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Abstract 

We used functional magnetic resonance imaging (fMRI) to explore neural mechanisms of 

command following or communicating using executed or imagined movements, in order 

to understand why most covertly aware patients cannot communicate. 15 healthy 

participants executed or imagined arm movements that were either selected by them or 

pre-determined. We also explored non-volitional motor activity by passively moving 

participants. Response selection involved greater activity in high-level associative areas 

in frontal and parietal regions than following commands. Furthermore, there was no 

interaction between response and modality. Neural activity during passive movement 

exceeded that of active (volitional) movement in sensorimotor regions. Our results 

suggest that the ability to select between motor responses is not dependent on how that 

response is expressed (via motor execution/imagery). They also suggest a potential neural 

basis of the distinction in cognitive abilities seen in DOCs. Finally, passive movement 

could be applied to study unresponsive patients’ motor systems. 

 

Keywords: 

Functional Magnetic Resonance Imaging (fMRI); Disorders of Consciousness; Command 

Following; Communication; Motor Execution; Motor Imagery; Passive Movement 
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Chapter 1: Introduction 

 
1.0 Disorders of Consciousness 

 
1.1 Consciousness: Arousal and Awareness 

 
Consciousness forms an integral part of the human experience, one that neuroscientists 

and philosophers alike strive to understand more thoroughly. In the field of clinical 

neurosciences, it is thought to be comprised of two factors: arousal and awareness 

(Steven Laureys et al. 2004). Arousal in this case refers to wakefulness, which is 

generated by the brainstem and reticular activating systems (McCormick & Bal 1997). 

Awareness refers to mindfulness of the self or the environment, and is believed to arise 

from regular functioning across and between brain systems (Steven Laureys et al. 2004). 

The exact brain regions responsible for creating our conscious experience are not yet 

known, although there are several theories involving thalamocortical (Schiff 2010; Schiff 

2008; Fernández-Espejo et al. 2012; Monti et al. 2014) and fronto-parietal networks 

(Noirhomme et al. 2010; Jin & Chung 2012; Fernández-Espejo et al. 2012).  

 

Disorders of Consciousness (DOC) are defined as impairment to one or both of these 

components, and consist of a spectrum of disorders including coma, the vegetative state 

(VS), and minimally conscious state (MCS). This impairment is often caused by severe 

brain injury, which may be traumatic (eg. motor vehicle accident) or non-traumatic (eg. 

stroke, cardiac arrest, infection) in nature (Multi-Society Task Force on PVS 1994). 

 

1.1.2 Coma 

 

A comatose state is clinically defined as a complete lack of arousal and responsiveness, 

in which patients are unable to be aroused by any external stimulation and lie with their 

eyes closed (Steven Laureys et al. 2004). To be diagnosed as comatose, a person must be 

in this state for at least one hour. After about two weeks to a month, comatose patients 

who survive their acute injury typically begin to recover consciousness. However, some 
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patients may recover wakefulness but remain in a disordered state of consciousness, such 

as VS or MCS (Steven Laureys et al. 2004). Positron Emission Tomography (PET) is a 

neuroimaging technique that measures brain activity as a function of the glucose 

metabolized in brain tissue. Measurements of cerebral metabolism of glucose in coma 

patients, which is believed to be an indicator of brain function, is typically reduced by 30 

to 50 per cent of normal levels (Bergsneider et al. 2001).  

 

1.1.3 Vegetative State 

 

The VS is also known as unresponsive wakefulness syndrome (UWS) because patients 

have a circadian rhythm and sleep-wake cycles that lead to periods where they appear 

awake with their eyes open, but are thought to remain unaware of themselves or their 

environment (Steven Laureys et al. 2004). After one month in this condition, a patient is 

considered to be in a “persistent” VS. The VS is considered to be “permanent”, and 

therefore recovery of consciousness unlikely, after three months in patients with non-

traumatic brain injuries, and one year in patients with traumatic injuries 

(Vanhaudenhuyse et al. 2012). While VS patients do not show volitional behaviour in 

response to external stimuli, they can show several automatic, unconscious reactions 

produced by the brainstem or limbic system, such as grimacing, crying, and laughing 

(Steven Laureys et al. 2004). 

 

Resting–state PET scans of VS patients reveal global cortical metabolism that is roughly 

half that of healthy individuals (Rudolf et al. 1999). Metabolism is usually relatively 

normal in lower brain areas including the brainstem, reticular system, hypothalamus and 

basal forebrain (Laureys et al. 1999), which reflect VS patients’ intact autonomic activity 

(eg, breathing) and wakefulness. Importantly, metabolism is impaired in higher 

associative cortices (Laureys et al. 1999) that are thought to be required for more 

complex cognitive functions including attention, memory and language.   
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1.1.4 Minimally Conscious State 

 
Patients in a MCS begin to show clear, reproducible evidence of consciousness. 

However, this increased level of environmental and self-awareness is not stable, and 

fluctuates over time (Vanhaudenhuyse et al. 2012). Some of the behaviours that 

characterize MCS are visual fixation and pursuit of objects, appropriate emotional 

responses (eg. laughing at a joke), behavioural responses to verbal commands and 

recovery of basic motor functions, such as manipulating objects (Vanhaudenhuyse et al. 

2012). There is considerable variability in the degree of regained cognitive function 

among patients in the MCS state, and individuals may emerge from this state or remain 

MCS. Emergence from MCS (EMCS) occurs when a patient is able to communicate or 

use objects reliably and accurately (Vanhaudenhuyse et al. 2012). Interestingly, resting-

state PET studies still show decreased cortical metabolism in MCS patients, with slightly 

greater metabolism than in the VS (S Laureys et al. 2004).  

 

1.1.5 Anatomical Features of DOC 

 

The different profiles of brain damage that can result in a disorder of consciousness can 

vary widely. Neuropathological and structural neuroimaging studies have revealed 

diverse patterns of brain damage in this population (Adams et al. 2000; Kampfl et al. 

1998; Juengling et al. 2005; Fernández-Espejo et al. 2011; Fernández-Espejo et al. 2012) 

with damage profiles that seem to be unique to each patient. Subcortical damage can be 

found in varying degrees and occasionally in isolation, while cortical damage can range 

from severe to almost non-existent (Adams et al. 2000; Graham et al. 2005). The specific 

origin of injury typically results in characteristic damage patterns. For example, strong 

shearing forces experienced during physical trauma, such as a traffic collision, can sever 

connective fibres and are particularly destructive to the brain’s white matter tracts. This is 

known as Diffuse Axonal Injury, or DAI (Smith et al. 2003). Most traumatic DOC 

patients show some degree of DAI and/or subcortical damage, specifically to the 

thalamus and its white matter (Adams et al. 1999; Jennett et al. 2001; Fernández-Espejo 
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et al. 2011; Fernández-Espejo et al. 2012; Fernández-Espejo et al. 2010). However, there 

are currently no well-established structural “biomarkers” that can distinguish between 

different DOCs (Fernández-Espejo et al. 2011). Therefore, the primary method for 

diagnosis is bedside behavioural assessment, typically performed multiple times by the 

patient’s clinical team. 

 

1.2 Diagnosing DOCs 

 

1.2.1 Behavioural Assessments 

 
Measuring wakefulness in an individual is relatively straightforward, as people with 

restored sleep/wake cycles typically have periods where their eyes are open and they 

appear awake. Furthermore, electroencephalography (EEG) recordings can detect neural 

activity patterns that are characteristic of sleeping and waking states in DOC patients (De 

Biase et al. 2014). But how does one determine if someone (or something) is aware? The 

most straightforward method is to ask for a response that indicates the person is aware of 

themselves and their surroundings. Before the advent of neuroimaging techniques that 

allow researchers to measure an individual’s brain activity, these responses were by 

necessity behavioural. However, the absence of behavioural signs of awareness does not 

necessarily equal an absence of consciousness (Monti et al. 2009).  Figure 1 (Monti et al. 

2009) provides a visual representation of DOCs and their relationship to the arousal, 

awareness and behavioural components of consciousness. 

 

Behavioural assessments rely on pre-determined and observable behaviours made by the 

patient in response to certain visual, auditory and tactile stimulation administered by the 

evaluator. The presence, or absence, of specific responses to these stimuli is used to make 

inferences about the patient’s level of conscious awareness and cortical processing 

(Schnakers 2012). These assessments include a variety of subscales designed to evaluate 

everything from low-level reflexive responses to volitional command following and 

communication. There are currently multiple behavioural assessments for consciousness 

that are used in hospitals and primary care facilities throughout the world, including the 
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Figure 1: Representation of different DOCs, including coma, VS and MCS along the 
traits of wakefulness, awareness and mobility (ability to produce behaviour volitionally). 
Figure taken from (Monti et al. 2009).  
 

 

Glasgow Coma Scale (Teasdale & Jennett 1974), the Full Outline of Unresponsiveness 

scale (Wijdicks et al. 2005), The Wessex Head Injury Matrix (Shiel et al. 2000), the 

Sensory Modality Assessment and Rehabilitation Technique (Gill-Thwaites & Munday 

2004), and the JFK Coma Recovery Scale-Revised (CRS-R) (Schnakers 2012; 

Guldenmund et al. 2012), amongst others. Along with the Sensory Modality Assessment 

and Rehabilitation Technique (SMART), The JFK CRS-R is internationally recognized 

as the gold standard for differential diagnosis in DOC patients (Schnakers et al. 2009). 

The CRS-R is one of the more widely used diagnostic tests because it doesn’t require any 

formal training by its creators, and is free to use. Its diagnostic criteria are summarized in 

Table 1.  
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Table 1: Subscale diagnostic criteria for VS, MCS and EMCS from the CRS-R(Kalmar & Giacino 

2007)  

Diagnosis Scale 
Score Behavioural Response 

Auditory Function Scale 
MCS 4 Consistent Movement to Command 
MCS 3 Reproducible Movement to Command 
VS 2 Localization to Sound 
VS 1 Auditory Startle 
VS 0 None 
Visual Function Scale 
MCS 5 Object Recognition 
MCS 4 Object Localization: Reaching 
MCS 3 Visual Pursuit 
MCS 2 Fixation 
VS 1 Visual Startle 
VS 0 None 
Motor Function Scale 
EMCS 6 Functional Object Use 
MCS 5 Automatic Motor Responses 
MCS 4 Object Manipulation 
MCS 3 Localization to Noxious Stimulation 
VS 2 Flexion Withdrawal 
VS 1 Abnormal Posturing 
VS 0 None/Flaccid 
Oromotor/Verbal Function Scale 
MCS 3 Intelligible Verbalization 
VS 2 Vocalization/Oral Movement 
VS 1 Oral Reflexive Movement 
VS 0 None 
Communication Scale 
EMCS 2 Functional: Accurate 
MCS 1 Non-Functional: Intentional 
VS 0 None 
Arousal Scale 
VS 3 Attention 
VS 2 Eye Opening without Stimulation 
VS 1 Eye Opening with Stimulation 
VS 0 Unarousable 
Adapted from (D. Cruse et al. 2012). Abbreviations: CRS-R = Coma Recovery Scale- 
Revised; EMCS = emergence from minimally conscious state; MCS = minimally 
conscious state; VS = vegetative state 
 

The CRS-R is comprised of a series of subscales that assess function across auditory, 

visual, motor and oromotor or verbal categories. The scale also includes evaluation of a 
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patients’ general state of arousal during the examination, and if certain criteria are met, an 

assessment of communication abilities (Kalmar & Giacino 2007). Patients are assigned a 

numeric score depending on their levels of responses in each category. This score ranges 

from 0 to 23, and corresponds to a diagnosis of VS, MCS or EMCS. In some cases, the 

presence of certain responses, such as replicable and accurate communication, can by 

definition denote a certain diagnosis (in this case, EMCS), regardless of the patient’s 

performance in other categories (Kalmar & Giacino 2007). This is because some sensory 

modalities (eg. vision) may be impaired in a patient, leading to low scores in this 

category despite preservation of other cognitive resources. 

