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Abstract

This dissertation consists of two parts. Part I examines certain Burnside-type conditions on the

multiplicative semigroup of an (associative unital) algebra A.

A semigroup S is called n-collapsing if, for every a1, . . . , an 2 S , there exist functions f , g

on the set {1, 2, . . . , n} such that

s f (1) · · · s f (n) = sg(1) · · · sg(n).

If f and g can be chosen independently of the choice of s1, . . . , sn, then S satisfies a semigroup

identity. A semigroup S is called n-rewritable if f and g can be taken to be permutations. Sem-

ple and Shalev extended Zelmanov’s Fields Medal writing solution of the Restricted Burnside

Problem by proving that every finitely generated residually finite collapsing group is virtually

nilpotent.

The primary result of Part I is that the following conditions are equivalent for every algebra

A over an infinite field: the multiplicative semigroup of A is collapsing, A satisfies a multi-

plicative semigroup identity, and A satisfies an Engel identity: [x,m y] = 0. Furthermore, in this

case, A is locally (upper) Lie nilpotent. It is also shown that, if the multiplicative semigroup of

A is rewritable, then A must be commutative.

In Part II of this dissertation, we study algebraic analogues to well-known problems of

Philip Hall on the verbal and marginal subgroups of a group. We begin by proving two alge-

braic analogues of the Schur-Baer-Hall Theorem: if G is a group such that G/Zn(G) is finite,

whereZn(G) is the nth higher centre of G, then the (n + 1)st term, �n+1(G), of the lower central

series of G is also finite; conversely, if �n+1(G) is finite, then so is G/Z2n(G). Next, we prove

results of a more general type.

Given an algebra A and a polynomial f , we define the verbal subspace, SA( f ), of A to be

spanned by the set of f -values in A, the verbal subalgebra,AA( f ), and the verbal ideal, IA( f ),

of A to be generated by the set of f -values in A. We also define the marginal subspace bSA( f )

of A to be the set of all elements z 2 A such that
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f (b1, . . . , bi�1, bi + ↵z, bi+1, . . . , bn) = f (b1, . . . , bi�1, bi, bi+1, . . . , bn),

for all i = 1, 2, . . . , n, b1, . . . , bn 2 A, and ↵ 2 K. Furthermore, we define the marginal subal-

gebra, bAA( f ), and the marginal ideal, bIA( f ), to be the largest subalgebra, respectively, largest

ideal, of A contained in bSA( f ). We consider the following problems:

1. If bSA( f ) is of finite codimension in A, is SA( f ) finite-dimensional?

2. If SA( f ) is finite-dimensional, is bSA( f ) of finite codimension in A?

3. If SA( f ) is finite-dimensional, isAA( f ) or IA( f ) finite-dimensional?

4. If A/bSA( f ) is finite-dimensional, is A/ bAA( f ) or A/bIA( f ) finite-dimensional?

Keywords: Multiplicative semigroup, collapsing, rewritable, Engel identity, upper Lie

nilpotent, verbal and marginal subspaces.
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Chapter 1

Burnside-Type Problems

1.1 The Burnside Problems for Groups

Recall that a periodic group G is a group in which each element has finite order. Notice

that, if there is an n 2 N such that gn = 1, for all g 2 G, then G is a periodic group of

bounded exponent. The minimal such n is called the exponent of G.

In 1902, Burnside ([7]) formulated his famous problems for periodic groups which has

been one of the main driving forces of the theory of infinite groups for a long time.

The General Burnside Problem 1.1.1 Is it true that every finitely generated periodic group

is finite?

The Burnside Problem 1.1.2 Is it true that every finitely generated group of bounded expo-

nent is finite?

After many unsuccessful attempts to obtain a proof in the late 30s-early 40s, the following

weaker version of the Burnside Problem was studied: is it true that there are only finitely many

m-generated finite groups of exponent n? In other words, the question is whether there exists

a universal finite m-generated group of exponent n having all other finite m-generated groups

of exponent n as homomorphic images. Later (thanks to Magnus ([38])) this question became

known as the Restricted Burnside Problem.

2



1.1. The Burnside Problems for Groups 3

The Restricted Burnside Problem 1.1.3 If G is a finite, m-generated group of exponent n,

does there exist a bound for the order of G in terms of m and n?

In 1964, Golod and Shafarevich gave a negative answer to the General Burnside Problem

([12] ). Since then, a considerable array of infinitely generated periodic groups was constructed

by other authors (cf. Alyoshin [2], Suschansky [66], Grigorchuk [13], Gupta-Sidki [14]).

In 1968, Novikov and Adian ([45]) constructed counterexamples to the Burnside Problem

for groups of odd exponents n > 4381 (now for odd exponents n > 115, cf. Lysenok [37]).

Olshansky ([46]) showed how wildly periodic groups may behave.

At the same time there were two major reasons to believe that the Restricted Burnside

Problem would have a positive solution. One of these reasons was the following reduction

theorem obtained by Hall and Higman ([21]).

Theorem 1.1.4 Let n = pk1
1 · · · p

kr
r , where pi are distinct prime numbers, ki � 1, and assume

that the following statements hold.

1. The Restricted Burnside Problem for groups of exponents pki
i has a positive solution.

2. There are only a finite number of finite simple groups of exponent n.

3. The factor group Aut(G)/Inn(G) is solvable for any finite simple group of exponent n.

Then the Restricted Burnside Problem for groups of exponent n also has positive solution.

Another reason was the close relation of the problem to Lie algebras satisfying the Engel

identity. Using this approach, Kostrikin ([31]) proved that for any prime p, the order of an

m-generated finite group G of exponent p is bounded by a function f (m, p). Later, using also

a ring theory approach, Zelmanov ([72],[73]) completed Kostrikin’s proof by finding such a

function for any group G of exponent p↵.

Zelmanov’s Solution to the Resrtricted Burnside Problem 1.1.5 The Restricted Burnside Prob-

lem has a positive solution.



4 Chapter 1. Burnside-Type Problems

1.2 The Kurosh-Levitzki Problems for Algebras

Definition 1.2.1 An associative algebra A over a field K is called algebraic, if for every a 2 A,

there exists nontrivial fa(x) 2 K[x] such that fa(a) = 0.

Recall that a (nonunital) algebra A is nil of bounded index if there exists an n 2 N such

that an = 0, for all a 2 A; the algebra A is nilpotent of class  n if, for all a1, . . . , an 2 A,

a1 · · · an = 0.

Kurosh ([33]) and, independently, Levitzki ([36]), formulated two problems for algebras,

which were similar to Burnside Problems.

The Kurosh-Levitzki Problems 1.2.2 Let A be a finitely generated associative algebraic al-

gebra.

1. General version: Is A necessarily finite-dimensional? In particular, if A is nil, is it nilpo-

tent?

2. Bounded version: If every element of A is algebraic of bounded degree, is A finite-

dimensional? If A is nil of bounded index, is it nilpotent?

Let f (x1, . . . , xn) be a polynomial in the free algebra on the set {x1, x2, . . .} over a field

K. Recall that f is called homogeneous if each f -monomial is of the same degree in each

indeterminate (where this degree may depend upon the indeterminate). In particular, each f -

monomial has the same degree. By collecting together the f -monomials of given degree in each

indeterminate, we can express a given polynomial f in a natural way as a sum of homogeneous

polynomials; these are the homogeneous components of f . Moreover, f is called multilinear if

it is linear in each of its indeterminates. In other words,

f (x1, . . . , xn) =
P
�2S n ↵�x�(1) · · · x�(n),

for some ↵� 2 K, where S n is the symmetric group of degree n.



1.2. The Kurosh-Levitzki Problems for Algebras 5

Golod and Shafarevich ([12]) gave a counterexample to the General Kurosh-Levitzki Prob-

lem using class field tower theory. Actually, this counterexample was used to construct the first

counterexample to the General Burnside Problem.

Golod-Shafarevich Theorem 1.2.3 Let A be the free algebra over a field K in n = d + 1 non-

commuting variables xi. Let J be the 2-sided ideal of A generated by homogeneous elements

f j of A of degree d j with

2  d1  d2  · · · ,

where d j tends to infinity. Let ri be the number of d j equal to i. Let B = A/J, a graded algebra.

Let b j = dimBj. The fundamental inequality of Golod and Shafarevich states that

b j � nbj�1 �
P j

i=2 bj�iri.

As a consequence:

1. B is infinite-dimensional if ri  d2/4, for all i.

2. If B is finite-dimensional, then ri > d2/4, for some i.

Corollary 1.2.4 For each prime p, there is an infinite group G generated by three elements in

which each element has order a power of p.

Concerning the Bounded Kurosh-Levitzki Problem, if the characteristic of the field is 0 or

su�ciently large, the Dubnov-Ivanov-Nagata-Higman Theorem (see [8]) gives that the algebra

is nilpotent even without the assumption of finite generation.

Dubnov-Ivanov-Nagata-Higman Theorem 1.2.5 Let A be a nonunital associative algebra

over a field K such that char(K) = 0. If A satisfy the polynomial identity xk = 0, then there

exists an integer d = d(k) such that A is nilpotent of class d.
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1.3 The Solution of the Bounded Kurosh-Levitzki Problem

for Associative PI-algebras

Definition 1.3.1 Let X = {x1, x2, . . .} be a countably infinite set of noncommuting indetermi-

nates. Let f = f (x1, . . . , xn) be a polynomial in the free associative algebra on X and let A be

any associative algebra. We say that f = 0 is a polynomial identity for A if

f (a1, . . . , an) = 0,

for arbitrary a1, . . . , an 2 A. A is called a PI-algebra if A has a nontrivial polynomial identity.

Algebras with polynomial identities generalize commutative and finite-dimensional alge-

bras. This generalization is not only formal. PI-algebras share many structural properties with

commutative and finite-dimensional algebras (see chapter 8 in [8], for example).

Nil algebras of bounded index satisfy an identity of the form xn = 0, for some positive

integer n. Similarly, if all elements of the algebra A are algebraic of bounded degree n, then

1, a, a2, . . . , an are linearly dependent for any a 2 A, and this implies that A satisfies the identity

of algebraicity

P
�2S n+1(�1)�x�(0)y1x�(1)y2 · · · ynx�(n) = 0,

where S n+1 acts on the set {0, 1, . . . , n}. Hence, every algebra A that satisfies the hypotheses of

the Bounded Kurosh-Levitzki Problem is, in fact, a PI-algebra. Therefore, it makes sense to

ask whether the Kurosh-Levitzki Problem has a positive solutions for PI-algebras.

The General Kurosh-Levitzki Problem for PI-algebras 1.3.2 If A is a finitely generated al-

gebraic (respectively, nil) PI-algebra, is A finite dimensional (respectively, nilpotent)?

For nil algebras of bounded index the problem was answered positively by Levitzki ([36]),

and the general problem for algebraic PI-algebras by Kaplansky ([29]). Both proofs involved

structure theory of rings and can be found in Herstein’s book ([24]).
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Levitzki’s Theorem 1.3.3 Let A be a finitely generated nil algebra of bounded index. Then A

is nilpotent.

Kaplansky’s Theorem 1.3.4 Let A be a finitely generated algebraic PI-algebra. Then A is

finite-dimensional.

In 1957, Shirshov ([64]) suggested another, purely combinatorial, direct approach to the

Kurosh-Levitzki Problem for PI-algebras. In fact, he showed, using the concept of the height

of a finitely generated algebra, that the theorems of Levitzki and Kaplansky follow from his

theorem.

Definition 1.3.5 Let A be an algebra generated by a1, . . . , ad, and let H be a finite set of mono-

mials in a1, . . . , ad. One says that A is of height h with respect to H if h is the minimal integer

with the property that, as a vector space, A is spanned by the monomials

u j1
i1 · · · u

jk
ik ,

such that ui1 , . . . , uik 2 H and k  h.

Shirshov’s Height Theorem 1.3.6 Let A be a PI-algebra satisfying a polynomial identity of

degree n and generated by elements a1, . . . , ad. Then A is of finite height with respect to the set

of all monomials ai1 · · · aik of length k < n.

As we mentioned above, we can apply Shirshov’s Height Theorem to obtain the results of

Levitzki and Kaplansky on the General Kurosh-Levitzki Problem for PI-algebras. Note that

the statements below do not require the nil or the algebraic assumption of all elements of the

algebra as in the original results of Levitzki and Kaplansky.

Corollary 1.3.7 Let A be a PI-algebra satisfying a polynomial identity of degree n and let A

be generated by the elements a1, . . . , ad. Let H be the (finite) set of all products ai1 · · · aik , k < n.

Then the following statements holds.
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1. If every element of H is nil, then A is nilpotent (with bounded index with respect to n).

2. If every element of H is algebraic, then A finite-dimensional (of bounded dimension with

respect to n).

1.4 Lie Algebras Satisfying an Engel Identity

In this section we will consider an analogue of Levitzki’s Theorem for Lie algebras satisfying

an Engel identity.

Definition 1.4.1

1. A Lie algebra is an algebra L together with a bilinear binary operation [·, ·] : L⇥ L! L

which satisfies the following axioms: for every a, b, c 2 L,

[a, a] = 0, (the anticommutative law)

and

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0, (the Jacobi identity).

2. A Lie algebra L is said to be Engelian or simply Engel if there exists m 2 N such that it

satisfies the polynomial identity

[x,m y] := [x, y, y, . . . , y|     {z     }
m

] = 0.

3. Let L be a Lie algebra. Set �1(L) = L and recursively define �n(L) = [�n�1(L), L], for

each n � 2. Then L is called nilpotent of class c, if �c+1(L) = 0 for some c 2 N and c is

minimal.

Notice that, throughout Part I, all Lie commutators [x1, x2, . . . , xn] are assumed to be left

normed Lie commutators.
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In Lie algebras over a field of characteristic zero, the Engel condition implies nilpotence

(not just local nilpotence). This remarkable result was proved by Zelmanov in [71]. Although

not all m-Engel Lie algebras over a field of positive characteristic are nilpotent, Zelmanov

proved this to be the case whenever the Lie algebra is finitely generated ([72, 73]).

Zelmanov’s Theorem for Engelian Lie Algebras 1.4.2

1. Let L be a Lie algebra over a field K of characteristic 0. If L is Engel, then L is nilpotent.

2. Let L be a finitely generated Lie algebra over a field K of positive characteristic. If L is

Engel, then L is nilpotent.

As we mentioned before, Zelmanov used (a stronger version of) part (2) of the above result to

solve the Restricted Burnside Problem for groups.

1.5 Associative Algebras Satisfying an Engel Identity

Recall that an associative algebra A has a natural Lie structure given by the Lie bracket

[a, b] = ab � ba.

To avoid ambiguity, an associative algebra A is said to be Lie nilpotent if it is nilpotent when

viewed as a Lie algebra. It is known that there exist Engelian Lie algebras arising from asso-

ciative algebras over fields of positive characteristic that are not Lie nilpotent ([56]). Perhaps

the simplest example is the tensor square of the (nonunital) Grassmann algebra of a countably-

infinite-dimensional vector space over a field of characteristic p > 2. In fact, it is nil of bounded

index 2p but not Lie nilpotent (see [48, 52]).

Definition 1.5.1

1. For an associative algebra A, we set A(1) = A and recursively define A(n+1) to be the

associative ideal in A generated by the Lie ideal [A(n), A], for each n � 1. The ideal A(n)

is sometimes called the nth Lie power of A.
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2. An algebra A is upper (or strongly) Lie nilpotent of class at most c if A(c+1) = 0 and such

c is minimal.

Although upper Lie nilpotence clearly implies Lie nilpotence, the converse need not be

true (as was conjectured by S.A. Jennings). Indeed, the Grassmann algebra over a field of

characteristic not 2 is Lie nilpotent of class 2 but not upper Lie nilpotent, while Gupta and

Levin constructed a similar example in characteristic 2 ([15]).

Riley and Wilson, in [54], were able to construct the associative analogue of Zelmanov’s

Theorem. In fact, something stronger holds.

Theorem 1.5.2 Let C be a commutative ring, and let R be a finitely generated associative C-

algebra that is generated by d elements and satisfies the Engel identity of degree n. Then R is

upper Lie nilpotent of class bounded by a function depending on d and n only.

