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Abstract 

Hydrological models rely on accurate precipitation data in order to produce results with a 

high degree of confidence and serve as valuable flood forecasting and warning tools. 

Gauge-radar merging methods combine rainfall estimates from rain gauges and weather 

radar in order to capitalize on the strengths of the individual instruments and produce 

precipitation data with greater accuracy for input to hydrological models. A 

comprehensive review of gauge-radar merging methods reveals that there is an 

opportunity for near-real time application in hydrological models. The performance of 

four well known gauge-radar merging methods, including mean field bias correction, 

Brandes spatial adjustment, local bias correction using kriging and conditional merging, 

are examined using Environment Canada radar and the Upper Thames River basin in 

southwestern Ontario, Canada, as a case study. The analysis assesses the effect of gauge-

radar merging methods on: 1) the accuracy of predicted rainfall accumulations; and 2) the 

accuracy of predicted stream flows using a semi-distributed hydrological model. In 

addition, several influencing factors (i.e., gauge density, storm type, basin type, proximity 

to the radar tower and time-step of adjustment) are analysed to determine their effect on 

the performance of the rainfall estimation techniques. Results indicate that gauge-radar 

merging methods can increase the accuracy of both rainfall accumulation estimations and 

predicted stream flows over the use of raw radar and rain gauges alone. Results from this 

study provide guidance for hydrologists and engineers assessing whether the addition of 

corrected radar products will improve rainfall estimation and hydrological modelling 

accuracy. 

Keywords 

Water resources, quantitative precipitation estimation, weather radar, rain gauge, gauge-

radar merging, hydrology, hydrological modelling. 
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Chapter 1 

1 Introduction 

1.1 Motivation 

Throughout Canadian history flooding events have had a major impact on society, 

causing billions of dollars in damage and resulting in the loss of life. Flooding events are 

by far the most common natural disaster experienced in Canada (Sandink et al. 2010). 

The Institute for Catastrophic Loss Reduction estimates that currently preventable 

damages due to extreme rainfall exceed $2 billion a year in Canada (Kovacs et al. 2014). 

In recent years costs associated with flooding have been rapidly escalating (Insurance 

Bureau of Canada 2015). Flooding events in 2011 in Manitoba and Quebec resulted in 

damages of $1.1 billion and $78 million, respectively (Thistlethwaite and Feltmate 2013). 

Damages due to 2013 flooding in Alberta caused by a combination of snowmelt in the 

headwater regions and extreme rainfall resulted in damages exceeding $6 billion 

(Environment Canada 2014). Flash flooding in Toronto in July 2013 due to a high-

intensity, short-duration rainfall event resulted in damages of approximately $1 billion 

(Environment Canada 2014). The federal, provincial and municipal governments of 

Canada have largely been responsible for covering the rising costs of these damages 

which has resulted in significant impacts to the Canadian economy (Environment Canada 

2013a).  

Riverine flooding events are a result of increased runoff from the surrounding 

contributing basin which causes the stream to exceed the level of the banks (Dingman 

2008). While this increase in flow can be due to a number of hydrological, 

meteorological, and human-induced factors (Takeuchi 2001), precipitation is one of the 

most influential factors controlling the frequency and magnitude of flooding events 

(Environment Canada 2013b). One of the most important tools for flood mitigation is the 

use of hydrological models for flow prediction (Takeuchi 2001). A hydrological model, 

which conceptualizes the complex physical characteristics of a basin (Dingman 2008), is 

used to analyze stream flow rates and water levels in near real-time as they respond to 

rainfall events. Output from these models is used to provide early flood warning, 
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allowing for time to evacuate affected areas, shut down vulnerable transportation 

infrastructure, deploy emergency workers and establish emergency short-term flood 

protection for important structures (Looper and Vieux 2012).  

Despite their many benefits, a lack of confidence in hydrological modelling outputs often 

leads to under-utilization of this tool for flood mitigation (McMillan et al. 2011). The 

validity of a model depends on the accuracy and reliability of input parameters and initial 

and boundary conditions (Zhu et al. 2013). Of these parameters and data, rainfall inputs 

play an integral role in the final accuracy of the model outputs (Golding 2009). In 

addition, accurate rainfall is often needed for hydrological model calibration to produce 

parameter sets which represent basin characteristics. Widespread use of hydrological 

models has demonstrated the need for accurate rainfall fields in order to produce runoff 

and stream flow predictions with a high degree of confidence (see, e.g., Beven and 

Hornberger 1982; Kalinga and Gan 2006; Cole and Moore 2008; Xu et al. 2013; Berne 

and Krajewski 2013; etc.). According to McMillan et al. (2011, p. 84): “No model, 

however well founded in physical theory or empirically justified by past performance, 

can produce accurate runoff predictions if forced with inaccurate rainfall data.” 

Inaccurate rainfall data directly compromise the integrity of the model and the associated 

critical decisions made using model output (Golding 2009; McMillan et al. 2011). In 

particular, for small watersheds, the timing and location of rainfall is critical in 

reproducing hydrographs. There is thus an urgent need to acquire reliable precipitation 

estimates at high spatial (e.g., a few km or less) and temporal (e.g., hourly or less) 

resolutions (Berne and Krajewski 2013). As a result, in recent years substantial efforts 

have been made to develop accurate methods to estimate rainfall accumulations at higher 

spatial and temporal resolutions during precipitation events.  

Currently, rain gauges and weather radar (radar) are the most widely accepted and used 

instruments for acquiring near-real time estimates of rainfall accumulations (Sene 2013). 

While these rainfall measurement techniques have their individual strengths, both 

techniques result in errors which can limit their ability to produce accurate input for 

hydrological models. Considering this, numerous techniques have been proposed to 

adjust and merge rain gauge and radar measurements (hereafter referred to as gauge-radar 
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merging methods) at high spatial and temporal resolutions in order to obtain greater 

accuracy in rainfall accumulations. The choice of a suitable rainfall estimation technique 

is a critical decision for hydrologists and engineers developing hydrological models for 

reliable operational use. The vast number of gauge-radar merging methods present in the 

literature makes this decision a challenging task. 

In addition, several location-specific operational, hydrological and environmental factors 

can influence the accuracy and performance of individual gauge-radar merging methods. 

These factors include: the density of the rain gauge network, climate and storm 

characteristics, temporal resolution of adjustment, basin characteristics and proximity of 

the radar station. These factors have demonstrated to adversely affect the accuracy of 

gauge-radar merging methods by decreasing the reliability of the precipitation estimates 

(see, e.g., Kitchen and Blackall 1992; Michelson and Koistinen 2000; Kalinga and Gan 

2006; Smith et al. 2007; Goudenhoofdt and Delobbe 2009; Berne and Krajewski 2013). 

The influence of each factor needs to be considered in the selection of an appropriate 

estimation technique. This highlights the need to both assess performance of gauge-radar 

merging methods on a case-by-case basis and to quantify the effect of these five factors 

on the performance of gauge-radar merging methods.  

1.2 Goals and objectives of the thesis 

The goal of this thesis is to evaluate the performance of gauge-radar merging methods for 

hydrological applications. This thesis will use radar data supplied by Environment 

Canada (EC) and will use the Upper Thames River basin (UTRb), located in 

southwestern Ontario, Canada, as a case study. This goal will be accomplished by 

satisfying the following three central objectives: 

(1) conduct a comprehensive review of the literature to assess the performance of rain 

gauges, radar and gauge-radar merging methods for quantitative precipitation 

estimation; 

(2) evaluate the effect of gauge-radar merging methods on the accuracy of estimated 

rainfall accumulations; and  
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(3) evaluate the effect of gauge-radar merging methods on the accuracy of predicted 

flows using a semi-distributed hydrological model. 

Through the accomplishment of these objectives the effect of the aforementioned 

location-specific environmental, hydrological and operational influencing factors will be 

characterized and evaluated. 

1.3 Structure of the thesis 

This thesis is prepared in the classical monograph format. Following Chapter 1, five 

chapters are included. These are organized as follows. 

Chapter 2 presents the literature review and provides a comprehensive review of the use 

of rain gauges and radar in hydrology as well as detailed descriptions of well-known 

gauge-radar merging methods for the near-real time estimation of rainfall accumulations.  

Chapter 3 provides the description of the study area and the data used in the thesis. 

Chapter 4 presents the results from an investigation of the effect of several well-known 

gauge-radar merging methods on rainfall accumulation accuracy, providing a particular 

focus on the effect of several hydrological, environmental and operational factors on the 

accuracy of the final rainfall estimates.  

Chapter 5 presents the results from an investigation to evaluate the effect of several well-

known gauge-radar merging methods on the accuracy of predicted hydrographs using a 

semi-distributed hydrological model.  

Chapter 6 provides a discussion of the results from Chapters 2 through 5 and summarizes 

the main conclusions and contributions of the thesis. Opportunities for future research are 

also presented.  
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Chapter 2 

2 Literature review 

This Chapter provides a comprehensive review of the acquisition and merging of rain 

gauge and radar rainfall data for input into hydrological models. The aim of this literature 

review is to satisfy the following objectives:  

(1) provide a review and description of the uncertainty associated with the use of rain 

gauges and radar for the acquisition of rainfall data;  

(2) describe and compare pertinent gauge-radar merging methods to produce greater 

accuracy in rainfall accumulations; and  

(3) identify and discuss factors which influence the accuracy of gauge-radar merging 

methods as input into hydrological models in order to aid in the selection of an 

appropriate rainfall estimation technique.  

The use of radar in hydrological modelling is widely studied academically; however, it is 

not yet widely implemented operationally. This Chapter will assist in identifying 

circumstances in which the addition of radar rainfall data is beneficial in hydrological 

modelling. 

2.2 Rainfall estimation: rain gauges 

Historically, rain gauges have been the main source for quantitative precipitation 

estimation (QPE) for use in hydrological models, and remain one of the most popular and 

widely used rainfall accumulation collection methods today (Environment Canada 

2013c). Rain gauges measure the depth of rainfall over a set time for a given location. 

Therefore, the primary goal of a rain gauge is to obtain representative measurements of 

rainfall over the area which the measurement represents (World Meteorological 

Organization [WMO] 2008). Rain gauges typically cover an area of 200 cm2 (Vuerich et 

al. 2009). Several types of recording rain gauges are used in practice, including: tipping 

bucket rain gauges, weighing rain gauges, optical rain gauges and disdrometers. The 

majority of automatic recording rain gauge networks in Canada consist of a series of 

automatic weighing gauges and tipping bucket rain gauges (Environment Canada 2013c). 
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While rain gauges have the ability to provide accurate point measurements, they are 

subject to numerous sources of error and uncertainty that limit their use in operational 

flood forecasting models (Sinclair and Pegram 2005). These sources of uncertainty and 

the effect of this uncertainty on hydrological modelling capabilities are discussed in the 

following two sub-sections. 

2.2.1 Uncertainty associated with rain gauge measurements 

Wilson and Brandes (1979) identified two critical sources of error which have a 

considerable effect on the ability to use rain gauge measurements for hydrological 

modelling purposes. These include:  

(1) the inability of point measurements to accurately characterize the spatial 

distribution of the rainfall field; and  

(2) systematic and calibration errors. 

The first error relates to the inability of a rain gauge to measure the spatial variability in a 

rainfall field. Hydrological models require a spatial distribution of rainfall over a basin in 

order to determine the rainfall-runoff response in the watershed. Rain gauges can provide 

only fractional coverage of the entire spatial domain and are thus often unable to provide 

an accurate representation of the variability in a rainfall field. Considering this, a network 

of gauges (consisting of a series of gauges distributed throughout the basin) is used to 

produce a spatial distribution and approximate rainfall accumulations at ungauged 

locations. Spatial distribution of rainfall from point rain gauge values can be determined 

using well-known distance averaging techniques such as inverse distance weighting, 

kriging, Thiessen polygons and splines (Dingman 2008). Rainfall fields, however, often 

exhibit a high degree of spatial variability (Tao et al. 2009), which is often uncaptured 

through the interpolation of point rain gauge values that generally produce a uniform 

rainfall field (Sinclair and Pegram 2005). According to previous research investigating 

the effect of gauge network design on interpolation accuracy, (see, e.g., Rodriguez-Iturbe 

and Mejia 1974; Xu et al. 2013) the interpolation accuracy of rainfall data sets is 

dependent on optimal network density and spacing. However, optimal gauge density and 

spacing is for the most part never achieved in a river basin (Smith et al. 2007). Economic 
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and practical considerations result in gauge networks that often provide poor 

representation of the rainfall field over a watershed (Volkmann et al. 2010). Huff (1970) 

demonstrated that a rain gauge network density of one gauge per 65 km2 is required in 

order to achieve an average sampling error in recorded rainfall accumulations of less than 

5% for six hour rainfall accumulations. The density required, however, will change 

depending on operational considerations. According to the US Army Corps of Engineers 

(1996), the optimal network design should consist of evenly distributed gauges at a 

spatial density determined by: 

 ,33.0AN   (1) 

where N = the number of gauges, and A = the area of the basin in mi2. The WMO 

recommends rain gauge network densities dependent on catchment type (e.g., one gauge 

per 250 km2 for a mountainous catchment or one gauge per 900 km2 for a plains 

catchment) (WMO 2008). A number of different factors affect the optimal network 

density of rain gauges, including climatic patterns, topography (Lobligeois et al. 2014) 

and storm type (Huff 1970). For example, Barge et al. (1979) assessed that during a 

summer thunderstorm in southern Alberta, a recording rain gauge measured a rainfall 

depth representative of an extreme rainfall event. If the hydrological model had been 

based on rainfall recorded by this rain gauge alone a flood warning would have been 

issued. However, through subsequent qualitative observations of weather radar and a 

review of the subsequent stream flow data, it was evident that the rainfall was localized 

directly above the rain gauge. A dense rain gauge network is desirable for operational 

flood forecasting of such localized rainfall events; however, as mentioned above, the 

installation of such a network is for the most part not practical (Zhu et al. 2013). 

Therefore, rainfall is often mischaracterized during high intensity small spatial-scale 

events leading to substantial error in predicted stream flows (Golding 2009). Several 

methodologies have been developed to optimize the location and density of rain gauge 

networks (see, e.g., Pardo-Iguzquiza 1998; Jung et al. 2014). 

Secondly, systematic and calibration errors affect the accuracy of gauges through losses 

due to evaporation, splash-out, wind effects, valley effect, tree cover, building cover or 

mis-calibration (WMO 2008). These errors affect the measured depth and the resulting 
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calculated spatial distribution of the rainfall field. According to the WMO (2008) two 

types of wind effects hinder the accuracy of rain gauges:  

(1) the effect of the wind translating the droplets of rainfall so that they miss the rain 

gauge; and  

(2) the effect of the gauge changing the trajectory of the wind so that the 

characteristics of the rainfall are different around the gauge than elsewhere in the 

watershed.  

Larson and Peck (1974) examined the results from several studies on the effect of 

wind-blown rainfall on the accuracy of final depth measurements; a 12% error exists in 

wind loading of 5 m/s and a 19% error exists in wind loading of 10 m/s with no wind 

shield present. The data were extrapolated to determine that during the wind loading of an 

average thunderstorm (10 to 35 m/s) the error would be in the range of 20% to 40% 

(Larson and Peck 1974). Other environmental effects, such as trees, buildings and 

valleys, can adversely influence rain gauge measurements with the magnitude of the error 

dependent on the siting of the gauge. Ideally, gauges should not be situated in valleys or 

in areas with trees or buildings where measurements can be obstructed (WMO 2008). As 

seen in basins across Canada, due to economic considerations, gauges tend to be located 

improperly close to the above obstructions (Volkmann et al. 2010). As an example, 

operational purposes require the Upper Thames River Conservation Authority (UTRCA), 

located in southwestern Ontario, to install their rain gauges to correspond with locations 

of stream gauges. As a result, many rain gauges in the watershed tend to be located in 

valleys and in close proximity to trees where streams are generally present.  Lastly, gauge 

quality control is of critical importance, as rain gauges are prone to malfunctioning 

(Steiner et al. 1999). Without proper maintenance and calibration gauges can suffer from 

errors associated with misreading, an error that is prevalent in many of Canada’s 

automatic recording gauges. 

2.2.2 Effect of rain gauge uncertainty on hydrological modelling 

Highly variable rainfall fields have a demonstrated effect on runoff modelling (Schilling 

and Fuchs 1986). The effect of rainfall field variability was investigated by Faures et al. 
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(1995) who studied the effect of varying gauge density and placement on hydrological 

modelling results for a 4.4 ha semi-arid watershed in southeastern Arizona, USA. By 

varying the gauges used to generate the rainfall input for the model they found that the 

peak runoff and the runoff volume varied substantially with a coefficient of variation 

which ranged from 9% to 76% and 2% to 65%, respectively. This study indicated that in 

an environment dominated by high intensity rainfall events with considerable spatial 

variability, rain gauge density and placement can strongly influence predicted stream 

flows from hydrological modelling, leading to increased uncertainty in model results. The 

errors within gauge measurements due to systematic and calibration issues also often lead 

to considerable error in subsequent modelling efforts. Habib et al. (2008) examined the 

effect of tipping bucket uncertainty on the accuracy of hydrological models for a mid-

sized watershed in southern Louisiana, USA. These authors determined that wind and 

dynamic calibration effects can cause variations in hydrograph peak runoff estimations on 

the order of 5% to 15%.  

These uncertainty issues can have a detrimental effect on the ability to use rainfall 

estimates from rain gauges alone for input into hydrological models for accurate flood 

forecasting purposes. McClure and Howell (2013) outlined the failure of the Alberta 

Environment River Forecast Centre to provide warning to the residents of High River, 

Alberta, during the June 2013 flooding event. By the time a flood warning was issued the 

majority of the town was already inundated with flood waters. Hours before flooding 

occurred the forecasters updated and ran the hydrological model and found that the flood 

waters would peak at 650 m3/s, a flow rate not great enough to fully flood the town. 

However, hours later the flood flow reached 985 m3/s which resulted in complete 

flooding of High River. One of the main reasons attributed to the failure to accurately 

predict this event is the lack of accurate rainfall estimates and poor or missing gauge 

readings. The economic consequences of the inaccurate predictions in this example 

identify the need for re-examination of rainfall inputs used by Canadian flood forecasting 

centres. The need to improve rainfall estimation has been identified by numerous authors 

(see e.g., Wilson and Brandes 1979; Kouwen 1988; Borga et al. 2000; Beven 2002; 

Goudenhoofdt and Delobbe 2009; Looper and Vieux 2012; etc.), leading to the 

investigation of other methods to increase the accuracy of rainfall estimation.  



10 
 

 

 

2.3 Rainfall estimation: radar 

Radar (radio detection and ranging) transmits pulses of microwave signals to detect 

rainfall droplets in the atmosphere. The microwave pulses travel out from the radar tower 

until they come into contact with particles present in the atmosphere. The reflected 

energy of the wave off the particles is captured by the radar tower, and the quantity of 

reflected energy (reflectivity in dbz) is related to raindrop size, type and distribution. In 

the case of rainfall the raindrop size and distribution is related to the reflectivity using the 

Marshall-Palmer reflectivity droplet size ratio, Z-R (Marshall and Palmer 1948), 

following:  

 baRZ  , (2) 

where Z is the reflectivity factor measured by the radar station (dbz), R is the rainfall 

intensity (mm/hr), and a and b are empirical coefficients determined during calibration. 

For conventional radar, there exist several different types of radar towers in operational 

use today, distinguished according to emitted wavelength characteristics as either S-band, 

C-band or X-band (see Table 1). The typical size of precipitation particles is a 

determining factor in the size of wavelength used, as there exists an optimal size ratio 

between the precipitation particle and the radar wavelength (Berne and Krajewski 2013). 

The optimal size ratio ensures maximum detectability of precipitation while minimizing 

beam attenuation, as the attenuation by precipitation has a greater effect on smaller 

wavelengths (Berne and Krajewski 2013). Therefore X-band radar tends to be the most 

easily attenuated, with S-band radar being the least affected by attenuation of the 

wavelength. However, the larger S-band wavelength does not detect light rain or snow as 

well as the smaller wavelengths do (WMO 2008).  

Table 1:  Weather radar characteristics (modified from Table I.3.3, WMO 2008) 

Band Frequency (GHz) Wavelength (cm) 

  S 2-4 5.77 – 19.3 

C 4-8 4.84 – 7.69 

X 8-12  2.75 – 5.77 
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The Canadian federal government agency Environment Canada (EC) operates 30 C-band 

and one S-band radar stations across the country, covering land comprising 

approximately 90% of the population (Environment Canada 2009). Each radar location 

has an effective range of 250 km with Doppler capability up to 120 km around the site 

(Environment Canada 2013d). According to Environment Canada (2009), the purpose of 

the Canadian Meteorological Radar Network is to provide the country with continuous 

weather surveillance to enable advanced warning of severe meteorological events. The 

Canadian C-band radar stations emit 5.6 cm wavelengths. The selection of the optimal 

radar tower is largely dependent on climate. Accordingly, for the Canadian climate, C-

band radar was selected as it is better suited for the detection of solid precipitation (snow) 

than S-band radar is (Environment Canada 2009). Roughly 80% of the weather radar in 

use around the world uses C-band radar stations (Environment Canada 2009). Radar 

networks in Western Europe all rely on C-band radar for meteorological surveillance. The 

United States have adopted S-band radar for their radar network, which uses a 10 cm 

wavelength that requires more energy and a larger dish. S-band radar was selected as the 

southern states experience numerous high intensity rainfall events every year and the 

larger wavelength is not as easily attenuated during these heavy precipitation events (Xie 

et al. 2006).  

Radar for QPE for use in hydrology began in the early 1960s. Radar was seen to have 

immense potential in the field of hydrology, as it facilitates the observations of both the 

location and movement of areas of precipitation within the range of the radar tower, 

capturing the immense spatial and temporal variability in rainfall fields with a high 

degree of resolution (Wilson and Brandes 1979). Wilson and Brandes (1979) reported 

one of the first summaries of weather radar to determine a quantitative measurement of 

rainfall for use in flood forecasting. For a small catchment in Oklahoma, USA, these 

authors determined that the spatial distribution of radar had a marked influence on the 

ability to provide real-time flash flood warning in comparison to rain gauge data. 

Similarly, Vehvilainen et al. (2004) found that for small catchments in the Baltic Sea 

region radar estimates substantially increased the accuracy of flood forecasting 

hydrological models during extreme rainfall events. Collier (1986) compared the 

accuracy of hourly rainfall estimates made using rain gauge and radar data and 
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determined that in order for the rain gauge network to provide a spatial distribution of the 

rainfall field as accurately as radar, a rain gauge network spacing of one gauge every 20 

km2 was needed. Despite these advantages, in the early stages of its application the lack 

of knowledge and understanding of the inaccuracies associated with radar imagery 

limited its widespread use for hydrological modelling (Jayakrishnan et al. 2004; Golding 

2009).  