 

The CRS-R provides multiple alternatives when assessing higher-level functions to 

account for the heterogeneous nature of DOC patients’ physical abilities. Evaluators can 

ask specifically for eye, limb or mouth movements to command, depending on the 

patient’s individual capabilities (Kalmar & Giacino 2007). It’s important to note that 

responses in this assessment, regardless of the category, always require some type of 

motoric output by the patient. One of the subscales that specifically assesses command 

following is the Auditory Function Scale. This subscale is also one that compares more 

easily with neuroimaging studies of command following, which generally use auditory 

instructions for the patients (Fernández-Espejo & Owen 2013). In the Auditory Function 

Scale, patients are given various verbal commands, such as touching one of two objects 

presented to them (“touch the ball”), or making specific movements (“look up”). If they 

successfully follow these commands every time, and within 10 seconds of receiving the 

instruction, they’re considered to show “Consistent Movement to Command” and receive 

the highest possible level in that subscale (4). Less consistent responding equates to 

“Reproducible Movement to Command” and a score of 3. However, both scores indicate 

command following, which is a marker of the MCS diagnosis. “Localization to Sound” is 

worth a score of 2, and assigned when a patient is capable of orienting (turning their head 

or eyes) towards an out-of-view auditory stimulus, such as a voice or a ringing bell. 

Finally, if a patient only responds to a sudden loud noise, for example by fluttering or 

blinking their eyes, they’re considered to show an “Auditory Startle”, worth a score of 1. 

These last two responses are considered to be relatively automatic or reflexive processes 
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rather than conscious, volitional action, and therefore correspond to a VS diagnosis 

(Kalmar & Giacino 2007). If a patient shows none of these responses, they’re given a 

score of 0 for the Auditory Function Scale.  

 

1.2.2 Command Following vs. Communication in Behavioural Assessments 

 

If a patient demonstrates command following in any of the subscales, evaluators will 

administer the CRS-R’s Communication Scale’s six situational orientation questions. 

First, at least one clear behavioural response will be established with the patient for the 

purposes of communication. This behaviour, such as a head nod, will typically signify a 

“yes” response. Then evaluators will ask a series of six questions based on visual or 

auditory stimuli. For example, they may ask “Am I touching my ear right now?” while 

touching their ear, and again when they’re not. Correct answers to all six questions 

constitute “Functional Communication”, that is, providing reliable and clear responses 

that are factually accurate. Functional communication is considered an indisputable sign 

of consciousness, and consequently changes a patient’s diagnosis to emerging from the 

minimally conscious state (EMCS) (Kalmar & Giacino 2007). The ability to 

communicate with a patient allows for more accurate assessment of their physical 

condition and well being, as well as opening up possibilities for various 

neurorehabilitation strategies (Whyte et al. 1999). 

 

Interestingly, a patient may also receive the score of “Non-Functional: Intentional 

Communication” if they respond to at least two of the questions. Importantly, these 

responses may or may not be accurate. This score corresponds to a diagnosis of MCS, 

and is believed to reflect intention to communicate, or “communication readiness” which 

may be impaired by the fluctuating levels of consciousness characteristic of MCS patients 

(Bardin et al. 2011). Very few works have systematically studied the occurrence of 

behavioural command following or communication in MCS patients. A recent report 

including a cohort of 52 MCS patients identified command following in 33 per cent, and 

non-functional communication in 19 per cent of them. Importantly, only 17 per cent of 
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chronic patients (more than 1 year after the initial injury) showed command following 

abilities, and none were able to communicate (Estraneo et al. 2014).  

 

Non-functional communication is an interesting link between the two cognitive tasks, 

command following and functional communication, that mark the diagnostic boundaries 

of the minimally conscious state. The ability to communicate accurate answers is thought 

to depend on preservation of a number of high-order cognitive processes, such as 

autobiographical memory, semantic representations, mental orientation, etc. However, 

when accuracy is not taking into account, as in non-functional communication, providing 

responses to binary questions essentially requires the ability to select between two 

alternative behaviours, representing ‘yes’ / ‘no’. Producing responses to command, and 

selecting between these responses to “answer” a question (albeit inaccurately) are both 

considered MCS behaviours. This diagnostic point might suggest that the one ability is 

not significantly different than the other, at least in regards to awareness. Interestingly, 

not all MCS patients who can follow commands can provide even inaccurate responses to 

binary questions. So while responding to commands and selecting between responses 

both fall in the MCS category, some patients can demonstrate the former but not the 

latter. The specific cognitive mechanisms underlying the differences between the ability 

to respond to a command, and the ability to select between two potential responses to 

answer a binary question, have not been explored. 

 

1.2.3 Limitations of Behavioural Assessments 

 

While behavioural assessments are the standard diagnostic tool used by clinicians, there 

are some challenges associated with their accuracy and reliability. Childs et al. found that 

18 out of 49, or 37 per cent, of VS patients were misdiagnosed as VS, when they were 

actually MCS, with standard behavioural tests (Childs et al. 1993). A similar finding was 

reported in a 1996 study, where 43 per cent (17 our of 40) patients were misdiagnosed 

(Andrews et al. 1996). More recently, a study using the CRS-R as a diagnostic tool found 

a misdiagnosis rate of 41 per cent (18/44 patients) (Schnakers et al. 2009). This 

variability may in part be due to the subjective nature of certain criterion in behavioural 



10 
 

 
 

assessments, such as determining if a motor response (eg. eyeblink) is reflexive, 

spontaneous, or a volitional action made by the patient (Guldenmund et al. 2012). To 

further complicate matters, there are many clinical features associated with severe brain 

damage that can interfere with the behavioural responses recruited to investigate 

conscious awareness. These include motor system impairments, hearing or vision 

problems, spasticity, seizures, and pain; as well as the potentially confounding effects of 

any medication administered to treat these issues (Guldenmund et al. 2012). Fluctuations 

in attention and wakefulness during administration of the test may also misrepresent a 

patient’s true level of consciousness by providing only a “snapshot” of their current state 

of arousal. Because no gold-standard measure of consciousness currently exists, it is 

difficult to definitively evaluate any given assessments’ diagnostic reliability and validity 

(Guldenmund et al. 2012). This is a serious concern for this clinical population, as 

diagnosis can dictate a DOC patient’s clinical care and legal rights, and confidence in 

diagnostic accuracy is especially important considering that patients considered to be VS 

could have life-sustaining treatments removed (Fins 2003).  

 

1.3 Assessing Covert Cognition in DOCs 

 

A small group of patients who are incapable of performing volitional movements to 

command can perform volitional motor imagery when instructed in neuroimaging 

paradigms. These paradigms commonly use functional magnetic resonance imaging 

(fMRI), which measures oxygenated blood flow in the brain, or EEG (Cruse et al. 2011; 

D. Cruse et al. 2012; Forgacs et al. 2014). This is a phenomenon known as “covert’ 

cognition, which describes DOC patients who display no outward signs of consciousness, 

but show brain activity consistent with complex cognitive functioning indicative of 

awareness (Fernández-Espejo & Owen 2013) 

 

Neuroimaging allows researchers to assess patients’ neural responses to a variety of 

auditory, visual and tactile stimuli, and make inferences about what these responses may 

signify in terms of their residual cognitive abilities. Multiple studies using different 

neuroimaging techniques, including PET, EEG, and fMRI, have reported group level 
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brain activity in primary sensory cortices but not secondary or tertiary association regions 

in VS patients presented with auditory, visual or tactile stimuli (Laureys et al. 2002; S 

Laureys et al. 2004). Collectively, these findings lead researchers to conclude that any 

residual cognitive processing seen in VS patients does not reach the brain areas required 

to create conscious awareness or experiences of these stimuli (Steven Laureys et al. 

2004). However, there have been reported cases where patients diagnosed as vegetative 

do have significant brain activation in higher associative areas in response to painful (de 

Tommaso et al. 2013), auditory, and visual stimuli which was revealed when patients 

were analyzed at the single subject level, rather than the group (Owen et al. 2002; Menon 

DK, Owen AM, Williams EJ, Minhas PS, Allen CMC, Boniface SJ, Pickard JD 1998; 

Fernández-Espejo et al. 2008; Monti et al. 2013). Neuroimaging results also show 

activation in higher associative areas and greater functional connectivity across different 

brain regions when MCS patients are presented with auditory (Boly et al. 2004) or 

somatosensory stimuli (Boly et al. 2005) compared to VS patients. Some MCS patients 

also react to emotional relevant stimuli, such as their own name or a story narrated by a 

familiar voice, with brain activity patterns similar to healthy controls (Perrin et al. 2006; 

Beckinschtein et al. 2004).  

 

The diverse range of preserved cognitive capacity seen in DOC patients has led to the 

development of two general types of neuroimaging tasks: passive and active. Passive 

tasks present stimuli to patients without requiring any type of effortful response on their 

behalf. These tasks are useful for exploring sensory processing abilities in patients, and 

advantageous because they don’t rely exclusively on the patients’ ability to wilfully 

participate or understand task instructions. However, this also means that limited 

conclusions can be drawn regarding conscious cognitive processes with passive 

paradigms (Bruno et al. 2010). By contrast, active paradigms do require effortful and 

voluntary mental responses from patients. Therefore, successful performance in active 

paradigms can indicate awareness. 
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1.3.1 Active Paradigms: Command Following  

 

In 2006, Owen and colleagues used fMRI to demonstrate preserved awareness in a 

patient diagnosed as being VS (Owen et al. 2006). The paradigm, which has become a 

gold standard for evaluating covert awareness in DOC patients, involved mental imagery 

of motor and spatial-navigation tasks. Importantly, in a healthy brain, these two tasks 

elicit activity in distinct regions (Boly et al. 2007). Therefore, researchers can discern 

between the tasks being performed in the scanner based on the pattern of brain activity 

produced. The motor task, in which participants are asked to imagine playing tennis, 

activates the supplementary motor area, a region involved in motor planning and imagery 

(Lotze & Halsband 2006). In contrast, the spatial navigation task, where participants are 

asked to imagine walking around the different rooms in their house, activates 

parahippocampal gyrus, posterior parietal-lobe and the lateral premotor cortex (Owen et 

al. 2006). The VS patient reported in Owen et al.’s landmark 2006 study was able to 

successfully perform both mental imagery tasks, demonstrating she was able to follow 

commands. That is, her brain activity changed reliably with the different imagery 

commands and resembled that of healthy controls performing the same tasks. Successful 

performance of mental imagery tasks like this one requires fairly complex cognitive 

functions typically associated with normal consciousness, including sustained attention, 

language comprehension (of the instructions), and working memory (to maintain the 

appropriate mental imagery during the task) (Cruse et al. 2011). This wilful modulating 

of one’s brain activity in response to instruction represents covert command following, 

which is considered proof of awareness. Therefore, this finding was especially significant 

because the patient showed no observable behavioural evidence of command following 

or in fact any signs of awareness during standard behavioural assessments of 

consciousness. Nevertheless, her robust and accurate mental responses to commands in 

the fMRI paradigm suggested that she retained residual cognitive functions and possessed 

conscious awareness of herself and her surroundings (Owen et al. 2006).   
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Almost a decade later, a growing number of neuroimaging studies have used a variety of 

cognitive tasks to explore covert command following in DOC patients, including mental 

imagery, attention and verbal reasoning. To date, 61 patients have successfully followed 

commands by modulating their brain activity in both fMRI and EEG paradigms (cases of 

command following demonstrated in neuroimaging paradigms are summarized in Table 2 

and 3. In some cases the same patient is reported in multiple paradigms). Several studies 

have employed auditory or visual attention to probe residual cognitive functioning in 

DOC patients (Naci & Owen 2013; Monti et al. 2014; Schnakers et al. 2008; Lulé et al. 

2013; Pan et al. 2014). Attention tasks were proposed as a less demanding alternative to 

mental imagery, based on the observation that significant brain activity is not always 

elicited in mental imagery tasks even in healthy volunteers (Guger et al. 2003). In these 

tasks, participants are asked to focus their attention on specific stimuli, such as photos, 

words or numbers. Selective and sustained attention are considered conscious mental 

processes needed to perform basic cognitive tasks and form cohesive thoughts about 

ourselves and our surroundings (Naci & Owen 2013). Therefore, patients who showed 

brain activity in attention networks in response to commands are considered to be aware 

(Naci & Owen 2013; Monti et al. 2014; Schnakers et al. 2008; Lulé et al. 2013; Pan et al. 

