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Abstract 

When nectar-feeding bats converge on a food source, they may use vocal signals to minimize 

the risk of interference by others and maximize feeding efficiency. I conducted playback 

experiments with captive Pallas’ long-tongued bats (Glossophaga soricina) and wild lesser 

long-nosed bats (Leptonycteris yerbabuenae) to investigate the implications of vocalizations 

on feeding behaviour and assess behavioural responses. I hypothesized that echolocation 

calls and social calls are used as air traffic signals around a central food source. I found 

evidence that L. yerbabuenae primarily use echolocation calls as signals to maintain an 

efficient group feeding system, and detect their conspecifics through eavesdropping. G. 

soricina may rely more on active localization of others than on eavesdropping to effect air 

traffic control, but eavesdropping on vocalizations may still indirectly influence feeding and 

flight behaviour.  

 

Keywords 
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Chapter 1  

1 Introduction 

1.1 Bat vocalizations 
Echolocation is an acoustic sensory system, used for orientation and detection and 

localization of objects (Griffin, 1958). Bats (Chiroptera) broadcast calls and listen to 

returning echoes to obtain information about their surroundings (Griffin & Galambos, 

1941). This sophisticated system appears to have evolved at least twice in bats as 

reflected by two distinct mechanisms of pulse production (Jones, 1999). Most 

echolocating bats produce calls in the larynx, but at least two species of bats in the genus 

Rousettus use tongue-clicks in echolocation (Jones & Teeling, 2006). Some laryngeal 

echolocators broadcast their calls through their nostrils, others through open mouths 

(Vanderelst et al., 2010).  Most nectarivorous and frugivorous bats of the Old World 

(Pteropodidae) are classified as non-echolocators; however, new research has produced 

evidence that these bats are creating clicks of unknown source (Boonman Bumrungsri, & 

Yovel, 2014).  

 

Beyond their physical production, there are two patterns of production of echolocation 

calls: low duty cycle (separate pulse and echo in time) and high duty cycle (separation in 

frequency). Low-duty-cycle (LDC) bats wait for echoes to return before emitting the next 

call. LDC bats typically use frequency-modulated (FM) broadband calls, covering a 

range of frequencies within each call (Jones, 1999). High-duty-cycle (HDC) bats separate 

calls and echoes by frequency using Doppler shift compensations, and so can emit calls 

and receive echoes simultaneously. These bats depend upon Doppler shifted echoes of 

the long constant-frequency (CF) narrowband calls to which their acoustic fovea is 

calibrated (Jones, 1999).  

 

The differences in these echolocation systems speak to the ecological constraints on bat 

species, and each may confer an advantage for different habitats and foraging strategies. 

For example, FM signals are better for the localization of a target, but CF signals are 
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better for the detection of a target (Schnitzler & Kalko, 2001). Both CF and FM bats can 

forage in cluttered environments, but use their calls in different ways to their advantage. 

FM bats can localize insects with echolocation calls but may rely on other sensory input 

to detect them, whereas CF bats can detect flying insects quite accurately in clutter using 

echolocation alone (Jones, 1999). Because nectarivorous species have a stationary food 

source, it may seem that other sensory means such as vision and olfaction could take 

precedence over echolocation when foraging. This is not the case, however. Certain 

flowers have evolved structures that act as acoustic beacons and guides, making their 

nectar sources more conspicuous to echolocating pollinators (Von Helversen & von 

Helversen, 2003; Simon, Holderied, Koch, & von Helversen, 2011). Thus, the FM 

echolocation calls of nectar-feeding bats (Subfamily Glossophaginae; Vanderelst et al., 

2010) appear to be important for finding nectar. Habitat and prey type serve as ecological 

constraints that are reflected by high variability in call features among bat species, which 

can facilitate species identification (e.g. Fenton & Bell, 1981). The diversity of systems, 

structures and functional contexts of echolocation calls offers an excellent experimental 

system for study. 

 

Bats also communicate with social calls that are typically distinct from echolocation 

calls. Social calls tend to be longer and lower frequency, and can even be audible to the 

human ear (Fenton, 2003). Bats use social calls to communicate with conspecifics and 

heterospecifics, and the contexts of these calls are well studied. For some species, social 

calls can be used to facilitate cooperation. For example, nectar-feeding greater spear-

nosed bats (Phyllostomus hastatus) use screech calls to coordinate group foraging when 

resources are readily available (Wilkinson & Boughman, 1998). Bats can also use social 

calls in an aggressive context and to defend resources. Insectivorous common pipistrelle 

bats (Pipistrellus pipistrellus) ward off others with vocalizations when resources are 

limited, often accompanying calls with a chase (Barlow & Jones, 1997). Other 

behavioural contexts for social calls include finding a mate (Behr & von Helversen, 2004; 

Knörnschild, Feifel, & Kalko, 2014) and facilitating mother-offspring recognition 

(Defanis & Jones, 1995; Masters, Raver, & Kazial, 1995). Although echolocation calls 
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and social calls are typically divided by structure and function, the distinction between 

these vocalization types is less clear-cut than previously thought. 

1.2 Eavesdropping 

The study of echolocation in bats has primarily focused on its use as a tool for foraging 

and spatial orientation (Schnitzler, Moss, & Denzinger, 2003). However, echolocation 

calls can also provide social information to bats through the process of eavesdropping. 

Eavesdropping on the echolocation calls of conspecifics and heterospecifics allows bats 

to glean information about the activities of others (Barclay, 1982). For example, 

insectivorous bats (Family Vespertilionidae) listen for the feeding buzzes of conspecifics 

to find optimal foraging areas (Balcombe & Fenton, 1988). Eavesdropping on the 

echolocation calls of conspecifics can also help bats find suitable roosts (Schöner, 

Schöner, & Kerth, 2010). For example, Ruczyński, Kalko and Siemers (2009) found that 

when Daubenton’s bats (Myotis daubentonii) eavesdropped on the echolocation calls of 

conspecifics, the time that they required to look for a roost entrance decreased. 

Echolocation calls not only inform bats of the activities and location of others, they also 

inform them of the physical and social characteristics of the caller. 

 

In group-living situations, the ability to recognize individuals and group members is 

advantageous (Alexander, 1974; Carter & Wilkinson, 2013). Some bats use olfactory 

cues to discriminate between the sexes, individuals and group members (Safi & Kerth, 

2003; Deffanis & Jones, 1995; Bouchard, 2001), and others may do so visually (Mann et 

al., 2011; Knörnschild et al., 2014). Bats can also use auditory cues for social recognition, 

facilitating eavesdropping. Echolocation call parameters differ between and within 

species. Call features are affected by the sex, size and age of the caller (Obrist, 1995; 

Jones & Siemers, 2011) as well as group affiliation (Knörnschild, Nagy, Metz, Mayer, & 

von Helverson, 2012). This information is conveyed through variations in call structure. 

Because of this, bats broadcast these defining characteristics to others through their 

echolocation calls. 
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Eavesdropping bats can gather information on the physical and social characteristics of 

the caller from variations in the features of echolocation calls to inform their behavioural 

responses. For example, male greater sac-winged bats (Saccopteryx bilineata) respond to 

echolocation calls from other males with aggressive social calls, but switch to broadcast 

social courtship calls when they hear female echolocation calls (Knörnschild, Jung, Nagy, 

Metz, & Kalko, 2012). Echolocation calls are also used to distinguish between familiar 

and unfamiliar individuals and identify heterospecifics. Lesser bulldog bats (Noctilio 

albiventris) can identify familiar and unfamiliar conspecifics and heterospecifics by 

echolocation calls alone, and change their social and behavioural responses accordingly 

(Voigt-Heucke, Taborsky, & Dechmann, 2010). The investigation of eavesdropping has 

revealed the dual communicative role of echolocation for insectivorous bats. However, 

less is known about eavesdropping in nectar and fruit feeding bat species. 