2.3.1 Uncertainty associated with radar 

The lack of confidence in radar QPE is due to the indirect measurement of the intensity of 

a rainfall event (Environment Canada 2013d), which introduces uncertainty in measured 

accumulation accuracy (Goudenhoofdt and Delobbe 2009). Even with substantial 

improvements in radar signal treatment, substantial error still exists in the conversion of 

raw reflectivity data into QPE (McMillan et al. 2011). Creutin et al. (2000) characterized 

three major sources of radar error for QPE:  

(1) electronic instability and mis-calibration of the radar system and Z-R relationship;  

(2) beam geometry; and  

(3) fluctuation in atmospheric conditions.  

All three categories of errors can have a considerable effect on the ability to use radar in 

hydrological modelling applications. According to Golding (2009), it is the above sources 

of error that limit the widespread use of radar in hydrological modelling. 

The first error outlined by Creutin et al. (2000) relates to the use of the Marshall-Palmer 

relationship introduced in Eq. (2) above. This relationship can be calibrated at each radar 

location. Once calibrated, the coefficients are generally held constant (Steiner and Smith 

2000). Each droplet, however, does not hold true to the same ratio. Furthermore, the ratio 

does not hold true for each storm event, and consequently will tend to either 

underestimate or overestimate the rainfall rate. Vieux and Bedient (1998) and Morin et al. 

(2006) investigated the effect of manipulating the Marshall-Palmer relationship on 

simulated hydrographs and found that small manipulations in this relationship can cause 

substantial changes in the simulated hydrograph.  
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The second and third categories identified by Creutin et al. (2000) are dependent on the 

radar environment. These errors include beam broadening, clutter, anomalous 

propagation, visibility effects, variability in time and space of the vertical profile of 

reflectivity (VPR), beam power attenuation and issues related to the microphysics of 

precipitation. These errors affect the measurement of reflectivity from the atmosphere 

and can result in substantial measurement uncertainty. For example, Michelson and 

Koistinen (2000) demonstrated how beam broadening in a study conducted in the Baltic 

Sea caused radar accuracy to deteriorate the further the beam traveled. Furthermore, 

spatio-temporal sampling errors can result from the fact that radar measures rainfall at 

substantial heights above the ground. Between the measurement location and the ground, 

the rainfall can move substantial lateral distances or even evaporate before reaching the 

ground. Errors in reflectivity result in errors in the subsequent rainfall estimation. A full 

description of radar environmental errors can be found in Environment Canada (2013d). 

2.3.2 Effect of radar uncertainty on hydrological modelling 

Numerous studies have attempted to assess the various errors in radar QPE to quantify 

the corresponding effect on the accuracy of hydrological models. These studies have 

indicated that uncertainties due to the errors related to calibration and processing of radar 

data can have a detrimental effect on confidence in hydrological modelling results. Borga 

(2002) studied the effect of errors in radar rainfall estimates on rainfall-runoff modelling 

in the Brue Catchment in England. Focusing mainly on range-related errors, VPR effects 

and errors due to mis-calibration of the Marshall-Palmer relationship, Borga (2002) 

observed that the errors considerably affected stream flow simulations resulting in errors 

of similar magnitude to those in gauge-only simulations. Kouwen and Garland (1989) 

examined the effect of radar generated rainfall on a fully-distributed hydrological model 

in the Grand River watershed in southern Ontario, identifying anomalous propagation, 

clutter and visibility effects as significant sources of error in the estimated rainfall leading 

to over-estimation in predicted peak flows by 10%. Krajewski et al. (2010) attempted to 

determine if there had been substantial improvements in radar processing technology 

since the study by Wilson and Brandes (1979) that would lead to improvements in the 

accuracy of radar QPE. Using upgraded radar correction and the same gauge network in 



14 
 

 

 

Oklahoma, USA, as Wilson and Brandes (1979), Krajewski et al. (2010) discovered 

decreased magnitudes of error in QPE compared to the errors Wilson and Brandes (1979) 

had found 30 years earlier, concluding that improvements in radar hardware and software 

have substantially improved radar rainfall estimation. However, Jayakrishnan et al. 

(2004) and Neary et al. (2004), still determined that radar data must undergo correction 

before they can be used in hydrological modelling.  

Uncertainties related to radar are tied to the basin being modelled. Bell and Moore (1998) 

investigated the effect of using raw radar data for hydrological modelling and determined 

that raw radar-derived rainfall estimates increased the accuracy of the hydrological model 

in small catchments, while it had no considerable effect in larger basins. Vehvilainen et 

al. (2004) observed similar findings, concluding that in small catchments (less than 500 

km2) where response times are on the order of hours, hydrological models can benefit 

from the high temporal and spatial resolution of radar data. Borga et al. (2000) explored 

the effect of mountainous topography on radar QPE, comparing the results of stream 

flows simulated with raw radar against stream flows simulated with rain gauge rainfall. 

Due to beam blocking in mountainous regions, radar simulations provided the same 

accuracy in hydrological modelling as gauge only driven results (Borga et al. 2000). 

Therefore, the use of raw radar for rainfall estimation can potentially increase the 

accuracy of the rainfall input for specific conditions; however, an understanding of 

location-specific factors is required in order to determine whether radar will aid in 

hydrological modelling.  

A recent Canadian example of the error associated with radar QPE was observed during 

an extreme rainfall event occurring on 8 July 2013, where heavy rainfall in the Greater 

Toronto Area caused widespread flash flooding resulting in approximately $1 billion in 

damage and affecting approximately 300,000 residents (Environment Canada 2014). 

During this event, the single polarized product from the EC radar tower at King City, 

Ontario (just north of Toronto) estimated that approximately 27.2 mm of rain fell on the 

city (Boodoo et al. 2014), while the rain gauge at Pearson International Airport in 

Mississauga recorded 126 mm over the same time period (Government of Canada 2014). 

This discrepancy is suggested to be a result of attenuation of the C-band wavelength and 
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dome wetting (Boodoo et al. 2014). This example further demonstrates the potential 

magnitude of radar errors and subsequent consequences caused by using radar QPE 

operationally for hydrological modelling.  

2.4 Gauge-radar merging methods 

Neither rain gauges nor radar has demonstrated the ability to provide an accurate 

depiction of the rainfall field. Rain gauges provide accurate point rainfall estimates, but 

their spatial resolution is limited by the low-density of a gauge network and the errors 

associated with interpolation schemes to fill in missing data. Radar, on the other hand, 

provides accurate spatial and temporal resolution of the rainfall field at significant heights 

above the surface of the earth, but numerous measurement errors result in inaccuracies in 

rainfall depths at the ground. The problems associated with each measurement technique 

have led to numerous attempts to merge rainfall estimates from the two instruments. This 

merging allows for the extraction of each instrument’s strengths while minimizing 

individual weaknesses (Erdin 2009). According to Wilson (1970, p. 495): “the combined 

use of radar and rain gauges to measure rainfall is superior to the use of either 

separately.” It has since been recognized that the combination and adjustment of radar 

rainfall data with rain gauge accumulations can substantially improve the accuracy of 

rainfall estimates and subsequent hydrological modelling results (see e.g., Kouwen 1988; 

Vehvilainen et al. 2004; Kalinga and Gan 2006; Kim et al. 2008; Looper and Vieux 2012; 

etc.). An extensive review of the literature reveals a number of merging methods that 

have been developed for operational use to address the limitations of each individual 

measurement instrument. This section summarizes the vast majority of gauge-radar 

merging methods in operational use today. Two merging methods not discussed in this 

section are co-kriging (Krajewski 1987) and surface fitting using a multi-quadric surface 

(Cole and Moore 2008). Co-kriging is not included as its use has decreased due to the 

approximation methods employed (Todini 2001) and poor suitability for real-time 

applications (Goudenhoofdt and Delobbe 2009). Surface fitting using a multi-quadric 

surface is not discussed as its use has been extremely limited. Numerous statistical 

modifications of the merging methods presented in this section exist (see, e.g., Moore et 
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al. 1989; James et al. 1993); however, the underlying assumptions of the methods are 

largely identical to the versions presented in this Chapter. 

Gauge-radar merging methods can generally be divided into two categories (Wang et al. 

2013): 1) bias reduction techniques; and 2) error variance minimization techniques. Each 

category follows a similar set of assumptions. In the following sub-sections, the merging 

methods will be discussed according to these two categories.  

2.4.1 Bias reduction techniques 

Gauge-radar merging methods categorized as bias reduction techniques attempt to correct 

the bias present in radar accumulations using rain gauge accumulations as the real rainfall 

value. The radar field represents a background guess which is subsequently adjusted by 

the known (rain gauge) information. According to Koistinen and Puhakka (1981), the 

assumptions for bias correction schemes include:  

(1) gauge measurements are accurate for each gauge’s respective location;  

(2) radar accurately measures relative spatial and temporal variability of precipitation;  

(3) gauge and radar measurements are valid for the same location in time and space; 

and  

(4) the relationships based on comparisons between gauges and radar(s) are valid for 

other locations in time and space. 

It is important to note that these assumptions, although necessary for the adjustment of 

radar using rain gauges, are false and often lead to erroneous correction factors. Four 

gauge-radar merging methods categorized as bias reduction techniques will be discussed 

separately below.  

2.4.1.1 Mean field bias correction 

The mean field bias (MFB) correction was the first merging method proposed for the 

correction of measurement bias in radar accumulations (Hitschfeld and Bordan 1954). 

This method attempts to remove the bias introduced in radar rainfall estimates through 

the uncertainty in the radar calibrated Z-R relationship (Borga et al. 2002; Hanchoowong 

et al. 2012). The correction is, therefore, represented by a single correction factor applied 
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to the entire radar field. Since rain gauges are assumed to represent the true rainfall 

accumulation values for bias correction techniques, the mean of the gauge accumulations 

is assumed to represent the true mean of the rainfall field. Thus, the radar estimates must 

produce the same mean rainfall accumulation at the gauge locations. 

A static, long-term bias correction factor for radar accumulations based on rain gauges 

was first recommended by Hitschfield and Borden (1954). However, the multiplicative 

bias in the reflectivity-intensity relationship varies temporally, causing the effect of the 

static correction factor on the accuracy of the radar rainfall estimates to fluctuate 

substantially (Smith et al. 2007). A dynamic MFB correction was adopted by Wilson 

(1970) to continually update the mean correction factor on various temporal scales. The 

following two steps are taken in order to apply a MFB correction. 

(1) The weighted correction factor is calculated using a simple arithmetic mean 

demonstrated with the following equation according to Wilson and Brandes 

(1979):  
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where C is the correction factor, Gi is the measured rainfall at gauge i, and Ri is 

the radar measured rainfall at gauge i. The radar rainfall measured at the gauge is 

taken as the spatial integration of rainfall for the radar bin above the rain gauge. 

The correction factors are obtained at a set time step (e.g., hourly, daily, etc.). 

(2) The correction factor is then applied to the entire spatial domain of the radar, as it 

is multiplied with the radar value at each bin location in order to develop the 

adjusted radar image.  

MFB correction has become a widely recognized and applied technique for adjusting 

radar rainfall grids due to its simplicity and ease in implementation in near-real time. The 

MFB technique has become a standard merging method for radar images (see e.g., UK 

Nimrod system; US NEXRAD). Wilson (1970) examined the effect of MFB correction 
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on estimated rainfall accumulations for extreme rainfall events in Oklahoma, USA. For a 

catchment of 2590 km2, Wilson (1970) determined that the root mean square error was 

reduced by 39% after the radar was adjusted using the MFB approach. Wilson and 

Brandes (1979) discovered large discrepancies (greater than 60% difference) between 

rain gauge measurements and radar measurements for severe rainfall events in Oklahoma, 

and determined that by applying a simple MFB correction scheme this discrepancy 

decreased by 24%. Borga (2002) used radar corrected with MFB for stream flow 

predictions in the Brue catchment, England, and found that corrected rainfall increased 

model efficiency (i.e., Nash-Sutcliffe efficiency) by up to 30% as compared to radar only 

rainfall. Many further studies have attempted to combine MFB correction with other 

merging methods to generate rainfall estimates at a greater degree of accuracy (see e.g., 

Borga et al. 2002; Jayakrishnan et al. 2004; Kalinga and Gan 2006; Krajewski et al. 2010; 

2011; Looper and Vieux 2012; etc.).  

2.4.1.2 Brandes spatial adjustment 

Brandes spatial adjustment (BSA) is part of a broader category of local bias correction 

schemes. Local bias correction schemes are similar to MFB correction in that the rain 

gauges represent the true rainfall accumulation. However, where MFB assumes that the 

radar biases are evenly distributed across the entire spatial domain, BSA assumes that the 

biases are spatially-dependent. First proposed by Brandes (1975), BSA sought to 

distribute correction factors across the radar field. Brandes (1975) proposed the use of the 

Barnes objective analysis scheme (Barnes 1964), a scheme based on the assumption that 

“the two dimensional distribution of atmospheric variables can be represented by the 

summation of an infinite number of independent waves” (Barnes 1964, p. 397). BSA uses 

a distance weighting scheme with a smoothing factor to determine the influence of a 

known data point on the interpolated value of a specific radar bin. Proximity controls the 

influence: the closer the known data point is to the unknown data point, the greater the 

influence of the known data point. The method determines the value at unknown points as 

a sum of the determined weights. The technique is a combination of a surface fitting and 

weighted averaging interpolation methods.  
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Brandes (1975) suggested two iterations through the objective scheme in order to develop 

appropriate correction factors. The following four steps are taken to determine the 

correction factors at each radar bin. 

(1) The correction factors are calculated at each rain gauge location based on a ratio 

between the radar estimations and rain gauge accumulations. Similar to the MFB 

method the radar measured at the gauge is taken as the spatial integration of 

rainfall for the radar bin above the rain gauge. The correction factors (C) for each 

rain gauge location are obtained at a set time step (e.g., hourly, daily, etc.) using: 
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(2) The weights (WT) for each radar bin i from each gauge location are determined 

by: 
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where d is the distance between the gauge and the centroid of bin i, and EP is a 

smoothing factor based on the rain gauge network density. 

(3) The correction factors are interpolated across the radar rainfall grid, using two 

passes (F1 and F2) of the multi-pass Barnes interpolation (Barnes 1964), 

determined by: 
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where Di  is the difference between the initial correction factor and the correction 

factor following first pass: 

 
iii FCD ,1 . (8) 

(4) The spatially interpolated correction factors at each bin are multiplied by the radar 

rainfall as: 

 ))(( 2,, FRR ioldinew  , (9) 

 

where Rnew,i is the new corrected precipitation value at bin i, and Rold,i is the 

original rainfall value measured at bin i. 

BSA has been demonstrated in numerous studies to reduce estimated rainfall 

accumulation error. Wilson and Brandes (1979) analyzed the effect of MFB and BSA on 

the accuracy of radar rainfall estimates in Oklahoma, USA. These authors observed that 

the root mean square error in radar rainfall estimates was reduced from 43-55% without 

adjustment to 18-35% with a MFB adjustment and 13-27% with BSA, demonstrating that 

BSA provided considerable improvement in the accuracy of radar estimates and 

improved performance over MFB correction. Using the BSA method to correct radar 

derived rainfall for use in a distributed hydrological model, Kouwen (1988) observed an 

improvement in the radar-corrected simulated flows against using rain gauge or radar 

only rainfall accumulations. Looper and Vieux (2012) analyzed the effect of using radar 

rainfall adjusted with BSA versus rain gauge only rainfall in a fully distributed 

hydrological model for flood forecasting purposes in San Antonio, Texas, USA, 

observing that correlation between observed and predicted flows increased with the use 

of the BSA merging method.  

2.4.1.3 Local bias correction with ordinary kriging 

Local bias correction with ordinary kriging (LB) applies many of the same concepts 

identified for the BSA method. This method was first proposed as a technique for 

spatially distributing gauge-radar correction factors over the entire radar domain. The 

difference between the LB and BSA techniques lies in the distribution of the correction 
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factors. Where Brandes (1975) proposed using the Barnes objective analysis scheme 

(Barnes 1964) to distribute the correction factors in two dimensions for BSA, LB adopts 

the geostatistical method of ordinary kriging to distribute the correction factors over the 

radar spatial domain. Kriging is an optimal interpolation technique which applies a 

weighted moving average to produce the best local estimate of a regionalized variable 

(Babish 2000). Kriging is able to take into account a model of the covariance of the 

spatial data structure. In this case, the regionalized variable is the correction factor at the 

gauge location which describes radar bias at discrete locations across the radar field (Seo 

and Breidenbach 2002). Babish (2000) provided a simple explanation of kriging with the 

following two parts: 1) the semivariance calculated between each of the regionalized 

variables is used to generate the shape of the variogram (which displays the variance 

between regionalized variables as a function of distance); and 2) the variogram is then 

used to determine the weights needed to define the effect of the regionalized variables on 

the interpolation. A full explanation of ordinary kriging can be found in Wackernagel 

(2003). 

The following steps summarize how the correction factors at each radar bin for the LB 

correction technique are determined.  

(1) The correction factors (obtained at a set time step) are calculated at each rain 

gauge location based on a ratio between the radar estimations and rain gauge 

accumulations (Eq. 4). Identical to the MFB and the BSA scheme, the radar 

measured at the gauge is taken as the spatial integration of rainfall for the radar 

bin above the rain gauge.  

(2) A variogram is developed to explain the spatial correlation as a function of the 

inter-station distances. From this variogram, kriging weights are then determined 

for each interpolated location. The weights are then used to develop the unknown 

correction factors at the interpolated bin locations.  

(3) The new grid of correction factors are multiplied by the original radar values to 

obtain the new corrected rainfall field. 
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James et al. (1993) analyzed the performance of the LB merging method against BSA and 

rain gauge only data in a hydrological model for the Yockanookany watershed in 

Mississippi, USA. Their analysis examined the effect of the calibrated radar estimates on 

modelled hydrograph accuracy. The authors found that the LB and BSA merging 

methods produced superior results in terms of root mean square error as compared to rain 

gauge only data. While LB and BSA both produced improved results, neither method 

proved superior.  

2.4.1.4 Range dependent bias correction 

The range dependent bias correction method assumes that radar biases are a function of 

distance from the radar tower (Michelson and Koistinen 2000). As mentioned above, the 

accuracy of radar estimates deteriorates with distance from the radar tower due to 

overshooting of the beam, beam broadening, VPR and beam attenuation (Creutin et al. 

2000). Michelson et al. (2000) proposed a method which equates the rain gauge to radar 

ratio as a function of distance, where the relationship is expressed in log-scale and the 

range is approximated by a second-order polynomial whose coefficients are determined 

through observation and fitted using least squares fit. The correction factor  RDAC  is 

determined from: 

   cbrarC R DA  2l og , (10) 

where r is the distance from the radar tower to the radar bin, and a, b and c are 

coefficients determined through observation and fitted using least squares fit (Michelson 

and Koistinen 2000).  

The range adjustment scheme has been shown to be best applied in combination with 

other merging methods (see e.g., Michelson and Koistinen 2000; Todini 2001; 

Goudenhoofdt and Delobbe 2009). For instance, Michelson and Koistinen (2000) 

examined the effect of combining range dependent bias correction with BSA in the Baltic 

Sea Region, finding that correlation with an independent gauge network improved 

substantially as compared to unadjusted radar. Goudenhoofdt and Delobbe (2009) used 

the methodology of Michelson and Koistinen (2000) and came to similar conclusions, 
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observing a substantial decrease in the mean absolute error between adjusted radar and 

unadjusted radar. 

2.4.2 Error variance minimization techniques 

Error variance minimization techniques attempt to eliminate the bias present in radar 

accumulations, while minimizing the variance between the two measurements. With 

minimization of error variance both radar and rain gauges are assumed to be subject to 

systematic and random errors that cause the difference between the measurements. 

Following Wang et al. (2013) error variance minimization techniques are based on the 

assumption that the error field can be fitted with a mathematical model. Four gauge-radar 

merging methods categorized as error variance minimization techniques will be discussed 

separately below. 

2.4.2.1 Bayesian data combination 

The Bayesian data combination (BDC) is used not only as a method to eliminate the bias 

found in radar accumulations by forcing it to the rain gauge data, but also to minimize the 

variance between the two measurements (Todini 2001). It also assumes that a rain gauge 

cannot be directly compared to the integration of radar pixels of over 1 km2. Todini 

(2001) proposed the technique to krige the gauge estimates to fit the same grid as the 

radar grid. According to Todini (2001), the difference between radar and interpolated rain 

gauge estimates is assumed to be an intrinsic random field, which can be characterized by 

an experimental variogram. As outlined by Todini (2001), the following steps are 

performed to apply the BDC merging method. 

(1) The rain gauge estimates are block-kriged to fit the radar grid. The difference 

between the two measurements at each grid location is taken.  

(2) The error field is fitted with an experimental variogram to develop a smoothed 

error field.  

(3) A Kalman filter approach is applied to combine the kriged gauge estimates with 

the modelled error variogram in a Bayesian framework. 
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Todini (2001) examined the reduction in bias and variance using the BDC merging 

method in the Reno catchment of Italy, and observed a substantial reduction in variance 

from the uncorrected radar accumulations. Wang et al. (2013) tested BDC against both 

uncorrected radar and radar corrected with MFB for an urban catchment in London, 

England. These authors determined a substantial reduction in the root mean square error 

for both correction methods against uncorrected radar, and a further improvement in root 

mean square error for BDC compared to the MFB merging method. 

2.4.2.2 Conditional merging (kriging with radar based error) 

Conditional merging (also known as kriging with radar based error) uses kriging to 

extract the optimal data from each observation set (Pettazzi and Salson 2012). Established 

by Sinclair and Pegram (2005), the process is based on the assumption that the radar 

observation produces a true field of unknown values, while the rain gauges produce an 

unknown field of true values. The spatial structure of the observed field is based on the 

radar data and the rain gauge data is fitted into this field using ordinary kriging (described 

above), thus combining the strengths of each technique (Sinclair and Pegram 2005). The 

corrected field is determined by the following steps. 

(1) The radar values interpolated over each of the gauge locations are found and are 

kriged in order to create the radar kriged field (Rk).  

(2) The difference between the kriged radar field and the original radar field is taken 

to obtain a correction field with the following equation: 

       .iKiiR sRsRs   (11) 

(3) The correction field is added to the kriged rain gauge surface (Gk) to obtain the 

corrected rainfall estimates (Corr. Precip(si)) at location si by the following 

expression due to Sinclair and Pegram (2005):  

       .Precip Corr. iRiKi ssGs   (12) 

Pettazzi and Salson (2012) compared the accuracy of conditional merging with raw radar 

on an independent rain gauge network. Conditional merging was tested for a summer 

2011 precipitation event over the City of Galicia, Italy, which resulted in extensive 
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flooding. These authors observed that conditional merging was able to substantially 

reduce mean absolute error and root mean square error in comparison to raw radar data. 

