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Abstract 

Many insects are able to survive internal ice formation. However, the mechanisms underlying 

freeze tolerance are not well-understood, perhaps because of a lack of suitable model 

organisms. I found that the spring field cricket, Gryllus veletis, seasonally acquires freeze 

tolerance in the fall when kept outside in London, Ontario. Moreover, individuals acquired 

freeze tolerance in the laboratory in response to a simulated fall thermophotoperiod. Lab-

acclimated G. veletis freeze at -6.1 ± 0.7 ºC and the acquisition of freeze tolerance is 

accompanied by the accumulation of proline and trehalose. Crickets survived temperatures as 

low as -12 ºC (1.5 h), and for one week at -8 °C. Lab-acclimated crickets were more cold-

hardy than field-acclimatized crickets, with higher survival at both -12 ºC and after one week 

at -8 °C. Gryllus veletis is a suitable candidate for further investigating freeze tolerance 

because it is easily reared and manipulated in a controlled laboratory environment.  
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1 Introduction 

Insects have colonized all terrestrial ecosystems, in which they experience a wide range 

of environments, exposing them to extreme high and low temperatures as well as to the 

risk of dehydration in many places. As ectotherms, insects are limited in their ability to 

regulate their internal temperature and are therefore at risk of injuries resulting from both 

high and low temperatures (Chown & Nicolson, 2004).  At a global scale, absolute winter 

temperatures fluctuate more than summer temperatures and therefore may play a primary 

role in delineating latitudinal variation in insect processes (Williams et al., 2015). Some 

insects, particularly those inhabiting alpine, polar and temperate regions, spend over half 

of their lives at risk to chilling and freezing injury and have evolved behavioural, 

physiological and biochemical mechanisms to cope with the stresses of low temperature 

(Williams et al., 2015). Understanding how and why these adaptations are expressed in 

nature may provide explanations for current insect distributions and insight into 

predicting and controlling future distributions across changing climates and landscapes.  

Cold-hardy insects survive sub-zero temperatures by either maintaining their 

internal fluids in a supercooled state below their melting point (freeze avoidance), or by 

surviving internal ice formation (freeze tolerance) (Denlinger & Lee, 2010; Zachariassen, 

1985). Insect freeze tolerance was first described in the 18th century (Sømme, 2000), and 

has since received considerable scientific attention (Denlinger & Lee, 2010; Salt, 1961). 

Nevertheless, the underlying physiological mechanisms of freeze tolerance remain poorly 

understood, largely due to the lack of a tractable model organism, and few manipulative 

experiments (Hayward et al., 2014; Sinclair & Renault, 2010). The overarching goal of 

my thesis is to assess the suitability of the spring field cricket, Gryllus veletis, as a new 

model organism that may be used in controlled, manipulative experiments to better 

understand the physiological mechanisms underlying insect freeze tolerance. 
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1.1 Insects at sub-zero temperatures  

For overwintering insects, exposure to sub-zero temperatures may lead to freezing and 

potentially lethal cold injuries. In insects, internal freezing does not occur immediately 

upon cooling to 0 ºC. Instead, insects are capable of cooling their hemolymph below their 

melting point without ice forming in a process called supercooling (Denlinger & Lee, 

2010). The temperature at which an insect’s body water spontaneously freezes is termed 

the supercooling point (SCP), which can be readily determined using a thermocouple to 

detect the exotherm associated with the release of heat as water forms an ice crystal 

(Denlinger & Lee, 2010). The majority of overwintering insects supercool extensively 

(Lee, 1989); therefore, determining the SCP of an insect provides insight into the 

relationship between exposure to low temperatures and the risk of internal ice formation.  

Multiple insect lineages have independently evolved the ability to successfully 

overwinter in alpine, arctic and temperate regions where they will be exposed to sub-zero 

temperatures. Some insects that overwinter in these regions are able to avoid sub-zero 

temperatures by selecting warmer, buffered microhabitats, such as the acorn weevil, 

Curculio glandium, which burrows >5 cm into the soil while overwintering in Ontario, 

Canada (Udaka and Sinclair, 2014). However, the majority of insects that overwinter in 

alpine, arctic and temperate regions have enhanced cold tolerance through biochemical 

and physiological processes and are either freeze avoidant or freeze tolerant. Freeze 

tolerance may be advantageous in variable climates that have an unpredictable risk of ice 

nucleation, and in regions with very cold and long winters (Sinclair et al., 2003). Insect 

freeze tolerance has repeatedly evolved across and within several lineages including 

Diptera, Coleoptera, Blattodea, Orthoptera, Hymenoptera and Lepidoptera (Chown & 

Sinclair, 2010). Further investigation into the precise mechanisms of freeze tolerance 

may provide insight into how and why these lineages evolved to become freeze tolerant. 

The remainder of this thesis will focus on insect freeze tolerance and elucidating these 

mechanisms.  
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1.2 Internal ice formation   

For freeze-tolerant insects, the initiation of internal ice formation leads to multiple 

physiological stresses. To survive internal ice formation, freeze-tolerant insects must 

mitigate mechanical damage, cellular dehydration, anoxia and reduced metabolic activity, 

while maintaining necessary physiological processes (Lee, 2010). However, the 

mechanisms by which freeze-tolerant insects mitigate these freezing injuries as well as 

the processes of internal ice formation are not well understood (Sinclair & Renault, 

2010). Throughout this thesis I follow with the general model of insect freeze tolerance in 

assuming that ice formation is restricted to extracellular spaces (Zachariassen, 1985). 

However it should be noted that intracellular ice formation has been observed in some 

freeze-tolerant insects, although its prevalence has not been fully explored (Sinclair & 

Renault, 2010). 

The initiation of ice formation within an insect occurs either by homogeneous or 

heterogeneous nucleation (Zachariassen & Kristiansen, 2000). Homogeneous nucleation 

occurs at temperatures of -5 °C to -40 °C and requires a stochastic aggregation of 

supercooled water molecules that reach a critically large size (Zachariassen & 

Kristiansen, 2000). Heterogeneous nucleation, which appears to account for the majority 

of nucleation in insects, involves substances other than liquid water (Zachariassen et al., 

2004) (see section 1.1.2.1). These molecules are commonly referred to as ice nucleating 

agents (INAs), which configure and stabilize aggregations of water molecules, promoting 

ice formation at higher temperatures than homogenous nucleation (Tattersall et al., 2012; 

Zachariassen & Kristiansen, 2000).  

Freeze-tolerant insects may be able to influence the location and rate of internal 

ice formation through the production of endogenous INAs (see section 1.1.2.1) or the 

ingestion of exogenous INAs. Exogenous ice nucleators are likely retained in the gut of 

freeze-tolerant insects, as observed by Sinclair et al. (1999) in alpine and lowland weta, 

Hemideina spp. Some gut INAs are so efficient that they are produced commercially to 

induce ice formation at higher temperatures in skating rinks and ski hills, such as the ice-

nucleating protein on the surface of bacteria (Pseudomonas syringae) present in the gut 
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of the lady beetle, Hippodamia convergens (Strong-Gunderson et al., 1990). Species of 

the fungus Fusarium have also been identified as exogenous INAs in the gut of freeze-

tolerant larvae of the rice stem borer, Chilo suppressalis (Tsumuki et al., 1992; Hirai & 

Tsumuki, 1995).  

