixing time and axial dispersion coefficient will be investigated in the 

following subsections. Comparisons will be made between the obtained results. 

 

4.3.1 Liquid Phase Mixing Time 

Mixing time was estimated using dye and salt tracers, the results of which can be found in Figure 

4.29. Estimates of complete mixing were reported for the dye tracer studies while estimates of 

ninety percent mixing were reported for the salt tracer studies. From Figure 4.29, it could be seen 

that comparable mixing time trends were obtained for both methods although higher values were 

obtained with the salt tracer method. This difference in mixing time can be attributed to visual 

limitations since the  human eye is unable to pick up subtle changes in colour that occur over long 

periods of time. Complete mixing with the dye tracer was determined visually and was thus subject 

to this limitation. More accurate results with dye tracers may be obtained by using devices such as 

spectrophotometers.   
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Figure 4.29: Comparison of liquid mixing obtained by two methods for two respective internals 
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of large bubbles within the system continues to increase. Beyond transition, mixing time decreases 

in a near-linear manner with superficial gas velocity and indicates operation within the coalesced 

bubble flow regime. 

 

4.3.2 Axial Dispersion Coefficient 

The axial dispersion coefficient can be used to quantify backmixing in the axial plane. As 

explained earlier, backmixing refers to the random movement of fluid that has been superimposed 

on the direction of major flow within a system (Moustiri at al., 2001, Shah et al., 1978). The axial 

dispersion coefficient is an important design parameter for bubble column reactors (Sanchez Miron 

et al., 2000, 1999). Lower axial dispersion coefficients are desirous for reaction-containing 

systems since larger backmixing (higher axial dispersion coefficients) reduce reactant and product 

concentration gradients through dilution. This property affects mass transfer and thus, the reactor’s 

productivity. Higher axial dispersion coefficients are desirous in applications that require constant 

equilibrium despite continuous disturbance. These include biological applications as well as 

reactors requiring temperature control due to their contained endothermic or exothermic reactions. 

 

Theoretically, the axial dispersion coefficient, 𝐷𝑎, can be obtained from the mass balance of the 

injected tracer into the system. The simplest, one-dimensional dispersion model and its associated 

boundary conditions can be seen below (Ohki and Inoue, 1970). It is important to point out that 

model has been verified by others (Deckwer et al., 1974). 
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Model: 

 𝜕𝐶

𝜕𝑡
=  𝐷𝑎

𝜕2𝐶

𝜕𝑧2
 

(4.13) 

 

Boundary condition: 

 𝜕𝐶

𝜕𝑧
=  0 𝑎𝑡 𝑧 = 0 𝑎𝑛𝑑 𝑧 = 𝐿 

(4.14) 

 

Initial conditions: 

 𝐶(𝑧, 0) = 𝐶0  𝑓𝑜𝑟 0 ≤ 𝑧 ≤ 𝜆 (4.15)

 

 𝐶(𝑧, 0) = 0  𝑓𝑜𝑟 𝑧 ≥ 𝜆 (4.16) 

 

where C is the instantaneous tracer concentration, z is axial displacement, Da is the axial dispersion 

coefficient, λ is the height filled with tracer and t is time. The solution to this differential equation 

can be seen below. 
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2
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∞
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 (4.17) 

 

where 𝐶𝐸𝐿 =  𝐶0𝜆 . When 𝜆𝑛 ≪ 𝐿, equation 4.17 approximates to the following, 

 

𝐶

𝐶𝐸
= 1 + 2 ∑ [cos

𝑛𝜋

𝐿
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𝐿
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∞
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(4.18) 
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In a more practical sense, estimates of the axial dispersion coefficient can be obtained without the 

solution to a dispersion model. According to Ohki and Inoue (1970), six terms are sufficient to 

obtain estimates of the axial dispersion coefficient with less than 1 percent error. Equation 4.19 

shows the equation used for this calculation.  

 

 
𝐷𝑎 =  (

𝐿𝑑𝑦𝑛

𝜋
)

2 ∆𝜃

∆𝑡
 

(4.19) 

In equation 4.19, 𝐿𝑑𝑦𝑛 is the dynamic height of the fluid in the reactor and ∆𝑡 is the time within 

which the dimensionless tracer concentration changes from 0.3 to 0.7. ∆𝜃 is a dimensionless 

number that can be obtained from Figure 4.30. It is obtained from the dimensionless tracer 

concentration as well as the dimensionless distance between the conductivity probe and injection 

point. An obtained tracer concentration curve can be seen in Figure 4.31. 

