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Abstract 

 

 A highly cross-linked polystyrene resin bearing a reactive chlorostannane moiety 1 has 

been used to generate a variety of arylstannane radiopharmaceutical precursors for no-carrier-

added radioiodination. The resins were characterized for their solvent compatibility and 

sensitivity to acid cleavage. Resin-supported arylstannanes synthesized via their aryllithium 

analogues include 3- and 4-stannylbenzaldehydes, 3- and 4-stannylbenzoic acids, and 3- and 4-

N-succinimidyl benzoates. A three-step route to the resin-supported stannylbenzoic acids 12a/b 

was developed through resin-supported benzaldehydes 11a/b. The aldehyde to acid conversion 

efficiency is >90%, and acid loading capacities of 0.66−0.94 mmol/g were obtained. Resin-

supported N-succinimidyl benzoates 16a/b were prepared from the acid with 78−84% conversion 

efficiency. Libraries of resin-supported benzamides 19a/b prepared from amine conjugation to 

corresponding benzoic acids or N-succinimidyl benzoates are described. A third approach 

describes the preparation of resin-supported benzamides via direct conjugation of the dilithio salt 

of the intact benzamide to the chlorostannane resin 1. Lastly, as proof-of-principle, a 

radiolabeling study with iodine-131 (
131

I) was performed with a resin-supported benzamide to 

afford the corresponding radioligand in moderate yields, and high radiochemical purity. 

 

Key Words: Solid phase organic chemistry (SPOC), radiopharmaceuticals, iodobenzamides, N-

succinimidyl benzoate, radioiodination.
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Introduction 

 

We have been investigating the applicability of insoluble resin-supported arylstannanes 

as precursors to radioiodinated pharmaceuticals with potential for diagnosis and therapy.
1-6

 The 

selected polystyrene (PS) resin-supported tin compound is not commercially available but its 

preparation had been previously reported along with numerous applications.
7
 This resin has been 

further adapted for the preparation of radioiodinated pharmaceuticals by preparing a resin-

supported chlorostannane 1 (Fig. 1) as the precursor to arylstannanes of specific biological 

activity. As illustrated in Figure 1, the resin of interest is a copolymer of divinylbenzenes and 3-

{dibutyl[2-(3-and 4-vinylphenyl)ethyl]stannyl chloride}, itself prepared from the 

divinylbenzenes by mono-hydrochlorostannylation with dibutylchlorostannane.
8
  

[FIGURE 1] 

Two routes to resin-supported arylstannane precursors were envisioned, each involving 

aryllithium reagents (Fig. 2); one being the direct attachment of aryl-containing ligands of 

interest (Route A) and the second involving intermediate arylstannanes (Route B). Both 

approaches are reported here. One advantage of solid phase organic chemistry is the ability to 

drive reactions to completion by using excess reagents. Analogously, the resin-supported 

precursor is present in excess (mg) during radiolabeling since the radioisotope is typically the 

limiting (ng) reagent. Hence, advantageously, the consumption of the typically expensive 

radioisotope can be driven to completion (Fig. 2). A further advantage of resin-based precursor 

radiolabeling is the rapidity in separating resin-bound tin materials, either the tin precursor or 

insoluble reaction by-product(s), by simple filtration of the resin to afford chemically pure 

radiolabeled compound in solution. 

 Tin-aryl bonds are susceptible to cleavage by many electrophilic reagents,
 
including 

acids, halogens, B2H6/H2O2, and NOCl.
9-10

 While this places limitations on the chemistry that 

can be performed on the resin-supported arylstannanes without loss of the aryl group, it also 

creates advantages at the time of detachment. Beyond the use of electrophilic radioiodine, acids 

represent an interesting case where replacement of tin by hydrogen, results in a traceless linker.
11

 

 [FIGURE 2] 

Both direct and indirect approaches to preparing resin-bound radiopharmaceutical 

precursors, typically through a PS system, have been described previously by our group and 
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others. Direct attachment of the appropriate aryl lithium intermediate to resin 1 afforded the 

resin-bound precursor for [
131

I]-N-isopropyl-4-iodoamphetamine ([
131

I]-IMP), a SPECT imaging 

agent for monitoring brain perfusion.
1
 Treatment of this resin with radioiodine produced [

131
I]-

IMP in 44% radiochemical yield (RCY). Meta-iodobenzylguanidine (MIBG) is another 

compound that can be produced by a resin-bound precursor method. A four-step indirect 

approach was used to make the resin-supported 3-stannylbenzylguanidinium, beginning with 

lithiation of protected 3-bromobenzylamine and coupling with resin 1.
2-5

 Radiolabeling with this 

resin has been scaled-up to the curie level as the route to no-carrier-added Azedra ([
131

I]-

MIBG),
12

 and is currently in multi-center phase 2b clinical trials as a radiotherapeutic for 

malignant pheochromocytoma, a rare adrenal tumor, and pediatric neuroblastoma, the most 

prevalent cancer in children.
13-14

 This specific resin has been further exploited as a convenient 

precursor to [
211

At]-meta-astatobenzylguanidine ([
211

At]-MABG),
15

 used in alpha-particle 

emitting therapy of micrometastatic neuroendocrine tumors. A multi-step resin approach has also 

been applied to the 
123

I-radioiodination of Congo Red in >56% RCY and >99% radiochemical 

purity (RCP), as an azo dye that localizes to forms of β-amyloid.
16

 

 PS resin-bound alkenyl stannyl precursors comprised of an alkenyl-tin bond have also 

been used for preparing a broad range of biologically active radiopharmaceuticals by 

radioiododestannylation.
17-20

 Examples of 
125

I-labeled vinyl iodides prepared by the resin-route 

include (E)-1-[
125

I]-iododecene used en route to synthetic fatty acids and the acetate-protected 

analogue of (E)-17α-[
125

I]iodovinylestradiol for targeting the estrogen receptor.
21

 These 

compounds were obtained in 20-70% RCY.
21

 Recently, a resin-bound stannylpropenyl mesylate 

was reported as a prosthetic group for attachment to diverse amines, and can be extended to 

alcohols, thiols, and peptide-based drug structures.
22

  

A solid-phase strategy to macromolecular radiopharmaceuticals has also been described
 

using a hydrophilic PEG-based resin.
23

 In particular, the preparation of the small molecule 

bioconjugate N-succinimidyl-3-[
125

I]iodobenzoate ([
125

I]SIB) from a PEG resin-supported 

precursor was used to radiolabel a tomato plant systemin peptide and two proteins, globular 

albumin and IgG antibody. Analogous methods to radiopharmaceutical preparation include the 

use of soluble fluorine-rich supports that combines the advantage of purification and 

characterization of fluorous-tagged intermediate compounds. Most of the work to date has used 

fluorous arylstannanes as precursors to radioactive aryl iodides.
24-26

 A hybrid fluorous solid-
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phase radioiodination platform has similarly been used to provide “carrier-free” solutions of  

radiolabeled agents, including [
125

I]-MIBG.
27

 In recent years, a PS-resin based 

organotrifluoroborates has been synthesized towards preparing radioiodinated ligands.
28-30

 

Described herein is the synthesis, physical, and chemical characteristics of resin-

supported arylstannanes as precursors for radiolabeling with radioiodine. In particular, we 

describe resin-supported benzaldehydes, benzoic acids, N-succinimidyl benzoates, and 

benzamides. Benzaldehydes, benzoic acids, and N-succinimidyl esters are versatile functional 

moieties that can be used as radiolabeled bioconjugates, particularly for amine-bearing 

radiopharmaceuticals, such as amino acids, peptides, and proteins. Benzaldehyde resins also 

participate in condensation reactions with Schiff bases and aldols for the library synthesis of 

functionalized heterocycles via α,β-unsaturated ketones.
31

 

Halogenated benzamides themselves are of interest as nuclear imaging agents.
32-33

 In 

particular, structural analogues of N,N-dialkylamino-alkyl iodobenzamides with positional 

isomers of the halide, with different mono- and di-substituted N-alkyl groups, and varying 

number of methylene bridge groups, have ranges of selectivity towards biological targets that are 

considered imaging biomarkers in cancer.
34-40

 Resin-supported 3- and 4-arylstannyl 

intermediates provide an opportunity to produce diverse libraries of radioiodobenzamide 

precursors to systematically assess structure activity relationships of various biological targets.
 