1.6 Mal0cev Semigroup Identities

The usual multiplicative semigroup of an associative algebra A will be presented by (A, ·). If

A is unital, then the elements of (A, ·) possessing an inverse form the group of units, A⇥, of A.

Another important semigroup structure on A is given by the adjoint operation

a � b = a + b + ab.

By embedding A into its unital hull, A1, we can express the adjoint operation on A by

a � b = (1 + a)(1 + b) � 1.

In the case when A is itself unital, (A, �) ! (A, ·) : a 7! 1 + a is an isomorphism of monoids.

We recall that the Jacobson radical, J(A), of A is the largest ideal of A that forms a group

under the adjoint operation.

Definition 1.6.1 A semigroup S is said to satisfy a (nontrivial) identity
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!1(x1, . . . , xn) = !2(x1, . . . , xn),

where !1 and !2 are distinct monomials in the free monoid on {x1, x2, . . .}, if, for arbitrary

s1, . . . , sn 2 S ,

!1(s1, . . . , sn) = !2(s1, . . . , sn).

The identity !1 = !2 is called reduced if !1 and !2 begin and end with di↵erent letters.

Definition 1.6.2 Define the sequences �n and ⇢n in the free semigroup on {x, y, z0, z1, . . .} by

�0 = x, ⇢0 = y,

and

�n+1 = �nzn⇢n, ⇢n+1 = ⇢nzn�n,

for each n � 0. The nth Mal0cev identity is the reduced identity

�n(x, y, z0, . . . , zn�1) = ⇢n(x, y, z0, . . . , zn�1).

Mal0cev ([40]), and independently, Neumann and Taylor ([44]), gave the following charac-

terization for groups satisfying a Mal0cev identity.

Theorem 1.6.3 A group G is nilpotent of class at most n if and only if it satisfies the nth Mal0cev

identity.

A similar result to the above theorem holds in the category of rings. Riley and Tasić ([53])

proved the following.

Theorem 1.6.4 Let R be an associative ring. If R is Lie nilpotent of class at most n, then (R, �)

satisfies the nth Mal0cev identity.

The complete converse of the above result was later verified by Amberg and Sysak ([3]).

Theorem 1.6.5 Let R be an associative ring. If (R, �) satisfies the nth Mal0cev identity, then R

is Lie nilpotent..
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1.7 Thue-Morse Semigroup Identities

Definition 1.7.1 The nth Thue-Morse identity µn(x, y) = ⌫n(x, y) is the nth Mal0cev identity with

z0 = z1 = · · · = zn�1 = 1.

For example, the 2nd Thue-Morse identity is the identity xy2x = yx2y.

Riley and Wilson, in [55], proved that if A is an algebra over an infinite field satisfying an

Engel identity, then (A, �) satisfies a semigroup identity; moreover, in this case, (A, �) satisfies

a Thue-Morse identity. The converse is also true:

Theorem 1.7.2 Let A be an associative algebra over an infinite field K. Then the following

conditions are equivalent.

1. A satisfies an adjoint semigroup identity.

2. A satisfies a reduced (multiplicative) semigroup identity.

3. A satisfies a reduced binomial identity.

4. A satisfies an identity of the form

Pn
i=0 ↵iyixyn�i = 0,

where ↵i 2 K, ↵0 , 0, and ↵n , 0.

5. A satisfies an Engel identity.

6. (A, �) satisfies a Thue-Morse identity.



Chapter 2

Collapsing and Rewritable Groups

2.1 Collapsing Groups

The following definition was introduced by Semple and Shalev in [62, 63].

Definition 2.1.1 Let S be a semigroup, and let n be a positive integer. Then S is said to

be n-collapsing if, for every s1, . . . , sn in S , there exist distinct functions f , g : {1, . . . , n} !

{1, . . . , n}, such that

s f (1) · · · s f (n) = sg(1) · · · sg(n).

If S is n-collapsing, for some n, then we simply say that S is collapsing.

Notice that the semigroup S clearly satisfies an identity when the functions f and g in the

above definition can be chosen independently of the particular elements s1, . . . , sn; conversely,

it is easy to see that every semigroup satisfying an identity is collapsing.

Recall that a group G is said to be residually finite if, given g , 1 in G, there is an NCG

such that g < N and G/N is finite (for more on residual properties, see [58] section 2.3).

In [62], Semple and Shalev extended Zelmanov’s proof of the Restricted Burnside Problem

by proving that every finitely generated residually finite group is nilpotent-by-finite (or virtually

nilpotent) precisely when it is collapsing (since any group satisfying a Burnside identity xm = 1

is clearly collapsing).

13
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Theorem 2.1.2 Let G be a finitely generated residually finite group. Then G is collapsing if

and only if G is nilpotent-by-finite.

Notice that every nilpotent-by-finite group satisfies a semigroup identity of the form

µn(xe, ye) = ⌫n(xe, ye),

for some positive integers n and e. Therefore, every finitely generated residually finite collaps-

ing group satisfies a semigroup identity. In fact, in [63], Shalev completed the characterization

of residually finite collapsing groups by addressing the non-finitely generated case. In order

to formulate his result, let us say that a group G is strongly locally nilpotent if it generates a

locally nilpotent variety; this means that, for some function g (depending on G) and for all

positive integers d, every d-generated subgroup of G is nilpotent of class at most g(d).

Theorem 2.1.3 A residually finite group is collapsing if and only if it is an extension of a

strongly locally nilpotent group by a group of finite exponent.

On the other hand, Shalev raised the following natural question in [63].

Does every collapsing group satisfy a semigroup identity?

We think that the following logical extension also remains open.

Does every collapsing semigroup satisfy an identity?

2.2 Rewritable Groups

Definition 2.2.1 A permutational semigroup identity is one of the form

x1 · · · xn = x↵(1) · · · x↵(n),

for some non-identity permutation ↵ on the set {1, . . . , n}.
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Let R2(K) = Ke11 + Ke12 be the subalgebra contained in the algebra, M2(K), of all 2 ⇥ 2

matrices over a field K. Then the semigroup (R2(K), ·) satisfies the (unreduced) permutational

identity

xyz = yxz,

of degree 3. A similar statement holds for the semigroup (C2(K), ·), where C2(K) = Ke11+Ke21

(it satisfies the identity zxy = zyx).

We will denote the group commutator of x and y in a group G by

(x, y) = x�1y�1xy.

Furthermore, we will denote by G0 the derived subgroup of G, the subgroup generated by all

commutators (x, y).

In 1985, Maj, etal ([39]) gave the following characterization for groups satisfying a permu-

tational identity.

Theorem 2.2.2 A group G satisfies a permutational identity if and only if it is finite-by-abelian-

by-finite; that is, there is a normal subgroup N of G, of finite index, such that its derived

subgroup N0 is finite.

Definition 2.2.3 Let S be a semigroup, and let n be a positive integer. Then S is said to be

n-rewritable if, for every s1, . . . , sn in S , there exist distinct permutations ↵, � : {1, . . . , n} !

{1, . . . , n}, such that

s↵(1) · · · s↵(n) = s�(1) · · · s�(n).

If S is n-rewitable, for some n, then we simply say that S is rewritable.

Clearly, every semigroup satisfying a permutational identity is rewritable, and every rewritable

semigroup is collapsing.

In [6], Blyth extended Theorem 2.2.2 to rewritable groups:
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Theorem 2.2.4 A group G is rewritable if and only if it is finite-by-abelian-by-finite.

More recently, Elashiry and Passman gave a quantitative version of Blyth’s theorem in [9]

by describing explicit bounds. Recall that a characteristic subgroup is a subgroup that is in-

variant under all automorphisms of the parent group. Because conjugation is an automorphism,

every characteristic subgroup is normal.

Theorem 2.2.5 Let G be an n-rewritable group. Then G has a characteristic subgroup N such

that |G : N| and |N0| are finite and have sizes bounded by functions depending only on n.



Chapter 3

Collapsing and Rewritable Algebras

Henceforth, we shall use the term ‘algebra’ (without modification) to indicate an associative

algebra over a field K of characteristic p � 0; we do not assume that algebras are unital unless

specified. Let A be an algebra. We will study certain Burnside-type conditions on the adjoint

semigroup (A, �) of A in terms of its natural Lie structure via the Lie bracket

[a, b] = ab � ba,

for all a, b 2 A.

3.1 Collapsing Algebras

We will prove the following result in Chapter 5. It is the first of two main results in Part I of

this dissertation.

Theorem 3.1.1 Let A be an algebra over a field K. If K is infinite or A is nil, then the following

conditions are equivalent.

1. The adjoint semigroup (A, �) is collapsing.

2. A satisfies an Engel identity.

3. (A, �) satisfies a Thue-Morse identity.

17
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4. (A, �) satisfies an identity.

First notice that it is not possible to add the statement ‘The multiplicative semigroup (A, ·)

is collapsing’ to the list of the above statements (at least in the case when A is without unity).

Indeed, take A to the subalgebra R2(K) (or C2(K)), contained in the algebra of 2 ⇥ 2 matrices

over the field K. Then, as we saw in Chapter 2, (A, ·) satisfies the unreduced semigroup identity

xyz = yxz (or zxy = zyx), and yet A does not satisfy any Engel identity; clearly [e12,m e11] =

±e12 , 0 for all m � 1. Also, Theorem 3.1.1 does not extend in a natural way to all algebras

over all finite base fields: it is clear that every finite algebra is collapsing, but not every finite

algebra satisfies an Engel identity.

3.2 Rewritable Algebras

We will also obtain the following result. It is the second primary result in Part I.

Theorem 3.2.1 Let A be an algebra over an infinite field. Then the following conditions are

equivalent.

1. The adjoint semigroup (A, �) is rewritable.

2. The adjoint semigroup of every 2-generated subalgebra of A is rewritable.

3. A is commutative.

4. The adjoint semigroup (A, �) satisfies a permutational identity.

Again, as the case for Theorem 3.1.1, there is no hope to extend Theorem 3.2.1 to all

algebras over all base fields, since every finite algebra is rewritable but not necessarily com-

mutative. However, we will prove that Theorem 3.2.1 does extend to all nil algebras over

‘su�ciently large’ finite base fields.
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Theorem 3.2.2 Let A be an algebra over a field K such that either K is infinite or A is nil and

|K| � (n). If the adjoint semigroup of every 2-generated subalgebra of A is n-rewritable, then

A is commutative.

An explicit description of the function (n) will be given in the proof of Theorem 3.2.2 in

Chapter 6.



Chapter 4

Minimal Non-Engel Varieties

4.1 The Characterization of Minimal Non-Engel Varieties

Recall that a variety V of associative algebras is said to be Engelian or simply Engel if there

exists an integer m � 1 such that, for every A 2 V, A satisfies an Engel identity [x,m y] = 0.

Zorn’s Lemma implies that every non-Engel variety contains, as a subvariety, at least one

such ‘boundary’ variety. Therefore, a check on being Engel would consist in verifying whether

a given variety contains a boundary variety falling in a prescribed list. Such a description for

just non-Engel varieties over a field of characteristic 0 was obtained by Mal0tsev in [41].

Theorem 4.1.1 A varietyV of associative algebras over a field of characteristic 0 is Engel if

and only ifV contains neither R2(K) nor C2(K).

O.B. Finogenova (formerly known as O.B. Paison) proved the same result for varieties of

associative algebras over infinite fields of positive characteristic ([10]). The analogous charac-

terization when the base field is finite is more complicated:

Definition 4.1.2 Let |K| = r < 1, and consider any extension field F of K with rst elements,

where s is a prime and t is a positive integer, and let � be any one of the automorphisms of F

defined by a� = arkst�1
, where k 2 {1, . . . , s�1}. Because s is a prime, F� is the unique maximal

subfield of F containing K.

20
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The associative (unital) K-algebra B(K, F,�) consists of all matrices of the form
0
BBBBBBBBB@

a b

0 a�

1
CCCCCCCCCA
= ae11 + be12 + a�e22,

where a and b belong to F.

In [10], Finogenova completed the characterization for non-Engel varieties over a finite

field and proved the following result.

Theorem 4.1.3 A variety V over a finite field K is Engel precisely when V does not contain

either of the algebras R2(K) or C2(K), nor any algebra of the form B(K, F,�).



Chapter 5

Proof of Collapsing Algebras Results

In this chapter, we will prove Theorem 3.1.1, which we repeat here for convenience: Let A

be an algebra over a field K. If K is infinite or A is nil, then the following conditions are

equivalent.

1. The adjoint semigroup (A, �) is collapsing.

2. A satisfies an Engel identity.

3. (A, �) satisfies a Thue-Morse identity.

4. (A, �) satisfies an identity.

Note first that the implications (3) ) (4) and (4) ) (1) are trivial. The implication (2) )

(3) follows from Theorem 1.7.2, proved by Riley and Wilson in [54].

For the remaining implication, (1) ) (2) of Theorem 3.1.1, we will consider the case of

collapsing nil algebras and the case of collapsing algebras over infinite fields separately in the

following two sections.

22
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5.1 Collapsing Nil Algebras

The main purpose of this section is to prove the following result. Note that the theorem below

was proved by Riley, in [49], for all fields of characteristic zero and, in [50], for all infinite

fields of characteristic p > 0.

Theorem 5.1.1 Let A be a nil algebra over any field. If the adjoint group (A, �) is n-collapsing,

then A is m-Engel for some m depending only on n.

It remains to consider only the case of nil algebras over a finite field K. Therefore, we

assume that A is an algebra over a finite field K.

Definition 5.1.2

1. Define the words ✏m and ⌘m in the free monoid on {x, y, z} by

✏m(x, y, z) = �m(x, y, 1, z, z2, . . . , zm�1),

⌘m(x, y, z) = ⇢m(x, y, 1, z, z2, . . . , zm�1);

in other words, set zi = zi, for each i in the words �m and ⇢m.

2. Let S be a semigroup, and let m be a positive integer. Then S is said to be positively

m-Engel whenever S satisfies the identity

✏m(x, y, z) = ⌘m(x, y, z).

If S is positively m-Engel, for some m, then S is called positively Engel.

Riley, in [51], was the first to study positively Engel rings. In fact, using Lemma 5.1.4

below, he proved the following result.

Theorem 5.1.3 Let R be an associative ring. Then the following conditions are equivalent.



24 Chapter 5. Proof of Collapsing Algebras Results

1. The associated Lie ring, [R], of R is Engel.

2. The adjoint semigroup (R, �) of R is positively Engel.

3. The multiplicative semigroup (R, ·) of R is positively Engel.

Lemma 5.1.4 Consider elements x, y, z in B(K, F,�) of the form

x = a0e11 + b0e12 + a�0 e22,

y = a0e11 + c0e12 + a�0 e22, and

zm = dme11 + d�me22 (m � 0).

Then, working in the multiplicative semigroup of B(K, F,�), the following recursive formulas

hold:

�m(x, y, z0, . . . , zm�1) = ame11 + bme12 + a�me22 and

⇢m(x, y, z0, . . . , zm�1) = ame11 + cme12 + a�me22,

where

am = a2
m�1dm�1,

bm = am�1cm�1dm�1 + a�m�1bm�1d�m�1, and

cm = am�1bm�1dm�1 + a�m�1cm�1d�m�1,

for each m � 1.

Recall from Theorem 4.1.3 that a variety V of associative algebras over a finite field K is

Engel if and only ifV does not contain either of the algebras R2(K) or C2(K), nor any algebra

of the form B(K, F,�) (cf. [10]). Based on this characterization, we have the following result.
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Lemma 5.1.5 Let A be an algebra over any field K of characteristic p > 0, and suppose that,

for some integers e,m � 0, (A, �) satisfies the identity

✏m(xpe
, ype
, zpe) = ⌘m(xpe

, ype
, zpe).

Then A satisfies an Engel identity.

Proof. Without loss of generality, let K = Fp. Clearly the condition on A can be framed in terms

of polynomial identities, which uniquely determine a variety V over K. Thus, as discussed

above, it su�ces to show thatV does not contain R2(K) or C2(K), nor any algebra of the form

B(K, F,�).

