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Abstract 

 
A major component of the infrastructure of any modern city is a network of underground pipes 

that transport drinking water, storm water and sewage. Most of the pipes currently being used 

are made out of concrete or various plastics. As with any material, they have an expected 

lifespan after which deterioration begins to occur. This can result in cracks, and in some cases, 

even large holes in the pipe which can cause a complete loss of function of the pipe. These 

defects invariably lead to water losses that necessitate the repair of the pipeline, which is an 

expensive undertaking.  

The purpose of this thesis is to give a detailed report of the development and testing of a robot 

with a spray head that is autonomously controlled. This spray head will deposit a liquid material 

onto the pipe that will then cure to form the new interior wall of the pipe. The design of the 

robot most suited to this task is a Stewart platform: a parallel manipulator that uses prismatic 

actuators to control a single end-effector. In contrast to the traditional Stewart platform design, 

which has six independently controlled legs that are used to control the position of the top 

platform, a novel design is used which has only three independently controlled legs. The 

advantages of this design are less weight, less complicated kinematics and a smaller design 

envelope. A circular trajectory was implemented in the microcontroller code and the accuracy 

of the Stewart platform was evaluated using videos and image processing techniques.  

An optimization algorithm is proposed which combines the controlled random search 

algorithm and the particle swarm optimization algorithm. The effectiveness of this algorithm 

is demonstrated by selecting the design parameters of a 3-DOF Stewart platform so that the 

radius of the circular spray path is maximized.  

Keywords: 3-DOF, Stewart Platform, Parameter Optimization, Workspace maximization, 

Pipeline spraying, Controlled Random Search, Particle Swarm Optimization 
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Chapter 1 

Introduction 

 

1.1 Motivation of Study 

A major component of the infrastructure of any modern city is a network of underground pipes 

that transport drinking water, sewage and storm water. Most of the pipes currently being used 

are made out of concrete or various plastics. As with any material, they have an expected 

lifespan after which deterioration begins to occur. This can result in cracks, and in some cases, 

even large holes in the pipe which can cause a complete loss of function of the pipe. These 

defects invariably lead to water losses that necessitate the repair of the pipeline, which is an 

expensive undertaking.  

Traditionally, the pipes are repaired by a process that involves an inefficient excavation that 

often requires roads, lawns and sidewalks to be torn up. In recent years, trenchless pipe 

rehabilitation has been revolutionizing the pipeline repair industry. Trenchless pipeline 

rehabilitation uses tele-operated tools inserted into the system through access ports that allow 

the operator to inspect, clean and repair the interior of the pipe. Currently, the state-of-the-art 

process uses an inflatable tube, which has an external liner attached that is soaked with the 

repairing solution.  

Although the current method is effective, it has some drawbacks. Firstly, each liner needs to 

be customized to the pipe that is being repaired. This means that each pipe must be inspected 

and measured, using the tele-operated tools mentioned above, before the liner can be fabricated. 

Another drawback is that the entire process of soaking the liner with the solution, fitting it 

around the inflatable tube, inserting the tube into the pipe, allowing it time to cure and finally 

removing the inflatable tube, is very time consuming and requires a lot of manpower. In 
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addition to that, there are cases when the inflatable tube is very difficult to remove and, in the 

worst cases, a trench must be dug in order to remove it. 

Keeping in mind the drawbacks mentioned above, a new approach was imagined that would 

eliminate the need for the inflatable tube and liner. Instead, they would be replaced with a tele-

operated robot. This robot would be outfitted with a spray head which would be used to deposit 

a repairing solution onto the damaged areas of the pipe. This would give the user far more 

control over exactly where the repairing coating would be deposited and how much would be 

deposited, when compared to the current technology. If the robot were also equipped with a 

depth sensor and a camera, this would give the user the information needed to decide the 

amount of repairing solution that is required and where it should be deposited in order to repair 

the damage correctly. With these additional tools, this could possibly eliminate the need to 

perform the initial inspection that currently needs to be done before the liner is fabricated. 

Lastly, the robot would require only one person to operate it, compared to the six or seven 

people that are required to carry out the current process, thus cutting down on the cost of the 

repair. 

1.2 Design Considerations 

When considering the design of robot, there are two possible choices: serial manipulator or 

parallel manipulator. For most people, the more familiar robot design is a serial manipulator. 

This type of manipulator typically works similar to a human arm, where there are a series of 

links that are connected by a motor-actuated joints. These links and joints comprise several 

kinematic chains, each of which contributes to the overall motion of the end effector. Typically, 

serial manipulators have six joints, thus giving the end effector six degrees of freedom [1]. This 

means that this type of robot has a fairly large workspace, although this is limited by 

singularities and the maximum length of the robot itself. This type of robot also has 
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disadvantages, such as a relatively low load that can be effectively manipulated, error 

accumulation and amplification from link to link, a low stiffness, low dexterity, high motion 

coupling [2]. All of these drawbacks are related to the openness of the kinematic structure, 

where the cumulative weights of each actuator and joint adversely affect the performance and 

load bearing capacity of the robot. In addition to that, the additional weight of each link and 

actuator, which will have a different effect depending on the configuration and orientation of 

the robot, complicates the kinematic calculations. Finally, when performing these kinematic 

calculations, the effect of moving through the kinematic chains leads to error accumulation and 

amplification, which can greatly impact the final result. This can mean that the position of the 

end effector differs from what was calculated, due to error accumulated at each link, but how 

much it differs is dependent on many parameters, particularly the stiffness of the joint. 

 

Figure 1.2.1 Kinematic Chain of a Serial Manipulator [3] 

Serial manipulators are commonly used in industry due to large workspace and easily 

calculated forward kinematics. Examples of this type of robot, as well as their important 

physical characteristics were reported by Merlet and summarized in Table 1.2.1 [4]. 
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Table 1.2.1 Serial Robot Characteristics  

Robot DOF Mass (kg) Payload (kg) Repeatability (mm) Payload/Mass 

Adept 3XL 4 265 25 ± 0.038 0.0943 

Epson E2S45x 4 20 5 ± 0.015 0.25 

Seiko EH850 4 43 10 ± 0.025 0.2325 

Toshiba SR-504HSP 4 38 2 ± 0.02 0.0526 

ABB IRB 140T 6 98 5 ± 0.03 0.051 

Fanuc M420iA 6 620 40 ± 0.5 0064516 

Kuka KR 60-3 6 665 60 ± 0.2 0.09022 

  

Some interesting points arise from this data. It is very clear that the payload/mass ratio is quite 

low, and exceptionally low for the serial robots which have heavier payloads. The robots that 

are listed in the table as having 4-DOF (degrees of freedom) are Scara type, which means they 

can move in the 3 translational directions and rotate around a vertical axis, and the robots listed 

as having 6-DOF are spherical type and capable of moving in the 3 translational directions as 

well as rotate around the 3 axes. Due to their design, the Scara type robots generally have more 

support around their joints and therefore have a much higher payload/mass ratio. Nevertheless, 

the ratio is still quite low and in applications where a high payload/mass ratio is required there 

is another type of robot that is available that exhibits such a characteristic.  
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Figure 1.2.2 “Scara“ type robot [5] 

 

The other possible choice for the robot design is a parallel manipulator, with the best known 

design being the Stewart-Gough platform. This design differs from the serial manipulator in 

the fact that the end effector is connected to the base by multiple separate and independent 

links. Each of these links work in parallel to move and orient the end effector. Typically, these 

parallel manipulators will have six legs in order to have the ability to operate with six degrees 

of freedom.  

The main benefit of this design is the rigidity and stiffness of the robot, due to the end effector 

being supported by multiple arms. This means that the end effector can move with high 

precision and speed. It also means that parallel manipulators are capable of supporting a much 

higher load when compared to serial manipulators. The drawback of this design is the limited 

workspace and their nonlinear behaviour. The nonlinearity of the parallel manipulator means 

that a command to the actuators that produces a linear movement and one point in the 

workspace likely will not produce the same movement at another point [6].  
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1.3 Research Objectives 

As mentioned in section 1.1, the overall objective of this project was to create a tele-operated 

robot that was capable of spraying a structural coating in order to repair cracks or holes in the 

existing pipe infrastructure, with an additional focus on repairing the structure in the manholes 

leading into the pipe. This project was divided into two major parts, the first being the 

development of the robot, and the second being the development of a spray-head and the 

spraying liquid that will be deposited on the pipe. This thesis deals solely with the research and 

development of the robot.  

The overall aim of this project was to develop a system that could deposit the coating onto the 

wall of any diameter of pipe or manhole and would have the flexibility in its design so that it 

could be scaled up or scaled down to accommodate larger or smaller diameter pipes, 

respectively. Additionally, there was a requirement for more accuracy and control when 

compared to the existing technology used by other companies in the pipeline repair industry 

Figure 1.2.3 Kinematic Model for the 6-6 Type of 
Stewart Platform [7]  
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[8]. The current technology requires the user to pull a spray head through the pipe while the 

spray head deposits the coating on the wall. This method lacks a precision when depositing the 

coating because the spray head is only able to spray in a direction that is perpendicular to the 

movement of the spray head carriage. This does not give the user any control over the angle at 

which the spray is deposited, which is an important design feature when trying to repair a pipe 

with unknown and unpredictable damage.  

To reinforce the importance of this point, one needs only to consider the difference in repairing 

a large gaping hole in the pipe with that of a small thin crack in the pipe. In both cases, the user 

could simply use a large amount of coating to repair each defect, or the user could use the 

coating more efficiently (i.e. using enough to repair the pipe damage), thus saving money by 

reducing the amount of spray used. Additionally, the current technology coats the entire pipe 

with the repairing solution, rather than targeting the individual sections of the pipe that are 

damaged, which is also a very inefficient use of the coating.  

The flexibility in controlling the orientation of the spray head is crucial to giving the user the 

ability to repair the pipe in one pass, rather than first needing to use an inspection tool to collect 

data about the pipeline in order to customize the repair method of each pipe. Using the proposed 

robot design, the user would be able to adjust the spray angle, spray distance and the depth of 

the deposit “on the fly” as the user is given information about the pipe repair through the use 

of a camera attached to the robot, for example.   

An additional consideration when spraying pipes is that often there is variability in the diameter 

of the pipe at different sections in the pipeline. This variability in the diameter may be due to 

corrosion, deposits or because a cut out and replacement repair was performed that caused a 

mismatch in the diameter of the pipe. If a spray head with a fixed orientation was used, it would 

be impossible to reach certain areas of the pipe with the spray cone. This scenario is illustrated 
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in figures 1.3.1 and 1.3.2, where the importance of a spray head that is capable of changing its 

orientation, is demonstrated. In figure 1.3.1, we can see that even in the best possible position, 

a fixed orientation spray head would be unable to reach the corner areas of the pipeline where 

the diameter of the pipe has changed. Even in the areas which are reachable, it would be 

difficult to build up the layer of coating because only the very edge of the spray cone is able to 

touch these sections of the pipe, and at edge of the spray cone the density of the spray would 

be very small. In figure 1.3.2, the capabilities of the Stewart platform are demonstrated. By 

having a spray head that is capable of changing its orientation, it can reach the corner areas of 

the pipe that the fixed orientation spray head could not reach. Therefore, the necessity of a 

spray head that can change its orientation is shown, and this necessity is especially relevant 

when dealing with the unpredictability of the diameters in the different sections of the pipeline. 

 

 

 

Figure 1.3.1 Fixed Orientation Spray Method 
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The original idea for this research project was the result of a collaboration between Liquiforce 

and the University of Western Ontario (specifically Dr. Ken McIsaac and Derek Brecht). 

Liquiforce specializes in trenchless pipeline rehabilitation for clean water, waste water and 

other pipeline systems, and is a well-established leader in southern Ontario in this field. 

Originally, Liquiforce wanted to expand their pipeline repair process capabilities through the 

use of a tele-operated robot, which could be used to repair the pipe more efficiently, and cost 

effectively, in certain situations when compared to the inflatable tube/liner repair approach that 

was described in section 1.1.  

During the course of this collaboration, the scope of the project evolved and expanded to 

include the design of a larger robot that would be used for manhole rehabilitation. Due to the 

similarity of these tasks, it was decided that a prototype for the manhole rehabilitation would 

be designed and constructed first. The reasoning behind this decision was that it would be less 

Figure 1.3.2 Stewart Platform Spray Capabilities 
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difficult to construct and test a larger robot, and the lessons that were learned during its 

construction and testing could be applied to the construction of the smaller robot. This design 

approach stems from idea that processes of pipeline and manhole rehabilitation are similar, and 

because the processes are similar, the design of the larger robot could be scaled down to a size 

that would allow it to be used for pipeline rehabilitation, which involves pipes with a 

significantly smaller diameter than the manhole.  

1.4 Contributions 

The major research contributions that can be found in this thesis are as follows: 

 Designed and developed a 3-DOF Stewart platform through optimization techniques 

and by analyzing its kinematics properties 

 Improved the speed and efficiency of existing optimization algorithms through a 

novel combination of the controlled random search and particle swarm optimization 

algorithms 

 Constructed a 3-DOF Stewart platform by integrating components that were chosen 

by a thorough selection process  

 A component selection process was recorded in detail to be used as a tutorial for 

related projects in the future 

 Implemented a trajectory that mimics a probable spraying trajectory on a 3-DOF 

Stewart platform prototype to verify proof of concept 
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Chapter 2  

Background and Kinematic Analysis 

 

2.1 Parallel Manipulators 

Parallel manipulators have been used in many different industrial applications. One of the first 

proposed applications was a tire testing machine [9]. For this application, the proposed machine 

needed a full range of motion so that a load could be applied to the tire in any possible direction, 

in order to determine how the tire responded to loads applied in the lateral or a tangential 

direction, as opposed to the traditionally tested radial directions. Another early application was 

to use the parallel manipulator design as a flight simulator [10]. Eventually, the potential of 

parallel manipulators was fully recognized and they began seeing use in many other areas 

including being used as a camera-orienting device [11], underground excavator [12] and in 

satellite positioning [13].  

The Stewart platform is a specific type of parallel manipulator which traditionally has six legs 

and six DOF, although variations do exist. This allows for many possible positions and 

orientations of the top platform, which are only limited by the length of its legs and the range 

of motion of its joints [14]. Figure 2.1.1 shows the most commonly seen configurations, with 

the 6-6 type being the most common. The first number denotes the number of platform points 

and the second number denotes the number of base points. Ideally, both the platform and the 

base joints would be spherical joints so that the robot’s movement would not be impeded by 

the range of the joint, although the necessity of this is highly dependent on the application. In 

most cases, the platform and base joints are all universal type joints with two DOF. 
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In recent years, research has been conducted into the feasibility of having a type 3-3 robot, with 

only three legs [16] [17]. This design has the drawback of reducing the number of degrees of 

freedom to three, but has the advantages of less complicated kinematics and lower overall 

weight. Grübler’s formula can be applied to examine the number of DOF for a closed loop 

parallel kinematic machine (PKM) [18]. 

 

𝐹𝑒 =  𝜆(𝑙 − 𝑗 − 1) + ∑𝑓𝑖 − 𝐼𝑑

𝑗

𝑖=1

 

 

(1) 

 

Where:  Fe is the effective DOF of the assembly or mechanism, 

λ is the DOF of the space in which the mechanism operates, 

l is the number of links, 

j is the number of joints, 

fi is the DOF of the ith joint, and 

Id is the idle or passive DOFs.  

Figure 2.1.1 Three Types of Stewart Platforms with Index Numbers Denoting the Number of Connection 
Vertices on the Base and the Platform [15]  
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Figure 2.1.2 Kinematic Model for a 3-DOF Stewart Platform 

 

This will be demonstrated with an example. Based on the model in figure 2.1.2, each leg is 

composed of two links and both the base and the platform count as one link. Therefore, there 

are eight links in total in the robot. There are six universal joints and three prismatic joints, 

bringing the total number of joints to nine. The number of DOF of the space that the robot 

operates in are six. Finally, each universal joint has two DOF and each prismatic joint has one 

DOF, bringing the total number of DOF for all of the joints to 15. Using these numbers in the 

formula we have 𝐹𝑒 = 6(8 - 9 - 1) + 15 = 3. Therefore, this type of platform has three DOF. 

2.2 Inverse Kinematics of the Stewart Platform 

The kinematics of a Stewart platform is the relationship between the joint coordinates and the 

end effector. If the position of the end effector is known, then one would use the inverse 

kinematics to find the joint coordinates. If the joint coordinates are known, then one would use 

the forward kinematics to find the position of the end effector. Generally speaking, it is more 

intuitive to use the inverse kinematics because it is likely preferable to be able to direct the end 
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effector where to go, rather than knowing where the joints of the robot are and having to 

calculate where the end effector is.  

In addition to the benefit of the inverse kinematics being more intuitive for a human user, for 

a PKM, a nonlinear closed form solution to the inverse kinematics generally exists and is 

relatively easy to find. In contrast, it is much more difficult to find a closed form solution for 

the forward kinematics for a PKM, if one exists at all. For a serial manipulator, however, the 

opposite is true. A closed form solution typically exists, and can be easily constructed, for the 

forward kinematics. The solution of the inverse kinematics, however, is more computationally 

expensive and difficult to solve [19].  

Since the legs of a PKM are controlled by actuators, which usually have some sort of sensor 

that gives the user information about their length, the most logical use of the inverse kinematics 

would be to determine the required leg lengths in order to pose the top platform in the desired 

orientation. The method consists of using the joint coordinates and a rotation matrix to calculate 

leg lengths, given the rotation about the x-axis, ψ (roll), the rotation about the y-axis, θ (pitch), 

and the rotation about the z-axis, ∅ (yaw) and the translation vector  𝑞⃑ 
𝐵 =  [𝑞𝑥 𝑞𝑦 𝑞𝑧]𝑇, 

where 𝑞𝑥, 𝑞𝑦  and 𝑞𝑧 are the x, y and z components of the translation vector that describes the 

translation from reference frame {B} to {P}, with the initial 𝑞𝑧 being set to 31.75 cm. This 𝑞𝑧 

value of 31.75 cm represents the minimum height of the platform, with each actuator at its 

minimum stroke length. Each of the aforementioned rotations is relative to the reference frame 

for the platform, {P}. This method is easily modified so that only three leg lengths are 

calculated in the case of a 3-DOF platform. The leg lengths are calculated as follows [20]. 

Referring to figures 2.2.1 and 2.2.2, the base joint centers are defined as  𝑏𝑖
⃑⃑⃑ ⃑

 
𝐵 = [𝑏𝑖𝑥  𝑏𝑖𝑦  𝑏𝑖𝑧]

𝑇
 

and the platform joint centers are defined as  𝑝𝑖⃑⃑⃑ ⃑ 
𝑃 = [𝑝𝑖𝑥  𝑝𝑖𝑦  𝑝𝑖𝑧]

𝑇
. Since each of the base and 

joint platform centers are equally spaced at 120° from one another, their location can be 
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described using geometry and special triangles. Where r is the radius of the base and R is the 

radius of the platform, which are 19.05 cm and 9.525 cm, respectively. These radii were chosen 

 

Figure 2.2.1 Platform Joint Locations 

Figure 2.2.2 Base Joint Locations 
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so that the Stewart platform would have the requisite dimensions for the manholes and 

pipelines that it would be spraying inside of. 

 𝑝1⃑⃑ ⃑⃑ 
𝑃 = [𝑟 , 0 , 0]𝑇 

 𝑝2⃑⃑⃑⃑⃑ 
𝑃 = [−

1

2
𝑟 , √

3

2
𝑟 , 0]

𝑇

 

 𝑝3⃑⃑⃑⃑⃑ 
𝑃 = [−

1

2
𝑟 , −√

3

2
𝑟 , 0]

𝑇

 

 𝑏1
⃑⃑ ⃑⃑

 
𝐵 = [𝑅 , 0 , 0]𝑇 

 𝑏2
⃑⃑⃑⃑⃑

 
𝐵 = [−

1

2
𝑟 , √

3

2
𝑟 , 0]

𝑇

 

 

 𝑏3
⃑⃑⃑⃑⃑

 
𝐵 = [−

1

2
𝑟, √

3

2
𝑟, 0]

𝑇

 

 

The homogeneous transformation 𝑻𝑃 
𝐵  relates the transformation from the platform reference 

frame, {P}, to the base reference frame, {B}. The rotation matrix 𝑹𝑃 
𝐵  within the homogenous 

transformation 𝑻𝑃 
𝐵  is defined using the pitch, yaw and roll convention that was described in 

the paragraph above. It is populated as follows [21]:  

 

 

𝑹𝑃 
𝐵 = [

cos 𝜃 cos ∅ cos 𝜃 sin∅ − sin 𝜃  
sin𝜓 sin 𝜃 cos ∅ − cos𝜓 sin∅ sin𝜓 sin 𝜃 sin∅ + cos𝜓 cos ∅ cos 𝜃 sin𝜓

cos𝜓 sin 𝜃 cos ∅ + sin𝜓 sin∅ cos𝜓 sin 𝜃 sin∅ − sin𝜓 cos ∅ cos 𝜃 cos𝜓
] 

 

 

(2) 

The homogeneous transformation 𝑻𝑃 
𝐵  matrix is populated as follows: 
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𝑻𝑃 
𝐵 = [

𝑹𝑃 
𝐵

   
0 0 0

𝑞𝑥

𝑞𝑦

𝑞𝑧

1

] 

 

 

(3) 

In order to find the leg lengths we need first to transform the coordinates  𝑃𝑖
⃑⃑⃑

 
𝑃  into the base 

frame (i.e.  𝑃𝑖
⃑⃑⃑

 
𝐵 ). To accomplish this we use the following relationship: 

[

𝑃𝑖𝑥

𝑃𝑖𝑦

𝑃𝑖𝑧

1

] = 𝑹𝑃 
𝐵 [

𝑝𝑖𝑥

𝑝𝑖𝑦

𝑝𝑖𝑧

1

] 

 Next, the vectors that describe each of the legs are found. This is done by subtracting  𝑏𝑖
⃑⃑⃑ ⃑

 
𝐵  

from  𝑃𝑖
⃑⃑⃑𝐵 , which is possible since they are now in the same reference frame. Then the magnitude 

of each of those vectors is found in order to determine the length of each leg. The following 

equations are used to calculate the length of each leg: 

 

 
𝑙1 = √(𝑃1𝑥 − 𝑏1𝑥)2 + (𝑃1𝑦 − 𝑏1𝑦)2 + (𝑃1𝑧 − 𝑏1𝑧)2 

 

(4) 

 
𝑙2 = √(𝑃2𝑥 − 𝑏2𝑥)2 + (𝑃2𝑦 − 𝑏2𝑦)2 + (𝑃2𝑧 − 𝑏2𝑧)2 

 

(5) 

 
𝑙3 = √(𝑃3𝑥 − 𝑏3𝑥)2 + (𝑃3𝑦 − 𝑏3𝑦)2 + (𝑃3𝑧 − 𝑏3𝑧)2 

 

(6) 

We now have a method with which we can determine the length of each leg for any orientation 

of the platform, as long as we are given ψ, θ, ∅ (yaw) and  𝑞⃑ 
𝐵 , all of which are easily determined 

and each can be controlled by the robot operator.  
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2.3 Workspace Calculation 

The workspace of any robot is the set of points and orientations that the robot is able to reach 

given the physical and mechanical limitations of the design. When designing any type of robot 

it is essential that the workspace is calculated before the robot is manufactured. This needs to 

be done because the designer must know that the robot is capable of performing all of the tasks 

that it will be required to perform. The only way to be sure of this is to perform a detailed 

workspace analysis. 

 For the purposes of planning a spraying trajectory and because the platform has only 3-DOF, 

a number of simplifications can be made to the method proposed by Bonev and Ryu [22]. 

Firstly, since the robot has only three legs, all of which are located 120° from each other, there 

is no need to check for leg interference. This lack of leg interference was observed by Chung 

even in a 6-DOF Stewart platform [23]. Instead, the most limiting criteria will be checked, 

which is whether the calculated leg length exceeds the maximum or minimum length of the 

actuator.  

2.3.1 Actuator Stroke Length 

The limited stroke of each actuator imposes a constraint on each actuator leg li. This can be 

expressed as lmin ≤ li ≤ lmax, for i = 1, 2, 3 and where lmax is the maximum length of the actuator 

and lmin is the minimum length of the actuator. Since all three actuators are identical and their 

limits have been measured and documented, lmin = 31.75 cm and lmax = 41.91 cm. These lengths 

include the housing of the actuator.  

2.3.2 Range of the Passive Joints 

Each of the six joints has a range limitation on its angular motion. The joints which connect 

the bottom of each actuator to the base of the robot are revolute joints. Since they are revolute 

joints, they have only have one degree of freedom that is unrestricted. However, there are 
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physical limitations on the robot, around that degree of freedom, at which the actuator housing 

will come into contact with the base and prevent any further movement in that direction. 

Therefore, a constraint of 45° of maximum misalignment is imposed on this joint, which is 

illustrated in figure 2.3.1 as βi. The joints which connect the top of the actuator to the platform 

are spherical joints. These also have a range limitation because part of the platform will come 

into contact with the actuator leg. A constraint of 25° of maximum misalignment is imposed 

on this joint, which is illustrated in figure 2.3.1 as αi.  

Figure 2.3.1 (Clockwise from top picture) Stewart Platform in its Initial Configuration Where αi = 0 and βi = 0, 
Stewart Platform in a Raised Position Where αi  > 0, Stewart Platform in a Raised Position Where βi  > 0 
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Assuming that we are spraying in a circular motion where the radius of the circle is 19.05 cm 

(the typical radius of a manhole) and the height above the robot that we are spraying is 50 cm, 

we can show that the pitch and roll angles will not exceed 25° at any point during the spray 

trajectory. In order to illustrate what this trajectory, we refer to figure 2.3.2, where r = 19.05 

cm and d = 50 cm. The hypotenuse of the triangle that is formed (h) is the vector normal to the 

platform (i.e. the center of the spray cone), and should not be confused with the limits of the 

spray cone, which are not considered, or relevant, to this example. We are solely concerned 

with spraying in a circular trajectory, regardless of the shape of the spray cone itself. Using 

basic trigonometry we can demonstrate that the maximum pitch and roll angles of the platform 

will not exceed 25° when the robot is moving during the spraying motion: 

tan 𝜃 =
𝑟

𝑑
=

19.05 𝑐𝑚

50 𝑐𝑚
 

𝜃 = tan−1 (
19.05 𝑐𝑚

50 𝑐𝑚
) 

𝜃 = 20.8° 

 

Figure 2.3.2 Assumed Circular Spray Trajectory 
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Therefore, in practice, it will not be possible for the robot to exceed any of the aforementioned 

misalignment constraints on the passive joints.  

However, when analyzing the kinematics, it can be shown that there is a possibility for 

significant misalignment of the joint in the directions that were mentioned in the above 

paragraphs. In order to ensure that the range of motion constraints on the joints are not exceeded 

(due to interference between the actuator housing and the base, and between the actuator leg 

and the platform), we must check the maximal misalignment constraints that are imposed on 

the spherical and revolute joints.  

This can be done using the following relationship, which relates the height difference between 

the base and the ith platform point (𝑃𝑖𝑧) and the leg lengths (li) to the revolute joint angular 

constraint (αi) and the spherical joint angular constraint (βi):  

 

 
sin−1 (

𝑃𝑖𝑧

𝑙𝑖
) ≤  α𝑖 , 𝑓𝑜𝑟 𝑖 = 1,2,3  

 

(7) 

 
cos−1 (

𝑃𝑖𝑧

𝑙𝑖
) ≤  β𝑖, 𝑓𝑜𝑟 𝑖 = 1,2,3 

 

(8) 

In addition to the above misalignment constraints, an additional constraint must be included in 

the algorithm which excludes any points that require the revolute joint to be excessively 

strained and rotate in the direction pictured in 2.3.4. This constraint can be implemented by 

having a limitation on the distance that a potentially viable  𝑃𝑖
⃑⃑⃑

 
𝐵 , is from the ith plane, which is 

defined as passing through both the center of the ith actuator leg, and the z-axis in reference 

frame {B}. Figure 2.3.3 depicts this plane for one of the legs, and two other planes would be 

defined using the same criteria for the remaining legs.  
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Now that the constraint plane has been defined, we need to define the maximum distance that 

an acceptable  𝑃𝑖
⃑⃑⃑

 
𝐵   can be removed from the plane, which will be designated as D, as shown in 

figure 2.3.4. Again, referring to figure 2.3.4, the maximum angle of the revolute joint (Δ) has 

been observed to be 0.45°. Using Δ, and the lmin (the length at which the largest Δ occurs), we 

can calculate D using basic trigonometry: 

 

Figure 2.3.3 Constraint Plane Defined for l1 
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tan∆ =
𝐷

𝑙𝑚𝑖𝑛
 

𝐷 =  𝑙𝑚𝑖𝑛(tan∆) 

𝐷 = (31.75 𝑐𝑚)(tan(0.45°)) 

𝐷 = 0.25 𝑐𝑚 

 

From the above calculation, we can see that the largest allowable D value, without causing 

excessive strain and damage to the actuator housing, would be 0.25 cm. In terms of the 

kinematic simulation, 0.25 cm is the largest distance that the  𝑃𝑖
⃑⃑⃑

 
𝐵  points can be removed from 

the plane. Since the constraint plane and the maximum allowable distance is defined, we can 

use a projective geometry method to determine if each potentially viable point  𝑃𝑖
⃑⃑⃑

 
𝐵   meets the 

distance constraint. This method is demonstrated as follows [24]: 

Figure 2.3.4 Diagram Illustrating the Maximum Allowable Distance D from the Constraint 
Plane  
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Given a plane defined using the general equation of a plane: 

 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 

 

(9) 

The normal vector is given by: 

 
 𝑛𝑖⃑⃑⃑⃑ 

𝐵 = [
𝑎
𝑏
𝑐
] 

 

 

(10) 

We have a potentially viable point defined as: 

 
 𝑃𝑖
⃑⃑⃑

 
𝐵 = [

𝑥0

𝑦0

𝑧0

] 

 

 

(11) 

The vector the plane to the point is given by: 

 
 𝑣𝑖⃑⃑⃑ ⃑ 

𝐵 = − [

𝑥 − 𝑥0

𝑦 − 𝑦0

𝑧 − 𝑧0

] 

 

 

(12) 

 

If we project  𝑣𝑖⃑⃑⃑ ⃑ 
𝐵  onto  𝑛𝑖⃑⃑⃑⃑ 

𝐵 , we can get the distance 𝐷 from the point to the plane: 

 𝐷 =  |𝑝𝑟𝑜𝑗  𝑛𝑖⃑⃑⃑⃑⃑ 
𝐵  𝑣𝑖⃑⃑⃑ ⃑ 

𝐵 | 

 

(13) 

 
= 

|  𝑛𝑖⃑⃑⃑⃑ 
𝐵 ∙  𝑣𝑖⃑⃑⃑ ⃑ 

𝐵  |

|  𝑛𝑖⃑⃑⃑⃑ 
𝐵 |

 

 

(14) 

 
= 

|𝑎(𝑥 − 𝑥0) + 𝑏(𝑦 − 𝑦0) + 𝑐(𝑧 − 𝑧0)|

√𝑎2 + 𝑏2 + 𝑐2
 

 

(15) 

By simplifying: 
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𝐷 =  

|𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0 + 𝑑|

√𝑎2 + 𝑏2 + 𝑐2
 

 

(16) 

From this equation we can determine whether each potentially viable point falls within the 

maximum allowable distance of D = 0.25 cm.  