2014).  

 

However, mental imagery is still the most commonly used cognitive task in 

neuroimaging paradigms that investigate covert consciousness (Monti et al. 2010; 

Hampshire et al. 2013; Forgacs et al. 2014). Since 2006, the tennis-house neuroimaging 

paradigm has been used in multiple studies to demonstrate covert command following in 

both VS and MCS patients (Fernández-Espejo & Owen 2013; Gibson et al. 2014). For 

example, a study by Monti et al. 2010 found that five out of 23 DOC patients, four of 

which were diagnosed as VS and one as MCS, accurately and reliably followed 

instructions to imagine playing tennis or walking around their house (Monti et al. 2010). 

Motor imagery in particular is frequently used in covert command following tasks, 

ranging from relatively complex, full-body motor imagery, such as swimming (Bardin et 

al. 2011; Goldfine et al. 2012), to smaller more specific actions, such as squeezing your 

hand (Bekinschtein et al. 2011). Cruse and colleagues were able to distinguish between 
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the sensorimotor patterns of two imagined actions (squeezing your right hand or wiggling 

the toes of both feet) in healthy participants, VS (Cruse et al. 2011; Damian Cruse et al. 

2012) and MCS patients (D. Cruse et al. 2012) using EEG. Similar to previous 

neuroimaging studies, the three VS patients who successfully followed commands with 

motor imagery in this paradigm did not show even low-level behavioural signs of 

awareness, such as visual fixation or localization to painful stimuli, when assessed at the 

bedside (Cruse et al. 2011). Interestingly, 38 per cent of the MCS patients who 

successfully performed the motor imagery task also showed no motoric responses to 

commands in bedside tests (D. Cruse et al. 2012).  

 

Coyle and colleagues recently used the hand and toe motor imagery task to train four 

MCS patients with an EEG-based Brain Computer Interface (BCI) (Coyle D, Stow J, 

McCreadie K, McElligott J, Carroll A 2014). All the patients exceeded the 70 per cent 

criterion for a dual-task BCI, indicating that they could successfully perform each motor 

imagery task to command. Coyle et al. also provided patients with visual or auditory real-

time feedback during training sessions. This feedback was produced by analyzing their 

sensorimotor rhythms as they performed the mental imagery, and presented as a visual or 

auditory stimulus that could be influenced directly by the patient’s changing brain 

activity. For example, a patient could guide a virtual basketball into a hoop by imagining 

squeezing their hand to move the ball left or wiggling their toe to move the ball right. The 

patient who had the most training sessions also had the best performance, with 

classification accuracies over 80 per cent. The researchers believe this performance 

enhancement is evidence of sensorimotor learning, which would likely only take place if 

the patient was consciously aware throughout the training sessions (Coyle D, Stow J, 

McCreadie K, McElligott J, Carroll A 2014).  
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Table 2: fMRI studies with active paradigms. 

     
Study DOC 

patients 
tested 

fMRI Task Number of 
patients who 

followed 
commands✜ 

Diagnosis & 
Aetiology 

Owen et al. 2006 1 Mental Imagery 
(tennis & house) 

1 1 VS: T 

Monti et al. 2010* 54 Mental Imagery 
(tennis & house) 

5 4 VS, 1 MCS: 
all T 

Bardin et al. 2011 6 Motor Imagery 
(swimming) 

2 1 MCS: NT, 
1 (E)MCS: T 

Bekinschtein et al. 
2011 

 

5 Attempted hand 
movement  

2 2 VS: T 

Fernández-Espejo 
& Owen 2013* 

 

1 Mental Imagery 
(tennis & house) 

1 1 VS: T 

Naci et al. 2013* 3 Auditory Attention 
(counting target 
words) 

3 2 MCS: 1 T, 
1 NT, 

1 VS: T 
Hampshire et al. 

2013 
 

1 Mental Imagery & 
Verbal Reasoning 

1 VS: T 

Monti et al. 2013 1 Visual Attention 
(look at face/house) 

1 1 MCS : T 

Forgacs et al. 
2014 

26 Mental Imagery 
(swimming & deck 
of cards) 

4 3 MCS: 2 T, 
1 NT, 

1 EMCS: T 
Gibson et al. 2014 6 Mental Imagery 

(tennis & house) 
3 2 VS: 1 T, 

1 NT 
1 MCS : NT 

Monti et al. 2014 28 Auditory Attention 
(counting target 
words) 

10 3 VS: 1 T, 2 
NT; 

6 MCS: 3 T, 3 
NT 

1 EMCS: NT 
                                                       Total:  33 

 
Asterisk (*) indicate studies in which patients also functionally communicated, ✜ 
Locked-in State patients were not included in this table. Abbreviations: VS = Vegetative 
state, MCS = Minimally Conscious State, EMCS = Emerging from Minimally Conscious 
State, (E)MCS = fluctuating between MCS and EMCS diagnosis, T =brain injury of 
traumatic origin, NT = non-traumatic brain injury.  



16 
 

 
 

Table 3: EEG studies with active paradigms. 

Study DOC 
patients 
tested 

EEG Task Number of 
patients who 

followed 
commands✜ 

Diagnosis & 
Aetiology 

Schnakers et al. 
2008 

22 Auditory Attention 
(counting target 
names) 

9 9 MCS: 5 T,  
4 NT 

Cruse et al. 2011 16 Motor Imagery 
(squeeze hand, 
wiggle toes) 

3 3 VS: 2 T, 
1 NT 

Goldfine et al. 
2011 

3 Motor Imagery 
(swimming) & 
spatial navigation 
(house) 

1 1 (E)MCS: T 

Cruse et al. 2012a 23 Motor Imagery 
(squeeze hand, 
wiggle toes) 

5 5 MCS: T 

Cruse et al. 2012b 1 Attempted 
movement (squeeze 
hand) 

1 1 VTS:T 

Lulé et al. 2013 18 Auditory Attention 
to target word 

1 1 MCS: NR 

Pan et al. 2014 6 Visual Attention to 
target photo 

4 2 VS: 1 T, 1 
NT, 2 MCS: 1 
T, 1 NT 

Gibson et al. 2014 6 Motor Imagery 
(squeeze hand, 
wiggle toes) 

2  1 VS: T,  
1 MCS: NT 

Horki et al. 2014 6 Mental imagery 
(imagine playing 
sport, spatial 
navigation) & 
attempted foot 
movement 

2  2 MCS, T 

Coyle et al. 2015 4 Motor imagery 
(hand squeeze, 
wiggle toes) 

4 4 MCS: 1 T, 2 
NT, 1 NR 

                                                       Total:  32 
✜ Locked-in State patients were not included in this table. Abbreviations: VS = 
Vegetative state, MCS = Minimally Conscious State, EMCS = Emerging from Minimally 
Conscious State, (E)MCS = fluctuating between MCS and EMCS diagnosis, T =brain 
injury of traumatic origin, NT = non-traumatic brain injury, NR = not reported. 
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1.3.2 Command Following vs. Communication: Covert Assessments 

 

As described above, a small number of patients who are incapable of responding overtly 

are able to follow commands by willfully modulating their brain activity in mental 

imagery tasks (Fernández-Espejo & Owen, 2013). An even smaller proportion may be 

able to use these differential brain responses to communicate answers to binary yes/no 

questions, which has served as the theoretical basis for the development of brain-

computer interfaces (BCIs) that could help patients express their thoughts externally to 

communicate with others. Of the 61 patients who have successfully demonstrated 

command following in neuroimaging tasks, to our knowledge only three have been able 

to functionally communicate using these mental responses. In all three cases this 

communication occurred despite the patients showing no externally observable 

communicative abilities over repeated behavioural testing.  

 

The first DOC patient who used mental imagery to communicate was reported in Monti 

et al’s 2010 study. This patient was a 22 year-old male who was in a VS after a traumatic 

brain injury. He had no behavioural signs of command following or communication, but 

his robust brain responses during the tennis/house task indicated that he was able to 

perform both tasks to command. Therefore, researchers asked him to perform one type of 

mental imagery to signify yes and the other to signify no, and asked him six binary 

(yes/no) autobiographical questions. He correctly answered five of these questions by 

performing the appropriate mental imagery task, while no response could be detected for 

the last question (Monti et al. 2010).  

 

The second patient to communicate solely by modulating his brain activity did so using 

the same tennis/house fMRI task. He was a 38 year-old male who was consistently 

diagnosed as VS after a traumatic brain-injury in a motor vehicle accident 12 years 

previously (Fernández-Espejo & Owen 2013). When his ability to successfully follow 

commands with this mental imagery task was discovered, researchers asked him a series 

of questions about himself, his environment, and his care. Like the first patient, he did not 

always respond to questions, which may have been due to fluctuations in attention and 
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arousal during different scanning sessions. However, the authors were able to decode 

answers to twelve questions, including correct responses to questions about his name, the 

name of his personal support worker and the date (Fernández-Espejo & Owen 2013). 

This patient also demonstrated functional communication when tested with a separate 

fMRI paradigm, described below. 

 

An fMRI study in our lab led by Naci (2013) posed a series of binary questions to healthy 

volunteers and asked them to answer by focussing their attention on the appropriate 

response word (“yes” or “no”) among a series of words presented through headphones 

(Naci et al. 2013). They were able to successfully decode 90 per cent of the subjects’ 

answers by measuring activity in brain regions associated with attention. These attention-

specific regions of interest (ROI) were defined individually for each subject based on 

their brain activity during a previous selective attention task requiring them to count how 

many times they heard a target word in a series of unrelated words (Naci et al. 2013). 

When three DOC patients were tested with the same auditory attention tasks, all three 

were able to selectively attend to target words, and two successfully communicated 

answers to questions by modulating their attention (Naci & Owen 2013). One of these 

patients was the same 38 year-old male diagnosed as VS that was described previously 

(Fernandez-Espejo & Owen 2013). In this task he accurately responded to all four 

questions by selectively attending to the correct answer. The second patient was a 25 

year-old male diagnosed as MCS after a traumatic brain injury. Appropriate brain activity 

in this patient’s predetermined attention-specific ROIs was seen for two out of four 

questions (Naci & Owen 2013). In the other two questions, the correct response could be 

decoded from activity in areas outside the ROIs that are also associated with attention. 

Interestingly, neither patient was able to display any behavioural signs of command 

following or communication in repeated bedside assessments conducted by the research 

team leading up to and at the time of the fMRI scan (Naci & Owen 2013; Fernández-

Espejo & Owen 2013). 

 

These three patients provide evidence that neuroimaging techniques can be used to 

establish functional communication with DOC patients who demonstrate covert cognition 
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but are incapable of communicating behaviourally. Researchers rarely report non-

successful attempts to establish functional communication with DOC patients using 

neuroimaging techniques, therefore it is difficult to estimate the total number of patients 

who can use mental responses to follow commands, but not communicate. However, a 

reasonable inference is that the majority of patients who successfully follow commands 

in neuroimaging tasks are unable to communicate in these tasks (Fernández-Espejo & 

Owen 2013). 

 

As with behavioural assessments for DOCs, the specific cognitive distinctions between 

command following and communication in covert tasks have not been explicitly studied.  

In their paper on brain-computer interface (BCI) use in DOC patients, Kübler and 

Kotchoubey speculated about the cognitive demands required for patients to 

communicate with, versus merely operate, a typical dual-task BCI (Kübler & Kotchoubey 

2007). Operating a BCI requires patients to wilfully modulate their brain activity in 

response to different commands made by the experimenter (eg: imagine playing tennis, 

imagine walking around your house). In the case of these command following tasks, the 

requested response is dictated or “pre-set” by the experimenter (Kübler & Kotchoubey 

2007). Whereas in communication tasks, a patient must allocate their attention to make a 

decision about the response they will make (yes/no) and choose the correct mental task 

(eg. imagine tennis) that signifies this response (Kübler & Kotchoubey 2007). This extra 

level of decision-making required in communication versus command following could be 

one factor that influences whether a patient can perform one or both tasks. 

