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Abstract 

Some salivary proteins degrade quickly after secretion into the oral cavity, due to 

proteases present in the oral environment. DR9, the N-terminal domain of statherin is an 

example of these peptides, which sustains the activity of the original protein. Inspired by 

naturally occurred DR9 and the evolutionary pathway taken by proteins; we constructed 

novel peptides by combining the functional domains of different salivary proteins and 

investigated the functionality of these peptides. Our results revealed that DR9 duplication 

could increase its functionality and DR9 combination with RR14, the functional domain of 

histatin, could combine the functions of both peptides. Furthermore, we explored the 

possibility of using chitosan, an amino-polysaccharide, as a carrier for salivary peptides. 

Chitosan nanoparticles showed a significant higher killing effect compared to non-particle 

chitosan against Candida albicans. Moreover, chitosan nanoparticles showed a favorable 

killing effect in specific pHs, similar to the critical pHs in the oral cavity. 

Keywords 

Salivary proteins, chitosan nanoparticles, Candida albicans, Acquired enamel pellicle, 
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Chapter 1  

1.1 Introduction (Problem statement in saliva biology) 

Saliva is composed of hundreds of salivary proteins secreted from a few major 

salivary glands and many minor salivary glands, including submandibular, sublingual and 

parotid glands and several non-salivary components (Dawes, C et al. 2004). Some 

salivary proteins are secreted commonly from all major glands, such as the secretory IgA 

(the main antibody in saliva), but some proteins are exclusive to specific gland such as 

proline-rich proteins (PRPs), which appear to be secreted only from parotid glands and 

minor salivary glands (Dawes, C et al. 1963 and Siqueira, W et al. 2008). Saliva is one of 

the most important fluids in the body that performs critical roles in the oral environment, 

such as facilitating the taste and detection of foods nutritious to the body and acting as a 

lubricant and antimicrobial agent. Saliva also prevents the dissolution of teeth and aids 

digestion. In addition, saliva is responsible for forming the acquired enamel pellicle 

(AEP), a thin organic layer formed on the enamel surface of the teeth (Dawes, C et al. 

1963). 

Extensive studies have been done to elucidate the process by which the AEP is 

formed on the enamel surface of the tooth. Briefly, one minute after exposure to the oral 

environment, a thin pellicle layer is detected on the enamel (Hannig, M et al. 1999). This 

pellicle formation is completed after 120 minutes and no further increase in 

protein/peptide is observed. However, a significant number of bacteria start adhering and 

forming the so-called oral biofilm or dental plaque (Siqueira W et al. 2012). Extensive 

electron microscopy experiments have been employed to determine the structure of the 
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acquired enamel pellicle and the majority of these experiments have shown that the 

thickness of pellicle is within the range of 30 and 100 nm (Hannig, M et al. 1989; 

Tinanoff, N et al. 1976). 

Over the years, several groups have utilized different experimental models to 

investigate the composition of AEP. For example, in vitro models such as hydroxyapatite 

(HA) discs incubated with whole saliva and HA powder were used to study the AEP. The 

use of these models resulted in the identification of some major AEP proteins such as 

amylase, histatins, albumin, carbonic anhydrase VI, cystatins, statherin, lysozyme and 

proline-rich proteins (PRPs) (Jensen, JL et al. 1992; Li, J et al. 2004; Hannig, M et al. 

1999). More recently, application of sensitive techniques such as LC-ESI-MS/MS and 

MALDI-TOF-MS has led to the identification of 130 proteins in the AEP composition 

(Siqueira, W et al. 2007). Of these 130 identified proteins, 113 were novel proteins. 

Statherin, PRPs, cystatins and histatins are the major components of the AEP and make a 

substantial portion of proteins present in saliva (Hay, D et al. 1975; Oppenheim, FG et al. 

1986; Hay, D et al. 1973; Oppenheim, FG et al. 1971). Additionally, these techniques 

identified 78 naturally occurring AEP peptide derived from 29 different proteins within 

the in vivo pellicle (Siqueira, W and Oppenheim, FG et al. 2009). Multiple peptides 

identified in AEP peptidome originate from histatins and statherin.  

The AEP plays an important role as a lubricant in the oral environment, which in 

turn improves the efficiency of speech and chewing (Tabak, LA et al. 1982). Mucins, 

aPRP1 and statherin are AEP constituents that are involved in this process (Tabak, LA et 

al. 1995; Vukosavljevic, D et al. 2014; Hahn Berg, IC et al. 2004). Due to its lubrication 

properties, AEP also plays a protective role against abrasive damage (Joiner, A et al. 
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2008). Furthermore, several studies have shown that multiple AEP components provide 

protection against acid-induced enamel demineralization (Hannig, M and Balz, M et al. 

2001; Cheaib, Z and Lussi, A et al. 2011; Siqueira, W et al. 2010). 

Statherin is a salivary protein that is phosphorylated at serine residues at position 

2 and 3. Statherin has highly important physical properties crucial for saliva. This protein 

is the most surface-active saliva component (Proctor, GB et al. 2005) and functions as an 

important lubricant in the saliva (Douglas, WH et al. 1991, Harvey, NM et al. 2011). 

Statherin and aPRPs play a role in inhibiting crystal deposition on enamel surfaces (Hay, 

DI and Moreno, EC et al. 1979). However, statherin is the most crucial inhibitor of 

calcium phosphate precipitation, which can serve its inhibitory effect at physiological 

concentrations (Tamaki, N et al. 2002). Furthermore, recent findings from our laboratory 

revealed that phosphate groups in the N-terminal domain of statherin fragments are 

responsible for inhibiting the growth of hydroxyapatite crystal. Moreover, statherin 

quickly disappear from whole saliva due to proteolytic activity and its affinity for tooth 

surfaces.  

Histatins are a protein family present in the AEP, which are secreted by the major 

and minor salivary glands. Histatins contain high level of histidine (Oppenheim, FG et al. 

1986) and show antifungal activity against Candida albicans, the major cause of oral 

candidiasis. Of the 12 members of histatin family, Histatin 1, 3 and 5 are the major 

members of the histatin family, forming 80% of this family (Oppenheim, FG et al. 1988). 

Like statherin, histatin 1 is phosphorylated at serine 2. Histatins show lower 

concentrations in whole saliva compared to pure glandular secretions likely due to 

proteolytic activity of saliva resulting the rapid degradation of these proteins after their 
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release into the oral cavity. Furthermore, histatins play a role in multiple processes, 

including buffering, modulation of mineral formation and antibacterial activities 

(Castagnola, M et al. 2004; Groot, F et al. 2006). 

Chitosan, an amino-polysaccharide, is a derivative of chitin, which is mainly 

present in the exoskeletons of arthropods such as insects, in algae and in some fungal cell 

walls. Chitosan is made from chitin by alkaline deacetylation, achieved by boiling chitin 

in concentrated alkali such as NaOH for 7-10 hours (Rabea, EI et al. 2003; Kumar, MNV 

et al. 2000). In terms of chemistry, chitosan is a polycationic heteropolysaccharide, which 

consists of two monosaccharides, D-glucosamine (GlcN) and N-Acetyl glucosamine 

(GlcNAc), linked by β (1→4) glycosidic bonds (Pochanavanich, P and Suntornsuk, W et 

al. 2002; Singla, AK and Chawla, M et al. 2001). Several features of chitosan such as 

molecular weights (MWs) viscosities, pKa values may be affected by the relative amount 

of these two monosaccharides in the composition of chitosan (Singla, AK and Chawla, M 

et al. 2001; Tharanathan, RN and Kittur, FS et al. 2003). 

Chitosan has a higher killing rate and lower toxicity rate compared to other types 

of disinfectants that make chitosan a better antimicrobial agent (Franklin, TJ et al. 1981; 

Takemono, K et al. 1989). Multiple mechanisms have been proposed to explain how 

chitosan serves its antimicrobial activity; however, the exact mechanism remains to be 

discovered. Chitosan can change cell permeability by interacting with the membrane of 

the bacterial cell, which leads to the leakage of cellular compartments and the death of 

bacteria (Seo, HJ et al. 1992; Chen, CS et al. 1998). Chitosan also can inhibit microbial 

growth and the production of toxins by acting as a chelator that selectively binds to trace 

metals (Cuero, RG et al. 1991). Other proposed mechanisms for antimicrobial activity of 
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chitosan include the inhibition of mRNA synthesis and various enzyme activities 

essential for bacterial survival (Sudarshan, NR et al 1992). It is interesting to mention that 

chitosan demonstrates its strong antibacterial activity only in an acidic condition because 

its solubility drastically decreases in pHs above 6.5. Furthermore, different molecular 

weights of chitosan can have the opposite effect on antimicrobial activity. For instance, 

chitosan with a molecular weight ranging from 10,000 Da to 100,000 Da inhibited the 

growth of bacteria, whereas, chitosan with an average molecular weight of 2,200 Da 

enhanced the growth of bacteria (Tokura, S et al. 1994). Nano and microparticles have 

recently gained substantial attention as carriers for drugs and proteins. These particles can 

control the release of drugs and proteins to a specific target site, which minimize 

nonspecific effects. Chitosan displays some biological features such as biodegradability, 

biocompatibility and pH sensitivity that make chitosan a suitable carrier for the delivery 

of drugs and proteins in the biomedical field. Encapsulation of salivary proteins/peptides 

in chitosan particles provides an opportunity for these proteins/peptides to have a longer 

lifespan in the oral environments.  