1.3 Air traffic control 

Collective movement is the cohesive movement of a group of individuals in a complex 

adaptive pattern (Sumpter, 2006). Group movement can be used to avoid predators 

(Hamilton, 1971), maximize foraging success (Götmark, Winkler, & Andersson, 1986), 

and reduce energy costs (Svedsen, Skov, Bildsoe, & Steffensen, 2003). The success of 

collective movement relies on a consistent transfer of reliable information among a 

group. Aggregations of animals can synchronize movement through different sensory 

modalities, using visual, hydrodynamic and acoustic signals in order to avoid collisions. 

Understanding how individuals receive, assess and react to these signals is key to 

interpreting the rules of the system (Sumpter, 2006).  

Animals use a variety of different systems and signals to effect group movement 

behaviour. Perhaps one of the most studied and well-known examples of collective 

movement is a bird flock. Birds rely primarily on vision to keep track of neighbours and 

make rapid adjustments to positional changes in the flock (Fernández-Juricic, Erichsen, 

& Kacelnik, 2004; Ballerini et al., 2008). Conversely, teleost fish use the lateral system to 

note the distance and direction of their neighbors and participate in shoaling behaviour 

(Faucher, Parmentier, Becco, Vandewalle, & Vandewalle, 2010). Swarming insects, such 
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as the desert locust (Schistocerca gregaria), transition to coordinated marching behaviour 

at high densities, aligning themselves with other individuals in the group (Buhl et al., 

2006). The many forms of collective movement exhibited across a wide variety of species 

all rely on the reception and integration of information to monitor the movement of 

individuals, and thus coordinate movement behaviour of the group. 

 

Bats must also be able to gauge the spatial position of others to successfully orient in a 

high-traffic airspace. Flying bats avoid collisions with one another while foraging and 

avoiding obstacles. Bats use echolocation calls to actively detect and avoid obstacles 

while flying (Griffin & Galambos, 1941; Griffin, 1958), including other bats. On the 

receiving end, bats may passively eavesdrop on echolocation calls and adjusting flight 

paths accordingly (Gillam, 2007). Bats can also intentionally advertise their location to 

others through social calls (Suthers, 1965), and may do so to warn an approaching bat of 

their position. Fenton (2003) suggests that this is a question of air traffic control, where 

different bat vocalizations are analogous to the signals used to prevent aircraft collisions. 

 

Collisions may pose a high risk to bats and in-flight maneuvers to avoid near misses can 

be energetically costly. In some cases, bats use defined flight paths to prevent the 

energetic cost of collision avoidance. Adams and Simmons (2002) found that 

insectivorous bats were abiding to strict approach paths when drinking from a highly 

trafficked water source, perhaps to reduce the risk of collision. They suggest that 

individuals with mouths full of water (thus unable to echolocate) rely on eavesdropping 

to detect oncoming bats. Other bats intentionally communicate their positions when 

feeding or drinking at a popular resource. For example, greater bulldog bats (Noctilio 

leporinus) emit “warning honks” when on a collision course with conspecifics while 

fishing, signaling other bats to veer out of the way (Suthers, 1965).  

 

Giuggoli, McKetterick and Holderied (2015) propose that active echolocation plays a 

greater role in group movement coordination than eavesdropping. They found that 

Daubenton’s bats (M. daubentonii) use active echolocation to localize others and execute 

coordinated flight paths by adopting leader-follower roles while foraging. They suggest 
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that, by following and copying the flight paths of others, the bats may be maximizing 

their foraging success or monopolizing resources. Like Fenton (2003), they framed their 

findings as ‘traffic rules’ that the bats can use to avoid collision. Whether by active 

echolocation or passive eavesdropping, vocalizations seem to be utilized by bats as air 

traffic signals, but research is just beginning to delve into this area of study. 

1.4 Study Species 

New World leaf-nosed bats, family Phyllostomidae, are one of the most varied families 

within the order Chiroptera. The range of dietary specializations of these bats includes 

carnivory, insectivory, frugivory and nectarivory, speaking to the rich diversity within 

this family (Datzmann, von Helversen, & Mayer, 2010). Pallas’ long-tongued bat 

(Glossophaga soricina) and the lesser long-nosed bat (Leptonycteris yerbabuenae, 

previously sanborni) belong to the subfamily Glossophaginae, a group of bats that 

primarily feed on nectar and pollen. G. soricina are distributed throughout Central and 

South America (Barquez, Perez, Miller, & Diaz, 2008) while L. yerbabuenae are 

migratory bats that range from Central America to the southwest of the United States 

(Arroyo-Cabrales, Miller, Reid, Cuarón, & de Grammont, 2008). These species are 

sympatric where their ranges overlap in Mexico and feed from the same flowers of 

Bombacaceae, Agavacae and Cactacae species (Henry & Stoner, 2011). Some L. 

yerbabuenae migrate to Arizona in the spring; the females form large maternity roosts 

(10,000 to >100,000) to give birth and care for young while the males live separately in 

small groups. Females, juveniles and males migrate back south in the fall (Cole & 

Wilson, 2006).  

 

As nectar-feeders, G. soricina and L. yerbabuenae have a suite of special adaptations to 

enhance their ability to exploit flowers. Both have distinctly long tongues to lap up nectar 

(Fig 1.). The tongue of G. soricina has a hydraulic system that drives papillae erection, 

effectively trapping and collecting nectar at a rate of eight tongue-laps per second 

(Harper, Swartz, & Brainerd, 2013). Howell and Hodgkin (1976) also noted papillae on 

the tongues of L. yerbabuenae. G. soricina weigh approximately 10 g (Alvarez, Willig, 

Jones, & Webster, 1991) and L. yerbabuenae weigh approximately 25 g (Cole & Wilson, 
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2006). Both G. soricina and L. yerbabuenae are able to hover in front of flowers while 

drinking nectar (Datzmann et al., 2010). L. yerbabuenae are more specialized feeders 

than G. soricina, with a year round nectarivorous diet, higher nectar extraction efficiency 

and greater foraging efficiency (Henry & Stoner, 2011), whereas G. soricina are 

generalists and also feed on insects. Clare et al. (2014) found that the low intensity 

echolocation calls of G. soricina confer a surprising benefit when hunting, allowing a 

stealthy approach that is difficult for insect prey to detect.  

 

Griffin (1958) called phyllostomid bats “whispering” bats because of the low intensity of 

their echolocation calls. These low intensity calls can pose challenges to recording them 

in the field (Fenton et al., 1992). Both G. soricina and L. yerbabuenae have short FM 

echolocation calls, with second and third harmonics (Howell, 1974). The vocal repertoire 

of G. soricina is well described in the literature (e.g. Clare et al., 2014), including the 

behavioural contexts of social calls (Knörnschild, Glöckner, & von Helversen, 2010). 

The vocalizations of L. yerbabuenae are not well studied, and their vocalization types and 

call features have not been described in the literature.  

 

Although G. soricina and L. yerbabuenae share similar habitats and call systems, they 

have different feeding strategies. In the wild, G. soricina typically feed alone. Although 

they are solitary feeders, G. soricina roost in groups (<10 to >1000) (Knörnschild et al., 

2010). Their feeding tactics, however, include territorial defense of feeding sites and 

trapline foraging along well-traveled routes (Lemke, 1984). In areas of low food 

availability, resource defense becomes an important strategy for this species (Lemke, 

1985). Both males and females have been observed displaying aggressive territorial 

behaviour, which involved chasing conspecifics away from a flower or physically 

displacing a feeding conspecific (Lemke, 1984). L. yerbabuenae exhibits the opposite 

approach, preferring to feed in a group. Howell (1979) described this flock foraging 

behaviour as a cohesive, cooperative effort, which involved feeding in turns with few 

collisions between individuals.  
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Figure 1. Bats feeding from artificial food sources. Image shows A) a double-exposure 

photograph of G. soricina feeding with an extended tongue (Photo credit: Dr. Brock 

Fenton), and B) L. yerbabuenae feeding with an extended tongue (Photo credit: Dr. Ted 

Fleming). 
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1.5 Thesis Objectives 

This thesis will examine the role of echolocation calls and social calls in air traffic 

control by nectar-feeding bats. My hypothesis is that nectar-feeding bats use echolocation 

calls and social calls as air traffic signals around a central food source, to prevent 

collisions and minimize interference from others. Bats may receive these signals by 

eavesdropping and use the information conveyed in different call types to inform feeding 

and flight behaviour. I presented both species of nectar-feeding bats (G. soricina and L. 

yerbabuenae) with playbacks of echolocation calls and social calls and assessed their 

behavioural responses to test the following predictions: 

 

1) Bats will change their flight paths and feeding behaviour in response to different call 

types from their own species and from a sympatric species.   
 