During inoculative freezing, ice formation is initiated by the contact of external 

ice with internal fluids, and subsequent propagation within the insect. This mode of ice 

formation is necessary for some insects to survive freezing. For example, diapausing 

larvae of the dipteran, Chymomyza costata, can survive and develop after experiencing 

temperatures as low as -70 ºC, but only if inoculative freezing occurs at -2 ºC (Shimada 

& Riihimaa, 1988).  

Once freezing begins, ice propagates rapidly at first, but the entire process may 

last for 1-2 days or until an equilibrium is reached (Lee, 1991). For example, when the 

freeze-tolerant larvae of the goldenrod gall fly, Eurosta solidaginis, are held at -23 °C, 10 

% of the available water becomes ice within the first five minutes; however, it takes 6 h 

for 50 % of the water to become ice, and ice formation does not reach equilibrium (60 % 

ice) until the fly has been frozen for 40 h (Lee & Lewis, 1985). When freeze-tolerant 

Orthoptera, Hemideina maori, are exposed to -5 ºC, ice formation progresses at a rate of 

15 % of the total body water per hour for the first 3-4 hours and reaches equilibrium after 

being held frozen for approximately 9 h (Ramløv & Westh, 1993).  

1.2.1 Freezing injury 

Injury due to freezing may occur at the level of the cell, tissue, organ or whole organism. 

However, much of the theoretical framework for understanding the freezing injuries in 

insects is based on research directed toward cryopreservation of mammalian cells, 

particularly human red blood cells (Sinclair & Renault, 2010). Researchers should use 

care when extrapolating this framework to insect systems because human red blood cells 

are of an atypical nature (lacking nucleus and other cellular organelles), the fast cooling 

and warming rates (± 104 ºC min-1) used in cryopreservation research are not ecologically 

relevant, and the goal of cryopreservation is to prevent ice formation (vitrification) (Lee, 

1991; Saragusty & Arav, 2011).  
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As ice forms in the extracellular spaces and the ice lattice grows, solutes become 

concentrated in the hemolymph. The resulting increase in osmotic pressure leads to the 

outflow of intracellular water down its osmotic gradient and ultimately causes cellular 

dehydration. In mammalian cells, a minimum cellular volume is required to maintain 

structural integrity (Meryman, 1974). If cells become too dehydrated, mechanical damage 

to the membrane via membrane fusions and phase transitions/separations of membrane 

components may cause cellular leakage (Quinn, 1985). At equilibrium, concentrations of 

intracellular solutes lower the melting point, which ensures that intracellular freezing 

does not occur at that temperature (Tattersall et al., 2012). These new osmotic 

concentrations may lead to other injuries caused by osmotic shock, pH shifts that alter 

protein structure and function, and elevated concentrations of signaling molecules (Lee, 

1991; Meryman, 1974). 

The rigid structure of ice crystals may also result in mechanical damage to the 

insect. As water turns to ice, it expands by approximately 10 %, potentially rupturing 

cellular membranes (Lee, 1991). During slow warming of frozen tissue or during 

prolonged freezing, larger ice crystals grow at the expense of smaller crystals in a process 

termed recrystallization, which can further distort surrounding cells and disrupt tissue 

organization (Tattersall et al., 2012; Knight & Duman, 1986). Extracellular ice formation 

may also reduce the capacity of the insect’s circulatory system, resulting in anoxic, 

acidotic, and high lactate conditions (Lee, 1991). 

Freeze-tolerant insects not only have to mitigate freezing injuries but also survive 

the thawing process. As an insect is rewarmed the internal ice begins to melt, exposing 

cells to a relatively hypotonic extracellular solution. In mammalian cells, an influx of 

water into the cell can lead to swelling or lysis (McGrath, 1987). Simultaneously, 

reperfusion of tissues promotes oxidative stress, in which reactive oxygen species (ROS) 

are able to oxidize macromolecules, causing membrane damage via lipid peroxidation 

(Costanzo & Lee, 2013; Doelling et. al., 2014). In the context of cryopreservation, an 

overall increase in survival has been observed with increased warming rates (Nishino & 

Baust, 1989), possibly due to reduced growth and redistribution of ice crystals associated 

with recrystallization (Leopold, 1991).  
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Freeze-tolerant insects have lethal limits with respect to temperature, time spent 

frozen and number of freeze-thaw cycles. For example, in lowland weta (Hemideina 

spp.), H. crassidens survive freezing for 120 min at -5 ºC but not at -7.5 ºC, while H. 

thoracica can survive freezing at -5 ºC for 150 min, but die after 210 min (Sinclair et al., 

1999). Independent of the duration of time spent frozen, Marshall and Sinclair (2011) 

observed a 30 % increase in mortality in woolly bear caterpillars, Pyrrharctia isabella, 

that were repeatedly frozen, which demonstrates that freeze-thaw cycles impose 

additional injuries to insects.  

The proposed mechanisms of freezing injury in insects (mechanical, dehydration, 

oxidative stress) are neither mutually exclusive nor readily distinguishable. It is difficult 

to determine which of these freezing injuries are lethal, as current model systems for 

studying insect freeze tolerance are not easily manipulated in the lab. However, these 

proposed mechanisms, which are mostly based on correlative approaches or 

cryopreservation research, provide the foundation for the current model of how insects 

survive internal ice formation (Lee & Denlinger, 2010).  

1.2.2 Biochemicals associated with freeze tolerance 

The specific mechanisms of insect freeze tolerance are unknown, although multiple 

studies have characterized the physiological state of freeze-tolerant insects (e.g. Storey & 

Storey, 1983, Tsumaki et al., 1992; Walters et al., 2009). While strictly correlative, these 

studies have identified three main groups of biochemicals associated with freeze 

tolerance: ice nucleating agents, low-molecular-weight cryoprotectants, and thermal 

hysteresis agents.  

1.2.2.1 Ice nucleating agents (INAs) 

The ability to control heterogeneous nucleation is one of the few physiological 

differences between freeze-tolerant and freeze-avoidant insects (Tattersall et al., 2012). 

Ice nucleating agents promote the transition of water from liquid to solid form by 

organizing water molecules into an ice crystal-like conformation (Zachariassen 

&Kristiansen, 2000). Freeze-tolerant insects potentially select for endogenous ice 
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nucleators, commonly in the form of protein ice nucleators, lipoprotein ice nucleators, 

and other inorganic molecules (Duman, 2001). For example, the freeze-tolerant 

orthopteran H. maori, produces a proteinaceous ice nucleating agent in its hemolymph 

(Wilson & Ramløv, 1995). Larvae of the freeze-tolerant crane-fly, Tipula trivittata, 

produce an ice-nucleating lipoprotein in their hemolymph that contains a phospholipid 

monolayer, which may be the active site for binding with water molecules (Duman et al., 

1985; Duman, 2001). Endogenous, inorganic ice nucleators are present in E. solidaginis, 

including inorganic ice nucleators such as calcium phosphate spherules in the Malpighian 

tubules, fat body cells, as well as potassium phosphate, potassium urate and sodium urate 

(Duman, 2001; Mugnano et al., 1996).  

1.2.2.2 Low-molecular-weight cryoprotectants 

Low-molecular-weight molecules such as polyhydric alcohols (polyols), sugars, and 

amino acids are accumulated in both freeze-avoidant and freeze-tolerant insects. At high 

concentrations, low-molecular-weight cryoprotectants colligatively depress the melting 

point of an insect, with some freeze-avoidant insects accumulating over 3000 mM of 

polyols (Zachariassen, 1980). However, the relatively low concentration of these 

molecules in freeze-tolerant insects (~200-400 mM) compared to freeze-avoidant insects 

suggests that their primary cryoprotectant function may not be colligative.  