First observe that p-powers in (A, �) coincide with p-powers in (A, ·). Indeed, simple in-

ductive argument shows that

x � · · · � x|     {z     }
p↵

=

0
BBBBBBBBB@

p↵

1

1
CCCCCCCCCA

x +

0
BBBBBBBBB@

p↵

2

1
CCCCCCCCCA

x2 + · · · +

0
BBBBBBBBB@

p↵

p↵ � 1

1
CCCCCCCCCA

xp↵�1 + xp↵ = xp↵ .

To prove that A = R2(K) < V, set x = �e11, y = �e11 + e12, and z = 0. Then xpe
= x,

ype
= y, and zpe

= 0 in (A, �). Hence, by induction on m,

✏m(xpe
, ype
, zpe) � ⌘m(xpe

, ype
, zpe) = µm(x, y) � ⌫m(x, y) = x � y = �e12 , 0,

for every m � 0. The proof that C2(K) < V is analogous.

It remains to prove that none of the algebras B(K, F,�) lies inV. Since B(K, F,�) is unital,

it su�ces to show that its multiplicative semigroup does not satisfy the identity ✏m(xpe
, ype
, zpe) =

⌘m(xpe
, ype
, zpe). So, let n be a positive integer, and let x = ↵e11 + �e12 + ↵�e22 2 B(K, F,�) be

an arbitrary element in the multiplicative semigroup. A simple induction argument on n yields

the expression

xn = ↵ne11 + (
P

i+ j=n�1 ↵
i+ j�)�e12 + ↵n�e22.
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Now choose ↵ 2 F such that ↵� , ↵, and put x = ↵e11 + e12 + ↵�e22, y = ↵e11 + ↵�e22, and

z = ↵�1e11 + ↵��e22. Then

xpe
= ↵pe

e11 + (
X

i+ j=pe�1

↵i+ j�)e12 + ↵
pe�e22,

ype
= ↵pe

e11 + ↵
pe�e22, and

zpe
= ↵�pe

e11 + ↵
�pe�e22.

Setting a0 = ↵pe , b0 =
P

i+ j=pe�1 ↵
i+ j�, c0 = 0, and dm = ↵�mpe , for each m � 0, we discover

from Lemma 5.1.4 that

✏m(xpe
, ype
, zpe

) = ame11 + bme12 + a�me22 and

⌘m(xpe
, ype
, zpe

) = ame11 + cme12 + a�me22,

where

am = a2
m�1dm�1,

bm = am�1cm�1dm�1 + a�m�1bm�1d�m�1, and

cm = am�1bm�1dm�1 + a�m�1cm�1d�m�1,

for each m � 1. Induction shows that am = am+1
0 and amdm = a0, for each m. Consequently,

bm � cm = (a�0 � a0)(bm�1 � cm�1), and hence bm � cm = (a�0 � a0)mb0, for each m. This yields

✏m(xpe
, ype
, zpe) � ⌘m(xpe

, ype
, zpe) = (a�0 � a0)mb0e12,

for each m � 0. Thus, it su�ces to show that neither a�0 = a0 nor b0 = 0. So, suppose to the

contrary that a0 = ↵pe is fixed by �. Then

(↵� � ↵)pe
= (↵pe)� � ↵pe

= 0,

contrary to our choice of ↵. Now suppose b0 = 0; in other words,
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P
i+ j=pe�1 ↵

i+ j� = ↵pe�1Ppe�1
i=0 (↵��1)i = 0.

Then

(↵pe)��1 � 1 = (↵��1)pe � 1 = (↵��1 � 1)
Ppe�1

i=0 (↵��1)i = 0,

so that � fixes ↵pe , contrary to what we have seen. ⇤

Definition 5.1.6 For each positive integer n, define a polynomial pn in the free algebra on

indeterminates x1, x2, . . . , xn, y by

pn =
Q

(x f (1) � · · · � x f (n) � xg(1) � · · · � xg(n))y,

where the product runs over all pairs of distinct functions f , g on {1, . . . , n} (in some fixed

order).

It is clear to see that, if (A, �) is n-collapsing, then A satisfies pn = 0.

Theorem 2.1.3 has the following consequence (see [63]):

Theorem 5.1.7 Let G be a d-generated n-collapsing residually finite group. Then G has a

nilpotent normal subgroup N whose index and nilpotency class are n, d-bounded.

Proof of Theorem 5.1.1: As remarked before, we may assume that the base field K is finite

with prime characteristic p. It is also safe to assume that A is 2-generated. Since A satisfies the

polynomial identity pn = 0, A is a ‘finite’ nilpotent algebra by Kaplansky’s celebrated solution

to the Kurosh-Levitzki problem (see Theorems 1.3.3 and 1.3.4). It follows that G = (A, �) is

an n-collapsing finite group. Consequently, by Theorem 5.1.7, G contains a normal subgroup

N such that the exponent e of G/N and the nilpotence class c of N are bounded by functions of

n only. Thus, since G is a p-group, G satisfies the semigroup identity

�c(xpt
, ypt
, zpt

0 , . . . , z
pt

c�1) = ⇢c(xpt
, ypt
, zpt

0 , . . . , z
pt

c�1),
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where pt is the largest power of p dividing e. Therefore, by Lemma 5.1.5, A is m-Engel, for

some m, which may depend on p. However, if p > e, then G is nilpotent of class at most c,

which is tantamount to A being Lie nilpotent of class at most c (see Theorem 1.6.5). Since

there are only finitely many prime-power divisors of e, clearly m can be chosen independent of

K and p. ⇤

5.2 Collapsing Algebras over Infinite Fields

In this section, we will prove the following result, which is implication (1) ) (2) of Theorem

3.1.1 for an algebra A over an infinite field K.

Theorem 5.2.1 Let A be an algebra over an infinite field. If (A, �) is n-collapsing, then A is

m-Engel, for some m depending only on n.

Definition 5.2.2 We say that a ring B is involved in another ring A if B is a direct limit of rings

that are each a homomorphic image of a subring of A.

Observe that, if a ring A has the property that (A, �) is n-collapsing, for some positive

integer n, then so does every ring B involved in A.

Definition 5.2.3 For each prime p > 0 and integer k � 1, let Fpk denote the field of cardinality

pk. We embed each Fpk into Fpk+1 and set

Fp1 =
S

k�1 Fpk .

Let K0 denote the field

K0 =

8>>>><
>>>>:

Q, if p = 0

Fp1 , if p > 0.

Lemma 5.2.4 Let K be an infinite field. Then the following statements hold.

1. K involves K0.
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2. R2(K), respectively C2(K), involves R2(K0), respectively C2(K0).

Proof. If Q or Fp1 is a subfield of K, then both assertions are obvious. If not, Fp(t) is a subfield

of K, for some transcendental element t over Fp, and thus Fp[t] is a subring of K. Since each

field Fpk is a (ring) homomorphic image of Fp[t], this proves part (1). The proof of part (2) is

analogous. ⇤

Lemma 5.2.5 Let A be an algebra over an infinite field K, and let e be any idempotent in A.

1. If eA(1 � e) = {ea � eae| a 2 A} , 0, then A involves R2(K0).

2. If (1 � e)Ae = {ae � eae| a 2 A} , 0, then A involves C2(K0).

3. If A involves neither R2(K0) nor C2(K0), then e is central in A.

Proof. Suppose that x 2 eA(1 � e) is nonzero. Then ex = x, xe = 0, and x2 = 0, so that

Ke + Kx � R2(K) is a subalgebra of A. This proves part (1) by Lemma 5.2.4. Because the

statement of part (2) is left-right symmetric to the statement of part (1), it remains to deduce

part (3): if A involves neither R2(K0) nor C2(K0), then by parts (1) and (2),

eA(1 � e) = 0 = (1 � e)Ae,

so that e is central. ⇤

Lemma 5.2.6 Neither R2(K0) nor C2(K0) is collapsing.

Proof. By symmetry, it su�ces to address the claim for R2(K0). We consider the characteristic

zero case first. Let n � 1 be given, and put ai = e11 + bie12, where b = 2n, for each i. Let f be

any function on {1, . . . , n}. Then, by induction on n,

af (1) � af (2) � · · · � af (n) = (b � 1)e11 + (bf (1) + 2bf (2) + · · · + 2n�1bf (n))e12.
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It remains to prove that the integer af = bf (1)+2bf (2)+ · · ·+2n�1bf (n) is uniquely determined by

f . Indeed, by our choice of b, collecting like powers of b yields the unique b-adic expansion

of the integer af . Because there is a one-to-one correspondence between the nonempty subsets

of {1, 2, . . . , 2n�1} and the sums of those subsets, the claim follows.

Now consider the case when K0 = Fp1 . Choose k minimally such that �(pk�1) > (n�1)nn,

where � is Euler’s function, and choose �1, . . . , �n 2 K0 linearly independent over F := Fpk .

Let ↵ be a primitive (pk�1)th root of unity in F, and set ↵i = ↵ni �1 2 F and ai = ↵ie11+�ie12,

for each i. Let f be any function on {1, . . . , n}. Then, by induction on n,

af (1) � · · · � af (n) = (↵ f (1) � · · · � ↵ f (n))e11 +
Pn

i=1[(↵ f (1) � · · · � ↵ f (i�1)) + 1]� f (i)e12,

where the empty circle product is zero. It remains to show that the scalar

af =
Pn

i=1[(↵ f (1) � · · · � ↵ f (i�1)) + 1]� f (i) =
Pn

i=1 ↵
n f (1)+···+n f (i�1)

� f (i)

uniquely determines f . Indeed, observe first that the subset

S f = {1,↵n f (1)
, . . . ,↵n f (1)+···+n f (n�1)}

of F is linearly independent over Fp since the degree of the minimal polynomial over Fp sat-

isfied by ↵ is �(pk � 1) > (n � 1)nn, by construction. In particular, the nonempty subsets of

S f are uniquely determined by the sum of their elements. Moreover, the coe�cients of the

unique F-linear expansion of af in terms of the �i determines a partition of S f . Suppose now

that af = ag for some function g on {1, . . . , n}. Then, for every i, there exists a j such that

the coe�cient of � f (i) = �g( j) in af = ag corresponds to both a subset Xi of S f containing the

element ↵n f (1)+···+n f (i�1) and to a subset Yj of S g containing the element ↵ng(1)+···+ng( j�1) . Again, since

the powers of ↵ contained in S f [ S g are all less than the degree of its minimal polynomial, it

follows that

↵n f (1)+···+n f (i�1) 2 Yj.

In fact, the only possibility is
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↵n f (1)+···+n f (i�1)
= ↵ng(1)+···+ng(i�1) ,

since

nf (1) + · · · + nf (i�1) ⌘ i � 1 mod n � 1.

Therefore, i = j, and so g(i) = g( j) = f (i), as required. ⇤

Let J(A) denote the Jacobson radical of A, and, for simplicity, we will let C(A) = A(2); the

associative ideal in A generated by the Lie ideal �2(A).

Proposition 5.2.7 Let n be a positive integer, and A be an algebra over an infinite field K.

Then the following statements hold.

1. If A = M2(K), then A does not satisfy pn = 0.

2. If (A, �) is n-collapsing, then every idempotent e of A is central and A/J(A) is commuta-

tive. Furthermore, if A is generated by m < 1 elements, then C(A) is nilpotent of index

bounded by a function determined by m and n only.

Proof. From Lemma 5.2.4, M2(K0) is involved in M2(K). Thus, if M2(K) satisfies pn = 0, then

so would M2(K0). However, the latter does not: evaluate each xi = ai and y = e21 with ai as

in the proof of Lemma 5.2.6. Now suppose that (A, �) is n-collapsing. Then A involves neither

R2(K0) nor C2(K0) by Lemma 5.2.6; hence, by Lemma 5.2.5, all idempotents are central in

A. By part (1), A satisfies a non-matrix identity; hence, A/J(A) is commutative and C(A) is

nilpotent when A is finitely generated (see [5] or [43], for example). Because the last statement

depends only on the K-variety satisfied by pn = 0, the nilpotence index of C(A) is bounded by a

function depending only on m, n, and possibly K. To see there is a bound independent of K, let

t0 be nilpotence index of C(A) when A is the relatively-free (countably generated) algebra Q-

algebra satisfying pn = 0. Then, for all su�ciently large primes p, if an Fp-algebra A satisfies

pn = 0, then C(A) is nilpotent of index at most t0. Indeed, otherwise, for each k � 1, there

exists a prime qk � k and an Fqk-algebra Ak satisfying pn = 0 such that C(Ak) is not nilpotent

of index at most t0. It follows that the ultraproduct
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A =
Q

k�1 Ak/F ,

with respect to the Fréchet ultrafilter F , is an algebra over the field

K =
Q

k�1 Fqk/F ,

that satisfies pn = 0 but C(A) is not nilpotent of index at most t0. However, this cannot happen

because K has characteristic zero. Since every K-algebra is also an algebra over one of Q, Fp1

or Fp(t), the claim follows. ⇤

Recall that a unital algebra A is called local if A = A⇥ [J(A).

Lemma 5.2.8 Let A be a finite-dimensional unital algebra over an infinite field K such that A

is local and C(A)2 = 0. If (A, ·) is n-collapsing, then A is Lie nilpotent.

Proof. Suppose that (A, ·) is n-collapsing. Using the identity

u�1v�1uv = 1 + u�1v�1[u, v],

twice, it is easy to check that the condition C(A)2 = 0 forces A⇥ to be metabelian. Thus, every

2-generated subgroup G of A⇥ is residually finite by a theorem of P. Hall in [19]. Since G is

a subsemigroup of (A, ·), it is n-collapsing, too. It now follows from Theorem 5.1.7 that G

contains a normal subgroup N such that the exponent e of G/N and the nilpotence class c of

N are bounded functions of n only. Thus, every such G, and hence A⇥, satisfies a semigroup

identity of the form µc(xe, ye) = ⌫c(xe, ye). Moreover, since A = A⇥ [ J(A), (A, ·) satisfies the

reduced semigroup law µc(xt, yt) = ⌫c(xt, yt), where t is the greater of e and the nilpotence index

of J(A). It now follows from Theorem 1.7.2 that A must be Lie nilpotent. ⇤

The following result by Kublanovskii ([32]) is used to prove Lemma 5.2.10 below.

Theorem 5.2.9 Let V be a variety of associative algebra satisfying a polynomial identity of

the form

xymz =
P

mi<m uixymizvi,
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for some ui, vi in the free algebra. Then, for every finitely generated algebra A in V, A is

residually finite-dimensional algebra.

Lemma 5.2.10 Let A be any algebra over an infinite field such that C(A)2 = 0. If (A, �) is

n-collapsing, then A satisfies an Engel identity of degree bounded by a function of n only.

Proof. It su�ces to assume that A is 2-generated. Since C(A)2 = 0 by hypothesis, A satisfies

the polynomial identity

xy2z � (xyz)y � y(xyz) + y(xz)y = [x, y][y, z] = 0;

hence, by Theorem 5.2.9, A is residually finite-dimensional. Thus, because our hypotheses are

preserved by homomorphic images, we may assume that A is finite-dimensional. In this case,

A/J(A) is finite-dimensional and semiprimitive. By embedding A/J(A) into its unital hull,

standard arguments force A/J(A) to be semisimple, and hence unital. Lift this unity to an

idempotent e in A. Then, by Proposition 5.2.7, e is central in A. In particular, A decomposes

into a direct sum of ideals:

A = eA � (1 � e)A.

By construction, (1 � e)A ✓ J(A), which satisfies an Engel identity of degree bounded by a

function of n only by Theorem 5.1.1. Since the ideal eA inherits our hypotheses, it su�ces to

proceed under that assumption that A is unital.

Since J(A) is nilpotent, the primitive central idempotents f1, . . . , fr in A/J(A) lift to or-

thogonal idempotents e1, . . . , er in A. These idempotents are central in A by Proposition 3.4.