2.4 Algorithm for Workspace Calculation 

The workspace can be calculated by using an algorithm that steps through all possible platform 

orientations, and all viable translational values along the z-axis, at a fixed step size. As each 

step is taken, and the resulting platform points are calculated for that platform orientation, these 

points are tested to determine if they satisfy all of the mechanical constraints that were 

discussed in section 2.3, specifically, βi < 45°, αi < 25°, D < 0.25 cm, li < 41.91 cm and li > 

31.75 cm, where i = 1, 2, 3. The algorithm was implemented using MATLAB®. The rotation 

matrix uses a fixed pitch-yaw-roll reference that was defined in section 2.2.  

The algorithm will first initialize  𝑝𝑖⃑⃑⃑ ⃑ 
𝑃 ,  𝑏𝑖

⃑⃑⃑ ⃑
 

𝐵 ,  𝑞⃑ 
𝐵  (specifically 𝑞𝑧), ψ (roll), θ (pitch) and ∅ (yaw). 

 𝑝𝑖⃑⃑⃑ ⃑ 
𝑃 ,  𝑏𝑖

⃑⃑⃑ ⃑
 

𝐵  are initialized according to the respective radius of the platform and base,  𝑞⃑ 
𝐵  is 

initialized according to the physical limits of the actuators (a reasonable range for the actuators 

that are used is 33 cm to 40.5 cm), ψ and θ are initialized to begin at -π/4 radians, ∅ is initialized 

to zero because no rotation is possible about the z-axis.  

The algorithm then calculates l1, l2, l3 and  𝑃𝑖
⃑⃑⃑

 
𝐵 . Based on these values, the algorithm determines 

whether the mechanical constraints are satisfied. The most frequent violation was observed to 

be the violation of D, followed by the maximum actuator length violations. This means that it 

is a most frequently the physical restrictions on the revolute joint are violated by forcing it to 

move in a direction that it is unable to move in. The violation counts for each constraint are 
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summarized in table 2.4.1. If they are satisfied, then the  𝑃𝑖
⃑⃑⃑

 
𝐵  points are added to the matrix that 

stores the viable points. From these points, a vector that is normal to the platform center is 

calculated by subtracting one set of points from another and then using the cross product of 

these vectors. This vector is then stored in a matrix so that it can be plotted when the algorithm 

terminates. The algorithm will then continue to increment the ψ, θ parameters at a step size of 

0.1 and 𝑞𝑧  at a step size of 0.2 until the algorithm finally terminates at the maximum height 

value. A flowchart of the process that the algorithm uses to generate the 3-D vector plot is 

presented in Table 2.4.1. 

Table 2.4.1 Summary of Constraint Violations 

Constraint Violation Count Percentage of Total Violations 

αi < 25° 15983 0.16 

βi < 45° 397653 3.94 

D < 0.25 cm 4929966 48.72 

li < 41.91 cm or li > 31.75 cm 4775551 47.18 

Total 10119153 100 

 

Figures 2.4.2, 2.4.3 and 2.4.4 show the workspace of a 3-DOF Stewart platform that does not 

have the misalignment constraints imposed on it.  These figures are generated by running the 

same algorithm that was discussed above, but instead of plotting the 3-D vector that is normal 

to the center of the platform, the location of each of the  𝑝𝑖⃑⃑⃑ ⃑ 
𝐵  points are plotted, along with the 

 𝑏𝑖
⃑⃑⃑ ⃑

 
𝐵  points for reference. It can be clearly seen that there is misalignment about the 

aforementioned axis. Therefore, a constraint on the joint in this direction must be imposed 

when running the algorithm.   
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YES 

NO 

NO 

NO 

YES 

Initialization of Parameters: 

 𝑝𝑖⃑⃑⃑ ⃑ 
𝑃 ,  𝑏𝑖

⃑⃑⃑ ⃑
 

𝐵 ,  𝑞⃑ 
𝐵 , ψ, θ and ∅  

 

Inverse Kinematic 

Calculations of li and  𝑃𝑖
⃑⃑⃑

 
𝐵  

 

Kinematic Constraints 

lmax ≤ li ≤ lmin for i = 1, 2, 3 

αi < 25° for i = 1, 2, 3 

βi < 25° for i = 1, 2, 3 

Di < 0.25 cm for i = 1, 2, 3 

Calculate a vector that is 

normal to the platform 

center based on the 

acceptable   𝑃𝑖
⃑⃑⃑

 
𝐵   points and 

store it in a vector matrix 

ψ < π/2 

radians 

θ < π/4 

ψ = ψ + 0.1 

θ = θ + 0.1 

 

𝑞𝑧< 40.5 cm 

 

Generate 3-D plot based 

on the vector matrices 

𝑞𝑧 = 𝑞𝑧 + 0.2 
YES 

Figure 2.4.1 Flowchart for the Algorithm used to generate the 3-D Vector Workspace 
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Figure 2.4.2 Workspace of a 3-DOF Stewart Platform Illustrated by all 
of the Possible Platform Points before Misalignment Constraints are 

Imposed (Top View) 

Figure 2.4.3 Workspace of a 3-DOF Stewart Platform Illustrated by all 
of the Possible Platform Points before Misalignment Constraints are 

Imposed (Side View) 
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After the misalignment constraints are imposed, figures 2.4.5, 2.4.6 and 2.4.7 are generated.  

 

 

  

Figure 2.4.4 Workspace of a 3-DOF Stewart Platform Illustrated by all 
of the Possible Platform Points before Misalignment Constraints are 

Imposed (3-D View) 

Figure 2.4.5 Workspace of a 3-DOF Stewart Platform Illustrated by all 
of the Possible Platform Points (3-D View) 
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From figures 2.4.5, 2.4.6 and 2.4.7 we can see that the platform points are now fully constrained 

so that they do not exceed any of the physical limitations imposed on the robot by the range of 

motion of the joints and the maximum and minimum lengths of the actuator legs. The 

implementation of the maximum and minimum actuator leg length constraint can be verified 

Figure 2.4.6 Workspace of a 3-DOF Stewart Platform Illustrated by all 
of the Possible Platform Points (Side View) 

Figure 2.4.7 Workspace of a 3-DOF Stewart Platform Illustrated by all 
of the Possible Platform Points (Top View) 



31 
 

by observing that none of the points are located below 31.75 cm or above 41.91 cm on the z-

axis. The constraint on the range of motion of the joints, while more difficult to verify from the 

graphs alone, can be seen to have been implemented by observing that all of the viable platform 

points are in an almost straight line that is parallel with the z-axis. This is in stark contrast with 

the graphs in figures 2.4.2, 2.4.3 and 2.4.4, where it can be seen that some points are located in 

a position that the robot platform would be incapable of reaching due to the aforementioned 

limitations on the joint ranges. Figure 2.4.8 to 2.4.13 show the constrained 3-D vector plots 

generated by the algorithm described above. 

 

  

Figure 2.4.8 3-D Workspace of a 3-DOF Stewart Platform Visualized Using Vectors Normal to each Platform Orientation at 
0.1 Radians/Step 
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Figure 2.4.9 3-D Workspace of a 3-DOF Stewart Platform Top View at 0.1 Radians/Step (Down Z-Axis) 

 

Figure 2.4.10 3-D Workspace of a 3-DOF Stewart Platform Side View at 0.1 Radians/Step (Down Y-Axis) 
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Figure 2.4.7 3-D Workspace of a 3-DOF Stewart Platform Top View at 0.01 Radians/Step (Down Y-Axis) 

 

Figure 2.4.12 3-D Workspace of a 3-DOF Stewart Platform Visualized Using Vectors Normal to each Platform Orientation at 
0.01 Radians/Step 

 

Figure 2.4.11 3-D Workspace of a 3-DOF Stewart Platform Side View at 0.1 Radians/Step (Down X-Axis) 
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Figure 2.4.13 is of particular interest because the maximum circular trajectory that the 

platform’s normal vector could follow (designated by the red circle) can be clearly seen and 

demonstrated on the graph. This concept of a maximum circular trajectory is important because 

it can be used as an objective function when choosing the dimensions of a robot so that the 

workspace is optimized. This is especially important for 3-DOF robots because a traditional 

objective function would seek to maximize the workspace volume. However, since a better 

measure of the workspace in a 3-DOF robot is based on the how far that platform is able to 

rotate about the x and y-axes, it can be difficult to find an effective objective function. This 

concept of using the maximum circular trajectory as an objective function, around which the 

design parameters of a 3-DOF robot can be optimized, rather than the traditional maximum 

volume approach, will be further explored in the next chapter.    

 

 

 

 

 

 

Figure 2.4.13 3-D Workspace of a 3-DOF Stewart Platform Top View at 0.01 Radians/Step (Down Z-Axis) 
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Chapter 3 

Parameter Optimization 

 

3.1 Delta Robot Optimization Introduction 
 

When designing a parallel manipulator, the selection of the parameters of the robot such as the 

leg lengths, the minimum length of the actuators, the maximum length of the actuators, the 

diameter of the base and the diameter of the platform can considerably effect the optimality of 

the workspace as demonstrated by Lou et al. [25]. This problem can be formulated in many 

different ways. One method proposed by Gosselin and Guillot prescribes the optimal 

workspace and the algorithm attempts to design a manipulator that has a workspace that is as 

close to the prescribed workspace as possible [26]. Another method uses an algorithm that 

optimizes the geometry of the parallel manipulator so that the workspace of the manipulator is 

maximized [27]. The problem that arises when using these methods is that a manipulator that 

is designed to have a maximum workspace may be lacking in other desirable characteristics, 

such as high dexterity or manipulability.  

In order to avoid this possible issue, other performance indices must be taken into account. A 

further refinement of the optimization criteria was done by Stock and Miller, where they used 

a linear combination of performance metrics that quantified the manipulability and the 

workspace of the manipulator [28]. This linear combination of the performance metrics was 

used in the objective function, where weighting coefficients were assigned to the two indices. 

Thus, the single variable optimization problem becomes a multivariable optimization problem, 

which will provide a solution that leads to a better designed and more realistic manipulator. 

However, because it is now a multivariable problem, the objective function could be difficult 

to solve using standard techniques.  
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 Due to the complexity of the multivariable design problem, Lou et al. suggest using different 

well known and researched search algorithms to solve the multivariable optimization problem. 

Depending on the complexity of the objective function, different search algorithms should be 

used because some will converge quicker on less complicated objective functions, but may not 

be able to converge when more variables are used to define the objective function. The opposite 

is true for other algorithms used in the paper. The algorithms presented in the paper were 

sequential quadratic programming (SQP), controlled random search (CRS), genetic algorithm 

(GA), differential evolution (DE) and particle swarm optimization (PSO) [29].  

It was noted that while it generally took CRS longer to converge to a solution to the objective 

function for the design of a Stewart platform, when compared to the other algorithms, it was 

able to converge to the neighbourhood of the global optimum much faster. However, the CRS 

algorithm was generally slower at reaching the optimum itself, and there were also trial runs 

where the algorithm was not able to converge at all. In contrast, the other algorithms always 

converged and were generally faster at converging to the optimum, with the exception of SQP. 

Out of all of the algorithms tested, PSO was observed to be the most reliable at converging to 

the global optimum. 

As an extension of these results, an algorithm is proposed that takes advantage of the quick 

initial convergence of the CRS algorithm and the robustness and quick final convergence of 

the PSO algorithm. In order to initially test the proposed algorithm, we first used a simpler 

robot design for the optimization test. The robot used for the test is called a Delta robot. This 

robot design also has 3-DOF, but they are only in the translational directions. It is not possible 

for a Delta robot to change the orientation of its end effector. Therefore, the number of 

constraint equations that govern the objective function are reduced. The architecture of the 

delta robot is pictured in figures 3.1.1 and 3.1.2. 
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Figure 3.1.1 Architecture of the Delta Robot [30] 

Figure 3.1.2 ith Subchain of the Delta Robot [31] 
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3.2 Design Problem Formulation 

3.2.1 The Objective Function 

In order to evaluate the effectiveness of the proposed algorithm, we need to first define the 

objective function. Since the Delta robot is a purely translational robot, the maximum 

workspace of the robot can be defined as certain volume. To simplify calculations, the 

workspace will be assumed to be a regular shape, which in this case will be assumed to be a 

cube. This assumption is particularly valid in the case of the Delta robot because it is symmetric 

along the Z-axis. This symmetry further simplifies calculation because the maximum reachable 

point in Cartesian coordinates in the positive X-Y direction will have the same limit in the 

negative X-Y direction, thus effectively cutting the number of points, whose viability needs to 

be determined, in half. This assumption will both increase the speed and decrease the running 

time of the algorithm.  

All real numbers within Cartesian space will be considered as a possible, valid workspace 

point, therefore W ∈ ℝ3, where W is the workspace and ℝ is all real numbers. Since the 

workspace is assumed to be cubic, the side length of the cube will be denoted as 2s. Using the 

side length of the cube we can calculate the workspace, which is defined in terms of volume. 

Therefore, the objective function can be defined as: 

 𝛷 = (2𝑠)3 
 

(17) 

In order to use this algorithm to find a set of design parameters that are not specific to one robot 

and can be easily scaled to match their intended use, the parameters will be normalized 

according to the following equation: 
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∑𝛼𝑖 = 𝜏

𝑞

𝑖=1

 

 

 

(18) 

In the case of this design problem, τ = 1 and q = 4. It should be noted that i is the individual 

parameters of α, and not the set of parameters for each arm of the robot. There will be four 

parameters for each αi: a, b, d and zc. Referring to figure 3.1.2, the geometric definitions for a 

and b are clear, d = R – r, and zc is the center of the cube that defines the maximum workspace 

of the robot. It was observed by Lou et al. that the maximum workspace volume occurs when 

d approaches 0 and the parameters a and b are in the neighbourhood of 0.5 [32]. Therefore, the 

random numbers that are initially generated for these parameters are between 0 and 0.5 for a 

and b and between 0 and 0.01 for d. The zc value is randomly generated between 0 and -1 until 

a valid zc is found.  

3.2.2 The Workspace Constraints 

The constraint equations describe the physical limitations of the robot and determine whether 

a given point is a viable workspace point. There are two types of joints in the Delta robot: 

passive and actuated, with each type having their own set of constraints. In order to evaluate 

whether, given end effector position, the robot’s structure obeys these constraints, the inverse 

kinematics of the Delta robot will be used. Again, figure 3.1.2 will be used to clarify what each 

constraint means in geometric terms. There will be constraints placed on βi, θi and γi, where i 

= 1, 2, 3, so that there will be no interference between the arms and the parallelogram rods (the 

parallelogram is depicted on the right hand side of figure 3.1.2), and to ensure that the range of 

motion of these joints is not violated. The numerical values that were selected are as follows: 

 −30° ≤ 𝜃𝑖 ≤ 100° 

 

(19) 
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 45° ≤ 𝜃𝑖 + 𝛽𝑖 ≤ 180° 

 

(20) 

 −40° ≤ 𝛾𝑖 ≤ 40° 

 

(21) 

3.2.3 The Manipulability Constraints 

Constraints on the manipulability index are introduced so that the manipulator is guaranteed to 

be able to conduct tasks effectively within the workspace. Typically, the measure for 

manipulability is the inverse condition of the kinematic Jacobian matrix, which is defined as: 

𝜅(𝐽) =  
𝜎𝑚𝑖𝑛(𝐽)

𝜎𝑚𝑎𝑥(𝐽)
 

where κ(.) is the inverse condition number function for matrices (κ ∈ [0, 1].), and σmin(.) and 

σmax(.) are minimal and maximal singular value functions, respectively. Since the Delta robot 

is only a translational robot, we do not need to take into account the orientation manipulability. 

Therefore, the position manipulability can be defined as: 

𝑍̇ = 𝐽𝑍(𝜃̇) 

where 𝑍̇ is the linear velocity. Therefore, we can see that 𝜅(𝐽𝑍) gives a measure for the position 

manipulability and the following constraint can be applied: 

 

 𝜅(𝐽𝑍) ≥ 𝛿 

 

(22) 

where 𝛿 is the lower bound for the positon manipulability, which is a constant that is defined 

by the user that reflect the design requirements. For our design problem, 𝛿 = 0.4. 
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3.3 Optimization Algorithms 

3.3.1 Controlled Random Search 

The originally proposed CRS algorithm [33] is a global optimization algorithm that is known 

for its robustness and flexibility. The algorithm has previously been used by Lou et al. to 

optimize parallel manipulators, with good results [25, Table 1]. It is, despite improvements on 

the original algorithm [34], known for its poor final convergence time and its inability to reach 

an optimum, when dealing with complicated problems. Initially, however, it has a very fast 

convergence to a value that is within a fairly close neighbourhood of the optimum, even when 

it cannot reach an optimum value, as shown by the graph in figure 3.3.1. To take advantage of 

this attribute, the CRS algorithm will terminate after a specified number of generations, or 

when the value of the objective function is within an acceptable range of the optimum (if this 

is known). The parameters at this value will be used as a starting point for the PSO algorithm, 

in order to decrease the time until final convergence. 

The CRS algorithm method is to select new points randomly from a normal probability 

distribution that is centered on the previous best value found by the algorithm, mathematically: 

 

 𝛼(𝑗) = 𝛼(𝑗−1)∗ + 𝜎𝜁, j =  1,2, … 

 

(23) 

The above equation shows how the jth generation point is selected by using the previous 

generation’s best point (𝛼(𝑗−1)∗) and adding a value to it (+ 𝜎𝜁), where: 

𝜁𝑖~𝑁(0,1), 𝑖 = 1,… , 𝑝 

𝜎 = 𝑑𝑖𝑎𝑔(𝜎𝑖, … . , 𝜎𝑝) 
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In terms of optimization techniques, we can regard ζ as a search direction and σ as a step length. 

σ is adaptively modified during the search depending on whether the new point was determined 

to be a successful or a failure. Successful means that an improvement on the objective function 

occurs and failure means that no improvement occurs. If a trial is successful: 

𝜎𝑖 = 𝐾1∆𝛼𝑖, 𝑖 = 1,… , 𝑝 

where ∆𝛼𝑖 is the distance between the current 𝛼𝑖 and the nearest bound of the variable. 𝐾1 is a 

compression factor that is used to reduce the search interval and keep the next value within the 

neighbourhood of the previous best value (0 < 𝐾1< 1). After a certain number of failures, 

typically chosen to be 100, σ is reduced according to [25, pp. 227]: 

(𝜎𝑖)𝑛𝑒𝑤 = 𝐾2(𝜎𝑖)𝑜𝑙𝑑, 𝑖 = 1,… , 𝑝 

where 0 < 𝐾2 < 1. This is done to reduce the step size at a much greater rate than if the trial is 

successful. This could occur when the optimum is approached for example, and it is done so 

that the algorithm does not fail to converge to the optimum by taking steps that are too large. 

Figure 3.3.1 A Typical Number of Function Evaluations for the CRS Algorithm to Convergence When Determining 
the Optimal Design of a Delta Robot [25, pp. 232] 
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Both 𝐾1 and 𝐾2 are chosen by the user and in this case were chosen by Lou et al. to be 1/3 and 

1/2, respectively [29, pp. 579]. The proposed algorithm also uses 𝐾1 = 1/3. However, since the 

proposed algorithm that combines the CRS and PSO algorithms only needs CRS to converge 

to the neighbourhood of the optimum, which typically occurs within less than 20 generations 

as demonstrated by Lou et al. (the results of which are shown in the graph in figure 3.3.1), the 

second part of the algorithm where the step size is reduced after a certain number of failures, 

is not implemented in the proposed algorithm. This is due to the fact that there would likely be 

relatively little improvement in the final result compared to the time that it would take to reach 

that result. Therefore a value for 𝐾2 is not required. Additionally, the global convergence of 

this algorithm was proven by Solis and Wets [35], thus guaranteeing that the output of the CRS 

algorithm is within the neighbourhood of the global optimum.   

3.3.2 Particle Swarm Optimization 

Particle swarm optimization was first introduced in 1995 [36]. The basic concept is that there 

is a group or swarm of particles in the parameter space ([0, 1], in the case of this problem), 

each with their own position (𝑥𝑖) and velocity (𝑣𝑖). Typically, initial positions and velocities 

are typically randomly generated within certain bounds, and the better the particles are initially 

spread out across the n-dimensional space, the more likely that they will find the global 

optimum. In the case of the proposed CRS and PSO combination algorithm, the initial positions 

will be generated, within certain bounds, around the point that was returned by the CRS 

algorithm. Using this approach, the initial few steps that the particles would make if they were 

randomly generated will be already completed, and all of the particles will already be within a 

reasonable distance of the optimum. The velocities will still be randomly generated, within 

certain bounds. During each iteration, 𝑥𝑖 and 𝑣𝑖 are updated according to the following 

equations: 
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 𝑣𝑖 = 𝑣𝑖−1 + 𝑐1(𝑟𝑎𝑛𝑑)(𝑝𝑖 − 𝑥𝑖) + 𝑐2(𝑅𝑎𝑛𝑑)(𝑝𝑔 − 𝑥𝑖) 

 

(24) 

 𝑥𝑖 = 𝑥𝑖−1 + 𝑣𝑖 

 

(25) 

𝑥𝑖 and 𝑣𝑖 have already been defined, 𝑐1 and 𝑐2 are learning factors (𝑐1 = 0.5 and 𝑐2 = 1.25 are 

the values that are used by Lou et al. and will be used for this simulation [29, pp. 579]), rand 

and Rand are two separate random number generators that return a value between 0 and 1 

(uniform distribution), 𝑝𝑖 is the personal best of the position of the particle (as evaluated by the 

objective function), and 𝑝𝑔 is the global best position of a particle (as evaluated by the objective 

function). By using the personal best position of each particle, as well as the global best 

position, PSO should converge to a global optimum without converging to a local optimum 

instead. 

3.4 Design Problem 

3.4.1 Optimal Design of the Delta Robot 

Mathematically, the design problem can be summarized as follows: 

𝑚𝑎𝑥
𝛼

𝛷 = (2𝑟)3 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 30° ≤ 𝜃𝑖 ≤ 100° 

45° ≤ 𝜃𝑖 + 𝛽𝑖 ≤ 180° 

−40° ≤ 𝛾𝑖 ≤ 40°, where i = 1, 2, 3 

𝜅(𝐽(𝑋, 𝜃, 𝛼)) ≥ 0.4 

𝑎 + 𝑏 + 𝑑 = 1 

𝑎, 𝑏, 𝑑 ∈ [0,1] 

𝑧 𝑐 ∈ [−1,0] 
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3.4.2 Computation 

As previously discussed, the CRS algorithm will be used to find a set of parameters (α) that are 

in the neighbourhood of the global optimum. Since the PSO algorithm works by using the best 

results found throughout the swarm, there must be some variability in the initial swarm particle 

values. Therefore, we cannot simply use the point that results from the CRS algorithm (this 

will be referred to as αCRS) as the initial value for each of the swarm particles (these will be 

referred to as αPSO). On the other hand, if we set too few of the initial swarm particles to αCRS, 

it will not affect the speed of the PSO algorithm by an appreciable amount and there will have 

been no reason to find αCRS. Therefore, a compromise must be made when deciding how many 

of the initial swarm particles will be equal to αCRS. After experimenting with how many of the 

initial swarm particles are being set to αCRS, a value of five (out of twenty particles) was 

experimentally found to yield the best results. The remaining fifteen αPSO’s contain values for 

a that are randomly generated as discussed in section 3.2.1. 

In order to increase the speed of the algorithm, we will determine the largest cubic workspace 

by first generating a valid point along the z-axis, zc. Thus, in Cartesian coordinates, the first 

point will be (0, 0, zc). Once a valid point has been generated, this point will be used as the 

center of the cubic workspace. As previously discussed the objective function is defined by 

(2s)3, where 2s is the side length of the cube. Instead of searching the entire possible workspace, 

the validity of each possible cubic workspace is verified by using s to calculate the coordinates 

of eight vertices of each cube, and each of these points is separately verified using the 

constraints.  
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However, in order to determine if the vertex coordinates are valid, the values of each of the 

constraints needs to be determined for each x, y and z for each vertex of the cube. To do this 

we will make use of the inverse kinematics, which relates the Cartesian coordinates x, y and z 

to θi. βi, γi. Referring to figure 3.1.2, the loop closure equation in the {O} reference frame is: 

 𝑶𝑷⃑⃑⃑⃑⃑⃑ + 𝑷𝑪𝒊
⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 𝑶𝑨𝒊

⃑⃑ ⃑⃑ ⃑⃑  ⃑ + 𝑨𝒊𝑩𝒊
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ + 𝑩𝒊𝑪𝒊

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ 

 

(26) 

From this equation, Pierrot derives the relationship between x, y, z and θi [37]: 

 

 𝑋𝑖𝑐𝑜𝑠𝜃𝑖 + 𝑧 sin 𝜃𝑖 = 𝑄𝑖 

 

(27) 

Where: 

𝑋𝑖 = 𝑥 + 𝑑 

𝑄𝑖 = (𝑋𝑖
2 + 𝑎 + 𝑦2 + 𝑧2 − 𝑏2)/2𝑎 

If 𝑘 = 𝑐𝑜𝑠𝜃, and using the substitution 𝑠𝑖𝑛𝜃 = √1 − 𝑐𝑜𝑠2𝜃, equation (27) can be put into the 

form: 

 

 𝐴𝑘2 + 𝐵𝑘 + 𝐶 = 0 

 

(28) 

Where: 

𝐴 =  𝑋𝑖
2 + 𝑧2 

𝐵 =  −2𝑄𝑖 

𝐶 = 𝑄𝑖 − 𝑧2 
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Quadratic formula can now be used to solve for the roots, which will give us 𝑘, from which the 

𝜃𝑖 value for each leg can obtained using cos−1 𝑘.  

In order to determine if the second constraint (45° ≤ 𝜃𝑖 + 𝛽𝑖 ≤ 180°) is satisfied we use 

geometry of the robot to find a formula that yields the angle 𝛽𝑖: 

 𝛽𝑖 = cos−1(( 𝑎𝑐𝑜𝑠𝜃𝑖 + 𝑑)/𝑏) 

 

(29) 

Again, using the loop closure equation, Lopez demonstrates the relationship between x, y and 

ψ𝑖, as shown in figure 3.1.2. The resulting equation is as follows [38]: 

 

 𝑥𝑠𝑖𝑛∅𝑖 + 𝑦𝑐𝑜𝑠∅𝑖 = 𝑏𝑐𝑜𝑠ψ
𝑖
 

 

(30) 

∅𝑖 = (𝑖 − 1)(2𝜋/3) for i = 1, 2, 3. Then, the relationship between ψ𝑖 and 𝛾𝑖 is simply: 

 

 𝛾𝑖 = ψ
𝑖
− 90° 

 

(31) 

Finally a relationship between 𝐽 and 𝑥, 𝑦, 𝑧, 𝜃, 𝛼 needs to be found so that it can be determined 

whether the (𝐽(𝑥, 𝑦, 𝑧, 𝜃, 𝛼)) ≥ 0.4 constraint is satisfied. Equation (32) relates the actuated 

joint variables 𝜃𝑖 for i = 1, 2, 3 to the position of the robot platform point P in the reference 

frame {O}, given by x, y, z. 

 

(𝑥 − (𝑑 + 𝑎𝑐𝑜𝑠𝜃𝑖)𝑐𝑜𝑠∅𝑖)
2 + (𝑦 − (𝑑 + 𝑎𝑐𝑜𝑠𝜃𝑖)𝑠𝑖𝑛∅𝑖)

2 + (𝑧 + 𝑎𝑠𝑖𝑛𝜃𝑖)
2 − 𝑏2 = 0       (32) 

 

For i = 1, 2, 3, and ∅𝑖 = (𝑖 − 1)(2𝜋/3) for i = 1, 2, 3. Equation (32) can be differentiated with 

respect to time (t) to obtain: 
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𝐽𝑥 = [

𝑣1
𝑇

𝑣2
𝑇

𝑣3
𝑇

] 

 

 

(32) 

where 𝑣𝑖 = [𝑥 − (𝑑 + 𝑎𝑐𝑜𝑠𝜃𝑖)𝑐𝑜𝑠𝜑𝑖, 𝑦 − (𝑑 + 𝑎𝑐𝑜𝑠𝜃𝑖)𝑠𝑖𝑛∅𝑖, 𝑧 + 𝑎𝑠𝑖𝑛𝜃𝑖]
𝑇 , 𝑖 = 1, . . ,3. 

Using the relationship 𝐽𝑥𝑋̇ =  𝐽𝜃𝜃̇, where: 

 𝐽𝜃 = −𝑑𝑖𝑎𝑔{ℎ1, ℎ2, ℎ3} 

 

(33) 

Since  𝐽 = 𝐽𝑋
−1𝐽𝜃, we can now use the MATLAB® command svds to determine the maximum 

and minimum singular value of the matrix 𝐽 and, from these values, use the relationship: 

𝜅(𝐽) =  
𝜎𝑚𝑖𝑛(𝐽)

𝜎𝑚𝑎𝑥(𝐽)
 

to determine  if 𝜅(𝐽(𝑋, 𝜃, 𝛼)) ≥ 0.4.  

As each possible cubic workspace is generated, the eight vertices of the cube are checked to 

see if their x, y and z coordinates satisfy the above constraints. In other words, the algorithm 

determines if the robot platform point P is capable of reaching each of the eight vertices. The 

workspace is considered to be valid if all of the constraints are satisfied at all eight vertices. To 

determine the size of the cubic workspace for each α that is generated, a for loop is used to 

decrease r from a sufficiently large value (in the case of the delta robot, this value was chosen 

to be 1) at a step size of 0.01. When all eight vertices of the cube are determined to be valid, 

the algorithm stops the for loop and uses the last, and therefore largest, value of r to calculate 

the volume of the workspace. 

After the workspace of the robot is determined using the dimensions given by the elements of 

α, the algorithm then updates each α according to the search method being used (i.e. CRS or 
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PSO) being used, as outlined in section 3.3 of this chapter. The proposed algorithm will 

terminate when one of the particles in the swarm reaches the optimum value of 0.125.  

3.5 Delta Robot Optimization Results and Discussion 

The above algorithms were implemented and run in the MATLAB® (R2014b) environment. 

The trials were run on a personal computer with an Intel® CoreTM i7-4710HQ CPU @ 2.5 GHz 

and 8 GB of RAM.  

To determine the effectiveness of the proposed algorithm, two separate tests were run. The first 

test was a timed run of the optimization of the parameters using only a PSO algorithm and the 

second test was a timed run of the optimization of the parameters using the proposed combined 

CRS and PSO algorithm. Five trials were run and the results of these tests are presented in 

tables 3.5.1 and 3.5.2. 