 

1.4 Passive Paradigms 

 

While active paradigms have shown great success in demonstrating covert awareness in 

DOC patients, they are very cognitively demanding and therefore only effective in a 

small subset of them. Measuring brain responses to passive presentations of different 

stimuli can provide information on residual functioning in their corresponding neural 

systems. For example, designing tasks that present patients with noise, words and 

sentences and then analyzing the resulting brain activity may reveal a spectrum of 
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responses, from automatic, low level auditory processing to high level, semantic 

comprehension.  Paradigms that passively present stimuli, such as sound clips with or 

without emotional content (eg. noise, words, stories, versus patient’s name, baby cries), 

or images (eg. computer screen displays, faces) have successfully been used in DOC 

patients to study auditory, emotional and visual processing respectively (S Laureys et al. 

2004; Perrin et al. 2006; Owen et al. 2002). Interestingly, to our knowledge a 

neuroimaging paradigm designed specifically to explore passive movement has not been 

formally studied in DOC patients. A recent fMRI study in our group reported a patient 

who displayed similar patterns of neural activity as healthy controls when they were 

exposed to the same audiovisual stimuli (Naci et al. 2014). This activity was elicited 

simply by showing the patient a movie clip, without giving any specific directions or 

asking for a mental response. Passive paradigms have also been used in coma patients, 

largely in an effort to find specific neural responses to external stimuli that have 

prognostic value (Vanhaudenhuyse et al. 2008). Neuroimaging studies have presented 

coma patients with tactile (Logi et al. 2003; Gofton et al. 2009) and auditory stimulation, 

including the patient’s name (Fischer et al. 2008), and compared the resulting brain 

responses to patients’ subsequent clinical progression. For example, absent or abnormal 

components of a brain response called a somatosensory evoked potential (SSEP), which 

occurs in response to tactile stimulation, typically indicates a poor clinical outcome 

(Cruse et al. 2014).  

1.5 Motor Function in DOCs 

 
The main disadvantage to diagnostic tests that rely exclusively on behavioural 

observations is the considerable variability that exists in DOC patients’ motor function 

(Pistoia et al. 2013). In these assessments, motor responses such as eye, mouth and limb 

movements are the only means for patients to demonstrate conscious awareness. Impaired 

motor functioning in these patients can result in limited, unreliable, or non-existent 

voluntary motor behaviour, which can erroneously be interpreted as a lack of awareness 

(S Laureys et al. 2004). Despite the significance of motor responses in terms of clinical 

diagnostic tests, motor function has not been extensively studied in this population. The 

degree of cortical reorganization that occurs in motor-related brain areas after serious 
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traumatic or non-traumatic injury has not been thoroughly characterized (Lapitskaya et al. 

2013a). A recent study involving 47 DOC patients (24 VS, 23 MCS) found abnormalities 

in certain neurophysiological markers of corticospinal pathway and motor cortex function 

compared to healthy controls (Lapitskaya et al. 2013b). Interestingly, some measures of 

motor system integrity, such as motor and sensory evoked potentials, did not differ from 

normal healthy volunteers, indicating that an inability to wilfully move may not always 

be associated with typical signs of an impaired motor system. However, the overall 

finding in the patients studied was one of decreased excitability in the corticospinal 

pathways necessary for generating movement (Lapitskaya et al. 2013b).  

 

The possibility of using neurostimulation techniques to improve sensorimotor function in 

DOC patients, and thereby establish a reliable means to express residual awareness has 

been proposed (Angelakis et al. 2014; Pistoia et al. 2013). In 2013 Pistoia et al. created a 

paradigm designed to stimulate motor activity that combined visual demonstrations of a 

specific movement (opening and closing the hand) with transcranial magnetic stimulation 

(TMS) applied to the motor cortex in six VS patients. They reported improvements in 

motor responsiveness in four of these patients when they were asked to observe and 

imitate a researcher’s hand movements, as measured by increases in their motor evoked 

potentials (MEPs) (Pistoia et al. 2013). Exactly how this improvement occurred is not 

understood, and may be partially attributed to a general recovery of consciousness (three 

of the four patients later regained higher motor and command following abilities) (Pistoia 

et al. 2013). 

 

As described above (section 1.3.1), motor imagery has proven to be one possible 

alternative to overt movement in assessments of consciousness.  The interesting 

dissociation that neuroimaging experiments have revealed between intact motor imagery 

and absent motor execution abilities in DOC patients could be explained by differences in 

their neural basis. Motor imagery involves an internal mental representation of an overt 

action without any concurrent executed movement (Jeannerod 1995). In contrast, motor 

execution involves physically performing the movement. Neuroimaging studies have 

shown that motor imagery and execution produce similar patterns of brain activity (Porro 
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et al. 1996; Lotze & Halsband 2006), leading some to consider motor imagery and motor 

preparation (the mental processes leading up to but not including actual movement) as 

essentially equivalent (Stephan et al. 1995; Jeannerod 1995). However, there is growing 

evidence for subtle but important differences in functional brain activation and 

connectivity between motor imagery and execution (James M. Kilner et al. 2004; 

Carrillo-de-la-Peña et al. 2008; Xu et al. 2014). While both tasks share a common 

network of sensorimotor areas, when compared directly, executing a movement typically 

recruits more cerebellum, primary motor and somatosensory cortices than imagining that 

movement, which involves more inferior parietal and frontal regions including pre-

supplementary motor area (SMA) and superior and inferior frontal gyri (Gerardin et al. 

2000; Szameitat et al. 2012; Machado et al. 2013; Burianová et al. 2013). Subtle but 

important differences in cortical damage to the neural mechanisms behind motor 

execution and imagery could explain why some DOC patients can perform one and not 

the other in response to commands. 

 

1.5.1 Using Passive Movement to Investigate Sensorimotor Function  

 
Whether a particular DOC patient’s inability to execute movement to command arises 

from specific impairments in their motor system, or cognitive processes associated with 

volition, or a combination of both is not known. Passive movement, where an 

experimenter moves a participant while they remain relaxed, activates the same motor-

related regions as executed movement, albeit to a lesser extent. Numerous neuroimaging 

studies in healthy volunteers have found similar patterns of brain activity between active 

and passive movement. Alary et al. (1998) found significant activation in brain areas 

associated with movement (cerebellum, premotor cortex, supplementary motor area, or 

SMA) and somatosensory regions (primary sensorimotor cortex, inferior parietal cortex) 

when subjects’ wrists were passively extended (Alary et al. 1998).  Two fMRI studies 

that directly compared passive vs. active elbow flexion reported weaker, yet significant 

brain activity when an MRI-compatible robot moved subject’s arms (passive) compared 

to when subjects moved themselves (active) (Yu et al. 2011; Estévez et al. 2014). 

Activation in passive and active movement conditions involved similar brain structures, 
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including the primary motor (M1) and somatosensory cortex (S1), cingulate motor area 

(CMA), SMA, thalamus, basal ganglia and cerebellum.  

 

To our knowledge, only one study has reported investigating neural responses to passive 

movement in a single DOC patient (Horki et al. 2014). These researchers were hoping to 

exploit the similarity in brain activity between active and passive movement in their 

development of motor imagery-based BCIs, with the goal of using brain activity elicited 

during passive movement as a classifier for subsequent motor imagery (Horki et al. 

2014). However, brain activity produced in response to passive movement itself can 

provide valuable information about a patient. Both command following and response 

selection require decision-making, or volitional intention, by the patient, whether it be the 

decision to move to command, or selecting between two alternative actions to 

communicate. Passive movement is considered to be a different process than voluntary 

movement initiated by an individual (Haggard 2008) because it lacks a conscious 

intention to move. In philosophical terms, the conscious decision to act is the answer to 

the question, “what is left over if I subtract the fact that my arm goes up from the fact that 

I raise my arm?” (Haggard 2008). In cognitive neuroscience, decisions regarding 

volitional movement are thought to arise from various frontal and parietal brain areas. 

Brain responses to passive movement (movement in the absence of wilful intention) 

could help indicate why a patient may be incapable of volitional movement to command, 

by providing information on their sensorimotor function.  

 

Overview of Thesis 

1.6 Study Objectives 

 

A clear distinction between command following and communication can be found in both 

behavioural and neuroimaging assessments of DOC patients: not all MCS patients who 

can follow commands can communicate. Importantly, the underlying neural basis behind 

these cognitive distinctions in DOC patients has never been explored. Furthermore, 

motoric action is the most common modality for patients to respond to commands or 

questions. Whether an action is executed in a bedside assessment, or imagined in a 
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neuroimaging paradigm, both responses require patients to make a volitional decision to 

act. However, an absence of motor responses (executed or imagined) to cognitive tasks 

may not indicate a lack of awareness, but rather impairments to a patient’s motor system. 

 

This study designed an fMRI paradigm for healthy participants, in order to answer three 

important questions raised when assessing residual cognitive function in DOC patients.  

 

1) First, we wanted to determine if there is clear neural evidence for a cognitive 

difference between command following and communication, and characterize the 

brain structures that contribute to this distinction.  

 

2) Second, we wanted to explore if this distinction depends on how the response is 

made, by studying the two most common response modalities used in DOC 

assessments, motor execution and motor imagery. We know that some DOC 

patients can respond to commands or questions in one modality but not the other. 

Therefore, we also wanted to investigate if an interaction exists between the 

cognitive resources involved in choosing to respond, and those involved in 

expressing the response (execution/imagery), or if these processes are distinct in 

the brain.  

 

3) Third, we wanted to explore the existence of a hierarchy in volitional movement, 

from passive movement (with no wilful motoric output by the individual) to 

command following (volitional response), and finally action selection, which 

represents greater movement-decision making by the participant. This hierarchy 

could help explain the range in behavioural abilities seen in DOC patients. 

Furthermore, activation in sensorimotor regions, induced by somatosensory 

signals associated with passive movement, could indicate whether or not an 

unresponsive patient’s sensorimotor pathways are functionally intact. 

 

Involvement of higher-order cognitive processes in communication will vary according to 

the specific question being asked, and their individual contributions to accurate 
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communication can be difficult to disentangle. Our experiment employed a simpler 

cognitive aspect of communication that is inherent to many communication paradigms 

used in DOC patients. This is a binary response format, where one response is assigned to 

indicate a “yes” answer, and a different response is designated as a “no” answer. 

Regardless of the accuracy of their answer, this format requires the ability to select 

between two alternative behaviours. In our experiment, participants were allowed to 

select between two motor responses, and this “action selection” represented binary 

communication in its most basic form. This extra level of response selection is an 

important step in communicating an answer, compared to simply performing an action in 

response to command.  

 

Therefore, our fMRI paradigm involved two distinct arm movements where healthy 

participants used both motor execution (behavioural) and motor imagery (mental) to 

express their responses. We measured brain activity elicited when healthy participants 

selected between two possible movement alternatives (‘action selection’) versus when 

participants’ movements were dictated to them (‘command following’). This allowed us 

to explore the effects of these different levels of selection and task expression, and 

whether or not an interaction exits between them. We also included a condition where the 

experimenters passively moved participants’ arms. This allowed us to characterize the 

neural response to passive movement and compare it to conditions where participants 

have increasing levels of volitional control over their movements, such as deciding 

whether to move (command following) and if so, which movement to perform (action 

selection).  
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Chapter 2: Experiment  – Comparing Command Following and Communication in 

different response modalities  

 

This experiment explored neural activity associated with action selection and command 

following using executed and imagined movements in healthy participants. Because there 

is a possibility this experiment may one day be adapted for use in DOC patients, our 

paradigm used a block design, with a block length of 20 seconds and a total task length of 

8 minutes. Block designs, where brain activity is elicited during concentrated periods of 

time alternated with rest, allow for the collection of neural data with a reasonable level of 

statistical power in a relatively short period of time (Aguirre & D’Esposito 1999). They 

are especially advantageous for DOC patients, whose brain injuries and physical 

condition often limit the time they can spend comfortably in the MR scanner. The block 

length of 20 seconds was chosen based on previous pilot experiments in our lab that 

aimed to determine the ideal block length for optimizing brain activity associated with 

motor imagery tasks.  

