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Abstract

Mobile genetic elements (MGEs) are ubiquitous among prokaryotes, and have im-

portant implications to many areas, such as the evolution of certain genes, bioengi-

neering and the spread of antibiotic resistance. In order to understand the complex

dynamics of MGEs, mathematical models are often used. One model that has been

used to describe the dynamics of mobile promoters (a class of MGEs) is the birth-

death-diversification model. This model is unique in that it allows MGEs to diversify

to create new families. In this thesis, I analyze the dynamics of this model; in par-

ticular, I examine equilibrium distributions, extinction probabilities and mean time

until extinction for MGE lineages. I find that diversification indirectly increases MGE

propagation through increased horizontal gene transfer rates; therefore, diversifica-

tion increases population growth rates and decreases extinction probability. Overall,

this work indicates that diversification of elements should be considered in order to

fully understand the dynamics of MGEs in prokaryotes.

Keywords: mobile genetic elements, markov chains, mobile promoters, extinction

probability, extinction times
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Chapter 1

Introduction

1.1 Mobile Genetic Elements

Mobile genetic elements (MGEs) are segments of the genome that are involved with

the movement of DNA, and are universally present in both eukaryotes and prokary-

otes [21]. Movement of DNA can either be intracellular (within a cell), or intercellular

(between cells). Prokaryotes have three main mechanisms for obtaining DNA intercel-

lularly: transformation, transduction and conjugation. Collectively, these processes of

exchanging genes between organisms are known as horizontal gene transfer (HGT).

Transformation is when a cell acquires DNA from its surroundings, and is often a

side-effect of nutrient uptake. The other two mechanisms involve bacteriophages and

plasmids respectively, and will be discussed in greater detail in later sections.

The dynamics of MGEs have important implications for evolution and also have

applications in other areas such as the spread of antibiotic resistance [18]. Addition-

ally, MGEs known as transposable elements (TEs) can be used in a laboratory setting;

for instance TEs can be used to help determine the function of DNA sequences [5] or

in recombinant DNA techniques [33]. Furthermore, transposable elements may have

been crucial in the evolution of specific genes, such as telomerase [39] and RAG genes

[1]. Finally, MGEs have been linked to numerous diseases, including: hemophilia [56],

colon cancer [42], breast cancer [37], and muscular dystrophy [28].

1
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MGEs can be categorized into four classes: transposons, plasmids, bacteriophages

and self-splicing molecular parasites [53].

1.1.1 Transposons

Intracellular movement in DNA is often caused by transposable elements (TEs). Re-

ferred to as “jumping genes”, TEs can be divided into three classes: insertion sequence

elements (ISs), Class 1 transposable elements and Class 2 transposable elements.

Class 1 transposable elements are present only in eukaryotes, while Class 2 elements

and ISs are present in both prokaryotes and eukaryotes.

ISs are the simplest of these three classes, as they only encode for genes which

mediate their own movement. This is in contrast to Class 1 and 2 elements which

also carry accessory genes. Generally, ISs consist of a transposase gene that is flanked

by inverted repeat sequences. Although ISs do not contain accessory genes, they

can cause the movement of other genes through a phenomenon known as composite

transposition. In this process, two nearby ISs transpose together, along with the

genetic material that lies between them.

As mentioned previously, Class 1 and 2 transposable elements also contain acces-

sory genes. Class 1 transposable elements, retrotransposons, create an RNA copy of

themselves, and then use this RNA intermediate to insert a DNA copy somewhere

else in the genome. On the other hand, Class 2 transposable elements, DNA trans-

posons, are excised from their current location and then inserted elsewhere using

transposase. These two mechanisms are called “copy and paste” and “cut and paste”

methods respectively [34]. Insertion sequences are more similar to DNA transposons,

and generally use a “cut and paste” method as well.

It should be noted that although some TEs act by a “cut and paste” mechanism,

transposition can still cause increased copy numbers of the transposable element.

In diploid cells, this is because the excised site can be restored using homologous
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recombination [17, 20]. Duplication can also happen if transposition occurs during

certain phases of the cell cycle; for instance, if a segment of the genome transposes

from a replicated portion of the genome to a region that has not yet been duplicated

it will result in an extra copy of the transposon [12].

Overall, transposons cause most of the intracellular genetic movement in prokary-

otes. Additionally, these genetic elements are able to transfer to plasmids, or become

incorporated in bacteriophages. Hence, they are also involved in intercellular move-

ment.

1.1.2 Plasmids

Plasmids are self-replicating pieces of DNA, that are usually circular and double

stranded. Plasmids can be transferred intercellularly using a process called conjuga-

tion. In this process, the donor cell forms a pillus that connects to the recipient cell,

and then plasmids are passed from the donor to the recipient. Bacterial cells often

use this method to transfer antibiotic resistance genes to each other [18].

1.1.3 Bacteriophages

Bacteriophages are viruses that infect bacterial cells. They inject their DNA into the

host cell, and begin to make copies of themselves. Sometimes, the phage accidentally

incorporates host DNA into one of its capsids, and this new phage will consequentially

transfer bacterial DNA to a new host. This phenomenon is termed transduction.

1.1.4 Self-splicing Molecular Parasites

Finally, we will briefly mention self-splicing molecular parasites. This category of

MGEs describes genetic elements that are able to splice themselves into the genome

without the aid of another enzyme (e.g. transposase). This category includes such
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elements as Group I and II introns and inteins.

1.2 Regulatory Elements as Mobile Genetic Ele-

ments

A more recent topic in mobile genetics is the role of regulatory elements as MGEs.

Traditionally, HGT is thought of as the movement of genes between organisms. How-

ever, there is evidence that non-coding regions of the genome can also be transferred

through HGT [35, 49]. It is possible that cells can use this mechanism to transfer

regulatory regions of DNA, and thus alter gene expression. This is known as tran-

scriptional rewiring.

1.2.1 Transcriptional Rewiring

Gene expression involves reading DNA and using it to create a gene product, such as

a protein. The first step in this process is gene transcription, in which a cell’s DNA

is converted into RNA. Next, RNA is translated into protein molecules, which are

involved in cell functions. A region of DNA called the promoter is the signal for the

initiation of transcription.

Promoters often have specific characteristics that allow the initiation of transcrip-

tion; for instance, in essential “housekeeping” genes in Escherichia coli approximately

10 base pairs (bps) before the start of the gene is the sequence “TATAAT”, and then

around -35 bps upstream is the sequence “TTGACA”. On average, these sequences

are 17 bps apart. This is shown in Figure 1.1.

Since promoters are needed to initiate transcription, they are crucial in gene reg-

ulation. Cells respond to their external environment by changing gene expression,

and there are many mechanisms by which cells achieve this. Transcription factors

such as repressors or activators can alter the ability of RNA to bind to a promoter;
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Figure 1.1: Diagram of a promoter. Polymerase binds to the promoter, and transcribes
the gene. The top strand is the template strand, and the bottom strand is the coding
strand. The arrow indicates the direction of transcription.

repressors bind to a region of DNA termed the operator and prevent transcription

and activators bind to a region of DNA termed enhancers and increase transcription

[36]. Transcriptional rewiring occurs when gene expression is altered through changes

in transcription factors, promoters, operators or enhancers.

There has been plenty of speculation that regulatory regions of DNA are mobile,

and this mobility is used to alter gene expression [50]. For instance, there is anecdotal

evidence that recruitment of promoters can be used to activate silenced genes [32,

55]. Additionally, Oren et. al [49] recently found that HGT of regulatory regions of

DNA is common to prokaryotes, and can indeed cause rapid transcriptional rewiring.

Therefore it is reasonable to suspect that regulatory elements can act as a class of

MGEs.