 

Results and Discussion 

 

Synthesis and characterization of resins 

Composition 

Resin 1 used in this study was a copolymer prepared from commercial 20 mol-% 3- and 

4-divinylbenzenes (DVB) and 80 mol-% 3-{dibutyl[2-(3-and 4-vinylphenyl)ethyl]stannyl 

chloride}, with the latter prepared by mono-hydrochlorostannylation of DVB with 

dibutylchlorostananne.
8
 The resin produced from emulsion polymerization and rapid stirring was 

an insoluble powder 10−300 µm in diameter, with a porous surface as revealed by scanning 

electron microscopy  (SEM, see supplemental data, Fig. S1). This material was chemically 

characterized by a combination of solid phase magic angle spinning (MAS) 
119

Sn NMR and 
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diffuse reflectance infrared Fourier transform (DRIFT) IR spectroscopies, and by quantification 

of chemically released tin-bound species by hydrolysis or iodinolysis reactions.   

Treatment of resin 1 with ethanolic NaOH at room temperature (RT) released free 

chloride ions, which upon titration revealed a Sn−Cl resin loading capacity of 1.7 mmol/g, as 

shown in Figure 3. The 
119

Sn NMR spectra before hydrolysis showed a single peak at 140−150 

ppm, reflective of a stannyl chloride group. This peak was replaced by two overlapping peaks at 

91 and 101 ppm after hydrolysis attributed to a combination of stannol 2 and stannoxane 3.
8
 

Refluxing the hydrolyzed resin in 6 mol/L HCl regenerated resin 1, as confirmed by 
119

Sn NMR. 

[FIGURE 3] 

The amount of chloride released was used to calculate the proportions of the two 

monomers incorporated into the resin, assuming all chloride released on hydrolysis came from 

the chlorostannane monomer. A loading capacity of 1.7 mmol chloride/g of resin 1 translated 

into a resin comprised about 60% DVB and 40% 3-{dibutyl[2-(3-and 4-

vinylphenyl)ethyl]stannyl chloride. This stood in stark contrast to the 20:80 proportion of 

monomers used to prepare the co-polymer. We do not have a satisfactory interpretation of this 

change.  

 

Solvent compatibility 

 Resin 1 was prepared with a very high degree of crosslinking agent (20%), compared 

with a 1−2% cross-linking agent used to produce most commercially available PS resins. Despite 

high cross-linking, resin 1 could repeatedly rapidly incorporate and dispel a variety of solvents. 

Solvent incorporation was monitored both by observing the increase in the apparent volume of 

the resin when wetted and by following the increase in weight and its subsequent decrease upon 

air filtering. Table 1 shows the ratio of the weight of solvent incorporated to the weight of resin 

and the volume ratio. Both ratios were a factor of 1−3 in several solvents, with the weight ratio 

being somewhat larger. The incorporation occurred almost immediately upon wetting. The 

volume ratio was determined visually, while the weight ratio was measured by following the 

decrease in weight when the wetted resin was exposed to the atmosphere. Except for DMSO, the 

solvent was rapidly lost depending on its volatility (≤ 30 min) and the resin returned to its 

original weight.  Resin 1 would not wet with water alone. 
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 Resin 1 was converted to a 3-stannyl benzylammonium resin 4 (Fig. 4) en route to the 

MIBG resin, as described elsewhere.
2
 The presence of the ammonium groups made the resin 

more water compatible, as evidenced by the increase in the weight ratio relative to resin 1 (Table 

1, second column), allowing for the investigation of aqueous-based reactions. Concurrently, resin 

4 was less hydrocarbon compatible, as the last two columns of Table 1 indicate. 

[TABLE 1] 

 

Protodestannylation  

Resin 4 was used to monitor the stability of the tin-aryl carbon bonds under acidic 

conditions in order to determine which acid catalyzed transformations can be carried out without 

concomitant loss of aryl groups. The initial loading capacity for resin 4 was determined by I2-

mediated iodinolysis, releasing 3-iodobenzylammonium 5 (Fig. 4). The filtrate following resin 

separation was subsequently analyzed by HPLC for quantification of 5 and indicated a loading of 

1.30 mmol/g of resin. The progress of the protodestannylation reaction was similarly followed by 

HPLC to measure the amount of benzylammonium 6 released.  

[FIGURE 4] 

Various protodestannylation conditions were chosen to determine effects on the reaction 

rate. Treatment of resin 4 with 0.4 mol/L  HCl in EtOH/H2O at RT revealed slow release of 6 

(Supplementary data, Fig. S2).  Yields plateaued at 0.55 mmol/g, which is only 43% of the 

maximum loading of resin 4. Similar results were obtained using other strong acids (e.g., TFA 

and H2SO4) in a mixture of aqueous and non-aqueous solvents suggesting that the rate of 

protodestannylation is not dependent on the anion present. Weaker acids, like HF and AcOH, 

were unable to release 6 under these conditions. In contrast, 1% TFA in dichloromethane (DCM) 

(0.4 mol/L) released 1.26 mmol/g of 6 within 15 min at RT. Refluxing resin 4 for 11.5 h in 0.4 

mol/L HCl in EtOH/H2O, afforded a similar result, releasing 1.21 mmol/g of 6.  

These results established the parameters for using mild acid catalysis with the resin, since 

1 h HCl treatment released ≤5% of the maximum loading of resin 4 (i.e. 0.05 mmol/g of 6). On 

the other hand, protodestannylation can be driven to completion by refluxing in HCl/EtOH/H2O 

or almost immediately with TFA/DCM at RT in non-ionizing solvent. The plateau in the slow 

release of 6 under mild EtOH/H2O conditions suggests that about 40% of the benzylammonium 
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groups are more readily available for reaction than the remaining tin-aryl groups. However, all 

benzylammonium groups will react under more forcing conditions.   

 

Synthesis and characterization of resin-supported radiopharmaceutical precursors 

 

Resin-supported 3- and 4-stannyl benzoic acids 12a and 12b  (direct versus indirect approach)  

Arylzinc benzoate derivatives have been used for coupling to Sn−Cl containing fluorous 

soluble supports and have an advantage given the wide functional group tolerance of arylzinc 

species in cross-coupling reactions.
24, 26

 Similarly, the solution-phase analogue of resin 1, 

tributylchlorostannane, reacts with the dilithio salt of bromobenzoic acids for arylstannylation.
41

 

Interestingly, the analogous approach using resin 1 as a direct route to resin-supported benzoic 

acids through lithiated salts of 3- or 4-bromobenzoic acid proved unsuccessful. 