 

The fMRI paradigm used in this experiment was based in part off of a previous motor 

imagery/motor execution experiment in our lab (Fernández-Espejo et al, accepted). In 

that study, participants lay in the scanner with a tennis ball placed before them, and their 

right arm bent at the elbow with their forearm rested across their stomach. They were 

instructed to either imagine or perform a swinging movement with their right forearm 

when they heard a regularly timed cue, in an attempt to “hit” the ball. The current 

experiment used this right forearm movement because it was shown to reliably elicit the 

appropriate, expected brain activity both when executed and imagined (Fernández-Espejo 

et al, accepted). In addition, we also included another movement where participants 

raised and lowered their right forearm in a “lifting” motion. These two movements 

represented a binary response system, which is frequently used in behavioural 

assessments of communication in DOC patients (Kalmar & Giacino 2007). We modelled 

“action selection”, by asking participants to select a motor response from the two 

movement alternatives six times over the block, thereby creating a sequence of six 

movements. To demonstrate “command following”, participants were given a 
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predetermined sequence of six movements. Six movements were chosen because this was 

the maximum number that could be physically performed within a 20 second time frame, 

factoring in the time for audio instruction cues, pauses in between movements, and 

performance of the movements themselves (approximately two seconds each). This is 

also the same pacing of the cued movements used in Fernández-Espejo et al’s experiment 

(Fernández-Espejo et al, accepted). Furthermore, the CRS-R communication scale 

involves six questions to which patients are asked to respond (Kalmar & Giacino 2007). 

 

2.1 Materials and Methods 

 
2.1.1 Participants 

 
Fifteen right-handed healthy volunteers (ages 19 to 29, average 24 years; 8 females) with 

no history of neurological or psychiatric disease participated in the study. All volunteers 

gave written informed consent and were compensated for their participation in the 

experiment. The Health Sciences Research Ethics Board of the University of Western 

Ontario provided ethical approval for the study.  

 

2.1.2 fMRI paradigm  

  
Participants lay supine with their right arm bent at an approximately 90° angle, so that 

their forearm rested across their torso. Because movements of the shoulder and upper arm 

may induce artifacts in the participant's data (Rossit et al, 2013), a strap around the 

participant’s chest was used to minimize upper arm and shoulder movements, while 

allowing for full rotation at the elbow. 

 

Figure 2 describes the fMRI paradigm used in this experiment. While in the MRI scanner, 

participants were instructed to either execute or imagine a series of movements involving 

their right forearm. We used two different arm movements: a ‘slide’, which involved 

sliding the forearm forward and back; and a ‘lift’, which involved lifting and lowering the 

forearm. Each sequence involved six movements (combining ‘slides’ and ‘lifts’). The 

beginning of each block was cued with the word ‘move’ or ‘imagine’. Within each block 
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(imagery or execution), participants either received a pre-determined sequence or were 

asked to create one. For the blocks with pre-determined sequences, each individual action 

was cued with the word ‘slide’ or ‘lift’. For those where the subject had to create their 

own sequence, each action was cued with the word ‘go’. In another condition, 

participants were instructed to relax while a researcher moved their arm. This “passive” 

movement condition used the same pre-determined movement sequences as before, but 

without the accompanying auditory cues. Finally, we included a “rest” condition where 

participants were told to relax and lie still in the scanner. There were 4 blocks of each 

condition, each lasting 20 seconds and presented in a pseudorandom order for a total of 

24 blocks over 8 minutes.  

 Action Selection 
 

Subjects choose 
which movement to 
perform (slide/lift) 
when they hear the 
word “go” to create 
their own sequence 

Command Following 
 

Subjects are given 
different movement 

sequences by 
experimenters 

Eg. “slide lift lift slide 
lift slide” 

Passive 
 

Subjects lie still 
as they are 
passively 
moved by 

experimenters 

Motor Imagery Green 
 

Red n/a 

Motor Execution Dark blue 
 

Light blue Purple 

  
 

 
 

 
 

24 blocks total, pseudorandomized for each subject 
 

 
 
 
        

Task length: 8 minutes  
 
Figure 2: Paradigm for fMRI experiment. Each block was 20 seconds long. During rest 
blocks (in orange), subjects lay still in the scanner. 
 

4 X each block 
(+ 4 rest blocks) 
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Each participant was randomly assigned four out of a possible 48 unique movement 

sequences, which were presented pseudo-randomly throughout the blocks. All 

participants completed 2 runs of this task. An infrared MR-compatible camera (MRC 

Systems GmbH), placed above the participant's head, was used to record participants’ 

actions for each run. 

 

2.1.3 Image acquisition 

 
Data was acquired in a 3T Siemens scanner (Magnetom Prisma, Siemens, Germany) with 

a Siemens 32-channel head-coil at the Centre for Functional and Metabolic Mapping 

(CFMM) at Robarts Research Institute. Audio instructions and task cues were presented 

using Matlab® R2011a on a MacBook Pro laptop (OSX 10.6.8) and an MRI-compatible 

high-quality digital sound system via noise-attenuated headphones (Sensimetrics, S14). 

 

The fMRI protocol included two sessions of 240 volumes each, using echo-planar images 

(36 axial slices, TR = 2000 ms, TE = 30 ms, matrix size = 70×70, slice thickness = 3 mm, 

in-plane resolution = 3×3 mm, flip angle = 78°). A high-resolution T1-weighted 

MPRAGE structural image (TR = 2300 ms, TE = 2.32 ms, IT = 900, matrix size = 

256×256, voxel size 1×1×1 mm, flip angle = 8°) was also acquired.  

 

2.1.4 fMRI data analysis 

 
We performed Independent Component Analysis using the FSL MELODIC tool 

(http://www.fmrib.ox.ac.uk./fsl) in order to remove motion artifacts (Friston et al, 1996; 

McKeown et al, 1998; Beckmann & Smith, 2004). We visually inspected all the 

components and identified those that corresponded to head-motion artifacts and were 

correlated with the execution blocks (an average of 5±2.6 components per subject per 

run). Finally, we removed the identified components from the fMRI data. The de-noised 

data was then pre-processed and analyzed with SPM8 (http://www.fil.ion.ucl.ac.uk/spm). 

After manually AC-PC reorienting the data, the following spatial pre-processing steps 

took place: realignment, co-registration of the structural and functional data, spatial 

normalization to Montreal Neurological Institute (MNI) space, and smoothing with an 8-
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mm FWHM Gaussian kernel. High-pass filtering with a cut-off period of 128 seconds 

was used to remove linear drift.  

 

To address this study’s first and second aim, a single subject fixed-effect 2-by-2 factorial 

analysis was performed for each subject at the whole-brain level. Factor 1 was defined as 

“Task” with two levels (motor imagery / motor execution) and Factor 2 was defined as 

“Level of selection”, with two levels (action selection/command following). The design 

matrix modeled scans as belonging to the action selection/motor execution, command 

following/motor execution, action selection/motor imagery, or command following/motor 

imagery conditions using the canonical heamodynamic response function (Friston et al. 

1995) the participant’s rest condition used as a baseline. Realignment parameters and 

passive movement blocks were modeled as effects of non-interest. All 15 participants 

were included in the group analyses, which consisted of one-sample t-tests for each 

contrast of interest. The statistical threshold was set at a Family Wise Error (FWE) 

corrected p <0.05 at the cluster-level. Two additional contrasts, individually comparing 

move and imagine conditions to rest, were also included to confirm that the task elicited a 

similar pattern of activation as previous motor tasks in our lab (Owen et al. 2006; 

Fernández-Espejo et al. 2014).  

 

For the study’s third aim, we performed a single subject, one-way ANOVA to compare 

passive movement to “active” movement conditions, where participants executed 

movements that were either determined by the experimenter (command following) or 

selected between two possible alternatives (action selection). Therefore, the single factor 

of “Executed Movement” had three levels: Action Selection, Command Following and 

Passive. The design matrix modeled scans as belonging to one of these three conditions, 

with the participant’s rest condition as a baseline, once again using the canonical 

heamodynamic response function (Friston et al. 1995). Realignment parameters and all 

blocks involving imagined movement were modeled as effects of non-interest. We 

performed a one-sample t-test for each contrast of interest in all 15 participants for the 

group analyses. To further explore brain activity elicited by passive movement, we 

included three additional contrasts comparing passive movement to rest, passive to “all 
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active” movement (command following and action selection combined) and “all active” 

to passive movement. For all analyses, the FSL Harvard-Oxford Cortical and Subcortical 

Structural Atlases were used for anatomical identification (see Appendix I). 

 

2. 3 Results 

 

2.3.1 Factorial Analysis 

Motor Execution and Motor Imagery vs. rest  

Motor execution (move conditions) compared to rest significantly activated the right 

cerebellum and left sensorimotor area, including the primary motor (M1) and 

somatosensory (S1) cortices, located on the pre and post-central gyrus respectively. 

Motor imagery (imagine conditions) compared to rest elicited significant activity in 

several regions including the left supplementary motor area (SMA) and somatosensory 

association cortex as well as the left prefrontal cortex (frontal pole & middle frontal 

gyrus). Significant group activations are shown in Table 4. 

Table 4: Activity Elicited by Motor Execution and Imagery 

Motor Execution > rest 
Brain structure Coordinates 

 x      y       z 
Cluster 
size (k) 

T value p value 

Cerebellum 24   -46   -26 172 12.3 0.033 
Precentral/Postcentral gyrus -30  -25    58 195 7.87 0.023 

Motor Imagery > rest 
Middle temporal gyrus -66  -40   1 359 12.03 0.001 
Frontal pole -36   47  -8 645 7.35 <0.001 
Middle frontal gyrus -36    5   61 153 6.78 0.029 
Superior temporal gyrus 66   -16   1 260 6.54 0.004 
Angular gyrus -45  -55  55 295 6.49 0.002 
Juxtapositional lobule cortex  -3    8    55 166 4.8 0.022 
*Results thresholded at FWE-corrected p<0.05 for cluster level activation 
 

Motor Imagery vs. Motor Execution 

The positive effect of task (i.e. motor execution versus motor imagery) revealed 

significant clusters of activation in the right cerebellum, as well as the left sensorimotor 
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area, as shown in Figure 3. The latter included M1, the primary somatosensory cortex 

(S1), and the superior parietal lobule.  

 

The negative effect of task (i.e. motor imagery versus motor execution) revealed 

significant activity in the right S1 and M1, left inferior frontal gyrus and right occipital 

pole (representing the primary and secondary visual cortices). Group activations are 

shown in Table 5. 

 

Motor Execution > Motor Imagery 

   
 

Figure 3: The positive effect of Task compares brain activity elicited in conditions with 
motor execution to motor imagery. Results thresholded at FWE-corrected p<0.05 for 
cluster level activation. 

Table 5: Motor Imagery vs. Motor Execution 

Positive effect of Task (Motor Execution > Motor Imagery) 
Brain structure Coordinates 

  x      y     z 
Cluster 
size (k) 

T value p value 

Cerebellum 24  -46  -26 197 11.91 0.03 
Superior parietal lobule/postcentral 
gyrus 

-24  -43   61 409 7.33 0.002 

Negative effect of Task (Motor Imagery > Motor Execution) 
Postcentral/ Precentral gyrus  39  -25   61 2332 10.22 <0.001 
Inferior frontal gyrus -57   20   22 6391 9.28 <0.001 
Occipital pole  12  -88   28 852 7.0 <0.001 
*Results thresholded at FWE-corrected p<0.05 for cluster level activation 
 

Action selection vs. command following 

The positive effect of level of selection (i.e. conditions where the participant had to 

choose between two actions versus those in which the action was determined by the 



33 
 

 
 

experimenter) revealed significant activity in frontal regions including the left middle 

frontal gyrus, and the right paracingulate gyrus (including pre-SMA) as illustrated in 

Figure 4. There was also significant activation in the somatosensory association cortex, 

specifically the right angular gyrus and left supramarginal gyrus, as well as the left insula. 