2) Bats will adjust their feeding visit durations according to the call type that is presented. 

Bats will exhibit longer feeding durations during control non-playback periods than 

during playback periods, and feeding durations will differ among playback call types. 
 

3) Feeding visit durations will differ by the number of other bats that are approaching the 

focal bat that is feeding from the food source. Feeding durations will decrease as the 

number of other bats increases. 

 

4) Bats will respond differently to echolocation calls from the opposite sex. 
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Chapter 2  

2 Materials and Methods 

2.1 Study sites 

2.1.1 The Montreal Biodôme 

I conducted research at the Montreal Biodôme Zoo in Quebec in July and November of 

2014. The Montreal Biodôme houses a captive population of 18 female Pallas’ Long-

tongued bats (G. soricina) in a cave exhibit. The exhibit has a small, private feeding room 

(Fig. 2) where I conducted the experiment. I modified the doorframe with a tarp to create 

a smaller entrance (approximately 40 cm × 40 cm) to ensure that the entrance and exit of 

the bats was clearly visible on video recordings. The Biodôme maintains the exhibit on a 

12/12 hour reversed photoperiod schedule, with temperatures ranging from 24.1 - 26.7ºC 

and 69.9 - 98.3 % relative humidity. During the experiments, I provided the bats with a 

continuous supply of Nektar-Plus hummingbird food in the feeding room (Nekton 

Produkte, Pforzheim, Germany). They also had access to fruit in the main exhibit to 

reduce the stress of removing most food sources.  

2.1.2 Tucson, Arizona 

I conducted research in suburban areas of Tucson, Arizona in September 2014. Lesser 

long-nosed bats (L. yerbabuenae) are active in this area before beginning their fall 

migration to Mexico (Cole & Wilson, 2006). I conducted monitoring and playback 

presentations (Fig. 3) from approximately 1900 to 2300 for four nights in a suburban 

backyard (32°15’50.958”N, 110°51’45.097”W). Bats would arrive to feed in a flock, 

engaging in bouts of high feeding activity (1 - 3 bats feeding per second, Fig. 4) 

interspersed with periods of no activity. At this particular site, the population’s age and 

sex structure is mixed, with males, females, juveniles and adults present (Dr. Ted 

Fleming, personal communication). The bats fed from three nectar feeders that dispensed 

a simple sugar-water mixture (4 parts water to 1 part sugar, approximately 21% sucrose). 

Activity levels were not evenly distributed among the hummingbird feeders; the flock 

seemed to focus on one feeder until the sugar-water was depleted before feeding from 
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another. Temperatures during the playback experiments ranged from 27.8 - 30.4ºC with 

46.6 - 57.5 percent relative humidity. 
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Figure 2. The feeding room in the bat exhibit at the Montreal Biodôme. Schematic shows 

A) infrared GoPro video camera, B) microphone recording array, C) nectar source, and 

D) playback speaker. 
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Figure 3. The setup of experimental equipment in Tucson, Arizona. Image shows A) 

hummingbird feeder, B) microphone array, C) playback speaker, and D) phone 

displaying time for video recordings. The hummingbird feeder I used varied each night 

depending on which one had the most feeding activity. (Photo credit: Dr. Ted Fleming). 
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Figure 4. Leptonycteris yerbabuenae feeding from a crowded hummingbird feeder 

during a time of high activity (Photo credit: Dr. Ted Fleming). 
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2.2 Call playback presentations 

To investigate the use of different vocalizations as air traffic control signals in nectar-

feeding bats, I selected a variety of social calls and echolocation calls from each species 

to use in playback experiments. I noted changes in behavioural responses among different 

playbacks and non-playback periods to analyze the role of each call in the feeding 

system.   

2.2.1 The Montreal Biodôme 

I received recordings of a captive population of G. soricina from Dr. Mirjam Knörnschild 

(University of Ulm, Germany) to use for playback presentations. The calls were recorded 

with a 500 kHz sampling rate and a 16 bit format. These recordings featured female 

echolocation calls, male echolocation calls and approach pulses undesignated by sex. G. 

soricina emit approach pulses (social calls) when flying towards an occupied roost 

(Knörnschild et al., 2010). I wanted to test this call to see whether bats would interpret it 

as a general signal of approach to a food source, rather than a roost. 

I also created my own playbacks of G. soricina alert calls from recordings that I collected 

at the Montreal Biodôme (Fig. 6). Alert calls are social calls that are audible to the human 

ear and have been noted in the field when several bats are circling a food source or roost 

(Knörnschild et al., 2010). I wanted to test this call type to see whether they are used as a 

warning by an approaching bat to warn others away from a food source. I collected these 

recordings using four UltraSoundGate CPVS CM16 microphones (Avisoft Bioacoustics, 

Berlin, Germany) configured in an upside-down T-shape, with each microphone placed 

50 cm apart (Fig. 2). The microphones were connected to an UltraSoundGate 416 

recording analogue-to-digital converter connected to a laptop running Recorder USGH 

(Avisoft Bioacoustics). Files were recorded in 1-minute intervals with a 250 kHz 

sampling rate and an 8 bit format, the maximum settings for an array of four 

microphones. I positioned foam pads on the cement walls of the feeding room at the 

Biodôme to reduce echoes for clearer recordings.  
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During the experimental procedure, I set the playbacks to play on randomized looped 

trials to prevent habituation. I conducted trials with 15, 30, or 45-second gaps between 

playbacks to increase the chances of playbacks being presented while bats were 

approaching the nectar source. The speaker was positioned approximately 50 cm from the 

nectar source (Fig 2.). The duration of the playbacks ranged from approximately 3 to 15 

s. 

2.2.2 Tucson, Arizona 

I made acoustic recordings of L. yerbabuenae feeding from hummingbird feeders at a 

different suburban backyard than the one used for the playback experiments 

(32°19’11.564”N, 111°0’8.852”W). I recorded the calls with the same equipment and 

specifications that I used at the Montreal Biodôme. For these recordings, I used the 

software program callViewer (version 18, Skowronski & Fenton, 2008) to visually 

identify echolocation calls to use as playbacks. I used a recording of a social call 

collected at the same location in September 2012 (187.5 kHz sampling rate, 8 bit format) 

by M. Emrich. He deemed it a screech call, denoted for its “blast” of energy on the 

sonogram and the long, low frequency structure. I also identified the same call in my own 

recordings in 2014 at the same location, and used this along with the one recorded in 

2012. The social context of this call is unknown but was tested in my experiment. I 

predicted that this call might be used as an alert call to warn other bats of an incoming bat 

on a collision course. 

During the experimental procedure in Tucson, I manually triggered the playlist of 

randomized playbacks when I saw bats approaching a hummingbird feeder. The distance 

between the playback speaker and the nectar feeder ranged from 60 to 90 cm. Playback 

durations ranged from approximately 2 to 60 s.  

2.2.3 Creating playbacks 

I used the sound analysis and synthesis software SASLab Pro (Avisoft Bioacoustics, 

Berlin, Germany) to edit the recordings of different bat calls for the experimental 

procedure. I transformed the sound files through a high or low-pass filter to reduce or 
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eliminate background noise in the recordings. I used a high-pass filter if I needed to 

exclude frequencies lower than the selected frequency of the call type, or a low-pass filter 

if I needed to exclude frequencies higher than the selected frequency of the call type.  