We decided to explore the versatility of the organolithium approach using protecting 

groups. Given the acid sensitivity of the tin-aryl bond, the choice of protecting groups was 

somewhat limited, thus an indirect approach for obtaining resin-bound benzoic acids was 

deemed necessary. Oxazolidine-protected benzaldehydes were chosen as an appropriate 

intermediate, whereby the aldehyde was first masked with pseudoephedrine and later removed 

with dilute AcOH.
42-43

 Resin-supported 3- and 4-stannyl benzoic acids 12a and 12b were 

obtained by this indirect route (Fig. 5, where “a” consistently labels the 3-substituted arylstannyl 

resins and “b” the 4-substituted arylstannyl derivatives). 

[FIGURE 5] 

 

(i) Resin-supported 3- and 4-stannyl oxazolidinylbenzenes, 10a and 10b 

Refluxing 3- or 4-bromobenzaldehyde (7a/b) with pseudoephedrine (8) in benzene 

produced the corresponding bromo-oxazolidines (9a/b) in near quantitative yield (Fig. 6). 

Oxazolidine derivatives 9a/b were then treated with n-BuLi to produce the aryl-lithium 

intermediate in situ. To these solutions was added resin 1 as the limiting reagent (0.5 equiv.) to 

ensure complete conversion of Sn−Cl to Sn−aryl. 

Analysis of the resultant resins by solid phase MAS 
119

Sn NMR showed one signal at -

41.8 and -42.1 ppm for resins 10a and 10b, respectively (for examples of representative spectra 

see Supplemental data). The absence of a peak in the range 140−150 ppm indicated that all 
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Sn−Cl sites on the resin had reacted and were occupied by aryl groups. To obtain the solid phase 

MAS 
119

Sn NMR spectra, resins were swollen in either CHCl3 or toluene. This had the effect of 

narrowing the resonance peaks, allowing two peaks within 3−4 pm to be clearly identified. In 

addition to the normal C−H and aromatic absorptions from the resin’s backbone, solid phase IR 

spectra of these resins showed the presence of a C−O stretch at 1044 and 1048 cm
-1

 for resins 

10a and 10b, respectively, consistent with the presence of the oxazolidine. 

Iodinolysis proved to be an unreliable method of analysis for resin-supported 10a and 

10b. The oxazolidine ring was unstable under iodinolysis conditions with the parent oxazolidine 

accounting for <10% of the total area under the curve in HPLC. Consequently, loadings of resins 

10a/b were not determined.  

  

(ii) Resin-supported 3- and 4-stannyl benzaldehydes, 11a and 11b 

 Resins 10a/b, treated with a mixture of AcOH, MeOH and H2O (5:5:1) at RT for 24 h, 

afforded resin-bound benzaldehydes 11a/b and were subsequently analysed by the three methods 

mentioned above. The 
119

Sn NMR
 
spectrum of the 4-stannylbenzaldehyde resin 11b showed one 

signal at -39.8 ppm. This change in chemical shift from -42.1 to -39.8 ppm, although small, was 

seen consistently. The IR spectrum showed characteristic aldehyde absorptions in addition to the 

usual polymer backbone signals. Additionally, the C−O absorption stretch of the oxazolidine at 

1048 cm
-1

 had disappeared. The IR spectrum confirmed the oxazolidine to aldehyde conversion 

but could not be used to quantify the extent of conversion. Iodinolysis and subsequent HPLC 

analysis of 4-iodobenzaldehyde 13b released indicated a loading capacity of 0.78 mmol/g for 

resin 11b. Similarly, HPLC analysis of resin 11a showed 1.05 mmol of 3-iodobenzaldehyde 13a 

per gram of resin. 
119

Sn NMR and IR spectra showed results similar to that of resin 11b. 

 Given that the oxazolidine hydrolysis conditions could promote protonolysis, the stability 

of the tin-aryl bond was confirmed by treating resin 11b for an additional 25 h at RT. HPLC 

analysis post iodinolysis indicated that resin 11b loading remained steady at 0.78 mmol/g. 

 

(iii) Resin-supported 3- and 4-stannyl benzoic acids, 12a and 12b 

The susceptibility of the Sn−aryl bond to acid protonolysis limited the choice of 

oxidizing agents for the conversion of the aldehyde to the acid. Hence, the focus was on agents 

such as the peroxyacids (i.e., peracetic acid, 3-chloroperbenzoic acid (mCPBA)) and the 
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peroxides (i.e., benzoyl peroxide and oxone). With resin 11b, peroxides gave incomplete 

conversion to acid, as evidenced by iodinolysis product mixtures of 13b and 4-iodobenzoic acid 

14b. Interestingly, the 
119

Sn NMR chemical shifts seemed somewhat sensitive to the substituents 

on the aromatic ring. In the case of the 3-substituents on resin 11a, the carbaldehyde and 

carboxyl groups showed 
119

Sn chemical shifts at -39.2 and -41.3 ppm, respectively. In cases 

where there were similar amounts of the aldehyde and acid, two overlapping closely spaced 

peaks could be observed (Supplementary data, Fig. S7). This difference in shifts was not 

apparent for the 4-substituted resins. 

The most efficient conversions with resin 11a were achieved with five-fold excess of 

unpurified mCPBA, resulting in a mixture of ~98% acid 14a and ~2% aldehyde 13a following 

iodinolysis and HPLC. Similar results were observed with resin 11b: 92−95% acid 14b and 

8−5% aldehyde 13b. Unpurified mCPBA contained approximately 7% 3-chlorobenzoic acid, and 

use of purified mCPBA reduced conversion to about 50%. Loadings for resin 11a were 0.93 

mmol/g acid and 0.01 mmol/g aldehyde, and resin 11b were 0.69 mmol/g acid and 0.03 mmol/g 

aldehyde. IR spectra for the acids were consistent with conversion from an aldehyde as seen by 

the loss of the dual carbonyl absorptions (1700 and 1646 cm
-1

), and the appearance of two new 

carbonyl signals at 1718 and 1689 cm
-1

. The former is attributed to a hydrogen-bonded acid 

dimer implying that the carboxylic acid groups can be in close contact with each other. 

 

Resin-supported 3- and 4-stannyl benzamides (indirect approach) 

A number of coupling reactions were carried out with resin-bound acids 12a/b in an 

effort to conjugate amines for the preparation of resin-supported benzamides 15a/b. As shown in 

Figure 6, this was examined by (i) amine-conjugation directly to the acid using a coupling 

reagent (e.g., DCC) and  (ii) formation of an active ester (i.e., N-succinimidyl ester resins 16a/b) 

for subsequent amine-conjugation. Radio-iodinolysis of resin 16a releases 17a, which provides a 

prosthetic group that has found use in the radiolabeling of diverse amines. While both routes are 

sources of radioiodobenzamides (18a/b), the latter method is applicable to amines, amino acids, 

and proteins. The former method is restricted to protected amines.   