1.2.2 Mobile Promoters

One proposed class of mobile regulatory elements are mobile promoters (MPs). In a

recent study of 1362 prokaryotic genomes, more than 4000 families of putative MPs

were identified [35, 41]. To identify possible MPs, the authors looked for homologous

sequences upstream of non-homologous coding regions, in the region where promoters
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should be located. Presumably, if these sequences are the same, one explanation is

that the promoters have moved at some point in evolution. By widening the search

criteria, this dataset was increased to 40,000 promoter sequences [57].

1.3 Mathematical Models of Mobile Genetic Ele-

ments

Many models have been developed to describe the dynamics of MGEs. Authors

commonly compare the equilibrium distribution of their models to data to determine

which processes are important in MGE dynamics; the processes considered include du-

plication, excision, selection, HGT, drift, mutation and recombination. Additionally,

models have been developed to address specific questions regarding MGE dynamics,

as discussed in the sections to follow.

1.3.1 Eukaryotic Models

The focus of this thesis is the dynamics of MGEs in prokaryotic genomes. Nonetheless,

it is valuable to mention models that have been developed to describe eukaryotic

populations. Much work has been done modeling MGEs in eukaryotes [6–10, 14, 19,

22, 24, 25, 27, 29, 30, 40, 43–48, 54] (for reviews see [11, 31]).

Most of these models explore how different factors such as mutation, selection, re-

combination, gene conversion and genetic drift affect the equilibrium states of MGEs

[6, 8, 9, 22, 27, 29, 30, 43, 45, 48]. Other studies examine divergence of TE families,

to gain insight on why TE families tend to be homogeneous [7, 25, 46, 47, 54]. Addi-

tionally, many studies consider more specific evolutionary questions [10, 14, 19, 24];

for instance, it is possible that TEs were involved in sexual differentiation [14, 24].

It is also speculated that TEs may be responsible for some speciation and extinction

events [19].
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1.3.2 Prokaryotic Models

Prokaryotic MGEs are often simpler to model since prokaryotes reproduce asexually

and only possess one chromosone; therefore recombination and gene conversion be-

tween homologous chromosomes do not have to be considered. Most authors have

taken a population biology approach, and modeled the dynamics of MGEs as branch-

ing processes [2–4, 13, 15, 23, 38, 51, 57], though game theory approaches have also

been employed [58]. In their simplest form, these models allow the number of MGEs

present in a genome to grow through transposition/duplication, while growth is lim-

ited due to deletion events and/or through selection. One important factor that is

particularly important in prokaryotic models is the consideration of HGT, which has

been included in [2–4, 23, 38, 57].

Sawyer and Hartl created multiple models to describe the distribution of TEs in

prokaryotes [51]. They assumed that cells without TEs acquire them at a constant

rate, and fitness of the host is reduced as a function of TE copy number. Deletion of

TEs was ignored, since there is evidence that the rate of deletion is much lower than

the rate of transposition [16]. In further work, some of these models were applied

to data from 6 strains of ISs in E. coli [52]. Selection was incorporated by either

assuming a slower growth rate or increased death rate in cells carrying TEs. The

authors found that fitness reduces very slightly with increased copy number.

In the above work, authors assumed that MGEs either decreased the fitness of

their host, or were selectively neutral in order to determine the factors involved in

MGE dynamics. However, there is some debate as to whether MGEs are ubiquitous

among species because they somehow increase fitness of their hosts, or if they are

simply “selfish” elements, and are able to persist despite their harmful effects. This

is addressed directly in [2, 13, 38], where they explore whether it is possible for MGEs

to persist even if they are purely “selfish”. These papers model the evolution of TEs

using a branching process, and find that high de novo acquisition of TEs (either
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through mutation or HGT) can allow TEs to establish, even if they are detrimental

to their hosts’ fitness. This is also examined in [3, 4] where the authors found similar

results when the approach was applied to ISs. Additionally, these authors suggested

that ISs do not have a large effect on host fitness, and may in fact be selectively

neutral.

Prokaryotic models have also been used to address specific questions regarding

MGEs. For instance, Hartl and Sawyer examined why the presence of unrelated ISs

is correlated in E. coli, and suggested that this is because they are often transferred

together on plasmids [23]. Further, Edwards and Brookfield studied the effect of

fluctuating environments on MGE populations [15]. Additionally, Wagner used a

game theory approach to determine whether composite transposition provides an

evolutionary advantage [58]. The author considered “selfish” ISs that only transpose

themselves, and “cooperative” ISs that also transpose accessory genes. He found

that “cooperation” is not an evolutionarily stable strategy, and thus predicted that

composite transposition only exists now due to pressure from antibiotics, but will

eventually disappear.

Finally, we will mention the birth-death-diversification model [57], which is the

focus of this thesis. This model was originally developed to describe the evolution of

families of MPs, however it can be applied to other classes of MGEs, such as TEs or

ISs. A detailed description of this model can be found in Chapter 2, but its unique

feature is that it considers genetic diversification of families of MGEs. The authors

defined families to be sequences in the promoter regions that shared 80% identity over

at least 50 nucleotides. Genetic diversification is defined to have occurred when the

MP sequence is sufficiently different from the original to be considered a new family.

In this thesis we demonstrate that diversification is important to consider, because of

its indirect effect on HGT; diversification can influence the equilibrium distribution,

extinction probability, and extinction times of MGE populations.
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1.4 Markov Processes

A Markov process is a stochastic system that satisfies the Markov property. This

property simply means that the system is “memoryless”; any predictions about the

future state of the system can be made solely based on the current state. Some

of these states can be absorbing states, which means the probability of leaving the

state is zero. For biological models, absorption states often correspond to extinction.

Some properties of Markov processes that are of interest are equilibrium distributions,

absorption probabilities and mean time until absorption.

A Markov chain is a Markov process in which the object can move from one state

to another with specific probabilities. Alternatively, in a continuous-time Markov

chain, the object moves with a constant probability per unit time, which yields

exponentially-distributed waiting times. In the next section, we will illustrate how to

derive the equilibrium distribution, extinction probability and mean extinction time

for a simple continuous-time model.

1.4.1 An Example: The Classic Birth-Death Model

Consider the classic birth-death model used to model a population of size n, illustrated

in Figure 1.2. In this model, there are n members in the population, with n ≥ 0. The

system can move from state n to n + 1 with rate λn, and from n to n − 1 with rate

µn. A state n is absorbing if λn = µn = 0.

First, we will derive the equilibrium distribution for this general model, πn, which

is defined for n ≥ 0. An equilibrium distribution gives a steady-state proportion of

population sizes; when a set of populations is in this steady-state, the distribution will

not change in time. Since πn is defined as a proportion, it is required that
∑
n=0

πn = 1.

The equilibrium solution can be calculated by using the fact that at equilibrium the

rate at which individuals leave a state is equal to the rate they enter; i.e. (λn+µn)πn =
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Figure 1.2: The birth-death process. The population size increases from n to n + 1
members at rate λn, and decreases from n to n− 1 members at rate µn.

λn−1πn−1 + µn+1πn+1. Using this, it can be shown (see [26]) that the equilibrium

distribution of the birth-death process is given by:

π0 =

(
1 +

∞∑
k=1

λk−1λk−2 · · · λ0
µkµk−1 · · · µ1

)−1
πn =

λn−1λn−2 · · · λ0
µnµn−1 · · · µ1

π0 .

(1.1)

Next, consider the extinction probability of this system. In order for extinction

to be possible, n = 0 needs to be an absorbing state. Therefore, for this example we

will consider the linear birth-death process for which birth and death rates are given

by nλ and nµ respectively. Note that there is no non-zero equilibrium distribution in

this case—the population will either become extinct or grow to an infinite size.

