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Abstract 

Canada is designing supercritical water fission reactors (SCWR) to increase the thermal 

efficiency of nuclear power generation from ~34% to ~48%. The temperature and pressure 

of a supercritical water reactor core is very high compared to a CANDU reactor. This thesis 

examines irradiation hardening and thermal recovery of two candidate alloys, AISI 310 

and Inconel 800H, for the Canadian SCWR. 

Samples of both alloys are mechanically ground and polished, then irradiated using  

8.0 MeV Fe ions. The use of ion irradiation safely and quickly simulates neutron damage. 

The change in the hardness of the samples is then studied during a series of thermal anneals 

at temperatures ranging from 400° to 600° C.  

This study found virtually all irradiation-induced hardening had recovered within 100 

minutes of exposure to these temperatures. 

 

Keywords 

ion implantation, ion irradiation, thermal recovery, supercritical water reactors, nano-

indentation, micro-indentation
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Chapter 1  

1 Introduction 

The majority of existing nuclear reactors, including Canadian CANDU reactors, utilize 

liquid water cooling. This limits their thermal efficiency to between 33 and 37% [1]. The 

electrical generation industry is moving to the use of supercritical water cooling  

(T > 374° C and P > 22 MPa) to improve the thermal efficiency to greater than 48%. 

Supercritical Water Reactors (SCWRs) powered by fossil fuel combustion (coal and 

natural gas) are now being used throughout the world [2].  

The Canadian nuclear industry has begun preliminary research to develop a heavy-water 

moderated nuclear SCWR. This next generation (Gen. IV) reactor will replace the existing 

CANDU reactors. The fact that the temperature and the neutron flux, within the core of a 

Gen. IV SCWR will be considerably higher than in the core of current CANDU reactors 

presents considerable challenges for selecting suitable reactor core materials. In particular, 

the combined effect of neutron irradiation hardening and thermal softening of the candidate 

alloys at the temperature and neutron flux levels within the Gen. IV SCWR core has not 

been studied.  

This thesis presents the results of a study which uses high energy Fe ion irradiation, to 

simulate neutron irradiation, and post-irradiation annealing to assess the combined effect 

of neutron irradiation and thermal recovery on the mechanical hardness of two Fe-based 

alloys that are being considered for in-core applications in the Canadian Gen. IV SCWR. 

The hypotheses upon which this study is based are the following: 

1. High energy Fe ion irradiation will produce similar crystallographic damage, to a depth 

of about 2 m, as fast neutron irradiation. Thus, Fe ion irradiation can be used as a 

simulation the hardening induced by neutron irradiation for Fe-based alloys. 

2. The development of irradiation damage and the thermal recovery of the damage, occur 

by independent mechanisms; therefore, we will irradiate samples to different levels of 

crystallographic damage and then anneal the samples at various temperatures for 



2 

 

various duration to establish separate empirically-based expressions for the rates of 

damage accumulation and rate of thermal recovery of the damage. 

3. These two expressions can then be applied to predict the rate at which the hardness of 

the selected alloys will change with neutron irradiation fluence, temperature, and time 

over the range expected for specific in-core components of a Gen. IV SCWR. 

This thesis consists of seven chapters. Chapter 2 contains a review of the literature dealing 

with the key concepts pertaining to this study. Chapter 3 presents details on the 

experimental procedures used in this study. The results obtained from these experiments 

are presented in Chapter 4. A discussion of the results, including an analysis of their 

precision and demonstrations of their application, is presented in Chapter 5. Chapter 6 

presents the conclusions of this study. Chapter 7 provides suggestions for future work 

arising from the findings of this research. 

Results of this study were published in the ASME Journal of Nuclear Engineering and 

Radiation Science (currently in press, Paper #: NERS-15-1077) and presented at the 25th 

CANCAM conference (London, ON, 2015), the 7th International Symposium on 

Supercritical Water-Cooled Reactors (Helsinki, Finland 2015), the Materials Science and 

Technology Conference (Montreal, PQ, 2013), and the 25th Canadian Materials Science 

Conference (Montreal, PQ, 2013). 
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Chapter 2  

2 Review of the literature 

The objective of this study is to assess the effect of high energy neutron irradiation and 

thermal recovery on the mechanical hardness of two Fe-based alloys that are being 

considered for certain critical components within a Gen. IV SCWR core. To put this 

research into proper context, it is necessary to provide background information on several 

key topics related to the proposed Gen. IV reactor and to the mechanisms of irradiation 

induced hardening and temperature induced recovery of hardness in crystalline metals. 

Section 2.1 provides a brief description of the general layout and operation of the proposed 

Canadian Gen. IV SCWR core. Section 2.2 describes the characteristics of the type of 

crystallographic damage that is caused in metals as a result of neutron and heavy ion 

irradiation. The similarities between those two types of irradiation are demonstrated. 

Section 2.3 illustrates the mechanisms through which thermal recovery of crystallographic 

damage occurs in metals. Section 2.4 concludes this literature review, by examining 

micromechanical testing techniques which have been developed to measure the local 

mechanical strength and hardness at the nano-meter length scale. These techniques will be 

applied in this study to assess the properties of the ion-irradiated/annealed test samples.  

 

2.1 The Canadian Gen. IV SCWR concept 

2.1.1 SCWR layout 

The design of Canada’s proposed Gen. IV SCWR has many fundamental similarities to 

existing CANDU reactor design. Like a CANDU reactor, the Gen. IV SCWR has a 

calandria vessel containing many fuel channels surrounded by heavy water (D2O) which 

acts as the neutron moderator. Each fuel channel consists of a pressure tube containing the 

nuclear fuel bundles and H2O coolant to transport the generated fission heat from the core 

(Figure 2.1).  



2 

 

 

Figure 2.1 Canadian SCWR layout 

Unlike the CANDU layout, the fuel channels in the Gen IV SCWR core are aligned 

vertically rather than horizontally. The pressure tubes are designed to support significant 

hoop stress generated by the internal pressure of the H2O coolant and are protected from 

the high coolant temperature by metal fuel liners and ceramic thermal insulating layers 

(Figures 2.2, 2.3).  

 

Figure 2.2 Canadian SCWR pressure tube horizontal section view  
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2.1.2 Operation of the Canadian Gen. IV SCWR 

Within the pressure tube the H2O coolant runs first downward through a central flow tube 

and then upward through the fuel bundles (Figure 2.3). The fuel bundles contain numerous 

fuel pins consisting of stacks of fuel pellets encased in metal cladding to prevent mixing of 

radioactive fuel/fission products with the coolant [3].  

  

Figure 2.3 Canadian SCWR pressure tube lower vertical section view  

 

Figure 2.4 Temperature-pressure phase diagram of water [4] 

Supercritical water occurs when the temperature and pressure is above 374° C and  

22.06 MPa (Figure 2.4). The H2O coolant enters the pressure tubes at 25 MPa of pressure 
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and temperatures of 350° C. The coolant heats up as it passes over the fuel bundles to 

reach 800° C and 25 MPa as it exits the pressure tube. The exiting water is therefore well 

within the supercritical water state [3]. The metal fuel liner and the fuel cladding are the 

metal components within the Gen IV core that are exposed to the highest temperature and 

neutron flux thus safe operation of this reactor is absolutely dependent on their ability to 

endure these extreme conditions. 

Temperature-entropy diagrams can depict the enhanced thermal efficiency available 

when a Rankine cycle, analogous to the thermodynamic coolant cycle of a nuclear 

generating station, is operated with supercritical rather than subcritical water coolant 

(Figure 2.5).  

Figure 2.5 Temperature-entropy diagram comparing supercritical and subcritical 

water Rankine cycles. The ratio of output work to output heat is much higher with 

supercritical coolant, meaning the thermal efficiency is higher with supercritical 

coolant relative to an equivalent a Rankine cycle with subcritical coolant. 
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In the Rankine cycle of a nuclear fission reactor, energy enters and leaves the system 

through work input (𝑊𝑖), heat input (𝑄𝑖), work output (𝑊𝑜), and heat output (𝑄𝑜). The 𝑊𝑖 

is the work, applied by a pump, to pressurize the coolant and create flow. The 𝑄𝑖 is the 

fission heat absorbed by the coolant. 𝑊𝑜 is the energy generated by the turbines and 𝑄𝑜 is 

the “wasted” heat energy resulting from inefficiencies in the actual cycle. Decreasing the 

𝑄𝑜 𝑊𝑜⁄  ratio will increase the thermal efficiency, ƞ𝑡ℎ (Equation 2.1). 

ƞ𝑡ℎ =
𝑊𝑜

𝑊𝑖+𝑄𝑖
=  

𝑊𝑜

𝑊𝑜+𝑄𝑜
=

1

1+
𝑄𝑜
𝑊𝑜

 
                                           2.1 

The higher efficiency of a SCWR equates to less associated fuel costs and less generated 

nuclear waste. It has been estimated the thermal efficiency of Canada's Gen IV SCWR 

design will be 48% through the thermodynamic benefits of supercritical water coolant 

operating at 25 MPa and between approximately 350° to 800° C [5]. This is a significant 

improvement when compared to the 34% thermal efficiency of CANDU technology in use 

today [6]. 

The conditions within the core of the Canadian Gen IV SCWR will be harsher than those 

within the core of a CANDU reactor due to the much higher coolant temperature and 

pressure ranges as well as the relatively corrosive nature of supercritical water compared 

to traditional light water coolants. The critical metal components in the reactor core are the 

fuel liner and the fuel cladding (Figure 2.6).  

The metal liner remains in the core throughout the reactor’s lifetime, unlike the fuel 

cladding, which will be removed with the fuel bundles during refuelling. Therefore the 

metal liner will experience very long exposures to high temperature and neutron irradiation.  
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Figure 2.6 Pressure tube assembly and temperature distribution. Fuel cladding and 

liner components experience the highest temperatures. The fuel cladding is also 

exposed to the highest neutron flux. 

The liner and cladding require metal alloys of high strength and creep resistance up to  

800° C [7]. Two candidate alloys for these components are the high temperature 

application, ferrous alloys, Inconel 800H and AISI 310 (See Table 3.1) [8-10]. While the 

high temperature strength and creep resistance of these materials in their non-irradiated 

form is well studied and their service temperature extends up to 800° C [11, 12], the effect 

of neutron irradiation hardening on these properties is still under investigation and 

providing data on this subject is the objective of this thesis. 