[FIGURE 6] 

 

(i) Direct diamine coupling with resin-supported acids 12a/b 
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As illustrated in Figure 7, this study focused on dialkylamino(ethyl or propyl)amines 

using either direct coupling or through the resin supported N-succinimidyl esters, 16a/b.  Thus, 

treatment of 12b, which had a loading capacity of 0.66 mmol of 4-benzoic acid per gram of 

resin, with DCC and N,N-diethylethylenediamine gave a benzamide-bound resin (19b-2, Table 

2). The 
119

Sn NMR spectrum showed one peak slightly shifted upfield from the acid. This was as 

expected since the structural changes are remote from the tin. The IR spectra were consistent 

with a benzamide structure. Iodinolysis and HPLC confirmed 0.40 mmol of 2-(N,N-

diethylamino)ethyl-4-iodobenzamide and 0.10 mmol of 14b being released per gram of resin. 

The presence of 14b indicated that amide formation had not gone to completion under these 

conditions, the acid to amide conversion was 60%.  

[FIGURE 7] 

A small library of resin-bound dialkylaminoethyl benzamides 19b from resin 12b was 

produced using the DCC amine-coupling method by substituting different diamines (Table 2). 

The 
119

Sn NMR spectra of the resin-bound benzamides were all similar, showing one signal 

between -39.8 and -41.2 ppm. IR spectra showed the appearance of amide carbonyl absorptions 

between 1637 and 1658 cm
-1

. The iodobenzamides released from the small library of resins 19b 

are putative ligands for σ-receptors based on structure−activity relationships,
44

 including N-(2-

diethylaminoethyl)-4-[
123

I]iodobenzamide ([
123

I]I-BZA) from resin 19b-2, which has favourable 

σ-receptor binding and has been successfully used clinically to image malignant melanoma.
34-35

 

Interestingly, binding affinity studies show that 5 of the iodobenzamides have affinities 

improved over I-BZA (data not shown). Additional studies are needed to determine if this 

enhancement in affinity extends to improved radiopharmaceutical behaviour in vivo. 

[TABLE 2] 

 

(ii) Coupling using resin-supported N-succinimidyl ester intermediates 16a/b 

N-succinimidyl-radioiodobenzoates are well-established prosthetic groups for the 

labeling of amines, amino acids, and peptides.
41, 45-46

 Traditionally, they are produced from the 

corresponding N-succinimidyl tributylstannylbenzoates,
41

 and this solution phase approach 

necessitates cumbersome HPLC purification to remove toxic organotin compounds from the 

labeled product. Resin-supported stannyl N-succinimidyl esters (16a/b) circumvent these 

challenges. As shown in Figure 6, resins 16a/b can serve as a bioconjugate by two approaches, 
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with the first being through amine coupling to resin-supported benzamides, or by first releasing 

the prosthetic group into solution and then conjugating to the amine-containing ligand of choice. 

Herein we demonstrate the former approach. 

Resins 16a/b were obtained by treating resins 12a/b with EDC and N-

hydroxysuccinimide (NHS). The 
119

Sn NMR spectra showed one signal for resins 16a/b that 

wase only slightly shifted from that of the acid. IR spectra showed the presence of appropriate 

carbonyl absorptions from the NHS moiety. Iodinolysis and HPLC analysis of resins 16a and 

16b revealed the presence of 0.69 mmol/g and 0.53 mmol/g of N-succinimidyl 3- and 4-

iodobenzoate, respectively. 

Resin 16a was treated with three N,N-alkylpropylenediamines at RT for 24 h to obtain  

resin-supported benzamides 19a-1 through 19a-3, whereas resin 16b was similarly treated with 

N,N-diethylethylenediamine to afford resin 19b-2. These specific resins were prepared, since the 

corresponding iodobenzamides had the more promising binding affinities to σ-receptors (data not 

shown). As presented in Table 3, this small library of resin-supported benzamides were prepared 

with >96% efficiency from resins 16a/b and had variable benzamide loadings ranging from 

0.43−0.75 mmol/g. These results show that the NHS ester intermediates are similarly efficient at 

producing resin-bound stannyl benzamides 19a/b as through amine-DCC coupling to the acid-

bound resins 12a/b. Regardless of the route, final resin-bound benzamide preparations contained 

20−40% benzoic acid moieties. 

[TABLE 3] 

 In comparison to the good conversions experienced in obtaining the resin-supported acids 

from the aldehydes, the lower conversions to the amides encouraged us to look in more detail at 

this process. When resin 12b was treated with an alternative coupling agent DIC with 1-HOBT 

in DCM without subsequent addition of amine, the resultant resin showed two carbonyl 

absorptions at 1705 and 1784 cm
-1

, consistent with the symmetric and asymmetric stretches for 

an anhydride. This suggested that rather than remaining as active esters, a significant number 

reacted with adjacent carboxylic acid groups to form anhydrides. The IR spectrum of the acid 

itself had revealed a carbonyl band at 1718 cm
-1

, consistent with hydrogen bonded acid dimers in 

support of this conjecture.   

Subsequent reaction of the resin-supported anhydride with amine would result in 

equimolar amounts of amide and recovered acid. In an attempt to bypass this problem, several 



 

 13

reaction parameters were tested without any improvement in conversion efficiency of acid to 

amide: reaction time was varied from several hours to days, coupling reagents were changed, and 

the sequence of reagent addition was modified, and the resin was re-treated. 

The apparent inevitability of obtaining amides contaminated with significant amounts of 

acid and relatively enhanced amounts of aldehyde suggests that this route is of limited interest 

for the production of individual radiolabeled benzamides. However, a fast and convenient 

purification process was developed using solid phase extraction (SPE) of post-release mixtures 

of compounds from resins 19a/b. Following this method, iodobenzamides were isolated in 10 

min with chemical purity >90% (see Supplementary data for further description).   

A comparison of the resin approach and the traditional approach seems appropriate given 

the need for a separation step with the resin. The resin approach involves separating an acid, a 

base, and a neutral, which was accomplished using SPE. The traditional approach through a tri-

n-butylstannylated benzamide involves the separation of the reputedly toxic tin tri-n-butylated 

precursor from the desired radioiodinated benzamide. The precursor is used in large excess and 

both the precursor and product are lipophilic and typically provide a difficult separation and rely 

upon a final HPLC purification step. 

 

Resin-supported 3- and 4-stannyl benzamides (direct approach) 

Resin-supported 3- and 4-stannylbenzamides 19a/b, prepared from either resins 12a/b or 

16a/b, allowed production of small libraries of iodobenzamides. However, with incomplete 

conversions over the multistep synthesis, significant contaminants were observed. While an 

albeit fairly rapid and simple purification procedure was established to remove the iodobenzoic 

acid and iodobenzaldehyde contaminants, this would not be feasible in scaling up the 

commercial production of radiohalogenated benzamides. Consequently, a direct route from the 

conjugation of chlorostannane resin 1 with lithio derivatives of bromobenzamides was explored 

as a convergent approach to resin-supported benzamides 19a/b.  

A concern arises about the two competitive pathways for the reaction of 

bromobenzamides with an organolithium reagent: bromine-lithium exchange (transmetallation) 

and deprotonation.
47-50

 Addition of a concentrated solution of the alkyllithium reagent (i.e., ~2.5 

mol/L n-BuLi) to bromobenzamide led to internal quenching of any aryllithiated intermediates, 

most likely due to n-BuLi being in aggregate form.
48

 This quenching phenomenon can be 
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minimized and altogether avoided by using a dilute solution of the organolithium to guarantee it 

being in monomeric form, and by inverting the mode of addition.
47-49

 

A modified procedure was consequently devised and optimized where bromobenzamide 

solution was “inversely” added to a dilute THF solution of 3 equiv. of monomeric alkyllithium 

(i.e., 0.03 mol/L t-BuLi) with rapid stirring at -78°C (Fig. 8). Quenching studies with MeOD 

confirmed the formation of the dilithio salt of the bromobenzamide. Subsequently, 0.5 equiv. of 

resin 1 were added in slow portions. Four 4-bromobenzamides were treated in this manner, and 

the preparation of the resin-bound 4-stannyl benzamides was verified via iodinolysis followed by 

HPLC, 
119

Sn NMR, and IR spectroscopies. 