It is straightforward to calculate the extinction probability for the linear birth-

death process. If there are nmembers in the population, a birth event will happen first

with probability
λ

µ+ λ
, and similarly a death event will happen first with probability

µ

µ+ λ
. This leads to a recurrence relation for the probability a population with n

members will go extinct, Xn:
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Xn =
λ

µ+ λ
Xn+1 +

µ

µ+ λ
Xn−1 . (1.2)

For extinction probabilities, X0 = 1. In cases where there is a non-zero survival

probability, we also have the constraint that limn→∞Xn = 0+. If no solutions exist

that satisfy these boundary conditions, the solution is simply Xn = 1 for all n, which

is clearly a solution to Equation (1.2). Therefore, the extinction probabilities are

given by:

Xn =


(µ
λ

)n
, if µ < λ

1 otherwise.

(1.3)

Finally, we will calculate the expected extinction time for the linear birth-death

process. For this, we will define Pn(t) as being the probability that a family with n

members at time 0 will be extinct before time t. In the first infinitesimal amount of

time, ∆t, there are three possibilities: there is a birth event with probability nλ∆t,

a death event with probability nµ∆t, or the population does not change size with

probability 1− n(λ+ µ)∆t. Therefore, we can express the following:

Pn(t+ ∆t) = nλ∆tPn+1(t) + nµ∆tPn−1(t) + [1− n(λ+ µ)∆t]Pn(t) . (1.4)

If we take the limit as t→ 0 this equation becomes an ordinary differential equa-

tion (ODE). Further, it is clear that P0(t) = 1 and Pn(0) = 0 for n 6= 0. Therefore,

the probability the population will be extinct before time t is summarized in the

following equations:
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dPn(t)

dt
= nλPn+1(t) + nµPn−1(t)− n(λ+ µ)Pn(t) for n > 0

P0(t) = 1

Pn(0) = 0 for n > 0.

(1.5)

From here, the cumulative distribution function (CDF) for extinction time can be

found by dividing the probability of going extinct before time t, P (t), by the overall

probability of going extinct, Xn. The probability distribution function (PDF) is the

derivative of the CDF. Then, the mean extinction time for a population of size n,

Tn, is simply the expectation value found by integrating over the product of the PDF

and time, t. This is summarized in the following equation:

Tn =
1

Xn

∫ ∞
0

t
dPn(t)

dt
dt , (1.6)

where Xn and Pn(t) are given in Equations 1.3 and 1.5 respectively.

In conclusion, for this simple example we have illustrated techniques to solve for

equilibrium distributions, extinction probabilities and extinction times. In this thesis

we will apply the same techniques to a more complicated model that describes the

dynamics of MGEs in prokaryotes.
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Chapter 2

Extinction probabilities and

stationary distributions of mobile

genetic elements in prokaryotes:

the birth-death-diversification

model

2.1 Introduction

Mobile genetic elements (MGEs) are regions of DNA that are involved with the move-

ment of genetic material within and between genomes, typically containing the ge-

netic code for a protein that mediates their own movement. These elements are

nearly universally present throughout the domains of life, but are particularly active

in prokaryotes. Consistent with the “selfish DNA” hypothesis, MGEs often reduce

the fitness of their hosts [81]. For instance, transposable elements have been linked

to hybrid dysgenesis in Drosophila [82] and to deleterious mutations in bacteria and

16



17

yeast [71]. However, they can also be beneficial to an organism, as in the case of plas-

mids conferring antibiotic resistance [66]. Due to their ubiquitousness and impact on

cellular function, MGEs are of immense importance in genetics.

The dynamics of MGEs within genomes have been previously studied using a

range of theoretical approaches. For transposable elements in eukaryotes, models

that consider factors such as mutation, recombination and drift have successfully

predicted the number of transposable element copies within a genome [63, 72], and the

relatedness between copies in a family [62, 70, 79, 84]. The effects of selective pressures

in limiting copy number have also been studied in some detail [63, 65, 67, 69, 73], as

have the complex histories of transposable element lineages within genomes [73, 74].

For MGEs in prokaryotes, both branching process and Markov chain approaches

have been used to predict the distribution of copy number within genomes ([60, 61, 68,

77, 83, 88], but also see [64, 89]). These models explicitly include a “birth” process,

duplication or transposition, which increases the number of MGE copies, as well as

a “death” term, excision or deletion, which reduces copy number. For prokaryote

lineages, horizontal gene transfer (HGT) is clearly an important process and this

is reflected in several approaches [61, 68, 88]. These techniques have allowed us to

infer, for example, the relative importance of HGT and selection in maintaining and

limiting insertion sequences in bacterial genomes [61, 68].

Mobile promoters (MPs) are a newly proposed class of MGEs [76]. The extreme

plasticity of prokaryotic genomes implies that transcriptional rewiring is of major

importance in prokaryotic evolution. New genes acquired through horizontal gene

transfer (HGT) can be silenced by the recipient cell [59], and there is anecdotal

evidence of rewiring of silent genes through the recruitment of promoters [75, 86].

Additionally, promoter sequences are highly conserved even between distantly related

species [76, 78] indicating they may have the same origin. Furthermore, a recent study

has shown that regulatory switching can occur through HGT of regulatory regions
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[80]. This lends credence to the theory that transcriptional rewiring may be achieved

through the recruitment of MPs [78].

While there is no direct evidence that a class of promoters act as MGEs, nearly

40,000 potential MPs have been identified by sequence analysis [76, 78, 88]. To de-

scribe the distribution of these MPs both within and among genomes, a mathematical

model of the dynamics of MGEs was developed. A dataset collected from all available

prokaryotic genomes [88] and statistical model selection were used to reduce the model

and determine which terms and processes were necessary to describe the distribution

of MPs in prokaryotes.

The resulting birth-death-diversification model is similar to a classical birth-death

Markov chain, but has two key differences. First, it was necessary to include the

process of genetic diversification of MGEs in order to obtain a satisfactory description

of the MP data. Diversification occurs when the sequence of an element changes

so that it is substantially different from the original sequence; if we consider an

evolutionary lineage of MGEs, with diversification a new lineage of related MGEs

branches from the original family. Since genome sequencing is continually improving

our ability to identify multiple related families of MGEs within genomes, accounting

for diversification may become increasingly important in describing MGE dynamics.

Second, model selection concluded that all rate terms were best described by linear

processes, except HGT, which was best fit at a constant rate. In other words, the

probability that a MGE is transfered to a new genome by HGT does not increase

linearly with the number of copies of the MGE in the donor genome. A constant

HGT term was likewise suggested in a rigorous model selection exercise describing the

dynamics of the insertion sequence IS5 [61], and is reasonable considering the large

number of external factors influencing HGT. For example, a phenomenon termed

surface exclusion prevents the transfer of genes to recipient cells that already carry

similar genes [87].
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We thus expect that both diversification, and HGT at a constant rate, may be

critical to modeling the distributions of MPs, insertion sequences, and other MGEs

in prokaryotic genomes. However, the influence of these processes on the longterm

fate of MGE lineages has not yet been elucidated. In particular, it is unknown how

diversification and HGT affect the extinction probability of an extant lineage, nor

how they affect the expected distribution of copy number within MGE families, or

the distribution of MGE families among genomes.

In the sections to follow, we derive extinction probabilities, extinction times and

stationary distributions for the birth-death-diversification model, and illustrate how

these measures of the longterm fate of MGEs depend on both diversification and HGT.

We find that the interplay of these two processes is subtle; while diversification does

not increase the number of MGEs in the lineage, it can nonetheless increase both

survival probability and longterm growth rates, but only in the presence of HGT.

We also derive similar results for an extension of the model which allows MGEs in

different regions in the genome, for example coding and non-coding regions, to be

described by different rates.