The aim of this study was to investigate the novel constructed histatin and 

statherin peptides’ activity, compared to the original proteins and also, to explore the 

possibility of using chitosan nanoparticles as a delivery system for salivary 

peptides/proteins. We hypothesized that only the functional domain of selected salivary 

proteins could have the same function as the original proteins, also, the 

duplication/combination of protein functional domains could increase/combine their 

activity. This novel approach of salivary peptides’ construction could help us to benefit 

from the result of evolution millions of years ahead of the time that it would naturally 
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occur, since these could be the evolutionary pathways that salivary proteins will 

eventually take. Moreover, the idea of chitosan nanoparticles application for 

peptides/proteins delivery could be highly beneficial since, not only it will increase the 

peptides’ life span in the oral cavity but it can also provide bonus antimicrobial and 

antifungal properties.  
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Chapter 2  

2 Protein adsorption on the enamel and their biological 
function 

2.1 Introduction 

The AEP is an organic layer, free of bacteria, that coats the tooth surfaces. AEP 

consists of proteins, glycoproteins and enzymes (Lendenmann, K et al. 2000), and plays 

important roles in several processes in the oral cavity. For instance, it is responsible for 

lubricating tooth surfaces to prevent wear. It also acts as a buffer and anti-erosive barrier. 

Furthermore, it displays multiple antimicrobial properties (Hannig, M et al. 2001; Al-

Hashimi, I et al. 1989; Bradway, SD et al. 1992; Hannig, M et al. 2002; Hannig, M and 

Balz, B et al. 1999; Amaechi, BT et al. 1999; Hannig, M et al. 1999 and Hahn Berg, IC et 

al. 2004). 

AEP postpones enamel demineralization (Darling, AI et al. 1956; Meckel, AH et 

al. 1968; Zahradnik, RT et al. 1976; Propas, D et al. 1977; Juriaanse, AC et al. 1979) and 

impedes the supersaturated saliva to form calcium and phosphate crystal on the tooth 

surface (Hay, DI et al. 1979; Moreno, EC et al. 1979). It is a key player in the 

colonization of bacteria on the tooth surface by mediating the selective binding of 

bacteria (Hillman, JD et al. 1970; McGaughey, C et al. 1971; Gibbons, RJ et al. 1976). 

It has been shown that there is no increase in the amount of amino acid formed on 

the tooth surface after 90 minutes (Sonju, T et al. 1973). X-ray studies have revealed that 

there is equilibrium between adsorption and re-sorption of proteins on the tooth surface 

after 90 min (Kuboki, Y et al. 1987). 
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The majority of research in the salivary protein field has focused on the chemical 

composition of the AEP with little focus on its ultrastructure. The initial transmission 

electron microscopic (TEM) studies characterized the AEP as a bacteria-free, 

homogeneous and amorphous layer (Armstrong, WG et al. 1968; Leach, SA et al. 1966; 

Meckel, AH et al. 1965 and Tinanoff, N et al. 1976). Further investigations of the AEP at 

different time points revealed a more complicated structure as the 2-hour AEP 

demonstrated a fine, uneven organic layer and after the maturation of the AEP during a 

period of several hours, it forms a compact layer with the granular structure (Berthold, P 

et al. 1979; Lie, T 1977; Nyvad, B et al. 1987 and Tinanoff, N et al. 1976). 

Although these investigations provided helpful insights into the AEP structure, 

there have been some limitations. For example, they were performed on enamel slabs 

carried in the buccal sulcus. Since the oral cavity is exposed to different salivary gland 

secretions with different protein composition, a systematic ultrastructural study 

investigating site-dependent differences in the structure of the AEP was needed (Dawes, 

C et al. 1993; Dawes, C et al. 1989; Sas, R et al. 1997; Brookes, SJ et al. 1995 and 

Veerman, ECI et al. 1996). In 1999, Hannig performed an experiment using TEM to 

investigate the structure of the AEP at two different oral sites for a period of 24 hours. 

This experiment demonstrated that a thin layer with thickness of 10–20 nm is formed on 

the enamel surface after one minute. Further adsorption of salivary proteins was 

controlled by locally effective shearing forces of the oral cavity. The lingual site of the 

oral cavity was covered by homogeneous, granular layer with a thickness of 20 to 80 nm 

in 2 hours, which increased to the thickness of 100–200 nm after 24 hours. In contrast, on 

the buccal surface, a granular and globular layer with the thickness of 200 and 700 nm 
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was formed after 2 hours, which increases to a globular layer with the thickness of 1000- 

1300 nm. Other researchers also confirmed the globular and granular structures of the 

AEP (Schupbach, P et al. 1996). 

In summary, these findings revealed that the AEP formation occurs in two steps: 

First, salivary proteins are adsorbed on the enamel surface as an electron dense basal 

layer, subsequently; salivary proteins are adsorbed on the enamel surface forming a 

globular layer. These investigations also showed that the structural appearance and 

formation of pellicle changes by site dependent salivary composition, different salivary 

flow rate and effective shearing forces. 

The identification of the AEP protein composition has been the focus of several 

studies over the years. Three experimental models including in vitro, in situ and in vivo 

models have been employed to investigate the AEP components. Although the in vitro 

model has some limitation, in terms of mimicking the dynamic environment of the 

mouth, but it provided some valuable information about the composition of the AEP 

(Jensen, JL et al. 1992). This model revealed the identity of some of the major 

components of the AEP such as amylase, carbonic anhydrase VI, histatins, cystatins, 

lysozyme, albumin, statherin and PRPs. (Hannig, M et al. 1999; Li, J et al. 2004).  

2.2 AEP Composition 

The in situ model, which, uses bovine or human enamel slabs mounded in intra-oral 

appliances provided valuable information about the activity and structure of the enzymes 

within the AEP such as amylase, peroxidase, transaminases and lysozyme (Hannig, M et 

al. 2004 and Hara, AT et al. 2006). With the emergence of sensitive proteomics 
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technology, the in vivo AEP composition could be analyzed in a small amount of sample 

(Siqueira, WL et al. 2007a). These delicate techniques have provided the opportunity to 

expand our information about the AEP composition. LC-ESI-MS/MS and MALDI-TOF-

MS are the examples of these techniques, which have made the possibility to identify 130 

proteins in the in vivo AEP (Siqueira, WL et al. 2007b). Furthermore, LC-ESI-MS/MS 

techniques have led to the discovery of 78 peptides that are the result of the cleavage of 

29 different proteins present in the AEP (Siqueira, WL et al. 2009). These proteomics 

techniques have allowed us to design complex experiments, which will lead to a greater 

understanding of the AEP composition. The better understanding of the AEP components 

and their activity will provide the opportunity for the development of better therapies for 

oral diseases. 

2.2.1 Amylase 

The parotid salivary gland is the main source of salivary alpha-amylase, which is 

the prevailing protein in human saliva. Amylase is produced by both salivary glands and  

pancreas, providing different levels of starch digestion (Merritt, AD et al. 1973 and 

Tomita, N et al. 1989). Amylase is encoded by two genes named AMY1 and AMY2. 

Salivary amylase contains 496 amino acids and shows a highly similar sequence 

compared to the pancreatic amylase with only 3% variation in their sequence.  

Salivary amylases are divided into two families: family A and family B (Keller, 

PJ et al. 1971). Family A enzymes are glycosylated at Asn 412 residue and consists of 

three isomers: isoenzyme 1, 3 and 5 which are slightly different in their structure. Family 

B enzymes, are non-glycosylated, and include isoenzymes 2, 4 and 6 (Takeuchi, T et al. 

1979). In terms of function, alpha-amylase is involved in hydrolyzing alpha-1, 4 
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glycosidic bonds, leading to the first level of starch and glycogen digestion, in the oral 

cavity. Furthermore, salivary amylases are able to attach to several oral streptococci 

species, indicating their role in the clearance of bacteria (Scannapieco, FA et al. 1989; 

Scannapieco, FA et al. 1990; Douglas, CW et al. 1990; Bergmann, JE et al. 1995 and 

Scannapieco, FA et al. 1993). Amylase is detectable in the AEP, but the exact role of this 

protein on the tooth surface remains to be investigated (Al-Hashimi, I et al. 1989; Yao, Y 

et al. 2003; Orstavik, D et al. 1973; Orstavik, D et al. 1974 and Dipaola, C et al. 1984). 

2.2.2 Histatins 

Histatins are a family of salivary proteins that consists of 12 highly similar 

members. Two distinct genes mapped to chromosome 4q13, HIS1 and HIS2, encode 

histatin 1 and histatin 3 respectively (Azen, EA et al. 1973 and Sabatini, LM et al. 1989). 

Other members of histatin family are derived from histatin 1 and 3 by proteolytic 

cleavage of salivary proteases during secretion. For instance, histatin 3 undergoes a 

proteolytic cleavage at Tyr-24 within salivary gland cells and creates histatin 5 (Sabatini, 

LM et al. 1989). In addition, histatin 1 undergoes other post-translational modifications. 

One such example is the phosphorylation of histatin 1 at serine 2 and sulfation of tyrosine 

residues at the C-terminal of histatin 1 (Oppenheim, FG et al. 1988 and Cabras, T et al. 

2007). These salivary cationic peptides defend the oral environment against oral 

candidiasis caused by Candida albicans. Among all histatins, histatin 5 and 3 have the 

highest antifungal activity (Xu, T et al. 1991).  

Earlier studies revealed that these histidine rich proteins are secreted from parotid 

and submandibular/sublingual salivary glands. However, recent immunochemistry and 

mass spectrometry techniques have shown that minor salivary glands also secrete 
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histatins. Of the 12 members of this family, histatin 1, 3 and 5 constitute about 80% of 

glandular secretions and contain 38, 32 and 24 amino acid residues, respectively. The 

concentration of histatins in the saliva ranges from 50 µM to 425 µM (Helmerhorst, EJ et 

al. 1997).  