Kim et al. (2008) conducted a similar study, examining the effect of conditional merging 

on the accuracy of generated stream flows from a fully-distributed hydrological model in 

the Anseong-cheon basin in South Korea. Four approaches of rainfall estimation were 

used: 1) kriged rain gauge only; 2) radar data alone; 3) radar corrected with MFB; and 4) 

rainfall corrected using conditional merging. Kim et al. (2008) determined that 

conditional merging provided predicted stream flows that had the lowest mean absolute 

error, root mean square error, normalized peak error and peak timing error, in comparison 

to observed stream flows.  

2.4.2.3 Kriging with external drift 

Kriging with external drift (KED) belongs to a collection of hybrid non-stationary 

geostatistical methods that use auxiliary information to improve spatial prediction (Hengl 

et al. 2003). In this technique the rain gauge data is used as the primary regionalized 

variable and the radar data is used as the auxiliary information (Erdin 2009). KED is 

similar to ordinary kriging, except the mean is now a deterministic function of the radar 

field. The rainfall (P) at location i,j can then be modelled by: 

 
jijiji zRP ,,,   , (13) 

where  and  are the intercept and slope of the linear trend based on the radar data and 

jiz ,
 is the random process approximated locally by the regionalized rain gauge variable. 

Therefore, 
jiji R ,,  is the deterministic part of the kriging scheme (drift parameter) 

modelled by the radar data. For more information on KED refer to Wackernagel (2003). 

Erdin (2009) investigated the accuracy of applying KED for an extreme rainfall event 

over Switzerland. In comparison with LB and radar only rainfall, Erdin (2009) concluded 

that both KED and LB outperformed raw radar data alone, with KED exhibiting the 

greatest accuracy in determining rainfall accumulations. LB, however, outperformed 

KED at establishing the spatial structure of the rainfall event. Schuurmans et al. (2007) 

compared KED to ordinary kriging of rain gauge data over the Netherlands and found 
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that by taking into account radar as secondary information, KED produced more accurate 

rainfall estimates, particularly over larger areas.  

2.4.2.4 Statistical objective analysis 

Statistical objective analysis (SOA), first proposed for the combination of rain gauge and 

radar data by Pereira et al. (1998), takes advantage of the optimal interpolation equations 

of Gandin (1965) to generate a corrected field of rainfall estimations. The optimal 

interpolation equations minimize the expected final error variance. SOA is a 

computationally intensive merging method (Goudenhoofdt and Delobbe 2009) which 

computes precipitation estimates at a grid point as a weighted linear function of a 

background guess corrected by observations. For the case of a rainfall field generated by 

radar and rain gauges, Pereira et al. (1998) proposed the use of radar as the background 

field to be subsequently corrected using rain gauges as the observations. The final 

precipitation field is generated following: 

 



Pa xi,yi  Pr xi,yi  wik Pg xk,yk  Pr xk,yk  
k1

K

 , 
(14) 

where Pa  ii yx ,  is the final analysed precipitation at the grid point i, Pr  ii yx ,  is the radar 

rainfall estimate at grid point i, wik is the posteriori weight at grid point i based on rain 

gauge location k, Pg  kk yx ,  is the rain gauge estimate at rain gauge k, Pr  kk yx ,
 
is the 

radar rainfall estimate at rain gauge location k, and x and y are coordinates. The SOA 

scheme generates weights which minimize the expected error variance of the final 

precipitation field using the following linear system for the generation of the system of 

weights: 

 




K

l

lkia W
1

2 1  , 
(15) 

where ki  is the background cross correlation between grid point i and rain gauge 

location k, 2

a  is the normalized background error and Wl is a posteriori weight.  For a 

full review of the derivation of the SOA equations, see Daley (1991).  
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Gerstner and Heinemann (2008) investigated the effect of using SOA on an hourly 

temporal resolution to determine the influence of SOA on the accuracy of rainfall 

estimations in Western Germany. These authors found that in 78% of the comparisons 

between SOA merged rainfall estimations and raw radar alone, there was a marked 

improvement in the root mean square error. This improvement resulted in a reduction of 

48% in the root mean square error averaged over the 8 month study period. Kalinga and 

Gan (2006) studied the effect of using SOA to merge rain gauge and radar rainfall 

estimates on modelled stream flow accuracy from a semi-distributed model in the Blue 

River basin of south central Oklahoma. These authors concluded that the use of SOA as 

compared to raw radar alone substantially increased model efficiency (Nash-Sutcliffe 

efficiency), particularly during stratiform rainfall.  

2.5 Selection of appropriate gauge-radar merging methods 

The selection of appropriate gauge-radar merging methods is influenced by several 

location-specific environmental, hydrological and operational factors. These factors can 

influence the reliability of radar estimates and performance of gauge-radar merging 

methods and include: 

(1) rain gauge network density; 

(2) climate and storm characteristics; 

(3) proximity of the radar tower; 

(4) basin response time; and 

(5) time-step of adjustment. 

In the selection of an appropriate rainfall estimation technique it is important to 

understand the influence of the above factors on the uncertainty of the rainfall estimate. 

These factors are inter-related with each other which makes quantifying the exact 

numerical uncertainty on the final accuracy a difficult task. Therefore, in the selection of 

an appropriate estimation technique, all factors need to be considered. Furthermore, the 

diversity of the geographic locations in studies reported in the literature makes 

comparison of the merging methods difficult and presents an obstacle for establishing 

best practices. This section discusses these influencing factors separately, summarizes 



28 
 

 

 

previous attempts to compare various merging methods and identifies opportunities for 

future research.   

2.5.1 Influencing factors 

Rain gauge density can play a large role in the assessment and accuracy of gauge-radar 

rainfall estimates. In general, there are three main conclusions determined through a 

sensitivity analysis of gauge density. First, studies conducted in basins with a high 

density of rain gauges often conclude that rain gauge estimates alone outperform gauge-

adjusted radar. This is due to the ability of the high density rain gauge network to 

characterize the spatial variability in the rainfall field. For example, Goudenhoofdt and 

Delobbe (2009) determined that rain gauges alone had greater accuracy than MFB and 

range dependent bias correction at densities greater than one gauge per 330 km2 and 250 

km2, respectively. The density in the study was decreased to a minimum of one gauge per 

175 km2, where it was found that even at this density spatial adjustment and error 

variance minimization methods still provided better accuracy than rain gauges alone. 

Secondly, changes in density affect individual merging methods differently. 

Goudenhoofdt and Delobbe (2009) found that the effect of gauge density varied between 

gauge-radar merging methods, with a decrease in density having the largest effect on 

spatial adjustment methods and error variance methods, while having a less pronounced 

influence on MFB reduction and range dependent bias correction. Finally, the increase in 

accuracy due to increasing the gauge density is not linear. Substantial increases in 

accuracy occur initially as gauge density increases; however, at a certain gauge density 

the increase in accuracy asymptotically approaches a finite value. Biggs and Atkinson 

(2011) observed that while the role of rain gauge density is substantial, the greater 

accuracy provided due to increases in network density yields at a certain point. In a 2065 

km2 basin of the Severn River, England, these authors observed that the use of six gauges 

for radar correction provided similar accuracy to using 12 gauges. The accuracy 

decreased with less than six gauges, demonstrating the influence of gauge network 

density on the accuracy of gauge-radar merging methods. It is important to note, 

however, that the results from these studies are not transferable between basins as the 

effective density is influenced by basin topography, climate, gauge distribution, temporal 
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time-step of adjustment and merging method selected. Therefore, it is recommended that 

a sensitivity analysis be conducted in order to identify the effect of gauge density on 

rainfall estimations for any particular basin.  

Numerous studies (see, e.g., Stellman et al. 2001; Kalinga and Gan 2006; Smith et al. 

2007; Erdin 2009; etc.) indicate that storm type has a substantial influence on the 

accuracy of gauge-radar merging methods. These studies reveal that radar tends to under-

estimate rainfall during large magnitude convective events and over-estimate stratiform 

rainfall. Smith et al. (2007) examined the effect of using radar corrected rainfall rates for 

flash flood forecasting in a small urban catchment in Baltimore, Maryland, USA. The 

rainfall rates were corrected on an event-basis using the MFB correction method. 

Individual event biases (gauge to radar ratio) were identified, ranging from 0.41 (over-

estimation) to 2.77 (under-estimation). According to these authors, the variation in 

individual event biases varied as a result of storm type and magnitude, with convective 

storms producing higher biases at larger magnitudes than during stratiform rainfall. Smith 

et al. (2007) concluded that correcting based on storm type considerably increased 

correlation between observed and predicted flood flows. From the analysis of the 

variation in accuracy due to storm types, it is evident that the addition of radar rainfall 

estimates is beneficial for the estimation of rainfall from convective cells, and provides 

little to no added benefit in the estimation of stratiform rainfall from frontal events. This 

is due to the timing and distribution of the rainfall and its effect on the error of rain 

gauges alone. Convective cells are characterized by localized high intensity rainfall of 

short duration, which are often mis-characterized by rain gauges but picked up by radar, 

whereas, stratiform rainfall is characterized by widespread low intensity rainfall of 

relatively long duration (National Oceanic and Atmospheric Administration [NOAA] 

2015), which rain gauge networks can characterize. Therefore, in basins in which high 

intensity localized rainfall events are a concern, the addition of radar for rainfall 

estimation can substantially increase the accuracy of the estimated rainfall field. 

The proximity to the radar tower also influences the accuracy of the radar estimate. The 

accuracy of radar rainfall estimates deteriorate with distance from the radar tower. This is 

due to a variety of errors including beam broadening, beam overshooting, beam 
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attenuation and the area of integration. According to Michelson and Koistinen (2000), at 

distances greater than 50 km from the radar tower, the addition of range dependent bias 

correction increases the accuracy of the rainfall estimates. Therefore, for basins which 

extend beyond 50 km from the radar tower a range dependent bias correction scheme 

should be introduced to mitigate the error due to range related biases.  

The need for radar in QPE is dependent on the basin characteristics related to the 

response time of the basin being modelled. The addition of radar is beneficial in basins 

with response times on the order of hours (Gjertsen et al. 2004). This is because these 

basins are greatly affected by high intensity localized events that require rainfall 

estimation on small spatial and temporal scales. This generally includes basins which are 

smaller in size with surfaces conducive to generating high volumes of excess runoff in 

short periods of time (i.e., urban, clays, saturated conditions, etc.). For larger basins with 

slower response times the addition of radar has been demonstrated to be less beneficial, 

as flows are shown to be less affected by short-duration high-intensity rainfall. In 

instances where larger time-steps (greater than 24 hours) can be used to accurately model 

basin response, rain gauges alone can often accurately quantify the rainfall field (Gjertsen 

et al. 2004). While the addition of radar has been demonstrated to be beneficial in 

modelling small basins, larger basins can also benefit from the addition of radar in remote 

areas where rain gauge density is extremely limited. 

The temporal resolution of rainfall estimation plays a substantial role in the accuracy 

obtained in radar and rain gauge accumulations. Rainfall accumulations with a high 

temporal resolution are often required for flash flood modelling. According to Berne and 

Krajewski (2013, p. 357): “because precipitation exhibits a strong spatial and temporal 

variability over a large range of scales, the hydrological research and operational 

communities need more reliable precipitation estimates and forecasts with increasingly 

high resolution (i.e., a few kilometers-minutes and below) to adequately capture the 

dynamics of precipitation events in space and time.” The time-step required for modelling 

can affect the use of radar in hydrological modelling for two main reasons. First, altering 

the time-step of adjustment is important due to the spatio-temporal sampling errors 

caused by the assumption that gauge and radar measurements are valid for the same 
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locations in time and space (Kitchen and Blackall 1992). Rain gauges provide point 

measurements while radar provides a volumetric integration of the atmosphere at 

significant heights above the rain gauge. The direct comparison between the two data 

sources at different elevations causes spatio-temporal sampling errors. The magnitude of 

these errors is affected by the temporal scale at which the accumulation comparison is 

made, with the comparison naturally becoming stable for longer time-steps, as the error 

fluctuations are averaged out over time. By increasing the time-steps, however, the 

comparisons may miss out on the short-term variations due to variable meteorological 

conditions that may, in turn, affect the accuracy of the adjusted radar estimate. It is 

important to find a balance between the two error sources (Gjertsen et al. 2004). Spatially 

dependent bias correction methods are most affected by a change in the time-step. This is 

due to the fact that at shorter time-steps variations between the gauges and radar are more 

pronounced, leading to large variations in the correction factors at individual gauge 

locations. These large variations, however, tend to be averaged out in the MFB method 

and in error variance methods where more weighting is placed on gauge observations in 

situations with large error fluctuation between gauge and radar. Secondly, gauge 

estimates and gauge adjusted radar converge to similar levels of accuracy as the time-step 

required increases above 24 hours (Gjertsen et al. 2004). As the time-step increases above 

24 hours, the spatial and temporal advantages offered by radar decrease in importance as 

the error due to spatial and temporal variations in gauge estimates are averaged out. The 

vast majority of the studies presented in this Chapter have identified case studies in which 

the gauge-radar merging schemes were conducted on daily or event based temporal 

resolutions. This resolution is often too coarse for operational purposes in basins with 

quick response times. Further research into the effect of gauge-radar merging methods on 

hydrological models at an hourly resolution (or less) is still required. 

The inclusion of radar data presents an additional issue in terms of data management and 

computational requirements. In selecting an appropriate merging method it is important 

to consider computational requirements. Radar data sets are large and efficiency is 

required in data collection and storage. Manipulation of the data sets with the 

incorporation of rain gauges can be computationally intensive. More complicated 



32 
 

 

 

merging methods such as the error variance methods require greater computational effort 

than simple MFB and local bias correction methods. 

2.5.2 Comparison of gauge-radar merging methods 

No previous study has provided an in-depth comparison of all gauge-radar merging 

methods discussed in this Chapter. Case studies are primarily done to assess the viability 

of implementing one of the merging methods, comparing the corrected rainfall against 

rain gauge only data or radar only data. Several studies have compared various merging 

methods in particular geographic locations (see, e.g., Kim et al. 2008; Goudenhoofdt and 

Delobbe 2009; Erdin 2009; etc.). The results of these studies tend to be similar to the 

conclusions of Goudenhoofdt and Delobbe (2009), who compared seven major merging 

methods in a study conducted in the Netherlands. The mean absolute error and the root 

mean square error were used as measures of accuracy to compare the daily estimated 

corrected rainfall values against an independent rain gauge network. Goudenhoofdt and 

Delobbe (2009) examined: 1) MFB correction; 2) range dependent adjustment; 3) static 

local bias correction and range dependent adjustment; 4) BSA; 5) ordinary kriging of rain 

gauge data only; 6) conditional merging (kriging with radar based error correction); and 

7) KED. These authors determined that all correction and merging methods outperformed 

raw radar alone. In terms of the greatest accuracy, KED was determined to provide the 

best representation of the rainfall based on spatial distribution and accumulated rainfall 

depths. Goudenhoofdt and Delobbe (2009) concluded that error variance minimization 

methods outperformed bias correction schemes due to the use of optimal interpolation to 

combine the two data sets. This took into account the covariance structure of the data, 

reducing bias and minimizing variance. The variability of results from the studies 

presented in the literature make drawing general conclusions on gauge-radar merging 

methods difficult. Furthermore, the factors that influence accuracy (described above) 

make the selection of an estimation technique for operational purposes challenging. With 

geographic and operational concerns playing a key role it is important to test each 

individual merging method to assess which best suits the environment and constraints of 

a particular location. Few studies examine the wide range of available gauge-radar 

merging methods for a variety of different scenarios (i.e., temporal resolutions). 
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Therefore, the effect of each of the influencing factors on different merging methods has 

not been determined. Due to the variability in rainfall fields, watershed geography, rain 

gauge networks and radar environment, it is challenging to establish standard practice 

regarding gauge-radar merging methods. The lack of studies conducted in Canada using 

EC radar, particularly those conducted at high temporal resolutions (e.g., on an hourly 

basis), makes further assessment necessary. Accomplishing this would determine whether 

EC radar merged with rain gauge data can be applied on an hourly basis to generate 

accurate spatially-distributed rainfall fields for use in hydrological models.  

2.6 Opportunities and recommendations 

Several radar related challenges persist that, if answered, could considerably improve the 

quality of radar estimates in hydrological modelling. First, the development of measures 

to improve radar estimates in mountainous terrain environments is required, as the 

interaction between this type of terrain and the atmosphere increases rainfall pattern 

variability (Berne and Krajewski 2013). Second, the incorporation of snow algorithms is 

required to enable the continual determination of snowpack. This is particularly important 

for northern regions such as Canada, where spring melt is the dominant source of 

flooding events. Third, merging methods need improvement at shorter time-steps in 

heavily urbanized basins where rainfall estimates are required on the order of minutes in 

order to quantify the predicted flow in the appropriate time frame. Currently, merging 

methods have been shown to improve accuracy mainly at time-steps of one hour and 

greater. However, at time-steps less than one hour, accuracy approaches that of raw radar 

alone due to spatio-temporal sampling errors involved in the direct comparison of radar 

and gauges. Quantifying the spatio-temporal sampling uncertainties at shorter time-steps 

will aid in developing greater accuracy in rainfall estimation techniques. 

Recently, greater focus has been put on the incorporation of radar and rain gauge data 

into QPE ensemble products with satellite imagery and numerical weather models. The 

incorporation of radar-based rainfall estimates as input can make substantial 

improvements in QPE ensemble products. These products rely on empirically-based 

modelling of the uncertainties associated with the individual estimation techniques to 

develop a product in which the uncertainty is known. A recent example is the 
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development of the Canadian Precipitation Analysis (CaPA) system in Canada. The 

current operational form of CaPA was released in 2011 and uses the optimal interpolation 

scheme as outlined in Daley (1991) to adjust rainfall forecasts provided by the Global 

Environmental Multiscale (GEM) model based on ground observations from rain gauges 

(Mahfouf et al. 2007). The current operational configuration of the CaPA system does not 

use radar information as part of the data assimilation process. Initial testing of the CaPA 

system used radar QPE as observation; however, the inclusion of radar decreased the 

accuracy of the estimates due to the numerous errors present in radar QPE (Fortin et al. 

2014). This led to a significant upgrade to the unified radar processor (URP) software 

used to convert reflectivity at Canadian radar stations to rainfall. The current 

experimental version of CaPA includes radar QPE. The experimental version was 

compared against the operational system during a test period in the summer of 2013. 

Using two categorical scores (frequency bias indicator and the equitable threat score), 

substantial increases in accuracy (in locations within 120-125 km of an EC radar tower) 

of the generated rainfall grid were observed with the addition of radar observations 

(Fortin et al. 2014). While rainfall ensemble products such as the CaPA system are able 

to use the available information to provide accurate rainfall estimates, the spatial and 

temporal resolution are often coarse. This can make implementation into hydrological 

models at the basin-scale and within “flashy” watersheds challenging. Further research is 

needed to increase the temporal and spatial resolution of rainfall ensemble products such 

as CaPA in order to make greater use of such products at the basin-scale. 

Although in certain circumstances the use of radar is known to increase the accuracy of 

rainfall estimates (and corresponding confidence in hydrological modelling output), 

operational use of radar in hydrological modelling remains limited. This Chapter provides 

a comprehensive summary of the use of gauge-radar merging methods which will assist 

in the implementation of radar products in operational circumstances. While numerous 

studies have revealed that the inclusion of radar in hydrological modelling can improve 

the accuracy of simulated stream flows, few Canadian studies have been conducted at a 

basin scale to assess the viability of using gauge-radar rainfall estimates from EC’s radar 

network. Such research is of the utmost importance in order to advance the use of radar-

based ensemble products in operational applications. 
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Chapter 3 

3 Description of study area, data and gauge-radar 
merging methods 

The evaluation of gauge-radar merging methods is completed using the Upper Thames 

River basin, located in southwestern Ontario, Canada, as a case study. The following 

Chapter provides a description of the study area as well as the data used in the analysis of 

rainfall accumulations (Chapter 4) and hydrological modeling results (Chapter 5). A 

description of the four merging methods selected for the analysis is also included. 

3.1 Description of study area 

The UTRb was selected as the study area for this research (see Fig. 1). Water resources in 

the UTRb are managed by the Upper Thames River Conservation Authority (UTRCA) in 

conjunction with provincial and local governments. The UTRCA provides a large variety 

of services, including provision of information to the public regarding land use planning, 

flood impacts, drought conditions and water quality. The UTRb, comprised of an area of 

3421 km2, receives an annual average precipitation of 955 mm, of which, approximately 

40% is carried downstream by the Thames River (Wilcox et al. 1998). The Thames River 

is comprised of three main branches, the North, Middle and South Branch. The North 

Branch begins north of Mitchell and flows south through St. Mary’s. The Middle Branch 

begins southwest of Tavistock and flows through Thamesford before joining the South 

Branch east of Dorchester. The South Branch starts east of Tavistock and flows 

southwest through Woodstock. The North and South branches meet at the Forks of the 

Thames in the City of London. From there the river flows southwest exiting the boundary 

of the UTRb in Delaware. The Thames River is fed by three main tributaries: the Avon 

River, Trout Creek and Medway Creek. Three major flood control reservoirs regulate 

flows along the Thames River, protecting major urban centres from potential flooding 

impacts. The flows within the Thames River vary substantially both seasonally as well as 

annually, depending on climatic conditions (Cunderlik and Simonovic 2004). The soil of 

the UTRb is comprised of mainly silt and clay. These soils exhibit low infiltration and are 

conducive to ponding and production of excess runoff during rainfall events (Wilcox et 
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al. 1998). Agriculture dominates the landscape of the UTRb, with 78% of the watershed 

being cleared for agricultural purposes. Other major land cover includes urban and 

natural vegetation, which make up 8%, and 13% of the watershed, respectively.  

Frontal rainfall patterns generally occur November through April in the UTRb, while 

high intensity convective cells dominate during the summer months (June through 

August). The remainder of the year is categorized by a combination of frontal and 

convective systems. Generally, flooding events in the UTRb result from a combination of 

frontal rainfall and snowmelt in the months of March and April. However, intensive 

summer storms (which are difficult to predict and quantify), such as the floods of 

September 1986, and July 2000, can produce peak flows that exceed those generated by 

snowmelt (Cunderlik and Simonovic 2004). Currently, the UTRCA relies on a network of 

rain gauges as input into a semi-distributed hydrological model as well as for quantitative 

observational purposes. The UTRCA also relies on radar for qualitative purposes. With 

the vast majority of the watershed being cleared of natural vegetation for agriculture and 

urban development, extreme localized rainfall events have a tendency to cause localized 

flooding in the basin (UTRCA 2012).  