 

2.2 Neutron/ion irradiation induced crystallographic damage 

Neutron and ion irradiation have the general effect of hardening and embrittling crystalline 

metals [13-16]. A periodic, crystalline arrangement of atoms has a characteristic hardness, 

which is fundamentally based upon the electronic structure and inter-atomic bond strength 
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of the atoms. Bombarding this lattice with high energy particles will dislocate atoms from 

their lattice sites, forming vacancy and interstitial type point defects [17-19]. The atoms 

that are dislocated by direct particle impact are referred to as primary knock-on atoms 

(PKA) and often dislocate more atoms through secondary and tertiary collisions. These 

dislocated atoms accumulate to form "vacancy" and "interstitial" type dislocation loops 

(Figure 2.7). This type of irradiation damage appears as a uniform distribution of small, 

less than about 10 nm diameter, dislocation loops throughout the irradiated material, and 

is quantified as an average number of displacements per atom (dpa). Figure 2.8 shows high 

magnification electron microscope images of the irradiation, visible as a uniform 

distribution of diffuse black dots, in a Zr sample that was irradiated with Kr2+ ions. 

 

Figure 2.7 Irradiation effects on lattice structure. a) Before irradiation: high energy 

particle moving towards a lattice of low energy atoms. b) At collision: high energy 

particle impacts and dislocates a lattice atom. c) Cascade collisions: the PKA 

collides with and dislocates another atom. The radiation particle continues moving 

into the lattice, transferring more of its energy to other atoms. d) After collision: 

lattice now has stress concentrations, vacancies, interstitials, and may have 

substitutional defects and is in a higher energy state.  
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Figure 2.8 Representative TEM micrographs showing the development defects and 

dislocations in the microstructure of a zirconium foil with Kr2+ ion irradiation 

damage ranging from 0.08 dpa to 0.8 dpa at 400° C [17]. 

 

2.2.1 Neutron and ion irradiation 

High energy, heavy ion irradiation is a fast, safe, and an economical means to simulate 

neutron irradiation damage [9, 20, 21]. Presently, irradiation studies often use self-similar 

ion irradiation in lieu of neutron irradiation [20 - 25]. Like neutron irradiation, heavy ion 

irradiation results in displacement of atoms from their usual crystal lattice positions and 

hence creates point defects within the target material. Unlike neutron irradiation, heavy ion 

interaction does not change the internal energy state of the nuclei of the target atoms and 

hence the target sample does not become radioactive as a result of the ion irradiation. This 

allows safe examination after irradiation. The large size and high kinetic energy (in the 

MeV energy range) also results in heavy ion irradiation imparting irradiation damage at 

rates orders of magnitude higher than neutron irradiation would; for example, several hours 

of high flux irradiation of an Fe-based alloy with 8 MeV Fe4+ ions such as those used in 

this thesis research, will impart the same amount of crystal damage, about 30 displacements 
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per atom (dpa), as a structural in-core component would experience in a 30 year life time 

in a typical thermal neutron reactor core [26]. This illustrates the very significant practical 

benefits of using heavy ion irradiation to simulate neutron irradiation in the testing of 

nuclear materials. 

Despite the many similarities between the crystal damage created by heavy ion and fast 

neutron irradiation difference do exist between the two irradiation sources [23, 26]. Most 

significantly, the large size and charge of the ions results in very shallow depth of 

penetration into the target material compared to that of neutrons. This means that if ion-

irradiation is to be used to simulate neutron irradiation, micro-mechanical testing 

techniques must be used to test the shallow (typically less than 3 m depth) ion-affected 

zone [20, 22, 24, 25, 27].  

Several examples of nano-indentation hardness testing on high-energy, self-similar ion 

irradiated material have illustrated the capabilities of this type of testing for structural 

nuclear materials [9, 28, 29].  

Oak Ridge National Laboratories has studied irradiation hardening in this manner a number 

of times. During one such study, AISI 316LN was exposed to 3.5 MeV Fe ion damage and 

studied using a nano-indenter. The study showed ion irradiation hardens AISI 316LN, but 

also that as ion dose increased, the percent hardening converged to a saturation point 

(Figure 2.9). This data implies hardness and irradiation dose have a power law relationship 

[9]. 
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Figure 2.9 Percentage hardening of 316LN for various 3.5 MeV Fe irradiation doses 

at 200° C. The dose is given in peak displacement damage, which is the estimated 

sum of the induced damage, which most has mostly recombined. Hardness was 

recorded at 150 nm indentation depths. The shaded curve shows the trend and 

approximates scatter [9]. 

The nano-indentation hardness of Zr+ ion irradiated Zr-2.5%Nb (CANDU pressure tube 

material) was used to better understand the effects of irradiation-induced dislocation loops 

on the dislocation glide mechanism governing the operative plastic deformation process of 

CANDU pressure tubes at 250° to 310° C [28]. Figure 2.9 illustrates a key finding of this 

study; namely, the hardness of the pressure tube material increases with irradiation and the 

rate of increase is different along different directions of the tube. Transmission Electron 

Microscopy (TEM) indicated that the hardening was caused by nano-meter sized 

dislocation loops that resulted from the Zr+ irradiation, and this is similar to what occurs 

when Zr-2.5%Nb is exposed to either neutron irradiation or Kr2+ irradiation (Figure 2.8). 
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Figure 2.10 Change in indentation hardness, normalized with respect to the 

hardness at 0 dpa, versus Zr+ ion irradiation damage for Zr-2.5%Nb. The 

indentation tests were performed on the axial normal (AN), radial normal (RN), and 

transverse normal (TN) planes of the pressure tube. The rate of irradiation 

hardening is clearly dependent upon the plane of indentation [28]. 

The findings reported in [28] and shown in Figure 2.10 were pursued further by Oviasuyi 

and Klassen, who studied in more detail the effect of temperature and irradiation hardening 

on the mechanical anisotropy of Zr-2.5%Nb CANDU pressure tube material using self-

similar Zr ion irradiation. They employed spherical-indentation hardness testing, and 

uniaxial compression tests performed with micro-pillars made from the ion irradiated 

material [29]. The tests were performed with micro-pillars aligned along the axial, radial, 

and transverse directions of the pressure tube at temperatures between 25° and 300° C. The 

stress-strain curves obtained from this study confirmed that the ion irradiation induced 

hardening of the pressure tube material was directionally anisotropic with the percentage 

hardening in the transverse direction being less than that in the radial and the axial 

directions (Figure 2.11) [29]. 



12 

 

   

 

Figure 2.11 True stress versus true strain for ion irradiated (room temperature) 

tests, non-irradiated (room temperature) tests, and non-irradiated (high 

temperature) tests from uniaxial pillar compressions on an extruded Zr-2.5%Nb 

pressure tube in the a) transverse, b) radial, and c) the axial pressure tube directions 

[29]. 

 

2.2.2 Calculating ion irradiation dosage  

When using ion-irradiation to simulate neutron irradiation it is necessary to be able to 

calculate the number of ions needed, per unit area irradiated, to create a certain number of 

displacements per atom (dpa). The required ion dose (𝜙𝑖𝑜𝑛𝑠) is a function of three factors: 

the required number of dpa, the number of atoms being irradiated, and the number of atom 

displacements created by each ion. 

𝜙𝑖𝑜𝑛𝑠 =
𝑑𝑝𝑎 × # 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝐼𝑜𝑛
                                                         2.2 
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The extent that high energy incident ions deflect and displace the atoms of the target 

substrate is assessed by computation. The most common software used for this is the SRIM 

(Stopping and Range of Ions in Materials) software [9, 20, 21, 23, 27].1 SRIM is a collision 

approximation model that employs a Monte Carlo simulation to estimate probabilistic 

values for ion-atom interactions. It uses the Kinchin-Pease formula to estimate the number 

of atom knock-outs per incident ion [30].  

The Kinchin-Pease model describes the probability of atom displacement resulting from 

collision of a PKA, of known energy, with lattice atoms of known binding energy [31]. 

The formula is based upon an application of the condition of conservation of energy during 

inter-atomic collision events. The solution to the equations describing this model is 

obtained iteratively and is a function of the energy lost to the lattice structure during the 

collision, the PKA energy, and the inter-atomic binding energy [31].  

The SRIM software works by running thousands of ion-atom interaction simulations, each 

expressed in terms of the Kinchin-Pease model, and predicts the resulting ion path and 

atom-displacement events. From each simulated ion implantation, SRIM calculates the 

mean, and variance of the penetration depth and the number of ion-induced displacements 

(i.e. irradiation damage events) of the substrate atoms [30].  

SRIM estimates the net atomic displacement created by each ion including primary, 

secondary, and tertiary atom knock-on events [17, 19, 28, 30]. SRIM thus estimates the 

interaction depth of the ions within the substrate atoms [30]. This provides the average 

stopping range of the ions. We can use the information provided by SRIM simulations to 

determine 𝜙𝑖𝑜𝑛𝑠 by expanding Equation 2.2 as 

𝜙𝑖𝑜𝑛𝑠 =
𝑑𝑝𝑎 × 𝜌 × 𝑁𝐴 × 𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑅𝑎𝑛𝑔𝑒

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝐼𝑜𝑛 × 𝑚𝑎̅̅ ̅̅
                                          2.3 

                                                 

1 SRIM is freely available for download at http://www.srim.org/SRIM/SRIMLEGL.htm 
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where 𝜌 is the density of the substrate material, 𝑁𝐴 is Avogadro’s number, and 𝑚𝑎̅̅ ̅̅  is the 

average atomic mass of the substrate material, which can be calculated given the elemental 

composition of the material. 

 

Figure 2.12 Dislocations of 8.0 MeV Fe ions irradiating pure Fe. This shows the 

dislocations and cascade dislocations of 100 simulated ions. 

 

2.2.3 Effect of neutron/ion irradiation on material properties 

During particle (ion or neutron) irradiation, crystallographic damage arises and this reduces 

ductility and increases the hardness of the exposed material (Figures 2.9, 2.10) 

[9, 20, 21, 32]. The fundamental ion-atom displacement event is referred to as a “Frenkel 

pair” and accounts for the majority of the crystal damage occurring during ion or neutron 

irradiation. Frenkel pairs are the displacement of a lattice atom to an interstitial site 

resulting in the creation of both an interstitial atom and a vacancy (Figure 2.7d). Both the 

vacancy and the interstitial point defects are highly mobile especially when the temperature 

is elevated [32].  

When the interstitial and vacancy defects move there is a very high probability for 

recombination (i.e. the interstitial atom dropping into the vacancy site). In this case the 

point defect has been removed and the material “recovers” to its non-defected state. Similar 
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recombination can occur when point defects move to free surfaces or internal interfaces 

such as grain boundaries and interface boundaries.  