Low-molecular-weight cryoprotectants, notably trehalose and proline, may play 

an important role in freeze tolerance by inhibiting damage to membranes and other 

macromolecules during the freezing process. Trehalose and proline decrease the packing 

density between membrane phospholipids, which may inhibit lateral-phase separations 

during freezing-dehydration by reducing the chance of van der Waals interactions 

between hydrocarbon chains (Crowe et al., 1984). Koštál et al. (2011) suggest that 

proline may further enhance insect freeze tolerance by promoting the vitrification of 

unfrozen water in insect’s tissues, as feeding a proline augmented diet to Chymomyza 

costata larvae resulted in the induction of freeze tolerance, as well as an increased 

propensity of water to undergo vitrification. Other low-molecular-weight molecules such 

as glycerol, sorbitol, ribitol, glucose and alanine accumulate in overwintering insects and 
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are correlated with insect freeze tolerance as well (Storey & Storey, 1983; Lee, 1991). 

However, no one molecule is common to all freeze-tolerant insects.  

Accumulating cryoprotectants that are able to penetrate cellular membranes will 

increase the cell’s non-aqueous volume, which may aid in maintaining the minimum cell 

volume (Meryman, 1974). These potential cryoprotectants are usually normal products of 

insect metabolism and can be readily transported through cellular membranes by 

aquaporin-like proteins (Tattersall et al., 2012; Philip & Lee, 2010). In the freeze-tolerant 

beetle, Pytho depressus, glycerol is present in equal concentrations in intracellular and 

extracellular compartments (Zachariassen, 1979). Altogether, it is reasonable to expect 

that many other low-molecular-weight cryoprotectants would also be present in equal 

intra- and extra-cellular concentrations.  

1.2.2.3 Thermal hysteresis agents 

Antifreeze proteins are a subset of proteinaceous thermal hysteresis agents, as they 

depress the freezing point of solutions further below the melting point than expected if 

they acted in a solely colligative manner (Zachariassen, 1985). However, the term 

recrystallization-inhibiting protein may better represent their primary function, as 

measurable thermal hysteresis is rarely observed in freeze-tolerant insects (Duman, 

2001). These proteins are generally relatively small, threonine- and cysteine-rich in 

insects, and may function by binding to the surface of ice crystals, potentially inhibiting 

recrystallization at concentrations much lower than what is needed to produce thermal 

hysteresis (Duman, 2001). Thermal-hysteresis activity and recrystallization inhibition are 

enhanced by antifreezes forming complexes with other antifreezes or with other 

molecules such as glycerol and citric acid (Tattersall et al., 2012). One explanation for 

the enhanced antifreeze activity of these complexes is that they are able to block a larger 

surface area of the ice crystal (Tattersall et al., 2012). The presence of antifreeze proteins 

can increase low temperature survival in freeze-tolerant insects (Tursman & Duman, 

1995). However, further studies are required to determine the mechanisms of 

cryoprotection and diversity of this class of proteins in freeze-tolerant insects.  
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1.2.3 Other molecules associated with insect freeze tolerance  

There are other molecules associated with insect freeze tolerance that may mitigate 

damage accrued during freezing and thawing. Freeze-tolerant organisms must have the 

capacity to increase antioxidant capacity by upregulating antioxidant enzymes and 

substrates in anticipation or in the presence of ROS (Doelling et al. 2014; Silva et al., 

2013). Membrane-bound aquaporins and aquaglyceroporin-like proteins facilitate the 

rapid redistribution of water and other molecules associated with freezing under the 

assumption of extracellular ice formation. The upregulation of these transporters is 

correlated with the seasonal acquisition of freeze tolerance in E. solidaginis (Philip & 

Lee, 2010). MicroRNA expression is also differentially regulated during the acquisition 

of freeze tolerance in E. solidaginis, allowing for translational control of metabolism 

while the insect is in a frozen state (Courteau & Storey, 2012). Non-protein molecules 

such as xylomannan (fatty acids + saccharides) and acetylated triacylglycerols are also 

present in freeze-tolerant insects and may interact with ice to inhibit recrystallization and 

protect intracellular membranes (Walters et al., 2009; Marshall et al., 2014). It is 

important to note that the majority of these molecules, including the other cryoprotectant 

molecules mentioned above, were identified using correlative, seasonal approaches, and 

it is not yet known which molecules are specifically required for the induction of insect 

freeze tolerance.  

1.2.4 The induction of insect freeze tolerance in the field and laboratory 

Insects can increase their cold hardiness to adjust to seasonal temperature changes. These 

plastic responses are generally divided into two categories: Rapid cold-hardening and 

acclimatization. Rapid cold-hardening occurs over very short time-scales (30 min – 2 h) 

in response to a brief low temperature exposure, and increases the insects cold-hardiness 

in subsequent low temperature exposures (Lee & Denlinger, 2010). Acclimatization 

occurs over a longer period as the insect prepares for prolonged periods of stress (Rako & 

Hoffmann, 2006). Both of these plastic responses may rely on the previously described 

biochemical mechanisms to prepare an insect for exposure to sub-freezing temperatures.  
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Overwintering insects often rely on cues from their environment to initiate plastic 

responses in anticipation of low temperatures. Seasonal changes in temperature cycles 

(thermoperiod) and photoperiods, or when combined, thermophotoperiods, have a 

predictable relationship with changing seasons. As a result, these seasonal changes can 

induce acclimatization in the field, which can be simulated by acclimation in the 

laboratory (e.g. Rako & Hoffman, 2006). While many studies use constant temperature 

and photoperiods for acclimation, others use ecologically-relevant thermophotoperiods to 

simulate natural conditions (Kelty & Lee, 2001; Colinet et al., 2015). In addition, the 

chemical composition of senescent plant tissues, which make up the diet and microhabitat 

of herbivorous overwintering insects, may initiate a transition to an insect’s 

overwintering strategy (Baust & Nishino, 1991). Thus, manipulating temperature, 

photoperiod and diet may lead to developing a protocol for inducing insect freeze 

tolerance in a laboratory setting.  

Manipulating an insect’s diet in the laboratory can have significant effects on 

survival following internal ice formation. A proline-augmented diet enhances freeze 

tolerance in Chymomyza costata, following complete submergence in liquid nitrogen 

(Koštál et al., 2011). Proline also facilitates freeze tolerance in the chill susceptible 

Drosophila melanogaster; however, flies can only tolerate freezing of half of their body 

water (Koštál et al., 2012). While proline enhances freeze tolerance in both drosophilids, 

increased survival in chill-tolerant C. costata compared to chill-susceptible D. 

melanogaster suggests that complete freeze tolerance is achieved by insects through 

multiple mechanisms. Given the potential complexity of freeze tolerance, this 

phenomenon should also be examined in a way that better reflects the natural acquisition 

of insect freeze tolerance.  

1.3 Model systems for studying insect freeze tolerance  

The current understanding of processes describing insect freeze tolerance has relied 

heavily on mammalian cryoprotection research and relatively untested correlations 

associated with seasonal change. Consequently, the mechanisms of insect freeze 

tolerance remain undetermined (Hayward et al., 2014). Correlative approaches make it 



 

 

 

11 

difficult to determine which molecules are both necessary and sufficient for insect freeze 

tolerance. For example, the low-molecular-weight cryoprotectant glycerol has been 

shown to accumulate in freeze-tolerant E. solidaginis and freeze-avoidant E. scudderiana 

prior to overwintering in a goldenrod host, despite opposite cold-tolerance strategies 

(Storey & Storey, 1983; Rickards et al., 1987). One of the impediments to developing a 

greater understanding of the mechanisms underlying insect freeze tolerance using 

manipulative approaches has been the lack of a suitable model insect. 