 

Figure 1: Upper Thames River basin in southwestern Ontario, Canada 
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3.2 Description of data 

3.2.1 Rain gauge network 

The UTRCA maintains and operates 20 tipping bucket (TB) rain gauges in the UTRb. 

Each tip of the bucket is based on rainfall accumulations of either 0.20 mm or 0.25 mm. 

The majority of the rain gauges record at an hourly resolution with a few gauges 

recording at resolutions of 15 minutes. The rain gauge network distribution follows no 

uniform pattern. Due to ease of installation and maintenance rain gauges were installed to 

be co-located with stream gauges. Therefore, as seen in Fig. 2, there is an increase in 

density of the rain gauge network around major urban centres, which are primarily 

located in the southern portion of the watershed (in particular around the City of London). 

The poor uniformity of the rain gauge network influences the errors observed during the 

spatial interpolation of the point data. Following Looper and Vieux (2012) the rain 

gauges undergo quality control before being implemented in the various merging 

methods, where the bias between the rain gauge and the radar accumulation at the gauge 

location is calculated for each rain gauge. The rain gauge is removed as an outlier if the 

bias is outside two standard deviations of the mean bias.  

3.2.2 Radar data 

Radar data are provided for the Exeter radar station (see Fig. 2) by EC through the 

Canadian Meteorological Centre (CMC). The radar data are not yet widely available and 

are provided as part of a collaborative research effort. The radar data are part of EC 

experiment number 28 of the experimental Canadian Precipitation Analysis (CaPA) 

system (version 2.4). CaPA is a rainfall estimation program that combines rainfall 

forecasts, rain gauges and radar to produce six hour estimates of rainfall accumulations 

on a 10 x 10 km grid across North America. Radar data are processed and corrected using 

the Unified Radar Processing (URP) software. Before being issued for the study the radar 

product undergoes substantial correction, including correction for: attenuation, clutter 

removal, beam blocking and anomalous propagation. The data are provided in a constant 

altitude plan position indicator (CAPPI) view set in Cartesian coordinates at an altitude of 

1.5 km. The radar data have a spatial radial resolution of one km by one degree and a 
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temporal resolution of one hour. The Exeter radar station has a Doppler range of 120 km 

covering the entire extent of the UTRb. The data are processed and georeferenced before 

being applied using ArcGIS (version 10.2). Additional details on the radar tower are 

displayed in Table 2. 

 

Figure 2: Location of rain gauges and radar station in the Upper Thames River 

basin 

Not all rain gauges in the basin are able to be used in this study. A woodlot located in 

close proximity to the radar station generates a shadow zone as illustrated in Fig. 3, 

extending out from the radar station and resulting in a region of unknown radar rainfall. 

Two rain gauges located within the shadow zone cannot be directly compared to the radar 

rainfall estimates, and are therefore omitted from this study. 
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For the remainder of this thesis the term “raw radar” is used to describe the corrected EC 

radar product unadjusted by ground based rain gauges. This allows for distinction 

between unadjusted and adjusted radar data.  

Table 2: Characteristics of Exeter radar station 

Radar station Exeter 

SiteID WSO 

Location Exeter, Southern Ontario 

Latitude 43.3703 

Longitude -81.3842 

Ground Height 303 masl 

Measurement cycle 10 min 

Frequency band C (5.6 cm) 

Doppler mode Yes 

 

 

Figure 3: Radar coverage shadow zone over the Upper Thames River basin 
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3.2.3 Stream flow data 

The UTRCA in conjunction with Environment Canada (EC) measures stream flows at 23 

locations within the UTRb, as displayed in Fig. 4. The stream gauges (SG) are maintained 

and operated by EC through the Water Survey of Canada. These stations measure water 

levels along main channels within the basin, largely in close proximity to damage centres. 

The measured water levels are converted to flow rates (in cubic meters per second) using 

EC calibrated rating curves (Lane 1999). Flow rates are determined at an hourly 

resolution. 

 

Figure 4: Stream gauge locations in the Upper Thames River basin 

3.3 Gauge-radar merging methods 

Four merging methods were selected for the analysis in Chapters 4 and 5. These methods 

applied were selected based on their prominence in literature, their widespread 
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operational use in other regions and their ability to be implemented in near-real time in 

the UTRb (Gjertsen et al. 2004; Goudenhoofdt and Delobbe 2009; Berne and Krajewski 

2013). For this analysis, a mean field adjustment method (MFB), two spatially-dependent 

adjustment methods (BSA and LB) and a geostatistical merging method (CM) are 

evaluated. See Chapter 2 for the comprehensive review and description of these merging 

methods.  

The direct comparison entails comparing the point rain gauge value with the radar pixel 

located directly above the rain gauge location. For the BSA and LB correction methods 

rain gauges recording less than 2.5 mm are not used, as minor differences between the 

observed accumulations can produce excessively large or small calibration factors 

(Brandes 1975), leading to an erroneous correction field. The LB adjustment method 

relies on ordinary kriging to distribute the correction factors generated at each rain gauge 

location. Empirical Bayesian Kriging (EBK) was also explored as an alternative to 

ordinary kriging, however, EBK was not found to improve the accuracy of the results. In 

this study a simple spherical variogram is used and the data is assumed to be isotropic. 

Other variograms explored included circular, exponential, and Gaussian, however, no 

substantial improvements were observed in accuracy. The parameters of the ordinary 

kriging spherical model are based on the models recently established by the UTRCA to 

develop rainfall fields from their rain gauge network. No transformation of the data is 

conducted and, therefore, the assumption of normality is not upheld.  
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Chapter 4 

4 Evaluation of the effect of gauge-radar merging 
methods on rainfall accumulation accuracy  

The following Chapter analyses the effect of several well-known gauge-radar merging 

methods on rainfall accumulation accuracy using Environment Canada’s (EC) corrected 

C-band radar product. The analysis in this Chapter addresses four main influencing 

factors identified in Chapter 2, including rain gauge network density, temporal resolution 

of adjustment, storm type, and range-related bias, which all have a demonstrated effect on 

the overall accuracy of gauge-radar merging methods. To accomplish this, the following 

objectives will be satisfied: 

(1) quantify the overall error of each rainfall estimation technique over the entire 

study period; and 

(2) evaluate the effect of several influencing factors (i.e., rain gauge network density, 

time-step of adjustment, storm type and proximity to the radar station) on the 

accuracy of estimated rainfall accumulations. 

4.1 Rainfall events 

Due to the availability of the EC experimental radar product the study period was limited 

to the periods 1 June 2013 to 31 August 2013, and 1 April 2014 to 31 October 2014. 

Events are selected based on the magnitude, intensity and distribution of the rainfall field 

over the UTRb. Based on Krajewski et al. (2010), the duration of a storm event was 

defined according to the time in which the first rain gauge records a rainfall amount 

greater than zero, to the time in which all rain gauges again record a value of zero. In the 

selection of rainfall events the subsequent effect of the rainfall event on flows in the 

North, Middle and South branches of the Thames River is considered. In order to select 

the rainfall events for use in the study, the hyetograph and hydrographs (such as the 

examples displayed in Fig. 5) were analysed. Rainfall events in the watershed have a 

considerable effect on stream flows in the Thames River due to the basin characteristics 

described above (Wilcox et al. 1998). For instance, the 5 September 2014 rainfall event 

depicted in Fig. 5 resulted in an increase in flows approximately 60 times baseflow 
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conditions. Only storm events that caused an increase in flows in the Thames River and 

its tributaries were selected since the end purpose of the rainfall estimates is for flood 

forecasting and warning. In total, eight events and 111 hours of rainfall were analysed in 

this study. The selected rainfall events are presented in Table 3. 

 

Figure 5: Hydrograph and hyetograph for the rainfall event of 5 September 2014 

(Mitchell stream gauge) 

Table 3: Characteristics of selected rainfall events 

Date Time (UTC) 
Duration 

(hr) 

Maximum rainfall 

intensity (mm/hr) 

28 June 2013 07:00 – 23:00 17 12.0 

31 July-August 2013 18:00 – 10:00 17 24.5 

20-21 May 2014 16:00 – 07:00 16 13.5 

7 July 2014 05:00 – 12:00 8 27.0 

8 July 2014 16:00 – 01:00 11 15.5 

27-28 July 2014 23:00 – 14:00 16 30.4 

5-6 September 2014 23:00 – 10:00 12 43.25 

10-11 September 2014 19:00 – 08:00 14 30.6 

4.2 Verification methodology 

The performance of the gauge-radar merging methods is assessed using hourly rainfall 

accumulations. The analysis of the rainfall accumulations is conducted using an 

independent verification network (IN) and verified using cross-validation (CV) in order 
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to compare the error from each verification methodology. Both methodologies are widely 

used in rainfall analysis studies (for CV see Shuurmans et al. 2006, Erdin 2009, and 

Garcia-Pintado et al. 2009; for IN see Seo and Breidenbach 2001, Kim et al. 2008, and 

Goudenhoofdt and Delobbe 2009). CV is frequently used in geostatistical contexts and 

situations where no independent gauge network is available to verify the rainfall data. CV 

involves excluding one of the rain gauge values from the adjustment process. The 

generated rainfall estimate for the excluded location is then compared against the 

observed rainfall accumulation, yielding the CV error. The IN methodology uses a series 

of independent gauges that are not used in the gauge-radar adjustment processes. The 

estimated rainfall fields from each technique are then compared to the observed rainfall 

accumulations at the independent gauge locations. Four gauges were selected for the IN. 

Based on the first assumption identified for gauge-radar merging methods, the excluded 

gauges in the CV and IN methodologies are assumed to measure the true rainfall 

accumulations at the rain gauge location. 

Following Goudenhoofdt and Delobbe (2009) only rainfall pairs greater than 1 mm were 

used in the verification. This eliminates large error ratios that may develop due to 

differences in small accumulations. Furthermore, small accumulations are largely 

irrelevant in the present work as the study is focused on flood forecasting and warning 

applications. A brief description of the error statistics used in the error analysis is 

described below. The individual error statistics were selected to assess different aspects 

of the rainfall accumulation error.  

4.2.1 Mean absolute error 

The mean absolute error (MAE) is a common error statistic found in the vast majority of 

gauge-radar merging literature (see, e.g., Borga et al. 2002; Goudenhoofdt and Delobbe 

2009; Looper and Vieux 2012; Zhu et al. 2013). The MAE calculates the average 

absolute difference between the verification rain gauge and the adjusted radar following: 
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where Gi is the verification gauge rainfall at gauge i, Pi is the adjusted rainfall measured 

at gauge i, and N is the total number of gauges. The MAE gives the average magnitude of 

residuals, placing equal weight on all individual errors. 

4.2.2 Root mean square error 

The root mean square error (RMSE) is the most common error statistic found in the 

literature for rainfall verification studies (see, e.g., Seo and Breidenbach 2002; 

Goudenhoofdt and Delobbe 2009; Biggs and Atkinson 2011; Hanchoowong et al. 2012; 

etc.). The RMSE determines the square root of the squared residuals following: 
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Since the residuals are squared before they are averaged the RMSE places greater weight 

on larger errors. This is useful in the error analysis of rainfall inputs due to the 

nonlinearity of rainfall to runoff transformations in hydrological models. Large errors in 

rainfall propagate through hydrological models causing substantial accuracy issues in 

subsequent modelled stream flows.   

4.2.3 Correlation coefficient 

The linear correlation coefficient (R) is commonly used in the comparison of rainfall 

measured by two independent sources (Erdin 2009; Biggs and Atkinson 2010). R is a 

measure of the linear relationship between two variables, which in this case is the rainfall 

measured by the verification gauge and the estimated rainfall. The correlation is 

determined following the expression:    
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where G  is the mean gauge rainfall accumulation and P  is the mean rainfall 

accumulation as measured by each estimation technique. The R value lies between +1 

and -1, with values greater than zero indicating a positive linear correlation, values equal 

to zero indicating no correlation, and values less than zero indicating negative linear 

correlation. 

4.2.4 Mean relative error 

The mean relative error (MRE) is a common error statistic used in the direct comparison 

of rainfall accumulations (see, e.g., Michelson and Koistinen 2000; Borga et al. 2002; 

Kim et al. 2008; Goudenhoofdt and Delobbe 2009; etc.). The MRE describes whether the 

rainfall accumulation estimates are generally under-estimated or over-estimated as 

compared to the verification rain gauge. The error statistic is based on the difference 

between the two measurements normalized to the total true accumulation following: 
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4.2.5 Coefficient of variation 

The coefficient of variation of the root mean square error (CV (RMSE)) is used in this 

Chapter as a normalized error statistic to assess the difference in accuracy due to 

alterations in the time-step of accumulation used for correction. This error statistic is used 

only in the temporal sensitivity analysis in the present work. The CV (RMSE) follows the 

same derivation as the standard coefficient of variation, except that the standard deviation 

is replaced with the RMSE. The CV (RMSE) is calculated as the ratio between the RMSE 

and the average value of true rainfall following: 
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4.3 Results and discussion 

Using the error statistics described above, the accuracy of each gauge-radar merging 

method is assessed and compared to determine whether a mean bias correction, spatially 

dependent bias correction or a more complicated geostatistical merging method, 

generates (on average) the best estimate of the rainfall field for an hourly time-step of 

accumulation using EC radar. The gauge-radar merging methods are also compared 

against the error calculated using raw radar data alone and rain gauge data alone. The 

spatial distribution of the rain gauge data alone is generated using ordinary kriging (RGO 

(OK)). It is important to assess whether the addition of radar provides any further benefit, 

as rain gauges alone are still used in the vast majority of hydrological modelling 

applications (Erdin 2009). The comparison of the gauge-radar merging methods against 

raw radar alone provides an indication of the ability of rain gauges to reduce biases that 

are observed in radar rainfall fields. The analysis is conducted using the IN methodology 

and then trends in the observed error are verified using CV. This verification was 

conducted in order to assess whether biases in the observed error due to the location of 

the independent gauges in relation to correction gauges alter the trends observed in the 

overall error. All observed rainfall hours were grouped together for the analysis in order 

to provide equal weighting to all hours, and to determine (on average) the errors in the 

rainfall accumulations for each merging method.   

The rain gauge network density is altered in this study to quantify the effect of gauge 

density on the accuracy of select merging methods using EC radar. The analysis will 

assess: 1) whether a decrease in gauge density affects a particular merging method more 

than others; and 2) whether the accuracy of the gauge-radar merging methods decrease to 

the level of accuracy of raw radar alone at lower gauge densities. Addressing these two 

points will assist in applying the results generated from this study to areas with different 

gauge densities. The analysis also assesses the effect of the temporal time-step of 

adjustment on the accumulation error for EC radar, as well as the effect of radar range 

and storm type errors. 



48 
 

 

 

4.3.1 Analysis of merging methods for hourly rainfall accumulations 

Fig. 6 presents the error statistics for the hourly rainfall accumulations estimated by each 

merging method for the 111 hours of analysis (i.e., all events). As shown in Fig. 6a, each 

merging method reduced the RMSE as compared to the raw radar data alone. The MFB 

approach provided the greatest reduction in RMSE, reducing the error by approximately 

27%. The BSA, LB and CM methods provided reductions in the RMSE of 20%, 16% and 

19%, respectively. The MAE of each merging method is presented in Fig. 6b. Again, 

each method reduced the error compared to raw radar alone. The MFB method provided 

the greatest reduction in MAE, reducing the error by approximately 20%, while the BSA, 

LB and CM methods reduced the MAE by 16%, 14% and 14%, respectively. Variations 

exist between the RMSE values and the MAE values, indicating considerable variability 

in the individual hourly errors. This suggests that at the hourly time-step large 

fluctuations in the error exist between the individual hours of rainfall data. This is 

primarily attributed to the spatio-temporal sampling errors brought on through the direct 

comparison of radar and rain gauges. Fig. 7 displays the MRE of each of the merging 

methods. From this figure, it is evident that each estimation technique under-estimated 

the total rainfall as compared to the verification gauge network.  

 

Figure 6: Error of all estimation techniques for hourly rainfall accumulations based 

on all events analysed: a) RMSE; and b) MAE 



49 
 

 

 

 

Figure 7: MRE of all estimation techniques for hourly rainfall accumulations based 

on all events analysed 

Rain gauge only estimations were found to display error statistics similar to those of 

merged estimates, with a 19% reduction in the RMSE compared to raw radar alone. At 

the hourly time-step only the MFB adjustment method produced rainfall estimates with 

greater accuracy than the RGO (OK), reducing the RMSE by approximately 10% as 

compared to RGO (OK). The BSA and CM methods provided rainfall estimates with 

similar magnitudes of accuracy, with a 0% difference in error as compared to the RGO 

(OK). The LB method generated an increase in error as compared to RGO (OK), 

increasing the RMSE by approximately 4%. The comparable accuracy of the RGO (OK) 

is attributed to two factors: 1) the proximity of the verification gauge to the correction 

gauge network (distances from verification gauges to correction gauges range from 4 km 

to 9 km); and 2) the rain gauge network density. The close proximity of the verification 

gauge network to the correction network limits the effect of rainfall field variability on 

the end accuracy of the RGO (OK) results. 

The comparison in rainfall accumulations between the verification gauges and each 

estimation technique is shown in Fig. 8. The MFB method provided the largest 

correlation between the observed and estimated rainfall, with an R value of 0.770, while 
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the raw radar displayed the lowest correlation, with an R value of 0.707. In general, the 

raw radar, RGO (OK) and CM methods displayed an under-estimation of the estimated 

rainfall accumulations, with the magnitude of the error increasing with increase in 

measured rainfall accumulations. The BSA and LB methods displayed the largest scatter, 

while the MFB method displayed the smallest scatter in the comparison of measured and 

estimated rainfall accumulations. An example of the qualitative differences between the 

rainfall estimation techniques can be found in Appendix A. 

Overall, as seen in Table 4 the simple MFB correction method provided the greatest 

reduction in error compared to the raw radar data and RGO (OK). The success of the 

MFB method over the spatially dependent correction methods and the more complicated 

geostatistical merging method is attributed to the temporal resolution of adjustment. As 

outlined in Gjertsen et al. (2004), at higher temporal resolutions the MFB approach 

smoothens the fluctuations that can be identified in individual gauges due to spatio-

temporal sampling errors, whereas the spatially-dependent correction methods and the 

geostatistical merging methods are prone to larger errors at smaller time-steps due to the 

presence of these fluctuations. Of the two spatially-dependent correction methods the 

BSA method provided slightly greater reductions in error as compared to the LB 

adjustment method. The geostatistical merging method provided reductions in error 

similar to those of the spatially-dependent bias correction methods. These results suggest 

that a simple mean field bias adjustment method outperforms more complicated spatial 

adjustment methods at the hourly time-step in the UTRb, indicating that increased 

complexity in gauge-radar merging methods is not warranted under these conditions. In 

general, the reduction in error observed through the adjustment of radar in this study is 

similar in magnitude to the error reduction observed by other authors using similar 

methodology but different radar products in different geographical locations (see, e.g., 

Borga et al. 2002; Kalinga and Gan 2006; Kim et al. 2008; Goudenhoofdt and Delobbe 

2009). 



51 
 

 

 

 

Figure 8: A comparison of hourly rainfall accumulations from the verification 

gauges and: a) raw radar; b) RGO (OK); c) MFB; d) BSA; e) LB; and f) CM 
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Table 4: Error statistics of all estimation techniques for hourly rainfall 

accumulations based on all events analysed 

Estimation 

technique 
RMSE MAE MRE R 

Raw radar 5.019 2.779 -0.539 0.707 

RGO (OK) 4.050 2.347 -0.256 0.726 

MFB 3.663 2.211 -0.155 0.770 

BSA 4.039 2.321 -0.205 0.738 

LB 4.221 2.383 -0.246 0.715 

CM 4.071 2.388 -0.311 0.732 

4.3.2 Error trend analysis 

The RMSE and the MAE were compared for the two verification methodologies (IN and 

CV methods) as seen in Table 5. Both methodologies presented similar trends in error in 

which the MFB method provided the greatest reduction in error as compared to raw radar 

and RGO (OK), and the BSA, LB and CM merging methods provided similar magnitudes 

of error as compared to RGO (OK). The magnitudes of error vary (between 1% and 16%) 

from the IN to the CV methods, with the CV method resulting in higher magnitudes in 

both the RMSE and MAE. The increased levels of error in the CV technique is attributed 

to the removal of gauges, as CV calculates the error by omitting a gauge from the 

correction network. Since the gauge network is not evenly distributed throughout the 

watershed, the removal of certain gauges within the network may increase the overall 

observed error. Overall, the trends observed in the error between the two methodologies 

are similar. 

Table 5: Error statistics for CV and IN for each estimation technique for hourly 

rainfall accumulations based on all events analysed 

Estimation 

technique 
RMSE (mm) MAE (mm) 

 CV IN Percent diff. CV IN Percent diff. 

Raw radar 4.776 5.019 4.8 2.730 2.779 1.8 

RGO (OK) 4.486 4.050 10.2 2.518 2.347 7.0 

MFB 4.322 3.663 16.6 2.426 2.211 9.3 

BSA 4.446 4.039 9.6 2.485 2.321 6.8 

LB 4.467 4.221 5.7 2.554 2.383 6.9 

CM 4.448 4.071 8.9 2.529 2.388 5.7 
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4.3.3 Gauge sensitivity analysis 

The accuracy of the gauge-radar merging methods depends on the density of the rain 

gauge network used in the adjustment. The only method selected in this study that 

directly takes into account rain gauge network density in the formulation of the final 

estimate is the BSA, which takes into account the rain gauge network density in the 

smoothing factor, EP. As determined above, the error for the CV and IN follow similar 

trends. Since both methodologies produced similar trends in error, the IN verification 

methodology was carried through for the gauge sensitivity analysis. 

Ideally, rain gauges would have been situated in a manner that provided a uniform spatial 

coverage of the river basin. However, as shown in Fig. 2 the spacing of the rain gauges 

within the UTRb is not uniform. Therefore, the effect of the removal of a particular gauge 

on the spatial coverage within the basin depends on the location of the removed gauge. 

Clearly, the removal of certain gauges would have a greater effect on the spatial coverage 

of the network. Considering this, gauges were removed in a manner in which the spatial 

coverage of the remaining gauge network would be least affected. To accomplish this, a 

script written in MATLAB and verified using ArcGIS (version 10.2) was used to remove 

the gauges in a manner that sought to maintain the mean centre of the rain gauge network. 