Dislocation loops are another result of point defect movement. Vacancies and interstitials 

are very mobile along close packed atomic planes (CPP). As either vacancies or interstitials 

gather together in a plane, it becomes energetically favourable to form discs whose edges 

essentially define a planar dislocation loop. Dislocation loops are very hard to move and, 

relative to point defects, and thus more resistant to thermal recovery (Figure 2.13). Figure 

2.8 is a collection of TEM images, showing the development of dislocation loops in a Zr 

foil from Kr2+ ion irradiation. 

 

 

Figure 2.13 Interstitial and vacancy dislocation loops. The anisotropic stress on 

adjacent atomic planes causes a warp in the local lattice structure, increasing the 

energy required for dislocation and defect glide through the material to occur.  
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Volumetric defects are a common concern in neutron irradiation studies. Volumetric 

defects often arise in nuclear materials due to several phenomena: 

1. irradiation-induced dissolution of second-phase precipitates 

2. irradiation-induced clustering of alloy/impurity elements 

3. generation of small H and He filled cavities within an alloy due to the radioactive 

decay of unstable isotopes generated by a fission process [10, 33 - 36]. 

 

2.2.4 Neutron and ion irradiation summary 

In summary, neutron and ion irradiation generally harden crystalline metals [15 - 18]. 

When high energy particles bombard a crystalline material the atoms are displaced and 

form vacancy and interstitial defects in the form of Frenkel pairs [19 - 21]. These point 

defects are quite mobile and either annihilate by recombination or cluster to form 

dislocation loops or other dislocation-type structures [19]. Compared to point defects, 

dislocation loops are difficult to move and are the primary contribution to the commonly 

observed increase in hardness of materials when they are exposed to neutron/ion 

irradiation. The recovery of irradiation damage is therefore a diffusion based problem 

therefore is highly dependent upon temperature. 

 

2.3 Thermally-activated recovery of irradiation damage 

As described in Section 2.2, irradiation hardening of nuclear materials occurs primarily by 

generation of simple point defects and dislocation loops within the material. These defects 

impede the motion of dislocations during plastic deformation and thus cause an increase in 

the material’s yield stress. Recovery is the removal of these defects through recombination 

by the diffusion mechanisms illustrated in Figure 2.14. 
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Figure 2.14 Four simple mechanisms by which atoms can move in a crystalline 

material a) the ring mechanism b) the vacancy mechanism c) the interstitial 

mechanism d) the interstitialcy mechanism. 

The motion of small defects during heating can be described by the statistical motion (i.e. 

the jump frequency) of individual atoms in a crystal. It is this jump frequency that describes 

the rate of recovery of the irradiation damage. It is the primary objective of this thesis to 

determine the rate of recovery of irradiation hardening of two candidate alloys proposed 

for use as fuel cladding and pressure tube liners in Canada’s Gen IV SCWR. The 

conventional model used to express the temperature dependence of the atomic jump 

frequency is described below. This model that will be applied in subsequent chapters of 

this thesis to express the rate of thermal recovery of irradiation induced hardening. 

 

Figure 2.15 Illustration of the energy, 𝒒, required for an atom to move towards an 

adjoining vacancy. If the thermal vibration energy ≥ 𝒒𝒎 an atom can move into the 

vacancy. 
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For an atom to move by one atomic position it requires more energy, 𝑞, than the activation 

energy, 𝑞𝑚, of the particular diffusion mechanism (Figure 2.15) [37]. For recovery to 

occur, a material's temperature is increased to raise the average kinetic energy of the atoms 

such that their total internal energy 

𝑞𝑇 =  𝑞𝑘𝑖𝑛 + 𝑞𝑜                                                     2.4 

approaches 𝑞𝑚 [37]. The average 〈𝑞〉 of the atoms in a solid is be described by Equation 

2.5, where 𝑘𝐵 is the Boltzmann constant (1.38 x 10-23 J/atoms·K), and 𝑇 is the absolute 

temperature [37]. 

〈𝑞〉 =  𝑘𝐵𝑇                                                            2.5 

At any instant, not all atoms will have an energy of 〈𝑞〉; some atoms will have more and 

some will have less energy. The probability, 𝑝, of an atom having an energy greater than a 

certain value (𝑞) is expressed by Equation 2.6 below [37]. 

𝑝 =  𝑒
−(

𝑞

𝑘𝐵𝑇
)
                                                         2.6 

Therefore, the probability that an atom has sufficient energy to move one atom space within 

a crystal is given as  

𝑝𝑚 =  𝑒
−(

𝑞𝑚
𝑘𝐵𝑇

)
                                                        2.7 

The actual process of atomic diffusion requires that the following two conditions be met:  

i. The atom must sufficient energy to move from its crystal location (i.e. 𝑞𝑇 ≥ 𝑞𝑚). 

ii. The atom must have a vacancy next to it into which it can move (Figure 2.15). 

Since a vacancy has a characteristic “formation” energy, 𝑞𝑣, an equation of the same 

“Maxwell-Boltzmann” form as Equation 2.6 will express the probability that a vacancy 

will be located in a specific lattice site in a crystalline material. The probability, 𝑝, that an 

atom will move into an adjoining vacancy is therefore the product of the probabilities 

corresponding to Conditions i and ii as 

𝑝 = 𝑝𝑣𝑝𝑚 =  𝑒
−(

𝑞𝑣+ 𝑞𝑚
𝑘𝐵𝑇

)
                                                 2.8 

The atom jump frequency is then expressed as 
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𝜐 =  𝜐𝑜𝑒
−

𝑞𝑣+𝑞𝑚
𝑘𝐵𝑇                                                     2.9 

where the constant 𝜐𝑜 is related to the characteristic frequency of atomic vibration (i.e. the 

Debye frequency) of the crystalline material [38]. This is an important concept related to 

the study of this thesis, since it describes the simplest mechanism by which irradiation-

induced crystal defects can be recovered at elevated temperature. While thermal recovery 

in general has been well studied and understood for common alloys, thermal recovery of 

irradiation-induced crystal damage has been studied very little and is practically unstudied 

for Fe- and Ni-bearing alloys at the high temperatures envisioned for the Gen IV SCWR. 

  

2.4 Measuring the rate of thermal recovery of mechanical 
properties 

2.4.1 Stress relaxation testing 

Many experiments have studied thermal recovery, and always find the rate of isothermal 

recovery of a crystalline material’s properties will decrease with time [39]. This can be 

seen by the isothermal recovery of single crystal zinc plastically deformed at 223 K (Figure 

2.16), which shows the change in hardness, ∆𝐻, fits an equation of the form  

∆𝐻 =  𝐻𝑜𝑒−𝛼𝑡                                                    2.10 

where 𝐻𝑜 is the initial hardness, 𝛼 is a material specific constant, and 𝑡 is the amount of 

recovery time. 

 

Figure 2.16 Recovery of the yield strength of single crystal zinc at 253 K and 283 K 

[39] 
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This also shows temperature can impact recovery, and suggests ∆𝐻 can actually be 

modelled as 

∆𝐻 =  𝐻𝑜𝑒−
𝛼𝑡

𝑇                                                 2.11 

where 𝑇 is the recovery temperature. A recovery rate dependant both temperature and 

recovery time has not yet been characterized for irradiation hardened metals, however this 

thesis will study a temperature and time dependant recovery rate for AISI 310 and Inconel 

800H.  

To study relaxation rates, the experiment needs to be capable of measuring a material 

property, ideally with a high precision and grain-to-grain resolution, but also to 

isothermally heat a sample for very precise amounts of time in an environment which will 

not contaminate the surface.  

 

2.4.2 Micro-mechanical indentation testing 

Micro-mechanical indentation hardness testing is a technique in which local mechanical 

properties are measured at nano-meter spatial resolution. Micro-indentation testing is 

capable of measuring grain-to-grain variations in hardness and also hardness of interfacial 

regions of polycrystalline materials. This technique is therefore ideal for the purpose of 

this thesis; i.e. the measurement of the effect of ion irradiation and thermal recovery on the 

mechanical properties of a region of metal that extends only several micrometers below the 

free surface of the test sample. These tests track force and indentation depth are recorded. 

A micro-indentation hardness test first involves pressing a sharp-tipped, pyramidal shaped 

indenter into the test material a certain depth. The test ends by reducing the indentation 

force allowing the sample to elastically push the indenter; this distance is the elastic 

indentation depth, ℎ𝑒. These tests usually include partial unloadings during the indentation 

cycle. Through testing of the force-depth data at an unloading, the plastic depth, ℎ𝑝, has 

been approximated as 

ℎ𝑝 =  ℎ𝑡 −  
ℎ𝑒

2
                                                      2.12 
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where ℎ𝑒 is the elastic depth and ℎ𝑡 is loaded depth (Figure 2.17) [40].  

  

Figure 2.17 Indentation force, P, versus indentation depth, h, for an elastic-plastic 

specimen [40] 

The area, 𝐴𝑝, of the indentation, projected normal to the indentation direction, can be 

calculated from ℎ𝑝, which for a perfect three-sided pyramidal “Berkovich” indenter, is 

given as 

𝐴𝑝 =  24.5ℎ𝑝
2
                                                  2.13 

The area function of an “actual” indenter will inevitably be affected by a certain amount of 

indenter tip rounding causing 𝐴𝑝 to typically be expressed by a higher order function of 

ℎ𝑝. In this case 𝐴𝑝(ℎ𝑝) is determined experimentally by performing indentations on a 

standard of well-known hardness, such as quartz or sapphire. The area function in 

conjunction with the force allows the indentation hardness, 𝐻, to be calculated as 

𝐻 =  
𝑃

𝐴𝑝(ℎ𝑝)
 ≅  

𝑃

24.5ℎ𝑝
2                                             2.14 

Considerable study has been made upon the relationship between 𝐻 and the yield stress, 

𝜎𝑦, of the indented material. Tabor reported that the hardness of the majority of common 
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metals was approximately 3𝜎𝑦 and subsequent more detailed studies of specific alloy 

systems have shown that this relationship holds surprisingly well for the vast majority of 

ductile metals [41, 42].  