The August Krogh Principle states, “For many problems there is an animal on 

which it can be most conveniently studied,” (Krogh, 1929), and while the current study 

organisms have allowed us to build hypotheses of the mechanisms of freeze tolerance, 

they have inhibited our ability to rigorously test these hypotheses in a controlled 

laboratory setting. Insects that are currently used in freeze-tolerance research are not 

efficiently reared in the lab. For example, the long life span (e.g. Hemideina spp.) and 

seasonal constraints of field collections (e.g. E. solidaginis, Belgica antarctica, P. 

isabella) have often resulted in one-off characterizations of the insect’s physiological 

state. Furthermore, these traits make it difficult to account for variability in field 

conditions experienced by insects prior to bringing them into the lab, and may also limit 

sample sizes. Diapause is an endocrine-mediated dormancy that often coincides with 

insect cold hardening; however, freeze-tolerance can be achieved independent of 

diapause (Denlinger, 1991). Thus, diapause is a confounding variable for many species 

that can make it difficult to differentiate between diapause and freeze-tolerance responses 

(Lee, 1991). The size and body composition of current study organisms (e.g. C. costata, 

E. solidaginis) have made laboratory-based rearing and manipulations labour intensive or 

impossible (Brent J. Sinclair, personal communication). Additionally, with the exception 

of B. antarctica, none of these study organisms have thus far been amenable to genetic 

manipulation (Kelley et al., 2014). Future investigations into the mechanisms of insect 

freeze tolerance require a study organism better suited than the current alternatives for 

laboratory-based manipulative approaches. I propose that the spring field cricket, Gryllus 

veletis, is a candidate model organism for studying insect freeze tolerance.  
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1.3.1 Gryllus veletis – a candidate model species for studying insect 

freeze tolerance 

The spring field cricket, Gryllus veletis (Alexander & Bigelow) (Orthoptera: Gryllidae) 

overwinters as a late-instar nymph throughout temperate North America (Alexander & 

Bigelow, 1960). G. veletis nymphs overwinter in the soil where ambient temperatures are 

thermally buffered, and crickets become reproductively active in the late spring and early 

summer (Bégin & Roff, 2002; Alexander & Bigelow, 1960). A population of G. veletis 

originating from a wild population collected in Lethbridge, Alberta have been maintained 

and studied in the Biotron at Western University since 2010 (e.g. Coello Alvarado et al., 

2015). When reared under constant summer conditions (25 °C, 14 h Light: 10 h Dark, 70 

% RH) the laboratory population produces a new cohort every two weeks. In a 

preliminary study (L.V. Ferguson personal communication, 2013), juvenile crickets from 

this population were acclimatized outdoors in London, Ontario from September 2012 

through February 2013. Seven of these individuals were brought into the lab, cooled to -

6.0 °C (0.25 °C min-1) and held there for three hours. All seven crickets survived internal 

ice formation. However, non-acclimatized crickets from the laboratory-reared population 

were not able to survive freezing. Further investigation into the temperature, photoperiod 

and dietary conditions that lead to G. veletis freeze-tolerance in the field may provide 

insight into the acclimation conditions necessary for inducing freeze tolerance in the 

laboratory.  

 I propose that developing G. veletis as a new model system may overcome the 

limitations imposed by current model insects on the understanding of the underlying 

mechanisms of insect freeze tolerance. Access to a laboratory population removes the 

seasonal constraints of collecting insects from the field. Compared to other freeze-

tolerant insects, the combined large size and easily discernable tissues of G. veletis better 

facilitate both in vivo and in vitro manipulations. Moreover, an assembled transcriptome 

for G. veletis provides the framework for gene-level investigations into the mechanisms 

underlying freeze tolerance through manipulative techniques such as RNA interference 

(A. H McKinnon, L. E. Des Marteaux, J. Toxopeus & B. J. Sinclair, unpublished data). 

My objective was to develop a protocol that induces G. veletis freeze tolerance in the 
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laboratory, thus facilitating future studies to test hypothesized mechanisms underlying 

freeze tolerance using manipulative approaches.  

1.4 Goals and Objectives 

The goal of my thesis was to assess the potential of Gryllus veletis as a new model 

organism for studying insect freeze tolerance. I accomplished this by addressing the 

following objectives: 

1. Assess freeze tolerance in field-acclimatized G. veletis. I assessed freeze 

tolerance and used the field conditions experienced by the crickets to guide my 

laboratory acclimations.  

2. Develop a protocol that successfully induces G. veletis freeze tolerance in the 

laboratory. I acclimated crickets under different diet, photoperiod and 

temperature conditions and tracked survival after internal ice formation. I also 

compared the lethal limits of laboratory-induced freeze tolerance to what I 

observed in field-acclimatized crickets.  

3. Characterize freeze tolerance in G. veletis. I compared ice nucleation activity 

and cryoprotectant accumulation between freeze-tolerant crickets and freeze-

intolerant (control) crickets to identify molecules that are associated with insects 

acquiring freeze tolerance.  
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2 Methods 

2.1 Insect care and rearing 

A laboratory colony of Gryllus veletis was collected from the University of Lethbridge 

campus in 2010 and maintained in the Biotron at Western University as described by 

Coello Alvarado et al. (2015). Starting in the fall of 2013, I housed crickets in 60 L 

plastic bins equipped with mesh lids and cardboard egg cartons for shelter, and provided 

them with water and food (Little Friends Rabbit Food, Martin Mills Inc., Elmira, ON, 

Canada) ad libitum. I reared the population under constant summer conditions (25 °C, 

14:10 L:D, 70 % RH); and, to avoid overcrowding, the densities did not exceed 600 

crickets/bin. Female G. veletis laid eggs into 500 mL plastic trays containing a mixture of 

4:1 fine vermiculate to sand, which was replaced every two weeks. I placed trays 

containing eggs into new 60 L bins to develop at constant summer conditions for six to 

eight-weeks. I then isolated late instar nymphs from adults by the presence of wing pads 

that had yet to develop into adult wings and differentiated males from females by the lack 

of an ovipositor. I removed approximately 70 juvenile males from each cohort to use in 

my experiments.   

2.2 Treatment groups 

To determine the conditions that induce freeze-tolerance in G. veletis, I placed crickets 

either outside during the fall in London, Ontario or in one of several laboratory 

treatments. The purpose of the field-acclimatization treatment was to confirm that 

crickets can become freeze tolerant (L.V. Ferguson, unpublished observation, 2013) and 

to better understand the conditions that lead to freeze-tolerance so that I could simulate 

them in the laboratory treatments. In the laboratory, I exposed crickets to acclimation-

treatments ranging from one- to eight-weeks, which manipulated diet, photoperiod and 

temperature. I also performed several short-term lab treatments that manipulated 

temperature and internal ice formation.  