The inverse contrast (command following versus action selection) showed bilateral 

activation in the lateral occipital cortex (extrastriate visual area) and primary auditory 

cortices. Group activations are shown in Table 6. 

Action Selection > Command Following 

 
 

Figure 4: The positive effect of level of selection compares brain activity in action 
selection to command following conditions. Results thresholded at FWE-corrected 
p<0.05 for cluster level activation. 

Table 6: Action Selection vs. Command Following 

Positive effect of Level of Selection (action selection > command following) 
Brain structure Coordinates 

x     y     z 
Cluster 
size (k) 

T value p value 

Paracingulate gyrus   3    20    46 2826 9.67 <0.001 
Middle frontal gyrus -36   29    31 441 8.83 <0.001 
Angular gyrus 45   -49    40 439 7.16 <0.001 
Supramarginal gyrus -48  -46    40 189 6.54 0.009 
Insular cortex -33   17     1 193 5.89 0.008 

Negative effect of Level of Selection (command following > action selection) 
Lateral occipital cortex 51   -67     7 952 11.91 <0.001 
Lateral occipital cortex -48  -73   10 251 9.59 0.003 
Superior temporal gyrus -63  -19    1 666 7.98 <0.001 
Heschl’s gyrus 48   -13    1 600 6.72 <0.001 
*Results thresholded at FWE-corrected p<0.05 for cluster level activation 
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Interactions 

There were no significant interactions between Task and Level of Selection. No 

significant effects were found even when we lowered the statistical threshold to an 

uncorrected p < 0.01. We explored whether a positive interaction existed between level of 

selection and task; that is, if the process of action selection elicited greater brain activity 

than command following when the action was executed versus imagined. No significant 

effects were found for the positive interaction at an acceptable statistical threshold, nor 

when thresholds were lowered to uncorrected p <0.01. We also included the inverse, 

negative interaction and similarly, no significant activity was found at corrected p <0.01 

at the cluster-level.  

 

2.3.2 One-way ANOVA 

 

There was a significant main effect of executed movement (comprising action selection, 

command following and passive movement) with one very large cluster of activation 

spread across several regions of the brain, including SMA, M1, S1, inferior parietal 

lobule, frontal poles, and middle and superior frontal gyri, with the cluster peak located in 

the right frontal lobe (x=12, y=32, z =7). The post hoc pairwise contrasts are discussed 

below. 

 

Executed movement: Action selection vs. command following 

Motor execution conditions where the participant chose between two actions versus those 

in which the action was determined by the experimenter revealed a large cluster of 

activity in the right paracingulate gyrus (including pre-SMA) that extended into the left 

hemisphere. Activity was also seen in the right angular and supramarginal gyri. This 

pattern of activity is similar to that observed when action selection was compared to 

command following across motor execution and motor imagery conditions in the 

Factorial Analysis. Group activations are shown in  

 

Table 7. 
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Table 7: Executed Movement: Passive vs. Active 

Action Selection > Command Following 

Brain structure Coordinates 
 x      y      z 

Cluster 
size (k) 

T value p value 

Paracingulate gyrus  6     23    43 1427 9.87 <0.001 
Inferior parietal lobule (angular 
gyrus/supramarginal gyrus) 

48   -46   55 247 6.20 0.004 

Command Following > Passive Movement 
Superior temporal gyrus 63   -19     1 178 6.32 0.038 

Passive Movement > Command Following 
Precentral gyrus/Superior frontal gyrus -12  -16   64 6750 10.60 <0.001 
*Results thresholded at FWE-corrected p<0.05 for cluster level activation 
 

Executed movement: command following vs. passive 

Motor execution conditions where the participant performed actions dictated by the 

experimenter versus those in which the participant was passively moved by the 

experimenter elicited significant activity in the right primary auditory cortex, with a 

cluster in the left primary auditory cortex approaching significance (p = 0.065). Group 

activations are shown in  

 

Table 7. 

 

An additional contrast exploring activity that was greater during passive movement 

compared to motor execution conditions where participants followed commands revealed 

a large cluster of activity over the left M1 and extending to include left S1, the superior 

parietal lobule and the SMA. (See  

 

Table 7). 

 

Passive vs. Active Movement 

We compared passive movement to all “active” executed movement (collapsed across 

command following and action selection conditions). Significant activity was seen in left 

sensorimotor areas including S1, M1 and the somatosensory association cortex. Another 
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significant cluster of activity was seen in the left inferior frontal gyrus. A similar cluster 

with almost identical coordinates that approached significance at F.W.E. (p = 0.051) was 

seen in the right inferior frontal gyrus. The inverse contrast (executed movement versus 

passive movement) revealed no significant activity. See Figure 5 for group activity and 

Table 8 for group activations. 

 

Passive Movement > Active Movement 

   
 

Figure 5: This contrast compares brain activity during passive movement to conditions 
where participants initiated movement themselves (including action selection and 
command following). Results thresholded at FWE-corrected p<0.05 for cluster level 
activation. 

Table 8: Passive vs. Active Movement 

Passive > Active Movement (Action Selection + Command Following) 
Brain structure Coordinates 

x      y      z 
Cluster 
size (k) 

T value p value 

Postcentral/Precentral gyrus, Superior 
parietal lobule 

-33  -34    61 7063 14.16 <0.001 

Inferior frontal gyrus -54     8    13 172 5.73 0.046 
*Results thresholded at FWE-corrected p<0.05 for cluster level activation 
 

Passive vs. rest  

The passive movement condition produced robust activity in several brain regions when 

compared to rest, such as M1 and S1, as well as parietal regions including the 

somatosensory association cortex and secondary somatosensory cortex (S2) as shown in 

Figure 6. Significant activity was also found in frontal areas including the right inferior 

frontal gyrus and left central opercular cortex, as well as bilateral extrastriate visual 
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cortex (lateral occipital cortex) and auditory association area (middle temporal gyrus). A 

complete list of significant activations is shown in Table 9. 

 

 

 

Passive Movement > Rest 

   
 

Figure 6: This contrast compares brain activity during passive movement compared to 
rest conditions. Results thresholded at FWE-corrected p<0.05 for cluster level activation. 

Table 9: Passive Movement vs. Rest 

Passive > rest 
Brain structure Coordinates 

x      y     z 
Cluster 
size (k) 

T value p value 

Postcentral/Precentral gyrus -33  -28    64 3123 11.65 <0.001 
Supramarginal gyrus 66   -25    25 1287 9.79 <0.001 
Inferior frontal gyrus 57    17    16 369 9.73 0.003 
Lateral occipital cortex/Middle 
temporal gyrus 

-54  -64     4 203 9.68 0.027 

Central opercular cortex -48     2     7 219 7.92 0.021 
*Results thresholded at FWE-corrected p<0.05 for cluster level activation 
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Chapter 3: General Discussion 

 

3.0 Discussion 

 

Here, we provide the first report of the differences in brain activity elicited by command 

following and the level of response selection necessary for binary communication, in 

tasks involving either external behavioural responses (i.e. motor execution) or covert 

neural responses (i.e motor imagery). Our results provide evidence to support that, while 

motor imagery and execution may be dissociable processes, the mechanisms underlying 

the ability to select between two actions are not dependent on how the motor response is 

expressed (i.e. executed or imagined). Furthermore, we found that passive and active 

movement share very similar patterns of neural activity, particularly in sensorimotor 

regions, but seem to recruit different frontal brain areas. 

 

3.1 Validation of the Motor Task 

 

The motor imagery and execution tasks produced similar activation patterns as previous 

neuroimaging experiments (Michelon et al. 2006; Mokienko et al. 2013; Gerardin et al. 

2000). Specifically, motor imagery compared to rest elicited activity in frontal regions, 

including the SMA, similar to the well-established “tennis” motor imagery paradigm used 

in our lab (Fernández-Espejo et al. 2014; Boly et al. 2007).  Motor execution compared to 

rest activated contralateral M1 and ipsilateral cerebellum, an activation pattern typically 

reported in neuroimaging studies of executed movement (Machado et al. 2013; 

Formaggio et al. 2013). 
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3.2 Action Selection, compared to Command Following recruits a fronto-parietal 

network  

 

Both behavioural and neuroimaging studies agree in suggesting that most VS or MCS 

patients who are overtly or covertly able to follow commands do not show 

communication abilities (Estraneo et al. 2014; Monti et al. 2010; Naci & Owen 2013; 

Owen 2011), but the neural correlates behind this divergence are not well understood. We 

found significantly higher activity in frontal regions, including the pre-SMA, and middle 

frontal gyrus when participants had to select between two possible actions (pre-requisite 

for binary communication) compared to when the examiner dictated their actions to them 

(command following). The middle frontal gyrus (Wiese et al. 2004) and pre-SMA 

(Mostofsky & Simmonds 2008; Haggard 2008) are thought to be involved with higher 

order executive functions related to voluntary motor control. The peak in the cluster of 

activation in the left middle frontal gyrus was located in the dorsolateral prefrontal cortex 

(DLPFC). Activity in this region was reported in several PET studies (Jahanshahi et al. 

1995; Jenkins et al. 2000; Weeks et al. 2001) comparing externally-triggered movements 

(eg. cued by an auditory or visual stimulus) and self-initiated movements (eg. self-paced 

by the participant). In Weeks et al.’s study, participants also chose between two possible 

finger movements to perform. DLPFC involvement is thought to reflect the increased 

demand on working memory in the self-initiated condition, where participants must keep 

track of their own movements’ timing rather than simply responding to cues (Weeks et al. 

2001). In our experiment, participants determined the type, rather than the timing, of their 

movements in the action selection condition. They were instructed that the six-movement 

sequences they created during these blocks should be novel, and should not include more 

than three repetitions of the same movement (eg. slide). Therefore, it is not surprising that 

action selection elicited greater activity in the DLPFC, as participants likely held their 

selected movements in working memory to create their sequences. 

 

Activity in pre-SMA has previously been observed in motor experiments where 

participants were asked to control certain aspects of the movements they performed, such 

as direction, timing, or type (Jahanshahi et al. 1995; Deiber et al. 1999; Jenkins et al. 
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2000; Jankelowitz & Colebatch 2002; Gowen & Miall 2007). In a 2008 review, Haggard 

proposed that voluntary action is a form of decision-making (Haggard 2008) that involves 

two decisions: whether to act, and what to do. The latter is further broken down into 

choosing between a goal (or task), and selecting between possible movements to achieve 

it. Regions within the pre-SMA are activated when participants choose between different 

tasks (eg. following a specific, cued movement plan or making their own movement plan) 

as well as quickly switching between these two tasks (Nachev et al. 2005). The pre-SMA 

is thought to help form and initiate action intentions (eg. which task to do) by forwarding 

inputs from the basal ganglia and prefrontal cortex to the SMA and M1 (Nachev et al. 

2007; Haggard 2008). Activity in the pre-SMA increases when participants are asked to 

specifically pay attention to their intention to move during tasks with self-paced 

movements (Lau et al. 2004). Prefrontal areas including the pre-SMA are also thought to 

influence action selection by preferentially enhancing a particular desired action among 

several alternatives represented in the parietal cortex (Cisek & Kalaska 2010). 

Importantly, all of the above studies involved decision-making with executed 

movements, although Haggard suggests that the same process of voluntary action 

preparation occurs for actions that are prepared but not executed. In his 2007 fMRI study, 

participants chose when to make simple key presses and in some cases, when to prepare 

to key-press but not perform the action at the last moment (Brass & Haggard 2007). 

While cancelling a planned movement and motor imagery are not identical mental 

processes, our results indicate that the pre-SMA is also recruited when decisions about 

imagined movements are made, as in the condition where participants selected between 

imagining two action alternatives. 