During micro-indentation hardness studies, it is important to realize that the volume of the 

sample that is plastically deforming, and hence contributing to the calculated hardness 

value, extends significantly deeper than the actual indentation. This makes it critical to be 

able to determine the actual depth of the plastic zone beneath the indenter. K. L. Johnson 

analysed the size of the plastic zone beneath an axisymmetric conical indentation made in 

an isotropic non-hardening material and determined that the plastic zone radius, 𝑐, was 

related to the indentation width, 𝑎, as  

𝑐

𝑎
= [

𝐸𝑅 tan 𝛼

6𝜎𝑦(1− 𝜈)
+

2

3
(

1− 2𝜈

1− 𝜈
)]

1/3

                                             2.15 

where 𝜈 is the Poisson’s ratio, 𝜎𝑦 is the yield stress, 𝐸𝑅 is the reduced elastic modulus, and 

𝛼 is the apex angle of the indenter (Figure 2.18) [43]. 𝐸𝑅 is the combination of the elastic 

moduli of the indenter head and the sample and is determined by 

1

𝐸𝑅
=

(1− 𝜈2)

𝐸
 +  

(1− 𝜈′2
)

𝐸′                                                    2.16 

where a primed term applies to the indenter tip as opposed to the test sample. [42] 

 

Figure 2.18 Geometry of an axisymmetric conical indentation used by Johnson to 

calculate the relationship between the indentation plastic zone radius “c” and the 

indentation width “a” (Equation 2.15) [43]. 
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In the case of a Berkovich indenter, Equation 2.13 can be rearranged to express 𝑐 as 

𝑐 =
ℎ

tan (𝛽)
[

𝐸𝑅 tan 𝛼

6𝜎𝑦(1− 𝜈)
+

2

3
(

1− 2𝜈

1− 𝜈
)]

1/3

                                2.17 

where ℎ represents the indentation depth, 𝛽 represents the angle between the  indentation 

direction and the sample surface (𝛽 =  90° −  𝛼), which for a Berkovich indenter is 

approximately 32°. 

Substituting values representative of our test material and indenter into Equation 2.15, we 

found  

𝑐 ≈ 11.5ℎ                                                     2.18 

using 𝛽 =  20°, 𝜈 =  0.36, 𝐸𝑅  =  184 GPa, and  𝜎𝑦 irrad  ≅  
𝐻irrad

3
  ≅ 1.33 GPa [44], 

where 𝐻irrad  ≅ 4.0 𝐺𝑃𝑎. This means the radius 𝑐 of the plastic zone is about 1.15, 2.31, 

and 4.61 µm for indentation depths of 100, 200, and 400 nm respectively. Equation 2.18 is 

very close to the 𝑐 =  12ℎ calculated by elastic-plastic finite element analyses, for 

pyramidal indentations of the same geometry as that used in this study [45, 46].  

 

2.4.3 Depth dependence of micro-indentation hardness 

Indentation hardness is well known to be strongly affected by indentation depth [47 - 49]. 

When the indentation depth is very shallow, typically less than several micrometers, the 

measured hardness of most crystalline materials is significantly higher (Figure 2.19)  

[47 - 49].  
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Figure 2.19 Evidence of depth dependence of the hardness of single crystal and cold 

worked, polycrystalline Cu using micro-indentation with a diamond Berkovich 

indenter [49]. 

This observation has been interpreted in terms of the fact that small indentations require a 

larger dislocation density around them to accommodate the required shape changes 

associated with the indentation process. Stelmashenko et al. proposed that during small 

indentations extra “geometrically necessary” dislocations must be created alongside the 

“statistically stored” dislocations that are necessary for all indentations regardless of depth 

[50]. This increased dislocation density translates to an increased yield stress and, hence, 

an increased hardness.  

Further analysis of this finding by Nix and Gao demonstrated that, for common ductile 

metals, a linear relationship exists between the square of the measured hardness, 𝐻2, and 

the reciprocal of  indentation depth, 1 ℎ⁄ , (Figure 2.20)  [48].  
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Figure 2.20 McElhaney’s data from Figure 2.19 replotted by Nix and Gao [48]. 

This linearity is expressed as 

𝐻

𝐻𝑜
=  √1 +

ℎ∗

ℎ
                                                     2.19 

where 𝐻𝑜 is the bulk hardness and ℎ∗ is a length indicative of the depth dependence of 𝐻 

[48]. The 𝐻𝑜 and ℎ∗ can be found through Stelmashenko’s analysis as  

𝐻𝑜 =  3√3𝛼𝜇𝑏√𝜌𝑠                                                2.20 
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ℎ∗ =
81

2
𝑏𝛼2 tan 𝜃 

2 (
𝜇

𝐻𝑜
)

2

                                            2.21 

where 𝛼 is a constant set to 0.5, 𝜇 is the shear modulus, 𝑏 is the magnitude of the Burgers 

vector, 𝜌𝑠 is the statistically stored dislocation density, and 𝜃 is the contact angle between 

the indenter and the material being tested [48]. Thus, 𝐻𝑜 and ℎ∗ are dependent entirely on 

the properties of the test material and the indenter, but not the indentation depth.  

It is crucial that indentation depth be acknowledged during data analysis. In this study we 

will use the theory described above to assess the indentation depth dependence of the 

hardness of the AISI 310 and the Inconel 800H alloys. 

 

2.5 Summary 

In this chapter, relevant background information on the: i) general layout and operation of 

the proposed Canadian Gen. IV SCWR core, ii) characteristics of the neutron/ion induced 

crystallographic damage, iii) mechanisms by which simple crystal defects, such as point 

defects (Frenkel pairs) and small dislocation loops can be recovered by atom diffusion, and 

iv) micro-indentation hardness test technique for measuring local mechanical properties of 

materials was provided.  

Noteworthy points raised in this chapter which have relate to the data presented in the 

remainder of this thesis are: 

 The fuel cladding and pressure tube liner of the proposed Canadian Gen. IV SCWR 

will be exposed to the highest temperatures of the reactor core, up to about 800°C, 

and obviously must not fail at these temperatures. 

 High energy self-similar heavy ion irradiation induces irradiation damage to the 

target material that is very similar to the damage induced by fast neutron irradiation 

while in a nuclear reactor core.  

 The advantages of using ion irradiation include: i) very fast damage rates, and  

ii) irradiated samples are not radioactive 
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 The major disadvantage of ion irradiation is that the resulting crystallographic 

damage exists in a very small region that is only several micrometers in thickness 

beneath the irradiated surface. 

 The ion irradiation dosage necessary to impart a specific amount of irradiation 

damage can be calculated with the use of Equation 2.3 and SRIM ion-atom 

interaction software.  

 Defects cause the observed irradiation hardening by acting as uniformly distributed 

simple obstacles that impede plastic deformation by dislocation glide. 

 Since the defect structure resulting from ion irradiation is very simple, its rate of 

recovery at elevated temperature can be expressed by a very simple model based 

upon the statistical probability that an atom will jump to a neighboring lattice site 

(Equation 2.8). 

Micro-indentation hardness testing is a suitable method to test the effect of ion irradiation 

and recovery temperature/time on the hardness of small, micrometer size, regions of a 

sample. This technique will therefore be used for this thesis research. 
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Chapter 3  

3 Experimental Procedure 

3.1 Sample preparation  

The study undertaken in this thesis was performed on two alloys; AISI 310 and Inconel 

800H (Table 3.1). These alloys were identified by the Canadian Gen IV review committee 

as leading candidate alloys for the fuel cladding and the pressure tube liner components. 

Table 3.1: Chemical composition, in weight percentage, of the Inconel 800H and 

AISI 310 alloys [11, 12] 

 C Al Si P S Ti Cr Mn Fe Ni Cu Mo 

AISI 310 0.08 - 0.75 0.05 0.03 - 25.00 2.00 50.34 20.50 0.50 0.75 

800H 0.08 1.40 1.00 0.05 0.02 1.40 21.00 1.50 39.80 33.00 0.75 - 

The AISI 310 alloy is an austenitic stainless steel consisting of equiaxed, FCC grains 

typically from 10 microns to 100 microns in diameter. The alloy contains 25 weight percent 

chromium to maintain a passive corrosion resistant chromium oxide surface layer. This 

alloy has a maximum service temperature of 1090° C and is frequently used for flare tips, 

radiant tubes, burners and combustion chambers, food processing equipment [12]. 

The Inconel 800H alloy is a ferrous based super alloy that consists of equiaxed, FCC grains 

typically from 50 microns to 1400 microns in diameter. The higher nickel content in this 

alloy relative to the AISI 310 alloy provides superior corrosion and creep resistance at 

elevated temperature by stabilizing the austenitic phase over high service temperatures. 

This alloy has a maximum service temperature of 790° C and is frequently used for heat 

exchangers, pressure vessels, and dampers [11]. 

The AISI 310 and Inconel 800H materials were acquired in the form of ½” thick bar stock 

from Rolled Alloys Inc. (rolledalloys.ca). Small samples of approximately 13 mm × 13 

mm × 1 mm were cut from the bars using wire electric discharge machining.  
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The small samples were then glued, using Loctite 454 adhesive, to metal blocks to facilitate 

handling during surface grinding/polishing. The mounted samples were ground smooth by 

hand using wet silica carbide abrasive paper. Grinding was started with 100 grit paper and 

proceeded with successively finer grits when surface roughness was minimized. The finest 

grinding was performed with 4000 grit paper.  

The ground samples were then mechanically polished with a wool felt cloth in an aqueous 

suspension of alumina abrasive. Successive polishing steps started with 1 μm alumina 

powder and ended with 50 nm alumina powder. Between each polish, the samples were 

thoroughly cleaned with distilled water.  

Initial testing revealed that this type of mechanical polishing, involving successively finer 

polishing steps, did not remove all the plastically deformed material, caused by mechanical 

grinding, beneath the polished surface of the sample. This residual plastic deformation 

ultimately resulted in significant scatter in the measured micro-indentation hardness 

obtained when the tests were performed at indentation depths less than about 2 μm. This 

variability was mitigated significantly through the following procedure.  

First, the polished samples were cleaned and carefully placed in a metal annealing 

envelope, which was then filled with an inert gas and sealed. The sealed envelope was 

heated at 1000° C for 15 minutes to anneal out any residual cold work resulting from the 

previous grinding/polishing and then air cooled. The samples were then removed from the 

envelope and lightly polished, with an aqueous suspension of 50 nm alumina, to remove 

any oxidation resulting from the annealing step. Subsequent micro-indentation hardness 

testing displayed significantly less scatter in the indentation hardness. 

The polished Inconel 800H and the AISI 310 samples were then chemically etched to 

identify the grain size and shape. Both alloys were etched by immersion in a 25% HCl, 

25% HNO3, and 50% Glycerol solution. Optimal etching immersion time for the AISI 310 

alloy was 145 seconds while the Inconel 800H alloy was 60 seconds. Once etched, the 

samples were immediately rinsed with distilled water and dried using compressed air. 

Figures 3.1 and 3.2 show the etched microstructure of each alloy.  
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Figure 3.1 Microstructure of AISI 310 observed with an optical microscope. 