2.2 Methods

2.2.1 The Birth-Death-Diversification Model

In [76] the promoter regions of all available prokaryote genomes were compared, and

sequence similarities were used to identity families of closely related promoters within

each genome. A model to describe these data was developed in [88]. Statistical model

selection techniques were used to determine which processes should be included in the

model, and whether the rates for these processes were constant or varied linearly with

the number of MGEs in the genome. The resulting model and rates are described

below.
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We model a collection of prokaryote genomes, each of which may contain a number

of MGE families. A family is defined as elements with very similar sequences; for

example, 80% sequence identity over 50 nucleotides was used as a threshold in [88],

where MP families were found to have on average over 95% sequence identity. These

families may be of different sizes, that is, each family contains some integer number

of (nearly identical) copies of the MGE.

The copy-level model describes the number of MGE families, Cn, out of all the

MGE families within this collection of genomes, that have n copies. In the copy-level

model, an MGE family can gain a copy by a duplication (birth) event, which occurs at

rate nu for a family with n copies. Similarly, a copy may be lost lost due to a deletion

(death) event, which occurs at rate nw. Additionally, new families are created if

a copy within the family diversifies. Diversification includes mutational processes

that would make this copy sufficiently different from the other copies in the family,

for example if one copy of the MGE sequence obtains an insertion. In this case the

original family loses a copy and a new family of one copy, a singleton family, is created.

Thus, we make the reasonable assumption that the newly diversified sequence is not

similar to any pre-existing MGE family.

The final process included in the model is HGT. We assume that HGT occurs

through replicative transfer, that is, the donor cell does not lose a copy through this

event. We further assume that the probability that the recipient genome already

contains a copy of the transfered MGE is negligible. This assumption is justified

for MPs, since each genome in this dataset contains on average three out of over

4000 distinct families. Since the model describes the overall number of MGE families

with n copies, the net effect of HGT is thus to add singleton families. Each family,

irrespective of the number of copies in the family, contributes a HGT event at rate η.

The genome-level model describes the number of genomes, Fm, that carry m MGE

families. Recall that diversification, as described above, changes one family of n copies
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to a family of n − 1 copies and a new singleton family. Thus each diversification

event adds a family to the genome. At the genome level, diversification is therefore

analogous to a birth event. For a genome with m families, the rate of diversification

is mp. Similarly, deletion as described above could result in the loss of a family; this

occurs at rate mq. Finally, a new family is created if a new element enters the genome

through HGT, which occurs at rate µ, independent of the number of families already

carried by the genome.

The resulting model is shown in Figure 2.1. Both the copy-level and the genome-

level models can be expressed as an infinite system of ordinary differential equations

(ODEs) as shown in Equations (2.13) and (2.19).

We should also note that the two levels are linked. As derived in detail in [88], we

can calculate the genome-level rates given the copy-level rates and distribution. New

families are created when any families with more than one copy have a diversification

event. Families are lost when a one copy family has a deletion event. Finally, new

families enter a genome through HGT whenever any families have an HGT event.

Since µ is the HGT rate per genome, this is dependent on the average number of

families per genome, f̄ . Therefore, the genome-level rate parameters can be expressed

as follows, where cn is the proportion of families with n copies:

p =
∞∑
n=2

nvcn

q = c1w

µ = f̄
∞∑
n=1

ηcn = f̄η

.

(2.1)

On the copy-level this process is similar to a classic birth-death model, but has

the important difference that the process is non-conservative. A family can start in

one state, and then diversify into two different states; formally, we have a multitype
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Figure 2.1: Birth-death-diversification model. A The copy-level model describes the
number of copies of MGEs per family. Parameters are duplication (u), deletion (w), di-
versification (v) and horizontal gene transfer (η). Note that irrespective of copy number,
each family creates new families through horizontal gene transfer at constant rate η. B
The genome-level model describes the number of MGE families per genome. Parameters
are diversification (p), loss (q) and horizontal gene transfer (µ).
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branching process rather than a birth-death process. We also note that n = 0 is an

absorbing state, and that η is nonlinear. In contrast, while the genome-level model

also has a nonlinear term, µ, the process is conservative, has no absorbing state, and

can be described by a nonlinear birth-death model.

We note that these models do not include selection. Although it seems unreason-

able to expect that MGEs have no effect on fitness, analyses of the mobile promoter

data [88] and of the insertion sequence IS5 [61] both considered selection, and found

that selection parameters were not statistically justified in describing the available

data. This issue is discussed in greater detail in [88].

Despite these findings, we still expect that the location of MGEs should affect

their dynamics. Therefore, we have extended the copy-level model into a 2-D model,

that describes the number of copies in two different classes, such as regions of the

genome. In this paper we will illustrate the use of the 2-D model by describing MGEs

in coding and non-coding areas, but the model can be used for any classes of interest.

For instance, MP sequences have been identified in both promoter and non-promoter

regions of prokaryote genomes [76, 78]. The 2-D model is shown in Figure 2.2.

In the 2-D model, n1 is the number of copies per family in the coding region, and

n2 is the number of copies in the non-coding region. The rates of duplication, deletion

and diversification can differ between regions: in the coding regions these rates are u1,

w1 and v1, while in the non-coding region they are u2, w2 and v2. As before, η is the

HGT rate. Finally, ρ is the probability that a new MGE that arrives either through a

duplication or HGT event will be inserted in the coding region. This model allows us

to explore, for example, whether the dynamics of MGEs are more rapid in the coding

or non-coding regions of the genome. We can also test for selective effects that were

not justified in the 1-D model. For example, in the coding region of the genome, the

deletion rate may be higher or the insertion rate may be reduced, possibly due to
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Figure 2.2: 2-D model for families with n1 copies in the coding region, and n2 copies in the
non-coding region. The rates for duplication, deletion, and diversification are u1, w1 and
v1 in the coding region, and u2, w2 and v2 in the non-coding region. Each family creates
new families through horizontal gene transfer at constant rate η. New copies are inserted
in the coding region with probability ρ.
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lethal insertions. System (2.18) gives the formal expression of the 2-D model as an

infinite system of ODEs.

We wish to examine extinction probabilities, extinction times and equilibrium

states for MGEs. For the copy-level model we are interested in the probability that a

new family will go extinct, and how this probability changes with diversification and

HGT. For both levels, we wish to determine an equilibrium solution, and then make

predictions regarding the longterm behavior of the distributions currently found in

prokaryotic genomes. Finally, we will specifically consider the implications of these

model predictions for mobile promoters.

2.2.2 Extinction Probability

We would like to compute the probability that a novel MGE lineage is ultimately

lost. When a novel MGE first appears, by some de novo mutation process, it appears

as a single copy in a single genome in the population, forming a new singleton family.

In this section, we compute the probability that this family, including all branches of

the family that arise through diversification and HGT, ultimately goes extinct. Since

extinction involves losing every copy of the novel MGE, we address this question at

the copy level.

1-D Model

Let Xn denote the extinction probability of a lineage of MGEs that starts with n

copies. The probabilities that a duplication, deletion, diversification or HGT event is

the first to occur are given by
nu

δ
,
nw

δ
,
nv

δ
and

η

δ
respectively, where δ = n(u+w +

v) + η. Therefore, an expression for Xn is given by:

Xn =
nu

δ
Xn+1 +

nw

δ
Xn−1 +

nv

δ
Xn−1X1 +

η

δ
XnX1, n ≥ 1 . (2.2)
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Boundary conditions and (2.2) lead to the the following recurrence relation:

nuXn+1 − (n(u+ w + v) + η(1−X1))Xn + n(w + vX1)Xn−1 = 0 n ≥ 1

X0 = 1

lim
n→∞

Xn = 0+ .