 

 

 

15 

2.2.1 Field acclimatization  

In early October 2013 and 2014, I acclimatized crickets outside prior to assessing and 

characterizing their freeze tolerance. Following a protocol that induced freeze tolerance 

in 2012 (L.V. Ferguson, personal communication), I placed late-instar male G. veletis 

along with soil, grass from a cultivated lawn, chicory (Cichorium endivia) leaves, black 

locust (Robinia pseudoacacia) leaves, and rabbit food into enclosed mesh cages (60 cm x 

60 cm x 75 cm) in a shaded suburban garden in London, Ontario (42°59’N, 81°17’W, 

251 m elevation) (Table 2.1). I placed a HOBO Pro v2 U23-003 data logger (Onset 

Computer Corporation, Bourne, MA, USA) in the garden with the probe situated on the 

top of the soil layer to record the temperature every 30 min throughout the 

acclimatization. Starting in December, I transferred acclimatized crickets to the lab and 

separated them into individual 180 mL plastic cups with mesh covering, a cardboard 

shelter, rabbit food and water, and placed them in an incubator (MIR153, Sanyo, 

Bensenville, Il) set to 6 ºC with a short photoperiod (9:15 L:D). I allowed crickets to 

equilibrate in the incubator for 24 h prior to assessing their health and removed crickets 

that were unable to walk at this time. I assessed G. veletis freeze tolerance (see section 

2.3) within 48 h of crickets being transferred to the lab and crickets used in other 

laboratory experiments (see section 2.4) were held in the incubator for a maximum of six 

days.  
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Table 2.1 - Field acclimatization treatments for juvenile male Gryllus veletis. Crickets 

were placed outdoors in London, Ontario, Canada.  Air temperatures were recorded on 

the ground and day length for London was obtained from the National Research Council 

of Canada website (http://www.nrc-cnrc.gc.ca/eng/services/sunrise/) (Fig 3.1).  

Treatment	   Duration	   Diet	  

F-‐2013a	  	  	  	  	  	  	  	  
(Fig	  3.1	  A)	  

10	  October	  2013	  –	  3	  December	  
2013	  	  

Grass,	  leaf	  litter,	  chicory.	  rabbit	  
food	  

F-‐2013b	  	  	  	  	  	  	  	  	  
(Fig	  3.1	  A)	  

10	  October	  2013	  –	  9	  January	  
2014	  

Grass,	  leaf	  litter,	  chicory,	  rabbit	  
food	  

F-‐2014	  	  	  	  	  	  	  	  	  
(Fig	  3.1	  B)	  

1	  October	  2014	  –	  5	  December	  
2014	  

Grass,	  leaf	  litter,	  rabbit	  food	  

 

2.2.2 Temperature and photoperiod manipulations  

To develop a laboratory protocol that induced freeze-tolerance, I exposed G. veletis to a 

range of laboratory manipulations and compared their subsequent ability to survive 

internal ice formation (Fig 1, Table 2.2). For these experiments, I separated late instar 

male G. veletis from the population reared at constant summer conditions in the Biotron 

into individual 180 mL plastic cups with mesh covering. The cups were equipped with a 

cardboard shelter and food and water were provided to the crickets ad libitum. These 

cages were placed in an incubator (MIR153, Sanyo, Bensenville, Il) in which I controlled 

temperature and photoperiod for multiple acclimation treatments.  

I manipulated photoperiod, temperature, and food to generate several acclimation 

regimes (Table 2.2). I exposed crickets to long (14:10 L:D), intermediate (10:14 L:D) and 

short (9:15 L:D) photoperiods representative of summer, fall and winter, respectively. I 

also used a ramping treatment that decreased photoperiod by 18 min/week, starting from 

conditions in London, Ontario on October 5th, 2013 (11.5:12.5 L:D; National Research 
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Council Canada) (Table 2.2). Temperature regimes included: constant exposures to 25 

°C, 4 °C and -2 ºC (Fig. 2.1a); ramping treatments where temperatures decreased linearly 

from 25 °C to 4 °C (Fig. 2.1b); and treatments where temperatures fluctuated daily (Fig. 

2.1c), with the daily high and low temperatures for each week based on the recorded 

upper- and lower-quartile values obtained from the data logger recordings in the 2013 

field cage (Figure 3.1). Dietary manipulations included combinations of rabbit food, leaf 

litter and grass (Table 2.2). In all cases, the control group consisted of crickets fed rabbit 

food and held at summer rearing conditions in the Biotron (25 °C, 14:10 L:D, 70 % RH). 

Following each laboratory acclimation, I assessed the ability of crickets to survive 

freezing (see section 2.3).  

To determine whether G. veletis become freeze-tolerant following an acute 

exposure to extreme temperatures, I exposed crickets to either 40 ºC (S-HT, Table 2.2) or 

-2 ºC (S-LT, Table 2.2) for 15 min. I placed crickets into 1.7 mL microcentrifuge tubes 

and inserted the tubes into an aluminum block with an ethylene glycol circulator (Model 

1157P, VWR International, Mississauga, ON, Canada) set to either 40 ºC or -2 ºC. I then 

transferred the crickets to 180 mL plastic cups, and allowed them to recover at room 

temperature for 40 min prior to assessing their ability to survive freezing.  
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Figure 2.1 - Temperature ramping regimes used during lab-acclimation treatments. 

Juvenile male Gryllus veletis were exposed to: a rapid decrease to a constant temperature 

(A), a linear decrease in temperature (B), or daily thermal fluctuations (C). The duration 

of these exposures ranged from one to eight weeks.  
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Table 2.2 – Photoperiod and temperature manipulations applied to juvenile male 

Gryllus veletis in the laboratory. (OS = outdoor simulated; CP = constant photoperiod; 

CT = constant temperature; RP = ramping photoperiod; RT = ramping temperature; S-HT 

= short high temperature; S-LT = short low temperature; RF = rabbit food; CMB = 

combined [rabbit food, grass, leaf litter]). 

Treatment	   Duration	  	   Diet	   Photoperiod	  (L:D)	   Temperature	  

Control-‐2	   2	  weeks	   RF	   14:10	  (Constant)	   25°C	  (Constant)	  

Control-‐4	   4	  weeks	   RF	   14:10	  (Constant)	   25°C	  (Constant)	  

Control-‐6	   6	  weeks	   RF	   14:10	  (Constant)	   25°C	  (Constant)	  

Control-‐8	   8	  weeks	   RF	   14:10	  (Constant)	   25°C	  (Constant)	  

OS-‐8	   8	  weeks	   CMB	   Ramping,	  Fig	  2.2A	   Fluctuating,	  Fig	  2.2A	  

CPCT-‐1	   1	  week	   RF	   11:13	  (Constant)	   -‐2	  ºC	  (Constant)	  

CPCT-‐2	   2	  weeks	   CMB	   9:15	  (Constant)	   4°C	  (Constant)	  

CPCT-‐4	   4	  weeks	   CMB	   9:15	  (Constant)	   4°C	  (Constant)	  

RPCT-‐2	   2	  weeks	   CMB	   14:10	  	  9:15	  (Ramping)	   4°C	  (Constant)	  

RPCT-‐4	   4	  weeks	   CMB	   14:10	  	  9:15	  (Ramping)	   4°C	  (Constant)	  

CPRT-‐2	   2	  weeks	   CMB	   9:15	  (Constant)	   25°C	  	  	  4°C	  (Ramping)	  

CPRT-‐4	   4	  weeks	   CMB	   9:15	  (Constant)	   25°C	  	  	  4°C	  (Ramping)	  

S-‐HT	   55	  min	   RF	   n/a	   15	  min	  @	  40	  ºC	  	  40	  min	  
@	  22	  ºC	  

S-‐LT	   55	  min	   RF	   n/a	   15	  min	  @	  -‐2	  ºC	  	  40	  min	  
@	  22	  ºC	  
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Initial experiments indicated that G. veletis became freeze tolerant following an 

eight-week lab acclimation (Treatment OS-8, Table 2.2; 3.2) that mirrored the 

thermophotoperiod of London, Ontario from October 2013 through early December 2013 

(Fig. 2.2 A). Thus, I exposed crickets to two-, four- or six-week segments of the OS-8 

laboratory treatment (Table 2.3) to determine if exposure to these isolated components 

could induce freeze-tolerance in G. veletis.  