[FIGURE 8] 

Iodinolysis revealed benzamide loadings for respective resins as follows: 19b-9, 0.37 

mmol/g; 19b-10, 0.25 mmol/g; 19b-11, 0.17 mmol/g; and 19b-12, 0.53 mmol/g. In each case, the 

4-iodobenzamide was the only product observed by HPLC. 
119

Sn NMR spectra showed a major 

signal around -41 ppm, attributable to the Sn−aryl bond, and a smaller broader peak around -82 

ppm, assigned to Sn−O. The IR spectra were consistent with the assigned benzamide structure. 

The direct approach from conjugation of resin 1 to lithiated N-alkylbromobenzamides 

gave yields comparable to the indirect approach through resins 12a/b, but the former has the 

advantage of producing material in high chemical purity. This would be of considerable value for 

production of radiopharmaceuticals with established biological potential, since additional 

purification steps require time, and result in concomitant loss of radioactivity. 

 

Radiolabeling with 
131

I 

Because carbamide groups are deactivators in electrophilic aromatic substitution 

reactions such as radioiodination, resin-supported benzamide 19b-7 was chosen to illustrate 

radiolabeling with 
131

I (half-life (t1/2) = 8 d) as proof-in-principle. No attempt was made to 

optimize the labeling yields of the resin-supported precursor 19b-7 to N-(2-morpholinylethyl)-4-

iodobenzamide (20b-7). The reaction mixture from the radioiodination of 19b-7 was also chosen 

to test the radioiodobenzamide purification process. Radiolabeling with ~150 MBq (4.05 mCi) of 

[
131

I]NaI with peracetic acid as oxidant resulted in a mixture of radiolabeled compounds: [
131

I]-

N-(2-morpholinylethyl)-4-iodobenzamide (~50% RCY); [
131

I]-4-iodobenzaldehyde (~10% 

RCY); [
131

I]-4-iodobenzoic acid (~20% RCY), as estimated by radioHPLC (Fig. 9). Following 
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SPE purification, radioiodobenzamide was obtained with >90% RCP and 37% RCY. [
131

I]-4-

iodobenzaldehyde remained around 10%. With good isolated radiochemical purities and 

moderate radiochemical yields for initial radiolabeled studies, this encouraging result suggests 

room for optimization in using resin-supported arylstannanes towards radiolabeled precursors. 

 [FIGURE 9] 

 

Conclusions 

With an eye to providing effective precursors to iodine labeled radiopharmaceuticals, 

resin-supported arylstannanes have been synthesized to provide no-carrier-added radioiodide 

compounds free of toxic tin-bearing precursors and side-products that can be difficult to remove. 

Resins 1 and 4 were tested for their solvent compatibility and resin 4 for its acid sensitivity.   

Described are two library-based approaches and a final direct approach to creating single resin-

supported pharmaceuticals of chemical high purity. Resin supported 3-and 4-stannyl 

benzaldehydes (11a/b), benzoic acids (12a/b) and N-succinimidyl benzoates (16a/b) were 

prepared using aryllithium intermediates. In turn, these were converted to small libraries of 

benzamide precursors (19a/b). The conversion of benzaldehydes to benzoic acids proceeded in 

high yield and provided iodobenzoic acids with good purity. The conversion of benzoic acids to 

benzamides was less successful and was interpreted to proceed to a significant extent through 

resin supported benzoic acid anhydrides. A third, more successful approach, involved the direct 

conjugation of the dilithio salt of an intact halobenzamide to the chlorostannane resin 1. This 

provided iodobenzamides in high purity. Resin 19b-7 was successfully radiolabeled with 
131

I. 

While radiolabeling yields were not optimized in this study, this points the way to using the 

approaches developed for solid phase organic chemistry for generating new 

radiopharmaceuticals by preparing and screening much larger libraries. 
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Experimental 

 

Instruments and materials 

Chemicals and reagents were purchased from Sigma-Aldrich, Lancaster or Gelest and 

used without further purification unless otherwise indicated. THF and DCM solvents were 

freshly distilled from potassium-benzophenone and calcium hydride stills, respectively. SiO2 

chromatography was used to remove stabilizers from commercial grade divinylbenzene (DVB) 

(with ~20% ethylvinylbenzene). 

1
H NMR and 

13
C NMR spectra were obtained using either a Varian Gemini 300 (300 

MHz for 
1
H) or a Varian Mercury 400 (400 MHz for 

1
H) spectrometer. 

1
H NMR spectra of 4-

disubstituted aromatics were analyzed as AB spectra. Solid phase MAS
 119

Sn NMR spectra were 

obtained on a Varian Infinity Plus 400 spectrometer (400 MHz for 
1
H) using a Chemmagnetics 

7.5 mm probe spinning at an angle of 54.74°. Spectra were obtained with acquisition at 120 

MHz, using a 45° pulse with a 5 s delay between pulses. Resins were pre-treated with toluene or 

chloroform prior to obtaining 
119

Sn NMR spectra. A Bruker FT-IR with a Spectra-Tech diffuse 

reflectance attachment (DRIFT) was used for resin samples. The Kubelka-Munk conversion was 

used instead of an absorbance scale for the resin samples for improved signal to noise ratio. A 

Finnigan MAT 8230 Mass Spectrometer was used to obtain the mass spectra. 

 

Proto and iododestannylation procedures for resin 4 

Using 1% TFA in DCM 

To a 5 mL vial was added resin 4 (50.3 mg, 65.4 µmol), DCM (1.98 mL) and TFA (20 

µL, 0.26 mmol). After shaking in a sealed vial for 15 min at RT, the mixture was transferred into 

a 25 mL flask and the solvent was removed in vacuo. EtOH (3 mL) and a 0.2 mol/L I2 solution in 

EtOH (40 µL, 8 µmol) were added to the residue. After stirring for 3h at RT, a 0.1 mol/L sodium 

metabisulfite solution (0.2 mL, 20 µmol) was added. This solution was adjusted to pH=5−6 with 

0.1 mol/L NaOH and diluted to 25 mL with H2O. An aliquot was filtered through a syringe filter 

and then analysed by HPLC to determine the amount of 5 and 6 released. 
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Using 0.4 mol/L HCl in EtOH/H2O, 1:1.25 

About 50 mg of resin 4 was suspended in 0.4 mol/L HCl in an EtOH/H2O mixture 

(1:1.25) and shaken for the selected time. The resin was removed by filtration, washed and the 

filtrate taken to dryness with a rotary evaporator. The residue was treated with H2O and adjusted 

to pH=5−6 with 0.1 mol/L NaOH. This solution was diluted to 10 mL and analyzed by HPLC 

against standard solutions. 

 

Solvent compatibility of resins 1 or 4  

Resin 1 or 4 was ground into a fine powder with a mortar and pestle. A NMR tube was 

filled with this powder to a height of about 10 mm, then 1 mL of a selected solvent was added to 

the NMR tube. After stirring to ensure wetting of the powder, the suspension was allowed to 

settle for 24 h and the height of the resin column in the tube was re-measured. Solvent 

compatibility was calculated as [(volume of wet resin [minus] volume of dry resin)/volume of 

dry resin]. 