(2.3)

It should be noted that solutions satisfying the boundary conditions of Equation

(2.3) do not always exist; then, the extinction probabilities are simply Xn = 1 for

all n. Closed form solutions of (2.3) can be found for two cases: (i) η = 0 and

(ii) a linear η term (i.e. replace η with nη). Interestingly, the second case is also

asymptotic in the sense that as v approaches infinity, any family with more than 1

copy will instantaneously split into different families. Therefore all families will be

linear with respect to η. These asymptotic solutions were found by using an ansatz

of the form Xn = an.

Case i: In the η = 0 case, the solution is the same as the linear birth-death

model:

Xn =


(w
u

)n
, if w < u

1 otherwise.

(2.4)

This case is an upper limit, since η acts as a birth term and hence reduces extinction

probability. Additionally, as n approaches infinity, terms including η in equation (2.3)

become negligible, so this is also the approximate solution for large n, even when η

is non-zero.

Case ii: In the second case, η acts as a linear birth term, and the solution becomes:

Xn =


(

w

u+ η

)n
, if w < u+ η

1 otherwise.

(2.5)

Since η reduces extinction probability through the creation of new copies, this case
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gives a lower bound on solutions to equation (2.3).

The extinction probability for non-asymptotic cases was calculated numerically

from equation (2.3) and verified using Monte Carlo simulation. Note that the recur-

rence relation (2.3) has a single degree of freedom, such that a value of X1 determines

all the Xi. To obtain numerical solutions to this infinite system of equations, a

straightforward approach is to impose a maximum family size, N , and determine X1

such that XN = 0; N is then increased until the value of X1 converges. In the Monte

Carlo simulation, a MGE family is initiated with n copies of MGEs, and duplication,

deletion, diversification or HGT events are simulated with probabilities nu/δ, nw/δ,

nv/δ and η/δ, until the family becomes extinct, or reaches a threshold size at which

the probability of further extinction is negligible. In the figures to follow, we use an

initial system size of N = 100, a convergence tolerance of 10−4, and a conservative

threshold size of 500 copies. Simulation data are shown for 105 replicates for each

data point.

2-D Model

A similar analysis was performed for the 2-D model. We let Xn1,n2 be the probability

that a family will go extinct if it has n1 copies in the coding region, and n2 copies in

the non-coding region. Then:

(n1u1 + n2u2)ρXn1+1,n2 + (n1u1 + n2u2)(1− ρ)Xn1,n2+1

+(ηρX1,0 + η(1− ρ)X0,1 − (n1(u1 + w1 + v1) + n2(u2 + w2 + v2) + η))Xn1,n2

+n1(w1 + v1X1,0)Xn1−1,n2 + n2(w2 + v2X0,1)Xn1,n2−1 = 0 n1, n2 ≥ 0, n1 + n2 6= 0

X0,0 = 1

lim
n1→∞

Xn1,n2 = lim
n2→∞

Xn1,n2 = 0+ .

(2.6)

An important insight is that if the rates in the two regions are the same (u1 = u2,
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w1 = w2 and v1 = v2), these equations are equivalent to the system derived for the

1-D model, (2.3), with Xn1,n2 = Xn1+n2 .

If the rates in the two regions differ, the solution to (2.6) can be found numeri-

cally and verified using Monte Carlo simulation. In this case, the numerical solution

was found iteratively. First, we created a matrix of size N = 50 where each entry

represented an extinction probability. Using equation (2.6), we expressed Xn1,n2 as

a function of the other extinction probabilities, and recalculated each Xn1,n2 until

the solution converged with tolerance 10−4. The matrix size N was then increased,

until the final set of solutions converged within the same tolerance. The Monte Carlo

simulation was performed as described for the 1-D model.

2.2.3 Extinction Times

1-D Model

To determine the extinction times, we will first define Pi(t) as the probability a family

that has i copies at time 0 will be extinct before time t. Consider the probability

that a family is extinct by time t + ∆t. If ∆t is small, the probabilities that a

birth, death, diversification or HGT event happened within time ∆t are iu∆t, iw∆t,

iv∆t and η∆t respectively. The probability that no event happened in this time is

1− (i(u+ w + v) + η)∆t. Therefore, we obtain the following expression:

Pi(t+ ∆t) = iu∆tPi+1(t) + iw∆tPi−1(t) + iv∆tPi−1(t)P1(t) + η∆tPi(t)P1(t)

+[1− (i(u+ w + v) + η)∆t]Pi(t) i ≥ 1

P0(t) = 1 .

(2.7)

If we take the limit as ∆t goes to 0, this is simply a system of differential equations:
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dPi
dt

= i(w + vP1)Pi−1 − [i(u+ w + v) + η(1− P1)]Pi + iuPi+1 i ≥ 1

P0(t) = 1 .

(2.8)

Additionally, we can use the initial condition that Pi(0) = 0 for i ≥ 1.

Note that if we set
dPi
dt

= 0 we recover the expression for the extinction probability.

That is, as time increases, the probability that the family will go extinct by time t

approaches the total extinction probability.

First, we can obtain the cumulative distribution function (CDF), Gi(t):

Gi(t) =
Pi(t)

Xi

, (2.9)

where Xi is the extinction probability, described in (2.3).

By definition, the probability density function (PDF) , gi(t), can be found from

the derivative of the CDF.

gi =
dGi

dt
=

1

Xi

dPi
dt

(2.10)

Finally, we can calculate the expected extinction time of a family that starts with

i copies, Ti as follows:

Ti =

∫ ∞
0

tgi(t)dt (2.11)

Extinction times were solved both numerically and through Monte Carlo simula-

tion. Equation (2.8) was integrated with a Runge Kutta routine (ODE45 in Matlab),

and the integral from (2.11) was approximated with a trapezoidal rule. The Monte

Carlo simulation was performed as described for extinction probabilities; the time

step, ∆t, was chosen such that the probability of an event happening at each step

was approximately 0.01.
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2-D Model

The extinction times for the 2-D copy level can be derived in the same way as for

the 1-D level. The probability that a family that starts with i copies in the coding

region, and j copies in the non-coding region will be extinct by time t is represented

by Pi,j, which satisfies the following equation:

dPi,j
dt

= (iu1 + ju2)ρPi+1,j + (iu1 + ju2)(1− ρ)Pi,j+1

+[ηρP1,0 + η(1− ρ)P0,1 − i(u1 + w1 + v1)− j(u2 + w2 + v2)− η]Pi,j

+i(w1 + v1P1,0)Pi−1,j + j(w2 + v2P0,1)Pi,j−1 i, j ≥ 0, i+ j 6= 0

P0,0(t) = 1

Pi,j(0) = 0 i, j ≥ 0, i+ j 6= 0

.

(2.12)

This system can be solved numerically, as described for the 1-D model.

2.2.4 Equilibrium Solution

1-D Copy-Level Model

The birth-death-diversification model can be expressed as an infinite system of ordi-

nary differential equations (ODEs), where Ci is the expected number of families with

i copies at time t:

dC1

dt
= −(u+ w + v)C1 + 2(v + w)C2 +

∞∑
i=1

(iv + η)Ci

dCi
dt

= (i− 1)uCi−1 − i(u+ w + v)Ci + (i+ 1)(v + w)Ci+1, i ≥ 2 .

(2.13)

We seek an equilibrium solution, C̄, in which the number of families with i ele-

ments does not change in time,
dC̄

dt
= 0. Using an ansatz of the form C̄i ∝ 1

i
ai we
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recover solutions given by:

C̄i = A
1

i

(
u

w + v

)i
, (2.14)

which exists under the conditions:

η = ηc =

[
ln

(
w + v

w + v − u

)]−1
u(w − u)

(w + v − u)

u < w + v ,

(2.15)

where A is a constant that is determined from the initial condition. We can normalize

this solution to give the proportions of families with i copies, ci.

ci =

[
ln

(
w + v

w + v − u

)]−1
1

i

(
u

w + v

)i
, (2.16)

As this model requires that η be nonnegative, this restricts our solution further to

u ≤ w.