Furthermore, because 1 �P ei is an idempotent contained in J(A), we have
P

ei = 1. Hence,

A = (
P

ei)A = e1A � · · · � erA,

where J(eiA) = eiJ(A), for each i. Because A/J(A) is commutative (by Proposition 5.2.7),

each Wedderburn factor eiA/eiJ(A) = fi(A/J(A)) is a field extension of K. Thus, Lemma

5.2.8 applies to each local algebra Ai, so that A is Lie nilpotent. To see that A satisfies an Engel
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identity of bounded degree, consider the unital subalgebra B generated by arbitrary elements

x, y 2 A over the prime subfield F of K. Then, as above, B is residually finite-dimensional as

an F-algebra. Thus, we may assume that B is a finite-dimensional Lie nilpotent algebra over

the perfect field F. Consequently,

B = Z(B) +J(B),

by a theorem of Sweedler ([67]), where Z(B) denotes the centre of B. Since (J(B), �) is n-

collapsing, Theorem 5.1.1 informs us that J(B), and hence B, satisfies an Engel identity of

bounded degree, as required. ⇤

Proposition 5.2.11 Let R be any associative ring such that R/C(R)2 is Lie nilpotent of class c

and C(R) is (associatively) nilpotent of index t. If c = 1, then R is commutative. If c � 2, then

R is Lie nilpotent of class at most

t + 1
2 (c � 2)t(t � 1).

Proof. It su�ces to assume that R is unital, so that C(R) = [R,R]R. Denote the ith term of

the lower central series of R by �i(R), so that �c+1(R) ✓ C(R)2, by hypothesis. If c = 1,

then C(R) ✓ C(R)2 = 0 since C(R) is nilpotent. Now suppose c � 2. Using the identity

[ab, c] = a[b, c] + [a, b]c repeatedly yields

�c+1+k(R) ✓ Pi+ j=k[C(R),i R][C(R), j R],

for every integer k � 0. Moreover,

[C(R),i R] = [[R,R]R,i R] ✓ [R,R]�i+1(R) + �i+2(R)R ✓ C(R)2,

provided i � c � 1. But, if i + j = k = 2(c � 2) + 1, then either i � c � 1 or j � c � 1; hence, in

either case,

�(c+1)+[2(c�2)+1](R) ✓ C(R)3.

The above pigeon-hole argument extends naturally to longer products proving that
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�(c+1)+[2(c�2)+1]+[3(c�2)+1]+···+[(t�1)(c�2)+1)](R) ✓ C(R)t = 0.

⇤

Proof of Theorem 5.2.1: It su�ces to assume that A is 2-generated. Observe that A/C(A)2

satisfies an Engel identity of bounded index by Lemma 5.2.10, so that A/C(A)2 is Lie nilpotent

of bounded class by Theorem 1.7.2. It now follows from Propositions 5.2.7 and 5.2.11 that A

is Lie nilpotent of bounded class. ⇤

Using Theorems 5.1.1 and 5.2.1 (Theorem 3.1.1, implication (1) ) (2)), we can add one

more result which shows that being collapsing is a ‘local’ condition.

Corollary 5.2.12 Let A be an algebra over a field K such that either K is infinite or A is nil. If

(B, �) is n-collapsing, for every 2-generated subalgebra B of A, then (A, �) is N-collapsing, for

some N depending only on n.

Proof. By Theorems 5.1.1 and 5.2.1, each B is m-Engel, for some m depending only on n.

Hence, by Theorem 1.7.2, each (B, �) satisfies the Thue-Morse identity of index N = c(m, 2),

and, consequently, (A, �) satisfies the Thue-Morse identity of index N, as well. ⇤
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Proof of Rewritable Algebras Results

Recall from Theorem 2.2.4 that a n-rewritable group G contains a normal subgroup N of finite

index such its derived subgroup, N0, is finite. Elashiry and Passman gave a quantitative version

of this result (see Theorem 2.2.5) by describing explicit integer-valued functions r(n) and s(n),

depending only on n, such that |G : N |  r(n) and |N0|  s(n).

Recall that the group commutator of units x and y in an algebra A is denoted by

(x, y) = x�1y�1xy,

so that (x, y)�1 = x�1y�1[x, y].

6.1 Proof of Theorems 3.2.1 and 3.2.2

Lemma 6.1.1 Let A be a nilpotent algebra over a field K such that |K| � r(n)(s(n) + 1). If

G = (A, �) is n-rewritable, then A is commutative.

Proof. Suppose G is n-rewritable. Then, as discussed above, G contains a normal subgroup N

such that |G : N|  r(n) and |N0|  s(n). We claim that N must be abelian, for otherwise we

would have |N0| > s(n). Indeed, if N0 , 1, then there exist elements x, y 2 N such that

x � y � y � x = xy � yx = [x, y] , 0.

36
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Because A is nilpotent, there exists a maximal integer k � 1 such that [x, y] 2 Ak but [x, y] <

Ak+1. It su�ces to prove that |N0 + Ak+1/Ak+1| > s(n), and so we may assume that Ak+1 = 0.

Since |K| � r(n)(s(n) + 1) and |G/N |  r(n), there exists some � 2 K such that, for at least

(s(n) + 1)-many elements ↵ 2 K, we have (↵x) � N = (�x) � N; in other words,

x↵ := (� � ↵)x(1 � ↵x + ↵2x2 � · · · ) = (1 � ↵x + ↵2x2 � · · · )(1 + �x) � 1 2 N.

Hence, because [x, y] 2 Ak and Ak+1 = 0, we have

(1 + x↵, 1 + y) � 1 = (1 � x↵ + x2
↵ � · · · )(1 � y + y2 � · · · )[x↵, y] = (� � ↵)[x, y],

and so |N0| � s(n) + 1, as claimed. Now notice that the subalgebra of A generated by N is also

an abelian normal subgroup of G of index at most r(n). Therefore, in order to prove that G

itself is abelian, it su�ces for us to assume that N is a subalgebra of A. We claim that, in this

case, N must coincide with G. So, let us suppose, to the contrary, that there is some x in G that

does not lie in N, and let ↵ 2 K⇥. Then, since N is both a subgroup of G and a subalgebra of

A, neither ↵x nor its inverse �↵x + ↵2x2 � ↵3x3 + · · · can lie in N. Now, for every ↵ , � in K⇥,

we have distinct cosets (↵x) � N , (�x) � N. Indeed, otherwise

(� � ↵)x(1 � ↵x + ↵2x2 � · · · ) = (1 � ↵x + ↵2x2 � · · · )(1 + �x) � 1 2 N,

so that

�↵x + ↵2x2 � ↵3x3 + · · · = �↵(� � ↵)�1(� � ↵)x(1 � ↵x + ↵2x2 � · · · ) 2 N,

contrary to what we have just observed. Since

|K⇥| = |K| � 1 � r(n)(s(n) + 1) � 1 > r(n),

this contradicts the fact that |G : N|  r(n), completing the proof. ⇤

To prove Theorem 3.2.1, it su�ces to prove the following stronger result.

Theorem 6.1.2 Let A be an algebra over a field K such that either K is infinite or A is nil

and |K| � r(n)(s(n) + 1). If the adjoint semigroup of every 2-generated subalgebra of A is

n-rewritable, then A is commutative.
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Proof. We may assume that A itself is 2-generated and n-rewritable. Thus, by Theorem 3.1.1,

A is m-Engel, for some m, so that A satisfies the identity

xymz +
Pm

i=1(�1)i
⇣

m
i

⌘
yixym�iz = [x,m y]z = 0.

Hence, by Theorem 5.2.9, we may assume that A is finite-dimensional and Lie nilpotent (by

Engel’s theorem). Thus, in the case when the base field K is perfect,

A1 = Z(A1) +J(A1) = Z(A1) +J(A),

by a theorem of Sweedler [67], and so A is commutative by Lemma 6.1.1. When K is not

perfect, either K contains the perfect field Fp1 , in which case we are done by replacing K

with Fp1 , or K contains a transcendental element over Fp. In the latter case, the structural

constants of A are contained in a purely transcendental field extension F(t1, . . . , tm) of a finite

field F with m � 1. By clearing denominators, we may assume that the structural constants

lie in R = F[t1, . . . , tm], and hence that A is a finitely generated free R-algebra. Since R is

the subdirect product of finite fields, all of arbitrarily large cardinality, it follows that A is

commutative by the perfect case. ⇤



Part II

Verbal and Marginal Properties of an

Associative Algebra
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Verbal and Marginal Subgroups

1.1 Commutators

Let G be a group and let g1, g2. . . . be elements of G. Recall that the commutator of g1 and g2

is

(g1, g2) = g�1
1 g�1

2 g1g2.

More generally, a simple commutator of weight n � 2 is defined recursively by the rule

(g1, . . . , gn) = ((g1, . . . , gn�1), gn),

where by convention (g1) = g1. A useful shorthand notation is

(g,m h) = (g, h, . . . , h|  {z  }
m

).

There are many group commutators’ useful identities, even though their proof is quite ele-

mentary.

Lemma 1.1.1 The following identities hold for any group G.

1. (x, y) = (y, x)�1.

2. If we denote y�1xy by xy, then

40
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[x, yz] = [x, z][x, y]z and [xy, z] = [x, z]y[y, z].

3. The Hall-Witt identity (or the Jacobi identity) holds,

(x, y�1, z)y(y, z�1, x)z(z, x�1, y)x = 1.

1.2 Verbal Subgroups

Definition 1.2.1 Let ✓(x1, . . . , xn) = xr1
i1 · · · x

rt
it be a word in the free group on a countably infi-

nite set {x1, x2, . . . , }. If g1, . . . , gn are elements of a group G, we define the value of the word ✓

at the elements g1, . . . , gn to be

✓(g1, . . . , gn) = gr1
i1 · · · g

rt
it .

The subgroup of G generated by all values in G of the word ✓ is called the verbal subgroup of

G determined by ✓, and will be denoted by ✓(G).

For example, if ✓ = (x1, x2), then ✓(G) = (G,G) = G0, the derived subgroup of G; if ✓ = xn
1,

then ✓(G) = Gn, the subgroup generated by all the nth powers in G. Note that if ↵ : G ! H is a

group homomorphism, then

↵(✓(g1, . . . , gn)) = ✓(↵(g1), . . . ,↵(gn)),

which shows at once that ↵(✓(G))  ✓(H). In particular, every verbal subgroup is full-invariant.

The converse is false in general; for instance, in the group of all roots of unity, the subgroup of

nth roots for fixed n is fully-invariant but not verbal (see Exercise 2.3.3 in [58]).

1.3 Marginal Subgroups

Definition 1.3.1 If ✓ is a word in x1, x2, . . . and G is any group, a normal subgroup N is said

to be ✓-marginal in G if
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✓(g1, . . . , gi�1, gia, gi+1, . . . , gn) = ✓(g1, . . . , gi�1, gi, gi+1, . . . , gn),

for all i = 1.2. . . . , n, g1, . . . , gn 2 G, and all a 2 N. This is equivalent to the requirement:

gi ⌘ hi mod N, (1  i  n), always implies that

✓(g1, . . . , gn) = ✓(h1, . . . , hn).

We see from the above definition that the ✓-marginal subgroups of G generate a normal

subgroup which is also ✓-marginal. This is called the ✓-marginal subgroup of G and is written

b✓(G).

For example, suppose that ✓ = (x1, x2): if a 2b✓(G) and g 2 G, then

(g, a) = (g, 1a) = (g, 1) = 1,

for all g 2 G, that is, a belongs to the centre of G, Z(G). Conversely, if a 2 Z(G), then it is

easy to see that

(g1, g2a) = (g1, g2),

so thatb✓(G) = Z(G) in this case.

A marginal subgroup is always characteristic; invariant under all automorphisms of the

parent group. but need not be fully-invariant; for example, the centre of the group A4 ⇥ Z2 is

not fully-invariant (see Exercise 1.5.9 in [58]).

The following lemma indicates a connection between verbal and marginal subgroups. The

proof is easy and can be found in [58].

Lemma 1.3.2 Let ✓ be a nontrivial word in x1, x2, . . ., and let G be any group. Then ✓(G) = 1

if and only ifb✓(G) = G.



1.4. Hall’s Problems 43

1.4 Hall’s Problems

Recall that a partially ordered set ⇤ with partial order  satisfies the maximal condition if each

nonempty subset ⇤0 contains at least one maximal element, that is, an element which does not

precede any other element of ⇤0. We also say that ⇤ satisfies the ascending chain condition if

there does not exist an infinite properly ascending chain

�1 < �2 < · · · ,

in ⇤. In fact these properties are identical (see [58]).

Philip Hall posed some questions regarding the relationship between verbal and marginal

subgroups (see [57]).

Hall’s Problems 1.4.1 Let ✓ be a nontrivial word in n variables, and let G be a group.

1. If ⇡ is a set of primes and |G :b✓(G)| is a finite ⇡-group, is ✓(G) also a finite ⇡-group?

2. If ✓(G) is finite and G satisfies maximal condition on its subgroups, is |G :b✓(G)| finite?

3. If the set {✓(g1, . . . , gn)| g1, . . . , gn 2 G} is finite, does it follows that ✓(G) is finite?

In the coming chapters, we will see that all Hall’s Problems have positive solutions for the

case when ✓ = (x1, x2). When ✓ is an arbitrary word, none of these problems has been settled.

However there has been a good deal of progress thanks to the work of Hall, Merzlyakov, Schur,

Baer and Turner-Smith. In Chapters 2 and 3, we will give an account of some of the results

obtained by these authors.

Definition 1.4.2

1. A group word ✓, for which Hall’s First Problem holds for all groups G, is called robust.

2. If every word ✓ is robust in a particular group G, then we will say that G is verbally-

robust.



Chapter 2

Hall’s First Problem and Schur-Baer

Theorems for Groups

2.1 Schur’s Theorem

Recall that if ✓ = (x1, x2) is the commutator word in 2 indeterminates, then, for any group G,

✓(G) = G0 andb✓(G) = Z(G). A basic theorem of Schur ([60]) reflects a relationship between

these terms.

Schur’s Theorem 2.1.1 If G is a group with G/Z(G) is finite, then G0 is also finite.

Roughly speaking, Schur’s Theorem says that if the centre of a group is large, the derived

subgroup is small. Notice that this result provides a partial solution to Hall’s First Problem. In

other words, the word ✓ = (x1, x2) is robust.

Some other authors have tried to find under which conditions, the converse of Schur’s

theorem would be true. For example, Isaacs ([25]) proved that if a group G is capable and

|G0| < 1 then G/Z(G) is finite. Recall that a group is said to be capable if it occurs as the inner

automorphism group of some group. Also, Halasi and Podoski ([16]) proved that the converse

of Schur’s Theorem holds for any group G with trivial Frattini subgroup; the intersection of all

maximal subgroups of G.
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2.2 Commutators Subgroups

It is useful to be able to form commutators of subsets as well as elements. Let X1, X2, . . . be

nonempty subsets of a group G. Define the commutator subgroup of X1 and X2 to be

(X1, X2) = h(x1.x2)|x1 2 X1, x2 2 X2i.

More generally, let

(X1, . . . , Xn) = ((X1, . . . , Xn�1), Xn),

where n � 2. Note that the set of all commutators need not be a subgroup (see Exercise 2.43

in [59]); in order for (X1, X2) to be a subgroup, therefore, we must take the subgroup generated

by the indicated commutators. Observe that (X1, X2) = (X2, X1) by part (1) of Lemma 1.1.1. It

is sometimes convenient to write (X,m Y) for (X,Y, . . . ,Y|   {z   }
m

).

2.3 The Descending and Ascending Central Series of Groups

Recall that a characteristic subgroup is a subgroup that is invariant under all automorphisms

of the parent group.

Definition 2.3.1 Define the characteristic subgroups �n(G) of a group G by induction:

�1(G) = G; �n+1(G) = (�n(G),G),

for all integers n � 1.

Notice that �2(G) = (�1(G),G) = (G,G) = G0. It is easy to check that �n+1(G)  �n(G), for

all n � 1.

Definition 2.3.2 The descending central series (or lower central series) of a group G is the

series

G = �1(G) � �2(G) � · · · .
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Notice that �n(G)/�n+1(G) lies in the centre of G/�n+1(G) and that each �n(G) is fully-

invariant in G. Also the descending central series does not in general reach 1. There is another

series of interest; an ascending series of subgroups that is dual to the descending central series

in the same sense that the centre is dual to the commutator subgroup.