 

Figure 3.2 Microstructure of Inconel 800H observed with an optical microscope.

Both alloys are primarily single FCC phase and contain considerable twining features. AISI 

310 alloy has large grains which are typically between 10 and 100 m in diameter, while 

the grain size of Inconel 800H is between 100 m and 2 mm. 
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3.2 Ion Irradiation 

High energy iron ion irradiation was used to simulate neutron irradiation as described in 

Section 2.2.1. Polished, but non-etched, samples of AISI 310 and Inconel 800H were 

exposed to 8.0 MeV Fe4+ Ions at the Tandetron Accelerator Facility at the University of 

Western Ontario.  

This ion accelerator operates by using cesium ions to sputter an iron target; creating low 

energy Fe- ions [47]. The Fe- ions are accelerated through a 1.6 MV magnetic field into a 

low pressure (approximately 10-3 to 10-4 Torr) nitrogen gas chamber, known as a stripper 

canal [48]. The nitrogen strips each Fe- ion of 5 electrons creating a beam of Fe4+ ions. A 

1.6 MV magnetic field then accelerates the beam of Fe4+ ions [48]. Therefore, the Fe4+ ions 

leaving the accelerator have a kinetic energy of  

𝐸𝐹𝑒4+ =
1.6 𝑀𝑒𝑉

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
×

5 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠

𝑖𝑜𝑛
= 8.0 𝑀𝑒𝑉/𝑖𝑜𝑛                         3.22 

The ion beam is then focused, with an electromagnetic lens, to a diameter of approximately 

2 mm and rastered over an aperture. The beam that passes the aperture then implants Fe4+ 

ions onto samples that are attached to an X-Y translation stage within the implantation 

chamber (Figure 3.3). 

 

Figure 3.3 Schematic illustration of the Tandetron ion accelerator located at the 

University of Western Ontario [49].  

8.0 MeV Fe4+ 
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The translational stage was used to move the sample with respect to the ion beam such that 

various regions of the sample were exposed to different, but well controlled, levels of Fe4+ 

ion dosage (Table 3.2). For each level of ion dosage, the resulting irradiation damage (dpa) 

was calculated using Equation 2.3.  

Table 3.2: Test matrix for this study. The circles indicate tests performed on AISI 

310 samples while the squares indicate tests performed on Inconel 800H samples. 

 

 

    

Figure 3.4 Schematic illustration of typical regions of ion exposure for samples used 

in this experiment.  
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3.3 Micro-indentation 

The effect of ion irradiation and thermal annealing on the mechanical properties of the AISI 

310 and the Inconel 800H alloys was assessed using micro-indentation hardness tests. The 

tests were performed with a NanoTest indentation machine (Micro Materials Ltd, 

Wrexham UK) equipped with a high-precision low-load (0.1 to 500 mN) indentation 

actuator and a diamond-tip Berkovich indenter (Figure 3.5). The indenter is held on a 

pendulum, which rotates freely about a pivot. The pendulum movement is controlled by an 

electromagnetic actuator consisting of a permanent magnet and a copper coil (solenoid). 

The indenter displacement is measured with a capacitance displacement gauge mounted 

behind the indenter. The nano-indenter records force with a precision of ±0.4 mN and depth 

with a precision of ±0.4 nm [50].  

 

Figure 3.5 Schematic illustration of the NanoTest indentation hardness testing 

platform that was used in this study. 

In this study, nine to eighteen indentation hardness tests were performed under each test 

condition listed in Table 3.2. Indentation tests were loaded using proportional loading to 

invoke a constant effective average indentation strain rate, 𝜀̇, of 0.05/s [51]. This approach 

is based upon the well-established equation derived by Haghshenas [51] relating 

indentation load 𝑃 and loading rate  
𝑑𝑃

𝑑𝑡
 to 𝜀̇: 

𝑑𝑃

𝑑𝑡
∙

1

𝑃
= 𝜀̇                                                           3.2 
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Each indentation was performed to a maximum depth of 1.1 m. Periodic partial 

unloadings were performed every 100 nm indentation depth, starting at 200 nm. The 

indentation hardness, 𝐻, corresponding to each unloading point was calculated using 

Equations 2.10 – 2.12 and a polynomial indentation contact area function 𝐴(ℎ𝑝) (Figure 

3.6).  

 

 

Figure 3.6 Indentation force versus depth and corresponding indentation hardness, 

𝑯 =  𝑷/𝑨, versus depth curves from a typical indentation test performed in this 

study. In this plot 𝑯 is calculated from the total indentation depth. The partial 

unloading performed at indentation depth increments of 100 nm are shown. The 

slope of these unloadings are used to determine the plastic indentation depth 

𝒉𝒑 from which the actual hardness is calculated using Equations 2.10 - 2.12. 
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𝐴(ℎ𝑝) was determined for sub-micron indentation depths from a series of calibration 

indentations, with the same indenter, on a quartz test standard.2 Each indentation was 

spaced at least 100 m apart to prevent overlap of the indentation affected regions. 

Figure 3.7 shows a typical array of indentations made in one of the test samples. 

 

Figure 3.7 Optical image of fourteen indentations from a 7 × 2 indentation array. 

 

                                                 

2 𝐴(ℎ𝑝) = −1.980 × 10−9ℎ𝑝
5

−  2.017 × 10−6ℎ𝑝ℎ4 + 0.00086ℎ𝑝
3 +  23.844ℎ𝑝

2 + 294.703ℎ𝑝 +  42715.743 where the 

indentation depth, ℎ𝑝, is in units of nm and less and indentation area, 𝐴(ℎ𝑝) is in units of nm2. 
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3.4 Thermal annealing 

The rate at which the indentation hardness of the ion-irradiated samples decreased with 

heating was studied by placing the irradiated samples in a movable Vycor tube within an 

electrical resistance furnace. A positive pressure inert argon atmosphere was maintained in 

the tube. The furnace temperature was maintained at the test temperature (400, 500, or  

600° C) with a precision of +/- 2° C. When the furnace temperature was established, the 

Vycor tube was moved such that the test samples were placed in the central hot zone of the 

furnace for the times specified in Table 3.2 (i.e. 1, 10, 100 minutes, etc.). The Vycor tube 

was then moved out of the furnace and the samples were allowed to cool to below 100° C 

while maintaining a low oxygen atmosphere. The annealed samples were then tested by 

indentation as described in Section 3.3. 



37 

 

Chapter 4  

4 Experimental Results 

4.1 Indentation hardness of the ion irradiated samples 

Between nine and eighteen indentation tests were performed at each test condition listed in 

Table 3.2. A total of 3147 indentation tests were performed in this study. Each indentation 

test consisted of partial unloadings, usually 10, and from each one an indentation hardness 

value was calculated using the method described in Sections 2.4 and 3.3. Each indentation 

test therefore resulted in multiple values of 𝐻 determined at different indentation depths. 

 
Figure 4.1 Indentation hardness measured over a range of indentation depth for 

non-irradiated AISI 310. 
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Figure 4.2 Indentation hardness measured over a range of indentation depth for 

non-irradiated Inconel 800H. 

 

Figures 4.1 and 4.2 show the average H versus h for the non-irradiated AISI 310 and 

Inconel 800H material. The error bars shown on these plots indicate the indentation-to-

indentation variation in the measured hardness for a given indentation depth. Both graphs 

indicate a clear indentation depth dependence of the measured hardness with the hardness 

being considerably larger at the small indentation depths. The depth dependence of H is a 

common observation for ductile metals and has been extensively studied and is attributed 

to the fact that the mechanisms of dislocation nucleation and glide become quite different 

in plastic zones around small indentations compared to those around large indentations. 

When the plastic zone is large, corresponding to that which is around a pyramidal 

indentation of depth larger than about 5 m, there are sufficient available close-packed 
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dislocation slip systems to accommodate the necessary shape changes imposed by the 

indentation process; thus, the hardness, and the corresponding yield stress, is low and is 

constant (insensitive to indentation depth for h ≥ 5 m). When the indentation plastic zone 

is small, typical of indentations of depth less than about 5 m, the number of active close-

packed slip systems is much reduced and may be unable to accommodate the required 

shape change. In this case dislocation nucleation and motion must occur on other, non-

easy, slip systems and this requires higher stress and thus a higher hardness is measured 

[52].  

 

4.2 Indentation hardness of the annealed samples  

Figures 4.3 and 4.4 show the average H versus h for the ion-irradiated (non-heated) AISI 

310 and Inconel 800H material. Once again, the error bars indicate the indentation-to-

indentation variation in the measured hardness for a given indentation depth. As with the 

non-irradiated materials, the ion irradiated samples show hardness values that are clearly 

indentation depth dependent. A comparison of Figures 4.3 to 4.4 indicate that, for any 

indentation depth, the hardness increases with increasing ion irradiation damage (dpa). This 

clearly indicates the effect of ion-induced irradiation damage on the hardness of these 

alloys in the absence of thermal recovery. Further quantification of this irradiation 

hardening is performed in Chapter 5. 
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Figure 4.3 Indentation hardness measured over a range of indentation depth for 

Fe4+ irradiated AISI 310 samples before thermal recovery. 
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Figure 4.4 Indentation hardness measured over a range of indentation depth for 

Fe4+ irradiated Inconel 800H before thermal recovery 
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Figure 4.5 Indentation hardness measured over a range of indentation depth for 

samples that were annealed for various times and temperatures for: a) non-

irradiated AISI 310; b) 0.1 dpa irradiated AISI 310; c) 1 dpa irradiated AISI 310. 
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Figure 4.6 Indentation hardness measured over a range of indentation depth for 

samples that were annealed for various times and temperatures for:  

a) non-irradiated Inconel 800H; b) 0.1 dpa irradiated Inconel 800H; c) 1 dpa 

irradiated Inconel 800H. 
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Figures 4.5 and 4.6 show the average hardness versus indentation depth for the ion-

irradiated AISI 310 and Inconel 800H samples that were annealed at 400° to 600° C for 

various periods of time. The figures indicate that the average hardness decreases with 

increasing indentation depth. The AISI 310 alloy recovers all irradiation hardening almost 

immediately upon annealing at 400° C. Annealing at 500° and 600° C, however, results in 

an apparent re-hardening of this alloy. Similarly, the Inconel 800H alloy softens during the 

first minute recovery at all annealing temperatures but quickly re-hardens when annealed 

at 500° and 600° C.  