 

Additionally, in our study action selection elicited activity in the left insula. The insula 

has been associated with self-awareness, specifically in relation to the body and its 

movements (Tsakiris et al. 2007). In particular, several neuroimaging studies have 

implicated the insula in the sense of agency or personal authorship of voluntary 

movements, although the specific location of activity varies from right posterior (Farrer 

et al. 2003) to bilateral anterior (Farrer & Frith 2002). Finally, action selection compared 

to command following also revealed significant activation in the somatosensory 
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association cortex, specifically the left supramarginal and right angular gyri. This is in 

agreement with a 2004 fMRI study by Wiese and colleagues, who found increased 

activation in the left inferior parietal lobe when subjects self-initiated finger movements, 

compared to when these movements were performed in response to visual cues.  

 

The right angular gyrus has also been associated with awareness of action authorship, 

specifically, in matching our movement intentions to their outcomes to determine 

whether a movement is under our control or another’s (Farrer et al. 2008). In Farrer’s 

studies, increased right angular gyrus activity corresponded to an increased mismatch 

between action intention and outcome, which contributed to the sense that the participant 

did not perform the actions. In contrast, our results show increased activity in this region 

in the condition where participants had greater control over their movements (action 

selection). Important methodological differences could account for this discreprency in 

findings; Farrer’s experiments involved manipulating the perceived outcomes of 

participants’ actions (through modifying visual feedback displays of the consequences of 

their movements) as well as directly asking participants to evaluate their sense of action 

authorship. In our experiment, participants kept their eyes closed in the scanner and 

received no feedback, auditory or visual, regarding their movements other than their own 

proprioception. Furthermore, they were not asked about their personal experience of 

agency throughout the different movement conditions, as that was not the focus of our 

study. 

 

More generally, the activity seen in the inferior parietal lobule may reflect a 

complimentary motor-decision pathway to the more frontal-system described above. 

Some action related decisions, such as choosing between movement alternatives, are 

thought to use a parietal brain circuit that involves sensory feedback relayed from 

primary sensory areas to the parietal cortex, and then to premotor areas and M1 (Haggard 

2008). Cisek & Kalaska proposed that this “dorsal” system originally evolved to allow 

organisms to react to their environment (eg. reaching for a moving object), and has since 

been adapted to participate in more complex decision-making, beyond those involving 

visually guided movements (Cisek & Kalaska 2010). Both the frontal and parietal areas 
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activated when participants choose their own actions, compared to when their actions 

were dictated to them, correspond to neuroanatomical models of decision-making 

(Gleichgerrcht et al. 2010).  

 

Overall, the above results suggest that selection between two possible actions requires a 

greater involvement of high-level associative areas in frontal and parietal cortices than 

required for following simple commands. 

 

3.3 Response Modality: Differences in Executed versus Imagined Movements 

 

Motor imagery involves creating an internal mental representation of an overt action 

without any concurrent executed movement (Jeannerod 1995). In contrast, motor 

execution involves physically performing a movement. Classic neuroimaging studies 

revealed similar patterns of brain activity for both motor imagery and execution (Porro et 

al. 1996; Lotze & Halsband 2006). This led some authors to conclude they may be 

equivalent processes (Jeannerod 1995; Stephan et al. 1995). However, more recent works 

have revealed important differences in functional brain activation and connectivity 

between the two (James M. Kilner et al. 2004; Carrillo-de-la-Peña et al. 2008; Xu et al. 

2014; Burianová et al. 2013; Machado et al. 2013). Consistent with these reports, we 

identified higher activation in left sensorimotor areas, including M1, S1 and the superior 

parietal lobule, as well as the right cerebellum for motor execution, as compared to motor 

imagery. In contrast, motor imagery was associated with higher activity in the right M1, 

S1, and left inferior frontal gyrus. The higher ipsilateral M1/S1 activity in this contrast 

may be reflecting inhibition during motor execution. Indeed, concurrent left M1 

activation and right M1 deactivation has been previously reported in both EEG and fMRI 

studies involving right hand movement (Burke et al. 2004; Hayashi et al. 2008; Grefkes 

et al. 2008; Machado et al. 2013). The reported activity in the left inferior frontal gyrus 

has previously been seen in motor imagery studies (Gerardin et al. 2000; Szameitat et al. 

2012), and further suggests an inhibitory process during motor imagery. The inferior 

frontal gyrus, specifically the right side, is associated with response inhibition in go/no-

go and stop-signal tasks that require rapid inhibition of motor responses (Aron et al. 
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2004). Recently, some controversy regarding the exact role of the right IFG in this 

inhibitory mechanism has arisen (Hampshire 2015), with some researchers believing it 

helps orient attention to stop signals (Solbakk et al. 2014; Sharp et al. 2010), or keep 

track of arbitrary task rules dictating when to inhibit responses (Mostofsky & Simmonds 

2008). Overall, studies increasingly suggest that the IFG works together with other 

frontal areas, including the pre-SMA (Sharp et al. 2010; Mostofsky & Simmonds 2008) 

and the dorsolateral prefrontal cortex (Mostofsky et al. 2003) to inhibit responses. 

 

3.4 A lack of interaction between response and modality 

 

One aim of our study was to investigate whether the differences between command 

following and action selection for communication are dependent on the modality in 

which the participant expresses their response (i.e. imagining or execution). Here, we 

failed to identify an interaction between modality (i.e. motor imagery and execution) and 

level of selection, even at very low statistical thresholds. A specific contrast exploring the 

possibility of a positive interaction, whether action selection elicited greater brain activity 

than command following in motor execution versus motor imagery conditions, also 

revealed no significant activity, even at uncorrected p<0.01. Overall, our results do not 

provide evidence for an interaction between the cognitive resources required to make a 

response and the specific method (motor execution or imagery) employed. This may 

suggest that these two factors are dissociable, that is, the neural processes involved in 

following a command or selecting an action are not dependent on the modality in which 

the action is expressed. Therefore, it could theoretically be possible to express preserved 

cognitive abilities with one modality and not the other. This finding has special 

significance for DOC patients who cannot exhibit behavioural signs of awareness, but are 

capable of demonstrating covert awareness by modulating their brain activity.  

 

3.5 Passive Movement elicits similar brain activity to executed movement  

 

Another aim of this study was to characterize brain activity in response to passive 

movement, and compare it to volitionally executed movement to explore the existence of 
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a movement-decision hierarchy. Passive movement compared to rest elicited activity in 

left S1 and M1, as well as the right somatosensory association cortex, including S2 and 

the supramarginal gyrus. Activation in these areas is commonly seen in neuroimaging 

studies involving passive arm (Yu et al, 2011; Estevez et al, 2014), foot (Francis et al, 

2009; Ciccarelli et al, 2006), and finger movements (Alary et al, 1998; Van de Winckel et 

al 2013). Activity was also seen in the left inferior frontal gyrus and the right central 

opercular cortex. Involvement of the inferior frontal gyrus may reflect the same inhibition 

of movement described previously for motor imagery conditions (see Section 3.3 above). 

Similar to motor imagery, participants were instructed not to move during passive 

conditions, but to keep their limbs completely relaxed as researchers moved them. The 

activity seen in the opercular cortex may reflect the somatosensory stimulation associated 

with the strap used to move participants’ arms. Opercular cortex specifically has been 

activated following electrical stimulation of the median nerve, a technique used to elicit 

somatosensation in participants (Korvenoja et al, 1999). Interestingly, the passive 

condition compared to rest showed no activity in the pre-SMA, one of the brain areas 

involved with increased decision-making and autonomy during voluntary movement and 

motor planning (Lau et al. 2004; Haggard 2008; Gowen & Miall 2007; Jenkins et al. 

2000; Nachev et al. 2005). This is not surprising, as participants did not have to choose to 

perform an action in response to command, or select among alternative actions to 

perform. In fact, participants had no control over their arm movements in this condition, 

and made no decision other than the choice to comply with researchers and remain 

relaxed during passive movement. However, the difference in pre-SMA activity between 

passive and active movement did not survive the statistical threshold when the two 

conditions were compared directly. 

 

To further investigate brain activity in executed movement requiring varying degrees of 

decision making by the participant, we performed a One-Way ANOVA with three levels: 

action selection, command following, and passive movement. The contrast comparing 

conditions where participants selected and performed their own actions compared to 

command following conditions revealed brain activity similar to what was found 

previously in the factorial analysis described above. The contrast comparing command 
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following movements to passive movements revealed significant activity only in the 

primary auditory cortex. This is likely because participants heard auditory instructions 

(eg. “lift”, “slide”) in command following blocks, compared to silence during passive 

movement. Similarly, when we directly compared conditions where participants actively 

moved themselves (command following combined with action selection) to passive 

movement, no significant activity in any brain area was found.  

 

Surprisingly, the inverse contrast (passive movement compared to active movement) 

revealed several regions of activity. Significant activation of the left inferior frontal 

gyrus, with a corresponding cluster in the right inferior frontal gyrus narrowly missing 

the significance cut-off at FWE corrected p = 0.051, could represent motor inhibition that 

is not required during conditions with actively executed movements (Jaeger et al. 2014). 

A large cluster of activity in contralateral S1 and somatosensory association cortex, as 

well as M1, was also seen. Similar activation in sensorimotor regions was seen when 

passive movement was compared to movement execution from the command following 

condition only. 

 

The finding that passive movement elicited greater sensorimotor activity than active 

movement was unexpected. Neuroimaging studies comparing active movements 

performed by a participant to passive movements made by experimenters typically find 

stronger activation in sensorimotor areas during active movement (Yu et al, 2011; 

Estevez et al, 2014; Ciccarelli et al 2006; Van de Winckel et al 2013). Greater activation 

in the motor cortex is assumed to reflect its increased involvement when the participant 

plans and executes a movement themselves. Similarly, we might also expect to see more 

activity in frontal areas associated with movement decisions, such as the pre-SMA, when 

a participant actively performs a movement compared to passive conditions. In this 

experiment, pre-SMA involvement seems to be restricted to action selection conditions 

involving the highest level of decision-making, and therefore activity in this region is not 

observed when comparing combined forms of active movement, or solely command 

following, to passive movement. Alternately, a recent neuroimaging study comparing 

active and robot-assisted passive leg movements found greater activity in somatosensory 
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association areas (inferior parietal cortex) and premotor cortex, as well as frontal areas 

including medial frontal gyrus, anterior and posterior cingulate gyri, and even pre-SMA 

(Jaeger et al. 2014). The authors attribute the increased frontal activity to the participants’ 

efforts to keep their limbs passive and inhibit active motor responses during the passive 

condition of their task. Furthermore, some neuroimaging studies involving hand 

movements do report similar a strength of activation between passive and active 

movement, with greater activity in only small regions in left M1 and S1 during active 

movement (Szameitat et al. 2012) or activity that is similar in strength and even more 

localized in passive movement (Formaggio et al. 2013). However, the significant and 

widespread sensorimotor activation seen in passive compared to active movement in our 

experiment is not consistent with the literature. Further experiments would be needed to 

determine exactly why sensorimotor activity was greater in passive compared to active 

movements. It is possible the sensory feedback from the Velcro strap around the 

participants’ wrist, which was used by experimenters to move their arm, could contribute 

to the increased activity in somatosensory areas. However, this would not account for the 

increased activity seen in M1. One possibility is that the experimenter-lead passive 

movements were greater in range and magnitude then the movements actively performed 

by the participants. In 2011, an fMRI study by Yu and colleagues reported reduced brain 

activity when healthy volunteers made movements with less force than previous 

movements, as measured by a robotic manipulandum (Yu et al. 2011). Video recordings 

of the task did not reveal perceptively large variations between passive and active 

movements, although an automated mechanism to measure movement velocity, force and 

range would be required to accurately assess variations between movements. Inclusion of 

an MR compatible robotic or mechanical device to control passive movement, in place of 

an experimenter, would be useful in future experiments directly comparing active and 

passive movements. With our current experimental design, we cannot discount the 

possibility that participants unintentionally resisted or assisted the passive movement, 

despite instructions to remain completely relaxed. Such uninstructed movement could 

possibly explain the increased M1 involvement. Future neuroimaging experiments could 

use electromyography (EMG) to record participants’ biceps brachii muscle activity 

during active and passive movement tasks. This would help identify whether participants 
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are actively engaging their arm muscles during passive movement conditions (Francis et 

al. 2009).   