Definition 2.3.3 The higher centres Zn(G) are the following characteristic subgroups of G

recursively defined by:

Z0(G) = 1; Zn+1(G)/Zn(G) = Z(G/Zn(G)),

for all integers n � 1.

Of course,Z1(G) = Z(G); the centre of G.

Definition 2.3.4 The ascending central series (or upper central series) of G is the series

1 = Z0(G)  Z1(G)  Z2(G)  · · · .

It is known thatZn(G) is not necessarily fully-invariant in G. The ascending central series

need not reach G, but if G is finite, the series terminates at a subgroup called the hypercentre.

The crucial properties of these central series are displayed in the next result (the proof can

be found in [59]).

Theorem 2.3.5 If G is a group, then there is an integer c with Zc(G) = G if and only if

�c+1(G) = 1. Moreover, in this case,

�i+1(G)  Zc�i(G) for all i.

Recall that a group G is nilpotent if there is an integer c such that �c+1(G) = 1; the least

such c is called the class of the nilpotent group G. In particular, a group is nilpotent of class

1 if and only if it is abelian. Note that Theorem 2.3.5 shows, for nilpotent groups, that the

descending and ascending central series are of the same length.

The following Lemma, due to Kaluznin and Hall (see [57]), is called the Three Subgroup

Lemma.
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Lemma 2.3.6 Let H,K, L be subgroups of a group G. If two of the commutator subgroups

(H,K, L), (K, L,H), (L,H,K) are contained in a normal subgroup of G, then so is the third.

This result, which follows easily from the Hall-Witt identity, finds immediate application in

the simple induction arguments which establish a number of useful properties of the descending

and ascending central series of a group G.

Theorem 2.3.7 Let G be any group and let m and n be positive integers. Then the following

statements holds.

1. (�m(G), �n(G))  �m+n(G).

2. �m(�n(G))  �mn(G).

3. If m  n, then (�m(G), �n(G))  Zn�m(G).

4. Zm(G/Zn(G)) = Zm+n(G)/Zn(G).

Proof. See 5.1.11 in [57].

2.4 Baer’s Theorem

Schur’s Theorem raises the following natural question:

Is there a generalization to higher terms of the descending and ascending central series?

A theorem of Baer ([4]) provides positive answer to this question.

Baer’s Theorem 2.4.1 If G is a group such that G/Zn(G) is finite, then �n+1(G) is finite.

The case n = 1 is, of course, Schur’s Theorem. Observe that if ✓ = (x1, . . . , xn) then, for

any group G, ✓(G) = �n+1(G) andb✓(G) = Zn(G). Therefore, Baer’s Theorem also provides a

partial solution to Hall’s First Problem. Furthermore, in this case, the word ✓ = (x1, . . . , xn) is

robust.
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Regarding the converse of Baer’s Theorem, Hekster ([23]) proved that the converse holds

for finitely generated groups.

Theorem 2.4.2 If G is a finitely generated group such that �n+1(G) is finite, then so is G/Zn(G).

Moreover, Hatamian and others ([22]) strengthened the above result and proved it under

the weaker condition that G/Zn(G) is finitely generated.



Chapter 3

Hall’s Second and Third Problems for

Groups

3.1 Hall’s Second Problem and Hall’s Theorem

Recall Hall’s Second Problem: if ✓(G) is finite and G satisfies maximal condition on its sub-

groups, is |G :b✓(G)| finite?

Definition 3.1.1 Define � to be the set of all commutator subgroups functions obtainable from

the identity function � (defined by �(G) = G for all groups G) by a finite succession of commu-

tator operations. For �, 2 �, define

(� )(G) = (�(G), (G)),

so that � is a commutative groupoid generated by the single element �. For each � 2 �, define

the length l(�), by taking l(�) = 1, and l(↵�) = l(↵) + l(�) for ↵, � 2 �. We now associate with

each element of � a word as follows:

1. � is associated with the word x1.

2. If the words u(x1, . . . , xr) and v(x1, . . . , xs) are associated with � and  from �, respec-

tively, then

49



50 Chapter 3. Hall’s Second and Third Problems for Groups

(u(x1, . . . , xr), v(xr+1, . . . , xr+s)),

is associated with � .

The collection of all words associated with elements of � are called outer-commutator words.

In other words, outer-commutator words are those obtained by ‘nesting’ commutators,

but using always di↵erent indeterminates. For example, ((x1, x2), (x3, x4, x5), x6) is an outer-

commutator word, while (x1, x2, x2) is not. Hall’s Second Problem has a positive solution by

Turner-Smith for outer-commutator words (see [68]):

Theorem 3.1.2 Let ✓ be an outer commutator word and let G be group which satisfies maximal

condition on its subgroups. If ✓(G) is finite, then |G :b✓(G)| is finite.

It should be observed that if we omit the requirement that G satisfy maximal condition

from its statement, Hall’s Second Problem has a negative solution, even when ✓ = (x1, x2) (see

Chapter 4 in [57], vol. I).

Along this same line, P. Hall, in [18], has proved the following partial converse of Baer’s

Theorem.

Hall’s Theorem 3.1.3 If G is a group such that �n+1(G) is finite, then G/Z2n(G) is finite.

Combining Baer and Hall theorems, we can state that:

Some term of the ascending central series of a group G has finite index if and only if some of

the descending central series of G is finite.

In the sequel, we shall refer to the collection of Schur-Baer-Hall Theorems (Theorems

2.1.1, 2.4.1 and 3.1.3, respectively) simply as the Schur-Baer-Hall Theorem.
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3.2 Hall’s Third Problem

Recall Hall’s Third Problem:

If the set {✓(g1, . . . , gn)| g1, . . . , gn 2 G} is finite, does it follows that ✓(G) is finite?

Definition 3.2.1

1. A group word ✓, for which Hall’s Third Problem holds for all groups G, is called concise.

A word which is not concise is called verbose.

2. If every word ✓ is concise in a particular group G, then we will say that G is verbally-

concise.

According to the above definition, Hall’s Third Problem asks whether every word is con-

cise. Ivanov ([26]) proved that this problem has a negative solution in its form.

Theorem 3.2.2 There exists a 2-generated torsion-free group G with nontrivial cyclic centre

whose quotient group is an infinite periodic group of period p2n (n odd, n < 1010, p prime,

p > 5000); the word ✓(x, y) = ((xpn, ypn)n, ypn)n takes exactly two values on the group G, and

the value of the word ✓(x, y), that is not the unit is exactly the generating element of the centre

of G.

On the other hand, many relevant words are known to be concise. For instance, the outer

commutator words by a result of John Wilson ([70]):

Theorem 3.2.3 All outer-commutator words are concise.

Regarding the verbally-concise groups, both Merzlyakov ([42]) and Turner-Smith ([69])

provided positive support.

Theorem 3.2.4

1. Merzlyakov [42]: All linear groups are verbally-concise.
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2. Turner-Smith [69]: All residually finite groups whose quotients are again residually finite

are verbally-concise.

In fact, all three of Hall’s Problems have a positive solution in the above two classes of

groups (see [42, 69]). Both of these classes contain, for example. all polycyclic groups, while

the second class contains all finitely generated abelian-by-nilpotent groups. Notice that Hall’s

Third Problem is still open for all residually finite groups (see section 1.4 in [61]).
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Algebra Analogues to Hall’s Problems

4.1 Verbal and Marginal Subspaces

Stewart was the first to consider (nonassociative) algebraic analogues to the concepts of verbal

and marginal subgroups ([65]). From now on, we will restrict our attention only to associative

algebras. Henceforth, we will reserve the term ‘algebra’ for associative algebras A over an

arbitrary but fixed base field K. We do not assume that algebras are necessarily unital.

Definition 4.1.1 Let f (x1, . . . , xn) be a polynomial in the free algebra on the set of indetermi-

nates {x1, x2, . . .} over a field K, and let A be any algebra. We will denote by

f (A) = { f (a1, . . . , an)| a1, . . . , an 2 A},

the set of f -values in A.

1. The verbal subspace SA( f ) of A is the subspace spanned by the set f (A).

2. The verbal subalgebraAA( f ) of A is the subalgebra generated by the set f (A).

3. The verbal ideal IA( f ) of A is generated, as an ideal, by the set f (A).

Definition 4.1.2 The marginal subspace, bSA( f ), of A is defined to be the set of all elements

z 2 A with the property that
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f (b1, . . . , bi�1, bi + ↵z, bi+1, . . . , bn) = f (b1, . . . , bi�1, bi, bi+1, . . . , bn),

for each i = 1, 2, . . . , n, for all choices of b1, . . . , bn in A and ↵ 2 K. As with verbal subspaces,

but dually, we define the marginal subalgebra bAA( f ) to be the largest subalgebra of A contained

in bSA( f ), and the marginal ideal bIA( f ) to be the largest ideal of A contained in bSA( f ).

We repeat here the definition for homogeneous and multilinear polynomials for conve-

nience.

Definition 4.1.3 Let f (x1, . . . , xn) be a polynomial in the free algebra on the set {x1, x2, . . .}

over a field K.

1. f is called homogeneous if each f -monomial is of the same degree in each indeterminate

(where this degree may depend upon the indeterminate). By collecting together the f -

monomials of given degree in each indeterminate, we can express a given polynomial

f in a natural way as a sum of homogeneous polynomials; these are the homogeneous

components of f .

2. f is called multilinear if it is linear in each of its indeterminates. In other words,

f (x1, . . . , xn) =
P
�2S n ↵�x�(1) · · · x�(n),

for some ↵� 2 K, where S n is the symmetric group of degree n.

Notice that, when f is homogeneous, z 2 bSA( f ) if and only if

f (b1, . . . , bi�1, z, bi+1, . . . , bn) = 0,

for each i = 1, 2, . . . , n and all choices of b1, . . . , bn in A.

4.2 Analogues to Hall’s Problems

The first three of the following problems may be regarded as analogues to Hall’s Problems

1.4.1.
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Problems 4.2.1 Let f be a polynomial, and let A be any algebra.

1. If bSA( f ) is of finite codimension in A, is SA( f ) finite-dimensional?

2. If SA( f ) is finite-dimensional, is bSA( f ) of finite codimension in A? If this is not the case,

under what extra hypothesis is A/bSA( f ) finite-dimensional?

3. If SA( f ) finite-dimensional, isAA( f ) or IA( f ) finite-dimensional?

4. If A/bSA( f ) is finite-dimensional, is A/ bAA( f ) or A/bIA( f ) finite-dimensional?

The following result of Stewart is a special case of Theorem 5.2 in [65]: it solves the above

first problem.

Theorem 4.2.2 Let A be an algebra, and let f be a polynomial with the property that bSA( f ) is

of finite codimension in A. Then SA( f ) is finite-dimensional.

Recall that an algebra A can be viewed as a Lie algebra via the Lie bracket [a, b] = ab�ba,

for all a, b 2 A. As in Part I, throughout this part also, Lie commutators [x1, x2, . . . , xn] are

assumed to be left normed Lie commutators.

The following Lie bracket identities will be frequently used. Each identity follows easily

by expansion of the Lie products.

Lemma 4.2.3 The following identities hold for all algebras A.

1. Adjoint maps are derivations; in other words, for all a, b, c 2 A,

[ab, c] = a[b, c] + [a, c]b.

2. The semi-Jacobi identity holds; namely, for all a, b, c 2 A,

[ab, c] = [a, bc] + [b, ca].

Stewart also proved that, whenever f is multilinear, bSA( f ) is closed under derivations (see

Proposition 5.1 in [65]). Consequently, we have the following result.
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Theorem 4.2.4 Let f (x1, . . . , xn) be any multilinear polynomial. Then bSA( f ) is a Lie ideal in

the associative algebra A.

Proof. The result follows from part (1) of Lemma 4.2.3 and Proposition 5.1 in [65]. ⇤



Chapter 5

An Analogue of the Schur-Baer-Hall

Theorem for Lie Algebras

5.1 Lie Algebra Analogue of the Schur-Baer-Hall Theorem

Definition 5.1.1 We shall denote the descending central series of a Lie algebra L by

L = �1(L) ◆ �2(L) ◆ �3(L) ◆ · · · ,

where �n+1(L) = [�n(L), L] = [L,n L], for all positive integers n, and its ascending central series

by

0 = Z0(L) ✓ Z1(L) ✓ Z2(L) ✓ · · · ,

whereZn+1(L)/Zn(L) is the centre of L/Zn(L), for each n � 0.

Recall that �c+1(L) = 0 precisely whenZc(L) = L; if such c is minimal, then L is said to be

nilpotent of class c. In the case when L is an associative algebra being viewed as a Lie algebra,

L is said to be Lie nilpotent of class c.

Using a similar approach used to prove the Schur-Baer-Hall Theorem, Stewart proved in

[65] the following precise analogues in the category of Lie algebras:
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Theorem 5.1.2 Let L be a Lie algebra, and let n be a positive integer.

1. If L/Zn(L) is finite-dimensional, then so is �n+1(L) .

2. If �n+1(L) is finite-dimensional, then so is L/Z2n(L).

Notice that, since every associative algebra can be viewed as a Lie algebra, Theorem 5.1.2

holds, in particular, for associative algebras.



Chapter 6

The Canonical Central Series of Ideals of

an Associative Algebra

6.1 Lie Powers and Higher Strong Centres

Notice that, if A is an associative algebra, then �n(A) and Zn(A) are very rarely ideals of A

in the associative sense. Thus, within the category of associative algebras, neither {�n(A)} nor

{Zn(A)} is a central series of ideals. Furthermore, if A[n] is taken to be the associative ideal in

A generated by �n(A), then the series of ideals

A = A[1] ◆ A[2] ◆ A[3] ◆ · · ·

is not normally a central series. For instance, consider the case when A is a Grassmann algebra

of a vector space of dimension at least 4 over a field of characteristic not 2. Then it is easy to

check that [A[2], A] , 0, while A[3] = 0. Thus, we need to consider the following more subtle

modifications. Notice first that Jennings, in [27], was the first to study central series in the

category of associative algebras.

Definition 6.1.1 Let A be an associative algebra.

1. Set A(1) = A and recursively define A(n+1) to be the associative ideal in A generated by the
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Lie ideal [A(n), A], for each n � 1. The ideal A(n) is sometimes called the nth Lie power of

A.

2. Let F(A) denote the largest associative ideal contained in the centre of A. Set F(0)(A) = 0.

Then, for each n � 0, F(n+1)(A) is the ideal in A given by

F(n+1)(A)/F(n)(A) = F(A/F(n)(A)).

The ideal F(n)(A) is sometimes referred to as the nth strong centre of A.

In particular, Jennings proved in [27] that the series {A(n)} and {F(n)(A)} are, respectively,

the canonical fastest descending and ascending central series of A in the category of associative

algebras. Moreover, he proved that A(n+1) = 0 precisely when F(n)(A) = A. As we saw in Part

I, in the case when A(c+1) = 0, and such c is minimal, A is called upper Lie nilpotent of class c.

Since �n(A) ✓ A(n) and F(n)(A) ✓ Zn(A), for all positive integers n, an upper Lie nilpotent al-

gebra is always Lie nilpotent. The converse, however, need not be true: an infinite-dimensional

Grassmann algebra over a field of characteristic not 2 is Lie nilpotent of class 2 but not upper

Lie nilpotent of any class. Gupta and Levin ([15]) constructed a similar example in character-

istic 2. On the other hand, it follows from Theorem 1.5.2, due to Riley and Wilson, that upper

Lie nilpotence does follow from Lie nilpotence whenever the algebra is finitely generated.



Chapter 7

Associative Algebra Analogues of the

Schur-Baer-Hall Theorem

7.1 Associative Powers

Consider the descending series of an algebra A given by the associative powers of A,

A = A1 ◆ A2 ◆ A3 ◆ · · · ,

and the corresponding ascending series of A,

0 = Ann0(A) ✓ Ann1(A) ✓ Ann2(A) ✓ · · · ,

where Annn+1(A), for all n � 0, is the ideal of A given by

Annn+1(A)/Annn(A) = Ann(A/Annn(A)),

the two-sided annihilator of the algebra A/Annn(A).