Previous studies have revealed that the N-terminal domain of these histatins is 

responsible for antimicrobial activity and the C-terminal domain possesses wound-

healing properties (Melino, S et al. 1999; Gusman, H et al. 2001 and Grogan, J et al. 

2001).  

The oral cavity takes advantage of several defense mechanisms to prevent 

bacterial and fungal infections. Histatins are the key players in protecting the oral cavity 

against oral pathogens. Several studies have investigated the antibacterial activity of 

histatins against different pathogens. Some studies have shown that histatins have low or 

no effect on Streptococcus mutans and S. milleri (Helmerhorst, EJ et al. 1997 and Bartie, 

KL et al. 2008). However, it has been demonstrated  that both S. aureus and multidrug-

resistant S. aureus (MRSA) are sensitive to the antimicrobial activity of histatin 5 and its 

homolog peptides such as Dh5, P-113, Dhvar5  and in particular Dhvar4 which shows an 

IC50 of 3.1–4.2 µM in vitro and 1–1.5 µM in vivo, respectively (Welling, MM et al. 

2007). In addition, histatin 1 inhibits the adsorption of glycoprotein to hydroxyapatite 

surfaces, which results in reduction of S. mutans adhesion to hydroxyapatite surfaces 

(Shimotoyodome, A et al. 2006). Histatin 5 is responsible for regulating the 

periodontopathic bacterium Porphyromonas gingivalis, and hindering the induction of 

inflammatory cytokines in human gingivalis fibroblasts by P. gingivalis (Imatani, T et al. 

2000; Imatani, T et al. 2004 and Yoshinari, M et al. 2010). Furthermore, histatins show a 
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strong antifungal effect against C. albicans, C. krusei, Cryptococcus neoformans, 

Saccharomyces cerevisiae and Neurospora crassa in vitro (Oppenheim, FG et al. 1988; 

Rayhan, R et al. 1992; Driscoll, J et al. 1996; Tsai, H et al. 1997 and Vukosavljevic, D et 

al. 2012). Histatin 5 serves its candidacidal activity through a multistep molecular 

mechanism. First, histatin 5 binds to the yeast protein receptor Ssa1/2p that activates the 

internalization of the peptide. Finally, histatin 5 interacts with intracellular targets such as 

mitochondrial membrane leading to the formation of reactive oxygen species (ROS) and 

oxidative damage (Edgerton, M et al. 1998; Sun, JN et al. 2008; Baev, D et al. 2001; Xu, 

Y et al. 1999; Helmerhorst, EJ et al. 1999; Koshlukova, SE et al. 2000; Ruissen, AL et al. 

2001 and Isola, R et al. 2007). In addition, it has been demonstrated that histatin 5 

induces ATP efflux from C. albicans cells by interacting with TRK1p, a potassium 

transporter, and inducing potassium ion release (Baev, D et al. 2004). The exact and 

detailed mechanism for antifungal activity of histatins remains to be elucidated. A better 

understating of these mechanisms might provide better opportunities for the development 

of new generation antifungal drugs. Histatins are one of the earliest precursors of the 

AEP due to their high affinity to the hydroxyapatite and they aid the AEP protection of 

teeth from demineralization (Jensen, JL et al. 1992; Al-Hashimi, I et al. 1989; Siqueira, 

W et al. 2010). Histatins also contribute to the antimicrobial property of AEP by 

inhibiting bacteria adhesion to the tooth's surface and providing antimicrobial and 

antifungal properties in the AEP composition (Xie, H et al. 1991 and Siqueira, W et al. 

2007b). 

2.2.3 Mucin 

Mucins are other members of saliva, which are divided into two types of 
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genetically different salivary mucins: mucin glycoprotein 1 (MG1), also called high 

molecular weight mucin, encoded by the MUC5B gene (Thornton, DJ et al. 1999), and 

the MG2 (Mucin glycoprotein 2), or low molecular weight mucin, encoded by the MUC7 

gene (Bobek, LA et al. 1993). 11 distinct Mucin genes have been mapped in human so 

far; each of these different mucins shares several sequences and features.  

MG1 is secreted from mucous cells, while MG2 is secreted from serous cells. 

Mucins contain a high level of carbohydrate chains attached covalently to their 

polypeptide backbones and are rich in proline and serine/threonine. These carbohydrate 

chains make up to 60% to 80% of the molecule (Van Klinken, BJ et al. 1995). MG1 is a 

component of the AEP that is responsible for lubricating the dental surfaces and 

protecting it against mechanical wear (Nieuw Amerongen, AV et al. 1987). Mucins also 

participate in the acid resistance of the AEP (Cheaib, Z and Lussi, A et al. 2011). In 

addition, mucins function as a barrier against penetration of irritants and toxins into 

mucous cells. They regulate permeability of mucosal surfaces, and play a protective role 

against proteases generated by bacteria and modulate colonization of the oral cavity by 

bacteria and viruses (Mandel, ID et al. 1987). 30% of the salivary mucins are secreted 

from the submandibular glands, while 70% of them are secreted from sublingual, labial 

and palatal glands. Interestingly, parotid glands do not secrete any mucins (Wu, AM et al. 

1994; Thornton, DJ et al. 1999; Nielsen, PA et al. 1996; Troxler, RF et al. 1997; Milne, 

RW et al. 1973 and Edgerton, M et al. 1992). Furthermore, mucins facilitate speech, 

chewing and swallowing by the viscoelastic properties. In addition, MGl has the ability to 

bind to a variety of microorganisms such as   Porphyromonas gingivalis and Candida 
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albicans and contribute in their clearance from the oral cavity (Amano, A et al. 1994; 

Edgerton, M et al. 1993). 

2.2.4 Proline-rich proteins (PRPs) 

PRPs are divided into two subcategories: Basic or glycosylated PRPs (bPRPs) and 

acidic PRPs (aPRPs). bPRPs are encoded by four loci (PRB1-PRB4), mapped to 

chromosome 12p13 and only secreted by parotid glands. aPRPs are the product of two 

loci (PRH1 and PRH2), mapped to chromosome 12p13 close to the bPRPs loci, and are 

detected in both parotid and submandibular/sublingual secretions (Kauffman, DL et al. 

1991 and Inzitari, R. et al. 2005). All PRPs have a repeat region, a signal peptide, a 

carboxyl terminal region and a transition region in common (Ann, DK et al. 1985) 

All aPRPs undergo post-translational modification such as phosphorylation of 

residues 8 and 22. Acidic PRPs effectively inhibit the calcium phosphate crystal growth, 

but they do not play a role in crystal nucleation, which occurs by calcium phosphate 

precipitation at physiological concentrations. The N-terminal domain of aPRPs, which 

contains 30 amino acids, including two phosphoserine and several negatively charged 

residues, is responsible for inhibiting the calcium phosphate crystal growth. Studies have 

shown that the presence of both phosphoserines at the N-terminal domain of aPRPs plays 

a crucial role in mineral homeostasis. This domain also has a high affinity for binding to 

the hydroxyapatite (HA). The intact PRPs are absent in saliva indicating their complete 

cleavage in the oral cavity. More than 20 PRPs have been identified in human saliva 

(Bennick, A 2002). Several studies have shown that different peptides are derived from 

the cleavage of basic PRPs including Pe (DEAEII-2), PmS, Con1, Ps, Pc, Con2, PmF, 

and Po (Kauffman, DL et al. 1979; Azen, EA et al., 1979 and 1980; Anderson, LC et al. 
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1982; Azen, EA et al. 1984a; Karn, RC et al. 1985). In addition, basic PRPs are cleaved 

to multiple fragments which include P-D, P-F, P-E, P-I and P-H, II-1, II-2, IB-7, IB-8a 

and IB-1 fragments (Isemura, S et al. 1982; Saitoh, E et al.1983a, b, c; Kauffman, D et al. 

1982, 1986, 1991). The structure of basic PRPs is well known and characterized but their 

exact function in the oral cavity is yet to be discovered.  

PRPs were identified in human saliva for the first time (Mandel, ID et al. 1965). 

Further studies showed that these proteins are present in the saliva of several animals as 

well, such as rat, goat, sheep and mouse. In terms of molecular weight, PRPs range from 

5000 to over 25000 Daltons (McArthur, C et al. 1995 and Bennick, A et al. 2002). PRPs 

produced in some species such as human contained about 40% Proline indicating their 

unique structure considering the fact that most proteins only contain about 5% proline in 

their structure (Mole, S et al. 1990; Mehansho, H et al. 1983 and 1985; Schulz, GE and 

Schirmer, RH et al. 1979).   

Parotid saliva possesses the highest concentration of PRPs among all salivary 

glands (Veerman, EC et al. 1996). Acidic PRPs contain a longer N-terminal region, and 

their repeated sequence is different compared to basic PRPs (Bennick, A et al. 2002). 

Acidic PRPs are able to bind to calcium hydroxide and therefore are involved in the 

formation of AEP on tooth surfaces. PRPs contribute to the lubricating property of AEP 

and inhibit the calcium and phosphate precipitation on the enamel surface along with 

some other proteins (Vitorino, R et al. 2008; Tabak, LA et al. 1995; Hahn Berg, IC et al. 

2004; Hay, DI and Moreno, EC et al. 1979). Basic PRPs have been also detected in the 

AEP (Vitorino, R et al. 2008). Acidic PRPs are able to bind to bacteria, whereas basic 

and glycosylated PRPs have the ability to bind to fungi, viruses and bacteria, which is an 
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indicative of their role in the exclusion of these microorganisms (Fábián, TK et al. 2008; 

Fábián, TK et al. 2012; Shugars, DC et al. 1998 and Tenovuo, J et al. 2002).  