I broadcast all playbacks through an UltraSoundGate Player BL Light speaker (Avisoft 

Bioacoustics) using the software program Recorder USG (Avisoft Bioacoustics). To 

measure the decibel (dB) sound pressure level (SPL) of the playbacks, I first measured 

the dB SPL of a 1 kHz full-scale test signal with a SPL meter (RadioShack, Cat. No. 33-

2055 A) placed 1 meter from the speaker. The dB SPL of a 1 kHz full-scale test signal 

was 84 dB. I entered this into the calibration tools of SASLab Pro as a reference sound to 

calculate the dB SPL of playbacks with this reference level (Figures 5, 6, 7). 

However, the dB sound pressure levels displayed in these figures do not take into account 

the directional emission pattern of the speaker, and are only correct for on-axis locations 

and at a distance of 1 meter. These measures are only meant to give an approximate idea 

of the dB SPL of playbacks, as not all frequencies are emitted equally in all directions 

and the orientation of bats with respect to the speaker could not be controlled. 
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Figure 5. G. soricina call spectrograms (Part 1). Spectrograms of the different call types of G. soricina used for playback 

experiments, created in SASLab Pro (Avisoft). Each spectrogram has a different dB SPL scale, with frequency (kHz) on the y-

axis, and time (s) on the x-axis. 
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Figure 6. G. soricina call spectrograms (Part II). Spectrograms of the different call types of G. soricina used for playback 

experiments, created in SASLab Pro (Avisoft). Each spectrogram has a different dB SPL scale, with frequency (kHz) on the y-

axis, and time (s) on the x-axis. 
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Figure 7. L. yerbabuenae call spectrograms. Spectrograms of the different call types of L. yerbabuenae used for playback 

experiments, created in SASLab Pro (Avisoft). Each spectrogram has a different dB SPL scale, with frequency (kHz) on the y-

axis, and time (s) on the x-axis. 



21 

 

2.3 Video monitoring 

I used an infrared video camera (GoPro HD Hero, California, USA) set to 60 frames per s 

to record behavioural responses to audio playbacks. This allowed me to identify and 

score behaviours after the experimental procedure. I positioned three infrared lights 

around the nectar source to work in conjunction with the video camera. During the 

experimental procedures, I placed a digital clock in the video frame and synchronized it 

with the laptop computer presenting playbacks (ASUS Laptop K53E) and the laptop 

computer recording acoustic data (Macbook Pro, Windows XP Parallels), so that the 

exact time of the playback presentation could be corroborated with the playback 

presentation log and with acoustic recordings. There was also a small light on top of the 

speaker that remained constant when broadcasting playbacks, and blinked when it was 

not. I used this light at certain points in the video analysis to be sure that the video and 

playback log were synchronized correctly. I viewed the videos I collected using Final Cut 

Pro X (Version 10.1.2, Apple Inc.), which allowed me to analyze behavioural responses 

frame-by-frame. I visually scored behavioural responses that occurred during 

presentations to analyze immediate reactions.  

2.4 Recording feeding visits 

To test the predictions that bats eavesdrop while feeding and will change the duration of 

feeding visits depending on the playback type and the number of other bats present, I 

analyzed the video recordings and recorded the duration of feeding visits during 

playbacks and non-playback periods. If bats are eavesdropping while feeding and 

interpreting calls as signals that indicate whether to leave the nectar source or stay, then 

feeding durations should change among playback types and non-playback periods. I 

identified the start of a feeding visit as the point at which a bat’s mouth or tongue was 

touching or close enough to the nectar source to feed while hovering. I noted the end of a 

feeding visit when the bat withdrew and flew away. During feeding visits, I also recorded 

the number of other bats that were flying near or approaching the focal bat that was 

feeding.  
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2.5 Behavioural scoring 

To test the predictions that bats will change their flight paths and feeding behaviour in 

response to different call types and respond differently to echolocation calls from the 

opposite sex, I scored behavioural responses during playback and non-playback periods. I 

scored three possible behavioural responses: feeding visits, aborted feeding attempts and 

hovering responses at the playback speaker. Hovering responses are common for 

phyllostomid bats and indicate a strong reaction to a broadcasted stimulus (Mirjam 

Knörnschild, personal comm.). Aborted feeding attempts and hovering responses may 

indicate diverted flight paths in response to different call types. An increase in aborted 

feeding approaches in response to a specific playback could indicate that a call type 

signals the physical approach of a bat (for echolocation calls) or that the call is actively 

warning the bat away from the food source or caller (for social calls). Hovering responses 

indicate diverted flight paths as a more indirect response. Although the hovering response 

may not be a direct and immediate change in feeding behaviour like aborted approaches, 

when a bat searches out the source of a call to investigate, it cannot use that time for 

feeding. The bat is changing its behaviour (whether flying to the nectar source or near it) 

to investigate the source of the call. Increased hovering responses to certain calls also 

suggest which calls are most interesting to the bats, and that the call does not immediately 

drive them away.  

 

For the duration of each playback, I identified and recorded the number of each 

behavioural response that was exhibited (Table 1, Fig. 8). Individuals of both species 

were unable to be handled, separated or identified, and so all behaviours were scored as 

separate instances. I reviewed 1022 playback and non-playback intervals for the Montreal 

Biodôme. I did not include the intervals where bats were not present, or were present but 

simply flying around, in the final analysis. Following this, there were 527 scored 

playbacks used for statistical analysis. For Arizona, I reviewed 448 playback and non-

playback intervals. After removing those where no bats were present or where bats were 

flying past, I used 310 scored playbacks for the final analysis. I scored the behavioural 

responses in 10-second intervals when no playbacks were being presented as a baseline 
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control to compare with playback responses. I scored 72 non-playback control intervals 

for G. soricina and 100 non-playback control intervals for L. yerbabuenae (Table 2). 
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Table 1. The behavioural scoring criteria used for identifying the behaviours of G. 

soricina and L. yerbabuenae. 

 

Behaviour Description 
Feed A bat hovers at the nectar source with its mouth positioned to feed 

Abort A bat directly approaches the nectar source but makes a sudden 
directional change away from it 

Hover A bat hovers directly in front of, at the side or against the face of the 
playback speaker 
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Figure 8. Behavioural responses to playbacks. Screenshots taken from the video review 

show examples of the scored behavioural responses of both G. soricina and L. 

yerbabuenae. 
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Table 2. The call types presented as playbacks to each species, with the number of 

playbacks scored and the number of total behaviours observed for each call type by 

species. 

 

Species Playback call types presented 
No. of playbacks 

scored for 
analysis 

No. of total 
behaviours 
exhibited 

Male G. soricina echolocation calls 72 161 
Female G. soricina echolocation calls 72 166 
G. soricina approach calls 54 94 
G. soricina alert calls 72 136 
L. yerbabuenae echolocation calls 72 153 
L. yerbabuenae screech calls 27 62 

Glossophaga 
soricina 

Control non-playback intervals 72 154 
L. yerbabuenae echolocation calls 100 833 
L. yerbabuenae screech calls 48 494 Leptonycteris 

yerbabuenae 
Control non-playback intervals 100 556 
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2.6 Data analysis and statistics 

2.6.1 Feeding durations 

All statistical analyses were conducted using R (version 3.1.0, R Foundation for 

Statistical Computing, 2014) through R Studio (version 0.98.1091, R Studio Inc.). I 

considered values of p < 0.05 as statistically significant unless otherwise noted. 

To determine whether specific vocalizations affect feeding times, I conducted a one-way 

analysis of variance (ANOVA) for feeding data on both G. soricina and L. yerbabuenae. 

For this analysis, I only included feeding times when no other bats were approaching the 

food source in order to minimize possible confounding effects. Feeding times that were 

recorded during non-playback periods of bats feeding alone were included as a control. 

The assumptions of normality and homogeneity of variances for a one-way ANOVA 

(Quinn & Keough, 2002) were met for both datasets. The assumption of independence of 

observations was not met, as individual bats could not be identified during sampling.  