We will prove the following analogue of the Schur-Baer-Hall Theorem in this case.

Theorem 7.1.1 Let A be an algebra, and let n be a positive integer. Then the following state-

ments hold.

1. If A/Annn(A) is finite-dimensional, then so is An+1.

61



62 Chapter 7. Associative Algebra Analogues of the Schur-Baer-Hall Theorem

2. Conversely, if A is finitely generated and An+1 is finite-dimensional, then A/Annn(A) is

also finite-dimensional.

3. In general, if An+1 is finite-dimensional, then so is A/Ann2n+1(A).

Later, we will see that part (2) of Theorem 7.1.1 support positively Problem (2) in 4.2.1

for the case when f = x1 · · · xn+1. In Chapter 10, we will provide a counterexample shows that

Problem (2) in 4.2.1 fails to hold in general.

7.2 Lie Powers

We also will prove the following more natural associative algebra analogue of the Schur-Baer-

Hall Theorem.

Theorem 7.2.1 Let A be an algebra. Then the following statements hold for every positive

integer n.

1. If A/F(n)(A) is finite-dimensional, then so is A(n+1).

2. Conversely, if A is finitely generated and A(n+1) is finite-dimensional, then A/F(n)(A) is

finite-dimensional.

3. For an arbitrary algebra A, if A(n+1) is finite-dimensional, then so is A/F(3n�1)(A).

Part (2) of Theorem 7.2.1 provides a positive solution for Problem (2) in 4.2.1 for the

polynomial gn (which will be defined in Chapter 8). Moreover, in Chapter 10, we will give

an example showing that Problem (2) need not hold for non-finitely generated algebras with

respect to the polynomial gn.

7.3 Some Related Results

We will use Theorem 7.2.1 to prove the following result.
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Theorem 7.3.1 Let A be a finitely generated algebra. Then the following statements hold for

every positive integer n.

1. If �n+1(A) is finite-dimensional, then there exists a positive integer m such that A(m+1) is

also finite-dimensional.

2. If A/Zn(A) is finite-dimensional, then there exists a positive integer m such that A/F(m)(A)

is also finite-dimensional.

Note that the examples, mentioned in Chapter 6 showing that Lie nilpotence does not, in

general, implies upper Lie nilpotence, show that the finite generation hypothesis in Theorem

7.3.1 cannot be omitted.

In order to prove Theorem 7.3.1, we will also require the following result, which is of

interest in its own right.

Theorem 7.3.2 Let A be an algebra and let n be a positive integer. Then the following state-

ments hold.

1. If �n+1(A) is finite-dimensional, then so is the associative ideal, A[n+1], it generates.

2. LetZ[n](A) be the largest associative ideal of A contained inZn(A). If A/Zn(A) is finite-

dimensional, then so is A/Z[n](A). Thus, in particular, if A/Z(A) is finite-dimensional,

then so is A/F(A).



Chapter 8

The Jennings Triple Product

Throughout this chapter, it will be convenient to assume that all algebras are unital. The prin-

cipal reason is that this will allow us to write

A(n+1) = A[A(n), A]A = [A(n), A]A,

for each positive integer n.

8.1 Jennings Triple Product

Definition 8.1.1

1. Let a1, a2, . . . be elements in A. We define the Jennings triple product on A by

~a1, a2, a3� = [a1, a2]a3.

Furthermore, for each n � 2, we write

~a1, . . . , a2n+1� = ~~a1, . . . , a2n�1�, a2n, a2n+1�.

2. Given a subspace B of A, we set µ1(B, A) = ~B, A, A� and

µn(B, A) = ~µn�1(B, A), A, A�,
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for each n � 2.

Both parts of the following lemma follow from simple inductive arguments.

Lemma 8.1.2 For every (unital) algebra A and integers m, n � 1, the following statements

hold.

1. For every subspace B of A, µm(µn(B, A), A) = µm+n(B, A).

2. µn(A, A) = A(n+1).

Parts (1)-(4) of the following result are due to Jennings ([27]). Part (5) follows easily from

part (4) by induction.

Theorem 8.1.3 Let A be an algebra, and let m and n be positive integers. Then the following

statements hold.

1. [A(m), A(n)] ✓ A(m+n).

2. A(m)A(n) ✓ A(m+n�1).

3. If m  n, then A(m)F(n)(A) ✓ F(n�m+1)(A).

4. If m  n, then [A(m), F(n)(A)] ✓ F(n�m)(A).

5. If m  n, then µm(F(n)(A), A) ✓ F(n�m)(A).

Lemma 8.1.4 In the free algebra on the indeterminates w, x, x0, y, y0, z, the following identities

hold.

1. ~xx0, y, z� = ~x, x0y, z� + ~x0, yx, z�.

2. ~wxx0, y, z� = ~wx, x0y, z� � ~wx, x0, yz� + ~wx, x0, 1, y, z�

+ ~wx0, y, xz� � ~w, x0, 1, y, xz� � ~w, y, x0xz� + ~w, y, 1, x0, xz�.

3. ~wx, yy0, z� = ~wx, y, y0z� + ~wx, y0, yz� � ~wx, y0, 1, y, z�.
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Proof. Using the semi-Jacobi identity (part (2) of Lemma 4.2.3), we have

~xx0, y, z� = [xx0, y]z

= [x, x0y]z + [x0, yx]z

= ~x, x0y, z� + ~x0, yx, z�.

This prove part (1). In what follows, we use the two identities given in Lemma 4.2.3 freely. To

prove part (2), observe that

~wxx0, y, z� = [wxx0, y]z

= [wx, x0y]z + [x0, ywx]z

= ~wx, x0y, z� + y[x0,wx]z + [x0, y]wxz.

Clearly,

y[x0,wx]z = [x0,wx]yz + [y, [x0,wx]]z

= �~wx, x0, yz� + ~wx, x0, 1, y, z�.

It remains to observe that

[x0, y]wxz = [x0w, y]xz � x0[w, y]xz

= [wx0, y]xz + [[x0,w], y]xz � [w, y]x0xz � [x0, [w, y]]xz

= ~wx0, y, xz� � ~w, x0, 1, y, xz� � ~w, y, x0xz� + ~w, y, 1, x0, xz�.
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To prove part (3), notice that

~wx, yy0, z� = [wx, yy0]z

= [wx, y]y0z + y[wx, y0]z

= ~wx, y, y0z� + [wx, y0]yz + [y, [wx, y0]]z

= ~wx, y, y0z� + ~wx, y0, yz� � ~wx, y0, 1, y, z�.

⇤

Definition 8.1.5 For each positive integer n, we define the polynomial gn by

gn(x, y1, z1, . . . , yn, zn) = ~x, y1, z1, y2, z2, . . . , yn, zn�.

Notice that, for every (unital) algebra A, we have SA(gn) = A(n+1). Moreover, A is upper Lie

nilpotent of class at most n precisely when A satisfies the polynomial identity gn = 0.

Lemma 8.1.6 In the free algebra on X = {w, x, y1, z1, . . . , yn, zn}, the following identities hold.

1. For each positive integer n, we have

gn(wx, y1, z1, . . . , yn, zn) = gn(w, xy1, z1, . . . , yn, zn) + gn(x, y1w, z1, . . . , yn, zn).

2. For each 1  i  n, if vi�1 = ~x, y1, z1, . . . , yi�1, zi�1�, then

gn(vi�1, yiw, zi, . . . , yn, zn) = gn(vi�1, yi,wzi, . . . , yn, zn) + gn(vi�1,w, yizi, . . . , yn, zn)

� ~gn(vi�1,w, 1, yi, zi, . . . , yn�1, zn�1), yn, zn�.
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3. For each 1  i  n � 1, if vi = ~x, y1, z1, . . . , yi, 1�, then

gn(viwzi, yi+1, zi+1, . . . , yn, zn) = gn(vi,wziyi+1, zi+1, . . . , yn, zn)

� gn(viyi+1,wzi, zi+1, . . . , yn, zn)

+ ~gn(vi, yi+1, 1,wzi, zi+1, . . . , yn�1, zn�1), yn, zn�.

Proof. Part (1) follows by part (1) of Lemma 8.1.4, while part (2) follows directly from part (3)

of Lemma 8.1.4.

To prove part (3), we use part (1) of Lemma 8.1.4 to observe that

~viwzi, yi+1, zi+1, . . . , yn, zn� = ~vi,wziyi+1, zi+1, . . . , yn, zn� + ~wzi, yi+1vi, zi+1, . . . , yn, zn�

= gn(vi,wziyi+1, zi+1, . . . , yn, zn) + ~wzi, viyi+1, zi+1, . . . , yn, zn�

+ ~wzi, [yi+1, vi], zi+1, . . . , yn, zn�.

On the other hand,

~wzi, viyi+1, zi+1, . . . , yn, zn� = �gn(viyi+1,wzi, zi+1, . . . , yn, zn),

and

~wzi, [yi+1, vi], zi+1, . . . , yn, zn� = ~vi, yi+1, 1,wzi, zi+1, . . . , yn, zn�

= ~gn(vi, yi+1, 1,wzi, zi+1, . . . , yn�1, zn�1), yn, zn�,

as required. ⇤

Remark 8.1.7 Observe that, since A was assumed to be unital, we have

F(n)(A) = {z 2 A | [zA, A]A ✓ F(n�1)(A)},

for all n � 1.
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We can further characterize the ideal F(n)(A) as follows:

Theorem 8.1.8 Let A be an algebra, and let n � 1 be an integer. Then the following statements

hold.

1. F(n)(A) = {z 2 A | µn(zA, A) = 0}; in other words,

F(n)(A) = {z 2 A | gn(za, b1, c1, . . . , bn, cn) = 0, for all a, bi, ci 2 A}.

2. F(n)(A) = bSA(gn).

Proof. We use induction on n to prove part (1). If n = 1, then

F(1)(A) = {z 2 A | [zA, A]A = 0} = {z 2 A | µ1(zA, A) = 0}.

Notice that, by part (1) of Lemma 8.1.2,

µn�1([zA, A]A, A) = µn�1(µ1(zA, A), A) = µn(zA, A).

Thus, if F(n�1)(A) = {z 2 A | µn�1(zA, A) = 0}, then

F(n)(A) = {z 2 A | [zA, A]A ✓ F(n�1)(A)}

= {z 2 A | µn�1([zA, A]A, A) = 0}

= {z 2 A | µn(zA, A) = 0},

as required.

To prove the inclusion F(n)(A) ✓ bSA(gn) in part (2), it su�ces to show that gn = 0 whenever

one of the indeterminates in

gn(x, y1, z1, . . . , yn, zn) = ~x, y1, z1, y2, z2, . . . , yn, zn�,

is evaluated in F(n)(A). First suppose that x is evaluated in F(n)(A). Then, using part (5) of

Theorem 8.1.3,
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gn 2 µn(F(n)(A), A) ✓ F(n�n)(A) = 0.

Similarly, if y1 is evaluated in F(n)(A), gn = 0. Now suppose that 2  i  n and yi is evaluated

in F(n)(A). Then, by parts (4) and (5) of Theorem 8.1.3,

gn 2 µn�i([A(i), F(n)(A)]A, A) ✓ µn�i(F(n�i)(A), A) = 0.

Finally suppose that 1  i  n and zi is evaluated in F(n)(A). Then, by parts (3) and (5) of

Theorem 8.1.3,

gn 2 µn�i(A(i+1)F(n)(A), A) ✓ µn�i(F(n�i)(A), A) = 0.

This proves that F(n)(A) ✓ bSA(gn). To prove the reverse inclusion, we use the characterization

of F(n)(A) given in part (1). So, let z 2 bSA(gn), and let a, b1, c1, . . . , bn, cn be arbitrary elements

in A. Then, by part (1) of Lemma 8.1.6, we have

gn(za, b1, c1, . . . , bn, cn) = gn(z, ab1, c1, . . . , bn, cn) + gn(a, b1z, c1, . . . , bn, cn)

= gn(a, b1z, c1, . . . , bn, cn).

Now, an inductive argument based on the other parts of Lemma 8.1.6 and the fact that bSA(gn)

is a Lie ideal (by Theorem 4.2.4) allows us to continue ‘shifting z towards the right’, so that

ultimately

gn(za, b1, c1, . . . , bn, cn) 2 SA(gn)zA = 0,

as required. ⇤

Notice that it is unusual to be able to conclude that a polynomial identity holds on an entire

algebra knowing only that it holds on a given set of generators; however, this is indeed the case

for the polynomials gn:

Theorem 8.1.9 Let A be an algebra generated by a set Y. Then the following statements hold.

1. A is an upper Lie nilpotent of class at most n if and only if
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gn(a, b1, c1, . . . , bn, cn) = ~a, b1, c1, . . . , bn, cn� = 0,

for all a, b1, . . . , bn, c1, . . . , cn 2 Y.

2. An element z in A lies in F(n)(A) if and only if

gn(za, b1, c1, . . . , bn, cn) = ~za, b1, c1, . . . , bn, cn� = 0,

for all a, b1, . . . , bn, c1, . . . , cn 2 Y.

Proof. Necessity in part (1) is trivial. For su�ciency, let a, b1, c1, . . . , bn, cn be arbitrary prod-

ucts of elements from Y . Then, by Lemma 8.1.6 and induction, it is clear that the element

gn(a, b1, c1, . . . , bn, cn) lies in gn(Y)A. Thus, if gn(Y) = 0, then A is an upper Lie nilpotent of

class at most n. The proof of part (2) is similar to part (1) by first using part (1) of Theorem

8.1.8. ⇤



Chapter 9

Proofs of the Algebra Analogues of

Schur-Baer-Hall Theorem

9.1 Proof of Theorem 7.1.1

Recall Theorem 7.1.1: Let A be an algebra, and let n be a positive integer. Then the following

statements hold.

1. If A/Annn(A) is finite-dimensional, then so is An+1.

2. Conversely, if A is finitely generated and An+1 is finite-dimensional, then A/Annn(A) is

also finite-dimensional.

3. In general, if An+1 is finite-dimensional, then so is A/Ann2n+1(A).

Definition 9.1.1 For each integer n � 1, we define the polynomial fn by

fn(x1, . . . , xn+1) = x1 · · · xn+1.

Therefore, it follows from the above definition that, for every algebra A, SA( fn) = An+1.

Lemma 9.1.2 Let A be an algebra, and let n be a positive integer. Then the following state-

ments hold.

72
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1. Annn(A) = {z 2 A | Pn
i=0 An�izAi = 0} = bSA( fn), where A0 = K.

2. If A is generated by a set Y, then Annn(A) consists of all the elements z in A such that, for

all a1, . . . , an 2 Y and 0  i  n, we have

a1 · · · aizai+1 · · · an = 0.

Proof. We use induction on n � 0 to prove part (1). The statement is trivial for n = 0. Let

z 2 Annn+1(A). Then zA, Az ✓ Annn(A). Hence

Pn
i=0 An�izAi = 0.

by the induction hypotheses. The reverse inclusion is trivial. Part (2) follows easily from part

(1). ⇤

Proof of part (1) of Theorem 7.1.1: Suppose that the dimension of A/Annn(A) is finite. Then,

since Annn(A) = bSA( fn), by part (1) of Lemma 9.1.2, it follows from Theorem 4.2.2 that

An+1 = SA( fn) is also finite-dimensional, as required. ⇤

Proof of part (2) of Theorem 7.1.1: Let A be an algebra generated by a finite set Y , and

suppose that dimAn+1 < 1. Fix a1, . . . , an 2 Y and 0  i  n, and consider the linear map

� : A! An+1 : z 7! a1 · · · aizai+1 · · · an.