2.2.5 Statherin 

Statherin inhibits the nucleation as well as the growth of hydroxyapatite in the 

supersaturated environment of saliva; therefore, as an AEP component, it avoids the 

crystal formation on the tooth surface (Schlesinger, DH et al. 1977; Hay, DI Moreno, EC 

et al. 1979). Statherin also functions as a boundary lubricant and a mediator of bacterial 

adhesion in periodonto-pathology (Douglas, WH et al. 1991).  

The major statherin contains 43 residues and is detectable in human parotid and 

submandibular salivary glands (Hay, DI et al. 1977). Statherin inhibits the spontaneous 

precipitation of calcium phosphate salts from their supersaturated solutions (Hay, DI and 

Moreno, EC et al. 1979). Therefore, statherin, in conjunction with acidic PRPs, is able to 

inhibit precipitation of calcium phosphate salts in the salivary glands, the mouth and onto 

the tooth surface ((Hay, DI et al. 1979). 

Like other calcium-binding proteins such as Osteopontin and biomineralization 

proteins regulating calcium carbonate crystallization, statherin contains a pSpSEE (where 

pS is phosphorylated serine) acidic motif (Waite, JH et al. 2001). Statherin is 

phosphorylated at two serine residues in position 2 and 3 and has a high level of tyrosine 

and proline (Schlesinger, DH et al. 1977). Initially, it was believed that statherin exists as 

a single protein in human saliva until smaller statherin variants (SVs) were identified 

(Jensen, JL et al. 1991). There are three SVs, including SV1, 2 and 3. SV2 lacks an 

internal 10-residue segment, which is the result of eliminating exon 4 of statherin gene by 
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an alternate mRNA splicing event. SV1 and SV3 are similar to statherin except that they 

are missing a phenylalanine residue at the C terminal domain. The removal of this residue 

is thought to be a post-translational modification (Jensen JL et al. 1991 and Castagnola, 

M et al. 2003). Interestingly, similar to histatins, the concentration of statherin in 

glandular secretions is significantly higher than in whole saliva due to its proteolytic 

degradation and strong affinity for tooth surfaces. Statherin, an AEP component, inhibits 

primary as well as secondary calcium phosphate precipitation, and therefore is thought to 

have a crucial role in maintaining oral fluid, supersaturated with calcium phosphate salts, 

which is an important function for the remineralization capacity of human saliva 

(Schlesinger, DH et al. 1977; Hay, DI et al. 1982 and Moreno, EC et al. 1979). Statherin 

also assists in the protection of tooth mineral tissue to the acid products, along with other 

members of AEP (Li, J et al. 2004). 

2.2.6 Lysozyme 

Lysozyme is an enzyme present in the secretions of human and many other 

vertebrates and invertebrates such as, phages, plants and bacteria. Because of its 

abundance in human secretions, it is considered a part the innate immune system 

(Goodman, H et al. 1981).  

Lysozyme, also called muramidase, is a 14-kDa enzyme with antimicrobial 

activity in human saliva and AEP (Siqueira, W et al. 2007b). Lysozyme serves its 

antimicrobial activity through multiple mechanisms. First, it hydrolyzes the cell wall 

peptidoglycans leading to the death of bacteria (Torsteinsdottir, I et al. 1999). However, 

most of bacterial species are not directly lysed upon exposure to lysozyme, and further 

addition of detergents is required to lyse the bacteria (Goodman, H et al. 1981; Cho, MI 
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et al. 1982 and Pollock, II et al. 1987).  

Lysozyme is also able to change intermediate glucose metabolism in sensitive 

bacteria and, in some cases, to lead to bacterial aggregation, which can contribute to the 

clearance of bacteria from the oral cavity (Pollock II et al. 1976 and Twetman S et al.  

1986). Moreover, it can activate bacterial autolysins (Laible, NJ et al. 1985). In addition 

to antimicrobial activity, lysozyme may play a role in protection from acute bronchitis 

and oral candidiasis (Taylor, DC et al. 1995; Yeh, CK et al. 1997; Wu, T et al. 1999). 

Interestingly, it has been demonstrated that non-enzymatic properties of lysozyme are 

responsible for antimicrobial activity, since heat-denatured lysozyme maintains 

antibacterial activity. Further studies have revealed that a small cationic amphipathic 

sequence (12-15 amino acids) in the C-terminal domain of lysozyme displays 

antimicrobial activity (During, K et al. 1999). 
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Chapter 3  

3 Duplication and Hybridization of Protein Functional 
Domains for Oral Homeostasis  

3.1 Introduction 

Many studies have been devoted to uncovering the nature of the acquired enamel 

pellicle (AEP), an organic film on the enamel surfaces, formed by the selective 

adsorption of around 130 proteins, peptides, and other molecules (Hannig, M and Joiner, 

A et al. 2006; Siqueira, W et al. 2007; Vitorino, R et al. 2007). These proteins, primarily 

originate from salivary glands, bacterial products, gingival crevicular fluid, or oral 

mucosa (Siqueira, W et al. 2012). However, salivary peptides are merely products of 

these proteins after bacterial cleavage and may retain or augment the functional 

properties of their native proteins (Castagnola, M et al. 2004; McDonald, EE et al. 2011; 

Siqueira, W and Oppenheim, FG et al. 2009). The AEP plays a crucial role in dental 

homeostasis by neutralizing acids from bacterial products and acting as a selectively 

permeable membrane for de-remineralization (Hara, AT and Zero, DT et al. 2010; 

Siqueira, W et al. 2010; Siqueira, W et al. 2012; Zahradnik, RT and Moreno, EC et al. 

1977).  It also dictates the composition of early colonizers that ultimately form the 

microbial biofilm (Chaudhuri, B et al. 2007; Gibbons, RJ and Hay, DI et al. 1989; Li, J et 

al. 2004).   

One of the AEP principal proteins is statherin, which is wholly effective at 

inhibiting primary and secondary calcium phosphate precipitation (Oppenheim, FG et al. 

2007; Schlesinger, DH and Hay, DI 1977) allowing for supersaturated saliva that aids in 

remineralizing enamel surfaces.  Statherin’s functional peptide resides at the N-terminal 
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(Long, JR et al. 1998; Raj, PA et al. 1992). Recently, our group identified as a member of 

the AEP a naturally occurring peptide from this region (Siqueira, W and Oppenheim, FG 

et al. 2009). This peptide consists of 9 amino acids, DpSpSEEKFLR (where pS is a 

phosphorylated serine). This peptide chain, termed DR9, has shown a significant effect 

(p<0.05) on the hydroxyapatite growth inhibition in all studied concentrations when 

compared to other native statherin peptides (Xiao, Y et al. 2010).  

Frequently, salivary proteins that have existed for millions of years contain one or 

more repeats of functional domains within their primary structure, thereby improving 

their functional capacity under evolutionary pressures (Oppenheim, FG et al. 2012; 

Troxler, RF et al. 1997).  Protein diversity may be achieved through allelic variation, 

gene duplication, splicing events, and post-translational modifications (Helmerhorst, EJ 

and Oppenheim, FG et al. 2007; Oppenheim, FG et al. 2007). However, statherin is an 

evolutionarily young protein, and as such, DR9 is the known natural functional domain in 

relation to the inhibition of primary and secondary calcium phosphate precipitation (Xiao, 

Y et al. 2010). Artificially duplicating or triplicating this peptide sequence may induce 

the effects that we would expect to see over the course of evolution, creating a salivary 

protein with enhanced dental homeostasis, such as enamel demineralization protection.   

In addition to multiplying a functional domain, evolutionary processes may also 

merge functional domains from different proteins for a combinatory effect.  Therefore, 

another AEP protein to be studied is histatin; its benefits include antimicrobial effects, 

demineralization protection, buffering, and regulation of mineral formation ( Edgerton, M 

and Koshlukova, SE et al. 2000; Helmerhorst, EJ et al. 2006; Siqueira, W et al. 2010; 

Vukosavljevic, D et al. 2012). Histatins degrade quickly upon secretion by the salivary 
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glands due to high proteolytic activity in the oral cavity, but the resulting fragments often 

retain their original function (Castagnola, M et al. 2004; Groot, F et al. 2006). Our group 

has characterized the peptide RR14, a synthetic analog of histatin’s antimicrobial 

functional domain RKFHEKHHSHRGYR, to connect with statherin’s DR9. It has been 

previously shown that the functional domain of histatins could have the same 

antimicrobial effect as of the original protein. By synthetically combining RR14 with 

DR9, we hypothesize the creation of a novel protein with superior antimicrobial qualities 

and enhanced mineral homeostasis.  This would represent promising new molecular 

methodologies for the clinical exploitation in oral health maintenance. 

3.2 Materials and Methods 

3.2.1 Protein and peptides characterization 

Synthetic statherin, histatin 1 and peptides derived from statherin or histatin 3 

were purchased from Chinapeptide (Shanghai, China).  All proteins and peptides used in 

this study are listed in Table 1 (Table 1). Purity (> 95%) and Mr from each protein and 

peptide were verified by high performance liquid chromatography (HPLC) and mass 

spectrometry analysis. Protein/peptide solutions were prepared in 50 mM NaCl, pH 6.8, 

at a protein concentration of 1 mg/mL for the following experiments. 

3.2.2 Calculation of protein and peptide isoelectric points 

Isoelectric points (pI) of statherin, histatin 1 and their peptides were determined 

using the calculator developed by Gauci and coworkers. This approach calculates the pI 

of a protein and peptide at a particular pH using user-specified pK values. The calculation 

is repeated until the pH corresponding to a net charge of zero is found (Gauci, S et al. 
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2008). pI values quoted were calculated using the Scansite option (Azzopardi, P et al. 