 

To determine whether the number of bats present at a food source affects feeding times, I 

conducted one-way ANOVAs comparing feeding times to the number of bats 

approaching the focal bat for both G. soricina and L. yerbabuenae. I grouped feeding 

times into categories by the number of other bats that were approaching or flying close to 

the food source. For the analysis of L. yerbabuenae, the categories were zero, one, two, 

and three or more other bats. For the analysis of G. soricina, the categories were zero, 

one, and two or more other bats. The assumptions of normality and homogeneity of 

variances for a one-way ANOVA (Quinn & Keough, 2002) were met for both datasets. 

 

To account for unequal variances between the two populations, I conducted a Welch two 

sample t-test to determine whether there is a significant difference between the feeding 

durations of G. soricina and L. yerbabuenae (Ruxton, 2006). I used feeding durations 
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recorded during non-playback periods, and only included those where a single bat fed 

alone. I also conducted a Welch two sample t-test to determine whether the feeding 

durations of captive and wild G. soricina differ, using data on feeding times collected in 

the field in Belize to compare to feeding times of the captive bats. For this comparison, I 

also included only feeding durations recorded during non-playback periods when a single 

bat fed alone. 

2.6.2 Call analysis 

The call features of L. yerbabuenae are not described in the literature, and so this study 

provided an opportunity to do so. I describe the call features of L. yerbabuenae and G. 

soricina in Appendix A. I used callViewer (version 18, Skowronski and Fenton, 2008) to 

analyze recorded files of L. yerbabuenae and G. soricina. For the recorded files of L. 

yerbabuenae, I used the recordings from September 2012 collected with a batcorder 

(ecoObs, 2008, Nürnberg, Germany). I used the ‘Auto Detection’ feature with the 

following parameters to identify calls and extract call features from the files: window 

size, 0.3 ms; minimum link length, 5; minimum energy, 10 dB; echo filter threshold, 5 dB 

and lower frequency cutoff, 20 kHz.  

 

The 250 kHz sampling rate and 8 bit format of the four microphone recording array was 

not sufficient to collect high quality recordings of the short, low intensity echolocation 

calls of G. soricina at the Biôdome. These recordings could be used visually to 

distinguish between call types, but do not give enough detailed information for call 

feature analysis. To describe the call features of G. soricina, I used the recorded files of 

captive G. soricina sent to me from Mirjam Knörnschild. I ran these files through the 

‘Auto Detection’ feature of callViewer18 with the following parameters: window size, 

0.3 ms; minimum link length, 4; minimum energy, 4 dB; echo filter threshold, 8 dB and 

lower frequency cutoff, 30 kHz. (Amanda Adams, personal comm.). I manually 

examined the ‘Auto Detection’ results for both species to verify its accuracy and remove 

false positives for inclusion in the final analysis.  
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2.6.3 Behavioural responses 

I used Poisson and quasi-Poisson regression models (Quinn & Keough, 2002) to analyze 

behavioural count data for both G. soricina and L. yerbabuenae. I used playback type as 

the predictor variable, and set the counts for the non-playback control times as the 

baseline comparison for all of the vocalization playbacks. I used the log of the total 

number of behaviours observed during each playback as an offset to each individual 

playback, to account for the difference in observation time and playback lengths. For 

example, if there were 10 behaviours exhibited during one playback, the offset for this 

row would be log 10, whereas if there were only 2 behaviours exhibited during the next 

playback, the offset for this row would log 2. I tested each dependent variable (feed, 

hover, abort) against the predictor variables in its own model. For the Biodôme dataset, I 

re-ran the regression models with the male G. soricina echolocation calls set as the 

baseline comparison to determine whether there is a difference in behavioural responses 

for male and female G. soricina echolocation call playbacks. 

 

Poisson regression analysis assumes that the mean of the distribution is equal to the 

variance (Quinn & Keough, 2002). I first tried Poisson regressions for each dependent 

variable and tested for overdispersion in each model to find the best fit. I found 

overdispersion in the Poisson regression models of the hover variable for the Biodôme 

and Arizona data sets. I corrected for overdispersion by using quasi-Poisson regression 

models for the hover variable for each data set. The Poisson regression models for the 

feed variable and the abort variable met the assumption that the mean is equal to the 

variance for both the Biodôme and Arizona data sets. When the findings of the Poisson 

and quasi-Poisson regression models were significant, I examined incidence rate ratios to 

investigate how the different vocalizations affect the rate at which behaviours occur.  
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Chapter 3  

3 Results 

3.1 Durations of feeding visits 

I measured the length of time that G. soricina and L. yerbabuenae spent feeding alone 

from a nectar source during playbacks of echolocation calls and social calls and during 

non-playback periods. I found no significant difference in feeding visit durations within 

species during playback or control periods for G. soricina (df = 7, F = 0.84, p = 0.55) and 

L. yerbabuenae (df = 3, F = 1.67, p = 0.173). The mean feeding duration (seconds ± 

standard deviation) of L. yerbabuenae was 0.435 ± 0.19s (n = 168), and G. soricina was 

0.315 ± 0.15s (n = 73). 

Because there was no significant difference in feeding durations during playback periods, 

I used feeding durations recorded during playback and non-playback periods to analyze 

the effect of the presence of conspecifics (categorized by the number of bats approaching 

the focal bat) on feeding durations. Feeding durations differed among these categories for 

L. yerbabuenae (df = 3, F = 22.97, p < 0.001) and G. soricina (df = 2, F = 3.1, p < 0.05, 

Fig. 9). L. yerbabuenae change their feeding durations depending on the number of other 

bats present. Although single vocalizations do not affect feeding durations, multiple 

vocalizations do.  

I used Tukey’s Honest Significant Difference (HSD) Post-hoc test to conduct pairwise 

comparisons of feeding durations between categories. For L. yerbabuenae, I found a 

significant difference (p < 0.01) between all pairwise comparisons of categories, except 

for feeding durations when two bats and three or more bats were approaching. I found an 

increase in mean feeding durations as the number of other bats approaching increased 

(Fig. 9). For G. soricina, I found a significant difference (p < 0.05) in feeding durations 

between one and two or more bats, but not between zero and two or more (Fig. 9). 

Because of this, I could not determine whether there is a trend in feeding durations for G. 

soricina.  
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In the field, G. soricina may use the presence of conspecifics as an indicator of resource 

competition, rather than resource quality. In this case, I would expect the time that G. 

soricina spends in a food patch and at a specific flower to decrease as the number of 

competitors increases. I did not observe this pattern at the Biodôme, possibly because 

direct competition and resource defense behaviour is lowered by the artificial conditions.  

 

I found a significant difference in feeding durations between G. soricina and L. 

yerbabuenae when bats were feeding alone (df = 175, t = -5.38, p < 0.001). I found no 

significant difference in feeding durations between captive and wild G. soricina when 

bats were feeding alone (df = 66, t = -0.1, p = 0.92).  
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Figure 9. The effect of the presence of conspecifics on the feeding durations of G. 

soricina and L. yerbabuenae. The mean feeding duration (seconds ± standard deviation; 

SD) is along the y-axis, grouped by the number of other bats present along the x-axis. 

Means with different letters are significantly different (Tukey’s HSD, p < 0.05), and n is 

the sample size for each category. 
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3.2 Behavioural analysis 

3.1.1 Glossophaga soricina behavioural responses 

I presented G. soricina with calls from conspecifics and calls from L. yerbabuenae. I 

found a reduction in the number of feeding visits of G. soricina in response to G. soricina 

alert calls (z =  -2.27, p < 0.05), G. soricina approach pulses (z = -2.26, p < 0.05), L. 

yerbabuenae screech calls (z = -2.39, p < 0.05) and male G. soricina echolocation calls (z 

= -2.93, p < 0.01) compared to the non-playback control (Fig. 10 and 11). Bats presented 

with the G. soricina alert calls were 0.70 times as likely to feed from the nectar-source 

compared to bats that were not presented with any playbacks. Bats presented with the G. 

soricina approach pulses were 0.66 times as likely to feed, and bats presented with male 

G. soricina echolocation calls were 0.63 as likely to feed from the nectar-source 

compared to bats that were not presented with any playbacks. Bats presented with L. 

yerbabuenae screech calls were 0.58 times as likely to feed from the nectar-source 

compared to bats that were not presented with any playbacks (Table 3). 