 

 

Figure 4.30: Tracer response curves derived from the diffusion model (Ohki and Inoue 1970) 
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Figure 4.31: Sample of conductivity-time curve (CT) 

 

Figure 4.32 summarizes the effect of the CT and CTB internals on the axial dispersion coefficients 

of a bubble column reactor. For this figure, axial dispersion coefficient increases with increases in 

superficial gas velocity for both internals in a similar manner. The axial dispersion coefficients 

obtained with the CT internal were consistently higher than those obtained during CTB 

investigations. This confirms reduced backmixing with the CTB internal.  
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Figure 4.32: Effect of internals on axial dispersion  
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5.0 Conclusions and Recommendations 

5.1 Conclusions 

 

1. The tube bundle internal (CT) and the novel tube bundle/baffle internal combination (CTB) 

provide useful insights into the role of internal design on bubble column hydrodynamics. 

These observations can be the basis for further improvements and other practical 

applications. 

2. The observations made with the neutrally buoyant particles demonstrates the complexity 

and variations in local flow structure in a bubble column equipped with the CT and CTB 

internals respectively. These observations are also used to construct the bulk liquid 

circulation flow patterns for the system equipped with each internal respectively. The 

presence of the baffle in the CTB internal significantly increases upward particle 

movements in the annular region when compared to that observed with the CT internal.  

Several interesting non-linear particle movements are observed during neutrally buoyant 

particle experimentation for each of the investigated internals.  

3. The addition of internals to a bubble column significantly increases the gas holdup of the 

system. This is mainly attributed to an increase in small bubble holdup. Higher gas holdups 

are achieved with the CT internal over the CTB internal. The difference is attributed to the 

deflection of larger bubbles into the annular region during CTB investigations, due to the 

baffle internal. These larger bubbles entrain smaller bubbles and surrounding liquids with 

them as they rise, which lowers gas holdup.  
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4. Interfacial area is estimated for both the CT and CTB internals. Larger interfacial area 

values are obtained with the CT internal due to the higher small bubble holdup and slightly 

lower small bubble diameters obtained with its use. 

5. Mixing time and axial dispersion measurements provide further quantification of the 

differences between the CT and CTB internals.  

- The mixing times obtained with the CTB internal are consistently higher than those 

obtained with the CT internal.  

- The axial dispersion coefficients obtained with the CT internal are consistently 

higher than those obtained with the CTB internal. 

 

5.2 Recommendations 

1. More detailed investigation on the liquid circulation patterns observed with the internals 

should be carried out to confirm the proposed flow structures using suitable tracer 

techniques. 

2. More accurate and detailed bubble size measurements should be obtained for the different 

regions of the internal-equipped bubble column using needle probes. 

3. Other internal parameters (e.g. position of each internal within the column and the width 

of the spaces between the tubes of the tube bundle internal) should be investigated in order 

to gain a better understanding of their effects on bubble column systems. 

4. Further optimization of the internal designs should be achieved with CFD modeling. 
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Appendix A – Calibration of Sonic Nozzles 

 

 

 

 

 

 

Figure A.1: Schematic showing experimental layout 

 

Gas flow through the system was calibrated using the experimental setup outlined in Figure A.1 

above. Initial measurements for P1 and P2 were made using relatively inaccurate pressure gauges 

(operation ranges: 0 to 639 kPa/0 to 100 psig, graduation: 7 kPa/1 psi) to obtain an estimate of the 

upstream pressure as well as the corresponding orifice plate meter pressure drop for a maximum 

column superficial gas velocity of 0.30 m/s. This estimate was initially carried out using 2.5 mm 

and 4.8 mm orifice plates. When using the stated orifice plates, the upstream pressures required to 

attain the desired column superficial gas velocities were too high and thus more suitable orifice 

plates were required. After further investigation of past literature, it was decided that the most ideal 

orifice plate should have an orifice diameter of 6.4 mm. For cost efficiency purposes, it was 

decided that the orifice of the 2.5 mm orifice plate should be extended to 6.4 mm without altering 

its orifice edge angle. After its expansion, the modified orifice plate was installed and estimates of 
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the pressure drops across the orifice plate meter were obtained. These estimates revealed that for 

an upstream pressure of about 648 kPa (94 psig), the pressure drop across the orifice plate meter 

was about 41 kPa (6 psig) and the superficial gas velocity within the column was about 0.31 m/s. 