Alternatively, about 100 mg of resin 1 or 4 in a 4 dram vial was soaked in an excess of 

the selected solvent for 24 h. The suspension was transferred to a tared sintered glass funnel and 

vacuum filtered until the bulk of the solvent had been removed. The funnel and contents were 

then weighed. The decrease in weight was followed for a period of 2 h by which time the weight 

remained constant near the original weight for most solvents except DMSO. Solvent 

compatibility was calculated as [(weight of wet resin [minus] volume of dry resin)/volume of dry 

resin]. 

 

General procedure for the iodinolysis of resins 

To a suspension of resin (~20 mg) in ~2 mL acetonitrile (CH3CN), ~1 mL of I2/CH3CN 

(0.1 mol/L) was added. After shaking at RT for 2 h, an aqueous solution of sodium thiosulfate 

(0.2 mol/L) was added until a colorless solution was obtained. Upon dilution to 25 mL with 

MeOH, a portion of this suspension was filtered through a Whatman 0.45 µm nylon syringe 

filter. These solutions were analyzed by HPLC against a standard solution of the appropriate 

authentic iodo-compound for both retention time and area (see Supplementary data for HPLC 

conditions and for synthesis of standards where appropriate). 
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Preparation of (4S, 5S)-2-(3- and 4-Bromophenyl)-3, 4-dimethyl-5-phenyl-1, 3-oxazolidine 

(9a and 9b)  

Into a one-necked 250 mL round-bottomed flask, equipped with a Dean−Stark trap and a 

condenser, was placed 3-bromobenzaldehyde (7a, 8.78 g, 47.5 mmol) and (S,S)-(+)-

pseudoephedrine (8, 7.83 g, 47.4 mmol), and benzene (180 mL). After 18 h reflux, benzene was 

removed under reduced pressure, to give a yellow oil which solidified upon standing.  A white 

solid (m.p. 73−75°C) was obtained after recrystallization from hexanes (9a), 14.78 g (94%). 
1
H 

NMR spectrum (CDCl3,) δ: 7.75 (s, 1H), 7.51−7.26 (m, 8H), 4.93 (s, 1H), 4.76 (d, 1H, 
3
JH-H = 

7.2 Hz), 2.56 (m, 1H), 2.23 (s, 3H), 1.23 (d, 3H, 
3
JH-H = 5.6 Hz).

 13
C NMR spectrum (CDCl3,) δ: 

141.96, 139.91, 132.08, 130.95, 129.86, 128.37, 128.00, 126.76, 126.61, 122.50, 98.60, 86.60, 

68.62, 35.12, 14.23. IR spectrum (CH2Cl2, cm
-1

): 2972 and 2792 (C−H), 1575 and 1460 (C=C), 

1043 (C−O). HRMS, m/z: calcd. for C16H18NO
79

Br 332.0650, found 332.0644. 

Analogously, 4-bromobenzaldehyde (7b, 500 mg, 2.7 mmol), (S,S)-(+)-pseudoephedrine 

(8, 450 mg, 2.7 mmol) and benzene (40 mL) were refluxed for 18 h. Solvent evaporation yielded 

a clear, colorless, viscous oil (9b), 883 mg (98%). 
1
H NMR spectrum (CDCl3) δ: 7.42 (d, 2H, 

3
JH-H = 8.4 Hz), 7.35−7.20 (m, 7H), 4.82 (s, 1H), 4.65 (d, 1H, 

3
JH-H = 8.4 Hz), 2.45 (m, 1H), 2.09 

(s, 3H), 1.12 (d, 3H, 
3
JH-H = 6.0 Hz). 

13
C NMR spectrum (CDCl3) δ: 139.97, 138.53, 131.38, 

129.68, 128.33, 127.94, 126.56, 122.91, 98.69, 86.50, 68.59, 35.00, 14.19. IR spectrum (CH2Cl2, 

cm
-1

): 2974 and 2793 (C-H), 1594, 1489 and 1456 (C=C), 1043 (C−O). HRMS, m/z: calcd. for 

C16H18NO
79

Br 332.0650, found 332.0647. 

 

Poly-(4S, 5S)-2-(3- and 4-{dibutyl[2-(3-and 4-vinylphenyl)ethyl]stannyl}phenyl)-3, 4-

dimethyl-5-phenyl-1, 3-oxazolidine)-co-divinylbenzene (Resin 10a and 10b) 

To (4S, 5S)-2-(3-bromophenyl)-3,4-dimethyl-5-phenyl-1,3-oxazolidine (9a, 2.90 g, 8.7 

mmol) in a three-necked flask equipped with a T-bore stopcock, a rubber septum and a powder 

addition side arm containing resin 1 (4.01 g, 5.9 mmol Sn−Cl) was added dry THF (30 mL) 

under Ar. To this solution was added n-BuLi (3.0 mL, 7.5 mmol, 2.5 mol/L) at -78°C.  After 2 h 

at -78°C, resin 1 was tipped into the THF solution, the suspension was allowed to stir for about 

18 h as it warmed to RT. MeOH (3 mL) was added and the suspension was filtered and washed 

with MeOH, H2O, MeOH/H2O/acetone, MeOH/acetone, and MeOH several times to yield 4.3 g 
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of resin 10a after drying. MAS 
119

Sn NMR spectrum (toluene): -41.8 ppm. DRIFT-IR spectrum 

(solid, cm
-1

): 1044 (C−O). 

 Similarly, (4S, 5S)-2-(4-bromophenyl)-3,4-dimethyl-5-phenyl-1,3-oxazolidine (9b, 1.02 

g, 3.1 mmol) in dry THF (35 mL) was reacted with n-BuLi (2.5 mol/L, 1.2 mL, 3.0 mmol) and 

resin 1 (1.05 g, ~1.6 mmol Sn−Cl) to yield 1.24 g of resin 10b. MAS 
119

Sn NMR spectrum 

(toluene):   -42.1 ppm. DRIFT-IR spectrum (solid, cm
-1

): 1048 (C−O). 

 

Poly-(3- and 4-{dibutyl[2-(3-and-4-vinylphenyl)ethyl]stannyl}benzaldehyde)-co-

divinylbenzene (Resins 11a and 11b) 

Resin 10a (3.98 g) was treated with a mixture of AcOH (25 mL), MeOH (25 mL), and 

H2O (9 mL) with gentle shaking at RT for 27 h. The solid was recovered by filtration and was 

washed successively with MeOH, H2O, MeOH/H2O/acetone, MeOH/acetone, and MeOH to 

yield 3.65 g of resin 11a. MAS 
119

Sn NMR spectrum (toluene): -39.2 ppm. DRIFT-IR spectrum 

(solid, cm
-1

): 2716 (aldehyde C−H stretch), 1699 (aldehyde C=O), 1645 (aldehyde C=O). 

Iodinolysis: 1.05 mmol of 10a per gram of resin 11a. 

 Resin 10b (1.22 g) was treated with a mixture of MeOH (5 mL), H2O (1.5 mL), and 

AcOH (5 mL) with shaking at RT for 17 h.  The solid was filtered and washed to yield 1.00 g of 

resin 11b.  MAS 
119

Sn NMR spectrum (toluene): -39.8 ppm. DRIFT-IR spectrum (solid, cm
-1

): 

2715 (CHO); 1707 (C=O). Iodinolysis: 0.78 mmol of 10b per gram of resin 11b. 