This suggests that the ion-induced point defects and small dislocation loops that cause the 

observed ion hardening are very rapidly removed when exposed to temperatures of 400° to 

500° C. With extended exposure to temperatures above 500° C a hard surface oxide layer 

forms on both alloys resulting in an apparent increase in hardness. The rate that this oxide 

forms is alloy dependent with the Inconel 800H displaying more rapid oxide formation 

compared to the AISI 310 alloy. This observation is described below. 

 

4.3 Oxidation during annealing 

A potential issue with the experimental design was the formation of oxides on the surface 

of samples during the annealing stages of this study. Argon gas was passed through the 

annealing tube furnace, and then through a bubbler, for several hours prior to heating to 

remove any residual oxygen. 

The 400° C samples that were heated for the longest duration, 1000 minutes, displayed 

visible surface discolouration, most notably on the Inconel 800H (Figure 4.7a). An 

interesting feature that was observed was that the intensity of the discolouration, indicative 

of increasing oxide thickness, was significantly lower in the regions of the samples that 

were exposed to ion irradiation: the higher the ion exposure the less surface oxidation 

occurred (Figure 4.7).  
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a)  

 
b)  

 
c)  

 

Figure 4.7 Ion irradiated test samples exposed to 400° C for 1000 minutes. a) Optical 

low magnification images of AISI 310 (left) and Inconel 800H (right) b) High 

magnification, optical image of Inconel 800H sample c) High magnification, optical 

image of AISI 310 sample. These images show clearly that the extent of oxidation is 

reduced in regions exposed to high levels of ion irradiation. 
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A realistic hypothesis3 for the observation of thinner oxide formation in the ion-irradiated 

regions of the samples, is that the ion-induced crystal defects facilitate the diffusion of Cr 

to the free surface during high temperature exposure and this promotes a continuous 

chromium oxide layer passive layer to be maintained. This suggests alloys with a higher 

concentration of Cr will diffuse more Cr to the passivation layer, and thus suffer less 

surface oxidation. This logic is supported by the level of discolouration of AISI 310 (25% 

Cr) with respect to that of Inconel 800H (21% Cr) (Figure 4.7a). Further analyses of the 

chemical composition of the discoloured regions of the annealed ion-irradiated samples 

would be required to confirm this hypothesis. 

Figure 4.8 shows typical hardness versus thermal recovery time data, at temperatures from 

400 to 600° C, for our ion irradiated samples. These samples typically display an initial 

softening followed by a gradual hardening occurs with increased time at elevated 

temperature and the rate of increase is temperature dependent. This trend can be explained 

in terms of the simultaneous operation of two mechanisms: i) thermal recovery of 

irradiation-induced hardening and ii) increased hardening due to time-dependent growth of 

surface oxide.  Based upon this hypothesis the events resulting in the hardness – time 

profiles displayed in Fig. 4.8 can be described as follows: 

1) Before heating: The samples have increased hardness, relative to their non-irradiated 

counterpart, due to ion irradiation hardening and, to a small extent, residual work-

hardening resulting from small amounts of surface polishing during the preparation 

stage. 

 

2) After about 1 minute heating the samples have become much softer due to thermal 

recovery of much of the irradiation/polishing induced crystal damage. This suggests 

that much of the crystal damage is highly mobile and thus quickly recovered at elevated 

temperature. 

 

                                                 

3 This hypothesis was suggested to us by Prof. J. Kish of McMaster University (April 2014). 
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3) After heating for longer duration samples begin to harden and display a visible surface 

oxide layer.  The rate of hardening increases with increased heating temperature and 

with decreased Cr content in the test material (i.e. the Inconel 800H samples hardened 

more rapidly than the AISI 310 samples).  

Our indentation data display the effect of these concurrent softening/hardening 

mechanisms. We are primarily interested in understanding the softening mechanism which 

occurs in the early stages of the thermal recovery process. In Chapter 5, we will develop a 

model to describe the thermal softening mechanism by analysing only the data from the 

early stages of the thermal recovery tests.  

 

Figure 4.8: Relative hardness for 1 dpa irradiated AISI 310 during 10 minutes of 

recovery. This shows softening occurred for the first minute from 400° to 600° C. 

After 1 minute, the samples recovering at 500° and 600° C harden. This 

phenomenon occurs for all irradiation levels, including non-irradiated samples, in 

both AISI 310 and Inconel 800H most strongly at 500° C. The 500° C was recovered 

with shorter purges, which correlates with the more intense hardening. 
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Chapter 5  

5 Discussion 

The data presented in Chapter 4 indicate clearly that the indentation hardness of the AISI 

310 and the Inconel 800H alloys is dependent upon the parameters of indentation depth 

(h), ion irradiation damage (dpa), annealing temperature (T), and annealing time (t). In this 

chapter we will assess the dependence upon each parameter separately. The end result of 

this analysis will be a series of equations that can be used to predict the hardness, and hence 

the yield stress (yield ≈ H/3 [44]) of these alloys when they are subjected to in-core 

irradiation and temperature conditions envisioned for the Canadian Gen IV SCWR 

concept. A discussion of the limitations of our analysis will also be presented. 

 

5.1 Effect of indentation depth on hardness 

All the indentation hardness data from this study display clear indentation depth 

dependence (Figs. 4.1 - 4.6). What is presented here is an assessment of the indentation 

depth dependence of the hardness of the non-irradiated AISI 310 and Inconel 800H 

material. We limited our analysis to the non-irradiated material due to the highly depth 

dependent (Fig. 2.12) effect of ion irradiation on the local microstructure and thus the 

highly depth dependent hardness.  

The effect indentation depth has on hardness is comparable to that of irradiation damage 

on these alloys. To segregate these effects would involve considerable uncertainty, which 

would mask the effect of both irradiation damage and the indentation depth dependence on 

hardness. Rather, we will examine the effect of ion irradiation and annealing on the 

hardness of these alloys at one indentation depth (hp = 200nm) in the subsequent Sections 

5.2 and 5.3.  

The indentation depth dependence of hardness of the non-irradiated AISI 310 and Inconel 

800H material will be assessed by applying the model proposed by Nix and Gao [48] and 
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described in Section 2.4.3. The crux of the theory is the indentation hardness 𝐻 should be 

linearly related to √1 ℎ𝑝⁄  according to 

𝐻

𝐻𝑜
= √1 +

ℎ∗

ℎ𝑝
                                                 5.1 

where Ho is the indentation hardness in the limit of infinite indentation depth and is 

therefore an intrinsic property of the indented material [48]. The characteristic length h* is 

a property of the indenter shape and the indented material. Here we will analyse our data 

to determine first if they display a 𝐻-ℎ𝑝 dependence that is predicted by Equation 5.1 and, 

if so, how the parameters, 𝐻𝑜 and ℎ∗, differ between the AISI 310 and the Inconel 800H 

alloys and how they compare to published values for other alloys  

 

Figure 5.1 Depth-hardness data from non-irradiated test samples plotted as (
𝑯

𝑯𝒐
)

𝟐

 

over 
𝟏

𝒉𝒑
 to examine the indentation depth dependence of hardness on the test 

materials. 
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Table 5.1: Bulk hardness and characteristic length for various materials, including 

this experiments test materials, AISI 310 and Inconel 800H [48, 53, 54] 

Material Ho (GPa) h* (um) Reference 

(110) single crystal Ag 0.361 0.432 55 

(100) single crystal Ag 0.34 0.757 55 

(111) single crystal Cu (annealed) 0.581 1.60 48 

Polycrystalline Cu (cold worked) 0.834 0.464 48 

AISI 310 1.7 ± 0.3 1.0 ± 0.3  

Inconel 800H 1.5 ± 0.3 0.8 ± 0.5  

Deposited Ni film n/a 2.451 56 

This shows that the sample follow the trends predicted in the literature and have reasonable 

values compared to other published values for other metals. 

 

5.2 Effect of ion irradiation on hardness 

SRIM simulations indicate that the 8.0 MeV Fe4+ ions used in this study will penetrate, and 

create irradiation damage in, the sample to a depth of approximately 2.0 µm (Figure 2.12, 

Section 2.2.2). We are therefore particularly interested in the hardness measured from 

indentation depths which have a plastic deformation zone extending no more than 

approximately 2.0 µm from the surface of the sample (Figure 5.1).  

 

Figure 5.2 Schematic illustration of a hemispherical plastic deformation zone, of 

radius c, around an indentation of width a. 
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Applying the analysis put forth in Section 2.4.2, in which Equation 2.17, which is 

𝑐 =
ℎ

tan (𝛽)
[

𝐸𝑅 tan 𝛼

6𝜎𝑦(1− 𝜈)
+

2

3
(

1− 2𝜈

1− 𝜈
)]

1/3

                                                5.2 

using the values 𝛽 =  20°, 𝜈 =  0.36, 𝐸𝑅  =  184 GPa, and  𝜎𝑦 irrad  ≅  1.33 GPa, we find 

that the radius c of the plastic zone is approximately 1.15, 2.31, and 4.61 µm for indentation 

depths h of 100, 200, and 400 nm respectively. This suggested the relationship, c = 11.5h, 

which is close to c = 12h, which was calculated using elastic-plastic finite element analyses 

for pyramidal indentations of the same geometry as that used in this study [44 - 46].  

Since the simulated depth of the ion-irradiation hardening in our study is about 2 m 

(Figure 2.12, Section 2.2.2), we will assess the effect of ion-irradiation on the hardness by 

considering the hardness data from indentation depths of 200 nm. 

The average non-irradiated indentation hardness, at 200 nm depth, was 3.9 +/- 1.8 GPa and 

6.8 +/- 1.7 GPa for the AISI 310 and the Inconel 800H alloys respectively. The scatter in 

the data indicates the effect of grain-to-grain variability and surface roughness of the test 

materials. Figure 5.3 shows the change in hardness (∆𝐻), at h = 200 nm, versus the extent 

of ion irradiation damage (dpa). The parameter ∆𝐻 is calculated as the increase in the 

average hardness relative to the average hardness of non-irradiated samples. 

∆𝐻ℎ=200𝑛𝑚 =
�̅�𝑖𝑟𝑟𝑎𝑑.−�̅�𝑛𝑜𝑛𝑖𝑟𝑟𝑎𝑑.

�̅�𝑛𝑜𝑛𝑖𝑟𝑟𝑎𝑑.
                                                5.3 

For both alloys tested the indentation hardness at ℎ𝑝 = 200 nm increases with irradiation 

very similarly to the irradiation of AISI 316LN by Fe ions as shown in Figure 5.3.  
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Figure 5.3 Change in indentation hardness (H) at 200 nm indentation depth, 

versus irradiation dose (displacements per atom or dpa) for the AISI 310 and 

Inconel 800H samples of this study. Data from Fe ion irradiated AISI 316LN 

reported by Hunn et al.  [9] are also included in this plot. Trend lines for Equations 

5.5a - 5.5c have been plotted alongside the data. 