In this method the mean centre of the rain gauge network is first determined. Each rain 

gauge is then removed separately and the new mean centre of the remaining rain gauge 

network is calculated for each case. The removed gauge that results in the smallest 

change in the mean centre is selected for removal. The rain gauges used at each gauge 

density are identified in Table 6 and the rain gauge locations for the highest gauge density 

(one gauge per 244 km2) and the lowest gauge density (one gauge per 684 km2) are 

displayed in Figs. 9a and 9b, respectively. 
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Table 6: Gauges used for each gauge density 

# of 

gauges 

used 

Gauge 
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14 244               

13 263               

12 285               

11 311               

10 342               

8 427               

5 684               

 

Figure 9: Gauges used for: a) highest gauge network density; and b) lowest gauge 

network density 

Fig. 10 displays the RMSE of the selected estimation techniques for each rain gauge 

network density. As expected, the error increased as the rain gauge network density 

decreased. Reductions in the RMSE as compared to raw radar alone decreased from 19%, 
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27%, 20%, 16% and 19% to 10%, 13%, 4%, 3% and 16% for RGO (OK), MFB, BSA, 

LB and CM methods, respectively, while decreasing the gauge density from one gauge 

per 244 km2 to one gauge per 684 km2. These results indicate that gauge density has an 

effect on the accuracy of the individual estimation techniques. All merging methods 

displayed a lower RMSE compared to raw radar alone at all gauge densities analysed, 

indicating that merging schemes are still beneficial and provide a reduction in error even 

at lower rain gauge network densities. As the rain gauge network density decreased, a 

gradual increase in error was observed for the MFB, BSA and LB methods, with an 

overall increase in error of 19%, 17% and 16%, respectively. The similar magnitude of 

increase in error and trend in which the error increases for the MFB, BSA and LB 

methods suggest that a decrease in gauge density has a similar effect on all three merging 

methods. The CM and RGO (OK) methods, however, follow a different trend with no 

noticeable increase in error until a gauge density below one gauge per 427 km2 is 

reached. Subsequently, a decrease in gauge density from one gauge per 427 km2 to one 

gauge per 684 km2 produced an increase in the RMSE of 16% and 9% for RGO (OK) and 

CM methods, respectively. Overall, the CM method was least affected by a change in 

gauge density. At the highest gauge density the MFB method generated rainfall estimates 

with the highest degree of accuracy, while at the lowest gauge density the CM method 

provided the best estimate of rainfall followed by the MFB method.  
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Figure 10: RMSE for each gauge density examined for all estimation techniques for 

all events analysed 

4.3.4 Temporal sensitivity 

In order to analyse the effect of the time-step of adjustment on the accuracy of each 

estimation technique, the methods are applied based on temporal resolutions of 

accumulation of 1, 3, 6, 12 and 24 hours. These time-steps were selected so as to assess 

the effect of changing the time-step over a range of values from an hourly time-step to a 

time-step of 24 hours. The accumulation periods all begin at 00:00 UTC. Accuracy was 

assessed based on the non-dimensional CV (RMSE).  

Fig. 11 displays the CV (RMSE) for each estimation technique based on each 

accumulation time-step. As expected, there is a decrease in observed error as the temporal 

time-step of adjustment increases. As the time-step increases the gauge-radar adjustment 

factors become more stable and large variations that are evident at the hourly time-step 

are smoothed out, thus decreasing the overall error. The smoothing of individual 

correction factors has the largest effect on the spatially dependent correction methods, 

with the BSA and LB methods exhibiting the largest decrease in error from adjustments 

based on hourly accumulations to 24 hr accumulations. As indicated at the hourly time-
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step, the MFB method displayed the lowest error. However, at the 24 hr time-step the 

BSA method displayed the lowest error. This further affirms the conclusions stated 

above, where, at smaller time-steps the MFB method outperforms spatially dependent 

correction methods due to the smoothing of individual rain gauge errors. However, at 

larger time-steps (greater than 12 hr) the spatio-temporal sampling errors are averaged 

out, thus reducing the effect of error fluctuations on individual rain gauges. This leads to 

spatially-dependent correction methods providing the greatest reduction in error in 

comparison to raw radar alone at larger time-steps of adjustment. At time-steps greater 

than 12 hrs the decrease in error is relatively minimal. 

 

Figure 11: RMSE for each time-step examined for all merging methods for all 

events analysed 

4.3.5 Storm variation 

In the above analysis the error was determined by grouping all rainfall hours together in 

order to obtain the average error of each technique over the entire study period (placing 

equal weight to each hour). Fig. 12 presents the variation in error between the eight 

different storm events considered in this study. As shown in Fig. 12, there does exist a 

variation in error between each estimation technique during the different storm events. In 

particular the 5 September 2014 event displayed a considerable increase in the RMSE for 
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all estimation techniques as compared to the other events. Storm type and magnitude can 

have a substantial effect on the accuracy of the radar rainfall estimates and subsequently 

on each of the gauge-radar merging methods (Smith et al. 2007). The storm-to-storm 

variations in accuracy is attributed to the possible difference in storm type (i.e., 

convective or frontal) and magnitude. Due to the limited study duration, detailed analysis 

of different storm types and their effect on overall gauge-radar merging accuracy was not 

possible. Refer to Appendix B for the error values based on each estimation technique for 

the individual storm events. 

 

Figure 12: Variation in RMSE between storm events 

4.3.6 Range related biases 

In order to determine if radar range related biases affected rainfall estimates in the present 

study, rain gauges were grouped according to distance from the radar tower following the 

methodology of Goudenhoofdt and Delobbe (2009). Groupings were based on 10 km 

rings extending outward from the radar tower. The range from the radar tower of the 

Exeter radar station varies from approximately 10 km to 70 km. As shown in Fig. 13, 

analysis of the radar error based on these groupings deemed that range related biases do 

not play a role in the UTRb. This is attributed to the relative close proximity of all points 

in the UTRb to the Exeter radar station. These results support the assumptions outlined in 
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Kneble et al. (2005) in which for distances under 80 km from the radar tower range 

related biases are assumed to be negligible. 

 

Figure 13: RMSE for gauges within grouped distances from radar station  
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Chapter 5 

5 Application of gauge-radar merging methods in a semi-
distributed hydrological model 

Although hydrological models have the potential to play a vital role in flood damage 

mitigation, a lack of confidence in model output often leads to under-utilization of this 

tool (Takeuchi 2001; McMillan et al. 2011). According to Xiaoli et al. (2010) and 

McMillan et al. (2011), hydrological model uncertainty is dominated by three main 

factors:  

(1) improper model structure;  

(2) parameter uncertainty; and  

(3) precipitation uncertainty.  

Each factor can substantially affect the hydrological model output leading to increased 

model uncertainty. Due to the uncertainty involved it is important to understand that the 

unique output of a hydrological model cannot be fully relied upon (Xiaoli et al. 2010). As 

discussed in Chapter 2, precipitation inputs play a key role in the accuracy of 

hydrological models. The uncertainty associated with parameter sets is also inter-related 

with the uncertainty associated with precipitation, as the calibration of parameter values 

is based on the assumption of accurate precipitation input (Xu et al. 2006). Therefore, 

with widespread use of hydrological models there exists a significant demand for 

precipitation estimates with a high degree of confidence (see, e.g., Wilson and Brandes 

1979; Beven and Hornberger 1982; Cole and Moore 2008; Berne and Krajewski 2013). 

The following Chapter investigates the effect of gauge-radar merging methods on the 

accuracy of modelled flows using a semi-distributed hydrological model. Several factors, 

identified in Chapter 2, have a demonstrated effect on the final accuracy of the 

incorporation of gauge-radar merging methods as input into a hydrological model. These 

include: storm type, basin characteristics and rain gauge network density. This Chapter 

will further assess the effect of these factors on the accuracy of selected gauge-radar 

merging methods. To accomplish this, the following objectives will be satisfied: 
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(1) calibrate the hydrological model for incorporation of gauge-radar merged rainfall 

as input; 

(2) evaluate the error of each rainfall estimation technique for three distinct rainfall 

events in 2014; 

(3) quantify the overall error of each rainfall estimation technique over the entire 

study period; and 

(4) evaluate the effect of several influencing factors (i.e., storm type, basin 

characteristics, and rain gauge network density) on the accuracy of hydrological 

modelling output based on the selected rainfall estimation techniques. 

5.1 Hydrological model 

The hydrological model selected for the present research in the UTRb is based on a 

model selection study conducted by Cunderlik (2003). The model selection methodology 

outlined in Cunderlik (2003) was based on the following criteria: 

(1) data requirements; 

(2) temporal scale; 

(3) spatial scale; 

(4) processes modelled; and 

(5) documentation and technical support. 

Based on the above criteria, Cunderlik (2003) determined that the Hydrologic Modeling 

System (HEC-HMS), produced by the U.S. Army Corps of Engineers (USACE) 

Hydrologic Engineering Center, is best suited for the prediction of flows in the UTRb. 

Considering this, HEC-HMS, version 4.0, is adopted for use in the present research.  

The HEC-HMS model used in the present research was initially developed by Cunderlik 

and Simonovic (2004) and the Upper Thames River Conservation Authority (UTRCA). 

For the present purposes, the HEC-HMS model is set-up in a semi-distributed fashion to 

model flows on an event basis. The selection of a semi-distributed model was based on 

the results of previous research examining the effect of model spatial resolution on 

hydrograph accuracy. These studies (see, e.g., Cole and Moore 2008; Berne and 
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Krajewski 2013; Zhu et al. 2013) found little difference in accuracy between semi-

distributed models using basin averaged rainfall and data intensive fully distributed 

models. An event based model is selected since the objectives of the present research are 

to model stream flows from single rainfall events for flood forecasting and warning 

purposes. Based on the selection of a semi-distributed model, the UTRb was subdivided 

into 33 subbasins through the use of HEC-GeoHMS software following Cunderlik and 

Simonovic (2004). The delineated subbasins in the UTRb are shown in Fig. 14.  

 

Figure 14: Delineation of the 33 subbasins in the Upper Thames River basin for use 

in the semi-distributed HEC-HMS model 

5.1.1 Selected model components 

HEC-HMS is divided into six separate model components. The six model components 

consist of: meteorological model, runoff volume model, direct runoff model, routing 
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model, baseflow model and reservoir model (USACE 2013). The selected model 

components used within HEC-HMS in this analysis were based on the constraints and 

objectives of the present research and the model component selection identified in 

Cunderlik and Simonovic (2004).  

The meteorological model selected for this analysis is based on the rainfall data 

considered in this study and the semi-distributed nature of the model. Six different 

rainfall data sets are used as rainfall input, including: raw radar, rain gauge only 

distributed using ordinary kriging (RGO (OK)), mean field bias correction (MFB), 

Brandes spatial adjustment (BSA), local bias correction using ordinary kriging (LB), and 

conditional merging (CM). Full descriptions of these rainfall estimation techniques are 

found in Chapter 2. Site-specific operational implementation of these rainfall estimation 

techniques is discussed in Section 3.3. Each rainfall estimation technique is estimated in a 

gridded framework. In order to organize the distributed rainfall data in a format that is 

easily implemented in the semi-distributed hydrological model, the user gauge weighting 

methodology was employed (USACE 2013). The basin averaged rainfall is inputted into 

HEC-HMS as the single user defined gauge for each of the 33 subbasins. 

The selection of the remaining five model components is based on the model component 

selection of Cunderlik and Simonovic (2004) who calibrated, verified and conducted a 

sensitivity analysis of the application of the HEC-HMS model in the UTRb. Following 

these authors: the Initial and Constant-rate Loss Model is selected as the runoff-volume 

model; the Clark unit hydrograph (UH) method is selected as the transformation 

methodology in the model (direct runoff model); the Modified Puls method (also known 

as storage routing or level-pool routing) is selected as the routing function; and the 

recession model is selected for modelling the baseflow component of the total stream 

flow. The Clark UH method is selected as it is frequently used for modelling direct runoff 

resulting from individual storm events (USACE 2013). The modified Puls method is 

selected as it is the only technique to take into account backwater effects (e.g., such as 

those caused by dams) and floodplain storage (USACE 2013), as backwater effects have 

a large influence in the UTRb due to the presence of three major flood control dams 

(Cunderlik and Simonovic 2004). The recession model is selected as this method is 
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suitable for basins where the volume and timing of baseflow is strongly influenced by 

precipitation events, as it is in the UTRb (Cunderlik and Simonovic 2004). Lastly, a set of 

source and sink components were substituted for the typical elevation-storage-outflow 

relationship used by HEC-HMS as a reservoir model. This is required since the UTRb 

contains three major gate controlled reservoirs and the typical elevation-storage-outflow 

relationship assumes the reservoir component is a free flowing uncontrolled reservoir. 

Since the three main reservoirs within the UTRb are gate controlled, the simple elevation 

storage-outflow relationship cannot capture actual water releases that may reflect specific 

water management practices or operational rules. Replacing the reservoir components 

with a set of source and sink components allows for calibration of parameters 

downstream of the reservoir and verification of the individual rainfall estimation 

techniques (Cunderlik and Simonovic 2004).  

5.2 Rainfall events 

Due to the availability of the EC radar product, the study period was limited to the 

periods 1 June 2013 to 31 August 2013 and 1 April 2014 to 31 October 2014. Events for 

hydrological modelling were selected based on the magnitude and intensity of the rainfall 

field over the UTRb, as well as the subsequent effect on flows in the North, Middle and 

South branches of the Thames River. Only events that caused an increase in flows in all 

branches of the Thames River were selected for analysis. Based on this criteria three 

events were selected for the modelling analysis. The characteristics of these events are 

summarized in Table 7. HEC-HMS is simulated on an event-basis for 96 hours starting 

from the hour the first rain gauge records a rainfall value greater than zero (Krajewski et 

al. 2010). The 96 hour timeframe is selected as the extent of the modelling since this is 

the average length of time until the flow at the UTRb outlet (Byron SG) returns to 

baseflow conditions for the selected storm events.  
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Table 7: Characteristics of the selected events for hydrological modelling analysis 

Date Time (UTC) Rainfall 

duration 

(hr) 

+Maximum 

rainfall intensity 

(mm/hr) 

*Peak flow 

(m3/s) 

8 July 2014 16:00 – 01:00 11 15.5 138.5 

5-6 September 2014 23:00 – 10:00 12 43.25 120.0 

10-11 September 2014 19:00 – 08:00 14 30.6 240.6 
+ Maximum rainfall based on rain gauge values only 
* Peak flow is based on the peak flow at the watershed outlet which is assumed to be the flow at the Byron 

SG 

Based on a qualitative analysis of the radar rainfall images and rainfall intensities 

recorded by the rain gauges and radar, the 8 July 2014 and 5 September 2014 rainfall 

events were characterized as localized high intensity rainfall, more representative of 

convective events. The 10 September 2014 event, however, was more uniform in nature 

with several localized instances of high intensity rainfall, representative of stratiform 

rainfall with convective cells. The flooding extent due to the 8 July 2014 and 5 

September 2014 rainfall events was smaller in nature relative to the 10 September 2014 

event, with peak flows at the Byron SG approximately half of that observed during the 10 

September 2014 rainfall event. The flooding due to the 8 July 2014 and 10 September 

2014 rainfall events was exacerbated by saturated antecedent soil conditions in the 

watershed, due to previous rainfall that occurred in the days preceding the events. 

Conversely, the rainfall of the 5 September 2014 event occurred after a relatively long 

dry period, leading to dry antecedent soil conditions. The different antecedent soil 

conditions for the storm events analysed were taken into account in selection of initial 

losses for the Initial and Constant-rate Loss Model. 

5.3 Selected stream gauges 

Evaluation of the model performance at all SG locations in the UTRb involves extensive 

data processing. Therefore, based on the methodology of Cunderlik and Simonovic 

(2004), the performance of the model is evaluated at five SG locations within the UTRb 

as identified in Table 8. As seen in Fig. 15, the SG locations were selected so as to 

represent the different physiographic sub-regions of the UTRb, as well as to reflect 

different subbasin areas and stream flow regimes (Cunderlik and Simonovic 2004).  
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As described in UTRCA (2012), the SGs of Innerkip and Waubuno represent runoff from 

single subbasins along the South Branch of the Thames River. The Innerkip SG measures 

stream flow for the headwater regions of the South Branch, while the Waubuno SG 

measures stream flow for the Waubuno Creek (a major tributary along the South Branch). 

Both subbasins are mainly agricultural, with 81% and 83% being cleared for agriculture, 

respectively. The soil of the Waubuno subbasin is comprised primarily of silty loam 

(58%) and clay loam (13%). The soil of the Innerkip subbasin is comprised primarily of 

silty loam (48%), sandy loam (22%) and clay loam (12%). The Waubuno and Innerkip 

SGs measure lower flows relative to the other SGs used in this study, with mean annual 

flows of 1.2 m3/s and 2.2 m3/s, respectively. The Mitchell SG represents runoff from a 

single subbasin at the headwaters for the North Branch of the Thames River. The 

subbasin is heavily agricultural, with 93% of the land being cleared for agricultural 

purposes. The soil is comprised mainly of a clay loam (93%). As a result of these 

characteristics, the Mitchell subbasin is prone to localized flooding. The Mitchell SG has 

a mean annual flow of 4.5 m3/s. The St. Mary’s SG represents flow from 11 subbasins 

along the North Branch of the Thames River. The town of St. Mary’s represents one of 

the major damage centres in the UTRb and contains a flood wall constructed along the 

Thames River to protect the city from flooding. The St. Mary’s SG represents the flow at 

the middle of the North Branch of the Thames River, with a mean annual flow of 

20.0 m3/s. The Byron SG represents the outlet of the watershed in this analysis, and 

encompasses runoff from 91% of the watershed. The Byron SG lies downstream of the 

forks of the Thames River, where the North and South branches meet in the City of 

London. The Byron SG represents an area along the channel in which the slope of the 

channel begins to decrease, and there is a change from a relatively narrow channel to a 

wider, shallower channel (Wilcox et al. 1998). The mean annual flow at the Byron SG is 

46.0 m3/s. 
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Table 8: Characteristics of selected stream gauges 

Name Area (km2) 
Mean annual 

flow (m3/s) 

Mitchell SG 319 4.5 

St. Mary’s SG 1062 20.0 

Innerkip SG 149 2.2 

Waubuno SG 105 1.2 

Byron SG 3110 46.0 

 

Figure 15: Location of selected stream gauges 

5.4 Verification methodology 

In order to assess the accuracy of the predicted hydrographs (and subsequently, the 

accuracy of each rainfall estimation technique), hourly flows predicted by the model are 

compared to hourly observed flows at the five SG locations identified in Section 5.3. 

Four statistical measures were used to evaluate the performance of the model. A brief 

description of the error statistics used in the analysis of the predicted flows is included in 

the following sub-sections. 
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5.4.1 Nash-Sutcliffe efficiency 

The Nash-Sutcliffe efficiency (NSE) is used to evaluate the performance of each rainfall 

input in HEC-HMS. As defined by Nash and Sutcliffe (1970): 
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The NSE is a widely used measure in the evaluation of the performance of a model 

(Krause et al. 2005). Due to the squaring of residuals the NSE is sensitive to errors during 

higher peak flow conditions and less affected by errors within baseflow or low flow 

conditions. This is important for the present research as the primary interest is in the 

ability of the model to predict flood flows. The NSE value lies between 1 and - , with 

values greater than zero indicating that the model is a better predictor than the mean of 

the observed data, zero indicating that the model predictions are as accurate as the mean 

of the observed data, and less than zero indicating that the observed mean is a better 

predictor than the model. 

5.4.2 Percent error in peak flow 

The percent error in peak flow (PEPF) is used to evaluate the ability of the model to 

determine the magnitude of the peak flow and is evaluated following: 
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Again, the magnitude of the peak flow is important in quantifying the extent of flooding, 

and is an important statistical measure to consider in the present research. Positive 

(negative) values indicate over-prediction (under-prediction) of the peak flow by the 

model as compared to the observed peak flow. 
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5.4.3 Percent error in volume 

The percent error in volume (PEV) is used to evaluate the runoff volume generated by the 

model, as defined by: 

 
100*PEV
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 , 

(24) 

where OV  is the observed volume of water passing during the storm event and MV  is the 

modelled volume of water passing during the storm event. The volume of flow is 

important in understanding the conditions within the basin (saturated or unsaturated) and 

the possible under- or over-estimation of rainfall. Understanding the PEV will assist in 

identifying error in the depth of rainfall as well as the initial conditions used in the runoff 

volume model. Positive (negative) values indicate over-estimation (under-estimation) of 

the volume by the model as compared to the observed volume. 

5.4.4 Peak timing error 

The peak timing error (PTE) is used to assess the ability of the model to accurately 

predict the timing of the peak flow, as determined by: 

 
MO TT PTE , (25) 

where TO is the timing of the peak of the observed hydrograph and TM is the timing of the 

peak of the modelled hydrograph. The analysis of the timing of the maximum flow is 

important in determining when issues due to flooding may occur and when the extent of 

flooding will begin to subside. 

5.4.5 Wilcoxon rank sum test 

The Wilcoxon rank sum test (WRST) is used in this study to investigate whether the 

differences in results from the investigated merging methods are statistically significant. 

Previous studies have demonstrated the suitability of the WRST in the analysis of various 

precipitation estimations (see, e.g., Shabbar et al. 1997; Hamill 1998; Kampata et al. 

2008). The WRST, based on the work of Wilcoxon (1945) and Mann and Whitney 
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(1947), is used as a non-parametric alternative to the standard statistical hypothesis t-test 

(Hayter 2007). The WRST is used in this analysis since the assumption of a normal 

distribution required for the standard t-test is not upheld in the observed results, with the 

distribution being skewed by individual SG outliers. The WRST uses a non-parametric 

statistical hypothesis test to analyse whether the difference in mean ranks of two 

populations is statistically significant (Hayter 2007). The analysis in this study is 

completed using the NSE as the target variable. The P-value is examined in order to 

determine statistical significance. A P-value less than 0.05 indicates that the difference 

between the two populations is statistically significant, while a P-value greater than 0.05 

indicates that the difference between the two populations is not statistically significant. 

Refer to Hayter (2007) for a full explanation of the WRST. 

5.5 HEC-HMS calibration 

Calibration is the process of systematically adjusting the values of model parameters until 

the model results achieve a tolerable level of error in comparison to the observed data 

(Hossain et al. 2004). The model calibration conducted in this analysis is completed 

following the methodology of Cunderlik and Simonovic (2004), which consists of a 

combination of manual and automated parameter calibration. The manual calibration 

involves setting initial parameter values based on available physical data from the study 

site. The physical data used in the development of the HEC-HMS model is based on 

information provided in Cunderlik and Simonovic (2004) and UTRCA (2012). The 

automated calibration is subsequently used to optimize the user-defined parameter values. 