 

Poly-(3- and 4-{dibutyl[2-(3-and-4-vinylphenyl)ethyl]stannyl}benzoic acid)-co-

divinylbenzene (Resins 12a and 12b) 

Resin 11a (103 mg, ~0.087 mmol of aldehyde) was added to a vial and swollen with 

reagent grade MeOH (5 mL). To the mixture was added mCPBA (~93%, 102 mg, 0.20 mmol). 

After shaking for 24 h at RT, the solid was filtered and washed successively with 1 mol/L 

NaOH, acetone, 1.7 mol/L AcOH/EtOH, H2O, MeOH/H2O/acetone, and MeOH to afford 93 mg 

of resin 12a. MAS 
119

Sn NMR spectrum (toluene): -39.7 ppm. DRIFT-IR spectrum (solid, cm
-1

): 

3700-2500 (O−H), 1718 (C=O), 1689 (C=O). Iodinolysis: 0.93 mmol of 14a and 0.01 mmol of 

13a per gram of resin 12a. 

As per resin 11a, resin 11b (210 mg, ~0.15 mmol) was treated with mCPBA (~90%, 298 

mg, 0.6 mmol) in MeOH (5 mL) to yield 188 mg of resin 12b. MAS 
119

Sn NMR spectrum 
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(CHCl3): -40.9 ppm. DRIFT-IR spectrum (solid, cm
-1

): 3600−2500 (O−H, broad), 1725 and 1691 

(C=O). Iodinolysis: 0.66 mmol of 14b and 0.03 mmol of 13b per gram of resin 12b. 

 

Typical procedure for preparation of resin-supported stannyl-bound dialkyldiamines 

(Resins 19a and 19b) from Resins 12a and 12b. 

Poly-(4-{dibutyl[2-(3-and 4-vinylphenyl)ethyl]stannyl}-N,N-diethylethylene 

diaminobenzamidyl)-co-divinylbenzene (19b-2) 

Into a 50 mL round-bottom flask were placed N,N-diethylethylenediamine (28 mg, 0.24 

mmol), collidine (27 mg, 0.22 mmol), DCC (61 mg, 0.30 mmol), 1-HOBT (32 mg, 0.21 mmol), 

resin 12b (150 mg, ~0.10 mmol), and DCM (5 mL). After stirring under an atmosphere of argon 

for 7 days at RT, the solid was filtered and washed with MeOH/acetone, DCM, and MeOH 

solutions successively (3 x 15 mL), to yield 150 mg of resin 19b-2. MAS 
119

Sn NMR spectrum 

(CHCl3): -41.2 ppm. DRIFT-IR spectrum (solid, cm
-1

): 1653 (C=O), 3343 (N−H). Iodinolysis: 

0.40 mmol N,N-(2-diethylaminoethyl)-4-iodobenzamide 20b-2, 0.10 mmol of 14b and 0.05 

mmol of 13b per gram of resin.   

 The same procedure was utilized for the formation of the library of resin-bound stannyl 

benzamides (19a/b) by substituting different diamines for N,N-diethylethylenediamine. MAS 

119
Sn NMR spectra (CHCl3) showed one peak in the range -39.8 to -41.2 ppm. DRIFT-IR spectra 

(solid, cm
-1

) showed C=O absorptions in the range 1637 to 1653 and N−H around 3343.  

Iodinolysis results are presented in Table 2.  

 

General procedure for the preparation of resin-supported 3- and 4-stannyl N-succinimidyl 

benzoates (16a and 16b) from resin 12a and 12b. 

Resin-supported benzoic acid (50 mg 12a or 12b) was swollen with DCM for 10 min and 

to this was added EDC (59 mg, 0.31 mmol), NHS (35 mg, 0.30 mmol), collidine (52 mg, 0.43 

mmol), and DCM (4 mL). The NHS solution was then added to the resin suspension followed by 

stirring at RT for 24 h. The suspension was filtered and the resin was washed with DCM and 

acetone several times to yield the corresponding resin-bound active ester 16a or 16b.  

16a: MAS
 119

Sn NMR spectrum (toluene): -38.5 ppm (Sn−aryl). DRIFT-IR (solid, cm
-1

): 1772 

(C=O (asymmetric)), 1746 (C=O (symmetric)), 1071 (C−N).  Iodinolysis: 0.69 mmol of 17a and 

0.13 mmol of 14a per gram of resin. 
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16b: MAS 
119

Sn NMR spectrum (toluene): -39.4 ppm (Sn−aryl). DRIFT-IR (solid, cm
-1

): 1773 

(C=O (asymmetric)), 1743 (C=O (symmetric)). Iodinolysis: 0.53 mmol of 17b and 0.06 mmol of 

14b per gram of resin.  

 

General procedure for the preparation of resin-supported 3- and 4-stannyl benzamides 

(19a and 19b) from resin 16a and 16b. 

Resin-supported active ester (200 mg, 16a or 16b) was swollen with DCM (5 mL) for 10 

min. To resin was added diamine and the reaction was allowed to stir for 24 h at RT. The solid 

was filtered and washed with MeOH, acetone/H2O, MeOH/H2O/acetone and MeOH to yield a 

library of resin-bound stannyl benzamides (19a/b) using three N,N-dialkylpropyldiamines for 

resin 16a and one N,N-dialkylethyldiamine for resin 16b, as shown in Table 3.   

MAS 
119

Sn NMR spectra (CHCl3) showed one peak in the range -39.8 to -40.2 ppm.   

DRIFT-IR spectra (solid, cm
-1

) showed C=O absorptions in the range 1637 to 1640 and amide 

N−H stretch, 3285-3307; 1537-1540 (amide N−H deformation). 

Iodinolysis results presented in Table 3 are a combination of two separate analyses since 

N-succinimidyl-3-iodobenzoate does not survive the pH 5 conditions. 

 

Typical procedure for preparation of resin-supported 4-stannyl-benzamides by direct 

addition from Resin 1: 

Poly-(4-{dibutyl[2-(3-and 4-vinylphenyl)ethyl]stannyl}-N,N-diethylpropylene 

diaminobenzamidyl)-co-divinylbenzene (19b-9) 

A three-necked round-bottomed flask, equipped with a T-bore stopcock, a rubber septum, 

stir bar, and a powder addition side arm containing of resin 1 (175 mg, 1.67 mmol/g, 0.3 mmol) 

was evacuated and N2 introduced. Freshly distilled THF (40 mL) was added via syringe. The 

flask and its contents were cooled to -78 °C,
 
evacuated and N2 introduced. Then t-BuLi (770 µL, 

1.2 mmol) was added dropwise to afford a 0.03 mol/L solution. N-(3-(Diethylamino)propyl)-4-

bromobenzamide (184 mg, 0.59 mmol) in dry THF  (1 mL) was added dropwise by syringe with 

vigorous stirring. After 2 h at -78 °C, the resin was tipped into the solution and left to stir as the 

suspension warmed slowly to RT. After MeOH addition (3 mL), the suspension was filtered and 

sequentially washed with MeOH/acetone, MeOH/H2O, MeOH/acetone/H2O, and MeOH several 

times to afford ~180 mg of resin 19b-9 after drying. 
119

Sn MAS NMR spectrum (toluene):  82.0 
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ppm (Sn−O) and -40.8 ppm (Sn−aryl). DRIFT-IR spectrum (solid, cm
-1

): 1637 (amide C=O) 

3319 and 1538 (amide N−H). Iodinolysis:  0.37 mmol N-(3-(diethylamino)propyl)-4-

iodobenzamide 20b-9 per gram of resin. 