I found an increase in the hovering responses of G. soricina in response to all of the 

presented playbacks compared to the non-playback control: G. soricina approach pulses 

(t = 3.62, p < 0.001), G. soricina alert calls (t = 4.6, p < 0.001), male G. soricina 

echolocation calls (t = 4.94, p < 0.001), female G. soricina echolocations calls (t = 3.83, p 

< 0.001), L. yerbabuenae echolocation calls (t = 4.1, p < 0.001) and L. yerbabuenae 

screech calls (t = 5.33, p < 0.001). I found a difference in feeding counts between female 

G. soricina echolocation calls and male G. soricina echolocation calls (p < 0.05), but 

when comparing hovering responses between these two call types the results fell short of 

significance (p = 0.058). Bats presented with G. soricina approach pulses were 4.91 times 

as likely to hover, and bats presented with female G. soricina echolocation calls were 

4.90 times as likely to hover at the speaker compared to bats that were not presented with 

any playbacks. Bats presented with G. soricina alert calls were 6.63 times as likely to 

hover, and bats presented with male G. soricina echolocation calls were 7.37 times as 

likely to hover at the speaker compared to bats that were not presented with any 
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playbacks. Bats presented with L. yerbabuenae echolocation calls were 5.46 times as 

likely to hover, and bats presented with L. yerbabuenae screech calls were 9.74 times as 

likely to hover at the speaker compared to bats that were not presented with any 

playbacks (Table 3). I found no significant difference in aborted approaches for any of 

the playbacks presented to G. soricina compared to the non-playback control. 

Overall, echolocation calls of male G. soricina, G. soricina alert calls, G. soricina 

approach pulses and L. yerbabuenae screech calls affected both the feeding visits and the 

hovering responses of G. soricina. Therefore, I can conclude that these call types have 

the greatest effect on the feeding and flight behaviour of female G. soricina of the 

playbacks that I presented. 

3.1.2 Leptonycteris yerbabuenae behavioural responses 

I found a reduction in the number of feeding visits of L. yerbabuenae in response to L. 

yerbabuenae echolocation calls (z = -3.09, p < 0.01) compared to the non-playback 

control. I found no significant difference in the feeding counts for screech calls (z = -

1.94, p = 0.053) but I observed a trend. Echolocation calls decreased the feeding counts 

of L. yerbabuenae, as bats presented with L. yerbabuenae echolocation calls were 0.81 

times as likely to feed from the hummingbird feeder compared to bats that were not 

presented with any playbacks (Table 3). I found an increase in the hovering responses of 

L. yerbabuenae in response to both L. yerbabuenae echolocation calls (t = 4.03, p < 

0.001) and screech calls (t = 3.03, p < 0.01) compared to the non-playback control. Bats 

presented with L. yerbabuenae echolocation calls were 12.90 times as likely to hover at 

the speaker compared to bats that were not presented with any playbacks. Bats presented 

with L. yerbabuenae screech calls were 7.50 times as likely to hover at the speaker 

compared to bats that were not presented with any playbacks (Table 3). 

I found an increase in aborted approaches for L. yerbabuenae echolocation calls (z = 

2.22, p < 0.05) compared to the non-playback control. Bats presented with L. 

yerbabuenae echolocation calls were 1.24 times as likely to abort their approach to the 

hummingbird feeder compared to bats that were not presented with any playbacks (Table 

3). 
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Overall, echolocation calls had a significant effect on the counts for all three behaviour 

types exhibited by L. yerbabuenae, leading to a decrease in the number of feeding visits 

and an increase in the number of aborted approaches and hovering responses (Fig. 12). 

The results of my behavioural analysis lead me to conclude that L. yerbabuenae rely 

primarily on acoustic cues through eavesdropping, utilizing echolocation calls as signals 

to change their feeding and flight behaviour. L. yerbabuenae decreased their feeding 

counts and increased the rate at which they aborted their approaches and hovered at the 

speaker in response to echolocation calls. This, along with the effect of multiple bats on 

feeding durations, suggests that L. yerbabuenae are eavesdropping and in-tune with the 

calls of approaching bats.  
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Table 3. The incidence rate ratios (IRR) of behavioural responses to different playback 

call types for each species. 

Species Behaviour Playback call type IRR 
G. soricina alert calls 0.70 
G. soricina approach pulses 0.66 
Male G. soricina echolocation calls 0.63 Feeding visits 

L. yerbabuenae screech calls 0.58 
G. soricina alert calls 6.63 
G. soricina approach pulses 4.91 
Male G. soricina echolocation calls 7.37 
Female G. soricina echolocation calls 4.90 
L. yerbabuenae echolocation calls 5.46 

Glossophaga 
soricina 

Hovering responses 

L. yerbabuenae screech calls 9.74 
Feeding visits L. yerbabuenae echolocation calls 0.81 

L. yerbabuenae echolocation calls 12.90 Hovering responses L. yerbabuenae screech calls 7.50 
Leptonycteris 
yerbabuenae 

Aborted feeding approaches L. yerbabuenae echolocation calls 1.24 
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 Figure 10. Behavioural responses of G. soricina to G. soricina calls. Playback call types of G. soricina are on the x-axis 

and the percentage (+/- standard error of percentage; SEP) of behavioural responses for each call type on the y-axis. Each 

behavioural response to each playback call type is compared to the behavioural response to the control (no playback). N is 

the number of total behaviours observed for each playback call type. 
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Figure 11. Behavioural responses of G. soricina to L. yerbabuenae calls. Playback call types of 

L. yerbabuenae are on the x-axis and the percentage (+/- SEP) of behavioural responses for 

each call type on the y-axis. Each behavioural response to each playback call type is compared 

to the behavioural response to the control (no playback). N is the number of total behaviours 

observed for each playback call type. 
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Figure 12. Behavioural responses of L. yerbabuenae to L. yerbabuenae calls. Playback call types 

of L. yerbabuenae are on the x-axis and the percentage (+/- SEP) of behavioural responses for 

each call type on the y-axis. Each behavioural response to each playback call type is compared to 

the behavioural response to the control (no playback). N is the number of total behaviours 

observed for each playback call type. 
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Chapter 4  

4 Discussion 
I began this study with four main predictions: a) bats will change their flight paths and 

feeding behaviour in response to different vocalizations, b) bats will adjust the duration 

of feeding visits according to the call type that is presented, c) feeding durations will 

differ by the number of other bats approaching the same food source and d) bats will 

respond differently to echolocation calls from the opposite sex. My results support these 

predictions to varying degrees and suggest nectar-feeding bats use vocalizations as air 

traffic control signals. 

4.1 Echolocation calls signal feeding activity 

Playbacks of different call types did not have a significant effect on feeding durations for 

either species when bats were feeding alone. This finding does not discount the 

possibility that the bats are eavesdropping on vocalizations. They may hear the calls and 

ignore them, not wanting to give up their position at a food source to another bat. A 

single bat feeding alone may not think that it is at risk for collision, with ample space at 

the feeder for an approaching bat to join. Additionally, what an approaching bats is 

signaling may not be as important as how many are signaling it. During times of high 

activity for L. yerbabuenae (1 - 3 bats feeding/s), the ability to detect the number of bats 

approaching may be important for maintaining an efficient group feeding system, as well 

as preventing and minimizing the effect of collisions. My results indicate that L. 

yerbabuenae eavesdrop on the echolocation calls of approaching conspecifics to do so. 