Table 3.5.1 PSO only Algorithm Results 

PSO 

Trial Optimum PSO Time a b d 

1 0.125 251.639 0.3884 0.6036 0.0079 

2 0.125 331.065 0.3892 0.6045 0.0063 

3 0.125 331.916 0.4190 0.5747 0.0064 

4 0.125 330.987 0.4176 0.5749 0.0076 

5 0.125 172.752 0.3504 0.6478 0.0018 

Average 0.125 283.672 0.3929 0.6011 0.0060 
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Table 3.5.2 Combined CRS and PSO Algorithm Results 

CRS and PSO 

Trial Optimum CRS Time PSO Time Total Time a b d 

1 0.125 82.611  248.587  331.198 0.4405 0.5524 0.0072 

2 0.125 87.320  177.390  264.719 0.4232 0.5671 0.0096 

3 0.125 85.388  169.372  254.760 0.4354 0.5548 0.0098 

4 0.125 82.598 250.556  333.154 0.3876 0.6042 0.0081 

5 0.125 85.110  0  85.110 0.4506 0.5493 0.0010 

Average 0.125 84.605  211.478  253.788 0.4275 0.5656 0.0071 

*the “Time” is the computation time in seconds, the optimum and the parameters are in units  

For the PSO only algorithm, the computation times ranged from 172.752 s to 331.916 s, with 

an average of 283.672 s, and a standard deviation of 63.469 s. The proposed algorithm had 

total times ranging from 85.110 s to 331.198 s, with an average of 253.788 s, and a standard 

deviation of 90.4035 s. The CRS portion of the proposed algorithm had times ranging from 

82.598 s to 82.611 s, with an average of 84.605 s, and a standard deviation of 1.802 s. The PSO 

portion of the proposed algorithm had times ranging from 0.000 s to 250.556 s, with an average 

of 211.478 s (excluding trial #5) or 169.183 s (including trial #5), and a standard deviation of 

38.205 (excluding trial #5) or 91.233 (including trial #5).  

The results presented in tables 3.5.1 and 3.5.2 show that combining the CRS algorithm with 

the PSO algorithm leads to a faster overall convergence time for the proposed algorithm when 

compared to the PSO only algorithm. On average the total time it took the proposed algorithm 

to reach the optimum of 0.125 was 29.88 s faster than the PSO only algorithm. Furthermore, if 

we compare only the PSO running time of the proposed algorithm to the running time of PSO 

only algorithm, we can see that on average the PSO running time of the proposed algorithm 



51 
 

was 114.49 s faster than the PSO only algorithm. In trial #5 of the proposed algorithm, the CRS 

algorithm reached the optimum within 10 generations, so the PSO algorithm converged 

immediately, which is an unlikely scenario, but it is clearly a possibility and will significantly 

reduce the overall computation time. 

When analyzing the final parameter values for the PSO only algorithm, we can see that a has a 

range of values between 0.3504 and 0.4176, with an average of 0.3929, and a standard deviation 

of 0.0250, b has a range of values between 0.5749 and 0.6478, with an average of 0.6011, and 

a standard deviation of 0.0268, and d has a range of values between 0.0018 and 0.0079, with 

an average of 0.006, and a standard deviation of 0.0022. The proposed algorithm has final 

parameter values for a that range between 0.3876 and 0.4506, with an average of 0.4275, and 

a standard deviation of 0.0218, the values for b range between 0.5493 and 0.6042, with an 

average of 0.5655, and a standard deviation of 0.0202, the values for c range between 0.0010 

and 0.0098, with an average of 0.0071, and a standard deviation of 0.0071.    

While there is some discrepancy between the final parameter values of the proposed algorithm 

and the PSO only algorithm, the standard deviation for all the a values for all ten trials run in 

both algorithms is 0.02913, for b it is 0.0296, and for d it is 0.0028. These standard deviations 

should be considered acceptable when optimizing a problem that is highly non-linear such as 

this. Additionally, the optimum and parameters that the proposed and PSO only algorithms 

found were reasonably similar to those found by Lou et al [25, Table 1]. Any differences in the 

values found by the algorithms used in this project and those found by Lou et al. can be 

explained by slight differences in the step sizes of the workspace, in the objective function, in 

the convergence termination criteria, etc.          

Due to the nature of the problem and the algorithms used, the convergence time of both the 

proposed algorithm and the PSO only algorithm is highly dependent on the suitability of the 
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points that are initially generated at random. This means that the closer the initially generated 

points are to the optimum, the faster the convergence of the algorithm to the optimum. This is 

another reason why the proposed algorithm is more effective than the PSO only algorithm. Due 

to the ability of the CRS portion of the proposed algorithm to converge to the neighbourhood 

of the global optimum, even when the initial points are far from the optimum, the PSO portion 

of the proposed algorithm will rarely have a particle swarm that will not allow it to converge 

to the global optimum. 

It should be noted that the trials shown were the successful trials, but there were a number of 

trials for both algorithms where the optimum could not be reached successfully. It was observed 

that generally the PSO only algorithm failed to reach the optimum more times than the 

proposed algorithm   

3.6 3-DOF Stewart Platform Optimization Introduction 

Now that the proposed algorithm has been found to improve the convergence time when 

compared to the PSO only algorithm, it will now be applied to the problem of optimizing the 

3-DOF Stewart platform. Since the function and purpose of a Stewart platform is much 

different than that of a Delta robot, the parameters that will be used for optimization, as well 

as the optimization problem itself, will be significantly different. Because the purpose of our 

Stewart robot is focused around spraying, which is more related to the orientation rather than 

the translation of the platform, the robot design will be optimized to maximize the orientation 

workspace rather than the translation workspace.  

3.7 Design Problem Formulation 

3.7.1 The Objective Function 

The objective function for this problem is based around the concept of a maximum circular 

trajectory that the robot is capable of following with the normal vector to its top platform. This 
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concept is illustrated in the previous chapter, and specifically figure 2.4.13. In this figure, a 

maximum circular trajectory is highlighted by a red circle. This trajectory is of particular 

importance to our application because it indicates the largest diameter of pipe that the robot is 

capable of spraying. Therefore, for our application, we will seek to maximize the diameter of 

this circle by optimizing the dimensions of the robot. 

In contrast to the Delta robot, the Stewart platform has fewer parameters to maximize. Since 

there is no “elbow” in the legs of a Stewart platform, and each leg is actuated in a linear motion, 

as opposed to the rotational actuation of a Delta robot, it is difficult to optimize the lengths of 

the Stewart platform legs because the lengths of the actuator are constantly changing as the 

orientation of the platform changes.  Therefore, there is no real optimum length for each leg 

because each leg length is dictated by the orientation of the platform.  

Based on the figures in section 2.4, it can be seen that the number of possible orientations, and 

therefore the orientation workspace, is significantly smaller when the leg lengths are near their 

minimum or maximum stroke. Conversely, the number of possible orientations is significantly 

higher when the leg lengths are near the middle of their stroke. As a result of this observation, 

the height of the center of the top platform will be fixed at the middle of the actuators stroke 

during the optimization process. By doing this, the other parameters of the Stewart platform 

can be maximized without having the added computational cost of finding the exact height of 

the robot that yields the maximum orientation workspace.  

Since the leg lengths do not need to be optimized, that leaves only two other parameters: the 

radius of the top plate, R, and the radius of the bottom plate, r. In the same way as the method 

for optimizing the Delta robot, these parameters are grouped together in an array γ, such that: 

𝛾 = [𝑅 𝑟] 
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These parameters will be optimized through the use of the maximum circular trajectory 

objective function that was described above, where r𝑐𝑖𝑟𝑐𝑙𝑒 is the radius of the largest circle that 

the . Therefore, the objective function will be defined as: 

 

 Φ = r𝑐𝑖𝑟𝑐𝑙𝑒 

 

(34) 

3.7.2 The Workspace Constraints 

The constraints that describe the physical limitations of the Stewart platform, as well as how 

these constraints are calculated, were presented and discussed previously in section 2.3. The 

numerical values that were selected are re-stated here: 

 

 𝛼𝑖 ≤ 25° 

 

(35) 

 𝛽𝑖 ≤ 45° 

 

(36) 

 31.75 ≤ 𝑙𝑖 ≤ 41.91 𝑐𝑚 

 

(37) 

 −0.45° ≤ ∆ ≤ 0.45°, where i = 1, 2, 3 

 

(38) 

Two additional constraints are placed on r and R: 

𝑅 ∈ [5,12] cm 

𝑟 ∈ [18,25] cm 

These constraints are placed on these parameters in order to reflect the size constraints that 

would be imposed on a robot design that would be used for spraying pipelines or manholes, 
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this is particularly relevant for the maximum radius constraint of the bottom plate. The 

minimum radius constraint on the top platform is introduced to allow enough area on the top 

plate to mount a hose. Lastly, the maximum radius constraint on the top plate and the minimum 

radius constraint on the bottom plate are imposed so that no parameters are generated that 

would create an unrealistically dimensioned Stewart platform (if the top plate had the same. or 

a similar radius. as the bottom plate).  

3.8 Design Problem 

3.8.1 Optimal Design of the Stewart Platform 

Mathematically, the design problem can be summarized as follows: 

𝑚𝑎𝑥
𝛾

𝛷 = r𝑐𝑖𝑟𝑐𝑙𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝛼𝑖 ≤ 25° 

𝛽𝑖 ≤ 45° 

31.75 ≤ 𝑙𝑖 ≤ 41.91 𝑐𝑚 

−0.45° ≤ ∆ ≤ 0.45°, where i = 1, 2, 3 

𝑅 ∈ [5,12] cm 

𝑟 ∈ [18,25] cm 

3.8.2 Computation 

In order to determine the maximum circular trajectory for each α, a circular trajectory will be 

generated using a for loop with a radius (r𝑐𝑖𝑟𝑐𝑙𝑒) that starts at 30 cm and ends at 0 cm at a step 

size of -0.1. For each circle that is generated, eight points on the circle that are 45° apart are 

stored in a cell array. Using the inverse kinematics that were described in section 2.2 and a 

nested for loop, the platform points (as shown in figure 2.2.1) are calculated for every 
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combination of theta and psi from –π/3 to π/3 at a step size of 0.025 radians. If these platform 

points satisfy the all of the constraints, a normal vector that is located in the center of the top 

plate is generated. Then, if the generated normal vectors intersect each point stored in the cell 

array for the current configuration of the robot given by α, the current r𝑐𝑖𝑟𝑐𝑙𝑒 trajectory is able 

to be followed by the robot and this r𝑐𝑖𝑟𝑐𝑙𝑒 value is the largest trajectory that the Stewart 

platform, dimensioned by the current α values, can follow.   

3.9 Stewart Platform Optimization Results and Discussion 

Again, the above algorithms were implemented and run in the MATLAB® (R2014b) 

environment. The trials were run on a personal computer with an Intel® CoreTM i7-4710HQ 

CPU @ 2.5 GHz and 8 GB of RAM.  

The tests that were used to compare the convergence times between the PSO only and proposed 

algorithm for the Delta robot optimization were again used to test the respective convergence 

times of these algorithms, except this time they were tested on the optimization of the 3-DOF 

Stewart platform. The final termination criteria for both algorithms was the optimum of 26.7 

cm was reached. The CRS portion of the proposed algorithm terminated after 10 generations 

or after the optimum of 26.7 had been reached, whichever came first. The results of the 5 trials 

for each algorithm are summarized in tables 3.9.1 and 3.9.2. 

Table 3.9.1 PSO only Algorithm Results 

PSO 

Trial Optimum PSO Time R r 

1 26.7 2146.704 5.4076 18.8201 

2 26.7 900.242 5.4990 18.3038 

3 26.7 823.75 5.4462 18.9655 

4 26.7 765.502 5.2405 19.0685 
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5 26.7 1786.273 5.4051 18.9892 

Average 26.7 1284.494 5.4000 18.6294 

 

Table 3.9.2 Combined CRS and PSO Algorithm Results 

CRS and PSO 

Trial Optimum CRS Time PSO Time Total Time R r 

1 26.7 557.025 747.858 1304.883 5.0927 18.8052 

2 26.7 260.674 717.547 978.221 5.0364 18.0495 

3 26.7 1254.792 705.721 1960.513 5.6269 18.2005 

4 26.7 438.687 794.547 1278.234 5.1869 18.6000 

5 26.7 710.46 0.000 710.460 5.2052 17.9788 

Average 26.7 653.328 741.418 1246.462 5.2296 18.3268 

*the “Time” is the computation time in seconds, the optimum and the parameters are in cm  

For the PSO only algorithm, the computation times ranged from 765.502 s to 2146.704 s, with 

an average of 1284.494 s, and a standard deviation of 596.996 s.  The proposed algorithm had 

a total time ranging from 710.460 s to 1960.513 s, with an average total time of 1246.4622 s, 

and a standard deviation of 417.981 s. The CRS portion of the proposed algorithm had times 

ranging from 260.674 s to 1254.792 s, with an average time of 653.328 s, and a standard 

deviation of 333.842 s. The PSO portion of the proposed algorithm had times ranging from 

0.000 s to 794.547 s, with an average time of 741.418 (excluding trial #5) or 593.135 (including 

trial #5) and a standard deviation of 34.308 (excluding trial #5) or 298.157 (including trial #5).   

The results show that the total convergence time for the proposed algorithm is, on average, 

38.032 s faster than the PSO only algorithm. If the average time of the PSO portion of the 

proposed algorithm (this average excludes trial #5 where the CRS portion was able to converge 
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to the optimum) is compared to the average time of the PSO only algorithm, the average time 

of PSO portion of the proposed algorithm is 543.076 s faster than the PSO only algorithm. This 

is a significant improvement in the convergence time for the PSO optimization.  

The final convergence parameters had some slight variations between trials and between 

algorithms, which can be attributed to the inherent randomness of the search algorithms. For 

the PSO only algorithm, the final R values ranged from 5.2504 cm to 5.4990 cm, with an 

average of 5.4000 cm, and a standard deviation of 0.0865 cm and the final r values ranged from 

18.3038 cm to 19.0685 cm, with an average of 18.6294 cm, and a standard deviation of 0.3740 

cm. For the proposed algorithm, the final R values ranged from 5.0364 cm to 5.6269 cm, with 

an average of 5.2296 cm, and a standard deviation of 0.2080 cm, and the final r values ranged 

from 17.9788 cm to 18.8052 cm, with an average of 18.3268 cm, and standard deviation of 

0.3217 cm. The standard deviation for all the R values for all ten trials run in both algorithms 

is 0.1806, for r it is 0.3802, which should be considered acceptable in a highly nonlinear 

optimization problem such as this. 

To take advantage of this increase in the speed of the convergence of the PSO algorithm after 

it receives an α that is in the neighbourhood of the optimum, the user would only need to run 

the CRS algorithm at most a few times to find parameters that are in the neighbourhood of the 

optimum. Then the user could choose the best one and then use those parameters to populate 

part of the initial particle swarm, instead of running the CRS algorithm and then the PSO 

algorithm every trial. Since this method has been shown on average to increase the speed of 

convergence of the PSO algorithm, it would certainly lead to a substantial increase in the speed 

of convergence of the PSO algorithm if the CRS algorithm were only used a few times in order 

to find the parameters in the neighbourhood of the optimum, rather than every single trial, 

which is unnecessary. 
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Chapter 4 

Robot Design 

 

4.1 Actuator Types 

While it is possible create a linear actuator by combining a screw, gearbox and motor, it was 

decided that in the interest of time and guaranteed functionality, that a pre-designed and pre-

constructed actuator is the better option in the case of our robot. When selecting which actuator 

to use as the legs for a robot, many different factors need to be considered. Firstly, the size of 

the actuator is among the most important. When considering a pre-constructed actuator, each 

specific application will likely need a different size of actuator, depending on how much linear 

force the actuator will need to produce, how much power is will be available to supply to the 

actuator, the size constraints of the space the robot will be working in and the size constraints 

so that the actuator will fit into the rest of the robot design.  

Since, in the case our robot, the three actuators only need support the weight of the platform 

(include calculation for the weight of the platform and base) during the prototyping phase, the 

linear force that is required of each actuator is not substantial, and, therefore, was not a major 

design consideration. If the prototype moved to the next stage, where it would be used for a 

spraying application, this aspect of actuator selection would gain importance. The reason for 

this is that there will be extra weight of the hose and force of the spray coming out of the hose 

acting on the actuators, which need to be accounted for.  

Since the spraying process is not well defined for this problem, it is difficult to say how much 

of an impact these additions to the robot structure will have. It can be said that the amount of 

force generated by the spraying process, and how much the hose and spray head would weigh, 

is largely dependent on the density of the liquid being sprayed. Intuitively, the denser the liquid, 

the more force required to spray it. This will require a higher pressure within the hose in order 
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to move the liquid and this in turn will require a thicker, and likely more heavy, hose. In 

addition to that, the way in which the liquid is sprayed, as a cone or as a jet, for example, can 

also have an effect on the forces experienced by the platform [39]. 

Another major consideration when selecting an actuator is the type, with the three main choices 

being hydraulic, pneumatic or electric. When deciding which type to use, the advantages and 

disadvantages of each need to be evaluated so that the actuator properties suit the application. 

The main advantage of hydraulic actuators is that, due to the near incompressibility of the liquid 

used to generate the mechanical motion, they can exert a large amount of force, but their speed 

and acceleration is slow. It is also difficult for hydraulic actuators to halt at a certain position, 

due to the inability to maintain an exact amount of fluid flow from the pump to the actuator 

over a period of time.   

Another concern about hydraulic actuators is that the hydraulic fluid could potentially leak out 

of the cylinder, due to damage or deterioration of the actuator. This would, in the case of a 

manhole or pipe spraying process, contaminate a clean water pipe, and potentially effect the 

curing of the spray coating. The inverse problem is also a concern, where water or other 

contaminates could leak into the actuator. Theoretically, all actuators could be sealed against 

contaminants coming into contact with the actuator by wrapping them in a sealing bag. 

However, for the simple reason that such a bag could easily become damaged and allow 

contaminants to come into contact with the actuator, the resistance of each actuator type, as 

well as the effect that the contaminants would have on the normal operation of the actuator, 

should be researched.  

The hydraulic actuator is arguably the most difficult to seal against this type of penetration. 

Furthermore, any presence of contaminants in a hydraulic system is extremely detrimental to 

both performance and the life expectancy of the actuator [40]. Combined, the presence of dirt 
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and water account for 70 to 80 percent of failures in hydraulic systems. Even before the 

contaminates cause a failure of the system, they can cause a myriad of performance problems 

with the hydraulic fluid such as increased compressibility, loss of lubricity and fluid oxidation 

[41]. The effects that water levels in the hydraulic fluid on the lifespan of bearings gives us an 

idea of the catastrophic damage that can be caused. The relative lifespan of the bearings is 

plotted against the water concentration in the hydraulic fluid is shown in figure 4.1.1. 

 

 

In terms of accurately controlling a hydraulic actuator, they typically lack a built-in position 

measuring device which would give the user feedback about the position of the leg at any given 

point in time. Because of this, a separate position measuring device would need to be selected 

and integrated into the system. Even with a position measuring device, hydraulic actuators have 

a lower accuracy, which can be attributed to the varying behaviour of the fluid under different 

operating condition (for example, temperature). Finally, a fairly large pumping system would 

Figure 4.1.1 Relative Lifespan of Bearings vs. Water Concentration in the Hydraulic Fluid [42] 
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be required in order to power three hydraulic actuators, which is impractical for a mobile 

application such as pipe spraying [43].  

 

 

The second possible actuator type is pneumatic. The advantages of this type of actuator are that 

it can quickly respond to a start or a stop command, due to the fact that the power source does 

not need to be stored in reserve for operation and that they have a high working speed and 

acceleration. A property among its disadvantages is that it is difficult to control the position of 

a pneumatic actuator, which is partly due to the fact that air can be compressed, especially 

under high loads, and partly due to the unpredictable behaviour of the air. The unpredictable 

behaviour of the air stems from the fact that the environmental conditions, such as temperature, 

pressure and humidity, can greatly affect the performance of the actuator, much the same as 

the fluid in a hydraulic actuator. Because of the highly variable properties of air, this type of 

actuator is usually used in valve applications, where the accuracy requirement is lower. Another 

disadvantage is the inability of the actuator to support high loads, which again is due to the 

compressibility of air.  

The last five disadvantages for pneumatic actuators are the same as hydraulic actuators: they 

would typically require a separate position measuring device, which would then need to be 

integrated into the system, there is the possibility of the cylinder leaking from damage or 

Figure 2.1.2 Hydraulic Actuator Diagram 
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deterioration (although it would not be as disastrous in terms of contaminating the pipeline 

spraying environment as it was in the case of hydraulic actuator leaking), there is also the 

possibility of environmental contaminates leaking into the cylinder (with similar consequences 

to the lifespan and performance of the actuator) [45], they have difficulty halting at a  certain 

positon, and they would also require a pumping system, which would need to include an air 

compressor. Again, the additional pumping system requirement is not practical for a mobile 

system [46].  

 

 

The last type of actuator that can be considered is an electric actuator. The main advantage of 

this type of actuator are that it can be easily and precisely controlled using PWM waveforms, 

a pre-motor driver and a built-in position feedback device (such as a potentiometer, a feature 

which was lacking in the other actuator types). They do not require a large amount of power to 

operate, when compared to similar sized hydraulic and pneumatic actuators, mostly due to the 

fact that there is no pumping system or compressor required to run the actuator. Additionally, 

Figure 4.1.3 Pneumatic Actuator Diagram [47] 
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electric actuators are able to hold a constant position, which is difficult for the other types of 

actuators to do, even when they lose power. They have the ability to support high loads and 

produce a lot of force, a property which can be further enhanced by using a gearbox with a high 

ratio.  

The disadvantages of this type of actuator are that they generally will not be able to produce as 

much linear force as a comparably sized hydraulic actuator, and they will not be able to 

accelerate as quickly as a pneumatic actuator. They have an additional disadvantage that there 

will be a collection of wires that will need to run from the power supply and the operating 

computer (unless it is battery powered and remote controlled, which probably is not feasible 

given the amount of power required to run the actuators) to the robot. Another concern that is 

related to this disadvantage is that in a wet working environment, such as a water pipe, the 

electric actuator has the potential to short circuit if any wires are not properly protected and 

insulated against water that may be present in the pipe. This is a concern that is not shared by 

the pneumatic actuator or the hydraulic actuator, unless their position feedback device is 

connected to a power supply using wires and not battery powered, which is likely to be the case 

[48].   

Figure 4.1.4 Electric Actuator Diagram [49] 
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4.2 Actuator Selection 

The next step in the selection process is to choose the type of actuator that is most suited to this 

particular design problem, taking into account the respective advantages and disadvantages of 

each type, as detailed in the preceding paragraphs. These advantages and disadvantage for each 

actuator type are summarized in table 4.2.1. 

Table 4.2.1 Advantages and Disadvantages for each Actuator Type 

Actuator Type Advantages Disadvantages 

Hydraulic  Able to exert a large amount 

of force and support high 

loads 

 Low speed  

 Low acceleration 

 Difficult to control 

 Difficult to interface with 

the microcontroller  

 Position measuring device 

typically not built-in 

 Possibility of leaking 

hydraulic fluid 

 External pumping system 

required  

Pneumatic  Able to quickly respond to 

commands 

 High speed 

 High acceleration 

 Difficult to control 

 Difficult to interface with 

the microcontroller  

 Position measuring device 

typically not built-in 

 Possibility of leaking air 

 Inability to support high 

loads and produce large 

forces 

 External pumping system 

required 
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Electric  Accurate control  

 Easy to interface with the 

microcontroller 

 Built-in position measuring 

device 

 No external pumping system 

required 

 Able to support high loads 

and exert large forces 

 Less force than a hydraulic 

actuator 

 Less speed and acceleration 

than pneumatic actuator 

 Wires running from power 

supply and computer to 

robot 

 Possibility of a short circuit 

in a wet environment 

 

The main design considerations when choosing an actuator type for this application are 

summarized as follows: 

 The actuator size (when integrated into the overall robot design) must allow it to fit into 

a design envelope that is defined as a 38.1 cm diameter cylinder, with a height of 50.8 

cm (this design envelope was chosen so that the robot would fit into a typical size 

manhole). 

 The actuator must have a high speed and load rating to weight ratio. 

 The actuator must not leak fluid (hydraulic fluid or air) to contaminate the working 

environment. 

 The actuator must have a position feedback device built-in or it must be possible to 

attach one to the actuator. 

 The actuator must be able to be sealed/resistant against environmental contaminants 

(e.g. dirt, water, etc.). 

 The actuator, its power supply and its pumping apparatus (if required) must be portable. 

 It must be possible to accurately control the actuator with a microcontroller. 
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Table 4.2.2 summarizes the main design considerations that need to be addressed when 

choosing the actuator type, and how well each actuator type fulfills each criteria. Each design 

criteria is weighted in importance from one to seven, and each actuator type is given a rating 

of one, two, or three, correspond to how well it fulfills that design criteria. A rating of one 

means that it fulfills the criteria very well, a rating of two indicates that it somewhat fulfills the 

criteria or it is possible for that type to fulfill the criteria, but there are better options, and a 

rating of three indicates that it is not able to fulfill the criteria. 

Table 4.2.2 Design Criteria and Ratings for each Actuator Type 

  Actuator Type 

Importance Design Criteria Hydraulic Pneumatic Electric 

1 Size 1 1 1 

2 Portable power supply and pumping 

apparatus 

3 2 1 

3 Accurate control 2 3 1 

4 Built-in feedback 3 3 1 

5 High speed/load to weight ratio 2 1 1 

6 Sealable/resistant to environmental 

contaminations  

1 1 1 

7 No fluid/air leak 3 3 1 

  

After considering the advantages and disadvantages of each prospective actuator type, as well 

as the main design considerations, it is clear that the type of actuator most suited to this 

application is the electric actuator. This decision is mainly based on the lack of portability of 

hydraulic and pneumatic actuators, due to the external pumping system required. Also of high 

importance when deciding which actuator type to choose was the low accuracy of a hydraulic 

and a pneumatic actuator when compared an electric actuator, as well as the lack of a built-in 

position feedback device on a hydraulic or pneumatic actuator. Also, implementing a hydraulic 

or pneumatic pumping system is a very involved, potentially messy and expensive undertaking 
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which was not viable for this project. Now that it has been decided that an electric actuator is 

the type that is most suited to this application, it is important to have a general overview of all 

of the components that make up the robot: the actuators, the DC motor controllers, the 

microcontroller and the power supplies. Each of these different parts of the electrical system 

need to be researched, evaluated and procured, in order to have the entire robot design function 

as efficiently and accurately as possible. Figure 4.2.1 shows a block diagram of the entire 

system, as well as the specific function of each component.   
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Figure 4.2.1 Overview of Electrical System Components for a 3-DOF Stewart Platform 
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Starting from the top of figure 4.2.1, the microcontroller is the part of the robot that is 

programmed to control the actuators through a PWM wave output and a position feedback 

input from the potentiometers attached to each actuator. The PWM wave is used by the DC 

motor controller to output a current to each of the actuators. This current controls the direction 

and the speed of the actuator arm. The 12 V power supplies provide the power to each of the 

DC motor controllers so that they can output the appropriate current. Although it is not shown 

in the figure, the microcontroller is powered and programmed through a USB cable connected 

to a computer. This USB cable connection is not shown because the microcontroller can run 

without it after it has been programmed, as long as it has an adequate power supply. Section 

4.3 deals with the selection and design of the electrical system, which includes a discussion of 

the selection criteria for the specific actuator model, the DC motor controller and the power 

supply. Section 4.4 details the criteria and selection process for the microcontroller.  

4.3 Electrical System Design 

Once it was determined that the electric actuator was the type of actuator most suited to this 

application, one needed to be chosen with the proper dimensions (including an adequate stroke 

length), sufficient speed and load capabilities, a built-in position feedback device and a voltage 

and power supply requirement that could be provided for in a laboratory setting (preferably 

less than 24 Volts and 100 Watts). After thoroughly researching the available electric actuators 

and consulting with the university machine shop, the actuator that satisfied all of the above 

requirements was the Thomson Electrak 1 (SP12-09A-04). The dimensions of this actuator can 

be seen in figure 4.3.1 and a 3-D Solidworks model of the actuator can be seen in figure 4.3.2. 

The stroke length (S) for the SP12-09A-04 model is 10.16 cm and the retracted length (A) is 

31.75 cm 
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With a retracted length of 31.75 cm and a maximum height design requirement of 50.8 cm, this 

leaves at least 19.05 cm of additional height before the maximum is reached, and in reality 

more because the actuator is not mounted vertically in the robot design. This difference is 

available to allow for other parts of the robot, such as the platform and base plates. 

Additionally, the anchor points of the actuator to the platform and base are located a small 

distance below or above the plates, respectively, in order to allow for movement of the actuator 

Figure 4.3.2 Thomson Electrak 1 3-D Solidworks Model 

Figure 4.3.1 Thomson Electrak 1 Schematic [50] 
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without the actuator contacting the plates. This distance between the actuator anchor points and 

the plates means that there is more height added to the overall robot design that needs to be 

taken into account. In addition to that, the maximum stroke length of this actuator is 10.16 cm, 

which, by running the simulations described in chapter two of this thesis, was found to be a 

sufficient stroke length to allow the platform to be oriented at all the angles which would allow 

it to spray in the circular trajectory that was specified in the same chapter. Therefore, this 

actuator size is ideal for the design envelope that was specified and meets the size requirement 

without difficulty. 

One additional feature about the construction of this actuator that was not necessarily a major 

part of the selection criteria, but is nonetheless beneficial to the design, is that there are anchor 

holes on the bottom of the actuator housing and the top of the actuator arm. This feature 

certainly saved time when designing and constructing the robot because it provided a simple 

solution to finding a way to connect the actuator to the platform and the base plates. There was 

no need to design or construct special anchors or connector because they were already included 

in the actuator design itself. These anchor holes also provide a very sturdy connection that 

prevents against any sliding or backlash of the actuator, which is especially important during 

the operation of the robot to ensure as high a degree of accuracy as possible.   

The Thomson Electrak 1 SP12-09A-04 requires a 12 VDC power and has a maximum current 

draw of 5.6 A. This means that the maximum amount of power that could be required of the 

power supply is 67.2 W, although during normal operation the power requirement would be 

less than this. Although there are many power supplies available that meet the voltage and 

power requirements, the MW126 power supply (shown in figure 4.3.3 and 4.3.4) was selected 

for this project, and will be used as an example to demonstrate the portability of lower voltage 

power supplies. The reason it was chosen is because it was readily available from the university 

electronics shop, and because it is easy to connect and incorporate into the robot design (three 
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identical power supplies were incorporated into the robot design – one for each actuator). This 

power supply has a voltage rating of 13.8 VDC and a current rating of 6 A, both of which 

satisfy the requirements to power the actuator.  The dimensions of the power supply are 165 x 

122 x 236mm (W x H x D) and the weight of the power supply is 9 lbs. Due to the relatively 

light weight and compact dimensions of this power supply, which mean that it is very portable, 

thus satisfying the second design requirement.  