Note that the equilibrium solution (2.16) only exists when the rate constants are

precisely balanced as described in (2.15). As this situation is unlikely in reality, we

can also look for stationary distributions, that is, solutions in which the total number

of copies are changing in time, but their proportions remain the same. These solutions

will be given by:

dC

dt
= kC , (2.17)

where k is a constant. Clearly k is an eigenvalue of the coefficient matrix of the ODE

system (2.13), and gives the longterm exponential growth rate; its corresponding

eigenvector gives the longterm distribution. While ηc corresponds to k = 0, the

condition η > ηc implies an increasing population and η < ηc implies a decreasing

population, where ηc is defined in (2.15).

We obtained the longterm growth rate, k, when k 6= 0 by finding the eigenvalue

with the largest real part of the coefficient matrix of system (2.13). Using the con-
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vergence criteria outlined above, the eigenvalue was determined numerically with a

finite matrix size, N , and N was increased until the eigenvalue converged.

2-D Copy-Level Model

For the two dimensional model, Ri,j is the number of families with i copies in the

coding region, and j copies in the non-coding region. This can also be expressed as

a system of ODEs:
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dR1,0

dt
= −(u1 + w1 + v1)R1,0 + 2(v1 + w1)R2,0

+(v2 + w2)R1,1 +
∞∑
i=0

∞∑
j=0

i+j 6=0

(iv + ρη)Ri,j

dR0,1

dt
= −(u2 + w2 + v2)R0,1 + 2(v2 + w2)R0,2 + (v1 + w1)R1,1

+
∞∑
i=0

∞∑
j=0

i+j 6=0

(jv + (1− ρ)η)Ri,j

dRi,0

dt
= ρ(i− 1)u1Ri−1,0 − i(u1 + w1 + v1)Ri,0 + (i+ 1)(w1 + v1)Ri+1,0

+(w2 + v2)Ri,1, i ≥ 2

dR0,j

dt
= (1− ρ)(j − 1)u2R0,j−1 − j(u2 + w2 + v2)R0,j + (j + 1)(w2 + v2)R0,j+1

+(w1 + v1)R1,j, j ≥ 2

dRi,j

dt
= ρ((i− 1)u1 + ju2)Ri−1,j + (1− ρ)(iu1 + (j − 1)u2)Ri,j−1

−(i(u1 + w1 + v1) + j(u2 + w2 + v2))Ri,j

+(i+ 1)(w1 + v1)Ri+1,j + (j + 1)(w2 + v2)Ri,j+1, i, j ≥ 1 .

(2.18)

To estimate the longterm growth rate of the system, we integrate (2.18) numeri-

cally.

Genome-Level Model

We can similarly solve for an equilibrium solution to the genome-level model. When

condition (2.15) is met at the copy level, both levels will be at equilibrium. When
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condition (2.15) is not met, however, one of the parameters of the genome-level model,

µ, will not be constant. This HGT rate scales with the average number of families

per genome, f̄ . Intuitively, if the number of families with n copies is growing, for

all n, in a finite population of genomes, the mean number of families per genome

is likewise growing. Thus the equilibrium distribution derived for the genome-level

model is valid only when the copy-level model is at equilibrium.

Similar to our previous approach, the genome-level can be expressed as a system

as ODEs:

dFm
dt

= ((m− 1)p+ µ)Fm−1 − (m(p+ q) + µ)Fm + (m+ 1)qFm+1, m ≥ 0 (2.19)

where Fm is the number of genomes containing m families of MGEs (and we define

F−1 = 0). Using the software package Maple, we are again able to find an analytic

solution in the case of
dF̄

dt
= 0, under the constraint p < q:

F̄m =
G

m!

(
p

q

)m Γ(m+ µ
p
)

Γ(µ
p
)

(
1− p

q

)µ/p
, (2.20)

where G is the number of genomes and Γ(x) is the gamma function.

Then, the proportion of genomes with m families, fm, is given by:

fm =
1

m!

(
p

q

)m Γ(m+ µ
p
)

Γ(µ
p
)

(
1− p

q

)µ/p
. (2.21)

Unlike the copy-level model, we do not have to consider stationary solutions. In

this model there are no absorbing states, and the system will approach this equilibrium

as long as the condition p < q holds, and the parameters p, q and µ are constant. If

p > q, the number of MGE families will increase without bound.
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2.3 Results

It should be noted that it is the ratios of the parameters, rather than their actual

values, that affect the extinction probabilities and equilibrium state of the system.

We chose to normalize the 1-D copy-level and genome-level parameters by u and p

respectively, using notation ŵ = w/u for example, or q̂ = q/p. For the 2-D copy-level

model, because the parameter η is shared by both regions of the genome, we normalize

by η, for example w̃1 = w1/η. In previous work, best fit values for MPs were found

to be w/u = 0.9810, v/u = 0.0424, η/u = 0.0965, q/p = 1.24 and µ/p = 1.09 [88].

We will refer to these values from the promoter dataset as ŵp, v̂p, η̂p, q̂p and µ̂p,

respectively.

An important interaction occurs in this model between diversification and HGT.

Since HGT is not dependent on copy number, there is more HGT when there are

many families with few copies, as compared to few families with the same number of

total copies. Therefore, diversification acts indirectly to increase the amount of HGT.

2.3.1 Extinction Probability

For the 1-D copy-level model, the extinction probability for a family of size 1, X1, is

illustrated in Figure 2.3. We find that increasing HGT, η, promotes survival, which

is reasonable since each HGT event adds a MGE copy. We also find, however, that

increasing diversification, v̂, increases survival, but only in the presence of HGT. Since

a diversification event has no net effect on copy number, this is an interesting result

(see Section 2.4). Finally, we note that the parameters estimated for MPs, ŵp, v̂p and

η̂p, predict an extinction probability of X1 = 0.96.

In Figure 2.4, we examine the extinction probability for larger families, finding

that increasing family size, n, reduces the extinction probability as expected. In both

asymptotic cases, note that extinction probability obeys an exponential law with
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Figure 2.3: Extinction probabilities of one member families, X1, for varying diversification
(v̂) and horizontal gene transfer (η̂) rates. The value of the deletion rate parameter is
ŵ = 0.98. Results are shown for both the numerical solution (solid line), and Monte Carlo
simulation (circles). The asymptotic cases are described in equations (2.4) and (2.5), and
depicted as dotted lines.
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respect to n. More generally, however, the solution to equation (2.3) does not obey

an exponential law as seen in the figure inset. In particular, for small families, the

extinction probability is lower than would be predicted by an exponential law.
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Figure 2.4: Extinction probabilities of n member families, Xn, for varying diversification
rates (v̂). Values used for HGT and deletion rates are η̂ = 0.1 and ŵ = 0.98 respectively.
Results are shown for both the numerical solution (solid line), and Monte Carlo simulation
(circles). Asymptotic cases are described in equations (2.4) and (2.5), and depicted as dotted
lines. The inset shows the same data but with n

√
Xn on the y-axis. With the exception of

the asymptotic cases, the solutions do not obey an exponential law. All solutions are for n
integer; lines are plotted continuously to guide the eye.