 

 

 

3.6 Implications for DOC Patients 

 

Overall, the results from the fMRI paradigm in healthy participants indicate that selection 

between two possible actions requires a greater involvement of high-level associative 

areas in frontal and parietal cortices than required for following simple commands. 

Interestingly, seminal post-mortem neuropathological studies identified the presence of 

fronto-temporal contusions and white matter damage in most patients with a diagnosis of 

VS at the time of death (Kampfl et al. 1998; Maxwell et al. 2010). Kampfl et al analyzed 

structural MRI scans of 42 VS patients and found cortical contusions, most commonly in 

the frontal and temporal lobes, in almost half of patients. White matter damage in the 

frontal lobes (as well as temporal lobes and corona radiata) was reported in 65% of 

patients (Kampfl et al. 1998). A quantitative histopathological study on 48 brain-injured 

patients, classified as moderately disabled, severely disabled and VS, examined neuronal 

cell loss in the prefrontal, anterior cingulate and motor cortices. They found that the 

extent of neuronal cell loss was most pronounced in prefrontal regions, and that greater 

neuronal cell loss corresponded to diagnoses with more severe impairment (Maxwell et 

al. 2010). 

 

Crucially, more recent structural and functional connectivity studies have revealed 

marked impairments in associative fronto-parietal areas in VS and MCS patients 

(Fernández-Espejo et al. 2012; Laureys et al. 1999; Laureys 2005; Juengling et al. 2005; 

Levine & Levine 2008). Importantly, this damage appeared to correlate with the 

complexity of the behaviors the patients were able to exhibit (Fernández-Espejo et al. 

2012). Although neuropathological changes related to command following and 

communication have not explicitly been assessed in these studies, it seems reasonable to 

hypothesize that disruptions in these long-range fronto-parietal networks may explain 
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why most command following patients have difficulty with the higher decision-making 

demands associated with communicating with their responses. Future studies directly 

comparing brain damage in patients who can command follow versus those who can 

communicate will help to characterize any specific structural damage that may underlie 

this cognitive distinction. 

 

Another aim of our study was to investigate whether the differences between command 

following and action selection are dependent on the modality in which the responses are 

expressed. In our experiment, the modality could be behavioural (motor execution) or 

mental (motor imagery). A large number of studies have reported covert command 

following and / or communication in patients who are entirely non-behavioural (Cruse et 

al. 2011; Goldfine et al. 2012; D. Cruse et al. 2012; Gibson et al. 2014; Coyle D, Stow J, 

McCreadie K, McElligott J, Carroll A 2014; Owen et al. 2006; Monti et al. 2010; 

Fernández-Espejo & Owen 2013; Forgacs et al. 2014; Schnakers et al. 2008; Lulé et al. 

2013; Pan et al. 2014; Naci & Owen 2013; Monti et al. 2014; Bekinschtein et al. 2011; 

Bardin et al. 2011). However, some reports suggest that the opposite discrepancy 

between bedside and neuroimaging capabilities may also exist. For instance, Bardin and 

colleagues (2011) reported two brain injured patients, from a cohort of seven, who were 

capable of command following or communication in behavioural assessments but not in 

neuroimaging paradigms. They proposed that motor imagery requires the same cognitive 

resources (eg. working memory, task maintenance) that are needed to successfully 

communicate, and this creates a “resource allocation” problem in brain injured patients. 

That is, their ability to successfully perform both tasks simultaneously is impaired 

because the shared cognitive resources required are likely reduced in patients compared 

to healthy individuals (Bardin et al. 2011). Furthermore, some patients may demonstrate 

command following using one neuroimaging technique but not the other (Gibson, 

Fernandez-Espejo, et al., 2014).  

 

Our experiment failed to identify an interaction, even at very low thresholds, between 

modality and level of selection, suggesting that these two factors may be dissociable. 

This finding is especially relevant for DOC patients, because it implies that the neural 
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mechanisms associated with command following and action selection are not dependent 

on whether the response is overt (motor behavior) or covert (motor imagery). This further 

supports the hypothesis that a lack of overt behavioural responses does not preclude the 

existence of preserved cognitive abilities indicative of consciousness in VS patients 

(Monti et al. 2010). The above discrepancies may then simply represent the well-known 

false-negatives in neuroimaging paradigms. The prevalence of false negative results in 

VS patients is difficult to estimate, because of the lack of a reliable “gold-standard” 

clinical measure to confirm whether a patient is conscious or not (Peterson et al. 2013). 

However, it is well known that a small proportion (15%) of conscious, healthy volunteers 

fail to show reliable appropriate brain activity in motor imagery paradigms (Fernández-

Espejo et al. 2014; Cruse et al. 2011; Hampshire et al. 2013). Furthermore, abnormal or 

absent brain activity in these patients could result from multiple other factors, including 

their unique brain damage and arousal levels, as well as limitations with the 

neuroimaging technique used (eg. excessive motion artifacts). 

 

This finding provides further support for the use of motor imagery fMRI tasks as a 

reliable proxy for overt command following and communication in brain-injured patients. 

A patient who can communicate by selecting between two mental responses in an fMRI 

scanner could potentially demonstrate the same level of conscious awareness as a patient 

communicating via behavioural responses at the bedside. 

 

3.7 Passive Movement: Applications for DOC Patients 

 

The passive movement condition in our task revealed a very similar pattern of neural 

activity to active movement, and these similarities centered mainly around sensorimotor 

regions. By contrast, frontal regions were recruited differently in passive and active 

movement, although these differences did not appear when the two were directly 

compared. Surprisingly, passive movement elicited brain activation equal to or greater 

than active movement. Further studies, with more precise monitoring of passive 

movements and any incidental muscle activity, are required to investigate this unexpected 

finding. In either case, our results suggest that passively moving a participant’s arm can 
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produce robust brain activity in the fMRI, providing a healthy baseline of activity for 

comparison with future passive movement experiments in DOC patients. Because passive 

tasks do not require effortful response from the patient, they can be performed in a wider 

group of patients, including comatose patients, who can neither move nor imagine 

moving to command. The intensity and extent of brain activity induced by somatosensory 

signals associated with passive movement could potentially indicate the functional 

preservation of a patient’s sensorimotor pathways, which may complement prognostic 

information obtained in SSEP studies  

 

To our knowledge, only one study has examined brain activity associated with passive 

movement in DOC patients. In a recent experiment by Horki et al., researchers used EEG 

to study attempted, imagined and passive movements in six MCS patients (Horki et al. 

2014). In the motor imagery condition, patients were asked to imagine playing their 

favourite sport, while in the attempted movement condition, patients were instructed to 

try to dorsiflex their foot at the ankle. The passive condition was performed in only one 

patient, and involved a caregiver dorsiflexing the patient’s ankle. One of the researchers’ 

aims was to explore whether passive movement could be used to setup an initial classifier 

in a motor-based BCI, based on the similar sensorimotor activation seen in passive and 

active movement (Horki et al. 2014). Passive movement in the single patient tested could 

not be classified successfully above chance, however, the authors did report task-related 

changes in activity over sensorimotor related brain areas. Furthermore, they noted that 

when attempted foot movements followed passive foot movement, classification of EEG 

activity associated with these attempted movements was very accurate (Horki et al 2014).  

 

The potential for passive or observed (Pistoia et al. 2013) movements to improve motor 

functioning in patients requires further investigation. Many DOC patients receive some 

form of physical therapy as part of their clinical care. This therapy is primarily designed 

to prevent muscle atrophy, although it may be possible that the passive movement could 

stimulate a patient’s preserved motor pathways as well. Passive movement could also 

possibly serve as an indicator of prognosis for brain-injured patients in the acute stage. 

The absence of somatosensory evoked potentials (SSEPs) elicited by physically 
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stimulating the hand of coma patients is used clinically as an indicator of poor outcome 

(Gofton et al. 2009). It is possible that the presence of sensorimotor activity in response 

to passive movement may have some positive predictive ability in coma patients with an 

intact SSEP response. Passive movement is an intriguing topic that requires further 

exploration in this population, especially considering the frequency of motor impairments 

(Lapitskaya et al. 2013a) and the clinical importance of motor responses for 

demonstrating conscious awareness (Steven Laureys et al. 2004). 

 

3.8 Conclusion 

 

Our results provide neural evidence that action selection necessary for binary 

communication involves greater activity in higher associative areas in frontal and parietal 

regions than command following. This supports an important finding of clinical 

assessments in DOC patients; that communication involves higher-order cognition than 

simply responding to a command. We also demonstrated that the cognitive process 

behind selecting an action may be dissociable from the process of expressing it (through 

motor execution or imagery). Therefore, a patient may retain the cognitive ability to 

choose between two actions regardless of whether their ability to overtly execute actions 

is preserved or impaired. This result thus provides further support for the use of covert 

assessments of command following and communication as a feasible proxy for traditional 

bedside behavioural assessments. Finally, the establishment of healthy baseline data for 

neural responses to passive movement lays the foundation for future passive experiments 

exploring preserved sensorimotor function in these patients.  
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Appendix I 

 
For all analyses in this thesis, the FSL Harvard-Oxford Cortical and Subcortical 

Structural Atlases were used for anatomical identification, which can be found at this link 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases. The authors of the atlas have asked for the 

following statement to be included when acknowledging the atlas: We are very grateful 

for the training data for FIRST, particularly to David Kennedy at the CMA, and also to: 

Christian Haselgrove, Centre for Morphometric Analysis, Harvard; Bruce Fischl, 

Martinos Center for Biomedical Imaging, MGH; Janis Breeze and Jean Frazier, Child and 

Adolescent Neuropsychiatric Research Program, Cambridge Health Alliance; Larry 

Seidman and Jill Goldstein, Department of Psychiatry of Harvard Medical School; Barry 

Kosofsky, Weill Cornell Medical Center. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



62 
 

 
 

 
Appendix II: Ethics 

 

 
 

 



63 
 

 
 

Curriculum Vitae 

Name:   Natalie Osborne 
 
Post-secondary  University of Guelph 
Education and  Guelph, Ontario, Canada 
Degrees:   2008-2012 B.Sc. (Honours Biomedical Sciences) 
 

The University of Western Ontario 
London, Ontario, Canada 
2013-2015 M.Sc. (Psychology) 
 

Honours and   Ontario Graduate Scholarship (OGS) 
Awards:   2013-2014, 2014-2015 
 
   Western Graduate Research Scholarship 
   2013-2014, 2014-2015 
    
   Biomedical Sciences Research Award of Merit 
   June 2012 
 
Related Work  Teaching Assistant 
Experience   The University of Western Ontario 

2013-2015 
 
Publications: 
    
Osborne, N. Owen, A & Fernández-Espejo, D. The dissociation between command 
following and communication in disorders of consciousness: an fMRI study in healthy 
subjects. Frontiers in Human Neuroscience. Accepted, Aug. 24th 2015. 
 
Osborne, N., Levy, AM., & Leri, F. Interaction between Classical and Instrumental 
conditioning during passive and active intravenous administration of heroin. in-
preparation (this paper is based on work from my undergraduate thesis project) 
 
Presentations:  
 
Osborne, N., Owen, A. & Fernández-Espejo, D. (2015). Residual sensorimotor function 
in Disorders of Consciousness. Poster presented at the 19th Annual Meeting of the 
Association for the Scientific Study of Consciousness. Paris, France. July 7th–10th, 2015. 
 
Osborne, N., Owen, A. & Fernández-Espejo, D. (2015). Investigating brain responses to 
passive movements of the arm in disorders of consciousness. Poster presented at the 25th 
Annual Rotman Research Institute Conference. Toronto, ON, Canada, March 9th –11th, 
2015. 
 


	An fMRI Study of Command Following and Communication Using Overt and Covert Motor Responses: Implications for Disorders of Consciousness
	Recommended Citation

	Microsoft Word - Thesis_Natalie_R_Osborne_revised_final.docx