 

The third design requirement is related to the fourth design requirement because the actuator 

cannot be accurately controlled without a position sensing feedback device. These 

requirements could be considered to be of equal importance, however, the built-in feedback 

Figure 4.3.4 MW126 Power Supply (Top/Side View) 

Figure 4.3.3 MW126 Power Supply (Front View) 
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device requirement is ranked lower because it is possible to add a feedback device into the 

robot design, in the case where the actuator does not have one built in. Nevertheless, choosing 

an actuator that lacked a built-in feedback device added unnecessary additional steps to the 

design process. These steps would consist of researching, procuring and subsequently 

integrating the feedback device into the system.  For this reason the decision was made to select 

the SP12-09A-04 rather than the S12-09A-04 version of the Thomson Electrak 1, which 

includes a built-in potentiometer to receive a length feedback from the actuator.  

Although the positon feedback device is required to accurately control the actuator, a brushed 

DC motor controller is also a necessity, in order to easily and precisely control the actuator 

motor at variable speeds. After researching different types of DC motor controllers such as the 

Jaguar, the Victor 888, and the Talon SR, as well as multiple consultations with the university 

electronics shop, the Talon SR motor controller (pictured in figure 4.3.5) was selected due to 

compact size (6.93 cm x 4.82 cm x 2.92), small deadband (4%) and linear performance curves. 

This DC motor controller, when used in conjunction with the built-in positon feedback 

potentiometer, and a microcontroller (which will be discussed in the next section), provide the 

hardware basis for an accurately controllable electric actuator.  

Figure 4.3.5 AndyMark Talon SR Speed Controller [51] 
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The graphs shown in figures 4.3.6 and 4.3.7 were the result of Motor Controller testing at the 

Whirlpool Motor Lab [52].  

The setup for the test, according to the Whirlpool Motor Lab staff, was as follows. 

 CIM motor mounted on test stand and connected to dynamometer and motor controller 

 Dynamometer connected to PC with dynamometer control and data collecting software 

 Motor Controller connected to FRC battery, CIM, and PWM motor command signal 

generator 

The test procedure is as follows: 

 Set dynamometer to zero load  

 Set PWM command signal to fixed value  

 Automatically ramp up dyno load while automatically collecting speed and torque data 

at 10 samples/sec  

 

Figure 4.3.6 Talon SR motor controller CIM motor RPM vs PWM test results, courtesy of 
Whirlpool motor lab 
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From the graphs in figures 4.3.6 and 4.3.7, we can see that the Talon motor controller generally 

produces a fairly linear RPM response in the motor during varied load torque and constant 

PWM pulse widths, particularly with higher PWM pulse widths (1.95 ms and above, as seen 

in figure 4.3.7). The RPM response is also linear when the torque load is constant and the PWM 

pulse width is varied. These results are important for this application because the loads on the 

actuators are constantly varying due to the varying loads experienced by the actuators at 

different orientations of the platform. The variable loads are made to vary further by the 

constantly changing forces from the spraying process, which could be caused by pressure 

changes in the spray hose or a pause in the spraying process.  

Due to the nature of spraying applications, high forces on the actuator legs are not expected. 

The goal of designing a spray platform is to make the spray head platform, and any connected 

hoses that deliver the spray itself, as mobile and lightweight as possible, while maintaining the 

accurate positioning of the platform. Therefore, the main loads experienced by the actuator legs 

Figure 4.3.7 Talon SR motor controller CIM motor RPM vs load torque test results, courtesy of 
Whirlpool motor lab 
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comes from the weight of the platform, which should be designed to be lightweight, thereby 

resulting in a relatively small load on the actuators. It is assumed that reactionary forces 

resulting from the spraying process are small. However, while determining the magnitude of 

these forces is outside the scope of this project, they must be determined once the spraying 

process has been designed. Obviously, the actuators must be selected to ensure they are capable 

of operating under such loads, including high loads momentarily.  

The specifications for the Thomson Electrak 1 SP12-09A-04 state that the maximum dynamic 

load that is supportable by the actuator is 25 lbs. While supporting a 25 lb load, the speed that 

the actuator can move is 5.08 cm/sec. The maximum static load that the actuator can support 

is 250 lbs. Additionally, The no load speed is given as 7.62 cm/sec. Since there will always be 

a load on the actuators from the fluid being sprayed or the weight of the platform itself, we can 

expect, during normal operation, that each actuator will operate at a speed somewhere between 

7.62 cm/sec and 5.08 cm/sec.  

Although the spraying problem is not well defined for this application, it is very unlikely that 

the above specifications will be exceeded, or not be sufficient, at any time during the spray 

process. Conceivably, an actuator could move too slowly to spray effectively, due to the forces 

being caused by spraying the fluid, or be unable to move at all, either because the liquid is too 

viscous or because it is being sprayed at too high of a velocity. However, it is important to keep 

in mind that one of the strengths of a Stewart platform design is its rigidity, which owes to the 

fact that the forces experienced by the platform are distributed between three or more platform 

legs.  

While the force distribution to the legs may differ based on the configuration of the platform, 

the design itself certainly ensures that the maximum dynamic load that the robot is able to 

support is higher than the 25 lbs of each individual actuator. Since each actuator individually 
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weighs approximately 1.5 lbs, they have an acceptable speed to weight ratio of 3.387 cm/s/lb 

at the maximum dynamic load of 25 lbs, which again would be higher when considering the 

combination of the three actuators. They also each have a high dynamic load to weight ratio, 

which is 16.67.  

The sixth constraint deals with the resistance/sealability of the actuator against environmental 

contaminants, most commonly dirt and water. In order to make the design more robust to these 

contaminants, however, an actuator should be selected which is already resistant to 

environmental contamination, in case the sealing bag is damaged and contaminants come into 

contact with the actuator [53]. According to the Thomson Electrak 1 manual, these actuators 

are “weather protected for use in outdoor applications.” Weather protection would provide 

protection against contaminants, such as rain and dirt, which would be similar to the types of 

contaminants that the actuators would be exposed to in an underground water pipeline. For this 

reason, it can be safely assumed that the actuator should be well protected against the 

environmental contaminants that it would be exposed to in an underground pipeline.  

The seventh, and final, constraint states that the actuator should not leak fluid that could 

potentially contaminate the environment. This criteria is generally not of concern in the 

selection of an electric actuator because there is not a large amount of fluid that is associated 

with its use, as there would be in the case of a hydraulic actuator. The only fluid in electric 

actuator is any fluid used to lubricate the actuator arm, which is a very small amount and of no 

concern in this application.  

When using a hydraulic actuator, however, there is a reasonably high risk that the actuator will 

leak hydraulic fluid into the environment and lead to contamination. This is of particular 

importance in a spraying application where any leaked hydraulic fluid could react with the 

spray coating and interfere with its curing process. Additionally, the pipes being repaired will 
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be used again for transporting clean water, in some cases, and any fluids that remain in the pipe 

after the repair process (even if they did not interfere with the curing process of the spray 

coating) could contaminate the clean water supply. This constraint alone effectively eliminates 

the possibility of using hydraulic actuators in this robot design, and was one of the constraints 

that could only be satisfied by using pneumatic or electric actuators.  

In summary, the main reasons for choosing the Thomson Electrak 1 SP12-09A-04 are: 

 The size of the actuator (retracted length of 31.75 cm) satisfies the design requirement 

of a 50.8 cm maximum height of the robot 

 The portability of the power supply design requirement is satisfied because the 

Thomson Electrak 1 SP12-09A-04 requires a 12 VDC power and has a max amp draw 

of 5.6 A, both of which can be provided by a relatively small and portable power supply 

 Each Thomson Electrak 1 SP12-09A-04 actuator has an acceptable speed to weight and 

dynamic load to weight ratio of 3.387 cm/s/lb and 16.67, respectively, at a maximum 

dynamic load of 25 lbs 

 The Thomson Electrak 1 SP12-09A-04 actuators are weather protected for use in 

outdoor applications, thus satisfying the environmental contaminants resistance design 

requirement 

4.4 Microprocessor Selection 

The microprocessor selection process was somewhat more straightforward than the actuator 

selection, due to the fact that there are many microcontrollers available from many different 

companies which were all capable of performing the tasks that were required by this project. 

While slightly oversimplified, the basic requirements of microcontroller are as follows: 
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 Simultaneously output three separate, and variable, pulse width modulation (PWM) 

waves on three different channels, in order to control the actuator motor speed and 

direction 

 Receive and convert three separate analog values from the built-in potentiometer in 

each actuator on three separate analog to digital (A/D) conversion channels 

 Be able to perform both of the above requirements at a high speed in real-time  

The F28377D Delfino Experimenter Kit (pictured in figure 4.4.1) featuring the C2000 Delfino 

TMS320F28377D microcontroller was selected because it fulfilled all of the requirements for 

the microcontroller with the additional feature of having four ADCs. The key specifications of 

the C2000 Delfino TMS320F28377D Table 4.4.1.       

Table 4.4.1 Specifications Summary for the F28377D Delfino Experimenter Kit 

 TMS320F28377D 

CPU Frequency (MHz) 200 

RAM (KB) 204 

Flash (KB) 1024 

PWM (# of channels) 24 

ADC (# of modules) 4 

ADC resolution 16-bit/12-bit 

ADC Conversion Time (ns) 286 (12-bit) 

910 (16-bit) 

A/D (# of channels) 24 (12-bit) 

12 (16-bit) 

IO Supply (V)  3.3 

Operating Temperature Range (°C) -40 to 105 
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Now that all of the components that the robot will be comprised of have been chosen, a block 

diagram is again shown in figure 4.4.2 with all of the parts listed in their respective block.  

  

Figure 4.4.1 F28377D Delfino Experimenter Kit [54][55] 
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Figure 4.4.2 Electrical System Components for a 3-DOF Stewart Platform with all Parts Listed 
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Chapter 5 

Circular Trajectory Implementation 

 

This chapter will discuss how the circular trajectory was implemented using the Delfino 

TMS320F28377D microcontroller in the C language environment, the experimental set-up and 

how the platform orientation data will be extracted using image processing techniques from 

several videos.  

5.1 Description of Implementation Code  

In order have the platform normal vector travel in a circular trajectory, we first need to find the 

orientation of the platform in terms of ψ (roll), θ (pitch) and ∅ (yaw), in degrees for a specific 

number of points. The higher the number of points for the defined trajectory in each array, the 

smoother the trajectory will appear. Seventeen points was selected as the optimum number 

giving a smooth trajectory, while taking into account the time that it takes to find and code each 

trajectory. To find the numbers that need to be coded into the array (i.e. the leg lengths for each 

orientation), a separate MATLAB® script file was used that accepts the ψ, θ, and ∅ values in 

radians and returns the leg lengths in inches.  

The code is written in the programming language C, and programmed in the RAM memory of 

the Delfino microcontroller. The user can control the lengths of each actuator leg by hardcoding 

(which were calculated separately and prior to running the program on the microcontroller, as 

described in the above paragraph, in order to reduce computing time) the leg lengths (in inches) 

into three separate arrays: L1Array, L2Array and L3Array. The index to each array (Index1, 

Index2 and Index3) are initialized at 0 and increment by 1 after all three legs have reached the 

leg length specified in their array. When each leg reaches its specified length for that index, a 

time is recorded using the CPU timers on the Delfino microcontroller. From these times, the 

program can determine if all three legs have reached their specified lengths for that index 
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number, and which was the last leg to reach its length. Once the last leg has reached its specified 

length, all three indices increment at the same time so that each leg begins to move to the next 

leg length specified by their array at the same time. The digital value for each length is given 

by the following equations: 

 

 𝐿1𝐷𝑖𝑔𝑖𝑡𝑎𝑙 =  −515(𝐿1𝐴𝑟𝑟𝑎𝑦[𝐼𝑛𝑑𝑒𝑥1]) + 4025 

 

 (39) 

 𝐿2𝐷𝑖𝑔𝑖𝑡𝑎𝑙 =  −501(𝐿2𝐴𝑟𝑟𝑎𝑦[𝐼𝑛𝑑𝑒𝑥2]) + 4105 

 

(40) 

 𝐿3𝐷𝑖𝑔𝑖𝑡𝑎𝑙 =  −478(𝐿3𝐴𝑟𝑟𝑎𝑦[𝐼𝑛𝑑𝑒𝑥3]) + 4061 

 

(41) 

These equations were calculated by measuring the stroke length of each leg at every 0.5 inches 

from 0 inches to 4 inches and then plotting the results in Microsoft Excel and using the equation 

that results from the linear line of best fit function. Since the actuators stroke length always 

starts at 0 inches, the first leg length always requires the actuator stroke to increase. Once it 

reaches its specified value, that value is stored as the last actuator length. Then, based on 

whether that stored number is greater or less than the next value in the array, the actuator moves 

forward or backward, respectively. The actuator length is controlled by the microcontroller 

PWM outputs. A pulse width that is more than 1.111 ms lengthens the actuator (drive motor 

runs clockwise), while a pulse width less than 1.111 ms shortens the actuator (drive motor runs 

counter clockwise). When the pulse width equals 1.111 ms, the actuator stops.  

To ensure accurate control, the ADCs are continually updating the position of the actuator 

using the position feedback potentiometer signals being given to the microcontroller through 

the A/D channels. The process of all three legs reaching their specified length for the index 

number, and then subsequently incrementing the index number, is repeated until the last value 
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in the array is reached, at which point all three legs return to a stroke of zero inches. The 

program is then run using the debugger in CCS as many times as required. It can also be run 

independently from the computer as long as the microcontroller has adequate power.  

5.2 Experimental Set-up 

The Stewart platform is placed on top of the desk and is connected as shown in figure 5.2.1. 

Each actuator leg is connected to its respective DC motor controller, all of which are mounted 

on a chassis that can be seen near the middle of the desk. These motor controllers are connected 

their respective DC power supply. Each PWM signal is delivered to the DC motor controller 

through a hobby cable (pictured in figure 5.2.1 with the red, white and black wires) connected 

into the top of motor controller. The PWM signals originate from the pins on microcontroller 

and are connected to the hobby cables through the breadboard. Five volts is applied across each 

potentiometer through connections on the breadboard and the potentiometer is connected to the 

corresponding A/D pin on the microcontroller.  There are two USB cables that are connected 

to the computer: one powers the microcontroller with five volts and the other connects it to the 

computer so that it can be programmed. 

To determine the orientation of the platform, a circular piece of paper with 8 different colored 

lines was taped to the top of the robot, as seen in figure 5.2.2. A Logitech HD webcam C525 

was connected to an arm as shown in figure 5.2.3. The arm was clamped to the desk to lessen 

any vibration that would be transferred from the arm to the webcam while the robot was 

running. Videos of the platform were taken from a top down view so that they could later be 

processed to extract the orientation of the platform while the circular trajectory code was 

running.   
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Figure 5.2.1 Experimental Set-up before Arm and Orientation Paper Added 

Figure 5.2.2 Experimental Set-up with Side View of Webcam and Arm 
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5.3 Experimental Results 

Using the experimental set-up that was described in section 5.2, several videos were recorded 

of the platform normal vector following two different circular trajectories: one where there is 

an approximately 10° angle between the platform normal vector and the z-axis, and one where 

there is an approximately 20° between the platform normal vector and the z-axis. From these 

Figure 5.2.3 View of Entire Experimental Set-up after Orientation Paper and Arm Added 

Figure 5.2.4 Close-up View of Orientation Paper 
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videos, it has been qualitatively verified that the platform normal vector does follow these 

trajectories. In order to quantitatively verify the trajectories, an algorithm will need to be 

developed that is able to determine the actual orientation of the platform as it reaches each of 

the seventeen desired orientations programmed into the arrays. This algorithm will discern the 

orientation of the platform based on the apparent changes in the lengths of the different colored 

lines that can be seen in the videos as the platform follows the trajectories. Once the actual 

orientation is known, the actual location of the platform joint centers (  𝑝𝑖⃑⃑⃑ ⃑ 
𝑃 = [𝑝𝑖𝑥  𝑝𝑖𝑦  𝑝𝑖𝑧]

𝑇
) 

can be calculated using inverse kinematics. Subsequently, the error can be determined between 

the desired platform joint center locations and the actual platform joint center locations. From 

this error, the accuracy of the platform can be quantitatively verified.   
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Chapter 6 

Conclusions and Future Work 

 

This chapter summarizes the work done during the course of this project. Also included is a 

discussion of the results, the implications of these results, as well as ideas for future work and 

where the project can be taken from this point on.  

6.1 Summary of Project and Conclusions 

At the beginning of this thesis, four research goals were listed: 

1. Develop a Stewart platform through optimization techniques and by analyzing its 

kinematic properties. 

2. Improve the speed and efficiency of existing optimization algorithms. 

3. Research and choose the components that are most suited to the conditions and 

application of a pipeline spraying robot. 

4. Build a 3-DOF Stewart platform prototype so that the trajectory path can be tested. 

6.1.1 Summary of Parameter Optimization  

An algorithm was proposed that uses a combination of the CRS algorithm to quickly find 

parameters that are in the neighbourhood of the optimum, and then use those parameters to 

speed up the convergence of the PSO algorithm by partially populating its swarm with those 

values. This proposed algorithm was first tested by optimizing a Delta robot so that it had the 

maximum workspace volume. The Delta robot was chosen because it is a parallel robot, but it 

has a simpler design than a 3-DOF Stewart platform. Five trials of the optimization were run 

using a PSO only algorithm and then another five trials were run using the proposed algorithm. 

The results of these trials were compared and it was found that the proposed algorithm 

converged to the optimum significantly faster overall than the PSO only algorithm.  
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Once the effectiveness of the proposed algorithm had been verified by optimizing the 

parameters of the Delta robot, five trials of optimizing the Stewart platform were run using the 

PSO only algorithm, and five trials of optimizing the Stewart platform were run using the 

proposed algorithm. Since the focus of this project was to develop a Stewart platform capable 

of delivering a spray coating in a circular trajectory, a different objective function had to be 

devised rather than simply maximizing the workspace volume, because the 3-DOF Stewart 

platform has only one translational DOF. Therefore, an objective function was created that 

maximized the radius of the largest circular trajectory that the Stewart platform was capable of 

spraying for each base and  top plate radius that were generated. When the results of the trials 

were compared, it again showed that the proposed algorithm decreased the total time it took 

for it to converge when compared to the PSO only algorithm. An especially important result 

was that the convergence speed of the PSO portion of the proposed algorithm was significantly 

faster than the convergence speed of the PSO only algorithm.    

6.1.2 Summary of Robot Design  

This chapter described the selection process for the individual components that comprise the 

robot. The first major component selected was the actuator. It was decided that an electric 

actuator would be the most suitable type of actuator for this application predominantly because 

of its accuracy, controllability, built-in position sensor, portability, robustness and sealability 

against environmental contamination. Specifically, the Thomson Electrak 1 SP12-09A-04 was 

chosen because it included aforementioned features, and its dimensions allowed it to be easily 

integrated into the robot design envelope. The Talon SR speed controller was chosen as the DC 

motor controller based on its performance graphs, and the MW126 power supply was selected 

because of its portability and its adequate power output.  
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The second major component selected was the microprocessor, and this subsection is intended 

to be used as a guide for future projects that require the selection of a microprocessor based on 

a certain application. Three different microprocessor were tested at different parts of the design 

process. The Motorola 68HC12 was the first to be tested, but it suffered the drawbacks of 

having too few PWM output channels, a single ADC and it is programmable only in assembly 

language. The second microcontroller tested was the TMS320F28027 Piccolo microcontroller. 

This microcontroller was found to have difficulty with simultaneously sampling and converting 

the three positon signals from each of the potentiometers on the actuators.  

Finally, the Delfino TMS320F28377D microcontroller was chosen. It featured four ADCs and 

it did not encounter the same problems with simultaneous signal sampling that were 

experienced with the Piccolo microcontroller. Therefore, this microcontroller was chosen as 

the one to be used in the robot prototype.  

6.1.3 Summary of Trajectory Implementation  

Two circular trajectories were implemented in the code that controls the Stewart platform 

prototype: one where there is an approximately 10° angle between the platform normal vector 

and the z-axis, and one where there is an approximately 20° between the platform normal vector 

and the z-axis. In order to determine how well the platform is able to follow these circular 

trajectories, several videos were recorded where a top down view of the colored lines taped 

onto the platform can be seen. From these videos, it has been qualitatively determined that the 

platform normal vector is able to follow the circular trajectories. However, an algorithm still 

needs to be developed that is able to extract the orientation of the platform at each of the 

seventeen desired orientations in the arrays. This algorithm will determine the actual 

orientation of the platform at each index in the array based on the apparent change in the length 

of the colored lines that can be seen in the videos of the platform running through the 
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trajectories. Once the orientation at each index has been determined, the inverse kinematics can 

be used to calculate the each of the three platform joint centers. An error can then be calculated 

between the desired platform joint centers and the actual platform joint centers to quantitatively 

assess the accuracy of the Stewart platform prototype.  

6.2 Recommendations for Future Work 

There are many possibilities for future projects to build on the work present in this thesis 

because there are many different aspects of designing and optimizing a Stewart platform (or 

any robot for that matter) that still need to be explored, and there are still many diverse 

approaches to this design problem that are being proposed by researchers around the world. 

Since there were two distinct, but related, parts to this master’s project, one of which being the 

proposed optimization algorithm and the other being the design and development of the 3-DOF 

Stewart platform, there are also two different directions that any future projects could take.  

The proposed algorithm that combines the CRS algorithm and the PSO algorithm was shown 

to increase the convergence of the parameter optimization problem to an optimum workspace 

value and an optimal spraying trajectory radius value in the delta robot and the Stewart 

platform, respectively. Although both of the optimization problems that were used to test the 

proposed algorithm dealt with robot parameter optimization, that doesn’t mean that this 

algorithm only performs well on problems of this type. Further research could be conducted 

into determining how well this algorithm performs when trying to find the optimum in other 

constrained or unconstrained problems. In addition to that, further research could be could be 

conducted into optimizing the algorithm itself by refining the code so that it runs more 

efficiently, or by further experimentation with the constant values (such as K1 and K2 in the 

CRS algorithm and c1 and c2 in the PSO algorithm) and how the initial PSO matrix is populated 

by the results of the CRS algorithm so that the proposed algorithm will converge even faster. 
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As discussed in section 5.3, an algorithm still needs to be developed that is capable of extracting 

the orientation of the platform from each video based on the apparent changes in the length of 

the colored lines that can be seen on the top of the platform. After the accuracy of the trajectory 

has been verified, the logical next step for the Stewart platform prototype would be to mount a 

spray head to the top plate. Once the spray head is attached to the top plate, further tests can be 

performed regarding how accurately the platform is following the circular trajectory of the 

spray path. By adding the spray head, the dynamics of the coating flowing through the spray 

head, as well as the stiffness of the hose connected to the spray head, is added to the kinematic 

problem that was tested in this master’s project. It is likely that a PID controller will need to be 

incorporated into the code that implements the circular trajectory, in order to improve the 

accuracy of the Stewart platform now that the spray head has been added. Additionally, the 

implementation code should be expanded to include a section that would give a robot operator 

the ability to manually control the spray head of the robot (with a joystick, for example). This 

feature would give the operator the ability to direct the robot to spray an additional amount of 

coating in the larger holes, which wouldn’t normally receive enough coating to fill them in 

during the automated spray process.   

Another facet of the design that would need to be developed prior to testing this robot in the 

field would be the delivery system of how the robot is delivered into the pipeline or manhole 

and also how it moves through the pipeline or manhole so that it is able to spray it from 

beginning to end. This was not the focus of this project, but, nonetheless, some ideas about a 

possible delivery systems were discussed at points during the development of the Stewart 

platform prototype. Since there would need to be a hose attached to the robot to supply the 

coating fluid to the spray head, this hose could be stiff enough that it would be possible to push 

the robot through the pipe using the hose. Another more complicated, and costly idea, was to 

design a serial manipulator arm that would be attached to the base of the Stewart platform robot 
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and it could be delivered more accurately using the arm. This first option is more suited to 

delivering the robot into a pipeline, while the second option is more suited to delivering the 

robot into a manhole.  

Once the accuracy of the robot with the spray head is confirmed and the delivery system 

designed and integrated into the robot design, the final step in the testing process would be a 

field test where the robot is tested in an actual pipeline or manhole (or first in a pipe cut-out 

with similar environmental conditions). If the field test is successful the robot and all 

supporting equipment (computers, power supplies, spray hose, delivery system, etc.) would 

need to be integrated into a large truck so that it could be easily transported to and from each 

worksite. 
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Appendix A – Microprocessor Selection  

This section gives a detailed description of the selection process for a microprocessor that is 

suitable for controlling the robot actuators to achieve the circular trajectory required for the 

spraying process. The amount of detail that is given is intended to give the reader insight into 

the selection process to such a degree that this section can also be used as a tutorial for any 

future students who are undertaking a similar design process. I personally found that there was 

generally a lack of information regarding the selection process of the components that made up 

the robot and the microprocessor selection in particular, and I hope that the inclusion of this 

section will at least provide a starting point for those future students.  

The Motorola 68HC12 microcontroller mounted on a platform (shown in figure A.1)  with a 

built-in user controlled potentiometer, a breadboard, input/output rings, and other components 

that were not used for this project, was used to test the performance of the DC motor controllers 

and the actuators. This microcontroller was readily available from the university electronics 

shop and was ideal to use as a starting point to gain a better understanding of how the PWM 

wave controlled the motors, specifically the frequency and the duty-cycle that are required to 

achieve an acceptable movement speed of the actuator. This was performed by controlling the 

duty cycle of a PWM wave with the user controlled potentiometer. The user controlled PWM 

wave output is connected to the DC motor controller which causes the actuator to move forward 

or backward at a speed controlled by the user, or stop.   
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Although the use of the 68HC12 microcontroller was a good starting point for learning how to 

integrate all of the components and control the actuator, this microcontroller has many 

drawbacks that prevented it from being used in the later stages of the robot prototype 

development. The first and most important drawback for this microcontroller is that it does not 

have the required amount of PWM channels to control all three actuators at once. The second 

drawback is that it only has one analog to digital converter (ADC), which could potentially 

cause a significant delay between the actual position of the actuator arm and the last value that 

the ADC converted. This delay is the result of the difference in the time that it takes for the 

sample to be taken, and the conversion to occur. This delay is normally not significant, but 

when there are three actuator arm position values constantly needing to be converted, and only 

one can be done at a time, the delay can be significant enough to cause errors in the feedback 

loop. 

The final major drawback is that the 68HC12 microcontroller is programmed using assembly 

language. This drawback is more of a personal preference for the person programming the 

Figure A.1 68HC12 Microcontroller mounted on Platform 
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microcontroller, but some programmers prefer using a high-level programming language. 

Although there are applications for using assembly language, many newer microcontrollers use 

a high-level programming language compiler, and come with sample code for PWM wave 

generation and ADC conversions, on which the programmer can base their code.  

Newer microcontrollers typically allow the user to easily specify the frequency and duty cycle 

of the PWM, or how quickly the ADC channels are sampled, and which ADC channels are 

sampled. With these newer microcontrollers, you can simply configure the PWM wave and 

ADC for your particular application without having to build the code from the ground up, 

meaning that less time is spent writing the code, and more time spent on optimizing the code. 

A second microcontroller, C2000 Piccolo Launchpad, was chosen (shown in figure A.2). The 

C2000 Piccolo Launchpad uses the Piccolo TMS320F28027 microcontroller, and the 

specifications most relevant to this project are summarized in Table A.1.  

Table A.1 Specifications Summary for C2000 Piccolo Launchpad 

 TMS320F28027 

CPU Frequency (MHz) 60 

RAM (KB) 12 

Flash (KB) 64 

PWM (# of channels) 8 

ADC (# of modules) 1 

ADC resolution 12-bit 

ADC Conversion Time (ns) 217 

A/D (# of channels) 7 (12-bit) 

IO Supply (V)  3.3 

Operating Temperature Range (°C) -40 to 105 
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As we can see from table A.1, the requirements for the project are exceeded by this 

microcontroller. To control the speed and direction of the actuator motors, only three PWM 

channels are required, and the Piccolo microcontroller has eight. To receive feedback from 

each of the three potentiometers built into the actuators, three A/D channels are required, and 

the Piccolo microcontroller has seven. The resolution on the channels is also more than required 

for accurate control, with a resolution of 12-bits.  

The main reason for choosing this microcontroller is that it was inexpensive and easily 

incorporated into the robot design. To program the microcontroller, it first needs to be 

connected to a computer via a USB cable, and then programmed using a free and unrestricted 

version of Code Composer Studio integrated development environment (IDE). This version of 

Code Composer Studio (CCS) came with many examples that implement the various feature 

of the microcontroller, such as variable PWM wave generation, A/D conversions, interrupts, 

Figure A.2 C2000 Piccolo Launchpad [56] 
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etc. By combining and modifying the available code, a program was created that allowed the 

user to input the required leg lengths for each platform orientation. Once the last leg had 

reached the required height, the cycle would repeat, moving the platform to the next orientation. 

This process can be repeated indefinitely, but for the purposes of testing this project, it was 

repeated until the vector normal to the platform had passed through the entire circular trajectory 

that was discussed in chapter two of this thesis. The program details are shown in appendix B 

of this thesis.  

After running this program through many tests to ensure the accuracy of the orientations of the 

platform for every step, it became obvious that there was an issue with the accuracy and 

conversion speed of the ADC. Using the real-time debugger that is included in CCS, the results 

of the three in-use ADC channels were monitored. While two of the channels were updating at 

an acceptable rate, the third channel was updating one to two seconds slower than the other 

two. Also, the accuracy of this third channel was of concern. It was only capable of converting 

the position at certain increments (approximately every 1.3 cm) and was not able to update the 

ADC value if the actuator arm was in a positon that was in between these increments. This 

issue was significantly impaired the accuracy of the actuator positioning, as well as limiting 

the number of positions that it was capable of stopping at.  

The issue is believed to stem from the fact that the Piccolo microcontroller has only one ADC 

and had a problem with the sequential conversion of the samples. A possible reason for why 

two of the three channels did work properly is because there are two sample and hold circuits 

that feed the ADC. Once the third channel was being converted a high speed, the ADC became 

overwhelmed and the conversion priority was with the other two channels, and therefore, only 

these channels continued to be converted correctly. 
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Since no software or hardware solution to this problem could be found using the already 

acquired software and hardware, a microcontroller more suited to multi-channel, high speed 

A/D conversions needed to be researched and procured. The solution seemed to be multiple 

ADCs (preferably one per channel), in order to process all of the conversions in real-time. 

Fortunately, Texas Instruments manufactures a line of C2000 microcontrollers, all of which 

are programmed using CCS. In addition to that, the code written for any C2000 microcontroller 

is compatible (with minor modifications) with any of the other C2000 microcontrollers. 

Because the code was already written for the C2000 Piccolo microcontroller, the decision was 

made to select a higher end member of the C2000 family to replace the C2000 Piccolo that was 

used previously. 

As stated in section 4.4, the F28377D Delfino Experimenter Kit (pictured in figure 4.4.1) 

featuring the C2000 Delfino TMS320F28377D microcontroller was selected because it 

fulfilled all of the original requirements for the microcontroller with the additional feature of 

having four ADCs. A comparison of the key specifications of the C2000 Delfino 

TMS320F28377D and TMS320F28027 Piccolo microcontrollers is shown in Table A.2.       