Table 2.3 – Components of the OS-8 laboratory treatment applied to juvenile 

Gryllus veletis. (OS = outdoor simulated) 

Treatment	   Duration	  
(Weeks)	  

Diet	   Thermophotoperiod	  

OS-‐8.2	   2	   CMB	   OS-‐8	  conditions,	  removed	  at	  2-‐weeks	  

OS-‐8.4	   4	   CMB	   OS-‐8	  conditions,	  removed	  at	  4-‐weeks	  

OS-‐8.6	   6	   CMB	   OS-‐8	  conditions,	  removed	  at	  6-‐weeks	  

OS-‐81+2	  	   2	   CMB	   Weeks	  1	  +	  2	  of	  OS-‐8	  

OS-‐83+4	   2	   CMB	   Weeks	  3	  +	  4	  of	  OS-‐8	  

OS-‐85+6	   2	   CMB	   Weeks	  5	  +	  6	  of	  OS-‐8	  

OS-‐87+8	   2	   CMB	   Weeks	  7	  +	  8	  of	  OS-‐8	  

 

To optimize a protocol for inducing freeze-tolerance in G. veletis, I refined the 

eight-week outdoor simulation (OS-8) to minimize acclimation time and eliminate any 

unnecessary conditions. I provided crickets with rabbit food and reduced the acclimation 

time by compressing the decrease in thermophotoperiod representative of London, 

Ontario from October 10th, 2013 through January 2nd, 2014 into a six-week acclimation 

(Treatment COS-6, Table 2.4, Fig 2.2B). The photoperiod began at 11.5:12.5 L:D and 

decreased by 36 min/week. The initial and final daily upper and lower temperature limits 

(16.5 ºC, 11.8 ºC) were set by calculating the weekly upper and lower quartile 

temperatures obtained from the data logger placed outside in London, Ontario from 
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October 10th, 2013 through October 17th, 2013 and December 27th, 2013 through January 

2nd, 2014 respectively. The upper and lower temperature limits decreased by 1.58 ºC and 

1.26 ºC respectively, every 3.5 days for six weeks.  

 

Figure 2.2 - Temperature and photoperiod regimes that induced Gryllus veletis 

freeze tolerance. The OS-8 (A) treatment group was exposed to a thermophotoperiod 

representative of London, Ontario from October 10th through December 5th, 2013. The 

COS-6 treatment group was exposed to a decreasing thermophotoperiod representative of 

October 10th, 2013 through January 2nd, 2014, but compressed into a six-week regime 

(B). 
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I divided late instar male nymphs into two treatment groups (n = 8) to examine 

the individual role of photoperiod and temperature in G. veletis freeze tolerance. I 

exposed one group (COS-6T, Table 2.4) to a six-week acclimation with the same 

thermoperiod regime as COS-6, but with a long photoperiod (14:10 L:D). I exposed the 

second group (COS-6P, Table 2.4) to the same six-week photoperiod regime as COS-6, 

however the temperature was set at a constant 25 ºC.  

Table 2.4 – Components of the six-week laboratory acclimations applied to juvenile 

Gryllus veletis. (RF = rabbit food).  

Treatment	   Duration	  
(Weeks)	  

Diet	   Photoperiod	  (L:D)	   Temperature	  

COS-‐6	   6	   RF	   Ramping,	  Fig	  2.2B	   	  Fluctuating,	  Fig.	  2.2B	  

COS-‐6T	   6	   RF	   14:10	  (Constant)	   COS-‐6	  thermoperiod	  

COS-‐6P	   6	   RF	   COS-‐6	  photoperiod	   25°C	  (Constant)	  
 

2.2.3 Ice nucleation manipulations 

To determine if manipulating the initial site of ice nucleation could induce freeze 

tolerance, I divided juvenile male G. veletis into three treatment groups: inoculative 

freezing (INOC), gut nucleation (AcclimationAgI) and hemolymph nucleation (HEM-AgI) 

(Table 2.5). In each treatment (n = 8 per treatment group), I used a known ice-nucleator, 

silver iodide (AgI), to initiate ice formation. To promote external ice formation, the 

INOC crickets were briefly submerged in a 25 mg/mL AgI in water slurry, prior to 

freezing. I manipulated ice nucleation in the gut of crickets by dusting rabbit food with 

AgI, throughout several laboratory acclimations. To manipulate ice-nucleating activity in 

the hemolymph, I injected 4 µL of a 25 mg/mL AgI in water slurry underneath the 

pronotum, into the cricket’s hemolymph using a 5 µL Hamilton syringe and a 25-gauge 

needle (Hamilton Company, Reno, Nevada). I then placed the crickets in 180 mL plastic 

cups to recover at room temperature (22 ºC) for 40 min. Following each manipulation, I 

assessed the ability of crickets to survive freezing (see section 2.3).  
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Table 2.5 – Manipulation of ice formation in juvenile male Gryllus veletis. (CP = 

constant photoperiod; CT = constant temperature; RP = ramping photoperiod; RT = 

ramping temperature; INOC = inoculation; HEM = hemolymph) 

Treatment Manipulation 

INOC Inoculation with external ice 

CPCT-2AgI CPCT-2 Photoperiod and temperature regime w/AgI in diet 

RPCT-2AgI RPCT-2 Photoperiod and temperature regime w/AgI in diet 

CPRT-2AgI CPRT-2 Photoperiod and temperature regime w/AgI in diet 

CPCT-4AgI CPCT-4 Photoperiod and temperature regime w/AgI in diet 

RPCT-4AgI RPCT-4 Photoperiod and temperature regime w/AgI in diet 

CPRT-4AgI CPRT-4 Photoperiod and temperature regime w/AgI in diet 

HEM-AgI Injection of silver iodide into hemolymph 

 

2.3 Characterization of cold tolerance  

I used groups of six to eight G. veletis to determine the supercooling point (SCP) and 

cold tolerance strategy for crickets from each treatment. First, I transferred crickets that 

had completed their field or lab treatment into individual 1.7 mL microcentrifuge tubes 

and placed a type T (copper-constantan) thermocouple next to their abdomen to monitor 

individual temperatures. I then placed the tubes into an aluminum block cooled by 

methanol from a programmable refrigerated circulator (Proline RP 855, Lauda, 

Wurzburg, Germany). The thermocouples were connected to a computer via a Picotech 

TC-08 thermocouple interface and the temperature was recorded every 500 ms using 

PicoLog software (Pico Technology, Cambridge, UK). To ensure that the crickets had 

similar starting temperatures, I held them at 6 ºC for 15 min. I then cooled crickets at 0.25 

ºC min-1 to sub-freezing temperatures, which were either -6 ºC for field-acclimatized 

crickets or -8 ºC for laboratory-acclimated crickets and held them at that temperature for 
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1.5 h. I recorded SCP as the lowest temperature before the exotherm associated with ice 

crystallization was detected. After freezing, the crickets were warmed to 15 ºC at 0.25 ºC 

min -1. I then placed crickets into individual 180 mL plastic cups and allowed them to 

recover in an incubator before assessing survival (15 °C, 12:12 L:D). Due to not all 

crickets from the control group freezing at -8 ºC, I performed a separate experiment to 

determine their SCPs in which crickets were cooled at 0.25 ºC min -1 until all crickets 

reached their SCP. Differences in SCPs among laboratory-acclimated groups were 

investigated using a one-way ANOVA, with planned contrasts between the control group 

and each treatment. Differences in SCPs among field-acclimatized groups were 

investigated using a one-way ANOVA.  