Based on this information, more accurate pressure gauges for P1 and P2 were purchased and 

installed. These new gauges are operable for pressures between 0 to 69 kPa (0 to 10 psig) and have 

graduations of 7 Pa (0.001 psi). Measurements for column superficial gas velocities of about 0.10 

to 0.30 m/s were taken with the 2.5 mm throat sonic nozzle and 6.4 mm orifice plate. 

Measurements for column superficial gas velocities of about 0.04 to 0.11 m/s were taken with the 

1.5 mm throat sonic nozzle and 6.4 mm orifice plate. Measurements for column superficial gas 

velocities of about 0.007 to 0.02 m/s were taken with the 0.06 mm throat sonic nozzle and 4.8 mm 

orifice plate. From these measurements, the pressures corresponding to superficial gas velocities 

of about 0.007, 0.02, 0.04, 0.10, 0.15, 0.20, 0.25 and 0.30 m/s were obtained, using the appropriate 

sonic nozzles. Table A.1 summarizes this relationship. 
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Table A.1: Summary of sonic nozzles, upstream pressures and superficial gas velocities 

Nozzle Diameter, mm Upstream Pressure (kPa) Superficial Gas Velocity (m/s) 

0.60 165 0.007 

1.50 69 0.021 

1.50 207 0.042 

2.50 165 0.097 

2.50 269 0.147 

2.50 372 0.198 

2.50 476 0.248 

2.50 579 0.299 

 

Sonic nozzles are special types of metering devices which facilitate the control of a gas’s velocity 

through manipulation of its inlet temperature or pressure. Sonic nozzles achieve this through their 

unique design, as can be seen in Figure A.2 below: 

 

 

Figure A.2: Schematic of sonic nozzle, modified (Baker 2005) 

 

THROAT 

DOWNSTREAM 

 P2 

UPSTREAM  

 P1 



114 
  

After the gas enters the inlet of a sonic nozzle (at 1), it is constricted upon reaching the minimum 

in the nozzle’s convergent-divergent design, called the throat. At that point, the gas’ velocity is 

increased due to the inverse relationship between gas velocity and pipe cross-sectional area for a 

constant gas flow rate. As upstream pressure is increased, the gas velocity increases in a non-linear 

manner until gas velocity at the throat approaches and surpasses the speed of sound. At those 

instances, gas flow is described as being ‘sonic’ or ‘critical’ and is a linear function of upstream 

pressure for a given temperature. Operation within this sonic state is advantageous because 

downstream disturbances do not affect the upstream environment and thus, limit fluctuations and 

errors. 

 

The point at which gas flow at the nozzle throat becomes sonic can be identified by a certain 

downstream/upstream pressure ratio called the critical ratio, rc. The following equation from Flow 

Measurement Handbook: Industrial Designs, Operating Principles, Performance, and Applications 

can be used to locate rc in sonic nozzles systems (Baker 2005). 

 

 

𝑟𝑐 =  
𝑃𝑑𝑛.𝑠𝑡.

𝑃𝑢𝑝 𝑠𝑡.
=  (

ϒ + 1

2
)

−ϒ
ϒ−1

 

(A.1) 

 

Assuming that air behaves as an ideal gas and losses due to friction are negligible within the 

metering device, Equation A.1 can be solved to achieve rc = 0.528, where ϒ = 1.4 for air. Thus, 

the downstream pressure must be at maximum half of the upstream pressure for critical flow to 

exist in sonic nozzles measuring air flow.  
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The mass flow rate of gas through a sonic nozzle can be determined using a correlation 

recommended by Briens (1993): 

 

𝐹𝑔  = 1000(1000 × ϒ𝑃𝑢𝑝 𝑠𝑡.𝐴𝑇
2 (

2

ϒ
+  1)

ϒ+1
ϒ−1

 

(A.2) 

 

For air, this correlation may be reduced to: 

 

 𝐹𝑔 = 685.2𝐴𝑡(𝜌𝑃𝑢𝑝 𝑠𝑡.)
0.5 (A.3) 

 

For the experiments carried out, a sonic nozzle with a throat diameter of 2.5 mm was used and was 

calibrated for pressures ranging from 138 to 189 kPa (20 to 100 psig). A summary of this 

calibration can be found in Table A.1. 