Table A.2 Specifications Summary for C2000 Piccolo Launchpad vs. the F28377D Delfino Experimenter Kit 

 TMS320F28027 TMS320F28377D 

CPU Frequency (MHz) 60 200 

RAM (KB) 12 204 

Flash (KB) 64 1024 

PWM (# of channels) 8 24 

ADC (# of modules) 1 4 

ADC resolution 12-bit 16-bit/12-bit 

ADC Conversion Time (ns) 217 286 (12-bit) 
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910 (16-bit) 

A/D (# of channels) 7 (12-bit) 24 (12-bit) 

12 (16-bit) 

IO Supply (V)  3.3 3.3 

Operating Temperature Range (°C) -40 to 105 -40 to 105 

 

While it is obvious by looking at table A.2 that the Delfino TMS320F28377D is better in nearly 

every aspect, with the exception of ADC conversion time (although the slightly longer 

conversion time in the Delfino TMS320F28377D microcontroller is more than compensated 

for by the three additional ADCs), only the additional ADCs were absolutely necessary. 

However, there are other features that were also enhanced that are important for this 

application. The faster processing power of the CPU could be a factor in the accuracy of the of 

the actuator control, especially in a real-time application such as this. If the CPU is able to 

execute the code quicker and respond faster when the position of the actuator arm reaches the 

required length for a certain platform orientation, the accuracy of the robot should be greater.  

The second important advantage that the Delfino TMS320F28377D microcontroller has over 

the TMS320F28027 Piccolo microcontroller is the larger amount of memory. This is 

advantageous because the program became too large for the RAM available on the 

TMS320F28027 Piccolo microcontroller and, consequently, the memory had to be re-mapped 

to write the program onto the flash memory, which takes longer to write to every time the 

program is run. This means that less time is spent waiting for the program to write to the 

memory before it can be debugged, and more time is spent optimizing the code and fixing any 

errors [57]. Furthermore, flash memory suffers from memory wear, meaning that it can only 

be erased and programmed a finite number of times. Because of the many times the program 

had to be re-written and debugged, there was a concern that this memory wear might affect the 
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TMS320F28027 Piccolo microcontroller. This was not a concern for the RAM used on the 

Delfino TMS320F28377D microcontroller.  
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Appendix B – Matlab® Script Files 

function [l1mag, l2mag, l3mag] = Inverse_Kinematics(R, r, theta, psi, phi) 
%******************************************************************** 
%Inverse_Kinematics.m - This function accepts the orientation of the top 
%                       platform given by theta, psi and phi and the radius 

%    of the base (r) and the radius of the platform (R) 
%                       solves the inverse kinematics of a 3-DOF Stewart  
%                       platform and returns the length of each leg. 
%********************************************************************                        

  
%theta - pitch - rotation about y-axis 
%psi - roll - rotation about x-axis 
%phi - yaw - rotation about z-axis 

  
a11 = cos(theta)*cos(phi); %elements of the rotatation matrix 
a12 = cos(theta)*sin(phi); 
a13 = -sin(theta); 
a21 = sin(psi)*sin(theta)*cos(phi)-cos(psi)*sin(phi); 
a22 = sin(psi)*sin(theta)*sin(phi)+cos(psi)*cos(phi); 
a23 = cos(theta)*sin(psi); 
a31 = cos(psi)*sin(theta)*cos(phi)+sin(psi)*sin(phi); 
a32 = cos(psi)*sin(theta)*sin(phi)-sin(psi)*cos(phi); 
a33 = cos(theta)*cos(psi); 

  
q = [0 0 31.75]'; %translation from {B} to {P} the last value is the height 
                  %of the robot (top of base to top of platform) (in cm) 

  
%rotation matrix from base to platform                   
Rm = [a11 a12 a13 q(1);a21 a22 a23 q(2);a31 a32 a33 q(3);0 0 0 1];  

  
P1 = [R 0 0 1]'; %platform joint locations in reference frame {P}  
P2 = [(-1/2)*R (sqrt(3)/2)*R 0 1]'; 
P3 = [(-1/2)*R -(sqrt(3)/2)*R 0 1]'; 

  
B1 = [r 0 0]'; %base joint locations in reference frame {B}  
B2 = [(-1/2)*r (sqrt(3)/2)*r 0]'; 
B3 = [(-1/2)*r -(sqrt(3)/2)*r 0]'; 

  
u1 = Rm*P1; %vector from platform center to point 1 on platform 
u2 = Rm*P2; %vector from platform center to point 2 on platform 
u3 = Rm*P3; %vector from platform center to point 3 on platform 
 

%length of legs  
l1mag = sqrt((u1(1)-B1(1))^2+(u1(2)-B1(2))^2+(u1(3)-B1(3))^2);   
l2mag = sqrt((u2(1)-B2(1))^2+(u2(2)-B2(2))^2+(u2(3)-B2(3))^2);   
l3mag = sqrt((u3(1)-B3(1))^2+(u3(2)-B3(2))^2+(u3(3)-B3(3))^2);  

  
end 
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function [] = Workspace_Points(R, r) 
%******************************************************************** 
%Workspace_Points.m - This function accepts the and the radius of the  
%                     base (r) and the radius of the platform (R) and 
%                     solves the inverse kinematics of a 3-DOF Stewart  
%                     platform and returns a plot of all acceptable  

%       workspace points 
%********************************************************************    

  
%theta - pitch - rotation about y-axis 
%psi - roll - rotation about x-axis 
%phi - yaw - rotation about z-axis 

  
%Initialize empty arrays 

 
%Initialize arrays that will track the theta and phi values at each step 
%so that scatter plots can be made 
thetatrack = []; 
phitrack = []; 

  
%track the x, y and z elements of each u1, u2 and u3 vector 
u1trackx = []; 
u1tracky = []; 
u1trackz = []; 

     
u2trackx = []; 
u2tracky = []; 
u2trackz = []; 

     
u3trackx = []; 
u3tracky = []; 
u3trackz = []; 

  
%Initialize z unit vector along z-axis 
Z = [0 0 1];  

  
%Initialize theta, phi and psi at zero to find the angles that 
%the actuator legs make with the base and platform to be used in  
%constraint equations later 
theta = 0; 
phi = 0; 
psi = 0; 

  
height = 31.75; %Initial height of the platform in cm 

  
%Calculate original angle between base and actuator leg and 
%platform and actuator leg but only runs once 
if (theta == 0 && phi == 0 && psi == 0)   

     
    %Elements of the rotatation matrix    
    a11 = cos(theta)*cos(phi); 
    a12 = cos(theta)*sin(phi); 
    a13 = -sin(theta); 
    a21 = sin(psi)*sin(theta)*cos(phi)-cos(psi)*sin(phi); 
    a22 = sin(psi)*sin(theta)*sin(phi)+cos(psi)*cos(phi); 
    a23 = cos(theta)*sin(psi); 
    a31 = cos(psi)*sin(theta)*cos(phi)+sin(psi)*sin(phi); 
    a32 = cos(psi)*sin(theta)*sin(phi)-sin(psi)*cos(phi); 
    a33 = cos(theta)*cos(psi); 
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    %Rotation matrix from base to platform 
    Rm = [a11 a12 a13;a21 a22 a23;a31 a32 a33];  

     
    %Translation from {B} to {P} the last value is the height of the robot  
    %(top of base to top of platform) 
    q = [0 0 height]';  

     
    %Rotation matrix from base to platform 
    Rm = [a11 a12 a13 q(1);a21 a22 a23 q(2);a31 a32 a33 q(3);0 0 0 1];  

  
    P1 = [R 0 0 1]'; %Platform joint locations in reference frame {P}  
    P2 = [(-1/2)*R (sqrt(3)/2)*R 0 1]'; 
    P3 = [(-1/2)*R -(sqrt(3)/2)*R 0 1]'; 

     
    %Base joint locations in reference frame {P}  
    B1 = [r 0 0]'; 
    B2 = [(-1/2)*r (sqrt(3)/2)*r 0]'; 
    B3 = [(-1/2)*r -(sqrt(3)/2)*r 0]'; 

     
    %Vector from platform center to point 1, 2 and 3 on platform 
    u1 = Rm*P1;  
    u2 = Rm*P2; 
    u3 = Rm*P3; 

     
    %Calculated leg lengths 
    l1mag = sqrt((u1(1)-B1(1))^2+(u1(2)-B1(2))^2+(u1(3)-B1(3))^2); 
    l2mag = sqrt((u2(1)-B2(1))^2+(u2(2)-B2(2))^2+(u2(3)-B2(3))^2); 
    l3mag = sqrt((u3(1)-B3(1))^2+(u3(2)-B3(2))^2+(u3(3)-B3(3))^2); 

  
    %Initial angles that are made between base and actuator leg and 
    %platform and actuator 
    OrigBaseAngle1 = asin(u1(3)/l1mag);    
    OrigPlatAngle1 = acos(u1(3)/l1mag); 

    
    OrigBaseAngle2 = asin(u2(3)/l2mag);    
    OrigPlatAngle2 = acos(u2(3)/l2mag); 

    
    OrigBaseAngle3 = asin(u3(3)/l3mag);     
    OrigPlatAngle3 = acos(u3(3)/l3mag); 
end 

  
%Use three for loops to go through all realistic workspace orientations 
%at different heights to determine which platform points satisfy all of the 
%constraints and are therefore acceptable points which will be plotted 

  
for height = 31.75:0.1:40.64 
    for theta = -pi/2:0.1:pi/2 
         for psi = -pi/2:0.1:pi/2 

           
thetatrack = [thetatrack theta]; 
phitrack = [phitrack phi]; 

  
a11 = cos(theta)*cos(phi); 
a12 = cos(theta)*sin(phi); 
a13 = -sin(theta); 
a21 = sin(psi)*sin(theta)*cos(phi)-cos(psi)*sin(phi); 
a22 = sin(psi)*sin(theta)*sin(phi)+cos(psi)*cos(phi); 
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a23 = cos(theta)*sin(psi); 
a31 = cos(psi)*sin(theta)*cos(phi)+sin(psi)*sin(phi); 
a32 = cos(psi)*sin(theta)*sin(phi)-sin(psi)*cos(phi); 
a33 = cos(theta)*cos(psi); 

  
Rm = [a11 a12 a13;a21 a22 a23;a31 a32 a33];  

  
q = [0 0 height]'; 

  
Rm = [a11 a12 a13 q(1);a21 a22 a23 q(2);a31 a32 a33 q(3);0 0 0 1];  

  
P1 = [R 0 0 1]';   
P2 = [(-1/2)*R (sqrt(3)/2)*R 0 1]'; 
P3 = [(-1/2)*R -(sqrt(3)/2)*R 0 1]'; 

  
B1 = [r 0 0]';  
B2 = [(-1/2)*r (sqrt(3)/2)*r 0]'; 
B3 = [(-1/2)*r -(sqrt(3)/2)*r 0]'; 

  
u1 = Rm*P1;  
u2 = Rm*P2; 
u3 = Rm*P3; 

  
l1mag = sqrt((u1(1)-B1(1))^2+(u1(2)-B1(2))^2+(u1(3)-B1(3))^2); 
l2mag = sqrt((u2(1)-B2(1))^2+(u2(2)-B2(2))^2+(u2(3)-B2(3))^2); 
l3mag = sqrt((u3(1)-B3(1))^2+(u3(2)-B3(2))^2+(u3(3)-B3(3))^2); 

  
%Find the cross product between the Z-axis and the vector from the origin  
%each of the points on the base. These are the normal vectors to the  
%constraint planes  
N1 = cross(Z,B1); 
N2 = cross(Z,B2); 
N3 = cross(Z,B3); 

  
%Calculate the distance of each of the platform points form the constraint 
%planes 
D1 = abs(N1(1)*u1(1) + N1(2)*u1(2) + N1(3)*u1(3))/sqrt(N1(1)^2 + N1(2)^2 + 

N1(3)^2); 
D2 = abs(N2(1)*u2(1) + N2(2)*u2(2) + N2(3)*u2(3))/sqrt(N2(1)^2 + N2(2)^2 + 

N2(3)^2); 
D3 = abs(N3(1)*u3(1) + N3(2)*u3(2) + N3(3)*u3(3))/sqrt(N3(1)^2 + N3(2)^2 + 

N3(3)^2); 

  
%Check if the points satisfy all of the constraints such as the leg length 
%constraint, the alpha and beta angle constraints and the maximum allowable 
%distance from the constraint plane constraint 

  
if (l1mag < 41.91 && l2mag < 41.91 && l3mag < 41.91 ... 

&& l1mag > 31.75 && l2mag > 31.75 && l3mag > 31.75 ... 
&& abs(asin(u1(3)/l1mag)-OrigBaseAngle1) < pi/4 && ... 

abs(acos(u1(3)/l1mag)-OrigPlatAngle1) < 0.44 ... 
&& abs(asin(u2(3)/l2mag)-OrigBaseAngle2) < pi/4 && ... 

abs(acos(u2(3)/l2mag)-OrigPlatAngle2) < 0.44 ... 
&& abs(asin(u3(3)/l1mag)-OrigBaseAngle3) < pi/4 && ... 

abs(acos(u3(3)/l3mag)-OrigPlatAngle3) < 0.44 ... 
        && D1 < 0.25 && D2 < 0.25 && D3 < 0.25) 
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    %If the point satisfies all of the constraints, it is added to the 
    %arrays that track each of the x, y and z values for each of the points 
    u1trackx = [u1trackx u1(1)]; 
    u1tracky = [u1tracky u1(2)]; 
    u1trackz = [u1trackz u1(3)]; 

     
    u2trackx = [u2trackx u2(1)]; 
    u2tracky = [u2tracky u2(2)]; 
    u2trackz = [u2trackz u2(3)]; 

     
    u3trackx = [u3trackx u3(1)]; 
    u3tracky = [u3tracky u3(2)]; 
    u3trackz = [u3trackz u3(3)]; 

     
end 

  
        end 
    end  
end 

  
%Plot all of the acceptable points on the same scatter plot and include the 
%base points as a visual reference  
scatter3(u1trackx,u1tracky,u1trackz) 
hold 
scatter3(u2trackx,u2tracky,u2trackz) 
scatter3(u3trackx,u3tracky,u3trackz) 
scatter3(B1(1),B1(2),B1(3),'MarkerEdgeColor','k','MarkerFaceColor',... 

[0 .75 .75]) 
scatter3(B2(1),B2(2),B2(3),'MarkerEdgeColor','k','MarkerFaceColor',... 

[0 .75 .75]) 
scatter3(B3(1),B3(2),B3(3),'MarkerEdgeColor','k','MarkerFaceColor',... 

[0 .75 .75]) 
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function [lviol,O_Alph_Viol,O_Beta_Viol,dviol] = Workspace_Vector(R, r) 
%******************************************************************** 
%WorkspaceVector.m - This function accepts the and the radius of the  
%                    base (r) and the radius of the platform (R) and 
%                    solves the inverse kinematics of a 3-DOF Stewart  
%                    platform and and finds the vector normal to the 
%                    platform for each acceptable orientation and  
%                    returns a plot of all acceptable vectors 
%                    that are normal to the platform for all acceptable 
%                    orientations 
%********************************************************************     

  
%theta - pitch - rotation about y-axis 
%psi - roll - rotation about x-axis 
%phi - yaw - rotation about z-axis 

  
%Initialize arrays that will track the x,y and z components of each 
%acceptable vector that is normal to the platform so that they can be 
%plotted using quiver 
Cx = []; 
Cy = []; 
Cz = []; 

  
%Initialize z unit vector along z-axis 
Z = [0 0 1]; 

  
%Initialize the violation counts. These variables will track the number of 
%violations that occur for the leg length, the alpha and beta angles and 
%the constraint plane distance 
lviol = 0; 
O_Beta_Viol = 0; 
O_Alph_Viol = 0; 
dviol = 0; 

  
%Initialize theta, phi and psi at zero to find the angles that 
%the actuator legs make with the base and platform to be used in  
%constraint equations later 
theta = 0; 
phi = 0; 
psi = 0; 

  
height = 31.75; %Initial height of the platform in cm 

  
%Calculate initial angle between base and actuator leg and platform  
%and actuator leg (alpha and beta)  
if (theta == 0 && phi == 0 && psi == 0) 

    
    %Elements of the rotatation matrix 
    a11 = cos(theta)*cos(phi); 
    a12 = cos(theta)*sin(phi); 
    a13 = -sin(theta); 
    a21 = sin(psi)*sin(theta)*cos(phi)-cos(psi)*sin(phi); 
    a22 = sin(psi)*sin(theta)*sin(phi)+cos(psi)*cos(phi); 
    a23 = cos(theta)*sin(psi); 
    a31 = cos(psi)*sin(theta)*cos(phi)+sin(psi)*sin(phi); 
    a32 = cos(psi)*sin(theta)*sin(phi)-sin(psi)*cos(phi); 
    a33 = cos(theta)*cos(psi); 

     
    %Rotation matrix from base to platform 
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    Rm = [a11 a12 a13;a21 a22 a23;a31 a32 a33];  

     
    %Translation from {B} to {P} the last value is the height of the robot  
    %(top of base to top of platform) 
    q = [0 0 height]';  

  
    %Rotation matrix from base to platform 
    Rm = [a11 a12 a13 q(1);a21 a22 a23 q(2);a31 a32 a33 q(3);0 0 0 1];  

  
    P1 = [R 0 0 1]'; %Platform joint locations in reference frame {P}  
    P2 = [(-1/2)*R (sqrt(3)/2)*R 0 1]'; 
    P3 = [(-1/2)*R -(sqrt(3)/2)*R 0 1]'; 

  
    B1 = [r 0 0]';%base joint locations in reference frame {B}  
    B2 = [(-1/2)*r (sqrt(3)/2)*r 0]'; 
    B3 = [(-1/2)*r -(sqrt(3)/2)*r 0]'; 

  
    u1 = Rm*P1; %vector from platform center to point 1 on platform 
    u2 = Rm*P2; 
    u3 = Rm*P3; 

  
    l1mag = sqrt((u1(1)-B1(1))^2+(u1(2)-B1(2))^2+(u1(3)-B1(3))^2); 
    l2mag = sqrt((u2(1)-B2(1))^2+(u2(2)-B2(2))^2+(u2(3)-B2(3))^2); 
    l3mag = sqrt((u3(1)-B3(1))^2+(u3(2)-B3(2))^2+(u3(3)-B3(3))^2); 

  
   OrigBaseAngle1 = asin(u1(3)/l1mag);    
   OrigPlatAngle1 = acos(u1(3)/l1mag); 

    
   OrigBaseAngle2 = asin(u2(3)/l2mag);    
   OrigPlatAngle2 = acos(u2(3)/l2mag); 

    
   OrigBaseAngle3 = asin(u3(3)/l3mag);     
   OrigPlatAngle3 = acos(u3(3)/l3mag); 
end 

  
%Plot the vector normal to the platform for its initial configuration 
quiver3(0,0,31.75,0,0,20) 
hold 

  
%Use three for loops to step through the orientational workspace and find 
%all of the acceptable points using the constraint equations 

  
for height = 32:0.2:42 
    for theta = -pi/2:0.01:pi/2 
        for phi = 0 
            for psi =  -pi/2:0.01:pi/2 

                 
thetatrack = [thetatrack theta]; 
phitrack = [phitrack phi]; 

  
a11 = cos(theta)*cos(phi); 
a12 = cos(theta)*sin(phi); 
a13 = -sin(theta); 
a21 = sin(psi)*sin(theta)*cos(phi)-cos(psi)*sin(phi); 
a22 = sin(psi)*sin(theta)*sin(phi)+cos(psi)*cos(phi); 
a23 = cos(theta)*sin(psi); 
a31 = cos(psi)*sin(theta)*cos(phi)+sin(psi)*sin(phi); 
a32 = cos(psi)*sin(theta)*sin(phi)-sin(psi)*cos(phi); 
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a33 = cos(theta)*cos(psi); 

  
Rm = [a11 a12 a13;a21 a22 a23;a31 a32 a33]; %rotation matrix from base to 

platform 

  
q = [0 0 height]'; %translation from {B} to {P} the last value is the 

height of the robot (top of base to top of platform) 

  
Rm = [a11 a12 a13 q(1);a21 a22 a23 q(2);a31 a32 a33 q(3);0 0 0 1]; 

%rotation matrix from base to platform 

  
P1 = [R 0 0 1]'; %platform joint locations in reference frame {P}  
P2 = [(-1/2)*R (sqrt(3)/2)*R 0 1]'; 
P3 = [(-1/2)*R -(sqrt(3)/2)*R 0 1]'; 

  
B1 = [r 0 0]';%base joint locations in reference frame {P}  
B2 = [(-1/2)*r (sqrt(3)/2)*r 0]'; 
B3 = [(-1/2)*r -(sqrt(3)/2)*r 0]'; 

  
u1 = Rm*P1; %vector from platform center to point 1 on platform 
u2 = Rm*P2; 
u3 = Rm*P3; 

  
l1mag = sqrt((u1(1)-B1(1))^2+(u1(2)-B1(2))^2+(u1(3)-B1(3))^2); 
l2mag = sqrt((u2(1)-B2(1))^2+(u2(2)-B2(2))^2+(u2(3)-B2(3))^2); 
l3mag = sqrt((u3(1)-B3(1))^2+(u3(2)-B3(2))^2+(u3(3)-B3(3))^2); 

  
%Find the cross product between the Z-axis and the vector from the origin  
%each of the points on the base. These are the normal vectors to the  
%constraint planes  
N1 = cross(Z,B1);  
N2 = cross(Z,B2); 
N3 = cross(Z,B3); 

  
%Calculate the distance of each of the platform points form the constraint 
%planes 
D1 = abs(N1(1)*u1(1) + N1(2)*u1(2) + N1(3)*u1(3))/sqrt(N1(1)^2 + N1(2)^2 + 

N1(3)^2); 
D2 = abs(N2(1)*u2(1) + N2(2)*u2(2) + N2(3)*u2(3))/sqrt(N2(1)^2 + N2(2)^2 + 

N2(3)^2); 
D3 = abs(N3(1)*u3(1) + N3(2)*u3(2) + N3(3)*u3(3))/sqrt(N3(1)^2 + N3(2)^2 + 

N3(3)^2); 

  
%Check if the points satisfy all of the constraints such as the leg length 
%constraint, the alpha and beta angle constraints and the maximum allowable 
%distance from the constraint plane constraint 
if (l1mag < 41.91 && l2mag < 41.91 && l3mag < 41.91 && l1mag > 31.75 && 

l2mag > 31.75 && l3mag > 31.75 ... 
&& abs(asin(u1(3)/l1mag)-OrigBaseAngle1) < pi/4 && ...      

abs(acos(u1(3)/l1mag)-OrigPlatAngle1) < 0.44 ... 
&& abs(asin(u2(3)/l2mag)-OrigBaseAngle2) < pi/4 && ...  

abs(acos(u2(3)/l2mag)-OrigPlatAngle2) < 0.44 ... 
&& abs(asin(u3(3)/l1mag)-OrigBaseAngle3) < pi/4 && ...   

abs(acos(u3(3)/l3mag)-OrigPlatAngle3) < 0.44 ... 
        && D1 < 0.25 && D2 < 0.25 && D3 < 0.25) 

  
    %Use the platform points to find two vectors that lie on the platform 
    crossvec1 = u1-u2;  
    crossvec2 = u1-u3; 
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    crossvec1(4) = []; %prune the fourth element of the vector 
    crossvec2(4) = []; 

     
    %Calculate the two normal vectors and determine which one is the 
    %postiive vector i.e. z element > 0 
    C1 = cross(crossvec1,crossvec2); 
    C2 = cross(crossvec2,crossvec1); 

  
    if (C1(3) > 0) 
        C = C1; 
    elseif (C2(3) > 0) 
        C = C2; 
    end 

  
    %Normalize the vector 
    C_Norm = C/norm(C); 
    %Multiply the normalized vector by 20 so that it is easily visible on 
    %the plot 
    C = 20*C_Norm; 

     
    %Store the x, y and z elements of each normal vector for each 
    %orientation 
    Cx = [Cx C(1)]; 
    Cy = [Cy C(2)]; 
    Cz = [Cz C(3)]; 

    
end 

  
    %For the platform points that were determined to be in violation of the 
    %constraints, find which constraint was violated and increase the 
    %number of violations by one for each time it is violated. This way we 
    %can track how many violations there were of each constraint 

  
if (l1mag > 41.91 || l2mag > 41.91 || l3mag > 41.91 || ... 

l1mag < 31.75 || l2mag < 31.75 || l3mag < 31.75) 

        
    lviol = lviol+1;  

         
end 

  
if (abs(asin(u1(3)/l1mag)-OrigBaseAngle1) > pi/4 || ... 

abs(asin(u2(3)/l2mag)-OrigBaseAngle2) > pi/4 ... 
        || abs(asin(u3(3)/l1mag)-OrigBaseAngle3) > pi/4) 

     
        O_Beta_Viol = O_Beta_Viol+1; 
end 

  
if (abs(acos(u1(3)/l1mag)-OrigPlatAngle1) > 0.44 || ...  

abs(acos(u2(3)/l2mag)-OrigPlatAngle2) > 0.44 ...  
    || abs(acos(u3(3)/l3mag)-OrigPlatAngle3) > 0.44) 
        O_Alph_Viol = O_Alph_Viol+1; 
end 

  
if (D1 > 0.25 || D2 > 0.25 || D3 > 0.25) 
    dviol = dviol+1; 
end 

  
            end 
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        end 
    end 

     
    %Check that there are values in the normal vector arrays and then 
    %replicate the origin points (qx, qy, qz) so that they match the size 
    %of the normal vector array. Then, use quiver 3 to make the quiver plot 
    %and clear out the Cx Cy and Cz arrays and then repeat for each height 
    if any(Cx) && any(Cy) && any(Cz) 
        [Row,Col] = size(Cx); 
        qx = repmat(0,1,Col); 
        qy = repmat(0,1,Col); 
        qz = repmat(height,1,Col); 

     
        quiver3(qx,qy,qz,Cx,Cy,Cz) 

     
        Cx = []; 
        Cy = []; 
        Cz = []; 
    else 
        Cx = []; 
        Cy = []; 
        Cz = []; 
    end 
end 

  
%Plot all of the acceptable points on the same scatter plot and include the 
%base points as a visual reference  
scatter3(B1(1),B1(2),B1(3), 'MarkerEdgeColor','k','MarkerFaceColor', ... 

[0 .75 .75]) 
scatter3(B2(1),B2(2),B2(3), 'MarkerEdgeColor','k','MarkerFaceColor', ... 

[0 .75 .75]) 
scatter3(B3(1),B3(2),B3(3), 'MarkerEdgeColor','k','MarkerFaceColor', ... 

[0 .75 .75]) 
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function [alph, bestmaxworkspace] = CRS_Delta 
%******************************************************************** 
%CRS_Delta.m - This script generates 4 parameters that will be optimized 
%              in order to maximize the workspace volume of the delta 
%              robot. It performs 10 generations of the controlled random 
%              search to optimize these values and then returns the best 
%              values that are found and the largest workspace found. 
%********************************************************************  

  
a = 0.5*rand; %generate a random number for a that is no higher than 0.5 

  
d = 0.01*rand; %generate a random number for d that is no higher than 0.01 

  
b = 1-a-d; %keep normalization constant a+b+d=1 

  
%Set the phi values for the 120 degree evenly space top arm joint of the  
%delta robot in the {O} reference frame 
phi1 = 0; 
phi2 = 2*pi/3; 
phi3 = 4*pi/3; 

  
%Initialize the number of generations to zero 
gens = 0; 

  
%Set the K1 and K2 constants according the Lou et al. (K2 not used) 
K1 = 1/3;  
K2 = 1/2; 

  
%Initialize the maximum workspace variable 
maxworkspace = 0; 

  
%Initialize the besta, bestb and bestd variable to be equal to the first 
%generated number 
besta = a; 
bestb = b; 
bestd = d; 

  
%Set the initial step direction variable 
sigma_a = 1; 
sigma_zc = 1; 

  
%Initialize the best maximum workspace variable to zero 
bestmaxworkspace = 0; 

  
%Set x and y to zero so that an acceptable zc can be found 
x = 0; 
y = 0; 

  
%Set zc to zero so that the while loop will not be skipped 
zc = 0; 

  
while zc == 0 
            zc = -rand; %Generate a zc value in the interval [-1,0] 

  
            alph = [a b d zc] %Put initial alpha guess population together 

             
            %Variables from the equation: Xi*cos(theta1) + z*sin(theta1) = 

Qi; 
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            Xi =  x - d; 
            Qi = (Xi^2 + a^2 + y^2 + zc^2 - b^2)/2*a; 

             
            %Separate the variables so that a quadratic eqn is formed 
            ElemA = Xi^2 + zc^2; 
            ElemB = -2*Qi; 
            ElemC = Qi^2 - zc^2; 

             
            %Use roots to solve for the roots fo the polynomial 
            poly1 = [ElemA ElemB ElemC]; 

    
            r1 = roots(poly1); 

             
            %Check if and which roots are real, if none are real then set 
            %to -40 so that the constraints are not satisfied and the point 
            %is discarded 
            if isreal(acosd(r1(1))) 
                theta = acosd(r1(1)); 
            elseif isreal(acosd(r1(2))) 
                theta = acosd(r1(2)); 
            else 
                theta = -40; 
            end 

             
            %Calculate beta based on geometry 
            beta = acosd((a*cos(theta)+d)/b); 

             
            %Calculate the constraint 
            constraint = theta+beta; 

             
            %Calculate the three different gamma values for each arm 
            gamma1 = acosd((x*sin(phi1)+y*cos(phi1))/b) - 90; 
            gamma2 = acosd((x*sin(phi2)+y*cos(phi2))/b) - 90; 
            gamma3 = acosd((x*sin(phi3)+y*cos(phi3))/b) - 90; 

             
            %The next section of code calculates the manipulability 
            %constraint 
            h1 = (x*cos(phi1)+y*sin(phi1)-d)*a*sin(theta)+zc*a*cos(theta); 
            h2 = (x*cos(phi2)+y*sin(phi2)-d)*a*sin(theta)+zc*a*cos(theta); 
            h3 = (x*cos(phi3)+y*sin(phi3)-d)*a*sin(theta)+zc*a*cos(theta); 

             
            Jtheta = -[h1 0 0;0 h2 0;0 0 h3]; 

             
            v1 = [x-(d+a*cos(theta))*cos(phi1), ... 

 y-(d+a*cos(theta))*sin(phi1), zc+a*sin(theta)]; 
            v2 = [x-(d+a*cos(theta))*cos(phi2), ... 

 y-(d+a*cos(theta))*sin(phi2), zc+a*sin(theta)]; 
            v3 = [x-(d+a*cos(theta))*cos(phi3), ... 

 y-(d+a*cos(theta))*sin(phi3), zc+a*sin(theta)]; 

             
            Jx = [v1;v2;v3]; 

                
            J = inv(Jx)*Jtheta; 

             
            singmin = svds(J,1,0); 
            singmax = svds(J,1);  

             
            kai = singmin/singmax; 
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            %Check that all values are real and check to see if the 
            %constraints are satisfied. If they are all satisfied, break 
            %out of the loop and use that value as zc 
            if isreal(gamma1) && isreal(gamma2) && isreal(gamma3) ... 
               && isreal(kai) && isreal(constraint) ... 
               && isreal(theta) && isfinite(constraint) ... 
               && isfinite(theta) && isempty(kai) == 0 ... 
                if constraint <= 180 && gamma1 >= -40 && gamma1 <= 40 ... 
                   && gamma2 >= -40 && gamma2 <= 40 ... 
                   && gamma3 >= -40 && gamma3 <= 40 ... 
                   && kai >= 0.4 

                
                    break 

                 
                else 
                    zc = 0;   
                end   
            end 
end 

  
%Set the best zc to the current zc 
bestzc = zc; 

  
%Terminate the algorithm after 10 generations 
while gens < 10  

  
    gens = gens + 1; 

  
%For different side lengths of the cube, calculate the vertices of the of 
%the cube and determine if the constraints are satisfied for each workspace 
%volume as defined by the cube. If they are satisfied, then that is the 
%largest workspace for the parameters that were generated 
for r = 1:-0.01:0 
    for i = 1:1:8 
            vc1 = [-r -r zc-r]; %cube vertices 
            vc2 = [r -r zc-r]; 
            vc3 = [r r zc-r]; 
            vc4 = [-r r zc-r]; 
            vc5 = [-r -r zc+r]; 
            vc6 = [r -r zc+r]; 
            vc7 = [r r zc+r]; 
            vc8 = [-r r zc+r]; 

  
            cube = {vc1 vc2 vc3 vc4 vc5 vc6 vc7 vc8}; 

             
            x = cube{i}(1); 
            y = cube{i}(2); 
            z = cube{i}(3); 

             
            Xi =  x - d; 
            Qi = (Xi^2 + a^2 + y^2 + z^2 - b^2)/2*a; 

             
            ElemA = Xi^2 + z^2; 
            ElemB = -2*Qi; 
            ElemC = Qi^2 - z^2; 

             
            poly1 = [ElemA ElemB ElemC]; 
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            r1 = roots(poly1); 

  
            if isreal(acosd(r1(1))) 
                theta = acosd(r1(1)); 
            elseif isreal(acosd(r1(2))) 
                theta = acosd(r1(2)); 
            else 
                theta = -40; 
            end 

             
            beta = acosd((a*cos(theta)+d)/b); 

             
            constraint = theta+beta; 

             
            gamma1 = acosd((x*sin(phi1)+y*cos(phi1))/b) - 90; 
            gamma2 = acosd((x*sin(phi2)+y*cos(phi2))/b) - 90; 
            gamma3 = acosd((x*sin(phi3)+y*cos(phi3))/b) - 90; 

             
            h1 = (x*cos(phi1)+y*sin(phi1)-d)*a*sin(theta)+z*a*cos(theta); 
            h2 = (x*cos(phi2)+y*sin(phi2)-d)*a*sin(theta)+z*a*cos(theta); 
            h3 = (x*cos(phi3)+y*sin(phi3)-d)*a*sin(theta)+z*a*cos(theta); 

             
            Jtheta = -[h1 0 0;0 h2 0;0 0 h3]; 

             
            v1 = [x-(d+a*cos(theta))*cos(phi1), ... 

 y-(d+a*cos(theta))*sin(phi1), z+a*sin(theta)]; 

            v2 = [x-(d+a*cos(theta))*cos(phi2), ... 

 y-(d+a*cos(theta))*sin(phi2), z+a*sin(theta)]; 
            v3 = [x-(d+a*cos(theta))*cos(phi3), ... 

 y-(d+a*cos(theta))*sin(phi3), z+a*sin(theta)]; 

             
            Jx = [v1;v2;v3]; 

                
            J = inv(Jx)*Jtheta; 

             
            singmin = svds(J,1,0); 
            singmax = svds(J,1);  

             
            kai = singmin/singmax; 

             
            if isreal(gamma1) && isreal(gamma2) && isreal(gamma3) ... 