I found a correlation in the feeding behaviour of L. yerbabuenae, as mean feeding 

durations increased with the number of bats near the food source. This is consistent with 

Hamilton’s (1971) selfish herd hypothesis, where animals form aggregations to lower the 

risk of predation. When more bats are present, they may feel safer to spend more time at 

the food source. There is very little evidence in the literature on the predation risks that L. 

yerbabuenae face; however, I cannot discount anti-predator behaviour due to lack of 

knowledge on the nature and identity of bat predators (Lima & O’Keefe, 2013). There is 
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some evidence that phyllostimid bats decrease foraging activity during bright moonlight, 

presumably as an anti-predator response (Lima & O’Keefe, 2013). Interestingly, L. 

yerbabuenae do not exhibit this behaviour and will forage in open spaces under bright 

moonlight (Ted Fleming, personal comm.). They also feed in groups at conspicuous 

plants (columnar cacti and paniculate agaves; Fleming, Sahley, Holland, Nason, & 

Hamrick, 2001), which is risky behaviour if predation risk is high. Although I cannot 

completely discount the effect of predation risk on feeding behaviour for L. yerbabuenae, 

it seems less likely than other alternatives. 

If changes in feeding behaviour are not caused by predation, perhaps they are caused by 

resource competition. Nectar-feeding bats may increase their time at the food source to 

maximize energy intake before others drain the sugar water. Holt and Kotler (1987) 

suggest that foragers competing with conspecifics should seek instantaneous 

maximization on the return of a food source. Non-competitive foraging behaviour favours 

consistent exploitation of a resource over time, but when the future return is inhibited by 

others, the forager should switch strategies to get what it can while the opportunity lasts 

(Holt & Kotler, 1987). However, if the presence of conspecifics indicates competition, it 

should cause competitors to prefer resources where fewer competitors are present (Davis, 

Nufio, & Papaj, 2011). This propensity to avoid competitors does not mesh with the 

group foraging strategy of L. yerbabuenae.  

An alternate and more plausible explanation of my results is that L. yerbabuenae use the 

presence of conspecifics as an indicator of resource quality (Danchin, Giraldeau, Valone, 

& Wagner, 2004). Animals inadvertently signal social information to others through their 

activities, such as the spatial location and quality of a food patch (Dall, Giraldeau, 

Olsson, McNamara, & Stephens, 2005). This information is valuable while foraging, as it 

can reduce the required search time of individuals. L. yerbabuenae spend a large portion 

of the early evening flying but not feeding, assessing the location and availability of 

flowers (Horner, Fleming, & Sahley, 1998). Horner et al. (1998) found that L. 

yerbabuenae typically have the highest feeding activity between 24:00 and 2:00 each 

night, despite departing their roost at dusk. They proposed that this foraging behaviour is 

influenced by the nectar production of flowers, and tested this prediction by 
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supplementing flowers with artificial nectar and observing visits. Bats visited 

supplemented flowers at 20:00 and increased their visit rate three fold. This is 

comparable to the feeding activity I observed at the hummingbird feeders in Tucson 

between 1900 and 2300, when the food source was ample and readily available.  

If the presence of conspecifics indicates the location and quality of a food source, I 

predict more time would be invested at this source to maximize energy intake for the 

night. The presence of one or two other bats may encourage a bat to stop its assessment 

and begin feeding in a food patch earlier and for a longer period of time. This may lead to 

the group feeding seen in this species, which Howell (1979) described as cooperative. 

However, I hesitate to deem this behaviour cooperative, as feeding in a group may result 

as a function of maximizing a bat’s own foraging success. Although L. yerbabuenae form 

very large maternity colonies, they do no exhibit overtly cooperative behaviour while 

roosting, and social bonding seems limited (Fleming, Nelson, & Dalton, 1998). Nectar-

feeding greater spear nosed bats (Phyllostomus hastatus) use social calls to attract 

conspecifics to feed when food is abundant. It seems more likely that group feeding is 

cooperative in P. hastatus because it is actively solicited, whereas this may not be the 

case with L. yerbabuenae.  

I did not observe aggressive behaviour or resource defense with L. yerbabuenae, which is 

consistent with the literature (e.g. Howell, 1979; Horner et al., 1998). At the Biodôme, I 

did not score aggressive interactions between G. soricina, as it was difficult to 

differentiate between chasing and following behaviour, and I could not assume intention. 

Additionally, if one bat was chasing or following another, I could not assume that this 

was in response to my playbacks. Nevertheless, I did not observe any overt resource 

defense behaviour. Lemke’s (1984) observations of territorial behaviour in G. soricina 

occurred in an area with lower food availability and plant diversity, and he suggests that 

aggressive behaviour may abate if food is plentiful. Hummingbirds typically do not stop 

defending nectar sources even when they are abundant, unless there are too many 

competitors to defend against (Carpenter, 1987). The Montreal Biodôme has unlimited 

nectar sources and 18 bats that would overwhelm dominant behaviour. Aggressive 



43 

 

resource defense is energetically costly, and with these conditions in place, it makes 

sense that this behaviour has diminished.  

My measured feeding durations for the captive bats are true to the feeding durations of 

solitary bats in the field. Feeding durations of captive G. soricina did not differ 

significantly from those of wild G. soricina when feeding alone. The birds and bats that 

feed on nectar have high metabolic rates due to the energetic demands of hovering flight 

(Welch, Herrera, & Suarez, 2008). Hummingbirds and honeyeaters increase the duration 

of their feeding visits, and therefore their energy efficiency, when the volume of nectar 

available increases (Collins, 2008). Contrary to this, captive G. soricina do not increase 

feeding durations despite constant access to an unlimited food source. I speculate that 

there is another ecological or physiological constraint other than food availability on 

feeding durations, such as a digestive bottleneck or predator avoidance. 

The amount of food that a nectar-feeding bird ingests is temporarily limited by the 

amount its food-storing organ, the crop, can hold, resulting in a digestive bottleneck. 

Therefore, the size of the crop and the rate at which it fills and empties affects energy 

intake, energy expenditure and the frequency of feeding bouts (Collins & Cary, 1981). 

However, before the maximum intake level is reached, feeding durations can still vary. 

The maximum feeding duration that I recorded for a captive G. soricina feeding alone 

was 0.87s, suggesting that, on average, they are not reaching their maximum intake. 

Although hummingbirds vary their feeding durations by the volume of nectar that is 

available (Collins, 2008), they do not ingest as much nectar as is physically possible 

when in captivity (DeBenedictis, Gill, Hainsworth, Pyke, & Wolf, 1978). DeBenedictis et 

al. (1978) suggest that the weight of a meal, and the increased energetic cost of adding 

weight, is the constraint that causes hummingbirds to limit their intake. Perhaps this 

constraint also applies to G. soricina, resulting in an ideal volume of nectar intake and an 

optimal mean feeding duration to maximize energy efficiency. 

The optimal duration of feeding visits for G. soricina may also serve to minimize the risk 

of visiting the same flowers night after night. Nocturnal predators such as eyelash vipers 

(Bothriechis schlegelii) lie in wait to ambush their prey, which includes bats (Sorrell, 
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2009). Because G. soricina employ a trapline foraging strategy (Lemke, 1984), they 

could be easy and predictable prey for an ambush predator. However, in this case the 

typical 0.3 s feeding visit of G. soricina is quick enough to avoid the rapid 0.5 s strikes of 

an eyelash viper (Kardong & Bels, 1998). The need for short feeding events to avoid 

predation may explain the consistency in feeding durations despite changes in food 

availability. The significant difference in feeding durations between G. soricina and L. 

yerbabuenae may be a result of the differences in body size and energy requirements for 

these species (Henry & Stoner, 2011). 