The Fe4+ irradiation induces crystal defects, such as point defects and small dislocation 

loops, which are similar to the defects created by plastic deformation (i.e. cold working). 

The increase in hardness, ∆𝐻, resulting from a measure of cold work, 𝐶𝑊, is often 

expressed by an equation of the form  

∆𝐻 = 𝑎 × 𝐶𝑊𝑏                                                              5.4 
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where 𝑎 and 𝑏 are experimentally derived coefficients. By taking the appropriate data and 

finding an equivalent curve of best fit for irradiation hardening, we can model ∆𝐻 for AISI 

310 and Inconel 800 as Equations 5.5a and 5.5b respectively. In these equations, ∅ is the 

fluence in units of dpa and 𝐻𝐴 is the annealed hardness. 

∆𝐻∅,   𝐴𝐼𝑆𝐼 310 = 0.27𝐻𝐴∅0.16    (𝑅2 = 0.87)                              5.5a 

∆𝐻∅,   𝐼𝑛𝑐 800𝐻 = 0.44𝐻𝐴∅0.12    (𝑅2 = 0.97)                              5.5b 

These two hardening trends fit the experimental data closely. They also show that typically 

Inconel 800H irradiation hardens much faster than AISI 310.  

A similar analysis performed on the 150 nm indentation depth data provided by Hunn et 

al. on AISI 316LN (Figure 5.3) found the data could be modelled reasonably to 

∆𝐻∅,   𝐴𝐼𝑆𝐼 316𝐿𝑁 = 0.32𝐻𝐴∅0.13    (𝑅2 = 0.86)                            5.5c 

which closely resembles the coefficient and exponential values in Equations 5.5a and 5.5b  

(Table 2) [9].  

Table 5.2: Comparison of coefficient and exponential values to describe irradiation 

hardening of AISI 310 and Inconel 800H against the findings of Hunn et al. for AISI 

316LN in the form of Equation 5.3. See Equations 5.5a - 5.5c. [9] 

Material Coefficient value (a) Exponential value (b) 

AISI 310 0.26 0.16 

Inconel 800H 0.44 0.12 

AISI 316LN 0.32 0.13 

The form of Equations 5.5a and 5.5b indicate that the rate of irradiation hardening 

(𝑑∆𝐻 𝑑∅⁄ ) continuously decreases with increasing irradiation damage (∅). This is 

intuitively reasonable, since ion-atom interactions create relatively simple and highly 

mobile crystal defects (such as vacancies, interstitials and small dislocation loops) whose 

high rate of recombination results in a balance being established between the rates of defect 

creation and annihilation at the higher levels of irradiation damage. 
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5.3 Thermal recovery 

In the previous section we saw that the irradiation hardening followed a power-law 

dependence upon irradiation damage (∅), which varied for the different alloys studied. 

Large values of ∅ reduced the rate of hardening to approximately zero. It was proposed 

that this indicated a steady-state condition where the rate of increase in irradiation damage 

equalled the rate of recovery of damage due to simple thermally activated mechanisms; 

such as vacancy-interstitial recombination.  

In this section we study the kinetics of the thermally-activated recovery of the Fe4+ ion 

irradiation induced hardening. This study was done by measuring the indentation hardness 

of  AISI 310 and Inconel 800H samples, at a depth of ℎ𝑝 = 200 nm, for various levels of 

Fe4+ irradiation exposure (Table 3.2), after heating to temperatures of 400°, 500°, and 600° 

C for various lengths of time.  When choosing the lengths of time to be analysed we 

considered only data in the period where the indentation hardness was decreasing. Thus, 

we did not include data which displayed hardening resulting from the formation of surface 

oxide layers (see Section 4.3). Figure 5.4 shows the relative hardness, �̂� , given as 

�̂� = 𝐻𝑖𝑟𝑟𝑎𝑑. 𝐻𝑛𝑜𝑛−𝑖𝑟𝑟𝑎𝑑.⁄                                                       5.6 

versus time throughout thermal recovery at 400° C. 
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Figure 5.4 Relative hardness for AISI 310 during recovery at 400° C. The plot show 

consistent softening towards the average non-irradiated, polished hardness. In the 

case of the 0.1 dpa hardness averaging below 1, this can be attributed to the removal 

of most of the irradiation hardening damage as well as the cold work from polishing 

which is present in all unrecovered hardness values. 

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 20 40 60 80 100

R
el

at
iv

e 
H

ar
d

n
es

s 
to

 0
 d

p
a

Recovery Time (min)

AISI 310 (0.1 dpa)

AISI 310 (0.5 dpa)

AISI 310 (1 dpa)

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 20 40 60 80 100

R
el

at
iv

e 
H

ar
d

n
es

s 
to

 0
 d

p
a

Recovery Time (min)

AISI 310 (2 dpa)

AISI 310 (4 dpa)

AISI 310 (8 dpa)



56 

 

5.3.1 Calculation of critical recovery time, 𝑡𝑐  

Figure 5.4 indicated that the relative hardness displays an exponential dependence upon 

annealing time. Curves of the form  

�̂�(𝑡) = 1 + 𝐴𝑒𝑛𝑡                                                     5.7 

were fit to the data to find values of the parameters of 𝐴 and 𝑛 of each dpa level of ion 

irradiation for each sample (Table 5.3). The fitting was performed with a recursive 

algorithm searching for the two optimal parameters for each set of data to maximize the 

coefficient of determination (R2).  

Some of these data found hardening occurred (italicized values of 𝐴 and 𝑛 in Table 5.3) 

instead of thermal recovery, which is evidence of surface oxidation occurring on the 

samples, as described in Section 4.3. This data has been excluded from use in further 

analysis to avoid underestimating thermal recovery by masking its effects with the 

hardening effect of surface oxidation. The lowest value for 𝑛 is indicative of the instance 

with the least hardening from surface oxidation, and will thus be used to further mitigate 

the hardening effect of surface oxidation. These equations for �̂�(𝑡) were then used to find 

the times required for near complete recovery of the irradiation damage, 𝑡𝑐. In other words, 

when 𝑡 =  𝑡𝑐, �̂�(𝑡) ≤ 1.01.  
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Table 5.3 lists the calculated values of 𝑨 and 𝒏 parameters of Equation 5.7 for AISI 

310 and Inconel 800H samples irradiated to various dpa levels and annealed at the 

various temperatures. Note: italicized parameters indicate a hardening from 

thermal exposure. These values indicate high surface oxidation of the sample as 

described in Section 4.3. Bold parameters represent tests where surface oxidation 

was minimal. Bold data are used to predict the rate of thermal recovery of 

irradiation hardening. 

Material Temperature (° C) Dose (dpa) 𝑨 𝒏 (min-1) 

AISI 310 400 0.1 0.37 -0.01 

AISI 310 400 0.5 0.53 -0.07 

AISI 310 400 1 0.46 0.00 

AISI 310 400 2 0.52 -0.01 

AISI 310 400 4 0.58 -0.01 

AISI 310 400 8 0.58 0.00 

AISI 310 500 0.01 0.44 0.15 

AISI 310 500 0.1 0.58 -0.25 

AISI 310 500 1 0.54 -0.07 

AISI 310 500 10 0.85 -0.56 

AISI 310 600 0.01 0.41 0.02 

AISI 310 600 0.1 0.58 -0.34 

AISI 310 600 1 0.54 -0.09 

AISI 310 600 10 0.85 -0.35 

Inconel 800H 400 15 0.42 -0.15 

Inconel 800H 500 0.01 0.34 -2.03 

Inconel 800H 500 0.1 0.43 -0.62 

Inconel 800H 500 1 0.65 -0.69 

Inconel 800H 500 10 0.70 -0.51 

Inconel 800H 600 0.01 0.40 0.07 

Inconel 800H 600 0.1 0.43 0.07 

Inconel 800H 600 1 0.62 0.00 

Inconel 800H 600 10 0.70 -0.13 

Excluding instances of hardening to find a mean value for 𝐴 and 𝑛, we find the curves for 

each metal are,  

�̂�𝐴𝐼𝑆𝐼 310(𝑡)  ≅  1 + 0.59𝑒−0.14𝑡                                                5.8a 

�̂�𝐼𝑛𝑐 800𝐻(𝑡)  ≅  1 + 0.54𝑒−0.59𝑡                                                5.8b 
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where time, 𝑡, is in units of minutes for AISI 310 and Inconel 800H respectively. By 

realising that the 𝐴 parameter is the change in relative hardness, we can better describe 

these curves both as a function of irradiation damage (measured in dpa) as well as time. 

Combining Equations 5.8a or 5.8b with Equations 5.5a - 5.6, we find 

�̂�𝐴𝐼𝑆𝐼 310(𝑡) =  1 + 0.26∅0.16𝑒−0.14𝑡                                        5.9a 

�̂�𝐼𝑛𝑐 800𝐻(𝑡) =  1 + 0.44∅0.12𝑒−0.59𝑡                                        5.9b 

 

Figure 5.5 𝒕𝒄 versus irradiation dose (dpa) for AISI 310 and Inconel 800H during 

recovery, under the premise that 𝒕𝒄 occurs when 99% of irradiation hardening has 

dissipated.  
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Figure 5.5 depicts 𝑡𝑐 as a function of irradiation dose through a log-log plot for both AISI 

310 and Inconel 800H. Linear regression analysis of the data suggest the following 

functional relationship between 𝑡𝑐  (minutes) and irradiation damage, ∅, (dpa):  

𝑡𝑐 =  18∅0.2                                                                5.10 

The data suggest that the rate of thermal recovery of ion-induced crystallographic damage 

is faster for Inconel 800H compared to AISI 310. 

Included in Figure 5.6 are data from hardness tests performed on the AISI 310 alloy at  

500° C. These data lie on the same trend as the 400° C data indicating that the rate of 

irradiation damage recovery is not significantly greater, within the precision limits of our 

measurement techniques, at 500° C or 600° C than at 400° C. 

 

5.3.2 Model of the thermal recovery process 

An alternate approach to characterizing the time-dependent recovery of ion irradiation 

damage in these alloys can be made by recognizing that the damage is primarily in the form 

of highly mobile point defects and small dislocation loops as described in Section 2.3 and 

[17]. We can express the rate at which hardness decreases over time as the product of the 

characteristic atomic jump frequency, 𝜐 (given by Equation 2.9), and the recoverable 

hardness of a pre-irradiated material, which is the difference between the instantaneous 

hardness, 𝐻(𝑡, 𝑇), and the annealed the hardness of the material, 𝐻𝐴. 