I assessed the survival of G. veletis 48 h after removal from the freezing 

treatment. Crickets were given 15 min to acclimate to laboratory conditions (22 ºC) and 

survival was defined as any movement in response to stimulus from the bristles of a small 

paintbrush. I considered treatments that resulted in greater than 75 % survival 48 h post-

thaw to have successfully induced freeze tolerance.  

2.3.1 Lethal limits  

To determine both the lower lethal temperature (LLT) and the length of time that crickets 

can survive being frozen, late instar male crickets were acclimated for six weeks (COS-6) 

in the laboratory or placed outdoors in London from October until early December, 2014 

(F-2014). Prior to determining these limits of freeze tolerance, a subset of each treatment 

(n = 8 per group) was assessed (see section 2.3, above) to ensure that freeze tolerance had 

been successfully induced. 

  To determine the LLT of freeze-tolerant crickets, I first cooled groups (n = 8 per 

treatment group) of laboratory-acclimated individuals (COS-6) in an aluminum block 

cooled by methanol to -6, -8, -10, -12 and -15 ºC at 0.25 °C min-1, held for 1.5 h, and 

warmed them to 15 ºC at 0.25 °C min-1. Due to a limited number of field-acclimatized 

crickets (F-2014), I only exposed groups of crickets (n=6 per treatment group) from this 

treatment to temperatures of -6, -9 and -12 ºC. After warming to 15 °C, crickets were 
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placed into individual 180 mL plastic cups along with rabbit food and water to recover in 

an incubator (15 °C, 12:12 L:D). I assessed survival of individuals 24 and 48 h post-thaw.  

To determine the influence of time frozen on survival of G. veletis, I cooled 

groups (n = 8 per treatment group) of lab-acclimated crickets (COS-6) in an aluminum 

block cooled by methanol to -8 ºC at 0.25 °C min-1 and held them at -8 ºC for 3, 6, 12, 24, 

48, 96, and 168 h. I then warmed them to 15 ºC at 0.25 °C min-1 and placed them into 

individual 180 mL plastic cups along with rabbit food and water to recover in an 

incubator (15 °C, 12:12 L:D). I assessed survival of individuals 24 and 48 h post-thaw. 

This experiment was repeated on field-acclimatized crickets (F-2014; n = 6 per treatment 

group), but only included 1.5, 24, 48 and 96 h exposures to -8 ºC.  

I compared the lower lethal temperature and the length of time crickets can 

survive freezing between the two treatment-groups (COS-6 and F-2014) using a Cox 

proportional hazards regression model tested for differences between groups with Wald’s 

statistic. I conducted this statistical analysis using the survival package in R (Therneau & 

Grambsh, 2000; R Development Core Team, 2008).  

2.4 Identification of biochemicals associated with freeze 

tolerance 

I compared groups of crickets that underwent a six-week laboratory acclimation that 

induces freeze tolerance by simulating outdoor conditions (COS-6) to groups of control 

crickets to identify potential mechanisms of freeze tolerance. I assessed ice nucleator 

activity in G. veletis by comparing SCPs of isolated tissues between groups of freeze-

tolerant and control crickets.  I measured the hemolymph osmolality in crickets and 

examined the hemolymph for the presence of thermal hysteresis and antifreeze activity. I 

then identified carbohydrates in the hemolymph using gas chromatography and measured 

hemolymph trehalose concentration using spectrophotometry. I also measured whole-

body and hemolymph proline concentrations using spectrosphotometry. I measured the 
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concentration of sodium and potassium in the hemolymph using atomic absorption 

spectroscopy.  

2.4.1 Ice nucleation in isolated tissues  

I removed crickets from their acclimation treatments and isolated tissues at room 

temperature (22 ºC) following previously described methods (MacMillan & Sinclair, 

2011a). With each cricket (n = 8 per treatment group), I made a small incision underneath 

the pronotum and used a pipette to collect 3 µL of hemolymph and place it in separate 0.2 

mL microcentrifuge tubes along with 9 µL of 3 % ascorbic acid to prevent coagulation. I 

then made a longitudinal incision from the tip of the abdomen to the base of the head, and 

dissected out the gut, Malpighian tubules, and fat body. Each tissue was rinsed in ddH2O 

and gently dabbed with a Kimwipe to remove hemolymph before being placed into a 0.2 

mL microcentrifuge tube. 20 µL of 3 % ascorbic acid was added to gut, Malpighian 

tubules and fat body tissue so that their SCPs could be compared to hemolymph samples, 

which also contained ascorbic acid.  

I compared the SCP of isolated G. veletis tissues between control and lab-

acclimated crickets to determine potential sites of ice nucleation. I included 3 µL of insect 

Ringer’s solution (110 mM Na+, 8.5 mM K+, 5.9 mM Mg2+, 7.1 mM Ca2+, 144.5 mM Cl-, 

4 mM glucose, 5 mM HEPES, 80 mM proline; Coast et al., 2007) in 9 µL of 3 % 

ascorbic acid and 20 µL of insect Ringer’s solution as controls. A type-T thermocouple 

was attached to the outside of each 0.2 mL microcentrifuge tube, prior to being cooled to 

-35 °C at 0.25 °C min-1. The SCPs were the lowest temperature recorded before the 

exotherm was detected. The SCP of each tissue was compared to the SCP of insect 

Ringer’s solution in 3 % ascorbic acid using a one-way ANOVA with planned contrasts. 

I compared the SCPs of tissues between treatment groups using a one-tailed Welch’s t-

test with a Benjamini-Hochberg correction (Benjamini & Hochberg, 1995).   

2.4.2 Antifreeze activity, thermal hysteresis and hemolymph osmolality 

Following the protocol in Section 2.4.1, I collected 4 µL of hemolymph from control and 

freeze-tolerant crickets (n=8 per treatment group) and placed it into separate 0.2 mL 
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microcentrifuge tubes containing 12 µL of 3 % ascorbic acid to prevent coagulation. I 

then placed a layer of type B immersion oil (Cargille Laboratories, Cedar Grove, NJ, 

USA) on top of the sample to limit evaporation. I snap-froze the samples in liquid 

nitrogen vapour and stored them at -80 ºC until analysis.  

I measured osmolality and thermal hysteresis in G. veletis hemolymph using a 

nanolitre osmometer (Otago Osmometers, Dunedin, New Zealand) and following 

previously described methods (Crosthwaite et al., 2011). I suspended small droplets (~20 

nL) of my samples into small wells filled with type B immersion oil under a microscope 

and rapidly cooled the wells until the droplets froze. I then slowly warmed the droplets 

until the last ice crystal was stable (melting point). I used the melting point to determine 

osmolality, as there is a linear relationship between solute concentration and melting 

point depression: one mole of solutes depresses the melting point from 0 ºC to -1.86 ºC. I 

calculated the osmolality of each of my samples, accounting for the dilution in 3 % nitric 

acid.  

To detect thermal hysteresis, I refroze my samples and warmed them to a 

temperature just below the melting point and only a single ice crystal was visible under 

the microscope. I then slowly cooled the sample until the ice crystal began to grow. 