 && isreal(kai) && isreal(constraint) ... 
&& isreal(theta) && isfinite(constraint)&& ... 

...isfinite(theta) && isempty(kai) == 0 ... 
                if constraint <= 180 && gamma1 >= -40 && gamma1 <= 40 ... 
                   && gamma2 >= -40 && gamma2 <= 40 ... 
                   && gamma3 >= -40 && gamma3 <= 40 ... 
                   && kai >= 0.4 

                    
               %Calculate the volume of the cube based on the r value and 
               %if that workspace is the largest that has been found, store 
               %that as the max workspace 
                   workspace = (2*r)^3;   
                            if workspace >= maxworkspace 
                                maxworkspace = workspace; 
                            end 
                end   
            end 
    end 
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end 

  
%if the max workspace found during this run is larger than the  
%current best maximum workspace then make that the new best and 
%record the a b and d values for the maximum 
if maxworkspace > bestmaxworkspace  
      bestmaxworkspace = maxworkspace;  
      besta = a;                       
      bestb = b; 
      bestd = d; 
      bestzc = zc; 
end 

  
%Use the controlled random search algorithm to find the next points that 
%will be generated 
   zeta = normrnd(0,1); 

  
   a = besta + sigma_a*zeta; 

    
   zc = bestzc + sigma_zc*zeta; 

    
   b = 1-a-d; 

     
   if a < 0.2 || b < 0 
       a = besta; 
       b = 1-a-d; 
   end 

    
   if zc > 0 || zc < -1 
       zc = bestzc; 
   end 

  
   upperbound_a = 1 - a; 
   lowerbound_a = a - 0; 

  
   if lowerbound_a > upperbound_a 
        deltasigma_a = upperbound_a; 
   else 
        deltasigma_a = lowerbound_a; 
   end 

    
   sigma_a = K1*deltasigma_a; 

    
   upperbound_zc = 1 - z; 
   lowerbound_zc = z - 0; 

  
   if lowerbound_zc > upperbound_zc 
        deltasigma_zc = upperbound_zc; 
   else 
        deltasigma_zc = lowerbound_zc; 
   end 

  
   sigma_zc = K1*deltasigma_zc; 
end 

  
%Use the best values found to return to the user and to subsequently be 
%used for the proposed algorithm 
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alph = [besta bestb bestd bestzc] 

          
function [optimumworkspace,alpha] = PSO_Delta 
%******************************************************************** 
%PSO_Delta.m - This script generates 4 paramters that will be optimized 
%              in order to maximize the workspace volume of the delta 
%              robot. It performs 10 generations of the controlled random 
%              search to optimize these values and then returns the best 
%              values that are found and the largest workspace found. 
%********************************************************************  

  
%The majority of this code is the same as the CRS_Delta.m code except that 
%instead of one point for each generation, there is a swarm of 20 particles 
%that are continually be compared against one another and updated according 
%to the PSO algorithm. Please refer to CRS_Delta for any clarification of 
%the code through comments. 

  
a = 0.5*rand(20,1);  

  
d = 0.01*rand(20,1); 

  
b = 1-d-a; 

  
z = zeros(20,1); 
zc = zeros(20,1); 

  
maxworkspace = zeros(20,1); 
oldmaxworkspace = zeros(20,1); 
bestmaxworkspace = 0; 
Z_Max = zeros(20,1); 

  
pbest = zeros(20,3); 

  
phi1 = 0; 
phi2 = 2*pi/3; 
phi3 = 4*pi/3; 

  
gens = 0; 

 
x = 0; 
y = 0; 
Z_Max = zeros(20,1); 

  
while max(maxworkspace) < 0.125  

  
            gens = gens + 1; 
            for i = 1:1:20 
                while z(i) == 0 

                 
                    z(i) = -rand; 

  
                    Xi =  x - d(i); 
                    Qi = (Xi^2 + a(i)^2 + y^2 + z(i)^2 - b(i)^2)/2*a(i); 

  

  
                    ElemA = Xi^2 + z(i)^2; 
                    ElemB = -2*Qi; 
                    ElemC = Qi^2 - z(i)^2; 
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                    poly1 = [ElemA ElemB ElemC]; 

  
                    r1 = roots(poly1); 

  
                    if isreal(acosd(r1(1))) 
                        theta = acosd(r1(1)); 
                    elseif isreal(acosd(r1(2))) 
                        theta = acosd(r1(2)); 
                    else 
                        theta = -40; 
                    end 

  
                    beta = acosd((a(i)*cos(theta)+d(i))/b(i)); 

  
                    constraint = theta+beta; 

  
                    gamma1 = acosd((x*sin(phi1)+y*cos(phi1))/b(i)) - 90; 
                    gamma2 = acosd((x*sin(phi2)+y*cos(phi2))/b(i)) - 90; 
                    gamma3 = acosd((x*sin(phi3)+y*cos(phi3))/b(i)) - 90; 

  
                    h1 = (x*cos(phi1)+y*sin(phi1) ... 

-d(i))*a(i)*sin(theta)+z(i)*a(i)*cos(theta); 
                    h2 = (x*cos(phi2)+y*sin(phi2) ... 

- d(i))*a(i)*sin(theta)+z(i)*a(i)*cos(theta); 
                    h3 = (x*cos(phi3)+y*sin(phi3) ... 

-d(i))*a(i)*sin(theta)+z(i)*a(i)*cos(theta); 

  
                    Jtheta = -[h1 0 0;0 h2 0;0 0 h3]; 

  
                    v1 = [x-(d(i)+a(i)*cos(theta))*cos(phi1), ... 

y-(d(i)+a(i)*cos(theta))*sin(phi1), ...  

 z(i)+a(i)*sin(theta)]; 
                    v2 = [x-(d(i)+a(i)*cos(theta))*cos(phi2), ... 

y-(d(i)+a(i)*cos(theta))*sin(phi2), ...    

z(i)+a(i)*sin(theta)]; 
                    v3 = [x-(d(i)+a(i)*cos(theta))*cos(phi3), ... 

y-(d(i)+a(i)*cos(theta))*sin(phi3), ... 

z(i)+a(i)*sin(theta)]; 

  
                    Jx = [v1;v2;v3]; 

  
                    J = inv(Jx)*Jtheta; 

  
                    singmin = svds(J,1,0); 
                    singmax = svds(J,1);  

  
                    kai = singmin/singmax; 

  
if isreal(gamma1) && isreal(gamma2) && isreal(gamma3)... 

&& isreal(kai) && isreal(constraint) ... 
&& isreal(theta) && isfinite(constraint) && ... 

isfinite(theta) && isempty(kai) == 0 ... 
 

if constraint <= 180 && gamma1 >= -40 && ... 

gamma1 <= 40 ... 
                            && gamma2 >= -40 && gamma2 <= 40 ... 
                            && gamma3 >= -40 && gamma3 <= 40 ... 
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                            && kai >= 0.4 

                         
                            zc(i) = z(i); 
                            break 
                        else 
                            z(i) = 0;   
                        end   
                    end 
                end 
            end 

  
alpha = [a b d zc] %%put initial alpha guess population together 

  
for i = 1:1:20 
    for r = 1:-0.01:0 
        for j = 1:1:8 
                v1 = [-r -r zc(i)-r]; %cube vertices 
                v2 = [r -r zc(i)-r]; 
                v3 = [r r zc(i)-r]; 
                v4 = [-r r zc(i)-r]; 
                v5 = [-r -r zc(i)+r]; 
                v6 = [r -r zc(i)+r]; 
                v7 = [r r zc(i)+r]; 
                v8 = [-r r zc(i)+r]; 

  
                cube = {v1 v2 v3 v4 v5 v6 v7 v8}; 

  
                x = cube{j}(1); 
                y = cube{j}(2); 
                z = cube{j}(3); 

  
                Xi =  x - d(i); 
                Qi = (Xi^2 + a(i)^2 + y^2 + z^2 - b(i)^2)/2*a(i); 

  
                ElemA = Xi^2 + z^2; 
                ElemB = -2*Qi; 
                ElemC = Qi^2 - z^2; 

  
                poly1 = [ElemA ElemB ElemC]; 

  
                r1 = roots(poly1); 

  
                if isreal(acosd(r1(1))) 
                    theta = acosd(r1(1)); 
                elseif isreal(acosd(r1(2))) 
                    theta = acosd(r1(2)); 
                else 
                    theta = -40; 
                end 

  
                beta = acosd((a(i)*cos(theta)+d(i))/b(i)); 

  
                constraint = theta+beta; 

  
                gamma1 = acosd((x*sin(phi1)+y*cos(phi1))/b(i)) - 90; 
                gamma2 = acosd((x*sin(phi2)+y*cos(phi2))/b(i)) - 90; 
                gamma3 = acosd((x*sin(phi3)+y*cos(phi3))/b(i)) - 90; 
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                h1 = (x*cos(phi1)+y*sin(phi1)-

d(i))*a(i)*sin(theta)+z*a(i)*cos(theta); 
                h2 = (x*cos(phi2)+y*sin(phi2)-

d(i))*a(i)*sin(theta)+z*a(i)*cos(theta); 
                h3 = (x*cos(phi3)+y*sin(phi3)-

d(i))*a(i)*sin(theta)+z*a(i)*cos(theta); 

  
                Jtheta = -[h1 0 0;0 h2 0;0 0 h3]; 

  
                v1 = [x-(d(i)+a(i)*cos(theta))*cos(phi1) ... 

,y-(d(i)+a(i)*cos(theta))*sin(phi1), z+a(i)*sin(theta)]; 
                v2 = [x-(d(i)+a(i)*cos(theta))*cos(phi2), ... 

 y-(d(i)+a(i)*cos(theta))*sin(phi2), z+a(i)*sin(theta)]; 
                v3 = [x-(d(i)+a(i)*cos(theta))*cos(phi3), ... 

y-(d(i)+a(i)*cos(theta))*sin(phi3), z+a(i)*sin(theta)]; 

  
                Jx = [v1;v2;v3]; 

  
                J = inv(Jx)*Jtheta; 

  
                singmin = svds(J,1,0); 
                singmax = svds(J,1);  

  
                kai = singmin/singmax; 

  
                if isreal(gamma1) && isreal(gamma2) && isreal(gamma3) 

 && isreal(kai) && isreal(constraint) ... 
                       && isreal(theta) && isfinite(constraint) ... 
                       && isfinite(theta) && isempty(kai) == 0 
                    if theta >= -30 && theta <= 100 && constraint >= 45 ...  

&& constraint <= 180 && gamma1 >= -40 && ... 

gamma1 <= 40 ... 
                       && gamma2 >= -40 && gamma2 <= 40 ... 
                       && gamma3 >= -40 && gamma3 <= 40 ... 
                       && kai >= 0.4 

  
                       workspace(i) = (2*r)^3;  
                                if workspace(i) >= maxworkspace(i) 
                                    maxworkspace(i) = workspace(i); 
                                end 
                    end   
                end 
        end 
    end 
end 

  
%Stores the best workspace found overall and stores the parameters that 
%give that workspace 
for i=1:1:20 
    if maxworkspace(i) > bestmaxworkspace && a(i) > 0 && b(i) > 0 ... 

&& d(i) > 0 
        bestmaxworkspace = maxworkspace(i); 
        gbest = [a(i) b(i) d(i) zc(i)]; 
    end 
end 

  
%Resize gbest to 20 columns to make calculations easier 
gbestorig = gbest; 
gbest = repmat(gbest,20,1); 
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for i = 1:1:20 
    if maxworkspace(i) >= oldmaxworkspace(i) 
            pbest(i,1) = a(i); 
            pbest(i,2) = b(i); 
            pbest(i,3) = d(i); 
            pbest(i,4) = zc(i); 
    end 
end 

  
c1 = 0.5; %C1 and C2 are both values that are used by Lou et al. 
c2 = 1.25; 
vmax = []; 

  
%No intial velocity given in paper so it is set to be very small  
v_a = repmat(0.0001,20,1);  
v_b = repmat(0.0001,20,1); 
v_zc = repmat(0.0001,20,1);  

  
%Calculates the velocities of each of the paramters to update them for the 
%next generation according to the PSO algorithm 

  
for i = 1:1:20 
    v_a(i) = v_a(i) + c1*rand*(pbest(i,1)-alpha(i,1)) ... 

+c2*rand*(gbest(i,1)-alpha(i,1)); 
    v_b(i) = v_b(i) + c1*rand*(pbest(i,2)-alpha(i,2)) ... 

+c2*rand*(gbest(i,2)-alpha(i,2)); 
    v_zc(i) = v_zc(i) + c1*rand*(pbest(i,4)-alpha(i,4)) ... 

+c2*rand*(gbest(i,4)-alpha(i,4));  
end 

  
%Resize gbest to one column 
gbest = gbestorig;  

  
%Store the previous values for each parameter and workspace in case the 
%values generated by the velocities are not within in the bounds of the 
%parameters or if they violate the normalization 
olda = a; 
oldb = b; 
oldd = d; 
oldzc = zc; 
oldalpha = alpha; 
oldmaxworkspace = maxworkspace; 

  
newa = a+v_a; 

  
%Make sure that the velocities aren't causing the bounds of the parameters 
%or the normalization to be violated 

  
for i=1:1:20 
    if newa(i) < 0 || newa(i) > 1 
        a(i) = olda(i); 
    else 
        a(i) = newa(i); 
    end 
end 

  
newzc = zc+v_zc; 
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for i=1:1:20 
    if newzc(i) < -1 || newzc(i) > 0 
        z(i) = oldzc(i); 
    else 
        z(i) = newzc(i); 
    end 
end 

  
newb = b+v_b; 

  
for i=1:1:20 
    if newb(i) < 0 || newb(i) > 1 
        b(i) = oldb(i); 
    else 
        b(i) = newb(i); 
    end 
end 

  
d = 1-a-b; 
b = newb; 

  
newalpha = [a b d zc]; 
alpha = newalpha; 

  
end 

  
%Output the best values found and maximum workspace found 
alpha = gbest(1,1:4); 

  
optimumworkspace = max(maxworkspace); 

  
function [optimumworkspace,alph] = Project_Delta 
%******************************************************************** 
%Project_Delta.m - This script calls CRS_delta and then uses the value that 
%                   returned by this function to populate 5 of the 20 
%                   values in the initial swarm array. The other 15 values 
%                   are randomly generated within the bound of the 
%                   parameters. Then PSO is used to optimize the 
%                   parameters. The function returns the best parameters 
%                   found and the optimum workspace found 
%********************************************************************  

  
%Get the output of the CRS algorithm 
alph = CRS_Delta(); 

  
%Replicate the values so that there are 5 rows of the same value for each 
%parameter 
a = alph(1); 
b = alph(2); 
d = alph(3); 
z = alph(4); 

  
a1 = repmat(a,5,1); 
a2 = 0.5*rand(15,1); 

  
%Put the randomly generated values and the CRS values together to make one 
%matrix of 20 particles 
a = [a1; a2]; 
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d1 = repmat(d,5,1); 
d2 = 0.01*rand(15,1); 

  
d = [d1; d2]; 

  
b = 1-d-a; 

  
z1 = repmat(z,5,1); 
z2 = -rand(15,1); 

  
zc = [z1; z2]; 

  
maxworkspace = zeros(20,1); 
oldmaxworkspace = zeros(20,1); 
bestmaxworkspace = 0; 

  
pbest = zeros(20,3); 

  
phi1 = 0; 
phi2 = 2*pi/3; 
phi3 = 4*pi/3; 

  
gens = 0; 

  
alph = [a b d zc] 

  
while max(maxworkspace) < 0.125  

  
gens = gens + 1; 

  
for i = 1:1:20 
    for r = 1:-0.01:0 
        for j = 1:1:8 
                v1 = [-r -r zc(i)-r]; %cube vertices 
                v2 = [r -r zc(i)-r]; 
                v3 = [r r zc(i)-r]; 
                v4 = [-r r zc(i)-r]; 
                v5 = [-r -r zc(i)+r]; 
                v6 = [r -r zc(i)+r]; 
                v7 = [r r zc(i)+r]; 
                v8 = [-r r zc(i)+r]; 

  
                cube = {v1 v2 v3 v4 v5 v6 v7 v8}; 

  
                x = cube{j}(1); 
                y = cube{j}(2); 
                z = cube{j}(3); 

  
                Xi =  x - d(i); 
                Qi = (Xi^2 + a(i)^2 + y^2 + z^2 - b(i)^2)/2*a(i); 

  
                ElemA = Xi^2 + z^2; 
                ElemB = -2*Qi; 
                ElemC = Qi^2 - z^2; 

  
                poly1 = [ElemA ElemB ElemC]; 

  
                r1 = roots(poly1); 
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                if isreal(acosd(r1(1))) 
                    theta = acosd(r1(1)); 
                elseif isreal(acosd(r1(2))) 
                    theta = acosd(r1(2)); 
                else 
                    theta = -40; 
                end 

  
                beta = acosd((a(i)*cos(theta)+d(i))/b(i)); 

  
                constraint = theta+beta; 

  
                gamma1 = acosd((x*sin(phi1)+y*cos(phi1))/b(i)) - 90; 
                gamma2 = acosd((x*sin(phi2)+y*cos(phi2))/b(i)) - 90; 
                gamma3 = acosd((x*sin(phi3)+y*cos(phi3))/b(i)) - 90; 

  
                h1 = (x*cos(phi1)+y*sin(phi1)-d(i))*a(i)*sin(theta) ... 
                    +z*a(i)*cos(theta); 
                h2 = (x*cos(phi2)+y*sin(phi2)-d(i))*a(i)*sin(theta) ... 
                    +z*a(i)*cos(theta); 
                h3 = (x*cos(phi3)+y*sin(phi3)-d(i))*a(i)*sin(theta) ... 
                    +z*a(i)*cos(theta); 

  
                Jtheta = -[h1 0 0;0 h2 0;0 0 h3]; 

  
                v1 = [x-(d(i)+a(i)*cos(theta))*cos(phi1), ... 
                    y-(d(i)+a(i)*cos(theta))*sin(phi1), z+a(i)*sin(theta)]; 
                v2 = [x-(d(i)+a(i)*cos(theta))*cos(phi2), ... 
                    y-(d(i)+a(i)*cos(theta))*sin(phi2), z+a(i)*sin(theta)]; 
                v3 = [x-(d(i)+a(i)*cos(theta))*cos(phi3), ... 
                    y-(d(i)+a(i)*cos(theta))*sin(phi3), z+a(i)*sin(theta)]; 

  
                Jx = [v1;v2;v3]; 

  
                J = inv(Jx)*Jtheta; 

  
                singmin = svds(J,1,0); 
                singmax = svds(J,1);  

  
                kai = singmin/singmax; 

  
                if isreal(gamma1) && isreal(gamma2) && isreal(gamma3) ... 
                        && isreal(kai) && isreal(constraint) ... 
                        && isreal(theta) && isfinite(constraint) ... 
                        && isfinite(theta) && isempty(kai) == 0 ... 
                    if constraint <= 180 && gamma1 >= -40 && gamma1 <= 40 

... 
                       && gamma2 >= -40 && gamma2 <= 40 ... 
                       && gamma3 >= -40 && gamma3 <= 40 ... 
                       && kai >= 0.4 

  
                       workspace(i) = (2*r)^3;   
                                if workspace(i) >= maxworkspace(i) 
                                    maxworkspace(i) = workspace(i); 
                                end 
                    end   
                end 
        end 



129 
 

    end 
end 

  
for i=1:1:20 
    if maxworkspace(i) > bestmaxworkspace && a(i) > 0 && b(i) > 0 ... 
            && d(i) > 0 
        bestmaxworkspace = maxworkspace(i); 
        gbest = [a(i) b(i) d(i) zc(i)]; 
    end 
end 

  
gbestorig = gbest; 
gbest = repmat(gbest,20,1); 

  
for i = 1:1:20 
    if maxworkspace(i) >= oldmaxworkspace(i) 
            pbest(i,1) = a(i); 
            pbest(i,2) = b(i); 
            pbest(i,3) = d(i); 
            pbest(i,4) = zc(i); 
    end 
end 

  
c1 = 0.5;  
c2 = 1.25; 
vmax = []; 
v_a = repmat(0.0001,20,1);  
v_b = repmat(0.0001,20,1); 
v_zc = repmat(0.0001,20,1);  

  
for i = 1:1:20 
    v_a(i) = v_a(i) + c1*rand*(pbest(i,1)-alph(i,1))+ ... 
        c2*rand*(gbest(i,1)-alph(i,1)); 
    v_b(i) = v_b(i) + c1*rand*(pbest(i,2)-alph(i,2))+ ... 
        c2*rand*(gbest(i,2)-alph(i,2)); 
    v_zc(i) = v_zc(i) + c1*rand*(pbest(i,4)-alph(i,4))+ ... 
        c2*rand*(gbest(i,4)-alph(i,4));  
end 

  
gbest = gbestorig;  

  
olda = a; 
oldb = b; 
oldd = d; 
oldzc = zc; 
oldalpha = alph; 
oldmaxworkspace = maxworkspace; 

  
newa = a+v_a; 

  
for i=1:1:20 
    if newa(i) < 0 || newa(i) > 1 
        a(i) = olda(i); 
    else 
        a(i) = newa(i); 
    end 
end 

  
newzc = zc+v_zc; 
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for i=1:1:20 
    if newzc(i) < -1 || newzc(i) > 0 
        z(i) = oldzc(i); 
    else 
        z(i) = newzc(i); 
    end 
end 

  
newb = b+v_b; 

  
for i=1:1:20 
    if newb(i) < 0 || newb(i) > 1 
        b(i) = oldb(i); 
    else 
        b(i) = newb(i); 
    end 
end 

  
b = newb; 

  
d = 1-a-b; 

  
newalpha = [a b d zc]; 
alph = newalpha 

  
maxworkspace 

  
end 

  
alph = gbest(1,1:4) 

  
optimumworkspace = max(maxworkspace) 

  
function [alph, bestcircle_r] = CRS_Stewart 

  
%******************************************************************** 
%CRS_Stewart.m - This script generates 2 parameters that will be optimized 
%              in order to maximize the orientational workspace of the  
%              Stewart represented as a the maximum radius of a circular  
%              trajectory that the platform can follow. It performs 
%              10 generations of the controlled random search to optimize 
%              these values and then returns the best values that are 
%              found and largest circular trajectory radius found. 
%********************************************************************  

  
%Most of this code is a combination of the CRS_Delta function and the 
%Workspace_Points function. Therefore, much of it has already been 
%commented. However, anything that is unique to this function will be 
%explained in the comments in this code 

  
%Generate a random number between 5 and 10 as the initial guess for the 
%radius of the base plate 
R = 5 + (12-5).*rand;  

  
%Generate a random number between 20 and 25 as the initial guess for the 
%radius of the platform or top plate 
r = 18 + (25-18).*rand; 
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gens = 0; 

  
K1 = 1/3; 
K2 = 1/2; 

  
maxworkspace = 0; 
bestmaxworkspace = 0; 

  
%The bestR and bestr values are initialized to be the initial parameters 
%generated 
bestR = R; 
bestr = r; 

  
sigma_R = 1; 
sigma_r = 1; 

  
theta = 0; 
phi = 0; 
psi = 0; 

  
%The maximum height of the robot is 41.91 cm and the minimum height of the 
%robot is 31.75 cm, as dictated by the length of the actuator housing and 
%the stroke of the actuators 
max_h = 41.91; 
min_h = 31.75; 

  
%The orientational workspace occurs near the middle of the height range. 
%So, the height of the robot was fixed at this level 
mid_h = (max_h + min_h)/2; 

  
%Spray circle trajectory center 50 cm above platform is located 50 cm 
%above the mid_h height of the platform 
circle_h = mid_h + 50;  

  
%Values for the circle trajectory are initialized 
circle_r = 0; 
bestcircle_r = 0; 

  
Z = [0 0 1]; 

  
alpha = [R r] 

  
%The algorithm terminates after 10 generations or when the radius of the 
%largest trajectory exceeds 26.7 cm  

  
while gens < 10 || bestcircle_r < 26.7 

     
    P1 = [R 0 0 1]';  
    P2 = [(-1/2)*R (sqrt(3)/2)*R 0 1]'; 
    P3 = [(-1/2)*R -(sqrt(3)/2)*R 0 1]'; 

  
    B1 = [r 0 0]'; 
    B2 = [(-1/2)*r (sqrt(3)/2)*r 0]'; 
    B3 = [(-1/2)*r -(sqrt(3)/2)*r 0]'; 

     
    a11 = cos(theta)*cos(phi); 
    a12 = cos(theta)*sin(phi); 
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    a13 = -sin(theta); 
    a21 = sin(psi)*sin(theta)*cos(phi)-cos(psi)*sin(phi); 
    a22 = sin(psi)*sin(theta)*sin(phi)+cos(psi)*cos(phi); 
    a23 = cos(theta)*sin(psi); 
    a31 = cos(psi)*sin(theta)*cos(phi)+sin(psi)*sin(phi); 
    a32 = cos(psi)*sin(theta)*sin(phi)-sin(psi)*cos(phi); 
    a33 = cos(theta)*cos(psi); 

  
    q = [0 0 mid_h]';  

  
    Rm = [a11 a12 a13 q(1);a21 a22 a23 q(2);a31 a32 a33 q(3);0 0 0 1];  

     
    u1 = Rm*P1;  
    u2 = Rm*P2; 
    u3 = Rm*P3; 

  
    l1mag = sqrt((u1(1)-B1(1))^2+(u1(2)-B1(2))^2+(u1(3)-B1(3))^2); 
    l2mag = sqrt((u2(1)-B2(1))^2+(u2(2)-B2(2))^2+(u2(3)-B2(3))^2); 
    l3mag = sqrt((u3(1)-B3(1))^2+(u3(2)-B3(2))^2+(u3(3)-B3(3))^2); 

                     
    OrigBaseAngle1 = asin(u1(3)/l1mag);    
    OrigPlatAngle1 = acos(u1(3)/l1mag); 

  
    OrigBaseAngle2 = asin(u2(3)/l2mag);    
    OrigPlatAngle2 = acos(u2(3)/l2mag); 

  
    OrigBaseAngle3 = asin(u3(3)/l3mag);     
    OrigPlatAngle3 = acos(u3(3)/l3mag); 

  
    gens = gens + 1; 

     
%The radius of the circular trajectory starts at an adequately large size 
%of 30 cm and is decreased by 0.1 cm at each step. The radius is determined 
%to be the largest acceptable radius if the normal vector originating from 
%the center of the platform contacts the circular trajectory at all eight  
%points on the circle, which are spaced 45 degrees apart from one another 
for circle_r = 30:-0.1:0 

     
    valid1 = 0; 
    valid2 = 0; 
    valid3 = 0; 
    valid4 = 0; 
    valid5 = 0; 
    valid6 = 0; 
    valid7 = 0; 
    valid8 = 0; 

     
    for theta = -pi/2:0.025:pi/2 
            for psi =  -pi/2:0.025:pi/2 
                V1 = [circle_r 0 circle_h]'; %Points on the circle 
                V2 = [circle_r*1/sqrt(2) circle_r*1/sqrt(2) circle_h]'; 
                V3 = [0 circle_r circle_h]'; 
                V4 = [-circle_r*1/sqrt(2) circle_r*1/sqrt(2) circle_h]'; 
                V5 = [-circle_r 0 circle_h]'; 
                V6 = [-circle_r*1/sqrt(2) -circle_r*1/sqrt(2) circle_h]'; 
                V7 = [0 -circle_r circle_h]'; 
                V8 = [circle_r*1/sqrt(2) -circle_r*1/sqrt(2) circle_h]'; 