𝑑𝐻(𝑡, 𝑇) = (𝐻(𝑡, 𝑇) −  𝐻𝐴)𝜐 𝑑𝑡                                             5.11 

where 𝑡 is time and 𝑇 is the absolute temperature. Integrating the change in hardness over 

time and applying the limit of 𝑡 → ∞, we find the that the integration constant will be  

𝐻𝐴 + ∆𝐻∅, as given by 

𝐻(𝑡, 𝑇) =  𝐻𝐴 + ∆𝐻∅ − ∫ (𝐻(𝑡, 𝑇) −  𝐻𝐴)𝜐 𝑑𝑡
𝑡

𝑜
                                 5.12 

By assuming temperature to be independent of time, Equation 5.12 can be simplified to 

𝐻(𝑡, 𝑇) =  𝐻𝐴(1 + 𝐴 + 𝑡𝜐) − 𝜐 ∫ 𝐻(𝑡, 𝑇) 𝑑𝑡
𝑡

𝑜
                                  5.13 
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Using Equations 5.6 - 5.7, we can integrate 𝐻(𝑡, 𝑇) 𝑑𝑡 to find  

𝐻(𝑡, 𝑇) =  𝐻𝐴 (1 + 𝐴 − 𝜐 (
𝐴

𝑛
𝑒𝑛𝑡 −  

𝐴

𝑛
))                                      5.14 

where values for 𝐴 and 𝑛 are given in Table 5.3. By incorporating Equations 2.9 we have 

𝐻(𝑡, 𝑇) =  𝐻𝐴 (1 + 𝐴 − 𝜐𝑜𝑒−
𝑞

𝑘𝑇 (
𝐴

𝑛
(𝑒𝑛𝑡 − 1)))                              5.15 

We know 𝐴, which is ∆𝐻∅/𝐻𝐴, is actually a function of irradiation dose, ∅, in dpa from 

Equations 5.5 – 5.7, and approximate values for 𝑛 from the bold values in Table 5.3. These 

substitutions leave us with 

𝐻(𝑡, 𝑇, ∅)𝐴𝐼𝑆𝐼 310 =  𝐻𝐴 (1 + 0.26∅0.16 + 1.8∅0.16𝜐𝑜𝑒−
𝑞

𝑘𝑇(𝑒−0.14𝑡 − 1))            5.16a 

𝐻(𝑡, 𝑇, ∅)𝐼𝑛𝑐 800𝐻 =  𝐻𝐴 (1 + 0.44∅0.12 + 0.8∅0.12𝜐𝑜𝑒−
𝑞

𝑘𝑇(𝑒−0.59𝑡 − 1))            5.16b 

The Debye frequency, 𝜐𝑜, can be estimated for our Fe-Cr based alloys by using the speed 

of sound of stainless steel, 𝑣𝑠  ≅ 5800 𝑚/𝑠 [55]  and the Debye model [56] 

𝜐𝑜 =  (
3𝑁

4𝜋𝑉
)

1/3

𝑣𝑠                                                         5.17 

where the atomic number density, 
𝑁

𝑉
, is approximately 8.5 × 1028 𝑎𝑡𝑜𝑚𝑠

𝑚3 . This means for 

both alloys 𝜐𝑜 ≅ 9.5 ×  1014 𝑚𝑖𝑛−1.  

Using the hardness data obtained from tests on the ion irradiated samples, the average 

activation energies, 𝑞, are 2.3 × 10−19 and 3.7 × 10−19  
𝐽𝑜𝑢𝑙𝑒𝑠

𝑎𝑡𝑜𝑚
 for the AISI 310 and 

Inconel 800H respectively. These values are very similar the 𝑞 values given in literature 

for Ni – 20% Cr alloys of approximately 4.7 ×  10−19  
𝐽𝑜𝑢𝑙𝑒𝑠

𝑎𝑡𝑜𝑚
 [57]. This leaves us with an 

equation describing hardness as a function of recovery time, recovery temperature, and 

irradiation dose for AISI 310 Inconel 800H. 
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𝐻(𝑡, 𝑇, ∅)𝐴𝐼𝑆𝐼 310 = 𝐻𝐴 (1 + 0.26∅0.16 + 1.8∅0.16𝑒
−16000

𝑇 (𝑒−0.14𝑡 − 1) × 1015 )               5.18a 

𝐻(𝑡, 𝑇, ∅)𝐼𝑛𝑐 800𝐻 = 𝐻𝐴 (1 + 0.44∅0.12 + 7.1∅0.12𝑒
−19000

𝑇 (𝑒−0.59𝑡 − 1) × 1014 )               5.18b 

Physically, Equations 5.18a and 5.18b have 3 terms indicated by the terms within the outer 

brackets, all of which are functions of 𝐻𝐴. The first term simply expresses the annealed 

hardness of the test material. The second term represents the hardening that results from 

irradiation damage in the absence of thermal recovery. The sum of these two terms 

constitutes the hardness of the ion irradiated alloys before exposure to high temperature. 

The third term expresses the amount of hardness reduction resulting from exposure to an 

elevated temperature, 𝑇, for a time 𝑡. This third term approaches the second term in 

magnitude as 𝑡 approaches infinity and indicates the case when all the irradiation hardening 

has been recovered. 

Figure 5.6 A comparison of the experimental AISI 310 data and the model for AISI 

310 (Equation 5.18a) 
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Figure 5.7 A comparison of the experimental Inconel 800H data and the model for 

Inconel 800H (Equation 5.18b) 

Figures 5.6 and 5.7 show the experimental data for AISI 310 and Inconel 800H, 

respectively, in comparison to our models, Equations 18a and 18b. Figure 5.6 and 5.7 

shows our models fit the data well. This shows our model accurately predicts the irradiation 

hardening and the thermal recovery of this hardening. This indicates that our methodology 

of irradiation followed by thermal recovery, as opposed to in-situ testing, was successful.  
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5.4 Testing issues and their effects 

After exposure to elevated temperature the samples in this study typically displayed some 

amount of surface discolouration (See Section 4.3). The amount of discolouration increased 

with time and annealing temperature. The tendency to become discoloured was also 

material dependent with the Inconel 800H alloy becoming more quickly discoloured than 

the AISI 310 alloy. These observations are all consistent with the samples becoming 

oxidized during the annealing treatments. An interesting observation from this study was 

that the amount of discolouration (i.e. oxidation) was dramatically dependent upon the 

level of prior ion irradiation with less discolouration occurring on the highly ion-irradiated 

regions of the samples (Figure 4.7).  

The presence of metal oxides on the heated samples affects the measured indentation 

hardness as shown by the italicized data in Table 5.3: When the oxide layer grows in 

thickness, at small indentation depth of 200 nm the measured hardness is increased. Figure 

4.8 shows an initial softening followed by a hardening occurs in samples when they are 

thermally heated above 400° C for up to 100 minutes. This trend occurs in all irradiated 

samples heated over 400° C and in some cases the material is harder after heating.  

The effect ion irradiation has on oxidation resistance can be explained by the hypothesis 

described in Section 4.3 and indicates that ion irradiation damage, like vacancies and 

interstitials, facilitates enhances Cr diffusion to occur to the surface of the sample resulting 

in enhanced surface passivation (Section 2.3).  
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Chapter 6  

6 Conclusions 

The Canadian supercritical water fission reactor concept should increase the thermal 

efficiency of nuclear power generation to approximately 48% primarily by operating the 

reactor core at considerably elevated temperatures compare to existing reactors. Currently, 

the largest design constraint of this project is the lack of data on the strength of selected 

alloys in the presence of high temperature neutron irradiation. This thesis examines 

irradiation hardening and thermal recovery over the elevated temperature range from  

400° C to 600° C of two candidate alloys, AISI 310 and Inconel 800H, for the Canadian 

SCWR concept. 

Samples of both alloys were mechanically ground and polished, then irradiated using  

8.0 MeV Fe4+ ions to simulate neutron irradiation. Samples were then heated at 

temperatures ranging from 400° to 600° C to measure the rate of thermal recovery of their 

indentation hardness.  

These test results have shown that ion irradiation damage does create significant amounts 

of crystallographic damage, resulting in an increased hardness, in both tested alloys. Most 

of this damage is very mobile, in the form of point defects and small dislocation loops. The 

mobile nature of the irradiation damage makes nearly complete thermal recovery possible 

within 100 minutes at 400° C.  

Equations were developed to describe the hardness of both alloys: i) immediately after 

irradiation of dose ∅, (Equations 5.5a, 5.5b)  ii) after 𝑡 minutes at temperature 𝑇, (Equations 

5.18a, 5.18b) and iii) the critical time 𝑡𝑐 for complete recovery (Equation 5.10). The models 

for hardness immediately after irradiation of dose ∅ fit the data well for both alloys, and 

more so are very similar to data from other reported tests (Figure 5.3). The models 

predicting hardness after irradiated samples are exposed to high temperatures also fits the 

data very well. This validates our hypothesised testing technique. The equation for critical 

time fit the experimental data to within an order of magnitude, finding doses as high as 10 

dpa could be recovered typically within an hour. 
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Our findings suggest that in the case of high-temperature in-core applications, typical of 

those being proposed for fuel cladding and pressure tube liners in Canada’s Gen-IV SCWR 

concept, both AISI 310 and Inconel 800H alloys will undergo at least 20% increase in 

hardness as a result of low levels of neutron irradiation damage typical of what could be 

expected within one year in core4.  This hardness increase will however be negated by very 

rapid concurrent thermal recovery. Our data suggest that the recovery rate is sufficiently 

rapid that no noteworthy net irradiation hardening will occur in the Gen. IV SCWR fuel 

channel components.  

Another important other factor that will affect the actual rate of irradiation hardening and 

thermal recovery in these alloys is the rate of hardening resulting from accumulated 

hydrogen and helium transmutation products.  Our study did not address this issue. 

Our study also revealed that tests conducted at 500° and 600° C formed surface oxides. 

This suggests that future test should be performed in furnace conditions with lower oxygen 

content; perhaps the use of a vacuum furnace or using a reducing gas, such as Ar-2.5%H, 

in lieu of the inert gas, Ar, which was used in this study. The tests showed some work 

hardening was present in the polished sample surfaces, suggesting future tests should 

employ electrochemical polishing techniques or in-vacuum annealing prior to implantation 

within the ion-implantation chamber.  

 

 

  

                                                 

4 Fuel channel components typically experience about 1 dpa of irradiation damage per year of reactor 

operation [26]. 
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