 

To validate the results obtained from the theoretic sonic nozzle gas flow correlation, the gas flow 

through the nozzle was measured using a second type of metering device called an orifice plate 

meter. A schematic of a typical orifice plate meter can be seen in Figure A.3. 
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Figure A.3: Schematic of orifice plate, modified (Baker 2005) 

 

Orifice plate meters, like Venturi meters, are based on Bernoulli's principle which simply states 

that the velocity of an invicid fluid decreases when the pressure on that fluid and/or the potential 

energy of that fluid increases. When a stream of gas is steadily passed through the typically sharp-

edged orifice of an orifice plate, the stream is forcefully converged as can be seen in Figure A.2. 

Interestingly, the stream is not its most converged at the orifice, but at a point shortly downstream 

of the orifice called the vena contracta. After the vena contracta, the fluid is fully expanded once 

again. If the fluid through the pipe is assumed to be invicid, the volumetric flow rate of the fluid 

could be found using Bernoulli’s Equation provided that the pressure difference between the 

upstream gas flow and the vena contracta is known. For a horizontal system configuration, 

potential energy is constant and Bernoulli’s Equation is reduced to the following: 

 

  P2 P1 
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𝑃1 −  𝑃2 =  

1

2
 (𝑉2

2 −  𝑉1
2) 

(A.4) 

 

Acknowledging the fact that volumetric flow through the system is constant and that fluid velocity 

through an opening is equal to volumetric flow rate divided by the area of that opening (continuity 

equation), Equation A.4 can be rewritten as follows: 

 

 
𝑃1 −  𝑃2 =  

𝜌𝑄2

2
 (

1

𝐴2
2 −  

1

𝐴1
2) 

(A.5) 

 

Rearranging Equation A.5 yields: 

 

         𝑄 = √
2(𝑃1 −  𝑃2)

𝜌
 × (

1

𝐴2
2 − 

1

𝐴1
2)

−1

=  √
2(𝑃1 −  𝑃2)

𝜌
 × (

𝐴2
2

1 −
𝐴2

2

𝐴1
2⁄

)

−1

 

 

= 𝐴2√

2(𝑃1 −  𝑃2)

𝜌 (1 −
𝐴2

2

𝐴1
2⁄ )

  

(A.6) 

 

If the orifice and pipe are perfectly circular, the following simplification can be made: 

 

𝐴2
2

𝐴1
2 =  

𝐷2
2

𝐷1
2 =  (

𝐷2

𝐷1
)

2

= (𝛽1)2 =  𝛽1
2 

(A.7) 
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Substituting Equation A.7 into Equation A.6 yields the final equation for volumetric flow of a fluid 

through a pipe, Equation A.8. The coefficient Cd has been added to account for the non-ideality of 

fluid flow in real flow systems. The value of Cd used in the orifice plate calculation was 0.61. 

 

 

𝑄 =  𝐴2√
2(𝑃1 −  𝑃2)/𝜌

(1 − 𝛽1
4)

  

(A.8) 

 

The mass flow of the fluid can be obtained by multiplying the results from Equation A.8 by the 

density of the fluid, where 

 

 
𝜌 =  

𝑃𝑢𝑝 𝑠𝑡.𝑀𝑊𝑎𝑖𝑟

8.314𝑇𝑢𝑝 𝑠𝑡. 
 

(A.9) 

 

A summary of the orifice plate meter measurements made on the 2.5 mm throat sonic nozzle can 

be found in Table A.1. The diameter of the orifice in the orifice plate was 6.4 mm. A plot of column 

superficial gas velocity from orifice plate measurements vs. column superficial gas velocity from 

sonic nozzle measurements can be seen in Figure A.4 below. Figure A.5 shows the relationship 

between upstream pressure and column superficial gas velocity for the 2.5 mm throat sonic nozzle. 

All calculations were carried out using an excel spreadsheet. 
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Figure A.4: Measured vs theoretical superficial gas velocity 
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Figure A.5: Upstream pressure vs superficial gas velocity 

 

Ideally, the data obtained from both the sonic nozzle and orifice plate calculations should be 

identical. If such was the case, the data from Figure A.3 would lie exactly on the ‘y=x’ line shown. 