Based on the model components selected in HEC-HMS, the parameters identified in 

Table 9 were required for development of the model. 
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Table 9: Selected HEC-HMS model components and subsequent required 

parameters 

Component Parameter Measured or calibrated 

Basin characteristics Area (km2) Measured 

Runoff-volume model 

(Initial and Constant) 

Initial abstractions (mm) 
Storm dependent 

(Calibrated/measured) 

Constant loss rate (mm/hr) Calibrated 

Impervious surface (%) Measured 

Direct runoff model 

(Clark’s unit hydrograph) 

Time of concentration (hr) Calibrated 

Storage coefficient (hr) Calibrated 

Baseflow model 

(Recession) 

Initial discharge 

(m3/s/km2) 
Measured 

Recession constant Calibrated 

ratio Calibrated 

Routing model (Modified 

Puls) 

Storage-outflow curve Calibrated 

Number of subreaches Measured 

Initial condition Calibrated 

The present study seeks to examine flows as a result of heavy rainfall, therefore, 

generating peak flows with a high degree of confidence is critically important. 

Considering this, the peak weighted root mean square error (PWRMSE) was selected as 

the objective function. The PWRMSE is determined by: 

 
    

 

 











N

t

OA

N

t A

AO

MO

tQ
N

Q
N

Q

QtQ
tQtQ

1

1

2

1
;

2
PWRMSE , 

(21) 

where Q0 is the observed flow and QM is the modelled flow at time t1 and QA is the 

average observed flow. 

The calibration process begins at SG stations that represent outlets of single subbasins. 

Once these stations are calibrated, SG stations with more than one contributing subbasin 

are calibrated. At this stage the parameters of un-gauged contributing subbasins are also 

calibrated. In the final stage of calibration, individually calibrated subbasins are linked 

into one model and the parameter calibration is finalized. The 33 subbasins are calibrated 

based on the order outlined in Table 10. A list of basin names and corresponding basin 

numbers can be found in Appendix C. 
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Table 10: Order of calibration for the 33 modelled subbasins 

Stream gauge Basin number calibrated Calibration order 

Mitchell 1,2 1 

Avon 7 1 

Innerkip 18 1 

Cedar Creek 20 1 

Reynolds 25 1 

Thamesford 23 1 

Medway 17 1 

Waubuno 27 1 

Oxbow Creek 32 1 

Dingman Creek 34 1 

St. Mary’s 3,4,5,8,9,10,11 2 

Fanshawe Dam 15,16 2 

Pittock Dam 19 2 

Plover Mills 12,13,14 3 

Ingersoll 21 3 

Byron 22,24,26,28,29,30 4 

Dutton 31,33 5 

Parameters are calibrated based on observed hourly flows. Due to a lack of availability of 

radar data the calibration is first conducted using rain gauge data alone for an event that 

began on 9 July 2000. This event represents one of the largest events on record in the 

UTRb and consisted of a convective rainfall event that resulted in widespread flooding 

(Cunderlik and Simonovic 2004). The model was then recalibrated using each individual 

rainfall technique for the 10 September 2014 event in order to examine the effect of 

recalibrating the model for each rainfall input. The 10 September 2014 event is well-

suited for rainfall-runoff calibration both in terms of magnitude and spatial extent. This 

event represented the largest rainfall event in terms of magnitude of flood flows observed 

during the study period. Only the model recalibrated using BSA is presented in this 

Chapter. The verification results for the model calibrated with rain gauge only rainfall is 

compared to the model calibrated with BSA rainfall in order to assess the effect of 

recalibrating the model.  

5.5.1 Calibration results 

The following section outlines the results of the calibration of the RGO (OK) model as 

well as the calibration of the BSA model. The RGO (OK) model was calibrated for the 9 

July 2000 event, and the BSA model was calibrated for the 10 September 2014 event (as 
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described in Section 5.2). For a summary of the RGO (OK) and BSA calibrated model 

parameter values see Appendix C and D, respectively. 

5.5.1.1 RGO (OK) model 

Fig. 16 displays the comparison between the observed and modelled hydrographs for the 

selected SG locations for the 9 July 2000 rainfall event using the RGO (OK) data in the 

RGO (OK) calibrated model. Overall, the model simulated the stream flows with a high 

degree of accuracy, with a NSE ranging from 0.81 at the Innerkip SG (Fig. 16c) to 0.99 at 

the Byron SG (Fig. 16e) for the various SG locations. The model accurately recreated the 

rising and falling limbs as well as the peak flow at all SG locations with the exception of 

the Innerkip SG. As seen in Fig 16c, a bi-modal peak was observed but not predicted by 

the model at the Innerkip SG. Since the model did not simulate a double peaked 

hydrograph, the PEV was higher at the Innerkip SG relative to the other SGs in the 

analysis, with a PEV of -21%. Table 11 displays the calculated error statistics at the 

selected SGs.   
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Figure 16: Observed and modelled hydrographs for the July 2000 event using RGO 

(OK) rainfall as input into the RGO (OK) calibrated model at the: a) Mitchell SG; 

b) St. Mary's SG; c) Innerkip SG; d) Waubuno SG; and e) Byron SG 
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Table 11: Error statistics between observed and modelled flows for the July 2000 

event at selected stream gauges using the RGO (OK) rainfall data as input into the 

RGO (OK) calibrated model 

Gauge NSE PEPF (%) PEV (%) PTE (hr) 

Mitchell 0.96 0 2 0 

St. Mary’s 0.98 -3 -4 1 

Innerkip 0.81 0 -21 0 

Waubuno 0.91 -2 13 0 

Byron 0.99 0 3 0 

5.5.1.2 BSA model 

Fig. 17 presents the comparison between the observed and modelled hydrographs for the 

selected SG locations for the 10 September 2014 rainfall event using the BSA rainfall 

data as input into the BSA calibrated model. Overall, the hydrographs indicate a good fit 

between the predicted flows and the observed flows, with a NSE ranging from 0.85 at the 

Waubuno SG (Fig. 17d) to 0.97 at the Mitchell SG (Fig. 17a) for the selected SG 

locations. Despite these overall results, as observed in Fig. 17d, the BSA model did not 

accurately predict the peak flow magnitude at the Waubuno SG. The model under-

estimated the observed peak flow, with a PEPF of -25%. As seen in Fig. 17c, the BSA 

calibrated model also improperly modelled the falling limb of the hydrograph at the 

Innerkip SG. Table 12 displays the error statistics for the selected SGs. In general, the 

performance of the BSA model during the selected calibration period was poor compared 

to the results of the RGO (OK) calibrated model, displaying greater magnitudes of error 

in the PEPF, PEV and PTE values.  
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Figure 17: Observed and modelled hydrographs for the 10 September 2014 event 

using BSA rainfall as input into the BSA calibrated model at the: a) Mitchell SG; b) 

St. Mary's SG; c) Innerkip SG; d) Waubuno SG; and e) Byron SG 



77 
 

 

 

Table 12: Error statistics between observed and modelled flows for the 10 

September 2014 event at selected stream gauges using BSA rainfall data as input 

into the BSA calibrated model 

Gauge NSE PEPF (%) PEV (%) PTE (hr) 

Mitchell 0.97 7 -10 0 

St. Mary’s 0.88 -2 -6 2 

Innerkip 0.94 1 14 1 

Waubuno 0.85 -19 -25 2 

Byron 0.87 4 3 1 

5.5.1.3 Calibration sensitivity 

To compare the effect on the accuracy of using the BSA rainfall data as input into both 

the BSA calibrated model and the RGO (OK) calibrated model, both models were 

simulated using BSA rainfall data for the 5 September 2014 and the 8 July 2014 rainfall 

events. Table 13 displays the error statistics for these two models for both events. 

Overall, the verification results between the two models are similar, with a median NSE 

difference of 0.01 between the two model simulations. The WRST was used to determine 

whether the difference observed between the two model results was statistically 

significant. A P-value of 0.727 indicated that significant improvement is not achieved by 

recalibrating the model using the BSA rainfall as input. Considering this, the model 

calibrated using RGO (OK) rainfall data for the July 2000 rainfall event was used for the 

remainder of the analysis presented in this Chapter.  

The above sensitivity analysis was conducted for each rainfall estimation technique. The 

comparison for each individually recalibrated model against the RGO (OK) calibrated 

model is displayed in Table 14. In general, the results from each recalibration based on 

the individual rainfall estimation techniques displayed a similar trend in error to the 

results of the BSA recalibration described above. 
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Table 13: Model comparison for the 5 September 2014 and 8 July 2014 rainfall 

events for the BSA calibrated and RGO (OK) calibrated models using BSA rainfall 

data as input 

Event Station 

NSE 

RGO-Cal BSA-Cal 

BSA BSA 

8 July 2014 

Mitchell 0.53 0.50 

St. Mary’s -0.18 -0.25 

Innerkip 0.75 -0.70 

Waubuno 0.81 0.75 

Byron 0.93 0.93 

5 September 2014 

 

Mitchell 0.72 0.73 

St. Mary’s 0.58 0.61 

Innerkip 0.90 0.80 

Waubuno 0.58 0.72 

Byron 0.02 -0.14 

Median 0.65 0.66 

WRST P-Value 0.727 

Table 14: Model comparison for the 5 September 2014 and 8 July 2014 rainfall 

events for the calibrated models using each rainfall technique as input 

Event 
Stream 

gauge 

NSE 

RGO

-Cal 

Rada

r-Cal 

RGO

-Cal 

MFB

-Cal 

RGO

-Cal 

LB-

Cal 

RGO

-Cal 

CM-

Cal 

Raw 

radar 

Raw 

radar 
MFB MFB LB LB CM CM 

8 July 

2014 

Mitchell -0.57 -0.19 0.8 0.86 0.7 0.61 0.14 0.17 

Mary’s -1.06 -1.00 0.83 0.83 -0.24 -0.35 -0.71 -0.71 

Innerkip -0.7 -0.70 0.32 0.25 0.8 0.76 0.37 0.31 

Waubuno -0.13 -0.13 0.82 0.82 0.66 0.70 0.8 0.76 

Byron 0.9 0.91 0.61 0.79 0.93 0.96 0.94 0.95 

5 

September 

2014 

 

Mitchell -0.61 -0.53 0.92 0.99 0.72 0.68 0.36 0.42 

Mary’s -0.78 -0.71 0.97 0.88 0.66 0.64 0.08 0.13 

Innerkip -0.04 -0.28 0.92 -2.08 0.73 0.55 0.89 -0.09 

Waubuno -0.38 -0.38 0.79 0.79 0.49 0.63 0.11 0.20 

Byron 0.64 0.75 -0.73 -1.20 -0.04 -0.12 0.55 0.27 

Median -0.48 -0.33 0.81 0.81 0.68 0.63 0.37 0.24 

WRST P-value 0.440 0.752 0.752 0.703 

5.6 Results and discussion 

Each of the rainfall estimation techniques investigated in this Chapter were used as 

rainfall input into the RGO (OK) calibrated semi-distributed HEC-HMS described in 
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Section 5.1. The model was simulated for the three flow events identified in Section 5.2, 

and the modelled hydrographs were compared to the observed hydrographs for the SG 

locations identified in Section 5.3. The error statistics described in Section 5.4 were used 

to analyse the accuracy of each individual gauge-radar merging method as input into the 

calibrated model. The analysis will evaluate (at the hourly time-step) the difference 

between using a mean bias correction, spatially dependent bias correction or a more 

complicated geostatistical merging method as input into a hydrological model over the 

study period analysed. In addition, the gauge-radar merging methods are compared 

against the hydrographs generated using raw radar data alone and rain gauge data alone. 

The comparison against rain gauge data alone is important as rain gauges alone are used 

in the vast majority of hydrological modelling applications today, and it is important to 

assess whether the addition of radar provides any additional benefit in the modelling of 

flows in the UTRb. The comparison of the performance of gauge-radar merging methods 

against raw radar alone provides an indication of the ability of rain gauges to reduce 

biases often observed in radar rainfall fields. As discussed in Section 2.5.1, rain gauge 

density can have a considerable effect on the accuracy of the rainfall estimation 

technique. The rain gauge network density is altered and the model is simulated using the 

altered rainfall fields in order to investigate and quantify this effect. This is an important 

consideration in order to extend the results from this study to other watersheds where the 

rain gauge network density is different. As discussed in Section 2.5.1 both storm type and 

basin characteristics can also affect the accuracy of rainfall estimation techniques. Both 

of these influencing factors are further investigated in this Chapter. 

Considering this, the results are organized into three main sections:  

(1) analysis of the effect of each rainfall estimation technique on the accuracy of 

predicted stream flows for each rainfall event;  

(2) determination of the overall median error for each rainfall estimation technique 

over the entire study period; and  

(3) analysis of the effect of storm type, basin characteristics and rain gauge network 

density on the accuracy of the predicted flows for each rainfall estimation 

technique.  
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The median is used as the descriptive statistic due to the distribution of results based on 

the variation in the SG locations. Using the median over the mean limits the effect of 

outliers due to poor modelling at a single SG location.  

5.6.1 8 July 2014 

Fig. 18 presents the comparison between the observed and modelled hydrographs for 

each rainfall estimation technique for the 8 July 2014 rainfall event. Through qualitative 

observation of the various hydrographs it is clear that some discrepancies exist between 

the modelled and observed flows at each SG location. Fig. 18a displays the modelled and 

observed hydrographs at the Mitchell SG. Overall, each model was able to successfully 

capture the general shape of the observed Mitchell hydrograph. One noticeable difference 

between the modelled and observed hydrographs was in the minor sharp decreases in 

flow in the falling limb of the observed hydrograph. This was determined to be a result of 

gate operations of a small reservoir upstream of the Mitchell SG. As described previously 

in this Chapter, this reservoir was not included in the model and, therefore, the minor 

variations due to reservoir operations were not present in any of the modelled 

hydrographs. In general, the modelled flows for the models driven by each rainfall 

estimation technique under-estimated the peak flows at all SG locations analysed. The 

only exception was the model driven by the MFB method at both the St. Mary’s SG (Fig. 

18b) and the Byron SG (Fig. 18e). The under-estimation in peak flows was most notable 

in the raw radar driven model resulting in a median PEPF of -84%. The MFB driven 

model provided the best comparison in peak flows to the observed hydrograph reducing 

the median PEPF to -5%. The hydrographs at the Innerkip (Fig. 18c) and Waubuno (Fig 

18d) SGs demonstrated that raw radar produced rainfall estimations that were unable to 

overcome the initial abstractions (Ia) of the upstream subbasins and, therefore, the raw 

radar driven model was only able to recreate the falling limb of the hydrograph. At the 

Waubuno SG (Fig. 18d) each model was unable to accurately capture the steep slope of 

the rising limb seen in the observed hydrograph. This is attributed to potential errors in 

the Tc. At the Byron SG (Fig. 18e) all estimation techniques provided relatively accurate 

predictions of flow with the exception of the MFB driven model, which considerably 

over-estimated the initial peak. Each model at the Byron SG had difficulty generating the 
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correct timing of the initial peak. The initial peak at the Byron SG is a result of runoff 

from the heavily urbanized London area. Each model was delayed in the timing of this 

initial urban peak at the Byron SG. This is attributed to the temporal resolution of the 

rainfall data and the spatial resolution of the model, as the hourly time-step is too coarse 

to capture urban runoff scenarios in the HEC-HMS model.  

As shown in Table 15, each gauge-radar merging method produced models which 

predicted flows with higher median efficiency than the raw radar and RGO (OK) driven 

models for the 8 July 2014 rainfall event. The median NSE was increased from -0.57 and 

0.31 for the raw radar and RGO (OK) driven models to 0.80, 0.75, 0.75 and 0.37 for the 

MFB, BSA, LB and CM models, respectively. The MFB driven model produced 

predicted flows with the highest median efficiency. The success of the MFB method 

during the 8 July 2014 event is attributed to the greater depth of rainfall estimated as 

compared to the other gauge-radar merging methods. The MFB method was able to 

reduce the median PEV by 78% and 49% over raw radar and RGO (OK), respectively. 

The raw radar produced the largest PTE with a median of 5 hours due to the poor 

modelling of the hydrographs at the Innerkip (Fig. 18c) and Waubuno (Fig 18d) SGs, 

which produced PTE values of 9 and 11 hours, respectively. The other models produced 

values of PTE with similar magnitudes, which is expected due to using identical values in 

the rainfall-runoff and routing model parameters. 
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Figure 18: Observed and modelled hydrographs for the 8 July 2014 event for each 

model driven by each rainfall estimation technique at the: a) Mitchell SG; b) St. 

Mary's SG; c) Innerkip SG; d) Waubuno SG; and e) Byron SG 
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Table 15: Error statistics between observed and modelled flows for the 8 July 2014 

event at selected stream gauges for all rainfall estimation techniques 

Gauge 

NSE 

Raw radar 
RGO 

(OK) 
MFB BSA LB CM 

Mitchell -0.57 0.40 0.80 0.53 0.70 0.14 

St. Mary’s -1.06 -0.55 0.83 -0.18 -0.24 -0.71 

Innerkip -0.70 0.31 0.32 0.75 0.80 0.37 

Waubuno -0.13 0.67 0.82 0.81 0.66 0.80 

Byron 0.90 0.94 0.61 0.93 0.93 0.94 

Median -0.57 0.31 0.80 0.75 0.75 0.37 

Gauge 

PEPF (%) 

Raw radar 
RGO 

(OK) 
MFB BSA LB CM 

Mitchell -81 -59 -16 -37 -27 -56 

St. Mary’s -91 -84 34 -66 -66 -82 

Innerkip -87 -61 -61 -61 -30 -58 

Waubuno -80 -46 -18 -24 -46 -28 

Byron -11 -7 8 -8 -8 -6 

Median -84 -54 -5 -43 -38 -43 

Gauge 

PEV (%) 

Raw radar 
RGO 

(OK) 
MFB BSA LB CM 

Mitchell -83 -66 -16 -46 -38 -62 

St. Mary’s -87 -81 -5 -66 -67 -79 

Innerkip -87 -54 -54 -54 -22 -51 

Waubuno -72 -23 11 3 -23 0 

Byron -10 -6 11 -8 -7 -5 

Median -83 -54 -5 -46 -23 -51 

Gauge 

PTE (HR) 

Raw radar 
RGO 

(OK) 
MFB BSA LB CM 

Mitchell 3 2 4 3 3 3 

St. Mary’s 5 6 0 4 4 6 

Innerkip 9 0 0 0 0 0 

Waubuno 11 3 3 3 3 3 

Byron 1 1 2 1 1 1 

Median 5 2 2 3 3 3 

5.6.2 5 September 2014 

Fig. 19 presents the comparison between the observed and modelled hydrographs for the 

model driven by each rainfall estimation technique for the 5 September 2014 rainfall 

event. In general, each model was able to replicate the shape of the observed 
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hydrographs, with the exception of the inability of each model to replicate the steep slope 

of the rising limb in the observed hydrograph at the Waubuno SG (Fig. 19d). At the 

Innerkip SG (Fig. 19c) the raw radar alone substantially underestimated the peak flow. At 

the Mitchell SG (Fig. 19a), St. Mary’s SG (Fig. 19b) and the Innerkip SG (Fig. 19d) each 

model under-estimated the peak flow. Again, the MFB driven model provided the closest 

match in peak flow with a median PEPF of -20%. At the Byron SG (Fig. 19e) each 

model, with the exception of the raw radar, over-estimated the peak flow. 

Overall, as shown in Table 16 each gauge-radar merging method produced models with 

predicted flows at a higher median efficiency than both the raw radar and RGO (OK) 

driven models. The NSE was increased from a median of -0.38 and 0.21 for the raw radar 

and RGO (OK) driven models, respectively, to 0.92, 0.58, 0.66 and 0.36 for the MFB, 

BSA, LB and CM models, respectively. Again, the MFB model produce predicted flows 

with the highest median efficiency. This was attributed to the greater depth of rainfall 

estimated in comparison to the other merging methods, with a reduction in the median 

PEV of 72% and 48% over raw radar and RGO (OK), respectively. Again, each model 

displayed PTE values of similar magnitudes, with the MFB driven model presenting a 

slightly higher PTE due to poor modelling at the Waubuno SG and Byron SG. 
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Figure 19: Observed and modelled hydrographs for the 5 September 2014 event for 

each model driven by each rainfall estimation technique at the: a) Mitchell SG; b) 

St. Mary's SG; c) Innerkip SG; d) Waubuno SG; and e) Byron SG 
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Table 16: Error statistics between observed and modelled flows for the 5 September 

2014 event at selected stream gauges for all rainfall estimation techniques 

Gauge 

NSE 

Raw radar 
RGO 

(OK) 
MFB BSA LB CM 

Mitchell -0.61 0.14 0.92 0.72 0.72 0.36 

St. Mary’s -0.78 -0.14 0.97 0.58 0.66 0.08 

Innerkip -0.04 0.89 0.92 0.90 0.73 0.89 

Waubuno -0.38 0.21 0.79 0.58 0.49 0.11 

Byron 0.64 0.53 -0.73 0.02 -0.04 0.55 

Median -0.38 0.21 0.92 0.58 0.66 0.36 

Gauge 

PEPF (%) 

Raw radar 
RGO 

(OK) 
MFB BSA LB CM 

Mitchell -92 -69 -20 -41 -41 -61 

St. Mary’s -90 -72 -10 -44 -40 -65 

Innerkip 29 -25 -21 7 -39 -25 

Waubuno -85 -66 -24 -43 -49 -70 

Byron -4 13 36 23 28 12 

Median -85 -66 -20 -41 -40 -61 

Gauge 

PEV (%) 

Raw radar 
RGO 

(OK) 
MFB BSA LB CM 

Mitchell -90 -64 -11 -33 -34 -54 

St. Mary’s -83 -64 -4 -37 -34 -57 

Innerkip 36 -20 -15 16 -35 -20 

Waubuno -84 -59 -17 -36 -43 -63 

Byron -10 14 40 25 29 13 

Median -83 -59 -11 -33 -34 -54 

Gauge 

PTE (HR) 

Raw radar 
RGO 

(OK) 
MFB BSA LB CM 

Mitchell 1 3 3 2 0 2 

St. Mary’s 0 1 0 1 1 0 

Innerkip 7 0 0 0 0 0 

Waubuno 4 4 4 4 4 5 

Byron 1 2 4 3 3 2 

Median 1 2 3 2 1 2 

5.6.3 10 September 2014 

Fig. 20 presents the flow comparison between the observed and modelled hydrographs 

for each rainfall estimation technique for the 10 September 2014 rainfall event. As seen 

in Fig. 20a, each model produced hydrographs with the correct general shape at the 
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Mitchell SG, however, the raw radar and MFB model considerably under-estimated the 

peak flow by -85% and -40%, respectively. Each model was unable to capture the general 

shape of the observed hydrograph at the St. Mary’s SG (Fig. 20b) and the Innerkip SG 

(Fig. 20c), producing a much steeper increase in the rising limb leading to large PTE 

values at both SG locations. There is a considerable under-estimation in the peak flows 

for each model at the Waubuno SG (Fig. 20d), with the raw radar, RGO (OK), MFB, 

BSA, LB and CM driven models all under-estimating the peak flow by -98%, -86%, 

-68%, -79%, -81% and -86%, respectively. At the Byron SG (Fig. 20e) each model with 

the exception of the MFB driven model under-estimated the peak flows.  