For the 2-D model, we compare the extinction probability of one member families

if they are initially present in the coding region to those in the non-coding region in

Figure 2.5. When ρ = 0, the extinction probability for one member families in the

non-coding region, X0,1, is the same as in the 1-D case using the rate parameters
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for the non-coding region (u2, w2, v2 and η). As ρ increases from 0 to 1 this value

approaches the extinction probability for the coding region (u1, w1, v1 and η). The

opposite is true when considering X1,0 from ρ = 1 to ρ = 0. A striking feature of

these predictions is the substantial influence of the initial condition: even when all

further copies have equal chances of being mobilized to coding or non-coding regions

(ρ = 0.5), the extinction probability sensitively depends on where the MGE lineage

begins. This is because a critical factor in extinction is whether the initial copy itself

is deleted before it duplicates.

2.3.2 Extinction Times

The distribution of extinction times is shown in Figure 2.6, and expected extinction

times for one member families, T1, are shown in Figure 2.7. Increasing diversification

and HGT rates decrease expected extinction times even though the families are less

likely to go extinct. Parameters estimated for MPs, ŵp, v̂p and η̂p yield an expected

extinction time for one member families to be T1 = 3.7u−1.

2.3.3 Equilibrium Solution

Examples of numerical solutions to the 1-D copy-level ODEs, equation (2.13), are

shown in Figure 2.8 for three cases; η < ηc, η = ηc and η > ηc, where ηc is defined

in (2.15). The behavior is as expected: after a transient period, the system reaches a

stationary distribution in which total copy number either decreases, stays the same,

or increases with time depending on the value of η.

The effects of parameters on the longterm growth rate, k̂, are illustrated in Figure

2.9. Increases in HGT, η̂, increase the growth rate, while increases in deletion, ŵ,

decrease growth. Note however that diversification, v̂, causes increased growth, but

only in the presence of HGT. Similar to our predictions for extinction probability,

this appears counter-intuitive since diversification events do not change total copy



39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

ρ

E
xt

in
ct

io
n 

P
ro

ba
bi

lit
y

A

B

Extinction Probabilty Higher in Coding Region

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

ρ

E
xt

in
ct

io
n 

P
ro

ba
bi

lit
y

B

A

Extinction Probabilty Higher in Non−Coding Region

Figure 2.5: Extinction probability versus the probability that new MGEs are inserted
into coding regions, ρ, for the 2-D model (2.6). Dotted lines and dashed lines represent the
numerical solution of the extinction probability for a single promoter copy in a coding region,
X1,0, or non-coding regions, X0,1, respectively. Solid lines illustrate cases in which there is
no difference in the rates between coding and non-coding regions, that is, all parameters
are set to either the coding region (A) or non-coding region (B) parameters. In these cases
X1,0 = X0,1 for all ρ. The results of Monte Carlo simulation are shown with circles for X1,0,
and stars for X0,1. In the top panel w̃1 = 9.8 and w̃2 = 4.9, and in the bottom w̃1 = 4.9
and w̃2 = 9.8. Other parameter values are ũ1 = ũ2 = 10 and ṽ1 = ṽ2 = 0.4.
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Figure 2.6: Histograms of extinction times for families that have i copies at time zero.
The stochastic simulation was performed 1×104 times for each plot. The numerical solution
to (2.10) is plotted with a solid line. Parameter values used were ŵ = 0.98, v̂ = 0.04, and
η̂ = 0.1.
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43

number; we will return to this observation in the Section 2.4. We also note that the

parameters estimated for mobile promoters predict a growth rate of k = 0.0336u.
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Figure 2.9: Growth rate of the number of families. The longterm growth rate k̂, is plotted
for varying deletion, ŵ, diversification, v̂, and horizontal gene transfer, η̂, rates. The dotted
line at k̂ = 0 corresponds to the true equilibrium solution (2.16).

The longterm growth rate for the 2-D model is shown in Figure 2.10. For ρ = 0

the growth rate agrees with the rate from the 1-D model using parameters in the non-

coding region, and similarly for ρ = 1 we recover the rate from the 1-D model using

parameters in the coding region. The growth rate varies linearly with ρ. Therefore, if

the rates in the two regions differ, the overall growth rate will be a weighted average

of values in the two regions.

Finally, we examined how HGT, µ, affects the distribution of families per genome.
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Figure 2.10: The longterm growth rate, k̃ for the 2-D copy-level model versus the prob-
ability a new element will be inserted into the coding region (2.18). Parameter values are
w̃1 = w̃2 = 9.8 and ṽ1 = ṽ2 = 0.4. Solid lines lines are used when the parameters are the
same in both regions. To calculate k̃, the system was integrated numerically using a fourth
order Runge-Kutta method until the slope converged (within a tolerance of 10−8). The
system was originally of size i + j < N , where N = 100. N was increased in steps of 50
until the slope converged (within a tolerance of 10−4).
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These results were plotted using the analytic solution (2.21), and are shown in Figure

2.11. As µ is increased, the peak in the distribution shifts to higher m values. While

most genomes have no MGE families when HGT rates are low, higher rates of HGT

yield distributions in which the vast majority of genomes carry many families of

MGEs.
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Figure 2.11: Analytic solution (circles) to the genome-level model (2.21), for varying
µ̂, the rate at which new families enter a genome through horizontal gene transfer. The
parameter value used for the loss term was q̂ = 1.24. Lines have been added to guide the
eye.

The MP data set for all sequenced prokaryote genomes yields a monotonically

decreasing distribution of families per genome [88]. However, in examining individual

species from this data set, examples of distributions with non-zero peaks are evident;

Figure 2.12 shows four such anecdotal cases. Although the copy-level growth rate,
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k, was estimated to be non-zero for the MP dataset, and thus the distribution of

families per genome cannot strictly be at equilibrium, a comparison of Figure 2.12

with Figure 2.11 suggests that HGT rates for MPs within species are higher than the

average rate estimated from the pooled prokaryote data.
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Figure 2.12: Anecdotal data from four species included in the mobile promoter study [88].
Histograms show the number of sequenced genomes in the species with varying numbers of
families per genome. The equivalent histogram for data pooled from all prokaryote species
is monotonically decreasing [88], consistent with the expectation that within species, HGT
rates are higher.

2.4 Discussion

The key novel feature of the model we examine is diversification. Diversification

changes the dynamics in part because the process is non-conservative, and cannot be
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described as a standard Markov process. One of the most interesting results to emerge

is that diversification increases the survival probability of a lineage of MGEs, but only

in the presence of HGT. Increased diversification does not change the total number

of element copies, but rather changes the distribution; it creates more families with

fewer members. In contrast, HGT does create another copy and therefore increases

survival. Because HGT occurs at a constant rate per family, independent of the

number of copies in the family, HGT is more effective if the elements are distributed

into many small families. Therefore, high diversification rates will increase the rate

of HGT, and thus reduce the extinction probability.

We also found that for the 1-D copy-level model to have an equilibrium distribu-

tion, the parameter values must obey a strict relationship (2.15). Otherwise, there

can exist a stationary distribution, in which the total number of families is changing,

but the ratio of family sizes remains the same. Since in reality it is not likely that the

parameters will perfectly satisfy (2.15), we expect that the number of families with

n copies is changing in time for most MGEs. A consequence of this result is that

the genome-level equilibrium distribution is unlikely to be satisfied. This is because

the HGT rate at the genome level, µ, depends on the average number of families per

genome, and so changes as the overall number of families increases or decreases.

A further prediction of interest is that HGT changes the shape of the family

distribution, that is, the number of families per genome. In previous work [88], the

probability mass function was shown to be monotonically decreasing with increasing

family number. However, we demonstrate here that if HGT rates are large enough,

there is a non-zero peak in the distribution, and as HGT increases, the location of this

peak occurs at a higher family number. Therefore, the shape of the distribution of

families per genome for a specific MGE should reflect HGT rates for that element. In

future work we could apply this approach to compare HGT rates of different MGEs

in a single species, or related MGEs across different species, simply by comparing
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their family-number distributions.