However, experimental errors (such as the parallax error encountered during the reading of 

pressure gauges) are responsible for the measured data’s slight deviation from ideality when 

working in a pressure range between 138 to 189 kPa (20 to 100 psig). When working at pressures 

below 138 kPa, the error in the measured data is much greater. 
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Appendix B – Calibration of Pressure Transducers 

The pressure transducers used in the column (OMEGA Type PX541-7.5GI and Type PX541- 45 

15GI) were calibrated by filling the column with known heights of water and by noting the 

corresponding voltages using LabVIEW 8.0. The physical channels of each of the two transducers 

were added to LabVIEW thus allowing the acquisition of voltage data from the system. LabVIEW 

was configured to obtain 60 data points per second. The column was then filled with water to a 

height of 0.127 m and voltage data for the transducers was collected for about 15 seconds using 

LabVIEW 8. This step was repeated for water heights of 0.254, 0.381, 0.508, 0.635, 0.762, 0.889, 

1.016, 1.143, 1.270, 1.397, 1.524, 1.651, 1.778, 1.905, 2.032 and 2.159 m. An average of the 

obtained voltage data for each, respective set was taken, and a plot of transducer voltage vs height 

of water was made.  This plot can be seen in Figure B.1. 
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Figure B.1: Pressure transducer voltage vs hydrostatic pressure  
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Appendix C – Neutrally Buoyant Particle Design 

Plastic jewellery beads (assorted diameters) were purchased along with silicone gel, fluorescing 

neon green spray paint and sandpaper. Two different types of beads were purchased – black and 

pastels. Table C.1 summarizes the properties of the materials purchased and used. Beads with 

diameters ranging from about 5.5 to 10.5 mm were selected, and the ends of the hollow found in 

those beads were sealed off with silicon. Silicone was applied to the beads using a pipette tip which 

was secured to the end of the silicone containing tube. The beads were left to dry for at least three 

hours and were dropped in water to determine how close their densities were to that of water. 

Beads that sank too quickly in water were discarded while beads that rose fairly rapidly in water 

were preserved for potential use provided that additional silicone was added to their hollows. 

Beads that were found to sink or rise slowly in water were collected for measurement. Any pastel 

coloured near-neutrally buoyant beads were spray painted neon green to enhance their visibility 

when placed in a running bubble column. To do so, the layer of paint lining the bead was removed 

using sand paper. The beads were then given a light coating of green paint and allowed to dry 

overnight. To ensure that the spray painted beads remain as neutrally buoyant as possible, this 

procedure was only performed on near-neutrally buoyant, pastel beads that were slightly less dense 

than water. In addition to this precaution, the beads were only given a single coat of paint. 

 

Upon examination, the beads were observed to be spherical in appearance with slightly flattened 

ends, thus allowing them to be appropriately modelled as bi-truncated spheres. A representation 

of this model may be seen in Figure C.1 below. The minimum number of bead measurements taken 

can also be seen in Figure C.1. Additional 2ri measurements were taken if the maximum difference 

between 2r1 and 2r2 exceeded 0.02mm. In general, five different radius measurements were taken 
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for each bead. The volume of the beads were estimated by doubling that obtained from the standard 

mathematical proceedure for determining the volume of a truncated hemisphere, with inputs of h 

and average of ri. The sphericity of the beads was estimated by comparing the surface area of a 

perfect sphere of equivalent volume with the theoretical surface area of its respective, bitruncated 

sphere. As stated earlier, the volumes and surface areas of these shapes were obtained from 

standard mathematical equations. The new mass of the beads was taken with a balance with 

presision of 4 decimal places, and the density of the beads was found by dividing that mass by the 

previously estimated volume. Table C.2 summarises the properties of the modified, near-nutrally 

buoyant beads (particles).  

 

The settling velocity of the beads, the last characterizing property measured for the near-nutrally 

buoyant beads, can also be found in Table C.2 below. To obtain this property, the beads were 

allowed to fall a  known distance in water under timed conditions. The settling velocity was 

calculated by dividing the distance travelled by a bead by the time taken to do so. To ensure 

accuracy, the respective beads were allowed to fall a short distance before timing to make certain 

that steady state is achieved and thus, all forces acting on individual beads are balanced. 
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Table C.1: Summary of materials used in near-neutrally buoyant particle construction 

Materials Properties 

Jewellery Beads 

 

Black: Estimated Density - 928.9 kg/m3 

Pastel: Estimated Density - 842.3 kg/m3 

GE Premium Waterproof White Silicone 

Kitchen/Bath/Plumbing Caulk 
Density - 1283.38 kg/m3 

Norton Blue-Bak Waterproof T414 Paper 

(Sandpaper) 
Grit Range 320 

RONA Fluorescing Spray Paint, Turf Green Mass - 312 g, VOC - 677 g/L 

 

 