Overall, as shown in Table 17 each gauge-radar driven model produced predicted flows 

with a higher efficiency than the raw radar driven model, increasing the NSE from a 

median of -0.68 for raw radar to 0.39, 0.57, 0.59 and 0.62 for the MFB, BSA, LB and 

CM models, respectively. In comparison against the RGO (OK) driven model, none of 

the gauge-radar driven models were able to generate an increase in median efficiency. 

The addition of radar did not add any additional benefit in the modelling of the 10 

September 2014 event. In general, the model efficiencies of the gauge-radar driven 

models for the 10 September 2014 event were lower than the 8 July 2014 and the 5 

September 2014 event. This is attributed to incorrect modelling of the rising limb at the 

St. Mary’s and Innerkip SG as well as considerable under-estimation of the peak flows at 

the Waubuno SG. The errors at the St. Mary’s SG and Innerkip SG are attributed to the 

potential mis-timing of rainfall and the effect of small reservoirs not included in the 

model evident in the attenuation observed in the rising limb of the observed hydrograph. 

The error at the Waubuno SG is due to considerable under-estimation of the total rainfall 

by all estimation techniques over the Waubuno subbasin.   
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Figure 20: Observed and modelled hydrographs for the 10 September 2014 event 

for each model driven by each rainfall estimation technique at the: a) Mitchell SG; 

b) St. Mary's SG; c) Innerkip SG; d) Waubuno SG; and e) Byron SG 
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Table 17: Error statistics between observed and modelled flows for the 10 

September 2014 event at selected stream gauges for all rainfall estimation 

techniques 

Gauge 

NSE 

Raw radar 
RGO 

(OK) 
MFB BSA LB CM 

Mitchell -0.75 0.81 0.61 0.91 0.89 0.83 

St. Mary’s -1.14 0.61 0.37 0.57 0.59 0.62 

Innerkip -0.57 0.60 0.39 -0.37 -0.39 0.55 

Waubuno -0.68 -0.32 0.10 -0.14 -0.18 -0.32 

Byron 0.23 0.70 0.81 0.83 0.84 0.73 

Median -0.68 0.61 0.39 0.57 0.59 0.62 

Gauge 

PEPF (%) 

Raw radar 
RGO 

(OK) 
MFB BSA LB CM 

Mitchell -85 -19 -40 7 13 -16 

St. Mary’s -91 -14 28 24 27 -12 

Innerkip -91 34 48 84 84 38 

Waubuno -98 -86 -68 -79 -81 -86 

Byron 34 -20 3 -10 -10 -19 

Median -91 -19 3 7 13 -16 

Gauge 

PEV (%) 

Raw radar 
RGO 

(OK) 
MFB BSA LB CM 

Mitchell -86 -30 -42 -9 -3 -28 

St. Mary’s -86 -29 -5 -3 -2 -28 

Innerkip -90 36 46 78 78 41 

Waubuno -98 -86 -69 -79 -81 -86 

Byron -32 -18 1 -11 -9 -17 

Median -86 -29 -5 -9 -3 -28 

Gauge 

PTE (HR) 

Raw radar 
RGO 

(OK) 
MFB BSA LB CM 

Mitchell 3 2 0 2 2 2 

St. Mary’s 1 6 10 7 7 6 

Innerkip 6 5 5 5 5 5 

Waubuno 3 5 5 5 5 5 

Byron 1 1 1 0 0 0 

Median 3 5 5 5 5 5 

5.6.4 Analysis of rainfall events combined 

Fig. 21 presents the box-plot of the NSE for the hourly flows predicted by each model 

driven by the individual rainfall estimation techniques for the three rainfall events 
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analysed combined. Table 18 displays the P-values based on the WRST used to 

determine whether the difference between model performances based on each rainfall 

estimation technique is statistically significant. In comparison with the use of raw radar 

alone as rainfall input, each of the gauge-radar merging methods provided significant 

increases in the accuracy of the predicted flows over all three events analysed combined 

(with P-values for each estimation technique less than the 0.05 threshold). The gauge-

radar driven models increased the median accuracy over the raw radar alone driven 

model, increasing the NSE from -0.57 to 0.79, 0.58, 0.66 and 0.55 for the MFB, BSA, LB 

and CM driven models, respectively. The raw radar driven model provided an extremely 

poor prediction of the hydrographs at all SG locations, with values of NSE consistently 

less than zero. Clearly, the addition of rain gauge data to adjust radar data significantly 

increased model efficiency. In comparison with the RGO (OK) driven model, only the 

MFB driven model provided a statistically significant increase in model accuracy with a 

P-value of 0.043. All other gauge-radar merged rainfall driven models generated P-values 

greater than the 0.05 threshold, indicating that the observed increases in median accuracy 

were not statistically significant. These results indicate that the addition of radar data in 

hydrological modelling applications in the UTRb can increase modelling accuracy for 

particular gauge-radar merging methods (i.e., MFB). 

Overall, as shown in Table 19, the MFB driven model provided the best median 

prediction of flows in the UTRb over the study period analysed, with an overall median 

NSE of 0.79. The spatially-dependent correction methods displayed the largest variation 

in the NSE with standard deviations of 0.42 and 0.43 for BSA and LB, respectively. The 

MFB displayed the smallest variation in accuracy with a standard deviation of 0.25. The 

variation observed in the spatially-dependent merging methods over the mean field bias 

method is attributed to spatio-temporal sampling errors outlined in Gjertsen et al. (2004) 

and discussed in Section 4.3.1. At higher temporal resolutions the MFB approach is able 

to smooth fluctuations in the gauge-radar comparison that can be identified in individual 

gauges. The spatially-dependent correction methods are prone to larger errors at smaller 

time-steps on account of these fluctuations. These large fluctuations in rainfall accuracy 

of the spatially-dependent correction methods translated into large fluctuations in the 

accuracy of predicted flows over the three rainfall events.  
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Figure 21: Box-plot based on median of the NSE for each model driven by each 

individual estimation technique for all events analysed combined 

Table 18: Wilcoxon rank sum test P-values based on the comparison of each gauge-

radar driven model with raw radar and RGO (OK) driven models 

 Raw radar RGO (OK) MFB BSA LB CM 

Raw radar X 0.001 0.000 0.000 0.000 0.000 

RGO (OK) 0.001 X 0.043 0.247 0.247 0.525 

Fig. 22 presents the box-plot for the PEPF for each model driven by the individual 

rainfall estimation techniques over all rainfall events analysed combined. Each estimation 

technique driven model typically under-estimated the peak flow. This is attributed to the 

spatial averaging of rainfall over the subbasins, which reduced the effect of small spatial 

scale high intensity rainfall cells on the stream flow. Raw radar is also known to under-

estimate rainfall during heavy precipitation events (Smith et al. 2007). Each merging 

method provided a reduction in the median PEPF as compared to raw radar and RGO 

(OK) driven models. The MFB, BSA, LB and CM driven models reduced the median 

PEPF over the raw radar driven model by 69%, 61%, 55% and 57%, respectively, and 
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over the RGO (OK) driven model by 30%, 22%, 16% and 18%, respectively. Overall, as 

shown in Table 19, the MFB method driven model consistently provided the best 

estimate of the peak flow. The raw radar driven model displayed the largest variation in 

the PEPF with a standard deviation of 45%, while the other estimation techniques varied 

with similar magnitudes. 

 

Figure 22: Box-plot based on median of the PEPF for all estimation techniques for 

all events analysed combined 

Fig. 23 displays the box-plot for the PEV of each model driven by each individual 

estimation technique over all events analysed combined. The success of the MFB driven 

model outlined in Table 19 is attributed to the greater depth of rainfall estimated as 

compared to the other estimation techniques. This was evident in the PEV, with the MFB 

driven model providing a lower median PEV (-5%), as well as a smaller standard 

deviation in the PEV (29%), as compared to the other estimations techniques. The under-

estimation of the total volume follows a similar trend in error to the under-estimation in 

the PEPF observed in Fig. 22. 
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Figure 23: Box-plot based on the median of the PEV for all estimation techniques 

for all events analysed combined 

Fig. 24 displays the box-plot for the PTE for each model driven by each individual 

rainfall estimation technique over the three events analysed combined. Overall, each 

model generally captured the shape of the observed hydrograph. Therefore, each model 

produced PTE values of similar magnitudes. This is attributed to each model using 

identical values in both the rainfall-runoff and flow routing model components. 
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Figure 24: Box-plot based on the median of the PTE for all estimation techniques 

for all events analysed combined 

Table 19: Median error for each estimation technique for all events analysed 

combined 

Error 

Statistic 

Raw 

Radar 

RGO 

(OK) 
MFB BSA LB CM 

NSE -0.57 0.53 0.79 0.58 0.66 0.55 

PEPF (%) -85 -46 -16 -24 -30 -28 

PEV (%) -84 -30 -5 -11 -23 -28 

PTE (hr) 3 2 3 3 3 2 

5.6.5 Variation in storm type 

In the above analysis it was evident that the success of individual gauge-radar merging 

methods varied depending on the storm event analysed. As displayed in Fig. 25 the storm 

events of 8 July 2014 and 5 September 2014 displayed similar magnitudes and trends in 

error for each of the merging methods. However, the trend in results varied from the 

analysis of the 10 September 2014 rainfall event. This storm-to-storm variation in 

accuracy is attributed to the possible difference in storm type (i.e., convective or frontal) 

and magnitude as discussed in Section 4.3.5. The success of the RGO (OK) during the 10 

September 2014 rainfall event as compared to the gauge-radar merging methods is 

attributed to the even distribution of rainfall. Rain gauges alone can often accurately 
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characterize storm events of this nature. The RGO (OK) performed poorly during the 8 

July 2014 and 5 September 2014 rainfall events which tended to be localized events. It 

was also evident that the local bias and geostatistical methods outperformed the MFB 

method during the 10 September 2014 event. The success of the geostatistical method 

(CM) is attributed to the ability of the rain gauges to properly measure the rainfall depths. 

The poor performance of the MFB method in comparison to the other merging methods 

during the 10 September 2014 rainfall event was due to substantial over-estimation of the 

peak flow at the St. Mary’s SG and Innerkip SG. Due to the limited study duration further 

detailed analysis of different storm types and their effect on overall gauge-radar merging 

accuracy was not possible. 

 

Figure 25: Median NSE for each model driven by each rainfall estimation technique 

at all stream gauges analysed based on storm event 

5.6.6 Effect of basin characteristics 

As displayed in Fig. 26 the performance of gauge-radar merging methods varied with the 

SG location analysed during each rainfall event. Although determining a quantifiable 

relationship between basin type and performance of merging method is difficult to 

establish, some notable trends based on the SG location analysed can be observed.  



96 
 

 

 

With the exception of the raw radar model, all estimation techniques performed well at 

the Mitchell SG over all events analysed, with the MFB, BSA and LB methods slightly 

outperforming the RGO (OK) and CM methods. The Mitchell SG typically produced 

larger increases in flows as a result of the rainfall events due to the higher percentage of 

cleared land and soil characteristics. The larger rainfall accumulation values measured by 

the MFB, BSA and CM methods over the Mitchell subbasin contributed to the success of 

these methods. The rain gauge network is sparse in the northern part of the watershed 

where the Mitchell SG is located, which contributed to the success of radar driven rainfall 

products over the RGO (OK) in this region. With the exception of MFB, BSA and LB 

methods during the 5 September 2014 rainfall event, the Byron SG consistently displayed 

a higher NSE for all merging methods over the three rainfall events analysed in 

comparison to the other SG locations. The variation in accuracy between the merging 

methods at the Byron SG is also less pronounced. This is attributed to two main factors: 

1) the dampening of rainfall errors due to the size of the upstream catchment; and 2) the 

auto-correction of stream flow values at the Fanshawe Dam. As the contributing basin 

size increases, the errors within the flow due to errors in the rainfall field are averaged out 

and become less prominent (Zhu et al. 2013). The Fanshawe Dam is a major flood control 

structure on the North Branch of the Thames River and is situated upstream of the Byron 

SG. During heavy precipitation events the Fanshawe Dam can reduce flows by upwards 

of 50% on the North Branch. As discussed in Section 5.2.1, the reservoirs were removed 

in the model and replaced with a source-sink set. Consequently, the majority of the flow 

from the North Branch is corrected to match the observed flow at the Fanshawe Dam, 

which resulted in increased model efficiency at the Byron SG.  
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Figure 26: NSE for each model driven by each rainfall estimation technique at all 

stream gauges analysed for: a) 8 July 2014; b) 5 September 2014; and c) 10 

September 2014 

5.6.7 Rain gauge network density analysis 

As discussed in Section 4.3.3, the accuracy of the estimated rainfall (and consequently, 

the accuracy of the predicted flows), depends on the density of the rain gauge network 

used in the adjustment procedures. In order to assess the effect of rain gauge network 

density on accuracy of predicted flows, rain gauges were systematically removed from 

the correction network as described in Section 4.3.3. The following three rain gauge 

network densities were analysed: 

(1) 14 gauges (1 gauge per 244 km2); 

(2) 8 gauges (1 gauge per 427 km2) ; and 

(3) 5 gauges (1 gauge per 684 km2). 
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The basin averaged rainfall for each rain gauge network density was generated and used 

as the rainfall input in the HEC-HMS model.  

Fig. 27 presents the median NSE for each model driven by each individual rainfall 

estimation technique for the three rain gauge network densities considered. Results from 

all three rainfall events are combined in this analysis. As expected, the median model 

efficiency for each model decreased as the rain gauge network density decreased. In 

decreasing the gauge density from one gauge per 244 km2 to one gauge per 644 km2 the 

median NSE decreased from 0.53, 0.79, 0.58, 0.66 and 0.55 to 0.31, 0.46, 0.43, 0.48 and 

0.25 for RGO (OK), MFB, BSA, LB and CM models, respectively. This indicates that 

gauge density has a considerable effect on the accuracy of the individual estimation 

techniques. All merging methods displayed a higher median NSE compared to raw radar 

alone at all gauge densities analysed in this study. This suggests that gauge-radar merging 

methods are still beneficial and provide a reduction in error even at lower gauge densities. 

The MFB correction method displayed the largest decrease in the median NSE as the 

gauge density decreased. Similar to the findings reported in Section 4.3.3, as the gauge 

density decreased the MFB, BSA and LB merging methods displayed a gradual decrease 

in accuracy, while the RGO (OK) and CM methods did not show a relatively large 

decrease in accuracy until a gauge density less than one gauge per 427 km2 was reached. 

Beyond this gauge density the RGO (OK) and CM methods displayed a decrease in 

accuracy.  
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Figure 27: Rain gauge network density analysis for each model driven by each 

rainfall estimation technique for all events analysed combined  
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Chapter 6 

6 Conclusions and discussion 

This thesis provides a significant contribution to the water resources community. Results 

from this research provide a framework for analysing the addition of radar quantitative 

precipitation estimates (QPE) in hydrology. This research furthers the understanding of 

the effect of several operational, hydrological and environmental factors on the accuracy 

of gauge-radar merged rainfall estimates, and provides a basis for the application of radar 

based rainfall products in other geographic locations. This Chapter summarizes and 

discusses the main conclusions drawn from this thesis. The main findings from this thesis 

are divided into two categories: 

(1) results from a comprehensive review assessing the performance of the use of rain 

gauges, radar and gauge-radar merging methods for quantitative precipitation 

estimations (Chapter 2); and  

(2) results from the analysis of the effect of gauge-radar merging methods on the 

accuracy of rainfall estimation and hydrological modelling results (Chapters 4 and 

5).  

The last section of this Chapter provides recommendations for areas of future research.  

6.1 Gauge-radar merging methods for quantitative precipitation 
estimation 

Hydrological models are an important tool used in the water resources community. To 

develop a hydrological model that produces results with a high degree of confidence, it is 

imperative that the model be provided with accurate QPE as input (McMillan et al. 2011). 

For flood forecasting purposes in basins with rapid response times (e.g., hour(s) or less), 

QPE at high spatial and temporal resolutions are preferable (Gjertsen et al. 2004). Rain 

gauges and radar are the most widely used instruments for the near real-time collection of 

QPE (Sene 2013). Rain gauges directly measure rainfall intensity or accumulations at a 

single location and, therefore, provide relatively accurate depth measurements. Rainfall 

fields, however, can be highly variable in both space and time (Faures et al. 1995). Since 
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rain gauges only measure rainfall at a single point the spatial and temporal variability in 

the rainfall field is often mischaracterized. Consequently, this variability in rainfall fields 

can have an effect on stream flows and, therefore, the accuracy of hydrological models 

based on rain gauge data alone can suffer. Radar measures rainfall indirectly and 

remotely by measuring the reflectivity off particles within the atmosphere and converting 

the reflectivity to a rainfall rate based on the Marshall-Palmer relationship (Marshall and 

Palmer 1948). This measurement technique allows radar to accurately detect both the 

timing and location of rainfall, however, considerable error exists in the radar-generated 

depth values due to the indirect nature of the measurement (Creutin et al. 2000; Berne 

and Krajewski 2013). Due to the non-linearity of the transformation of rainfall to stream 

flow, errors in rainfall depth measurements are intensified within a hydrological model 

and can result in large errors in stream flow prediction (Zhu et al. 2013). Therefore, while 

rain gauges and radar demonstrate certain strengths, both instruments suffer from a wide 

variety of well-known errors which inhibit their ability to provide optimal QPE for 

hydrological models (Berne and Krajewski 2013).  

Considering this, several methods have been developed to merge the estimates of these 

two instruments in order to minimize their individual weaknesses and take advantage of 

their respective strengths (Wilson and Brandes 1979). These methods are divided into 

two main categories: bias reduction techniques and error variance minimization 

techniques. Bias reduction techniques adjust radar rainfall estimates based on rain gauge 

accumulations, while error variance minimization techniques combine the two rainfall 

estimates. The bias reduction techniques investigated in this thesis included: mean field 

bias correction, Brandes spatial adjustment, local bias correction with ordinary kriging 

and range dependent bias reduction. The error variance minimization techniques 

investigated included: Bayesian data combination, conditional merging, kriging with 

external drift and statistical objective analysis. Following a comprehensive review of 

prominent gauge-radar merging methods it is evident that there is an opportunity for near 

real-time gauge-radar merging methods in hydrology. Several factors were identified 

which can considerably affect the accuracy of gauge-radar merging methods, including: 
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(1) gauge network design; 

(2) storm type; 

(3) basin characteristics; 

(4) temporal resolution of adjustment; and 

(5) proximity to the radar station. 

These five factors have demonstrated a considerable effect on the overall accuracy of the 

application of a particular gauge-radar merging method (see, e.g., Kitchen and Blackall 

1992; Michelson and Koistinen 2000; Kalinga and Gan 2006; Smith et al. 2007; 

Goudenhoofdt and Delobbe 2009; Berne and Krajewski 2013). While the application of 

near-real-time gauge-radar merging methods has been studied in other regions, few 

studies have been conducted in Canada. Clearly, the above factors suggest that the 

accuracy of gauge-radar merging methods depends on location-specific hydrological, 

environmental and operational conditions. Therefore, there exists a need to assess the 

performance of gauge-radar merging methods on a case-by-case basis, and to quantify the 

effect of these five factors on the performance of gauge-radar merging methods.  

6.2 Application of gauge-radar merging methods in hydrology 

In order to assess the performance of gauge-radar merging methods for hydrological 

applications, this thesis investigated the application of several well-known merging 

methods using radar data supplied by Environment Canada (EC) and the Upper Thames 

River basin (UTRb) in southwestern Ontario, Canada, as a case study. The following two 

objectives were accomplished: 

(1) assessment of the effect of gauge-radar merging methods on the accuracy of 

estimated rainfall accumulations; and  

(2) assessment of the effect of gauge-radar merging methods on the accuracy of 

predicted flows using a semi-distributed hydrological model. 

Chapter 4 analysed the effect of gauge-radar merging methods on the accuracy of rainfall 

depth estimates, while Chapter 5 assessed the effect of gauge-radar merging methods on 

the accuracy of predicted flows using a semi-distributed hydrological model. Both 
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analyses were completed in the UTRb using tipping bucket (TB) rain gauges provided by 

the Upper Thames River Conservation Authority (UTRCA) and a corrected C-band radar 

product provided by the Canadian Meteorological Centre (CMC). Due to the availability 

of the radar rainfall product the study period was limited to the two periods between 1 

June 2013 to 31 August 2013 and 1 April 2014 to 31 October 2014. Four gauge-radar 

merging methods were selected based on their prevalence in the literature, their 

operational use in other geographical locations and their ability to be implemented in 

near-real time in the UTRb (Gjertsen et al. 2004; Goudenhoofdt and Delobbe 2009; 

Berne and Krajewski 2013). The methods selected included a mean field bias correction 

(MFB), two spatially-dependent bias correction methods (BSA and LB) and a 

geostatistical merging method (CM). Both analyses were conducted on an hourly time-

step. Several factors identified in Chapter 2, including rain gauge network density, time-

step of adjustment, storm variation and radar range effects, were considered in the 

assessment of the effect of gauge-radar merging methods on rainfall accumulation 

accuracy. Rain gauge network density, storm variation and basin type were investigated 

in the assessment of the effect of gauge-radar merging methods on accuracy of predicted 

flows. 

6.2.1 Effect of gauge-radar merging methods on rainfall accumulation accuracy 

Chapter 4 investigated the effect of the gauge-radar merging methods on hourly rainfall 

accumulation accuracy. In the comparison of the gauge-radar merging methods to raw 

radar alone, each merging method provided (on average) an increase in the accuracy of 

the rainfall accumulation estimates. This indicates that that the accuracy of radar rainfall 

estimates is improved with the addition of rain gauge values for adjustment. In 

comparison against RGO (OK), only the MFB approach increased (on average) the 

accuracy of rainfall accumulation estimates. The BSA, LB and CM methods each 

provided (on average) rainfall accumulations with similar magnitudes of accuracy. The 

success of the RGO (OK) compared to the gauge-radar merging methods is attributed to 

the proximity of the verification gauges to the correction gauges, as well as the overall 

rain gauge network density used in this analysis.  
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Overall, the MFB method provided (on average) the best estimate of rainfall over the 

entire study period. The success of the MFB approach over the other gauge-radar 

merging methods is attributed to the one-hour time-step of adjustment. Due to the 

differences in the measurement techniques of rainfall by radar and rain gauges there exist 

spatio-temporal sampling errors that become increasingly prominent at shorter time-steps. 