                 
                V = {V1 V2 V3 V4 V5 V6 V7 V8}; 
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                a11 = cos(theta)*cos(phi); 
                a12 = cos(theta)*sin(phi); 
                a13 = -sin(theta); 
                a21 = sin(psi)*sin(theta)*cos(phi)-cos(psi)*sin(phi); 
                a22 = sin(psi)*sin(theta)*sin(phi)+cos(psi)*cos(phi); 
                a23 = cos(theta)*sin(psi); 
                a31 = cos(psi)*sin(theta)*cos(phi)+sin(psi)*sin(phi); 
                a32 = cos(psi)*sin(theta)*sin(phi)-sin(psi)*cos(phi); 
                a33 = cos(theta)*cos(psi); 

  
                q = [0 0 mid_h]'; 

  
                Rm = [a11 a12 a13 q(1);a21 a22 a23 q(2); ... 
                    a31 a32 a33 q(3);0 0 0 1]; 

  
                u1 = Rm*P1;  
                u2 = Rm*P2; 
                u3 = Rm*P3; 

  
                l1mag = sqrt((u1(1)-B1(1))^2+(u1(2)-B1(2))^2+(u1(3)-

B1(3))^2); 
                l2mag = sqrt((u2(1)-B2(1))^2+(u2(2)-B2(2))^2+(u2(3)-

B2(3))^2); 
                l3mag = sqrt((u3(1)-B3(1))^2+(u3(2)-B3(2))^2+(u3(3)-

B3(3))^2); 

                 
                %The initial base angle is calculated at this point 
                if theta == 0 && psi == 0 
                    OrigBaseAngle1 = asin(u1(3)/l1mag);    
                    OrigPlatAngle1 = acos(u1(3)/l1mag); 

  
                    OrigBaseAngle2 = asin(u2(3)/l2mag);    
                    OrigPlatAngle2 = acos(u2(3)/l2mag); 

  
                    OrigBaseAngle3 = asin(u3(3)/l3mag);     
                    OrigPlatAngle3 = acos(u3(3)/l3mag); 
                end 

                 
                N1 = cross(Z,B1); 
                N2 = cross(Z,B2); 
                N3 = cross(Z,B3); 

  
                D1 = abs(N1(1)*u1(1) + N1(2)*u1(2) + ... 
                    N1(3)*u1(3))/sqrt(N1(1)^2 + N1(2)^2 + N1(3)^2); 
                D2 = abs(N2(1)*u2(1) + N2(2)*u2(2) + ... 
                    N2(3)*u2(3))/sqrt(N2(1)^2 + N2(2)^2 + N2(3)^2); 
                D3 = abs(N3(1)*u3(1) + N3(2)*u3(2) + ... 
                    N3(3)*u3(3))/sqrt(N3(1)^2 + N3(2)^2 + N3(3)^2); 

  
                    if (l1mag < 41.91 && l2mag < 41.91 && ... 
                            l3mag < 41.91 && l1mag > 31.75 && ... 
                            l2mag > 31.75 && l3mag > 31.75 ... 
                            && abs(asin(u1(3)/l1mag)-OrigBaseAngle1) < pi/4 

... 
                            && abs(acos(u1(3)/l1mag)-OrigPlatAngle1) < 0.44 

... 
                            && abs(asin(u2(3)/l2mag)-OrigBaseAngle2) < pi/4 

... 
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                            && abs(acos(u2(3)/l2mag)-OrigPlatAngle2) < 0.44 

... 
                            && abs(asin(u3(3)/l1mag)-OrigBaseAngle3) < pi/4 

... 
                            && abs(acos(u3(3)/l3mag)-OrigPlatAngle3) < 0.44 

... 
                            && D1 < 0.25 && D2 < 0.25 && D3 < 0.25) 

  
                        crossvec1 = u1-u2; %find the vector normal to the 

platform 
                        crossvec2 = u1-u3; 
                        crossvec1(4) = []; 
                        crossvec2(4) = []; 
                        C1 = cross(crossvec1,crossvec2); 
                        C2 = cross(crossvec2,crossvec1); 

  
                        if (C1(3) > 0) %check which vector normal is the 

positive vector 
                             C = C1; 
                        elseif (C2(3) > 0) 
                             C = C2; 
                        end 

  
                        C_Norm1 = C/norm(C); 
                        C_Norm2 = 2*C_Norm1; 

                         
                        %D_v is a formula which calculates the distance 

from  
                        %a line to a point. This is used because the 

likelihood 
                        %of a line contacting one of the points defining 
                        %the circle at a step size of 0.025 radians is 
                        %extremely low and even lower for 8 points. 
                        %Therefore, if the distance is within an acceptable 
                        %amount, then the normal vector is within an 
                        %acceptable distance from the circular trajectory 
                        %to consider it to have contacted it. 
                        for j = 1:1:8 
                            d_v = norm(cross(V{j}-C_Norm1,V{j}-C_Norm2))... 
                                /norm(C_Norm2-C_Norm1);  
                            if d_v <= 1.5 

  
                                if j == 1 
                                    valid1 = 1; 
                                elseif j == 2 
                                    valid2 = 1; 
                                elseif j == 3 
                                    valid3 = 1; 
                                elseif j == 4 
                                    valid4 = 1; 
                                elseif j == 5 
                                    valid5 = 1; 
                                elseif j == 6 
                                    valid6 = 1; 
                                elseif j == 7 
                                    valid7 =1; 
                                elseif j == 8 
                                    valid8 = 1; 
                                end 
                            end  
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                        end 
                    end 
            end 
    end 

     
    valid = valid1 + valid2 + valid3 + valid4 + valid5 + valid6 + valid7 + 

valid8; 

                                 
    if valid == 8 
        valid1 = 0; 
        valid2 = 0; 
        valid3 = 0; 
        valid4 = 0; 
        valid5 = 0; 
        valid6 = 0; 
        valid7 = 0; 
        valid8 = 0; 
        break 
    end 

  
end 

  

  
%If the radius of the circle found during this generation is larger than 
%the best one previously found then store that value and store the 
%paramters R and r that go with that radius 
if circle_r > bestcircle_r   
   bestcircle_r = circle_r;  
   bestr = r;                       
   bestR = R; 
end 

  
   zeta = normrnd(0,1); 

  
   r = bestr + sigma_r*zeta; 

    
   R = bestR + sigma_R*zeta; 

  
   upperbound_r = 25 - r; 
   lowerbound_r = r - 18; 

  
   if lowerbound_r > upperbound_r 
        deltasigma_r = upperbound_r; 
   else 
        deltasigma_r = lowerbound_r; 
   end 

    
   sigma_r = K1*deltasigma_r; 

    
   upperbound_R = 12 - R; 
   lowerbound_R = R - 5; 

  
   if lowerbound_R > upperbound_R 
        deltasigma_R = upperbound_R; 
   else 
        deltasigma_R = lowerbound_R; 
   end 
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   sigma_R = K1*deltasigma_R; 

    
   circle_r 

    
   alpha = [R r] 

  
end 

 
alph = [bestR bestr]; 

 

function [alpha, bestcircle_r] = PSO_Stewart 

  
%******************************************************************** 
%PSO_Stewart.m - This script generates 2 parameters that will be optimized 
%              in order to maximize the orientational workspace of the  
%              Stewart represented as a the maximum radius of a circular  
%              trajectory that the platform can follow. It performs 
%              10 generations of the Particle Swarm Optimization to 

optimize 
%              these values and then returns the best values that are 
%              found and largest circular trajectory radius found. 
%********************************************************************  

  
%Most of this code is a combination of the PSO_Delta function and the 
%Workspace_Points function. Therefore, much of it has already been 
%commented. However, anything that is unique to this function will be 
%explained in the comments in this code 

  
R = 5 + (12-5).*rand(20,1);  

  
r = 18 + (25-18).*rand(20,1);  

  
gens = 0; 

  
theta = 0; 
phi = 0; 
psi = 0; 
max_h = 41.91; 
min_h = 31.75; 
mid_h = (max_h + min_h)/2; 
circle_h = mid_h + 50;  

  
maxcircle_r = zeros(20,1); 
bestcircle_r = 0; 
oldcircle_r = zeros(20,1); 

  
Z = [0 0 1]; 

  
alpha = [R r] 

  
valid1 = 0; 
valid2 = 0; 
valid3 = 0; 
valid4 = 0; 
valid5 = 0; 
valid6 = 0; 
valid7 = 0; 
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valid8 = 0; 

  

  
while bestcircle_r < 26.7  

  
    gens = gens + 1; 

  
for i=1:1:20 

     
    P1 = [R(i) 0 0 1]';   
    P2 = [(-1/2)*R(i) (sqrt(3)/2)*R(i) 0 1]'; 
    P3 = [(-1/2)*R(i) -(sqrt(3)/2)*R(i) 0 1]'; 

  
    B1 = [r(i) 0 0]'; 
    B2 = [(-1/2)*r(i) (sqrt(3)/2)*r(i) 0]'; 
    B3 = [(-1/2)*r(i) -(sqrt(3)/2)*r(i) 0]'; 

     
    a11 = cos(theta)*cos(phi); 
    a12 = cos(theta)*sin(phi); 
    a13 = -sin(theta); 
    a21 = sin(psi)*sin(theta)*cos(phi)-cos(psi)*sin(phi); 
    a22 = sin(psi)*sin(theta)*sin(phi)+cos(psi)*cos(phi); 
    a23 = cos(theta)*sin(psi); 
    a31 = cos(psi)*sin(theta)*cos(phi)+sin(psi)*sin(phi); 
    a32 = cos(psi)*sin(theta)*sin(phi)-sin(psi)*cos(phi); 
    a33 = cos(theta)*cos(psi); 

  
    q = [0 0 mid_h]';  

  
    Rm = [a11 a12 a13 q(1);a21 a22 a23 q(2);a31 a32 a33 q(3);0 0 0 1];  

  
    u1 = Rm*P1;  
    u2 = Rm*P2; 
    u3 = Rm*P3; 

  
    l1mag = sqrt((u1(1)-B1(1))^2+(u1(2)-B1(2))^2+(u1(3)-B1(3))^2); 
    l2mag = sqrt((u2(1)-B2(1))^2+(u2(2)-B2(2))^2+(u2(3)-B2(3))^2); 
    l3mag = sqrt((u3(1)-B3(1))^2+(u3(2)-B3(2))^2+(u3(3)-B3(3))^2); 

                     
    OrigBaseAngle1 = asin(u1(3)/l1mag);    
    OrigPlatAngle1 = acos(u1(3)/l1mag); 

  
    OrigBaseAngle2 = asin(u2(3)/l2mag);    
    OrigPlatAngle2 = acos(u2(3)/l2mag); 

  
    OrigBaseAngle3 = asin(u3(3)/l3mag);     
    OrigPlatAngle3 = acos(u3(3)/l3mag); 

                

     
    for circle_r = 30:-0.1:0 

  
        valid1 = 0; 
        valid2 = 0; 
        valid3 = 0; 
        valid4 = 0; 
        valid5 = 0; 
        valid6 = 0; 
        valid7 = 0; 
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        valid8 = 0; 

  
        for theta = -pi/3:0.025:pi/3 
                for psi =  -pi/3:0.025:pi/3 

                     
                    V1 = [circle_r 0 circle_h]'; %points on the circle 
                    V2 = [circle_r*1/sqrt(2) circle_r*1/sqrt(2) circle_h]'; 
                    V3 = [0 circle_r circle_h]'; 
                    V4 = [-circle_r*1/sqrt(2) circle_r*1/sqrt(2) ...   

circle_h]'; 
                    V5 = [-circle_r 0 circle_h]'; 
                    V6 = [-circle_r*1/sqrt(2) -circle_r*1/sqrt(2) ... 

    circle_h]'; 
                    V7 = [0 -circle_r circle_h]'; 
                    V8 = [circle_r*1/sqrt(2) -circle_r*1/sqrt(2) ... 

circle_h]'; 

  
                    V = {V1 V2 V3 V4 V5 V6 V7 V8}; 

  
                    a11 = cos(theta)*cos(phi); 
                    a12 = cos(theta)*sin(phi); 
                    a13 = -sin(theta); 
                    a21 = sin(psi)*sin(theta)*cos(phi)-cos(psi)*sin(phi); 
                    a22 = sin(psi)*sin(theta)*sin(phi)+cos(psi)*cos(phi); 
                    a23 = cos(theta)*sin(psi); 
                    a31 = cos(psi)*sin(theta)*cos(phi)+sin(psi)*sin(phi); 
                    a32 = cos(psi)*sin(theta)*sin(phi)-sin(psi)*cos(phi); 
                    a33 = cos(theta)*cos(psi); 

  
                    q = [0 0 mid_h]'; 

  
                    Rm = [a11 a12 a13 q(1);a21 a22 a23 q(2); ... 
                        a31 a32 a33 q(3);0 0 0 1];  

  
                    u1 = Rm*P1;  
                    u2 = Rm*P2; 
                    u3 = Rm*P3; 

  
                    l1mag = sqrt((u1(1)-B1(1))^2+(u1(2)-B1(2))^2+ ... 

(u1(3)-B1(3))^2); 
                    l2mag = sqrt((u2(1)-B2(1))^2+(u2(2)-B2(2))^2+ ... 

     (u2(3)-B2(3))^2); 
                    l3mag = sqrt((u3(1)-B3(1))^2+(u3(2)-B3(2))^2+ ... 

(u3(3)-B3(3))^2); 

                     
                    if theta == 0 && phi == 0 
                        OrigBaseAngle1 = asin(u1(3)/l1mag);    
                        OrigPlatAngle1 = acos(u1(3)/l1mag); 

  
                        OrigBaseAngle2 = asin(u2(3)/l2mag);    
                        OrigPlatAngle2 = acos(u2(3)/l2mag); 

  
                        OrigBaseAngle3 = asin(u3(3)/l3mag);     
                        OrigPlatAngle3 = acos(u3(3)/l3mag); 
                    end 

                     
                    N1 = cross(Z,B1); 
                    N2 = cross(Z,B2); 
                    N3 = cross(Z,B3); 
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                    D1 = abs(N1(1)*u1(1) + N1(2)*u1(2) ... 

 + N1(3)*u1(3))/sqrt(N1(1)^2 + N1(2)^2 + N1(3)^2); 
                    D2 = abs(N2(1)*u2(1) + N2(2)*u2(2) ... 

 + N2(3)*u2(3))/sqrt(N2(1)^2 + N2(2)^2 + N2(3)^2); 
                    D3 = abs(N3(1)*u3(1) + N3(2)*u3(2) ... 

 + N3(3)*u3(3))/sqrt(N3(1)^2 + N3(2)^2 + N3(3)^2); 

  
                        if (l1mag < 41.91 && l2mag < 41.91 && ... 

 l3mag < 41.91 && l1mag > 31.75 && ... 

 l2mag > 31.75 && l3mag > 31.75 ... 

                        && abs(asin(u1(3)/l1mag)-OrigBaseAngle1) < pi/4... 

&& abs(acos(u1(3)/l1mag)-OrigPlatAngle1) < 0.44... 
                        && abs(asin(u2(3)/l2mag)-OrigBaseAngle2) < pi/4... 

      && abs(acos(u2(3)/l2mag)-OrigPlatAngle2) < 0.44 ... 
                        && abs(asin(u3(3)/l1mag)-OrigBaseAngle3) < pi/4 ... 

      && abs(acos(u3(3)/l3mag)-OrigPlatAngle3) < 0.44 ... 
                        && D1 < 0.25 && D2 < 0.25 && D3 < 0.25) 

  
                            crossvec1 = u1-u2;  
                            crossvec2 = u1-u3; 
                            crossvec1(4) = []; 
                            crossvec2(4) = []; 
                            C1 = cross(crossvec1,crossvec2); 
                            C2 = cross(crossvec2,crossvec1); 

  
                            if (C1(3) > 0)  
                                 C = C1; 
                            elseif (C2(3) > 0) 
                                 C = C2; 
                            end 

  
                            C_Norm1 = C/norm(C); 
                            C_Norm2 = 2*C_Norm1; 

  
                            for j = 1:1:8 
                                d_v = norm(cross(V{j}-C_Norm1, ... 

V{j}-C_Norm2))/norm(C_Norm2-C_Norm1);  
                                if d_v <= 1.5 

  
                                    if j == 1 
                                        valid1 = 1; 
                                    elseif j == 2 
                                        valid2 = 1; 
                                    elseif j == 3 
                                        valid3 = 1; 
                                    elseif j == 4 
                                        valid4 = 1; 
                                    elseif j == 5 
                                        valid5 = 1; 
                                    elseif j == 6 
                                        valid6 = 1; 
                                    elseif j == 7 
                                        valid7 =1; 
                                    elseif j == 8 
                                        valid8 = 1; 
                                    end 
                                end  
                            end 
                        end 
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                end 
        end 

  
        valid = valid1 + valid2 + valid3 + valid4 + valid5 + valid6 ... 

 + valid7 + valid8; 

  
        if valid == 8 
            valid1 = 0; 
            valid2 = 0; 
            valid3 = 0; 
            valid4 = 0; 
            valid5 = 0; 
            valid6 = 0; 
            valid7 = 0; 
            valid8 = 0; 
            break 
        end 

         
    end 

     
    maxcircle_r(i) = circle_r; 
end 

  
for i=1:1:20 
    if maxcircle_r(i) > bestcircle_r 
        bestcircle_r = maxcircle_r(i); 
        gbest = [R(i) r(i)]; 
    end 
end 

  
gbestorig = gbest; 
gbest = repmat(gbest,20,1); 

  
for i = 1:1:20 
    if maxcircle_r(i) >= oldcircle_r(i) 
            pbest(i,1) = R(i); 
            pbest(i,2) = r(i); 
    end 
end 

  
c1 = 0.5;  
c2 = 1.25; 
vmax = []; 
v_R = repmat(0.0001,20,1);  
v_r = repmat(0.0001,20,1);  

  
for i = 1:1:20 

v_R(i) = v_R(i) + c1*rand*(pbest(i,1)-alpha(i,1))+ ... 

c2*rand*(gbest(i,1)-alpha(i,1));  
    v_r(i) = v_r(i) + c1*rand*(pbest(i,2)-alpha(i,2))+ ...   

  c2*rand*(gbest(i,2)-alpha(i,2));  
end 

  
gbest = gbestorig;  
oldr = r; 
oldR = R; 

  
oldalpha = alpha; 
oldcircle_r = maxcircle_r; 
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newr = r+v_r; 

  
for i=1:1:20 
    if newr(i) < 18 || newr(i) > 25  
        r(i) = oldr(i); 
    else 
        r(i) = newr(i); 
    end 
end 

  
newR = R+v_R; 

  
for i=1:1:20 
    if newR(i) < 5 || newR(i) > 12 
        R(i) = oldR(i); 
    else 
        R(i) = newR(i); 
    end 
end 

  
newalpha = [R r]; 
alpha = newalpha; 

  
end 

  
alpha = gbest(1,1:2); 

  
function [optimumworkspace,alph] = project_stewart 

  
%******************************************************************** 
%Project_Stewart.m - This script calls CRS_Stewart and then uses the value  
%                   returned by this function to populate 5 of the 20 
%                   values in the initial swarm array. The other 15 values 
%                   are randomly generated within the bound of the 
%                   parameters. Then PSO is used to optimize the 
%                   parameters. The function returns the best parameters 
%                   found and the optimum workspace found 
%********************************************************************  

  
%Most of this code is a combination of the PSO_Delta function, 
%Project_Delta and the Workspace_Points function. Therefore, much of it 
%has already been commented. However, anything that is unique to this 
%function will be explained in the comments in this code 

  
alph = crs_stewart(); 

  
R = alph(1); 
r = alph(2); 

  
R1 = repmat(R,5,1); 
R2 = 5 + (12-5).*rand(15,1);  

  
R = [R1; R2]; 

  
r1 = repmat(r,5,1); 
r2 = 18 + (25-18).*rand(15,1); 
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r = [r1; r2]; 

  
gens = 0; 

  
theta = 0; 
phi = 0; 
psi = 0; 
max_h = 41.91; 
min_h = 31.75; 
mid_h = (max_h + min_h)/2; 
circle_h = mid_h + 50;  

  
maxcircle_r = zeros(20,1); 
bestcircle_r = 0; 
oldcircle_r = zeros(20,1); 

  
Z = [0 0 1]; 

  
alpha = [R r] 

  
valid1 = 0; 
valid2 = 0; 
valid3 = 0; 
valid4 = 0; 
valid5 = 0; 
valid6 = 0; 
valid7 = 0; 
valid8 = 0; 

  

  
while bestcircle_r < 26.7  

  
    gens = gens + 1; 

  
for i=1:1:20 

     
    P1 = [R(i) 0 0 1]';  
    P2 = [(-1/2)*R(i) (sqrt(3)/2)*R(i) 0 1]'; 
    P3 = [(-1/2)*R(i) -(sqrt(3)/2)*R(i) 0 1]'; 

  
    B1 = [r(i) 0 0]';  
    B2 = [(-1/2)*r(i) (sqrt(3)/2)*r(i) 0]'; 
    B3 = [(-1/2)*r(i) -(sqrt(3)/2)*r(i) 0]'; 

     
    a11 = cos(theta)*cos(phi); 
    a12 = cos(theta)*sin(phi); 
    a13 = -sin(theta); 
    a21 = sin(psi)*sin(theta)*cos(phi)-cos(psi)*sin(phi); 
    a22 = sin(psi)*sin(theta)*sin(phi)+cos(psi)*cos(phi); 
    a23 = cos(theta)*sin(psi); 
    a31 = cos(psi)*sin(theta)*cos(phi)+sin(psi)*sin(phi); 
    a32 = cos(psi)*sin(theta)*sin(phi)-sin(psi)*cos(phi); 
    a33 = cos(theta)*cos(psi); 

  
    q = [0 0 mid_h]'; 

  
    Rm = [a11 a12 a13 q(1);a21 a22 a23 q(2);a31 a32 a33 q(3);0 0 0 1];m 
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    u1 = Rm*P1; 
    u2 = Rm*P2; 
    u3 = Rm*P3; 

  
    l1mag = sqrt((u1(1)-B1(1))^2+(u1(2)-B1(2))^2+(u1(3)-B1(3))^2); 
    l2mag = sqrt((u2(1)-B2(1))^2+(u2(2)-B2(2))^2+(u2(3)-B2(3))^2); 
    l3mag = sqrt((u3(1)-B3(1))^2+(u3(2)-B3(2))^2+(u3(3)-B3(3))^2); 

                     
    OrigBaseAngle1 = asin(u1(3)/l1mag);    
    OrigPlatAngle1 = acos(u1(3)/l1mag); 

  
    OrigBaseAngle2 = asin(u2(3)/l2mag);    
    OrigPlatAngle2 = acos(u2(3)/l2mag); 

  
    OrigBaseAngle3 = asin(u3(3)/l3mag);     
    OrigPlatAngle3 = acos(u3(3)/l3mag); 

                

     
    for circle_r = 30:-0.1:0 

  
        valid1 = 0; 
        valid2 = 0; 
        valid3 = 0; 
        valid4 = 0; 
        valid5 = 0; 
        valid6 = 0; 
        valid7 = 0; 
        valid8 = 0; 

  
        for theta = -pi/3:0.025:pi/3 
                for psi =  -pi/3:0.025:pi/3 

                     
                    V1 = [circle_r 0 circle_h]'; 
                    V2 = [circle_r*1/sqrt(2) circle_r*1/sqrt(2) ... 
                        circle_h]'; 
                    V3 = [0 circle_r circle_h]'; 
                    V4 = [-circle_r*1/sqrt(2) circle_r*1/sqrt(2) ... 
                        circle_h]'; 
                    V5 = [-circle_r 0 circle_h]'; 
                    V6 = [-circle_r*1/sqrt(2) -circle_r*1/sqrt(2) ... 
                        circle_h]'; 
                    V7 = [0 -circle_r circle_h]'; 
                    V8 = [circle_r*1/sqrt(2) -circle_r*1/sqrt(2) ... 
                        circle_h]'; 

  
                    V = {V1 V2 V3 V4 V5 V6 V7 V8}; 

  
                    a11 = cos(theta)*cos(phi); 
                    a12 = cos(theta)*sin(phi); 
                    a13 = -sin(theta); 
                    a21 = sin(psi)*sin(theta)*cos(phi)-cos(psi)*sin(phi); 
                    a22 = sin(psi)*sin(theta)*sin(phi)+cos(psi)*cos(phi); 
                    a23 = cos(theta)*sin(psi); 
                    a31 = cos(psi)*sin(theta)*cos(phi)+sin(psi)*sin(phi); 
                    a32 = cos(psi)*sin(theta)*sin(phi)-sin(psi)*cos(phi); 
                    a33 = cos(theta)*cos(psi); 

  
                    q = [0 0 mid_h]';  
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                    Rm = [a11 a12 a13 q(1);a21 a22 a23 q(2);a31 a32 a33 ... 
                        q(3);0 0 0 1];  

  
                    u1 = Rm*P1;  
                    u2 = Rm*P2; 
                    u3 = Rm*P3; 

  
                    l1mag = sqrt((u1(1)-B1(1))^2+(u1(2)-B1(2))^2+ ... 
                        (u1(3)-B1(3))^2); 
                    l2mag = sqrt((u2(1)-B2(1))^2+(u2(2)-B2(2))^2+ ... 
                        (u2(3)-B2(3))^2); 
                    l3mag = sqrt((u3(1)-B3(1))^2+(u3(2)-B3(2))^2+ ... 
                        (u3(3)-B3(3))^2); 

                     
                    if theta == 0 && phi == 0 
                        OrigBaseAngle1 = asin(u1(3)/l1mag);    
                        OrigPlatAngle1 = acos(u1(3)/l1mag); 

  
                        OrigBaseAngle2 = asin(u2(3)/l2mag);    
                        OrigPlatAngle2 = acos(u2(3)/l2mag); 

  
                        OrigBaseAngle3 = asin(u3(3)/l3mag);     
                        OrigPlatAngle3 = acos(u3(3)/l3mag); 
                    end 

                     
                    N1 = cross(Z,B1); 
                    N2 = cross(Z,B2); 
                    N3 = cross(Z,B3); 

  
                    D1 = abs(N1(1)*u1(1) + N1(2)*u1(2) + ... 
                        N1(3)*u1(3))/sqrt(N1(1)^2 + N1(2)^2 + N1(3)^2); 
                    D2 = abs(N2(1)*u2(1) + N2(2)*u2(2) + ... 
                        N2(3)*u2(3))/sqrt(N2(1)^2 + N2(2)^2 + N2(3)^2); 
                    D3 = abs(N3(1)*u3(1) + N3(2)*u3(2) + ... 
                        N3(3)*u3(3))/sqrt(N3(1)^2 + N3(2)^2 + N3(3)^2); 

  
                        if (l1mag < 41.91 && l2mag < 41.91 && ... 
                            l3mag < 41.91 && l1mag > 31.75 && ... 
                            l2mag > 31.75 && l3mag > 31.75 ... 
                            && abs(asin(u1(3)/l1mag)-OrigBaseAngle1) ... 
                             < pi/4 ... 
                            && abs(acos(u1(3)/l1mag)-OrigPlatAngle1) ... 
                             < 0.44 ... 
                            && abs(asin(u2(3)/l2mag)-OrigBaseAngle2) ... 
                             < pi/4 ... 
                            && abs(acos(u2(3)/l2mag)-OrigPlatAngle2) ... 
                             < 0.44 ... 
                            && abs(asin(u3(3)/l1mag)-OrigBaseAngle3) ... 
                             < pi/4 ... 
                            && abs(acos(u3(3)/l3mag)-OrigPlatAngle3) ... 
                             < 0.44 ... 
                            && D1 < 0.25 && D2 < 0.25 && D3 < 0.25) 

  
                            crossvec1 = u1-u2;  
                            crossvec2 = u1-u3; 
                            crossvec1(4) = []; 
                            crossvec2(4) = []; 
                            C1 = cross(crossvec1,crossvec2); 
                            C2 = cross(crossvec2,crossvec1); 
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                            if (C1(3) > 0)  
                                 C = C1; 
                            elseif (C2(3) > 0) 
                                 C = C2; 
                            end 

  
                            C_Norm1 = C/norm(C); 
                            C_Norm2 = 2*C_Norm1; 

  
                            for j = 1:1:8 
                                d_v = norm(cross(V{j}-C_Norm1,V{j}-

C_Norm2)) ... 
                                /norm(C_Norm2-C_Norm1);  
                                if d_v <= 1.5 

  
                                    if j == 1 
                                        valid1 = 1; 
                                    elseif j == 2 
                                        valid2 = 1; 
                                    elseif j == 3 
                                        valid3 = 1; 
                                    elseif j == 4 
                                        valid4 = 1; 
                                    elseif j == 5 
                                        valid5 = 1; 
                                    elseif j == 6 
                                        valid6 = 1; 
                                    elseif j == 7 
                                        valid7 =1; 
                                    elseif j == 8 
                                        valid8 = 1; 
                                    end 
                                end  
                            end 
                        end 
                end 
        end 

  
        valid = valid1 + valid2 + valid3 + valid4 + valid5 + valid6 ... 
            + valid7 + valid8; 

  
        if valid == 8 
            valid1 = 0; 
            valid2 = 0; 
            valid3 = 0; 
            valid4 = 0; 
            valid5 = 0; 
            valid6 = 0; 
            valid7 = 0; 
            valid8 = 0; 
            break 
        end 

         
    end 

     
    maxcircle_r(i) = circle_r; 
end 
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for i=1:1:20 
    if maxcircle_r(i) > bestcircle_r 
        bestcircle_r = maxcircle_r(i); 
        gbest = [R(i) r(i)]; 
    end 
end 

  
gbestorig = gbest; 
gbest = repmat(gbest,20,1); 

  
for i = 1:1:20 
    if maxcircle_r(i) >= oldcircle_r(i) 
            pbest(i,1) = R(i); 
            pbest(i,2) = r(i); 
    end 
end 

  
c1 = 0.5;  
c2 = 1.25; 
vmax = []; 
v_R = repmat(0.0001,20,1);  
v_r = repmat(0.0001,20,1);  

  
for i = 1:1:20 
    v_R(i) = v_R(i) + c1*rand*(pbest(i,1)-alpha(i,1))+... 
        c2*rand*(gbest(i,1)-alpha(i,1));  
    v_r(i) = v_r(i) + c1*rand*(pbest(i,2)-alpha(i,2))+... 
        c2*rand*(gbest(i,2)-alpha(i,2));  
end 

  
gbest = gbestorig;  

  
oldr = r; 
oldR = R; 

  
oldalpha = alpha; 
oldcircle_r = maxcircle_r; 

  
newr = r+v_r; 

  
for i=1:1:20 
    if newr(i) < 18 || newr(i) > 25  
        r(i) = oldr(i); 
    else 
        r(i) = newr(i); 
    end 
end 

  
newR = R+v_R; 

  
for i=1:1:20 
    if newR(i) < 5 || newR(i) > 12 
        R(i) = oldR(i); 
    else 
        R(i) = newR(i); 
    end 
end 

  
newalpha = [R r]; 
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alpha = newalpha; 

  
end 

  
alpha = gbest(1,1:2); 
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Appendix C – Microcontroller Code 

//##########################################################################

# 

//RobotCode.c 

//This code accepts length of the three actuator legs in L1Array, L2Array 

//and L3Array. Each individual leg will go to its length for that index in the 

//array and stop once it reaches it. It will not move to the next length until 

//all legs have reached their respective length for that index value. A number 

//of files need to be included in the project code that are not shown in this 

//code in order for it to compile properly, but they are mentioned in the 

//comments. 