2010).  

3.2.3 Enamel demineralization assay 

Enamel sample preparation was done as previously described (Siqueira, W et al. 

2010). Briefly, human permanent first molars without defects were cleaned, rinsed, and 

sectioned.  After having the roots removed, the crowns were sliced sagittally into 4 

sections (each with a 300 µm thickness) using a diamond saw, followed by grinding to a 

thickness of 150 µm using sandpaper.  Each specimen was coated with a layer of light-

cured dental adhesive (3M ESPE ScotchbondTM Universal) and nail varnish, excluding an 

untouched 2 mm window on the natural surface enamel.   

Samples were randomly divided into 6 groups (N = 10 per group), as shown in 

Table 1. Each specimen was submerged in 1mg/mL peptide/protein solution or distilled 

water (control group) and incubated for 2 hours at 37oC.  After this period, the samples 

were then submerged in 1mL of demineralization solution (0.05M acetic acid; 2.2mM 

CaCl2; 2.2mM NaH2PO4; pH 4.5) at 37oC for 12 days.  Afterward, enamel slices were 

removed from the solution and the remaining 1 mL of acidic solution was used to assess 

the calcium and phosphate concentration released from enamel during the 

demineralization process.   

3.2.4 Calcium and phosphate analyses 

The calcium concentration of the solution was assessed using a quantitative 

colorimetric calcium determination assay (QuantiChromTM Calcium Assay Kit, Bioassay 

Systems, Hayward, Calif., USA) with a UV-visible spectrophotometer determining the 

optical density at a wavelength of 612nm. The phosphate concentration was also 
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performed using a colorimetric assay (PiColorLock™ Gold Detection System, Innova 

Biosciences, Cambridge, U.K.) and UV-visible spectrophotometer, determining the 

optical density at a wavelength of 635 nm.  All samples were analyzed in triplicate. 

3.2.5 Candida albicans killing assay 

Candida albicans (ATCC 90028) colonies were picked from a Sabouraud 

Dextrose Agar (SDA) plate (<1 week old) and suspended in 5 mM potassium phosphate 

buffer, pH 7.0, to a final OD 620 nm of approximately 0.3. From this suspension, 50 µl 

was added to 50 µl of a serial dilution series of DR9, DR9-DR9, DR9-RR14, RR14 and 

Histatin 3 in a 96-well polypropylene microtitre plate. The initial concentration during 

the dilution series of each peptide or protein was 214 µM. After 1.5 h of incubation at 

37◦C,	  50	  μl	  from	  selected	  wells	  were	  diluted	  in	  9	  ml	  phosphate-‐buffered	  saline, pH 7.0 

and 25 µl aliquot of the diluted suspension was plated on SDA. After 48 h of incubation 

at 30 ◦C,	   cell	   viability	   was	   assessed	   by	   colony	   counting,	   using comparisons with the 

number of cells in a control sample incubated without the presence of peptide or protein. 

This experiment was carried out three dependent times and each time in duplicate. 

3.2.6 Statistical analyses 

Statistical procedures were performed with the software package Minitab 13.1. 

After checking for normal distribution, we subjected the data to analysis of variance 

(ANOVA) followed by Tukey’s test. The level of significance was set at a value of p < 

0.05. 
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3.3 Results 

Isoelectric points were calculated for each peptide and protein in pH 6.8. Histatin 1, a 

positive protein, demonstrated a pI of 7.00 while statherin, a negative protein, showed a 

pI of 4.41. DR9, the natural statherin peptide, showed a pI of 3.63 while DR9-DR9 

reached the lowest pI value, 3.44 and RR14 showed the highest value, 11.00, whereas 

DR9RR14 exhibited an intermediate PI value of 7.16. Values are demonstrated in Table 

3-1. 

 

Table 3-1: Constructed peptides derived from statherin and histatin and their 

calculated pI. Note. pS is a phosphorylated serine. 

 

 

 

 

 

 

 

 

 

 

 

 

1 DR9 DpSpSEEKFLR 3.63 

2 DR9-DR9 DpSpSEEKFLRDpSpSEEKFLR 3.44 

3 DR9-RR14 DpSpSEEKFLRRKFHEKHHSHRGYR 7.16 

4 RR14 RKFHEKHHSHRGYR   11.00 

5  Statherin DpSpSEEKFLRRIGRFGYGYGPYQPVPEQPLYPQPYQPQYQQYTF 4.41 

6 Histatin 1 DpSHEKRHHGYRRKFHEKHHSHREFPFYGDYGSNYLYDN 7.00 

7 Distilled water None  
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 To gain insight into the biological functions of those new constructed pellicle 

peptides when adsorbed on the enamel surface, we decided to evaluate the effects of 

those peptides on in vitro enamel demineralization. The amounts of phosphate released 

from the enamel specimens after 12 days in demineralization solution are shown in Table 

3-2. The control group (non-peptide coated) shows the highest phosphate loss. No 

statistically significant differences were observed between the amount of phosphate 

released from the groups treated with DR9-RR14 and histatin 1 or between statherin 

group and its naturally occurring peptide, DR9. On the other hand, statherin and DR9 

demonstrated a significantly lower phosphate loss when compared to DR9-RR14 and 

histatin 1 groups, while DR9-DR9 showed the smallest phosphate loss compared with 

any other group (p<0.05). 

  In relation to calcium released, the results were very similar to the phosphate 

released. DR9-DR9 and statherin showed the lowest calcium loss, followed by DR9 

group (Table 2, p<0.05). DR9-RR14 and histatin 1 groups demonstrated no statistically 

significant differences, but both groups demonstrated a significant calcium loss when 

compared to DR9-DR9, statherin and DR9 groups which held an intermediate value 

among the groups.  As expected, all peptide/protein groups demonstrated significant 

difference when compared to the control group (Table 3-2). 

Ca/PO4 ratio was calculated for each tested group, a percentage variation of less 

than 9% was observed among the groups. DR9-DR9 group reached the smallest ratio of 

1.44 while DR9-RR14 showed the highest ratio of 1.55.   
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Table 3-2: Calcium and phosphate release from human enamel sections 

Means and standard deviations of calcium and phosphate released from human enamel 

sections first exposed to constructed pellicle peptides, proteins or water (control) 

followed by exposure to the demineralizing solution (n = 10 per group). Different letter 

superscripts indicate statistical difference, and same letter superscripts indicate no 

statistical difference within the same column, according to Tukey’s test (p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peptide Mean PO4 Conc. 
(mM/mm2) 

Mean Ca Conc. 
(mM/mm2) 

Ca/Po4 

Ratio 

Water 3.09 ± 0.52A 4.56 ± 0.49A 1.47 

DR9-RR14 2.01 ± 0.71B 3.13 ± 0.46B 1.55 

DR9 0.92 ± 0.28C 1.45 ± 0.13B 1.57 

Statherin 0.79 ± 0.21C 1.17 ± 0.31B,C 1.48 

Histatin 1 1.81 ± 0.22B 2.83 ± 0.17B,C 1.56 

DR9-DR9 0. 44 ± 0.18D 0.63 ± 0.16D 1.44 
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In order to evaluate the antimicrobial activity of these new constructed peptides, 

Candida albicans killing assay was performed. IC50 was calculated for all tested peptides 

(Figure 3-1). Histatin 3 and its functional domain (RR14) reached IC50 values of 5.4 and 

49.0 µM respectively. Statherin constructed peptides DR9 did not reach IC50 value while 

DR9-DR9 reached at 200 µM. Interestingly, DR9-RR14, reached IC50 at 117 µM, 

demonstrating a significant antimicrobial activity.  
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Figure 3-1: Candida albicans killing Assay of newly constructed peptides and 

histatin3. 

A) DR9, B) DR9-DR9, C) DR9-RR14, D) RR14 and E) histatin 3. The inset Table 

indicates  the IC50 values. 
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3.4 Discussion 

Our group has demonstrated that a single functional domain represented by a 14 

amino acid residue (RR14) located within the middle portion of histatin 3 keeps higher 

antifungal activity (Xu, T et al. 1991). Moreover, the multiplication of this functional 

domain, that in theory anticipate the effects of evolutionary trends and improve 

functional properties, demonstrated a significantly higher antifungal protection, 

suggesting a synergistic effect upon active domain multiplication (Oppenheim, FG et al. 

2012). In analogy, we hypothesized that recently identified and characterized AEP 

phosphorylated statherin peptide, when duplicated may show increased biological 

function property on the enamel surface. The significance of generating novel constructs 

with increased adhesion to enamel is to increase the degree of substantivity that is related 

to the rate of clearance of a biologically active molecule from its site of action. It is also 

well known that salivary molecules that are more retentive to oral surfaces have a lower 

rate of proteolytic degradation (Gibbons, RJ et al. 1988; McDonald, EE et al. 2011). 

Apart from domain duplication, another potentially useful approach to generate 

functionally improved pellicle constructs is the preparation of hybrid molecules. While 

functional domain repeats are designed to augment a single functional characteristic, the 

combination of two different functional entities can lead to constructs with multiple 

functions. The hybrid approach is particularly promising for pellicle components, since 

some AEP peptides show a high affinity for HA whereas other AEP peptides have 

different functions such as antimicrobial properties (Siqueira, W et al. 2012; 

Vukosavljevic, D et al. 2011). Examples of such synthetic bi-functional constructs in the 
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protein field are cystatin-histatin (Bobek, LA et al. 1993) and statherin-osteopontin (Raj, 

PA et al. 1990) chimeras.  