4.2 Echolocation calls signal social information 

Female G. soricina at the Biodôme responded differently to male echolocation calls than 

to female echolocation calls. This supports my prediction that G. soricina eavesdrop on 

the echolocation calls of conspecifics to glean social information, and that the ability to 

detect the sex of the caller is valuable to this species. Kazial and Masters (2004) found 

that female big brown bats (Eptesicus fuscus) differentiate between the sexes through 

echolocation calls by looking at differences in call rates in response to playbacks. Other 

studies have used different behavioural responses to investigate eavesdropping. For 

example, a bat that approaches and hovers at a playback speaker shows interest in the 

broadcasted call (e.g. Barclay, 1982; Leonard & Fenton, 1984). Male G. soricina 

echolocation calls elicited the most hovering responses of all of the G. soricina playback 

types. Although the difference in hovering responses of female G. soricina to male and 

female echolocation calls fell short of significance, the high number of hovering 

responses along with the significant difference in feeding counts between the two call 

types suggests that they are distinguishing between the sexes.  

Male and female adults of G. soricina do not share foraging territories, and both males 

and females demonstrate aggressive territorial defense of limited resources (Lemke, 

1984). Females and males do not discriminate between the sexes when displaying 

dominant behaviour (Lemke, 1984), thus knowing whether an approaching bat is male or 

female does not seem tied to this. The ability to glean information from echolocation 

calls is probably important for sexual behaviour and mating. The decrease in feeding 

visits during playbacks of male echolocation calls is perhaps a side effect of the females 
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investigating the source of the call. Future studies could investigate this further by 

including male G. soricina and analyzing their responses to female echolocation calls to 

determine if this trend is consistent. 

4.3 Social calls influence feeding behaviour 

G. soricina abort their approaches to a nectar source relatively frequently during non-

playback periods. Like L. yerbabuenae, they may assess food patch quality and the 

location of a food source before beginning their feeding bouts (Horner et al., 1998). 

These brief assessments can look like aborted feeding approaches. The location of the 

food source at the Biodôme has been constant for many years, so I expected the need for 

assessments to diminish; yet this behaviour persists. Contrary to what I predicted, the 

number of aborted approaches did not increase during any of the playback call types. 

Giuggioli et al. (2015) found that foraging insectivorous bats primarily rely on active 

localization of other bats with echolocation and less so on eavesdropping when feeding in 

congested airspace. I speculate that eavesdropping near a stationary food source is less 

important than the active localization of others to prevent collisions for G. soricina. As 

solitary foragers (Lemke, 1984), they may not need to respond to the echolocation calls 

of conspecifics, with the assumption that the caller will make adjustments to avoid 

collision rather than the eavesdropper. Unless targeted by an aggressive conspecific that 

is defending a resource, G. soricina generally face less of risk of collision or potential 

interference with their solitary feeding behaviour than L. yerbabuenae. 

The changes in feeding and hovering responses of G. soricina to male echolocation calls, 

approach pulses, alert calls and L. yerbabuenae screech calls indicates that these calls 

have some role in flight responses. However, the calls may serve as signals that distract 

G. soricina from their usual feeding behaviour. I cannot infer from my study whether 

these calls are used naturally in the context of air traffic rules. An increase in aborted 

approaches would indicate a more direct and immediate effect on flight behaviour, as 

well as the direct utilization of these signals for air traffic control. The bats did change 

their in-flight behaviour, but there was no significant change in aborted approaches to the 

food source for these vocalizations. These calls may play some role in air traffic control, 

but less directly than expected. 



46 

 

The results of my study did not reveal the social context of the L. yerbabuenae screech 

call. Both species increased their hovering at the speaker in response to this call type, but 

only G. soricina decreased their feeding visits. There is no evidence showing aggressive 

or defense behaviour between these species in the field. However, Henry and Stoner 

(2011) found a negative correlation in visit frequencies between the two species when 

comparing flower patches. This is most likely a result of the superior foraging efficiency 

of L. yerbabuenae in larger food patches as opposed to direct exclusion. It is possible that 

the screech calls of L. yerbabuenae facilitate interspecies communication and serve as a 

warning signal when feeding from the same sources. This should be investigated further 

with more extensive field observations and playback manipulations in locations where 

both species are present, such as Jalisco, Mexico (Henry & Stoner, 2011). If playbacks of 

G. soricina calls to L. yerbabuenae elicited significantly more screech calls, it could 

indicate that one possible use of this call is for interspecific communication. Future 

studies could also find flower patches that are not visited regularly by L. yerbabuenae, 

and test whether broadcasted screech calls would attract any L. yerbabuenae to the patch. 

I observed occasional collisions between individuals in Arizona and at the Biodôme. 

However, in all cases the bats quickly righted themselves in midair and did not appear 

injured. Suthers (1965) reported that insectivorous bats usually gain control quickly after 

collisions. Although I observed collisions in both species, this does not negate the 

possibility of signals being used as a form of prevention. Vocalizations may lower the 

number of potential collisions, and when collisions do occur, they may minimize the 

damage caused. Visual cues are likely integrated with acoustic detection, as bats can use 

each sense to its advantage (Suthers & Wallis, 1970). For example, the northern bat 

(Eptesicus nilsonii) relies primarily on vision to find large prey near clutter, which would 

otherwise be difficult to detect acoustically (Rydel & Eklöf, 2003). My study focused on 

the acoustic perception of nectar-feeding bats, but I cannot rule out the role that visual 

cues might play in air traffic control as well. 

As Guiggoli et al. (2015) discussed, it is difficult to assess bats’ perception of signals and 

perhaps more reliable to infer active sensing. I propose that the full spectrum of signals 

that bats use for air traffic control likely relies on an integration of sensory modalities. 
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Guiggoli et al. (2015) found that bats follow defined flight paths by using active sensing, 

whereas Adams and Simmons (2002) suggest that bats follow defined flight paths by 

eavesdropping. My results support the hypothesis that bats are eavesdropping on others to 

inform their feeding and flight behaviour to some degree, but suggest that active 

localization and other cues may also be important. Research on air traffic control has just 

begun to tease apart the intricate connections between sensory modalities and bats’ 

sensory perception. 

4.4 Conclusions 

1. L. yerbabuenae increase the rate at which they abort their feeding approaches and 

hover at the speaker in response to the echolocation calls of conspecifics, and decrease 

their feeding rate. This suggests that L. yerbabuenae use these calls directly as air traffic 

control signals in order to prevent collisions and maintain a highly efficient group feeding 

system. 

2. I found evidence that L. yerbabuenae use the presence of conspecifics as indicators of 

resource quality, and detect their conspecifics by eavesdropping on echolocation calls 

while feeding. 

3. Female G. soricina can glean social information from echolocation calls through 

eavesdropping, and can distinguish between the sexes based on call alone. 

4. Several different call types change the feeding and hovering behaviour of G. soricina, 

but do not cause an increase in aborted approaches, suggesting that these calls may be 

indirectly involved in air traffic control. 
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Appendix A: Call feature characterization of L. yerbabuenae and G. soricina. Selected acoustical parameters (mean ± SD) of 

echolocation calls and social calls from L. yerbabuenae and G. soricina. Pulse interval – time from start of one call to start of 

the next (ms); FME – frequency of maximum energy for a call (kHz); n – number of calls. The call features of G. soricina are 

consistent with those described in the literature (eg. Knörnschild et al., 2010). 

 

Species Call type n Duration 
(ms) 

Pulse 
interval (ms) 

Start 
frequency 

(kHz) 

End 
frequency 

(kHz) 

FME (kHz) 

Echolocation call 20 2.5 ± 1.6 48.5 ± 18.6 149.5 ± 16.9 61.4 ± 15.7 93.9 ± 13.9 

Approach call 15 1.0 ± 0.1 8.5 ± 0.7 67.6 ± 6.8 30.0 ± 5.6 40.6 ± 5.1 
G. soricina 

Alert call 8 30.1 ± 10.2 306.9 ± 56.3 76.0 ± 11.1 22.4 ± 2.1 38.1 ± 5.3 

Echolocation call 20 3.9 ± 1.4 46.4 ± 27.9 89.9 ± 6.7 40.0 ± 2.6 70.3 ± 3.7 L. yerbabuenae 
Screech call 6 38.9 ± 13.1 321.3 ± 13.1 52.6 ± 2.7 24.4 ± 6.8 27.6 ± 6.0 
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