These sampling errors can cause large fluctuations in the gauge-radar comparison. While 

the MFB method relies on a summation of all gauge-radar comparisons, averaging out the 

spatio-temporal sampling errors, these fluctuations affect the single gauge correction 

factors of the spatially-dependent correction methods resulting in large variations in 

correction accuracy. This was verified through alteration of the time-step of adjustment. 

These fluctuations decreased as the time-step of adjustment increased from 1 to 24 hours, 

and as a result, the overall error decreased. As expected, at the 24 hour time-step the 

spatially dependent adjustment methods outperformed the MFB method.  

Correction gauges were systematically removed in order to assess the effect of rain gauge 

network density on the accuracy of rainfall accumulations determined by each gauge-

radar merging method. As expected, the error of each gauge-radar merging method 

increased as the gauge-network density decreased. The MFB, BSA and LB methods 

displayed gradual increases in the average overall error as the gauge density decreased 

from one gauge per 244 km2 to one gauge per 684 km2. The RGO (OK) and CM 

methods, however, did not display an increase in the average error until a density of one 

gauge per 427 km2 was reached. Once the density fell below one gauge per 427 km2, an 

increase in the average error was observed for both the RGO (OK) and CM estimation 

techniques.  

Results indicated a noticeable variation in error between events for the different gauge-

radar merging methods. This trend was attributed to variations in storm type and 

magnitude. Range related errors were found to not be a concern in the UTRb due to the 

close proximity of the radar tower to all points in the watershed, verifying the 

assumptions of Kneble et al. (2004). 
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6.2.2 Effect of gauge-radar merging methods on hydrological model accuracy 

Chapter 5 investigated the effect of gauge-radar merging methods on hydrological 

modelling accuracy. In order to accomplish this objective, each estimation technique was 

used as input into a semi-distributed hydrological model (HEC-HMS). The model was 

calibrated using RGO (OK) data for one of the largest rainfall events on record in the 

UTRb (a rainfall event that began on 9 July 2000).  

In comparison with raw radar alone, the accuracy of the model driven by the rainfall 

inputs of each gauge-radar merging method significantly increased. Similar to the results 

from Chapter 4, this indicated that the addition of rain gauge values to adjust radar 

improves rainfall estimation and, therefore, model performance. In comparison with the 

use of RGO (OK) as input, all gauge-radar merging methods provided an increase in the 

median model accuracy, however, similar to Chapter 4 only the MFB driven model 

significantly increased model efficiency. Overall, the hydrological model driven by the 

MFB generated rainfall provided the best match in predicted flows to observed flows 

over the three rainfall events analysed combined. 

As expected, as the density of the rain gauge network decreased from one gauge per 

244 km2 to one gauge per 644 km2 the median model efficiency for each gauge-radar 

merging method subsequently decreased. The MFB, BSA and LB methods each 

displayed a gradual decrease in model accuracy. The RGO (OK) and CM methods, 

however, did not display a substantial decrease in accuracy until a gauge density below 

one gauge per 427 km2 was reached. 

In addition, variations in error between the three storm events analysed were observed. 

The 8 July 2014 and 5 September 2014 rainfall events displayed similar magnitudes and 

trends in error for each gauge-radar merging method. The same trends were not observed 

for the 10 September 2014 rainfall event. This variation in error is attributed to the 

difference in storm type and magnitude. The 8 July 2014 and 5 September 2014 rainfall 

events were characterized by localized rainfall, while the 10 September 2014 rainfall 

event was more widespread throughout the watershed. Variations in the accuracy of the 
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simulations were also observed to be dependent on SG location. The Mitchell SG and 

Byron SG generally displayed greater accuracy in modelled flows. 

6.2.3 Comparison of rainfall accumulations and predicted flows 

Based on examination of the trends between each analysis, it is apparent that there exist 

several expected similarities between the results of the two objectives. In both studies raw 

radar provided the worst estimation of rainfall, with the gauge-radar merging methods 

providing an increase in accuracy in both the estimated rainfall accumulations and 

predicted flows. The MFB method (on average) provided the best estimate of rainfall 

accumulations and predicted flows. In general, the performance of the BSA, LB and CM 

methods were found to be similar between the two analyses. In the analysis of rainfall 

accumulations the BSA, LB and CM methods provided (on average) estimates with 

similar or worse magnitudes of error as compared to RGO (OK), with no substantial 

difference between the estimates. Similarly, in the analysis of predicted flows these three 

methods were unable to provide statistically superior results over the model driven by 

RGO (OK).  

Due to the non-linearity of the transformation of rainfall to runoff, errors within the 

rainfall estimates were more pronounced during the hydrological model simulations. This 

lead to larger discrepancies in the difference between the accuracy of each merging 

method during the assessment of predicted flows over the assessment of rainfall 

accumulations. Small errors in rainfall estimates can be increased in a hydrological model 

and can cause substantial variations in the accuracy of model predictions. These errors 

can cause considerable issues in the operational use of the model. Therefore, in assessing 

the accuracy of rainfall estimates it is recommended that they be used as input in a 

hydrological model rather than only assessing rainfall accumulations. 

6.3 Recommendations for future research 

The following are recommendations suggested for future research in this area. 

(1) Extend the timeframe of the study period to increase the number of rainfall events 

analysed. This study period was limited due to the availability of corrected C-
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band radar from the CMC. Therefore, variations in individual storm events have a 

larger influence on the average error of each merging method, which can skew the 

results. Extending the study period in order to analyse a larger base of rainfall 

events will reduce the effect that a single outlier event has on the overall error of 

each estimation technique. 

(2) Investigate the effect of gauge-radar merging schemes at higher temporal 

resolutions. Decreasing the time-step of adjustment to 15 minutes will reduce the 

signal treatment of the raw radar (i.e., correction for AP). However, in small 

urban watersheds both the timing and location of rainfall is extremely important 

in modelling the resulting stream flow. As observed at the Byron SG, the HEC-

HMS model missed the timing of the initial urban peak. Increasing the temporal 

resolution of the data is especially important in urban catchments where flash 

flooding is a major cause of damage.  

(3) Categorize the storm events based on storm type to quantify this effect in the 

UTRb. Previous studies have indicated that storm type can have a considerable 

effect on radar rainfall accuracy. This analysis has indicated a variation in 

accuracy between storm events.  

(4) Investigate the effect of gauge-radar merged rainfall estimates on the accuracy of 

predicted flows using a continuous hydrological model. Continuous models can 

offer additional information on watershed conditions over longer time-frames.  

(5) Assess the effect of using gauge-radar merged rainfall estimates on predicted 

water surface elevations through use of a hydraulic model. By taking the results of 

the hydrological model and using them in a hydraulic model, the potential 

increase in the accuracy of water surface elevations can be examined.  
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Appendices 

The following appendices provides additional figures and text not included in the main 

body of the thesis.  

Appendix A: Qualitative analysis of rainfall estimation techniques 

a)      b) 

 
c)      d) 
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e)      f) 

 

Figure 28: Hourly rainfall accumulations for the hour of 22:00 (UTC) on 10 

September 2014 for: a) Raw radar; b) RGO (OK); c) MFB; d) BSA; e) LB; and 

f) CM 
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Appendix B: Rainfall accumulation error based on individual 
event analysis 

 

Figure 29: Box-plots based on the median of the RMSE for all individual events 

combined 

Table 20: Error for each rainfall estimation technique for all events analysed 

Event 

RMSE (mm) 

Raw 

radar  

RGO 

(OK) 
MFB BSA LB CM 

28 June 2013 3.110 3.672 2.195 2.890 3.060 3.535 

31 July-August 2013 4.524 2.175 2.834 5.440 5.146 1.932 

20-21 May 2014 4.740 6.169 2.968 2.767 2.819 6.516 

7 July 2014 30.60 3.002 5.002 3.614 4.252 2.795 

8 July 2014 3.490 2.806 3.065 2.567 2.836 3.055 

27-28 July 2014 1.782 2.011 1.827 1.918 1.754 2.650 

5-6 September 2014 10.608 7.082 6.787 7.179 7.610 8.208 

10-11 September 2014 7.100 6.062 3.789 4.320 4.157 4.688 
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Appendix C: Summary of the calibrated RGO (OK) 
hydrological model parameters 

Table 21: Initial loss model parameters for the RGO (OK) calibrated model 

Basin # Basin name 
Area 

(km2) 

Loss model (Initial and Constant) 

Initial 

abstraction 

(mm) 

Constant 

rate 

(mm/hr) 

% 

Impervious 

1 
N. Thames R. above 

Whirl Cr. 
176 5 2 0 

2 
Whirl Cr. @ N. 

Thames R. 
130 5 2 0 

3 
N. Thames R. above 

Black Cr. 
48 15 2 0 

4 
Black Cr. @ N. 

Thames R. 
151 15 2 0 

5 
N. Thames R. above 

Avon R. 
77 20 2 0 

7 
Avon R. @ N. 

Thames R. 
144 8 4 2 

8 
Flat Cr. @ N. 

Thames R. 
88 20 2 0 

9 
N. Thames R. above 

St. Mary’s 
79 15 2 0 

10 
Trout Cr. above 

Wildwood Dam 
141 5 2 0 

11 
Trout Cr. @ Thames 

R. 
29 15 2 0 

12 
N. Thames R. above 

Fish Cr. 
36 10 2 0 

13 
Fish Cr. @ N. 

Thames R. 
154 15 2 0 

14 

N. Thames R. below 

Fish Cr. (incl. 

Gregory Cr.) 

85 12 2 0 

15 

N. Thames R. @ 

Fanshawe Dam (incl. 

Wye Cr.) 

94 5 2 0 

16 

N. Thames R. in 

London (incl. Stoney 

Cr.) 

75 2 1 5 

17 
Medway Cr. @ N. 

Thames R. 
203 10 2 12 

18 
S. Thames R. @ 

Innerkip 
148 5 3 0 
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19 
S. Thames R. @ 

Pittock Dam 
97 5 2 0 

20 Cedar Cr. 98 25 5 0 

21 
S. Thames R. @ 

Ingersoll 
171 34 3 0 

22 
S. Thames R. @ 

Middle Thames R. 
43 3 2 0 

23 
Middle Thames R. @ 

Thamesford 
291 27 3 0 

24 
Middle Thames R. @ 

S. Thames R. 
36 45 4 0 

25 
Reynolds Cr. @ S. 

Thames R. 
166 45 2 0 

26 
S. Thames River @ 

Waubuno Cr. 
121 50 2 0 

27 
Waubuno Cr. @ S. 

Thames R. 
105 5 5 0 

28 

S. Thames R. @ 

Ealing (incl. 

Pottersburg Cr.) 

61 50 2 0 

29 
S. Thames R. @ N. 

Thames R. (Forks) 
23 1 2 40 

30 Thames R. @ Byron 30 1 2 30 

31 
Thames R. @ 

Oxbow Cr. 
32 1 4 0 

32 
Oxbow Cr. @ 

Thames R. 
89 5 8 0 

33 
Thames R. @ 

Dingman Cr. 
51 5 4 0 

34 
Dingman Cr. @ 

Thames R. 
169 3 6 2 

Table 22: Transform model parameters for the RGO (OK) calibrated model 

Basin 

# 
Basin name 

Area 

(km2) 

Transform (Clark unit hydrograph) 

Time of 

concentration (hr) 

Storage coefficient 

(hr) 

1 
N. Thames R. above 

Whirl Cr. 
176 12 22 

2 
Whirl Cr. @ N. 

Thames R. 
130 8 13 

3 
N. Thames R. above 

Black Cr. 
48 12 6 

4 
Black Cr. @ N. 

Thames R. 
151 12 6 
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5 
N. Thames R. above 

Avon R. 
77 7 6 

7 
Avon R. @ N. 

Thames R. 
144 3 18 

8 
Flat Cr. @ N. Thames 

R. 
88 8 6 

9 
N. Thames R. above 

St. Mary’s 
79 5 6 

10 
Trout Cr. above 

Wildwood Dam 
141 8 15 

11 
Trout Cr. @ Thames 

R. 
29 9 10 

12 
N. Thames R. above 

Fish Cr. 
36 10 8 

13 
Fish Cr. @ N. 

Thames R. 
154 13 14 

14 

N. Thames R. below 

Fish Cr. (incl. 

Gregory Cr.) 

85 14 10 

15 

N. Thames R. @ 

Fanshawe Dam (incl. 

Wye Cr.) 

94 15 20 

16 

N. Thames R. in 

London (incl. Stoney 

Cr.) 

75 8 8 

17 
Medway Cr. @ N. 

Thames R. 
203 22 15 

18 
S. Thames R. @ 

Innerkip 
148 15 18 

19 
S. Thames R. @ 

Pittock Dam 
97 15 15 

20 Cedar Cr. 98 15 22 

21 
S. Thames R. @ 

Ingersoll 
171 4 20 

22 
S. Thames R. @ 

Middle Thames R. 
43 24 9 

23 
Middle Thames R. @ 

Thamesford 
291 8 21 

24 
Middle Thames R. @ 

S. Thames R. 
36 8 15 

25 
Reynolds Cr. @ S. 

Thames R. 
166 15 18 

26 
S. Thames River @ 

Waubuno Cr. 
121 8 8 

27 
Waubuno Cr. @ S. 

Thames R. 
105 15 15 
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28 

S. Thames R. @ 

Ealing (incl. 

Pottersburg Cr.) 

61 8 5 

29 
S. Thames R. @ N. 

Thames R. (Forks) 
23 4 6 

30 Thames R. @ Byron 30 7 10 

31 
Thames R. @ Oxbow 

Cr. 
32 6 6 

32 
Oxbow Cr. @ 

Thames R. 
89 40 14 

33 
Thames R. @ 

Dingman Cr. 
51 8 7 

34 
Dingman Cr. @ 

Thames R. 
169 12 8 

Table 23: Baseflow model parameters for the RGO (OK) calibrated model 

Basin # Basin name 

Area 

(km2) 

Baseflow (recession) 

Initial 

discharge 

(m3/s/km2) 

Recession 

constant 

Ratio 

1 N. Thames R. above Whirl 

Cr. 

176 0.01 0.4 0.2 

2 Whirl Cr. @ N. Thames R. 130 0.01 0.4 0.2 

3 N. Thames R. above Black 

Cr. 

48 0.01 0.4 0.2 

4 Black Cr. @ N. Thames R. 151 0.01 0.4 0.2 

5 N. Thames R. above Avon R. 77 0.01 0.4 0.2 

7 Avon R. @ N. Thames R. 144 0.01 0.4 0.2 

8 Flat Cr. @ N. Thames R. 88 0.01 0.4 0.2 

9 N. Thames R. above St. 

Mary’s 

78 0.01 0.4 0.2 

10 Trout Cr. above Wildwood 

Dam 

141 0.01 0.4 0.2 

11 Trout Cr. @ Thames R. 29 0.01 0.4 0.2 

12 N. Thames R. above Fish Cr. 35 0.01 0.4 0.2 

13 Fish Cr. @ N. Thames R. 154 0.01 0.4 0.2 

14 N. Thames R. below Fish Cr. 

(incl. Gregory Cr.) 

85 0.01 0.4 0.2 

15 N. Thames R. @ Fanshawe 

Dam (incl. Wye Cr.) 

94 0.01 0.4 0.2 

16 N. Thames R. in London 

(incl. Stoney Cr.) 

75 0.01 0.4 0.2 

17 Medway Cr. @ N. Thames 

R. 

202 0.01 0.4 0.2 
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18 S. Thames R. @ Innerkip 148 0.01 0.4 0.2 

19 S. Thames R. @ Pittock Dam 97 0.01 0.4 0.2 

20 Cedar Cr. 98 0.01 0.4 0.2 

21 S. Thames R. @ Ingersoll 171 0.01 0.4 0.2 

22 S. Thames R. @ Middle 

Thames R. 

43 0.01 0.4 0.2 

23 Middle Thames R. @ 

Thamesford 

291 0.01 0.4 0.2 

24 Middle Thames R. @ S. 

Thames R. 

36 0.01 0.4 0.2 

25 Reynolds Cr. @ S. Thames 

R. 

166 0.01 0.4 0.2 

26 S. Thames River @ 

Waubuno Cr. 

121 0.01 0.4 0.2 

27 Waubuno Cr. @ S. Thames 

R. 

105 0.01 0.4 0.2 

28 S. Thames R. @ Ealing (incl. 

Pottersburg Cr.) 

61 0.01 0.4 0.2 

29 S. Thames R. @ N. Thames 

R. (Forks) 

22 0.01 0.4 0.2 

30 Thames R. @ Byron 30 0.01 0.4 0.2 

31 Thames R. @ Oxbow Cr. 32 0.01 0.4 0.2 

32 Oxbow Cr. @ Thames R. 89 0.01 0.4 0.2 

33 Thames R. @ Dingman Cr. 50 0.01 0.4 0.2 

34 Dingman Cr. @ Thames R. 169 0.01 0.4 0.2 
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Appendix D: Summary of the calibrated BSA hydrological model 
parameters 

Table 24: Initial loss model parameters for the BSA calibrated model 

Basin 

# 
Basin name 

Area 

(km2) 

Loss model (Initial and Constant) 

Initial abstraction 

(mm) 

Constant 

rate 

(mm/hr) 

% 

Impervious 

1 N. Thames R. 

above Whirl Cr. 

176 4 1 0 

2 Whirl Cr. @ N. 

Thames R. 

130 5 2 0 

3 N. Thames R. 

above Black Cr. 

48 15 2 0 

4 Black Cr. @ N. 

Thames R. 

151 15 2 0 

5 N. Thames R. 

above Avon R. 

77 20 2 0 

7 Avon R. @ N. 

Thames R. 

144 8 4 2 

8 Flat Cr. @ N. 

Thames R. 

88 20 2 0 

9 N. Thames R. 

above St. 

Mary’s 

78 15 2 0 

10 Trout Cr. above 

Wildwood Dam 

141 5 2 0 

11 Trout Cr. @ 

Thames R. 

29 15 2 0 

12 N. Thames R. 

above Fish Cr. 

35 10 2 0 

13 Fish Cr. @ N. 

Thames R. 

154 14 2 0 

14 N. Thames R. 

below Fish Cr. 

(incl. Gregory 

Cr.) 

85 12 2 0 

15 N. Thames R. @ 

Fanshawe Dam 

(incl. Wye Cr.) 

94 5 2 0 

16 N. Thames R. in 

London (incl. 

Stoney Cr.) 

75 2 1 5 

17 Medway Cr. @ 

N. Thames R. 

202 15 2 12 
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18 S. Thames R. @ 

Innerkip 

148 5 3 0 

19 S. Thames R. @ 

Pittock Dam 

97 5 2 0 

20 Cedar Cr. 98 23 4 0 

21 S. Thames R. @ 

Ingersoll 

171 34 3 0 

22 S. Thames R. @ 

Middle Thames 

R. 

43 3 2 0 

23 Middle Thames 

R. @ 

Thamesford 

291 21 3 0 

24 Middle Thames 

R. @ S. Thames 

R. 

36 45 4 0 

25 Reynolds Cr. @ 

S. Thames R. 

166 45 2 0 

26 S. Thames River 

@ Waubuno Cr. 

121 50 2 0 

27 Waubuno Cr. @ 

S. Thames R. 

105 5 5 0 

28 S. Thames R. @ 

Ealing (incl. 

Pottersburg Cr.) 

61 50 2 0 

29 S. Thames R. @ 

N. Thames R. 

(Forks) 

23 1 2 40 

30 Thames R. @ 

Byron 

30 1 2 30 

31 Thames R. @ 

Oxbow Cr. 

32 1 4 0 

32 Oxbow Cr. @ 

Thames R. 

89 5 8 0 

33 Thames R. @ 

Dingman Cr. 

50 5 4 0 

34 Dingman Cr. @ 

Thames R. 

169 3 6 2 
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Table 25: Transform model parameters for the BSA calibrated model 

Basin 

# 
Basin name 

Area 

(km2) 

Transform (Clark unit hydrograph) 

Time of concentration 

(hr) 

Storage 

coefficient 

(hr) 

1 
N. Thames R. above 

Whirl Cr. 
176 

12 22 

2 
Whirl Cr. @ N. Thames 

R. 
130 

12 13 

3 
N. Thames R. above 

Black Cr. 
48 

18 6 

4 
Black Cr. @ N. Thames 

R. 
151 

27 6 

5 
N. Thames R. above 

Avon R. 
77 

6 6 

7 
Avon R. @ N. Thames 

R. 
144 

4 18 

8 Flat Cr. @ N. Thames R. 88 12 13 

9 
N. Thames R. above St. 

Mary’s 
79 

3 6 

10 
Trout Cr. above 

Wildwood Dam 
141 

8 15 

11 Trout Cr. @ Thames R. 29 20 15 

12 
N. Thames R. above Fish 

Cr. 
36 

22 8 

13 
Fish Cr. @ N. Thames 

R. 
154 

19 14 

14 

N. Thames R. below 

Fish Cr. (incl. Gregory 

Cr.) 

85 

21 16 

15 

N. Thames R. @ 

Fanshawe Dam (incl. 

Wye Cr.) 

94 

15 20 

16 
N. Thames R. in London 

(incl. Stoney Cr.) 
75 

8 8 

17 
Medway Cr. @ N. 

Thames R. 
203 

22 15 

18 
S. Thames R. @ 

Innerkip 
148 

22 18 

19 
S. Thames R. @ Pittock 

Dam 
97 

50 22 

20 Cedar Cr. 98 22 22 

21 
S. Thames R. @ 

Ingersoll 
171 

6 34 

22 S. Thames R. @ Middle 43 26 20 
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Thames R. 

23 
Middle Thames R. @ 

Thamesford 
291 

12 17 

24 
Middle Thames R. @ S. 

Thames R. 
36 

8 15 

25 
Reynolds Cr. @ S. 

Thames R. 
166 

15 18 

26 
S. Thames River @ 

Waubuno Cr. 
121 

8 8 

27 
Waubuno Cr. @ S. 

Thames R. 
105 

22 6 

28 
S. Thames R. @ Ealing 

(incl. Pottersburg Cr.) 
61 

1 5 

29 
S. Thames R. @ N. 

Thames R. (Forks) 
23 

4 6 

30 Thames R. @ Byron 30 7 10 

31 
Thames R. @ Oxbow 

Cr. 
32 

6 6 

32 
Oxbow Cr. @ Thames 

R. 
89 

40 14 

33 
Thames R. @ Dingman 

Cr. 
51 

8 7 

34 
Dingman Cr. @ Thames 

R. 
169 

12 8 
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