 Thus, this study has pioneered in functionally characterizing the AEP’s 

constructed peptide based on in vivo natural proteins/peptides identified by proteomics 

technology (Siqueira, W and Oppenheim, FG et al. 2009). DR9, a natural functional 

domain of statherin, was duplicated and/or incorporated to RR14, a functional domain of 

histatin 3. Our in vitro results showed that all constructed peptides have the potential to 

provide some level of protection against acid injury. Interestingly, a significant functional 

difference was observed when statherin or its single domain (DR9) was compared to its 

sibling-duplicated domain (DR9-DR9). The duplication of statherin functional domain 

resulted in a reduction of more than 50% of mineral loss, when compared with statherin 

or DR9 groups.  We can speculate that this difference is based on the number of 

phosphorylated sites, where DR9 or statherin are phosphorylated in the amino acid 

residues 2 and 3; DR9-DR9 is phosphorylated in the amino acid residues 2, 3, 10 and 11. 

As observed before, the presence or the number of phosphorylation sites can significantly 

affect the adsorption to the hydroxyapatite and the process of enamel demineralization 

protection or calcium phosphate crystal growth inhibition (Hunter, GK et al. 2009; 

Hunter, GK et al. 2013; Siqueira, W et al. 2010). In addition to phosphorylated sites; 

DR9-DR9 has the lowest pI when compared to statherin and DR9 in pH 6.8, the 

physiological salivary pH. This biochemical characteristic can facilitate the adsorption on 

the enamel surface of this peptide (Moreno, EC et al. 1982). It was evident that 

multiplying the N-terminal functional domain of statherin (DR9-DR9) is evolutionarily 
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advantageous in promoting dental homeostasis, and it is expected that further studies on 

peptides of interest will continue to uncover novel peptides for clinical exploitation.  

 As expected, RR14 showed a significant antimicrobial property compared to DR9 

or DR9-DR9. More importantly, our hybrid peptide, DR9-RR14, demonstrated to retain 

antimicrobial activity, despite 50% less active than RR14. This result confirms that the 

combination of functional domains of salivary proteins could be part of the evolutionary 

pathway and artificially development of these peptides can provide a promising new 

methodology for enhancing prevention/treatment of oral diseases. Based on the limitation 

of this study, it should be mentioned that the protective/antimicrobial behavior of 

individual peptides might be different compared to their activity in the presence of other 

peptides or proteins, as the case of in vivo formed AEP. For instance, some studies have 

revealed differences in the adsorption behavior of histatins in the presence of other 

proteins (Yin, A et al. 2006). Some other research has shown that casein and mucin, 

when mixed, were able to increase the erosion-inhibiting properties of the pellicle 

(Cheaib, Z and Lussi, A et al. 2011). No studies have as yet been carried out to address 

the functional effect of those newly constructed peptides in such multi-component protein 

films with the incorporation of other constructed peptides or histatin 1 or statherin. 

However, a single-component functional exploration represents the first step in gaining 

insights into the possible role of these peptides in enamel protection as well as 

antimicrobial/biofilm modulation. Knowledge obtained here may provide a basis for the 

development of stable (proteinase-resistant) synthetic peptides for therapeutic use against 

dental caries, dental erosion and/or oral candidiasis.  
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4 The effect of pH on killing properties of chitosan 
nanoparticles against Candida albicans 

4.1 Introduction 

Candida albicans plays an important role in the pathogenesis of oral candidiasis 

and denture stomatitis. It comprises about 80% of all isolated microorganisms from these 

types of oral lesions (Martinez, RF et al. 2013 and Pereira, CA et al. 2013). Although, 

Candida albicans is abundantly present in the normal flora of the oral cavity, the 

imbalance between host and fungus can lead to the initiation of oral candidiasis. This 

imbalance can be resulted from several factors, including diminished salivary flow, 

immune defects, smoking and poor oral hygiene (Pinelli, LAP et al. 2013). Oral Candida 

infection can be treated by several commercial antifungal agents such as amphotericin B, 

nystatin, miconazole, itraconazole, clotrimazole and ketoconazole. However, multiple 

adverse side effects, including bitter taste, allergic reactions, host toxicity, interruption 

with cellular function and drug interactions are associated with the application of these 

drugs despite their efficacy (Amanlou, M et al. 2006; Bakhshi, M et al. 2012 and 

Donnelly, RF et al. 2008). Furthermore, Candida albicans is capable of reducing drug 

accumulation by the expression of efflux pump and therefore resisting to antifungal 

agents (Sanglard, D et al. 2002). Hence, many studies have focused on the development 

of natural products to treat oral candidiasis and overcome the weaknesses of these 

commercial antifungal drugs.  

Chitosan is a linear amino-polysaccharide with mucoadhesive properties, which 

consists of two monosaccharides, GlcNAc (N-Acetyl glucosamine) and D-glucosamine 
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(GlcN) combined with glycosidic linkages (Sundar, S et al. 2010). Chitosan is an 

deacetylated form of chitin, which is mostly extracted from crab and shrimp offals. The 

deacetylation is achieved by boiling chitin at 80-140 °C in concentrated alkali such as 

sodium hydroxide or potassium hydroxide (30–60% w/v) for up to 10 hours (Kumar, 

MNV et al. 2000 and Rabea, EI et al. 2003). This amino-polysaccharide possesses several 

characteristics, including biodegradability, biocompatibility and low toxicity, which 

make it an effective and suitable tool in many different medical applications, mainly 

based on its antimicrobial and antifungal properties (Rinaudo, M et al. 2006 and Rabea, 

EI et al. 2003). Several mechanisms have been proposed to explain how chitosan 

functions as an antimicrobial agent. These proposed mechanisms include altering cell 

permeability by interacting with the membrane of the bacterial cell, inhibition of the 

production of toxin and inhibition of mRNA synthesis and various enzyme activities 

crucial for bacterial survival (Sudarshan, NR et al. 1992; Cuero, RG et al 1991; Seo, HJ 

et al. 1992 and Chen, CS et al. 1998). However, the exact mechanisms by which chitosan 

serve its antimicrobial activity remains to be elucidated. In addition, Chitosan is dissolved 

in water at acidic pHs since the amino groups can be protonated, enabling the positively 

charged chitosan molecules interact with the negative charges of the cell surface. 

However, since chitosan is insoluble in water at neutral and basic pHs that limits its 

antimicrobial activity at neutral and basic pHs (Agnihotri, SA et al. 2004). 

Due to mentioned pH-sensitive behavior, chitosan, in the form of nano- or 

microparticles, can be used to encapsulate and deliver proteins and/or peptides as well as 

different drugs. Different approaches have been taken to create chitosan nanoparticles 

such as emulsion crosslinking, ionic gelation, emulsion-solvent extraction, emulsion-
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droplet coalescence and emulsification solvent diffusion. Chitosan nanoparticles used in 

this study were constructed by the ionic gelation method and with the employment of 

tripolyphosphate (TPP) as a cross-linker. In this report, we evaluate the antifungal 

activity of chitosan particles. We also include different initial concentrations of chitosan 

in the gelation process of constructing particles and its impact on the resulted particle’s 

antifungal activity. Finally, the antifungal effect of chitosan nanoparticles is compared at 

different pHs.   

4.2 Material and methods 

4.2.1 Chitosan nanoparticles’ construction 

Chitosan nanoparticles were constructed using an ionic gelation method. In 

summary, chitosan dissolved in 1.75% acetic acid and 0.5% Tween-80, is subject to 

adding 0.84 mg/ml TPP solution, drop by drop in ratio of 1:4. The mix will be then 

stirring continuously, overnight, at room temperature. In this process, TPP behaves as a 

cross-linker in between the chitosan molecules. The result of this interaction will be 

chitosan nanoparticles with small pores on the surface. For the purpose of this study, 

chitosan nanoparticles were made with different initial concentration of chitosan in the 

solution of constructing particles. 0.05%, 0.25%, 0.5% and 1% were the initial 

concentrations of chitosan, used in this study to produce chitosan nanoparticles. The size 

and surface charge of the chitosan nanoparticles were measured, ≈ 10 nm and +30 to +35 

using Zeta sizer nano and Zeta potential analyzer (Brookhaven instruments crop.) 

instruments respectively. Chitosan nanoparticles were harvested by centrifugation at 

16000 g for 30 minutes and then were dried and stored for the following experiments. 
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4.2.2 Candida albicans killing assay 

The Candida albicans strain used in this study was ATCC90028. Yeast cells were 

precultured on the Sabouraud Dextrose Agar (SDA) media plates for 48 hours, at 37o C. 

The SDA powder medium (Catalog number 210950) was purchased from BD Company. 

Less than one week old, Candida albicans colonies were picked from SDA plates and 

suspended in 5 mM potassium phosphate buffer, pH 7.0, to a final OD of ≈ 0.3 at the 

wavelength of 620 nm.  In addition, a serial dilution of chitosan/chitosan nanoparticles 

was made in a 96-well polypropylene microtitre plate, starting from 2 mg/ml. 50 ul of the 

yeast suspension made in the previous step, was added to 50 ul of serial dilution series of 

chitosan/chitosan nanoparticles in the microplate wells. After mixing the cells with the 

chitosan solution, the plate was incubated for 1.5 hours at 37oC.  

4.2.3 Evaluation of cell viability  

After the incubation time, 50 ul of the solution, from selected concentrations, was 

diluted in 9 ml of phosphate-buffered saline, pH 7.0 and 25 ul of the diluted suspension 

was then plated on SDA plates, after 48 hours incubation at 30oC, number of colonies on 

each plate was counted and compared to the number of colonies on the control plate that 

was incubated without chitosan (nanoparticles). 