//##########################################################################

# 

 

#include "F28x_Project.h"     // Device header file 

 

//Definitions for selecting ADC resolution (0 means that it is selected) 

#define RESOLUTION_12BIT 0 //12-bit resolution  

#define RESOLUTION_16BIT 1 //16-bit resolution 

 

//Definitions for selecting ADC signal mode (0 means that it is selected) 

#define SIGNAL_SINGLE 0 //single-ended channel conversions (12-bit mode only) 

#define SIGNAL_DIFFERENTIAL 1 //differential pair channel conversions 

 

//Define the structure that is used to give information about the PWM 

//wave to its function call (mainly the length of its duty cycle) 

typedef struct 

{ 

    volatile struct EPWM_REGS *EPwmRegHandle; 

    Uint32 EPwm_CMPA_Direction; 

    Uint32 EPwm_CMPB_Direction; 

    Uint32 EPwmTimerIntCount; 
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    Uint32 EPwmMaxCMPA; 

    Uint32 EPwmMinCMPA; 

    Uint32 EPwmMaxCMPB; 

    Uint32 EPwmMinCMPB; 

}EPWM_INFO; 

 

//Function declarations 

void InitEPwm1(void); 

void InitEPwm2(void); 

void InitEPwm3(void); 

 

void ConfigureADC(void); 

void SetupADCSoftware(void); 

 

void update_compare1(EPWM_INFO*); 

void update_compare2(EPWM_INFO*); 

void update_compare3(EPWM_INFO*); 

 

void forward1(EPWM_INFO *epwm_info); 

void forward2(EPWM_INFO *epwm_info); 

void forward3(EPWM_INFO *epwm_info); 

 

void backward1(EPWM_INFO *epwm_info); 

void backward2(EPWM_INFO *epwm_info); 

void backward3(EPWM_INFO *epwm_info); 

 

//Interrupt function definitions 

__interrupt void epwm1_isr(void); 

__interrupt void epwm2_isr(void); 

__interrupt void epwm3_isr(void); 

 

__interrupt void cpu_timer0_isr(void); 
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__interrupt void cpu_timer1_isr(void); 

__interrupt void cpu_timer2_isr(void); 

 

// Global variables declarations 

EPWM_INFO epwm1_info; 

EPWM_INFO epwm2_info; 

EPWM_INFO epwm3_info; 

 

//Configure the period for each timer and set the initial  

//duty cycle values 

//Most of these values are just intialization values that 

//don't effect much of the function of the wave later on 

//EPWMX_MIN_CMPA is the important definition because it 

//is the high part of the wave, and this is the part of 

//wave that controls the direction and speed of the leg 

//8500 is backwards at a relatively high speed 

//10500 is forwards at a relatively high speed 

//Somewhere in the middle of those numbers makes the  

//actuator halt, but this can be variable so its best  

//to use 0 as the value instead 

#define EPWM1_TIMER_TBPRD  18750  // Period register 

#define EPWM1_MAX_CMPA     10500 

#define EPWM1_MIN_CMPA     9000   //Initial ON part of the wave 

#define EPWM1_MAX_CMPB     1950 

#define EPWM1_MIN_CMPB         50 

 

#define EPWM2_TIMER_TBPRD  18750 // Period register 

#define EPWM2_MAX_CMPA     10500 

#define EPWM2_MIN_CMPA     9000  //Initial ON part of the wave 

#define EPWM2_MAX_CMPB     1950 

#define EPWM2_MIN_CMPB     50 
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#define EPWM3_TIMER_TBPRD  18750  // Period register 

#define EPWM3_MAX_CMPA     10500 

#define EPWM3_MIN_CMPA     9000  //Initial ON part of the wave 

#define EPWM3_MAX_CMPB     1950 

#define EPWM3_MIN_CMPB     50 

 

//Declare index variables to be used in arrays 

int Index1 = 0; 

int Index2 = 0; 

int Index3 = 0; 

 

//Declare that flag that is incremented if a leg length 

//reaches its length for the current index 

int flag = 3;  

 

//Declare time values that will be used to determine 

//which leg is the last leg to reach its length for the  

//current index so that the index can be incremented 

int time1 = 0; 

int time2 = 0; 

int time3 = 0; 

 

//Declare the size of the leg lengths arrays so the program knows 

//when to return the actuators to there 0 position (all they way down) 

int ArraySize = 18; 

 

//The arras that contain the lenght values required for each actuator to  

//follow the circular trajectory 

double L1Array[18] = {0.05, 0.903, 0.444, 0.200, 0.300, 0.517, 0.783, 1.052, 1.596, 2.164, 

2.737, 3.297, 2.974, 2.648, 2.330, 2.031, 1.466, 0.903}; //L2 (left leg) 

double L2Array[18] = {0.10, 2.829, 2.750, 2.800, 2.138, 1.530, 0.960, 0.453, 0.392, 0.371, 

0.392, 0.453, 0.960, 1.530, 2.137, 2.761, 2.812, 2.829}; //L1 (back leg) 
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double L3Array[18] = {0.40, 0.903, 1.466, 2.031, 2.330, 2.648, 2.974, 3.297, 2.737, 2.164, 

1.596, 1.052, 0.783, 0.517, 0.262, 0.500, 0.444, 0.903}; //L3 (right leg) 

 

//Set the initial value of the position to be very low so that the actuator 

//always goes forward initially 

int L1Digital_Old = 4000; 

int L2Digital_Old = 4000; 

int L3Digital_Old = 4000; 

 

//Declare the variables that will contain the digital value 

//of the potentiometer voltage (i.e. the length of the  

//actuator)  

int L1Digital = 0; 

int L2Digital = 0; 

int L3Digital = 0; 

 

 

void main(void) 

{ 

 

//Initialize System Control: 

//PLL, WatchDog, enable Peripheral Clocks 

//This function is called from the F28M36x_SysCtrl.c  

 

 InitSysCtrl(); 

 

//Initialize GPIO: 

// This function is called from the F28M36x_Gpio.c  

// The GPIO to it's default state. 

    InitGpio(); 

 

//Allocate PWM1, PWM2 and PWM3 to CPU1 
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//    CpuSysRegs.CPUSEL0.bit.EPWM1 = 0; 

//    CpuSysRegs.CPUSEL0.bit.EPWM2 = 0; 

//    CpuSysRegs.CPUSEL0.bit.EPWM3 = 0; 

 

 

//Enable PWM1, PWM2 and PWM3 

    CpuSysRegs.PCLKCR2.bit.EPWM1=1; 

    CpuSysRegs.PCLKCR2.bit.EPWM2=1; 

    CpuSysRegs.PCLKCR2.bit.EPWM3=1; 

 

//Initialize GPIO pins for ePWM1, ePWM2, ePWM3 

//These functions are called from the F28M36x_EPwm.c file 

     InitEPwm1Gpio(); 

 InitEPwm2Gpio(); 

 InitEPwm3Gpio(); 

 

// Initialize the PIE control registers to their default state. 

// This means that all PIE interrupts are disabled and flags 

// are cleared. 

// This function is called from the F28M36x_PieCtrl.c file. 

    InitPieCtrl(); 

 

// Disable CPU interrupts and clear all CPU interrupt flags: 

    DINT; 

    IER = 0x0000; 

    IFR = 0x0000; 

 

// Initialize the PIE vector table with pointers to the shell Interrupt 

// Service Routines (ISR). 

// This will populate the entire table 

// The shell ISR routines are found in F28M36x_DefaultIsr.c. 

// This function is called from in F28M36x_PieVect.c. 
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    InitPieVectTable(); 

 

// PWM Interrupts that are used in this example are re-mapped to 

// ISR functions found within this file. 

 EALLOW; // This is needed to write to EALLOW protected registers 

 PieVectTable.EPWM1_INT = &epwm1_isr; 

 PieVectTable.EPWM2_INT = &epwm2_isr; 

 PieVectTable.EPWM3_INT = &epwm3_isr; 

 EDIS;   // This is needed to disable write to EALLOW protected registers 

 

// Initialize all the Device Peripherals: 

// This function is found in F28M36x_InitPeripherals.c 

// InitPeripherals();  // Not required for this example 

 

 

 EALLOW; 

 CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 0; 

 

 EDIS; 

 

 InitEPwm1(); 

 InitEPwm2(); 

 InitEPwm3(); 

 

 EALLOW; 

 CpuSysRegs.PCLKCR0.bit.TBCLKSYNC =1; 

 

 EDIS; 

 

// Enable CPU INT3 which is connected to EPWM1-3 INT: 

 IER |= M_INT3; 
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// Enable EPWM INTn in the PIE: Group 3 interrupt 1-3 

 PieCtrlRegs.PIEIER3.bit.INTx1 = 1; 

 PieCtrlRegs.PIEIER3.bit.INTx2 = 1; 

 PieCtrlRegs.PIEIER3.bit.INTx3 = 1; 

 

 

// Enable global Interrupts and higher priority real-time debug events: 

    EINT;  // Enable Global interrupt INTM 

    ERTM;  // Enable Global realtime interrupt DBGM 

 

//Initialize CPU timers 

//This function is called from F2806x_CpuTimers.h 

    InitCpuTimers();   

 

// CPU Interrupts that are used in this example are re-mapped to 

// ISR functions found within this file. 

    EALLOW;  // This is needed to write to EALLOW protected registers 

    PieVectTable.TIMER0_INT = &cpu_timer0_isr; 

    PieVectTable.TIMER1_INT = &cpu_timer1_isr; 

    PieVectTable.TIMER2_INT = &cpu_timer2_isr; 

    EDIS;    // This is needed to disable write to EALLOW protected registers 

 

// Configure CPU-Timer 0, 1, and 2 to interrupt every second: 

// 200MHz CPU Freq, 0.01 second Period (in uSeconds) 

 

    ConfigCpuTimer(&CpuTimer0, 200, 10000); 

    ConfigCpuTimer(&CpuTimer1, 200, 10000); 

    ConfigCpuTimer(&CpuTimer2, 200, 10000); 

 

// To ensure precise timing, use write-only instructions to write to the entire register.  

    CpuTimer0Regs.TCR.all = 0x4000; // Use write-only instruction to set TSS bit = 0 

    CpuTimer1Regs.TCR.all = 0x4000; // Use write-only instruction to set TSS bit = 0 
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    CpuTimer2Regs.TCR.all = 0x4000; // Use write-only instruction to set TSS bit = 0 

 

//Enable CPU int1 which is connected to CPU-Timer 0, CPU int13 

// which is connected to CPU-Timer 1, and CPU int 14, which is connected 

// to CPU-Timer 2: 

    IER |= M_INT1; 

    IER |= M_INT13; 

    IER |= M_INT14; 

 

// Enable TINT0 in the PIE: Group 1 interrupt 7 

    PieCtrlRegs.PIEIER1.bit.INTx7 = 1; 

 

//Configure the ADCs and power them up 

    ConfigureADC(); 

 

//Setup the ADCs for software conversions 

    SetupADCSoftware(); 

 

//IDLE loop.  

    for(;;) 

    { 

     asm ("          NOP"); 

 

    } 

} 

 

//Write ADC configurations and power up the ADC for both ADC A and ADC B 

void ConfigureADC(void) 

{ 

 EALLOW; 

 //write configurations 

 AdcaRegs.ADCCTL2.bit.PRESCALE = 6; //set ADCCLK divider to /4 
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 AdcbRegs.ADCCTL2.bit.PRESCALE = 6; //set ADCCLK divider to /4 

 AdcdRegs.ADCCTL2.bit.PRESCALE = 6; //set ADCCLK divider to /4 

 

 AdcaRegs.ADCCTL2.bit.RESOLUTION = RESOLUTION_12BIT; 

 AdcbRegs.ADCCTL2.bit.RESOLUTION = RESOLUTION_12BIT; 

 AdcdRegs.ADCCTL2.bit.RESOLUTION = RESOLUTION_12BIT; 

 

 AdcaRegs.ADCCTL2.bit.SIGNALMODE = SIGNAL_SINGLE; 

 AdcbRegs.ADCCTL2.bit.SIGNALMODE = SIGNAL_SINGLE; 

 AdcdRegs.ADCCTL2.bit.SIGNALMODE = SIGNAL_SINGLE; 

 

 //Set pulse positions to late 

 AdcaRegs.ADCCTL1.bit.INTPULSEPOS = 1; 

 AdcbRegs.ADCCTL1.bit.INTPULSEPOS = 1; 

 AdcdRegs.ADCCTL1.bit.INTPULSEPOS = 1; 

 

 //Power up the ADCs 

 AdcaRegs.ADCCTL1.bit.ADCPWDNZ = 1; 

 AdcbRegs.ADCCTL1.bit.ADCPWDNZ = 1; 

 AdcdRegs.ADCCTL1.bit.ADCPWDNZ = 1; 

 

 //Delay for 1ms to allow ADC time to power up 

 DELAY_US(1000); 

 

 EDIS; 

} 

 

void SetupADCSoftware(void) 

{ 

 

//Select the channels to convert and end of conversion flag 

    //ADCA 
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    EALLOW; 

    AdcaRegs.ADCSOC0CTL.bit.CHSEL = 0;  //SOC0 will convert pin A0 

    AdcaRegs.ADCSOC0CTL.bit.ACQPS = 14; //sample window is acqps + 1 SYSCLK   

//cycles 

    AdcaRegs.ADCINTSEL1N2.bit.INT1SEL = 0; //EOC0 will set INT1 flag 

    AdcaRegs.ADCINTSEL1N2.bit.INT1E = 1;   //enable INT1 flag 

    AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //make sure INT1 flag is cleared 

    //ADCB 

    AdcbRegs.ADCSOC0CTL.bit.CHSEL = 0;  //SOC1 will convert pin B0 

    AdcbRegs.ADCSOC0CTL.bit.ACQPS = 14; //sample window is acqps + 1 SYSCLK 

//cycles 

    AdcbRegs.ADCINTSEL1N2.bit.INT1SEL = 0; //EOC1 will set INT1 flag 

    AdcbRegs.ADCINTSEL1N2.bit.INT1E = 1;   //enable INT1 flag 

    AdcbRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //make sure INT1 flag is cleared 

    //ADCC 

    AdcdRegs.ADCSOC0CTL.bit.CHSEL = 0;  //SOC2 will convert pin C2 

    AdcdRegs.ADCSOC0CTL.bit.ACQPS = 14; //sample window is acqps + 1 SYSCLK 

//cycles 

    AdcdRegs.ADCINTSEL1N2.bit.INT1SEL = 0; //EOC2 will set INT1 flag 

    AdcdRegs.ADCINTSEL1N2.bit.INT1E = 1;   //enable INT1 flag 

    AdcdRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //make sure INT1 flag is cleared 

 

    AdcaRegs.ADCSOC0CTL.bit.TRIGSEL = 1; //set SOC0 start trigger on CPUTIMER1 

    AdcbRegs.ADCSOC0CTL.bit.TRIGSEL = 2; //set SOC1 start trigger on CPUTIMER2 

    AdcdRegs.ADCSOC0CTL.bit.TRIGSEL = 3; //set SOC2 start trigger on CPUTIMER3 

 

    EDIS; 

} 

 

__interrupt void epwm1_isr(void) 

{ 

    // Update the CMPA 

    update_compare1(&epwm1_info); 
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    // Clear INT flag for this timer 

    EPwm1Regs.ETCLR.bit.INT = 1; 

 

    // Acknowledge this interrupt to receive more interrupts from group 3 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; 

} 

 

__interrupt void epwm2_isr(void) 

{ 

 

    // Update the CMPA 

    update_compare2(&epwm2_info); 

 

    // Clear INT flag for this timer 

    EPwm2Regs.ETCLR.bit.INT = 1; 

 

    // Acknowledge this interrupt to receive more interrupts from group 3 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; 

} 

 

__interrupt void epwm3_isr(void) 

{ 

 

    // Update the CMPA 

    update_compare3(&epwm3_info); 

 

    // Clear INT flag for this timer 

    EPwm3Regs.ETCLR.bit.INT = 1; 

    // Acknowledge this interrupt to receive more interrupts from group 3 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; 

} 
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void InitEPwm1() 

{ 

    // Setup TBCLK 

    EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up 

    EPwm1Regs.TBPRD = EPWM1_TIMER_TBPRD;       // Set timer period 

    EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE;    // Disable phase loading 

    EPwm1Regs.TBPHS.half.TBPHS = 0x0000;       // Phase is 0 

    EPwm1Regs.TBCTR = 0x0000;                  // Clear counter 

    EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4;   //Clock ratio 

    EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV4; 

 

    // Setup shadow register load on ZERO 

    EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; 

    EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; 

    EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; 

    EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; 

 

    // Set Compare values 

    EPwm1Regs.CMPA.half.CMPA = EPWM1_MIN_CMPA;   // Set compare A value 

    EPwm1Regs.CMPB.half.CMPB = EPWM1_MIN_CMPB;   // Set Compare B value 

 

    // Set actions 

    EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET;            // Set PWM1A on Zero 

    EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR;     // Clear PWM1A on event A,  

 

    EPwm1Regs.AQCTLB.bit.ZRO = AQ_SET;            // Set PWM1B on Zero 

    EPwm1Regs.AQCTLB.bit.CBU = AQ_CLEAR;      // Clear PWM1B on event B 

 

    // Interrupt where we will change the Compare Values 

    EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;     // Select INT on Zero event 

    EPwm1Regs.ETSEL.bit.INTEN = 1;                        // Enable INT 
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    EPwm1Regs.ETPS.bit.INTPRD = ET_3RD;           // Generate INT on 3rd event 

 

    // Keeps track of the direction that  

    // the CMPA/CMPB values are 

    // moving, the min and max allowed values and 

    // a pointer to the correct ePWM registers 

    epwm1_info.EPwm_CMPA_Direction = 1; // Start by increasing CMPA & CMPB 

    epwm1_info.EPwm_CMPB_Direction = 1; 

    epwm1_info.EPwmTimerIntCount = 0;             // Zero the interrupt counter 

    epwm1_info.EPwmRegHandle = &EPwm1Regs;    // Set the pointer to ePWMregs 

    epwm1_info.EPwmMaxCMPA = EPWM1_MAX_CMPA;   

    epwm1_info.EPwmMinCMPA = EPWM1_MIN_CMPA; 

    epwm1_info.EPwmMaxCMPB = EPWM1_MAX_CMPB; 

    epwm1_info.EPwmMinCMPB = EPWM1_MIN_CMPB; 

 

} 

//The other two ePWM initializations are the same as for ePWM1, so no comments will be 

//included 

void InitEPwm2() 

{ 

    EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;  

    EPwm2Regs.TBPRD = EPWM1_TIMER_TBPRD;            

   EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE;     

    EPwm2Regs.TBPHS.half.TBPHS = 0x0000;        

    EPwm2Regs.TBCTR = 0x0000;                   

    EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4;    

    EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV4; 

 

    EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; 

    EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; 

    EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; 

    EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; 
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    EPwm2Regs.CMPA.half.CMPA = EPWM1_MIN_CMPA;    

    EPwm2Regs.CMPB.half.CMPB = EPWM1_MIN_CMPB;    

 

    EPwm2Regs.AQCTLA.bit.ZRO = AQ_SET;             

    EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR;       

 

    EPwm2Regs.AQCTLB.bit.ZRO = AQ_SET;             

    EPwm2Regs.AQCTLB.bit.CBU = AQ_CLEAR; 

 

    EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;    

    EPwm2Regs.ETSEL.bit.INTEN = 1;                 

    EPwm2Regs.ETPS.bit.INTPRD = ET_3RD;          

 

    epwm2_info.EPwm_CMPA_Direction = 1;   

    epwm2_info.EPwm_CMPB_Direction = 1; 

    epwm2_info.EPwmTimerIntCount = 0; 

    epwm2_info.EPwmRegHandle = &EPwm2Regs;  

    epwm2_info.EPwmMaxCMPA = EPWM1_MAX_CMPA; 

    epwm2_info.EPwmMinCMPA = EPWM1_MIN_CMPA; 

    epwm2_info.EPwmMaxCMPB = EPWM1_MAX_CMPB; 

    epwm2_info.EPwmMinCMPB = EPWM1_MIN_CMPB; 

 

} 

void InitEPwm3(void) 

{ 

    EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;  

    EPwm3Regs.TBPRD = EPWM1_TIMER_TBPRD;        

    EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE;     

    EPwm3Regs.TBPHS.half.TBPHS = 0x0000;        

    EPwm3Regs.TBCTR = 0x0000;                   

    EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4;    
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    EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV4; 

 

    EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; 

    EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; 

    EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; 

    EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; 

 

    EPwm3Regs.CMPA.half.CMPA = EPWM1_MIN_CMPA;  

    EPwm3Regs.CMPB.half.CMPB = EPWM1_MIN_CMPB; 

 

    EPwm3Regs.AQCTLA.bit.ZRO = AQ_SET;             

    EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR;           

 

    EPwm3Regs.AQCTLB.bit.ZRO = AQ_SET;             

    EPwm3Regs.AQCTLB.bit.CBU = AQ_CLEAR  

    EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;      

    EPwm3Regs.ETSEL.bit.INTEN = 1;                 

    EPwm3Regs.ETPS.bit.INTPRD = ET_3RD;            

 

    epwm3_info.EPwm_CMPA_Direction = 1;     

    epwm3_info.EPwm_CMPB_Direction = 1; 

    epwm3_info.EPwmTimerIntCount = 0; 

    epwm3_info.EPwmRegHandle = &EPwm3Regs;   

    epwm3_info.EPwmMaxCMPA = EPWM1_MAX_CMPA; 

    epwm3_info.EPwmMinCMPA = EPWM1_MIN_CMPA; 

    epwm3_info.EPwmMaxCMPB = EPWM1_MAX_CMPB; 

    epwm3_info.EPwmMinCMPB = EPWM1_MIN_CMPB; 

} 

 

//CpuTimerX.InterruptCount will be used as a clock to determine 

//which the last leg to reach its length for the current index is 

__interrupt void cpu_timer0_isr(void) 
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{ 

   CpuTimer0.InterruptCount++; 

   // Acknowledge this interrupt to receive more interrupts from group 1 

   PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; 

} 

 

__interrupt void cpu_timer1_isr(void) 

{ 

   CpuTimer1.InterruptCount++; 

   PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; 

} 

 

__interrupt void cpu_timer2_isr(void) 

{ 

   CpuTimer2.InterruptCount++; 

   PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; 

} 

 

//These functions accept the info for their respective PWM and controls  

//that leg accordingly 

void update_compare1(EPWM_INFO *epwm_info) 

{ 

 

//If all of the actuators have reached their destination and 

//its the last actuator to get there or they all reached their destination 

//and its the first run through, then calculate the next length to go to for 

//each leg and rest all of the timer values and flag value 

 if ((flag == 3 && (time1 > time2 && time1 > time3 && time2 != 0 && time3 != 0)) 

|| (flag == 3 && (time1 < 10 && time2 < 10 && time3 < 10)))   

 { 

  flag = 0; 

  time1 = 0; 



165 
 

  time2 = 0; 

  time3 = 0; 

 

//The LXDigital values convert length (in inches) from the index array to a digital value 

//so that it can be compared against the value received from the  

//potentiometer 

  L1Digital = -515*L1Array[Index1]+4095; 

  L2Digital = -501*L2Array[Index2]+4105; 

  L3Digital = -478*L3Array[Index3]+4061; 

 } 

 

//If somehow the flag count exceeds what it should, then set it to 3  

 if (flag > 3) 

 { 

  flag = 3; 

 } 

 

//If the last value that the leg went to was larger than the next value it 

//needs to go to, then go forward. This may seem backwards but its because 

//the 0 position for the actuator has a digital value of 4095 (approximately, 

//but it varies quite a bit in reality) and as the actuator length increases 

//the value decreases to around 2000 at the end of its stroke length 

 if(L1Digital_Old > L1Digital) 

 { 

  forward1(&epwm1_info); 

 } 

//If the old value was larger than the new value then the leg needs to go  

//backwards to reach its new value 

 if(L1Digital_Old < L1Digital) 

 { 

  backward1(&epwm1_info); 

 } 
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//If the values are the same then stop moving the actuator 

//This is how the actuator stops and waits for the last 

//leg to reach its position 

 if(L1Digital_Old == L1Digital) 

 { 

  epwm_info->EPwmRegHandle->CMPA.half.CMPA = 0; 

 } 

//If the index of the current leg exceeds the array size  

//or both of the indices of the other legs exceed the array size 

//then bring all actuators back down to the 0 position 

 

 if(Index1 > ArraySize || (Index2 > ArraySize && Index3 > ArraySize)) 

 { 

  epwm_info->EPwmRegHandle->CMPA.half.CMPA = 8500; 

 } 

 

 return; 

} 

 

//The other two update_compare functions are the same as the first one but their  

//each control their respective PWM wave and, therefore, actuator leg 

 

void update_compare2(EPWM_INFO *epwm_info) 

{ 

 if ((flag == 3 && (time2 > time1 && time2 > time3 && time1 != 0 && time3 != 0)) 

|| (flag == 3 && (time1 < 10 && time2 < 10 && time3 < 10)))   

  flag = 0; 

  time1 = 0; 

  time2 = 0; 

  time3 = 0; 
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  L1Digital = -515*L1Array[Index1]+4095; 

  L2Digital = -501*L2Array[Index2]+4105; 

  L3Digital = -478*L3Array[Index3]+4061; 

 } 

 

 if (flag > 3) 

 { 

  flag = 3; 

 } 

 

 if(L2Digital_Old > L2Digital) 

 { 

  forward2(&epwm2_info); 

 } 

 

 if(L2Digital_Old < L2Digital) 

 { 

  backward2(&epwm2_info); 

 } 

 

 if(L2Digital_Old == L2Digital) 

 { 

  epwm_info->EPwmRegHandle->CMPA.half.CMPA = 0; 

 } 

 

 if(Index2 > ArraySize || (Index1 > ArraySize && Index3 > ArraySize)) 

 { 

  epwm_info->EPwmRegHandle->CMPA.half.CMPA = 8500; 

 } 

 return; 

} 
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void update_compare3(EPWM_INFO *epwm_info) 

{ 

 if ((flag == 3 && (time3 > time2 && time3 > time1 && time1 != 0 && time2 != 0)) 

|| (flag == 3 && (time1 < 10 && time2 < 10 && time3 < 10)))   

 { 

  flag = 0; 

  time1 = 0; 

  time2 = 0; 

  time3 = 0; 

 

  L1Digital = -530*L1Array[Index1]+4025; 

  L2Digital = -501*L2Array[Index2]+4105; 

  L3Digital = -478*L3Array[Index3]+4061; 

 } 

 

 

 if (flag > 3) 

 { 

  flag = 3; 

 } 

 

 if(L3Digital_Old > L3Digital) 

 { 

  forward3(&epwm3_info); 

 } 

 

 if(L3Digital_Old < L3Digital) 

 { 

  backward3(&epwm3_info); 

 } 

 

 if(L3Digital_Old == L3Digital) 
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 { 

  epwm_info->EPwmRegHandle->CMPA.half.CMPA = 0; 

 } 

 

 if(Index3 > ArraySize || (Index1 > ArraySize && Index2 > ArraySize)) 

 { 

  epwm_info->EPwmRegHandle->CMPA.half.CMPA = 8500; 

 } 

 return; 

 

} 

 

//Each leg has its own forward and backward function so 

//the it receives the correct PWM info as its input. 

//So now that we know that the leg needs to go forward 

//to reach its next position, we set the PWM wave for that 

//leg to go drive the arm forward. The if statement  

//checks the ADC register for that leg to see if it has  

//reached its new position, and if it has then  

//the actuator leg stops and the positon it just  

//reached is now the previously position value 

//and is stored as such. The time that this leg reached  

//its position is stored in time1 and the index for this leg 

//is increased and the flag value is also increased 

void forward1(EPWM_INFO *epwm_info) 

{ 

 epwm_info->EPwmRegHandle->CMPA.half.CMPA = 10500; 

 if (AdcaResultRegs.ADCRESULT0 < L1Digital) 

 { 

  epwm_info->EPwmRegHandle->CMPA.half.CMPA = 0; 

  L1Digital_Old = L1Digital; 

  time1 = CpuTimer0.InterruptCount; 
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  flag++; 

  Index1++; 

 } 

 return; 

} 

 

//The backwards function works exactly the same as the forward 

//function excpet that it changes the PWM so that the actuator  

//is driven backward instead of forward 

void backward1(EPWM_INFO *epwm_info) 

{ 

 epwm_info->EPwmRegHandle->CMPA.half.CMPA = 8500; 

 

 if (AdcaResultRegs.ADCRESULT0 > L1Digital) 

 { 

  epwm_info->EPwmRegHandle->CMPA.half.CMPA = 0; 

  L1Digital_Old = L1Digital; 

  time1 = CpuTimer0.InterruptCount; 

  flag++; 

  Index1++; 

 } 

 

 return; 

} 

//All the other functions are the same as the above two forward 

//and backward functions, but they control the other two PWM waves 

void forward2(EPWM_INFO *epwm_info) 

{ 

 epwm_info->EPwmRegHandle->CMPA.half.CMPA = 10500; 

 

 if (AdcbResultRegs.ADCRESULT0 < L2Digital) 

 { 
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  epwm_info->EPwmRegHandle->CMPA.half.CMPA = 0; 

  L2Digital_Old = L2Digital; 

  time2 = CpuTimer0.InterruptCount; 

  flag++; 

  Index2++; 

 } 

 

 return; 

} 

 

void backward2(EPWM_INFO *epwm_info) 

{ 

 epwm_info->EPwmRegHandle->CMPA.half.CMPA = 8500; 

 

 if (AdcbResultRegs.ADCRESULT0 > L2Digital) 

 { 

  epwm_info->EPwmRegHandle->CMPA.half.CMPA = 0; 

  L2Digital_Old = L2Digital; 

  time2 = CpuTimer0.InterruptCount; 

  flag++; 

  Index2++; 

 } 

 return; 

} 

 

void forward3(EPWM_INFO *epwm_info) 

{ 

 epwm_info->EPwmRegHandle->CMPA.half.CMPA = 10500; 

 

 if (AdcdResultRegs.ADCRESULT0 < L3Digital) 

 { 

  epwm_info->EPwmRegHandle->CMPA.half.CMPA = 0; 
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  L3Digital_Old = L3Digital; 

  time3 = CpuTimer0.InterruptCount; 

  flag++; 

  Index3++; 

 } 

 return; 

} 

 

void backward3(EPWM_INFO *epwm_info) 

{ 

 epwm_info->EPwmRegHandle->CMPA.half.CMPA = 8500; 

 

 if (AdcdResultRegs.ADCRESULT0 > L3Digital) 

 { 

  epwm_info->EPwmRegHandle->CMPA.half.CMPA = 0; 

  L3Digital_Old = L3Digital; 

  time3 = CpuTimer0.InterruptCount; 

  flag++; 

  Index3++; 

 } 

 return; 

} 
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