Table C.2: Complete summary of near-neutrally buoyant particle properties 

Particle 

Diameter, mm 

Volume, m3 Mass, kg 
Density, 

kg/m3 
Sphericity 

Settling 

Velocity, 

m/s h 2ravg 

Particle 1 9.29 9.64 4.62 x 10-07 0.467 996.4 0.999 – 0.69 

Particle 2 4.08 5.52 7.97 x 10-08 0.083 1046.2 0.850 0.89 
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Figure C.1: Schematic of particle model  
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Appendix D – Calibration of Pump 

The pump used in the tracer injection system described in Appendix E (VWR Variable-Flow 

Chemical Transfer Pump) was calibrated by measuring the time taken for the pump to transfer 

0.0002 m3 of water into a measuring cylinder for high and low pump voltage settings. The 

measurements at each setting were carried out twice. The volumetric flow rate at a given dial 

setting was determined by dividing the volume of water transferred by the average of the times 

taken to complete the transfer. A plot of the obtained results is presented in Figure D.1.  

 

 

Figure D.1: Pump flow rate vs voltage 
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Appendix E – Injection System Design 

 

Figure E.1: Schematic of tracer injection system  
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The tracer injection system was originally designed for the 15 s injection of 5% hydrochloric acid 

into the bubble column system using quarter inch steel tubes. This system contains two sections. 

The first section, the open loop, refers to the path which allows for the addition of acid to the 

column and can be considered to be the complete injection system. The closed loop (which refers 

to the path which returns pumped acid to the supply) is a supporting precaution that has been added 

to ensure that a certain degree of steady flow has been achieved by having the acid circulate within 

the closed loop for a substantial amount of time before transfer into the open loop.   All calculations 

were made based on the stated worst case scenario with respect to acid injection: the addition of 

acid to a bubble column reactor that has been filled to the desired dynamic height of 2.1336 m, but 

has not been exposed to air flow. This was regarded as the worst case scenario because this case 

would require the largest volume of acid (and thus, the longest amount of time) to bring the column 

to the desired final pH of 3.  

 

The total volume of acid required was determined by back-calculating the amount of acid required 

to change the final pH of the column to the desired value stated earlier. From this data, the 

volumetric flow required for the complete deposition of this critical acid volume within 15 s was 

calculated. Based on this value, quarter inch steel tubes were thought to be reasonable for the 

application.  From then onwards, calculations estimating the required pump head were carried out 

for the near-worst case scenario with respect to pump positioning: pump positioned below the 

reactor with moderate supply head. This was thought to be a reasonable worst case as in this 

position, the pump would be required to provide near maximum head and would be exposed to 

maximum, frictional major loss.  
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The losses for the open and closed loop cases were both calculated, the worst of which used in 

determining the maximum required pump head. For each case, the required pump head was 

obtained using the standard Bernoulli’s equation that had been extended to account for pump 

energy inputs as well as various energy losses (elevation, major and minor losses, sparger pressure 

drop losses). The major losses (losses due to friction along the length of pipe) and the minor losses 

(losses due to geometric variation within the loop) were obtained through elementary fluid 

mechanics. The major equations used are shown below. 

 

𝑃1

𝜌𝑔
+  

𝑣1
2

2𝑔
+ 𝑧1 + ℎ𝑝𝑢𝑚𝑝 =  

𝑃2

𝜌𝑔
+  

𝑣2
2

2𝑔
+ 𝑧2 +  ℎ𝐿 

E.1 

 

ℎ𝐿 =  (∑ 𝑓
𝐿

𝐷
+  ∑ 𝐾𝐿)

𝑣2

2𝑔
+  

∆𝑃𝑑𝑖𝑠𝑡

𝜌𝑔
 

E.2 

 

The pressure drop across the sparger was obtained through the following correlations (McCabe 

2001, Denn, 1980): 

 
𝐷𝑜  ≤  0.7

𝐷𝑝

√𝑁𝑜

 
E.3 

 

∆𝑃𝑑𝑖𝑠𝑡 =  

𝑄𝑔𝑜
2  ×  𝜌𝑔  ×  [1 − (

𝐷𝑜

𝐷𝑝
)

4

]

2𝐶𝑜
2  ×  𝐴𝑜

2𝑌2
 

E.4 

 

The required, near-worst case scenario pump head was determined by summing the various losses 

existing within both the open and closed loop cases and by selecting the larger of the two values. 
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A pump capable of providing the maximum head was selected for the system. A schematic of the 

system can be seen in Figure E.1.  
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