4.2.4 Chitosan nanoparticles suspension  

In order to make chitosan nanoparticle suspensions for the killing assay, dried 

chitosan nanoparticles were measured by weight and added to the buffer required for the 

experiment. 5 mM potassium phosphate buffer was used for pH 7.0 and acetate buffers 

were used for pH 4.0, 5.0 and 6.0. In order to maximize the suspension of chitosan 

nanoparticles into the buffers, 5 minute sonication was used.  
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4.3 Results 

4.3.1 Chitosan nanoparticles possess a more effective antifungal 
activity compared to plain chitosan 

The killing assay was performed for plain chitosan and chitosan nanoparticles in 5 

mM potassium phosphate buffer pH 7.0, for Candida albicans. The percentage of cell 

viability in different concentrations of chitosan and chitosan nanoparticles was calculated 

compared to the control (Figure 4-1). As shown in Figure 4-1, chitosan nanoparticles was 

able to kill 100% of the cells in a concentration 4 times less (500 ug/ml) than the 

concentration (2000 ug/ml) that is required for chitosan (non-nanoparticle) to kill 100% 

of the cells. Furthermore, IC50, the concentration in which an antimicrobial agent can kill 

50% of the cells, was calculated for non-nanoparticle chitosan and chitosan nanoparticles. 

Table 4-1 shows the IC50 values, where again chitosan nanoparticles exhibit a killing 

efficiency four times more effective when compared to non-nanoparticle chitosan.   
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Figure 4-1: Killing effect of chitosan nanoparticles and non-nanoparticle chitosan 

against Candida albicans. 

Candida albicans cells were incubated with different concentrations of chitosan/chitosan 
nanoparticles for 1.5 hours and the viability of the cells were compared to the controls by 
plating them on the SDA plates and comparing the number of colonies after 48 hours. 
Graph A and B represents the results for non-nanoparticle chitosan and chitosan 
nanoparticles respectively. Both experiments were done in duplicate and the graphs show 
the average. 
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4.3.2 The Killing effect of chitosan nanoparticles made with 
different initial concentrations of chitosan proved to be 
significantly different 

Chitosan nanoparticles were constructed with ionic gelation method initiating 

with different chitosan concentrations in the solution. The Killing effect of constructed 

nanoparticles was examined against Candida albicans in 5 mM potassium phosphate 

buffer pH 7.0. The percentage of cell viability compared to the controls was plotted 

against concentration for each group of nanoparticles (Figure 4-2). This experiment was 

performed to investigate whether the initial concentration of chitosan used in construction 

of nanoparticles can affect the antifungal activity of resulted nanoparticles against 

Candida albicans. As shown in Figure 4-2, chitosan nanoparticles showed a more 

effective antifungal activity when a higher initial concentration of chitosan was used to 

construct nanoparticles. This can be explained by the fact that chitosan nanoparticles 

made with 1 or 0.5% of initial chitosan concentration required 4 times less concentrations 

to kill 100% of the cells compared to the nanoparticles initiated in 0.25 and 0.05% 

chitosan. 
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Figure 4-2: Killing effect of chitosan nanoparticles made with different initial 

chitosan concentrations. 

Candida albicans cells were incubated with different concentrations of non-nanoparticles 
chitosan/chitosan nanoparticles for 1.5 hours and the viability of the cells were compared 
to the controls by plating them on the SDA plates and comparing the number of colonies 
after 48 hours. A) 1% chitosan, B) 0.5% chitosan, C) 0.25% chitosan and D) 0.05% 
chitosan; each experiment was performed in duplicate for three times. Error bars are 
based on the standard deviations of replicates. 
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4.3.3 Chitosan nanoparticles show a most efficient killing effect in 
pH 4 

Since chitosan nanoparticles constructed with the initial concentration of 0.5% 

and 1% showed the highest killing effects among other constructed nanoparticles and to 

control the viscosity of chitosan solution, we chose 0.5% chitosan solution for future 

nanoparticle construction. We further investigated the antifungal activity of these 

nanoparticles in different pHs. To do this, the killing assay was performed in acetate 

buffer pH4.0, 5.0, 6.0 and 5 mM potassium phosphate buffer pH 7.0. Then, the 

percentage of cell viability compared to the control was plotted against the concentration 

of chitosan nanoparticles (Figure 4-3).  

As shown in Figure 4-3, chitosan nanoparticles represent a higher antifungal 

activity in acidic pHs since chitosan nanoparticles require to be two and four times more 

concentrated in pH 5.0 and 6.0 compared to pH 4 respectively in order to kill 100% of 

cells. Furthermore, the comparison of the IC50 of chitosan nanoparticles in different pHs 

confirms that chitosan nanoparticles show the most effective antifungal activity at pH 4, 

with the IC50 of 39 ug/ml. 
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Figure 4-3: Killing effect of chitosan nanoparticles in different pHs. 

All the killing assays were performed the same as previous ones, except for the buffers, in 
which Candida albicans cells were exposed to the chitosan nanoparticles. A) pH=4, B) pH=5, 
C) pH=6 and D) pH=7. (For all the acidic pHs, acetate buffer with different pHs were used). 
Each experiment was performed in duplicate for three times. Error bars are based on the 
standard deviations of replicates. 
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Table 4-1: IC50 of different groups against Candida albicans. 

 

Group IC50 (ug/ml) 

Plain chitosan 875 

Chitosan nanoparticles (1% initial chitosan) 200 

Chitosan nanoparticles (0.5% initial chitosan) 234 

Chitosan nanoparticles (0.25% initial chitosan) 438 

Chitosan nanoparticles (0.05% initial chitosan) 167 

Chitosan nanoparticles (in pH 7) 244 

Chitosan nanoparticles (in pH 6) 750 

Chitosan nanoparticles (in pH 5) 109 

Chitosan nanoparticles (in pH 4) 39 
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4.4 Discussion 

Oral candidiasis is an oral condition that is getting more difficult to treat due to 

the Candida albicans’ resistance to the available antimicrobial agents. Studies to develop 

a new treatment system for this disease are challenging and ongoing. Our findings 

propose a novel antimicrobial agent for oral candidiasis. These chitosan nanoparticles are 

novel for this purpose, in the sense that they can be used as a carrier for other drugs and 

have an efficient synergic effect along with the main drug. The ability of these 

nanoparticles to serve their most effective antifungal function in both pHs 4 and 7, makes 

them even more promising, since these two pHs are the most common pHs in the oral 

cavity. The normal pH of saliva is around 6.8 but following ingesting fermentable 

carbohydrates the pH of the oral cavity will drop quickly due to the bacteria acid 

production. Besides, this pH drop is more extreme in individuals with poor oral health. 

However, the buffering nature of saliva will return the pH to the normal pH quite fast 

(Stephen, RM et al. 1940 and 1944). Furthermore, chitosan nanoparticles showed a better 

effect in acidic pH, which is a crucial pH in the oral environment, since the acid will 

predispose the demineralization of tooth enamel. Moreover, nano-scale size of these 

particles enables them to penetrate into the biofilm and diminish the organisms both from 

inside as well as outside of the biofilm. The Polysaccharide nature of chitosan will also 

assist in particle penetration into the biofilm. 

Nano/micro particles have recently drawn significant attention as drug delivery 

carriers, since they can be targeted directly to the intended tissue, which will reduce the 

side effects and increase the lifetime of the drug. With nano/micro particles’ application, 

drug release could be activated by chemical or physical factors such as temperature, pH, 
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ionic strength, biological factors’ concentration, and etc. Thus, stimuli dependent 

particles are promising drug carriers, since they can only respond to a condition which 

confirms the pathogenic state in which the specific drug should be released.  

Chitosan particles exhibit a pH-sensitive property because of the large number of 

amino groups in the chitosan chain. The optimum pH for a drug encapsulated inside 

chitosan particles to be released is pH 4-5 (Aydin RST et al. 2012). This feature of 

chitosan particles is extremely important for oral application, since most of the oral 

complications such as dental caries and dental erosion initiate in acidic conditions in the 

oral cavity. This study took the first steps of developing a new therapeutic/preventive 

drug application in the oral cavity. Penetration of these nanoparticles into the biofilm and 

controlled release of the encapsulated drug when necessary is an outstanding 

phenomenon, which if happens can revolutionize the future of dental care and treatment.  
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5 Conclusion and discussion 

5.1 General rationale and conclusion 

Inefficiency in oral health could be a major threat to an individual’s overall 

health, since insufficient oral care can contribute to the severe health complications, such 

as stroke, diabetes development, cardiovascular disease, atherosclerosis, adverse 

pregnancy and many more extreme consequences (Scannapieco, FA et al. 2003). 

Because of the increase in prevalence of oral problems and resistance of different 

bacteria/fungi present in the oral cavity to the current treatments, novel methods of 

treatment or preventive mechanisms are demanding (Truin, GJ et al. 2005 and Tsai, H. et 

al. 1997). For example, oral antifungal drugs such as azoles are applied for the treatment 

of Candida albicans infections; however, this method of treatment is becoming very 

limited due to the ongoing organism resistance to these agents. This case has reached the 

point that nowadays only a limited number of available antifungal agents such as 

fluconazole, itraconazole, amphotericin B and a few more, could be registered for this 

purpose (Carrillo-Munoz, AJ et al. 2006). In addition to organism resistance, continuous 

use of chemical products will create unpreventable and unwanted side effects that could 

become more hazardous in special cases. In the case of oral infections, such as 

Candidiasis, an idealistic antifungal/antimicrobial agent would be the one with a broad-

spectrum efficacy and no toxicity to the host (Ito, CY et al. 2004). The idea of using 

natural materials to treat patients has always been a more promising and safe method to 

address most of the problems that we are facing with currently available chemical 
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products (Cruz, MC et al. 2007; Rojas, JJ et al. 2006 and Holetz, FB et al. 2002). 