 

Radiolabeling of [
131

I]-N-(2-morpholin-4-ylethyl)-4-iodobenzamide 

Radioiodination was carried out by adding 100 µL of 0.1 mol/L H3PO4, 70 µL of n.c.a. 

Na
131

I (150 MBq (4.05 mCi) in 0.1% aq. NaOH) and 25 µL of peracetic acid solution (1 mL of 

glacial AcOH and 1.7 mL of 30% aq. H2O2) into a 2 mL vial containing a methanolic suspension 

of resin 19b-7 (3.2 mg in 100 µL). After 15 min at RT with stirring, 100 µL of 0.2 mol/L 

Na2S2O3 was added to quench any excess iodine. The insoluble material was then passed through 

a Whatman 0.45 µm nylon syringe filter. The filtrate containing the desired product was 

analyzed by radio-HPLC (C18, 4.6 x 250 mm) with CH3CN/Na2HPO4 buffer (5 mmol/L, pH 7) as 

the mobile phase. Radiochemical yield (RCY) was defined as: [isolated radioactive ligand, 

MBq]/[total radioactivity added, MBq]. 
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Supplementary data 

Available with the article: HPLC conditions, experimental procedures for iodobenzamide 

standards and SPE benzamide purification, resin SEM, MAS 
119

Sn NMR and DRIFT-IR spectra 

for resins, and HPLC chromatograms of SPE benzamide purification. Supplementary data are 

available with the article through the journal Web site at 

http://nrcresearchpress.com/doi/suppl/10.1139/cjc-2014-0265.  
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Figures and Tables 

 

 

Fig. 1.  Schematic of cross-linked polystyrene-based chlorostannane resin 1.  
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Fig. 2. Routes of preparation and release of benzene derivatives from stannyl resins. 

R=Intermediate functionality, W=Target functionality, *A=Radionuclide, HX=Acid and E
+
=Electrophile  
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Fig. 3. Hydrolysis and regeneration of Resin 1 
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Table 1. Incorporation of solvents into resins 1 and 2 determined by weight and volume 

increase. 

 

 EtOH H2O EtOH/ H2O
a
 DMSO THF CH3CN C6H6 C7H8 

Resin 1 1.5
b
/1.7

c
 0/0 0.44

b
 2.6/3.2 1.6/2.0 1.0/1.5 1.5/2.6 0.9/1.2 

Resin 4 1.4/3.0 0.36/0.4 1.9
b
 2.3/2.2 1.2/2.8 0.3/1.3 0.5/1.5 0 

a
EtOH/H2O1.25:1

 

b
Weight ratios defined as: [(wt of resin + solvent) – wt of resin]/wt of resin 

c
Volume ratio:  [(volume of resin + solvent) – volume of resin]/volume of resin 
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Fig. 4. Iodo- and protodestannylation of Resin 4. A=halide, SO4
2-

, ClO4
-
, NO3

-
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Fig. 5. Preparation of resin-supported benzoic acids (12a and 12b) from the corresponding bromobenzaldehydes 

(
#
0.05 and 0.01 mmol/g of 13a and 13b detected, respectively). Reagents and conditions: (A) Reflux, benzene; (B)  

(i) n-BuLi, -78°C, THF (ii) Resin 1; (C) AcOH/H2O/MeOH; (D) 3-Chloroperbenzoic acid; (E) I2/CH3CN. 
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Fig. 6. Indirect approaches evaluated for synthesis of resin-supported benzamides.  

Reagents: (A) Amines, DCC; (B) NHS, EDC; (C) Amines/amino acids/proteins; (D)*I
-
, oxidant 
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Fig. 7. Preparation of resin-bound benzamides 19a/b (both routes). Iodinolysis (condition B) results in a mixture of 

iodobenzamides, iodobenzoic acids and iodobenzaldehydes. See Table 2 for examples of mixture ratios.  

Reagents and conditions: (A) DCC, HOBT, DCM, diamine, 7 d; (B) I2, CH3CN; (C) EDC, NHS, 24 h; (D) diamine, 

24 h. 
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Table 2. Library of resin-bound 4-stannyl dialkylaminoethyl and propyl benzamides (19b-1 to 

19b-12) prepared by amine/DCC/1-HOBT coupling with the resin-bound acid 12b. 

 

 

Resin 

19b 

 

n
b
 R 

Iodinolysis  (mmol/g)
a 

4-iodo- 

benzamide 

4-iodo-benzoic 

acid 

4-iodo-

benzaldehyde 

1 2 CH3 0.36 0.23 0.06 

2 2 CH2CH3 0.40 0.10 0.05 

3 2 CH(CH3)2 0.35 0.20 0.06 

4 2 CH2CH2CH2CH3 0.39 0.14 0.06 

5 2 (CH2)4 0.32 0.29 0.05 

6 2 (CH2)5 0.41 0.17 0.05 

7 2 (CH2)2(CH2)2O 0.54 0.11 0.06 

8 3 CH3 0.41 0.25 0.06 

9 3 CH2CH3 0.29 0.27 0.10 

10 3 CH2CH2CH2CH3 0.17 0.33 0.03 

11 3 (CH2)4 0.24 0.32 0.05 

12 3 (CH2)2(CH2)2O 0.40 0.18 0.04 

a
HPLC conditions: µBondapak C18 column (4.6 x 250 mm); 60:40 MeOH/NaH2PO4 buffer [pH 

5]; 1 mL/min. 
b
n is the number of CH2 groups in the diamine moiety of the benzamides (see Fig. 7).   
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Table 3. Iodinolysis results of resin-bound dialkyalaminoalkyl benzamides 19a and 19b 

prepared by coupling through N-succinimidyl ester bound resins 16a and 16b, respectively. 

 

 

Resin 

19 
 

n
a
 R 

Iodinolysis  (mmol/g)
 

iodo- 

benzamide
b
 

N-succinimidyl-

iodobenzoate
c
 

iodobenzoic 

acid
b
 

a-1 3 CH2CH3 0.75 0.02 0.13 

a-2 3 CH2CH2CH2CH3 0.59 0.02 0.15 

a-3 3 (CH2)4 0.64 0.01 0.17 

b-2 2 CH2CH3
 

0.43 n.d.
d
 0.09 

a
n is the number of CH2 groups in the diamine moiety of the benzamides (see Fig. 7).  

b
HPLC conditions: µBondapak C18 column (4.6 x 250 mm); 60:40 MeOH/NaH2PO4 buffer [pH 

5]; 1 mL/min. 
c
HPLC conditions: µBondapak C18 column (4.6 x 250 mm); 50:50 CH3CN/Na2HPO4 buffer [pH 

7]; 1 mL/min.  
d
n.d. = not determined. 
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Fig. 8. Preparation of resin-bound benzamide 19b-11 by direct addition of dilithiated benzamide intermediate to 

resin 1. 
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Fig. 9. RadioHPLC chromatograms following radioiodinlysis of resin-bound benzamide 19b-7 treated with 

Na
131

I/H2O2/AcOH for 15 min at RT (A) after filtration and (B) after SPE purification. 
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