The predictions above address the birth-death-diversification model as a general

approach for describing the longterm fate of MGE lineages. Since numerical parame-

ter values for this model have previously been estimated for MPs, we can make further

quantitative predictions specific to these elements. For example, these parameters

predict that new families of promoters become extinct 96% of the time. Furthermore,

we used these parameters to estimate that one member families en route to extinction

have an expected extinction time of T1 ≈ 4/u. If we assume the birth rate, u, is on the

order 10−5 per element per generation [85, 88], this corresponds to an extinction time

of 4 × 105 generations. This is a relatively short time, and suggests that extant MP

families represent only a small fraction of those that have arisen throughout genomic

evolution.

In Section 2.4, we found that the deletion rate must exceed the duplication rate

for the copy-level model to be in equilibrium. Interestingly, this condition was not

met in the promoter data set, which had a higher duplication rate. Similarly, a study

of insertion sequences in Escherichia coli [85] estimated that duplication slightly

exceeded deletion. We thus predict that for MPs, the system will not be in equilibrium

but will reach a stationary distribution that grows at a rate k = 0.0336u. If we again

estimate u is on the order 10−5 per element per generation, this result predicts that

the number of MP families is increasing at 3×10−7 families per generation. This rate

is sufficiently low that for MPs it is reasonable to assume that the rate parameters

for the genome-level model are approximately constant. Equilibrium at the genome

level further requires that the birth rate of families be less than the death rate, a

condition which holds in the estimated MP parameters. Nonetheless, we reiterate

that in the MP dataset, the genome level parameters are not strictly constant, and

while the model offers several important insights, its predictive ability in the longterm

is clearly limited.
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In Section 2.3, we illustrated the application of the 2-D model to coding and

non-coding regions of the genome, however the model could be used to divide MGEs

into other regions or categories. For example, the mobile promoter data was initially

collected in “promoter” regions of the prokaryote genome, immediately upstream from

coding sequences [76]. Copies of promoter sequences thus identified were subsequently

detected in non-promoter regions of the genome [88]. A comparison of these two

data sets revealed that only 13, 000 out of 40, 000 potential MPs were located in the

promoter region [88]. We suggest that estimating the parameter rates of the 2-D

model for MPs in promoter and non-promoter regions could offer an explanation as

to this surprising prevalence of MPs in non-promoter regions.

Finally, for MPs, we demonstrated anecdotally that for several species, the dis-

tribution of families per genome is not monotonically decreasing. This suggests that

HGT rates can vary considerably among species, and is consistent with the expecta-

tion that HGT rates are higher within, rather than between species. Unfortunately,

the data from individual species are not yet sufficient to support model fitting. We

also note that a non-zero peak in the family distribution could simply be an artifact of

the highly non-uniform sample of genomes for which full sequence data are available.

Extensions to the approach we outline here are readily apparent. For instance, we

assume that waiting times for diversification are exponentially distributed. Although

diversification could occur through the deletion or insertion of a length of sequence

inside a MGE, diversification could also occur through successive point mutations.

For the latter case, waiting times based on a gamma distribution would clearly be

more accurate.
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2.5 Conclusion

As applied to mobile promoters, this paper gives the first estimate of the extinction

probability of novel MP lineages, and predicts that the number of copies per family is

not in equilibrium, but is growing very slowly. We also provide an avenue for exploring

the intriguing observation that a substantial fraction of MPs persist in non-promoter

regions of the genome. More generally, we predict that as long as HGT occurs at a

roughly constant rate per family, both the survival and growth rate of mobile genetic

elements will be increased by genetic diversification; this effect will be greater where

HGT is higher. We propose a new approach for estimating HGT rates by examining

the distribution of MGE families per genome, and analyze a unique stochastic process

that describes the dynamics of a wide range of mobile genetic elements in prokaryotes.
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Chapter 3

Conclusion

In summary, this thesis examines a mathematical model used to describe the dy-

namics of MGEs in prokaryotes. Specifically, we analyze equilibrium distributions,

extinction probabilities and extinction times. The work presented here emphasizes

the importance of considering diversification of MGE families. Though diversifica-

tion does not directly act to increase the number of copies of an element, it indirectly

increases HGT rates and therefore copy number. Additionally, this work develops an

extension of the birth-death-diversification model that separates the genome into two

different sections. For example, the dynamics in coding and non-coding regions can

be described by different rates. Alternatively, the genome could be split into regula-

tory and non-regulatory regions, and this could offer insight at to why the majority

of MPs appear to be located in non-regulatory regions [92, 93].

Though this model has offered many interesting insights into the dynamics of

prokaryotic MGEs, mainly through the relationship between diversification and HGT,

there are many simplifications to the model which could be addressed in future work.

The main weakness in the model is that it predicts that if an MGE population

does not go extinct, it will grow without bound. This biologically impossible result

is likely due to the fact that selection is ignored. While many studies have shown

53
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that MGEs are likely selectively neutral [90, 91, 93], there is clearly an upper limit

to the number of MGEs one cell can possess. For the model explored in this thesis,

van Passel et al. [93] considered three possible forms of selection for the MP data:

(1) fitness decreases exponentially with increased numbers of MGE families (2) fit-

ness decreases linearly with increased families, and (3) fitness decreases uniformly,

dependent only on the presence or absence of MGEs. The authors found that none

of these models were justified statistically. However, the authors did not consider fit-

ness that depended on the copy number of MGEs, and this might be a more accurate

description. Therefore, it could be useful to examine selection models in which fitness

decreases as a function of copy number. If one of these selection models were justified

using the MP data, perhaps the birth-death-diversification model could be extended

to incorporate selection.

Another simplification to the birth-death-diversification model is that it describes

diversification waiting times as being exponentially distributed. Presumably, diversi-

fication would happen through a series of exponentially-distributed mutation events,

until the sequence was altered enough to be considered a new family. Therefore, a

more accurate model might require that an MGE go through numerous mutation

events before it is considered a new family. However, since each element can still go

through duplication, deletion and HGT events, this complicates the model immensely.

Additionally, the main result of this thesis—that diversification is important in

MGE dynamics—hinges on the idea that HGT rates are not dependent on copy

number. This is supported by results for ISs [91] and MPs [93]. However, more in-

depth work on the relationship between HGT rates and copy number in MGEs could

be interesting.

Finally, this model suggests that diversification is beneficial to a MGE because

the element is more likely to be transferred to other cells through HGT. However,

there is a cost to diversification which this model does not consider. If a mutation
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happens in the region of the MGE that involves transposition, the MGE could be

less likely to transpose. Additionally, if the MGE carries a beneficial accessory gene,

a diversification event could change the function of this gene, so it was no longer

beneficial, or perhaps even detrimental to a cell’s fitness. Therefore, there should be

some penalty to having a diversification event. This question could also be addressed

using game theory, in an approach similar to Wagner’s [94]. For instance, if we

consider a plasmid with one transposition site, the original MGE and a diversified

version would compete for this same site. The diversified gene might have a reduced

ability to transpose, but would be more likely to be transferred to another host. In

future work this could be used to determine whether the benefit of diversification is

worth the possible loss of functionality.

In conclusion, MGEs are ubiquitous across species and have applications to a wide

range of topics including antibiotic resistance, evolution and biological engineering.

Therefore, understanding the dynamics of these elements is of utmost importance.

Many models have been developed to describe the dynamics of MGEs, but little at-

tention has been given to the diversification of elements, likely because the relation-

ship between diversification and HGT is subtle. Here we have mentioned numerous

avenues that could be pursued to further explore this finding. Overall, our work indi-

cates that diversification of elements should be considered in order to fully understand

the dynamics of MGEs in prokaryotes.
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