More than 2000 different proteins were detected in human saliva, each serving 

different functions and properties. Among all the salivary proteins, 130 of them appeared 

to be part of AEP (Siqueira, W et al. 2007). AEP is an organic layer; formed on the 

tooth's surface that has precursors from different origins, such as saliva, bacterial 

products, oral mucosa and gingival crevicular fluid (Siqueira, W et al. 2007 and Siqueira, 

W et al. 2012). AEP serves a strategic role in the oral cavity by neutralizing the acid 

products of bacterial metabolism, governing the types of early colonizers on the tooth 

surface and monitoring the demineralization and remineralization of the enamel (Hara 

and Zero, et al. 2010; Siqueira, W et al. 2010; Siqueira, W et al. 2012; Zahradnik and 

Moreno, et al. 1977; Chaudhuri, B et al. 2007; Gibbons and Hay, et al. 1989; Li, J et al. 

2004). Therefore, AEP and its composition are a crucial element in preserving the oral 

health and it is hypothesized that altering its composition could shift the physical and 

chemical reactions, which will eventually lead to an irreversible dental condition, such as 

tooth decay. 

There are salivary proteins that provide natural antimicrobial/antifungal properties 

against certain microorganisms in the oral cavity to keep the biological balance between 

the beneficial and virulence organisms in the oral environment (Tenovuo, J et al. 1989). 

Most of which, are evolutionary occurred proteins present in different animal species as 

part of the innate immune system (Hoffmann, JA et al. 1999). These natural antimicrobial 

proteins usually have wide activity spectra against different bacteria, fungi or viruses. 

Antimicrobial/antifungal salivary proteins have a small cationic region in common, 

within their structure, which could provide the killing effect of the protein on target 
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organisms.  

Histatins are a family of salivary proteins with antimicrobial activity. These 

proteins are all products of 2 gene loci; therefore, all of them possess a common cationic 

region, which seems to be the functional domain of the protein (Azen, EA et al. 1973 and 

Sabatini, LM et al. 1989). Histatins vanish immediately after secretion into the oral cavity 

because of degradation; despite the resulted fragments appear to sustain the activity, 

while carrying the functional portion of the original protein (Castagnola, M et al. 2004; 

Groot, F et al. 2006). 

Some other saliva components inhibit the calcium and phosphate precipitation in 

the oral cavity, which is a very essential feature of saliva to keep the oral fluid 

supersaturated from these minerals that will aid the remineralization of the teeth enamel, 

when it is required (Gron, P et al. 1976). These members of saliva are usually the proteins 

that are selectively adsorbed onto the enamel surface and therefore, seem to be AEP 

precursors (Hay, DI et al. 1973). Examples of such proteins are proline-rich proteins and 

a small tyrosine-rich acidic protein called Statherin (Oppenheim, FG et al. 1971; Hay, DI 

et al. 1974; Hay, DI et al. 1973).  

Recently, several studies revealed high susceptibility of functional salivary 

proteins, including histatins and statherin, to the oral proteases and/or bacterial enzymes 

presented in the oral cavity. Although some of the fractions could remain functional after 

the cleavage to some point, this immediate degradation causes remarkable decrease in the 

overall function (Helmerhorst, EJ et al. 2006; Siqueira, W et al. 2010; 2007b; Siqueira, 

W et al. 2009; McDonald, EE et al. 2011; Castagnola, M et al. 2004; Groot, F et al. 
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2006). Meaning that, if feasible to keep those proteins active in the same scale as they are 

produced by salivary glands, this could be employed as a natural promising therapeutic 

method in the dentistry field. To evaluate this hypothesis, this study has pioneered a 

method of encapsulation for synthetic salivary peptides/proteins to be beneficial for the 

oral application.  

Recently, our group, taking advantage of novel proteomics techniques, has 

detected a small peptide consisting of only 9 amino acids termed as DR9, in the AEP 

composition (Siqueira and Oppenheim, et al. 2009). This peptide appeared to be the N-

terminal part of statherin, which is believed to be its functional domain (Long, JR et al. 

1998; Raj, PA et al. 1992). DR9 peptide naturally occurred in the oral cavity and 

exhibited the same affinity to the HA and functionality as the original protein, statherin 

(Xiao, Y et al. 2010). Inspired by this naturally existed peptide in AEP composition, the 

idea of analyzing other salivary proteins’ functional domain and accelerating the 

evolution pathway by combining them together or duplicating them, came to our mind. 

Eventually, from the data collected in this study, we confirmed that only the 

functional domain could carry the biological function of tested salivary proteins of 

interest. Also, evolutionary new generation proteins could be constructed artificially by 

combining different protein functional domains and/or duplicating protein functional 

domains. This idea was inspired by the fact that ordinarily, proteins over the track of 

evolution misplace the portions of their sequences that are not essential for their function 

and replicate the functional portions instead, therefore saving energy and improving their 

functional capacity (Oppenheim FG et al. 2012; Troxler, RF et al. 1997). Hence, this 

could be the evolutionary pathway that these salivary proteins might take after millions of 
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years, which could be induced artificially by synthetic methods and in this way, we could 

benefit from the result of evolution millions of years ahead of the time that it would 

naturally occur. 

A method of oral application for proteins was also investigated in this study, 

which proved to be likely, even though we took only the first steps and there are lots of 

limitations yet to be addressed.  

Recently, chitosan, a cationic polysaccharide, has attracted vast attention from the 

pharmaceutical fields due to its preferential biological properties to deliver different 

active drugs or proteins to the side of action (Kumar, MNV et al. 2000; Rabea, EI et al. 

2003). Chitosan micro/nanoparticles have drawn significant attention recently, since not 

only they have all the critical features of a drug delivery agent, including nontoxicity, 

biodegradability and being physically inducible, but also, they have bonus antimicrobial, 

antifungal and wound healing properties, which could be highly beneficial for the dental 

application (Rinaudo, M et al. 2006; Rabea, EI et al. 2003). Moreover, chitosan 

nanoparticles have a pH sensitive behavior, in terms of the size of pores on their surface, 

which makes them more favorable for the oral application. Since they could only release 

the proteins/peptides when the pH drops to the acidic point, which is accounted as a red 

flag in the oral cavity since at the acidic point heavy demineralization assault on the teeth 

tissue initiates.  

Another approving property of chitosan nanoparticles for this application is the 

extremely small size of the nanoparticles, because of which, it is hypothesized that they 

could penetrate into the micro-scale pores in between the biofilm components. This 
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penetration will make the nanoparticles part of the biofilm and the protein/peptide release 

from nanoparticles will diminish the biofilm from the inside when the pH drops to the 

acidic point, which is the point that the damage to the teeth tissue upraises. Particles’ 

penetration into the biofilm is highly critical in dentistry because they will be able to 

reach to the part of the biofilm, which is inaccessible by brushing and other manual types 

of cleaning. These dental biofilms are also highly resistant to antimicrobial products 

compared to the individual microorganisms, which is because of the exopolysaccharide 

matrix produced by microorganisms (Costerton, JW et al. 1995). This compact structure 

of the biofilms makes them resistant to the host immune system as well, causing them to 

be very challenging to control and eliminate (Lewis, K. et al. 2001).  

5.2 Final Conclusion 

• Only the functional domain of statherin and histatin, termed as DR9 and RR14 

respectively, showed some level of the original protein’s activity. 

• Combination/duplication of salivary protein functional domains could 

increase/combine their activity. 

• Chitosan nanoparticles constructed by the ionic geletion method, exhibited a 

higher antifungal activity compared to the non-nanoparticle chitosan and also they 

presented the most efficient activity when higher concentrations of chitosan was 

used to construct the nanoparticles. 

• Chitosan nanoparticles exhibited the highest antimicrobial activity in pH 4, which 

is the critical pH in the oral cavity, at which several dental complications initiate, 

followed by neutral pH which is the normal pH of the oral cavity. 
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5.3 Challenges and limitations 

Similar to any other project, presented one has several limitations to be addressed. 

One of the major concerns about this project is that since more than 1000 different 

microorganisms coexist in the human oral cavity (Paster, BJ et al. 2006 and Zaura, E et 

al. 2009), and chitosan nanoparticles might have different effects, in terms of toxicity, 

towards them, this could interrupt the natural balance in between the oral microbiota. 

Moreover, the polysaccharide nature of chitosan might make it consumable for some 

bacteria, which could massively increase their quantity and proportion in the biofilm, 

whether the bacteria is an acute virulence or a beneficial normal flora. One approach for 

this challenge could be investigating the effect of chitosan nanoparticles on all the critical 

microorganisms presented in the oral microbiota as well as performing multispecies 

assays to evaluate the effect of chitosan nanoparticles on the multispecies communities, 

which is mimic to the biofilm condition. This way, there will be the possibility to 

investigate how different microorganisms will react when exposed to chitosan both 

individually and in a biofilm format and therefore, if there could be any other approach to 

make the method more feasible. 

5.4 Future directions 

This could be a novel method in dentistry if a therapy for different oral 

pathologies could be designed using natural salivary proteins or peptides. Although 

acquiring a detailed understanding of protein/peptide encapsulation and release into/from 

chitosan nanoparticles, in different physical conditions, such as different pHs, will be 

essential to move the project forward. Saliva pH can vary from 3 to 6.8 in different 

conditions; therefore protein/peptide release from the chitosan nanoparticles should be 
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examined in buffers with this pH range as well as in saliva itself. In addition, the effect of 

these particles loaded with the proteins should be investigated in single or multispecies 

biofilms in different conditions. This will give us an understanding of how the whole 

biofilm will react to chitosan nanoparticles rather than only a single microorganism. 

Finally, it has to be tested in vivo in a rat model before being able to move it to the 

clinical trial. 
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