Then, since dimAn+1 < 1, ker(�) is of finite codimension in A. Because there are only finitely

many maps of this form,
T

� ker(�) is also of finite codimension in A. But, by part (2) of Lemma

9.1.2, Annn(A) =
T

� ker(�), and hence

dimA/Annn(A) < 1,

as required. ⇤

Proof of part (3) of Theorem 7.1.1: Let A be any algebra such that dimAn+1 < 1, for some

integer n � 1. For each a 2 An+1, define the linear maps

�a : A! An+2 : z 7! az and ⇢a : A! An+2 : z 7! za.
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It is clear that ker(�a) is the right annihilator of a in A, while ker(⇢a) is the left annihilator of a in

A. Thus, since dimAn+2 < 1, the subspaces ker(�a) and ker(⇢a) are both of finite codimension

in A, for all a 2 An+1. Therefore,

Ann(An+1) =
T

a2An+1 ker(�a) \ ker(⇢a),

is of finite codimension in A. Since

Ann2n+1(A) = {z 2 A | Pi+ j=2n+1 AizAj = 0},

by part (1) of Lemma 9.1.2, we have Ann(An+1) ✓ Ann2n+1(A). Consequently, A/Ann2n+1(A) is

finite-dimensional, as required. ⇤

9.2 Proof of Theorem 7.2.1

Recall Theorem 7.2.1: Let A be an algebra. Then the following statements hold for every

positive integer n.

1. If A/F(n)(A) is finite-dimensional, then so is A(n+1).

2. Conversely, if A is finitely generated and A(n+1) is finite-dimensional, then A/F(n)(A) is

finite-dimensional.

3. For an arbitrary algebra A, if A(n+1) is finite-dimensional, then so is A/F(3n�1)(A).

If A happens to be non-unital, let A1 be its unital hull. Then it is easy to see that, for every

integer n � 1, we have

A(n)
1 = A(n) and F(n)(A1) = F(n)(A).

Therefore, to prove Theorem 7.2.1, it is fair to assume that A is unital.

Proof of part (1) of Theorem 7.2.1: Suppose that A/F(n)(A) is finite-dimensional. Then, since

F(n)(A) = bSA(gn) by part (2) of Theorem 8.1.8, it follows from Theorem 4.2.2 that A(n+1) =

SA(gn) is also finite-dimensional, as claimed. ⇤
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Our proof of the remaining parts of Theorem 7.2.1 requires the following two propositions.

Proposition 9.2.1 For every algebra A, the following statements hold.

1. For each positive integer n,

A(n+1) =
P
�n1(A) · · · �nt(A)A,

where the sum is over all integers t � 1 and n1, . . . , nt � 2 with the property that

Pt
i=1(ni � 1) = n.

2. If A(n+1) = 0, then �2(A)n = 0 and �n+1(A) = 0. Conversely, if, for some positive integers

m and c, �2(A)m = 0 and �c+1(A) = 0, then A(n+1) = 0, where n = (m � 1)(c � 2) + 1.

Proof. Using part (2) of Theorem 8.1.3, we have

P
�n1(A) · · · �nt(A)A ✓ A(n+1).

We will prove the reverse inclusion using induction on n � 0. Clearly the inclusion is true

for n = 0. Assume that

A(n+1) ✓ P �n1(A) · · · �nt(A)A.

Then, by part (1) of Lemma 4.2.3, we have

A(n+2) = [A(n+1), A]A

✓
X

Pt
i=1(ni�1)=n

[�n1(A) · · · �nt(A)A, A]A

✓
X

Pt
i=1(ni�1)=n

tX

j=1

�n1(A) · · · �n j(A)�n j+1(A)�n j+1(A) · · · �nt(A)A,

as required. The first claim in part (2) follows from part (1). Now suppose that �2(A)m = 0 and

�c+1(A) = 0, for some positive integers m and c, and set n = (m� 1)(c� 2)+ 1. Then A(n+1) = 0

because, if, in the expression for A(n+1) given in part (1) we have
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Pt
i=1(ni � 1) = n = (m � 1)(c � 2) + 1,

then either t � m or some ni � c + 1 (by a pigeonhole type argument). ⇤

Proposition 9.2.2 In the free algebraAhXi on X = {w, x, y1, z1, y2, z2, . . .}, the following state-

ments hold.

1. Let 1  i  m be integers. If vi�1 = [y1, . . . , yi�1], then

[vi�1, yix, yi+1, . . . , ym]

is a linear combination of products ⌫1 · · · ⌫t of left-normed Lie monomials ⌫1, . . . , ⌫t in

the free Lie algebra LhXi on X, where t � 1, each ⌫ j 2 �m j(LhXi), ⌫1 starts with y1, and
Pt

j=1(mj � 1) = m. The corresponding statement also holds for [vi�1, xyi, yi+1, . . . , ym].

2. The polynomial gn(wx, y1, z1, . . . , yn, zn) is a linear combination of multilinear products of

degree 2n+2 of the form ⌫1 · · · ⌫t, where t � 1 and each ⌫ j is a left-normed Lie monomial

of length n j in LhXi such that
Pt

j=1(nj � 1) = n. Furthermore, we may assume that each

⌫1 starts with any choice of the indeterminates w, x, y1, z1, . . . , yn, zn.

Proof. To prove part (1), we use part (1) of Lemma 4.2.3 to first write

[[vi�1,yix], yi+1, . . . , ym] = [yi[vi�1, x] + [vi�1, yi]x, yi+1, . . . , ym]

= yi[vi�1, x, yi+1, . . . , ym] + [yi, yi+1, . . . , ym][vi�1, x]

+ [vi�1, yi][x, yi+1, . . . , ym] + [vi�1, yi, yi+1, . . . , ym]x.

The last two terms of the last sum are already in the correct form, while the first term is

easily rewritten as a linear combination of two terms, each in correct form. The obstruction to

rewriting the second term is

[[vi�1, x], [yi, yi+1, . . . , ym]].
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But this can be rewritten as a linear combination of terms in correct form using induction and

the Jacobi identity. This proves part (1).

To prove (2), first observe that, if ⌫1 = [vk, x, z1, . . . , zl], say, where k + l + 1 = n1, then, by

another inductive argument using the Jacobi identity,

⌫1 = �[[x, vk], z1, . . . , zl] 2 [x, �k(LhXi),lLhXi] ✓ [x,k+lLhXi].

Similarly, we have

⌫ j⌫1 ✓ ⌫1⌫ j + [⌫1,n j LhXi].

With these two facts in hand, it is now easy to see that part (2) follows from part (1) of Propo-

sition 9.2.1 together with part (1) above. ⇤

Proof of part (2) of Theorem 7.2.1: Let A be an algebra generated by a finite set Y , and

suppose that dimA(n+1) < 1. We need to prove that dimA/F(n)(A) < 1, as well. To this end,

let t � 1 and let ⌫1, . . . , ⌫t be Lie monomials of lengths n1, . . . , nt in LhXi such that ⌫1 · · · ⌫t is

multilinear of degree 2n + 2 and
Pt

i=1(ni � 1) = n. Furthermore, suppose that ⌫1 starts with w.

Then, by part (2) of Theorem 8.1.8 and part (1) of Proposition 9.2.1, we have

⌫1 · · · ⌫t 2 AhXi(n+1) = bSAhXi(gn).

Evaluating w by z in A and the remaining indeterminates x, y1, z1, . . . , yn, zn with elements in Y

induces a linear map

� : A! A(n+1) : z 7! ⌫1 · · · ⌫t.

Since dimA(n+1) < 1, ker(�) is of finite codimension in A. Because there are only finitely many

maps of this form,
T

� ker(�) is also of finite codimension in A. Consequently, it su�ces to

show that

F(n)(A) ◆ T� ker(�).
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Let z 2 T� ker(�). Then, by part (2) of Theorem 8.1.9, z 2 F(n)(A) precisely when, for all

a, b1, . . . , bn, c1, . . . , cn 2 Y , we have

gn = gn(za, b1, c1, . . . , bn, cn) = 0.

However, by part (2) Proposition 9.2.2, gn is a linear combination of products ⌫1 · · · ⌫t of left-

normed Lie monomials ⌫1, . . . , ⌫t, where t � 1, ⌫1 starts with z, each ⌫i 2 �ni(A), and

Pt
i=1(ni � 1) = n.

But each of these products ⌫1 · · · ⌫t is trivial since z 2 T� ker(�); hence, gn = 0, as required. ⇤

Remark 9.2.3 Observe that in the proof of part (2) of Theorem 7.2.1,

F(n)(A) =
T

� ker(�),

for any set of generators Y of A, yielding yet another characterization of F(n)(A).

To see why the reverse inclusion F(n)(A) ✓ T� ker(�) also holds, let z 2 F(n)(A). Then, for

each map �, �(z) = ⌫1 · · · ⌫t 2 A(n+1) = SA(gn), and so �(z) = 0 since z is an element of the ideal

F(n)(A) = bSA(gn).

Proof of part (3) of Theorem 7.2.1: As we mentioned before, we may assume that the al-

gebra A is unital. Suppose now that dimA(n+1) < 1. Then, by part (2) of Theorem 5.1.2,

dimA/Z2n(A) < 1. Let a 2 A(n+1) and consider the linear maps

�a : A! A(n+1) : z 7! az and ⇢a : A! A(n+1) : z 7! za.

It is clear that ker(�a) and ker(⇢a) are, respectively, the right and left annihilators of a in A.

Furthermore, since dimA(n+1) < 1, ker(�a) and ker(⇢a) are each of finite codimension in A, for

all a 2 A(n+1). Therefore, Ann(A(n+1)) is of finite codimension in A. Let J = Ann(A(n+1))\Z2n(A).

Then, from what we have just seen, J is of finite codimension in A. We claim that J ✓ F(m)(A)

for m = 3n� 1. Indeed, let z 2 J. In order to show that z 2 F(m)(A) = bSA(gm), we need to prove

that gm = 0 whenever any of the indeterminates x, yi, zi (for some i = 1, . . . , n) is evaluated to
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z. By part (2) of Proposition 9.2.1, we can expand the polynomial gm into a linear combination

of products ⌫1 · · · ⌫t, where each ⌫i 2 �mi(LhXi),
Pt

i=1(mi � 1) = m, and ⌫1 starts with the

indeterminate to be evaluated to z. It su�ces to show that each of these products ⌫1 · · · ⌫t in the

expansion of gm evaluates to zero. Indeed, after evaluation, we have

⌫1 2 [Z2n(A),m1�1 A] ✓ Z2n�(m1�1)(A).

Thus, if m1 � 2n + 1, then gm = 0, as required. On the other hand, if m1  2n, then

(m2 � 1) + · · · + (mt � 1) = m � (m1 � 1) � m � 2n + 1 = n,

so that ⌫2 · · · ⌫t 2 A(n+1). Therefore, since ⌫1 2 Ann(A(n+1)), it follows that ⌫1 · · · ⌫t = 0, as

required. ⇤

9.3 Proof of Theorems 7.3.1 and 7.3.2

Recall Theorem 7.3.2: Let A be an algebra and let n be a positive integer. Then the following

statements hold.

1. If �n+1(A) is finite-dimensional, then so is the associative ideal, A[n+1], it generates.

2. LetZ[n](A) be the largest associative ideal of A contained inZn(A). If A/Zn(A) is finite-

dimensional, then so is A/Z[n](A). Thus, in particular, if A/Z(A) is finite-dimensional,

then so is A/F(A).

Proof of part (1) of Theorem 7.3.2: First, observe that it su�ces to assume that A is unital.

Suppose now that dim�n+1(A) = m < 1. It follows that dimA/C  m2, where C is the

centralizer of �n+1(A) in A. Moreover, �n+1(A)C = C�n+1(A) ✓ �n+1(A) since, by part(1) of

Lemma 4.2.3, if a1, . . . , an+1 2 A and c 2 C, we have

[[a1, . . . , an], an+1]c = [[a1, . . . , an], an+1c] � an+1[[a1, . . . , an], c]

= [[a1, . . . , an], an+1c] 2 �n+1(A).
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Consequently,

A[n+1] = �n+1(A)A = �n+1(A)b1 + · · · + �n+1(A)bm2 ,

for some b1 = 1, b2, . . . , bm2 2 A. It follows that dimA[n+1]  m3 < 1, as required. ⇤

The proof of part (2) of Theorem 7.3.2 requires the following lemma (see [34]).

Lemma 9.3.1 For every algebra A and integer n � 0, the Lie ideal Zn(A) is an associative

subalgebra of A.

Proof. Observe first that, for every integer n � 1,

Zn(A) = {z 2 A | [z, A] 2 Zn�1(A)}.

Let z1, z2 2 Zn(A) and a 2 A. Then, by the semi-Jacobi identity (part (2) of Lemma 4.2.3), we

have

[z1z2, a] = [z1, z2a] + [z2, az1] 2 Zn�1(A).

Hence z1z2 2 Zn(A), as required. ⇤

The following useful result, due to Lee and Liu ([35]), will be used to prove the remaining

part of Theorem 7.3.2.

Proposition 9.3.2 Let R be an algebra over a field K, and let A be a subalgebra of R such that

dimKR/A < 1. Then there exists an ideal I of R contained in A such that dimKR/I < 1.

Proof of part (2) of Theorem 7.3.2: Suppose that dimA/Zn(A) < 1, for some positive integer

n. By Lemma 9.3.1, Zn(A) is an associative subalgebra of A. However, by Proposition 9.3.2,

Zn(A) contains an ideal that is also of finite codimension. It follows that A/Z[n](A) is finite-

dimensional, as required. ⇤

We will use Theorem 7.3.2 to prove Theorem 7.3.1, which we recall here for convenience:

Let A be a finitely generated algebra. Then the following statements hold for every positive

integer n.
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1. If �n+1(A) is finite-dimensional, then there exists a positive integer m such that A(m+1) is

also finite-dimensional.

2. If A/Zn(A) is finite-dimensional, then there exists a positive integer m such that A/F(m)(A)

is also finite-dimensional.

Proof of Theorem 7.3.1: Let A be a finitely generated algebra, and suppose that �n+1(A) is

finite-dimensional. Then, by Theorem 7.3.2, A[n+1] is also finite-dimensional. Hence,

Ā := A/A[n+1],

is a finitely generated Lie nilpotent (associative) algebra. Consequently, Ā is upper Lie nilpo-

tent. This is a special case of the fact that every finitely generated associative algebra satisfying

an Engel identity is upper Lie nilpotent, as proved by Riley and Wilson (see [54]). Therefore,

A(m+1) ✓ A[n+1], for some positive integer m. Since A[n+1] is finite-dimensional, so is A(m+1). This

proves part (1). To prove part (2), suppose that dimA/Zn(A) < 1, for some positive integer n.

Then, by part (1) of Theorem 5.1.2, dim�n+1(A) < 1. Thus, as shown above, dimA(m+1) < 1,

for some integer m. Hence, by part (2) of Theorem 7.2.1, dimA/F(m)(A) < 1, as required. ⇤



Chapter 10

Counterexamples

Let K(↵) be any simple field extension of our base field K, and let V be a vector space with basis

{v1, . . . , vn+1} over K(↵), for some fixed positive integer n. Now let E denote the (non-unital)

Grassmann-like K(↵)-algebra generated by V subject to the relations

v jvi = ↵viv j,

for all 1  i  j  n + 1. Notice that these relations imply that v2
i = 0 except when ↵ = 1; thus,

in the case when ↵ = 1, we impose the additional relations v2
i = 0, for each i. It is easy to see

that E has a K(↵)-basis consisting of all the monomials of the form

vi1 · · · vik ,

where 1  i1 < · · · < ik  n + 1 and 1  k  n + 1. Clearly En+2 = 0 and Ann(E) = En+1 =

K(↵)v1 · · · vn+1. Simple induction argument shows also that

Annm(E) = En�m+2,

for each 0  m  n + 1.

Let A be the algebra formed by identifying the elements corresponding to v1 · · · vn+1 in each

copy of a direct sum of countably many copies of E.
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10.1 Associative Powers

The following example shows that part (2) of Theorem 7.1.1 does not extend to non-finitely

generated algebras.

Example 10.1.1 Let ↵ = 1 and define the algebra A as before. Then A is a commutative

K-algebra such that dimK(An+1) = 1 while A/Annn(A) = A/A2 is infinite-dimensional.

10.2 Lie Powers

Let ↵ be a primitive root of unity whose order exceeds n. Notice if 1  i1 < · · · < ik < ik+1 

n + 1, then

[vi1 · · · vik , vik+1] = (1 � ↵k)vi1vi2 · · · vik+1 .

It follows that

�m(E) = E[m] = E(m) = Em,

for all m. We claim that

Z(E) =

8>>>><
>>>>:

En+1, if n is odd

K(↵)v1 · · · vkvk+2 · · · vn+1 + En+1, if n = 2k is even.

Indeed, notice that, if z = z1 + · · · + zn+1 2 Z(E), where each component zm lies in Em, linear

independence forces each monomial vi1 · · · vim (1  i1 < · · · < im  n + 1) in the support of

each zm to lie in Z(E), too. Suppose now that zm , 0, for some 1  m  n. Let vi1 · · · vim

(1  i1 < · · · < im  n + 1) be in the support of zm, and let 1  j  n + 1 be such that

i1 < · · · < ir < j < ir+1 < · · · < im,

for some 0  r  m. Then

0 = [vi1 · · · vim , v j] = (↵m�r � ↵r)vi1 · · · vir v jvir+1 · · · vim ,
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so that ↵m�2r = 1. Since the order of ↵ exceeds n and �n  m � 2r  n, we have r = m
2 . Thus,

for all choices of j, ir < j < ir+1. So, in particular, i1 = 1 and im = n + 1. It now follows that

m = n = 2k is even, and

vi1 · · · vim = v1 · · · vkvk+2 · · · vn+1.

Thus, the claim has been proved (the reverse inclusion being obvious). Consequently,

F(E) = Z(E) =

8>>>><
>>>>:

En+1, if n is odd

K(↵)v1 · · · vkvk+2 · · · vn+1 + En+1, if n = 2k is even.

Next we claim

F(m)(E) = Zm(E) = En�m+2,

for each 2  m  n+ 1. This is clear when n is odd. So, suppose that n = 2k is even. The claim

follows easily from the base step: F(2)(E) = Z2(E) = En. So, let

z +Z(E) = z1 + · · · + zn +Z(E) 2 Z(E/Z(E)),

where each component zm 2 Em. Thus, for each 1  i  n + 1, we have

[z1, vi] + · · · + [zn, vi] 2 Z(E) = K(↵)v1 · · · vkvk+1 · · · vn+1 + En+1.

Thus, by linear independence,

z1 = · · · = zn�2 = 0.

Therefore,

z +Z(E) = zn�1 + zn +Z(E).

Suppose that zn�1 , 0. Then there exists a monomial of the form

v1 · · · vi�1vi+1 · · · v j�1v j+1 · · · vn+1,

with 1  i < j  n + 1 in the support of zn�1. So, by our choice of ↵, neither [zn�1, vi] nor

[zn�1, v j] is zero in E. From above, however,
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[zn�1, vi], [zn�1, v j] 2 Z(E) = K(↵)v1 · · · vkvk+1 · · · vn+1 + En+1,

forcing i = j = k + 1, a contradiction. Hence, we have shown that Z2(E) = En. Thus, since

F(E) = Z(E), it now follows that F(2)(E) = Z2(E) = En, as required.

Example 10.2.1 If ↵ is a primitive root of unity whose order exceeds n, then A, when viewed as

a K-algebra, has the property that dimK(A(n+1)) = dimK(K(↵)) < 1, and yet A/F(n)(A) = A/A2

is infinite-dimensional.

This shows that part (2) of Theorem 7.2.1 cannot be extended to non-finitely generated

algebras. Furthermore, using the same algebra A viewed as a Lie K-algebra, we find that the

converse of part (1) of Stewart’s result, Theorem 5.1.2, does not hold in general either.

Example 10.2.2 If ↵ is a primitive root of unity with order exceeding n, then A, when viewed as

a Lie K-algebra, has the property that dimK(�n+1(A)) = dimK(K(↵)) < 1, and yet A/Zn(A) =

A/A2 is infinite-dimensional.



Chapter 11

Conciseness

11.1 Concise and Marginally Concise Polynomials

Recall that a polynomial f is called homogeneous if each f -monomial is of the same degree

in each indeterminate. Also f is called multilinear if it is linear in each of its indeterminates.

Let A be a K-algebra. In [65], Stewart proved that, whenever K is infinite or f (x1, . . . , xn) is a

homogeneous polynomial of degree mi in xi and |K| � mi (1  i  n), SA( f ) is invariant under

all derivations of A. Consequently, we have the following result.

Theorem 11.1.1 Let A be an algebra over a field K, and let f (x1, . . . , xn) be a polynomial. If

K is infinite or f is homogeneous of degree mi in xi and |K| � mi (1  i  n), then SA( f ) is a

Lie ideal.

Proof. Part (1) of Lemma 4.2.3 say that ad maps are associative derivations. Thus, the result

follows from Theorem 3.1 in [65]. ⇤

For an algebra A, CA(a), for a 2 A, will denote the centralizer of a in A.

Lemma 11.1.2 LetU be a Lie ideal of an algebra A such that dimU = m < 1. If

CA(U) :=
T

u2U CA(u),
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then dim(A/CA(U))  m2.

Proof. For every u 2 U, dim(A/CA(u))  m. Clearly, it follows that dim(A/CA(U))  m2. ⇤

Proposition 11.1.3 Let f (x1, . . . , xn) be a polynomial in the free algebra on the set {y, x1, x2. . . .}

over a field K, and define

g(x1, . . . , xn, y) = [ f (x1, . . . , xn), y].

Let A be a K-algebra, and suppose that dimSA(g) < 1. If K is infinite or f is homogeneous of

degree mi in xi and |K| � mi (1  i  n), then dimIA(g) < 1.

Proof. Suppose that dimSA(g) = m < 1. Let gi = [ fi, zi], for i = 1, . . . ,m, be a basis for SA(g).

Then, for each 1  i  m, dim(A/CA( fi))  m (consider the map A ! SA(g) : a 7! [ fi, a]).

Hence dim(A/C)  m2 where

C =
Tm

i=1 CA( fi).

Moreover, SA(g)C = CSA(g) ✓ SA(g) since, by part (1) of Lemma 4.2.3, for every i = 1, . . . ,m

and c 2 C, we have

[ fi, zi]c = [ fi, zic] � zi[ fi, c]

= [ fi, zic] 2 SA(g).

Consequently, by embedding A into its unital hull, A1,

IA(g) = SA(g)A1

= SA(g)[K1 + Kb1 + · · · + Kbm2 +C],

for some b1, b2, . . . , bm2 2 A. It follows that dimIA(g)  m(m2 + 1) < 1, as required. ⇤
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Corollary 11.1.4 Let A be a K-algebra, and let f (x1, . . . , xn) be a homogeneous polynomial of

degree mi in xi and |K| � mi (1  i  n). Set

g(x1, . . . , xn, y) = [ f (x1, . . . , xn), y].

If dimSA( f ) < 1, then dimIA(g) < 1.

Proof. By Theorem 11.1.1,SA( f ) is Lie ideal. It follows thatSA(g) ✓ SA( f ). Hence dimSA(g) <

1, and, by Proposition 11.1.3, dimIA(g) < 1, as required. ⇤

Lemma 11.1.5 Let f (x1, . . . , xn) be a multilinear polynomial in the free algebra on {y, x1, x2, . . .}

over a field K, and set

g(x1, . . . , xn, y) = [ f (x1, . . . , xn), y].

If Ā = A/IA(g), then SĀ( f ) is a subalgebra of Ā. In other words,AA( f ) ✓ SA( f ) + IA(g).

Proof. The polynomial f has the form

f (x1, . . . , xn) =
P
�2S n ↵�x�(1) · · · x�(n),

for some ↵� 2 K. Let a1, . . . , an 2 A and z 2 SĀ( f ) ✓ Z(Ā). Then

f (a1, . . . , an)z =
X

�2S n

↵�a�(1) · · · a�(n)z

= f (a1z, a2, . . . , an) 2 SĀ( f ).

Therefore, SĀ( f ) is a subalgebra of Ā, as required. ⇤

Theorem 11.1.6 Let f be a multilinear polynomial, and let A be an algebra. If SA( f ) is finite-

dimensional, then so is the subalgebra,AA( f ), it generates.

Proof. The result follows from combining Corollary 11.1.4 and Lemma 11.1.5 ⇤
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It now makes sense to propose the following algebraic-analogue definition of concise poly-

nomials. Also, recall from Proposition 9.3.2 that, if B is a subalgebra of finite codimension

in an associative algebra A, then B contains an ideal that is, also, of finite codimension in A.

Thus, we may also study ‘marginal’ concise polynomials defined as follows.

Definition 11.1.7 Let f be a polynomial, and let A be any algebra.

1. f is called concise in A if dimSA( f ) < 1 implies dimIA( f ) < 1.

2. f is called marginally concise in A if dim(A/bSA( f )) < 1 implies dim(A/bIA( f )) < 1.

Thus, Problem (3) in 4.2.1 becomes:

is every polynomial f concise?

While Problem (4) becomes:

is every polynomial f marginally concise?

Definition 11.1.8 Let f be a polynomial, and let A be any algebra. We say that f = 0 is

virtually a polynomial identity of A if there exists ICA such that dim(A/I) < 1 and I satisfies

f = 0.

Recall that, if f (x1, . . . , xn) is homogeneous,

bSA( f ) = {z 2 A| f (a1, . . . , ai�1, z, ai+1, . . . , an) = 0, a1, . . . , an 2 A, 1  i  n}.

Thus, for all z1, . . . , zn 2 bSA( f ), f (z1, . . . , zn) = 0. Hence, bIA( f ) ✓ bSA( f ) satisfies f = 0.

Therefore, if f is marginally concise and dim(A/bSA( f )) < 1, then f = 0 is virtually a PI for

A.

Following Drensky (see Chapter 4 in [8]), we recall the definition of proper polynomials:

Definition 11.1.9 A polynomial f in the free algebra over a field K is called proper (or commu-

tator of length of least 2) polynomial if it is a linear combination of products of commutators:
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f (x1, . . . , xn) =
P
↵i,..., j[xi1 , . . . , xip] · · · [x j1 , . . . , x jq],

for some ↵i,..., j 2 K

Definition 11.1.10 A multilinear polynomial is called distinctly proper if it can be written in

the form

f ([x1, . . . , xm], . . . , [z1, . . . , zn]),

where f is a multilinear polynomial and each of the commutators of length at least 2.

Many PI-algebras are known to satisfy distinctly proper polynomial identities. For exam-

ple, the subalgebra of all n ⇥ n upper triangular matrices, Un(K), over a field K satisfies the

distinctly proper identity [x1, y1][x2, y2] · · · [xn, yn] = 0 (see Chapter 5 in [8]). Furthermore, a

Lie algebra L is called metabelian if it satisfies the metabelian identity [[x1, x2], [x3, x4]] = 0,

which is clearly a distinctly proper identity. More generally, Lie solubility of derived length d

corresponds, as well, to a distinctly proper polynomial.

Theorem 11.1.11 Let f be a distinctly proper polynomial, and let A be any algebra. Then

bSA( f ) is a subalgebra of A.

Proof. First, we prove the statement for Lie commutators [x1, . . . , xn] with n � 2. Consider

the free algebra AhXi on the set {w1,w2, x1, . . . , xn}. Then, using inductive argument with the

Jacobi identity, we have

[[x1, . . . , xm],w1w2, xm+2, . . . , an] = �[[w1w2, [x1, . . . , xm]], xm+2, . . . , xn]

2
X

[w1w2,n�1AhXi].

However, by the semi-Jacobi identity (part (2) of Lemma 4.2.3), if a1, . . . , an�1 2 A and z1, z2 2
bSA([x1, . . . , xn]), then

[z1z2, a1. . . . , an�1] = [z1, z2a1, . . . , an�1] + [z2, a1z1, . . . , an�1] = 0.
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It follows that [b1, . . . , bi�1, z1z2, bi+1, . . . , bn] = 0 for each i = 1, 2, . . . , n and for all choices

of b1, . . . , bn in A.Thus, z1z2 2 bSA([x1, . . . , xn]), as required. Next, let f (x1, . . . , xn) be any

distinctly proper polynomial. Then f can be written in the form

f (x1, . . . , xn) = h( f1, . . . , fm),

where h is a multilinear polynomial and f1, . . . , fm are Lie commutators (of distinct indeter-

minates) each has length at least 2. Let z1, z2 2 bSA( f ). Now, evaluate xi, for some 1 

i  n, by z1z2 and the remaining indeterminates in f with elements aj 2 A. Observe that

xi must fall in exactly one Lie commutator, say, without loss of generality, f1. Applying the

above proof to the Lie commutator f1, it follows that f (a1, . . . , ai�1, z1z2, ai+1, . . . , an) is a sum

of two evaluations of f with the first indeterminate of the Lie commutator f1 is evaluated

with z1, in one of these evaluations, while evaluated by z2 in the other. This implies that

f (a1, . . . , ai�1, z1z2, ai+1, . . . , an) = 0, and hence z1z2 2 bSA( f ), as required. ⇤

In particular, we have the following result:

Corollary 11.1.12 Every distinctly proper polynomial is marginally concise.

Proof. Let f be a distinctly proper polynomial, and let A is an algebra such that dim(A/bSA( f )) <

1. By Theorem 11.1.11, bSA( f ) is a subalgebra of A. However, by Proposition 9.3.2, bSA( f )

contains an ideal I of finite codimension. But I ✓ bIA( f ). Thus, dim(A/bIA( f )) < 1, and hence

f is marginally concise. ⇤

Examples 11.1.13

1. Define g(x1, . . . , xn, y) = f (x1, . . . , xn)y for any polynomial f (x1, . . . , xn). Then, clearly

for any algebra A, SA(g) = IA(g). Thus, g is concise. In particular,

gn = [~x, y1, z1, . . . , yn�1, zn�1�, yn]zn

is concise.
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2. By Proposition 11.1.3, if K is infinite or f (x1, . . . , xn) is a homogeneous polynomial of

degree mi in xi and |K| � mi (1  i  n) (in particular if f is a multilinear polyno-

mial), then the polynomial g = [ f (x1, . . . , xn), y] is concise. Thus, by induction, all Lie

commutators [x1, . . . , xn] are concise.

3. By part (2) of Theorem 8.1.8, bSA(gn) = F(n)(A) is an ideal, and hence

gn = ~x, y1, z1, . . . , yn, zn�,

is marginally concise.

4. By Corollary 11.1.12, all distinctly proper polynomials are marginally concise. In par-

ticular, the Lie metabelian polynomial [[x1, x2], [x3, x4]], and the Lie soluble polynomial

fn = fn(x1, . . . , x2n), which is defined inductively by:

f1(x1, x2) = [x1, x2],

and, for all n > 1,

fn = [ fn�1(x1, . . . , x2n�1), fn�1(x2n�1+1, . . . , x2n].

Definition 11.1.14 Let A be an algebra. If every polynomial f is concise in A, then A is called

verbally-concise.

Example 11.1.15 Let A = KG be a group algebra of an infinite group G over a field K. Clearly

then A cannot have a nontrivial finite-dimensional ideal. Therefore, A is verbally-concise only

if, for all polynomials f with the property that SA( f ) is finite-dimensional, f is a polynomial

identity of A.

Open Problems 11.1.16 The following questions are still open problems:

1. Is it true that all group algebras are verbally-concise?

2. Are all polynomials concise?

3. Are all polynomials marginally concise?



Bibliography

[1] S.I. Adyan, ‘The Burnside Problem and Identities in Groups’, (Russian), Nauka, Moscow

(1975). Translation: Ergebnisse der Math. und ihrer Grenzgebiete 95, Springer-Verlag,

Berlin-New York (1979).

[2] S.V. Alyoshin, ‘Finite automata and the Burnside problem on periodic groups’, Matem.

Zametky 11 (1972) 319-328.

[3] B. Amberg and Y. Sysak, ‘Associative rings whose adjoint group semigroup is locally

nilpotent’, Arch. Math. 76 (2001) 426-435.

[4] R. Baer, ‘Endlichkeitskriterien fur Kommutator-gruppen’, Math. Ann. 124 (1952) 161-

177.
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