Thermal hysteresis was measured as the difference between the melting point, and the 

temperature in which the ice grew. During this measurement, I also made note of ice-

crystal morphology, as spicular and angular crystals can be representative of antifreeze 

activity (Scotter et al., 2006). Differences in osmolality between treatments were 

investigated using a one-tailed Welch’s t-test.  

2.4.3 Hemolymph carbohydrates  

2.4.3.1 Qualitative gas chromatography analysis 

In a preliminary experiment, I qualitatively compared hemolymph carbohydrate 

composition between control (Control-6) and freeze-tolerant (COS-6) crickets (n = 2 per 

treatment group). Carbohydrates present in the hemolymph were analyzed as their alditol 

acetate derivatives, and were separated and identified with gas chromatography (GC) 
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using methods derived from Blakeney et al. (1983) and Crosthwaite et al. (2011). Sample 

preparation and derivatization was divided into four main steps: extraction, hydrolysis, 

reduction and acetylation. By comparing the hydrolyzed sample to its non-hydrolyzed 

equivalent and known carbohydrate standards, it is possible to detect the presence of both 

monosaccharides and oligosaccharides.  

2.4.3.1.1 Carbohydrate Extraction 

To extract carbohydrates, I collected 4 µL of hemolymph from each individual, and 

placed it in a separate 1.7 ml microcentrifuge tube prior to snap-freezing in liquid 

nitrogen vapour and storing at -80 °C until analysis. I transferred the hemolymph with 

250 µL of sulphuric acid (0.1 M) into a 4 ml glass vial. I then added 2 mL of hexane to 

the hemolymph and vortexed the mixture. I allowed the sample to settle into two layers 

and removed two 100-µL aliquots from the lower, carbohydrate-containing aqueous layer 

and placed them into two separate 4 ml glass vials. One vial went on to hydrolysis, while 

the other bypassed hydrolysis, going directly to the reduction step.  

I prepared a mixture of standards to be used in identifying carbohydrates by 

adding 25 µL of 20 mg/ml xylitol, glycerol, ribitol, mannitol, sorbitol, and trehalose to 

975 µL of 1 M ammonia into a glass vial. I vortexed each vial and removed 100 µL to be 

used in the reduction step. 

2.4.3.1.2 Hydrolysis 

To concentrate samples for hydrolysis, I dried the 100 µL aliquots under nitrogen. I then 

added 62.5 µL of 13.5 M sulphuric acid under nitrogen gas and vortexed each sample. 

After 45 min at room temperature, I added 675 µL of distilled water under nitrogen and 

then heated the samples at 100 °C for 3 h in an aluminum block connected to a VWR 

Signature heated/refrigerated circulator (model 1157, VWR International, West Chester, 

PA) containing 1:1 water:ethylene glycol. I removed the samples from the block and 

allowed them to cool to room temperature before adding 300 µL of 8 M ammonia. I then 

added 25 µL of 20 mg/ml xylitol as an internal standard. Finally, I vortexed each vial and 

removed 100 µL to be used in the reduction step.  
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2.4.3.1.3 Reduction 

To reduce the carbohydrates, I added 1 ml of a 2 % (w/v) sodium borohydride (NaBH4) 

in dimethyl sulfoxide solution to 100 µL of hydrolyzed and non-hydrolyzed samples. I 

heated the samples at 40 ºC for 90 min in an aluminum block connected to a circulating 

bath (described in hydrolysis, above). I allowed the samples to cool to room temperature 

(22 ºC) and then added 100 µL of 18 M acetic acid to decompose excess NaBH4 into 

borates prior to the acetylation step. 

2.4.3.1.4 Acetylation 

Directly following the reduction step I added 200 µL of 1-methylimidazole (catalyst) and 

2 ml acetic anhydride to acetylate the polyhydric alcohols. After 10 min at room 

temperature (22 ºC), I added 5 ml of distilled water to decompose excess acetic 

anhydride. I then added 750 µL of dichloromethane (CH2Cl2), mixed the solution and 

transferred ~100 µL of the CH2Cl2 layer to a 2 ml, septum-cap vial with a 200 uL insert 

(product no. 392611552, Varian, Inc., Palo Alto, CA, USA). I stored the samples at -20 

ºC until GC analysis. 

2.4.3.1.5 Separation and identification of carbohydrates 

The acetylated samples were separated and analyzed by capillary GC with flame 

ionization detection (FID) on a Varian Star CX3400 GC (Varian, Inc., Palo Alto, CA, 

USA), equipped with a CP-Sil 88, WCOT fused silica, 25 m x 0.25 mm i.d. column 

(Varian) and an autosampler. One microlitre of sample was injected and eluted with the 

following temperature profile: 150 ºC for 5 min, ramp to 230 ºC at 4 ºC min-1, hold for 15 

min, ramp to 240 ºC at 10 ºC min-1 and hold for 9 min. The injector temperature was 250 

ºC, the carrier gas was helium (1 ml min-1). The FID temperature was 300 ºC and its 

make-up gas was N2. I identified individual peaks by retention time and visually 

compared them to the known standards using Varian MS Workstation software version 

6.9.2 (Varian, Inc., Palo Alto, CA, USA).  
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2.4.3.2 Trehalose quantification 

Trehalose was the only carbohydrate that I identified using GC as being present in G. 

veletis hemolymph, furthermore it appeared to be differentially accumulating between 

control and freeze-tolerant crickets. Trehalose is a non-reducing disaccharide that can be 

hydrolyzed to two glucose molecules by trehalase. I quantified hemolymph trehalose 

using porcine trehalase and a glucose colorimetric assay (Tennessen et al., 2014). I 

diluted 5 µL of hemolymph from both control (Control-6) and freeze-tolerant (COS-6) 

crickets (n = 5 per treatment group) with 100 µL of trehalase buffer (TB; 5 mM Tris, 137 

mM NaCl, 2.7 mM KCl) in a 1.7 mL microcentrifuge tube. To deactivate hydrolases 

present in the hemolymph, I heated the samples for 10 min at 70 ºC in an aluminum block 

connected to a circulating bath. I then centrifuged the samples at 21890 × g for 3 min at 4 

°C in a tabletop centrifuge and divided the supernatant into two 30 µL aliquots. I added 

30 µL of trehalase stock (TS; 3 µL of porcine trehalase (Sigma) per ml of TB) to one 

aliquot to convert free trehalose into glucose. I diluted the second aliquot with 30 µL of 

TB; this sample was used to measure baseline levels of glucose in the hemolymph. I 

generated 0.01, 0.02, 0.04, 0.08 and 0.16 mg/mL standards for both glucose and 

trehalose. The glucose standards were diluted in TB and the trehalose standards were 

diluted using a 1:1 mix of TB and TS. I then incubated the samples and standards in a 

water bath set to 37 ºC for 24 h to allow for breakdown of trehalose into free glucose.   

Following incubation, I centrifuged the samples and standards at 21890 × g for 3 

min and transferred 10 µL of each sample, in triplicate, to 96-well plates. I then added 90 

µL of liquid glucose reagent (Sigma-Aldrich, Inc., St Louis, MO, USA; GAHK20) to 

each well. I sealed the wells with parafilm to prevent evaporation and incubated the plate 

at room temperature (22 ºC) for 15 min. Following incubation, absorbance was read at 

340 nm on a microplate spectrophotometer (SpectraMax 340PC, Molecular Devices, 

Sunnyvale, CA, USA). I determined free glucose concentrations for samples not treated 

with trehalase based on the glucose standard curve. I then calculated trehalose 

concentrations for samples treated with trehalase based on the trehalose standard curve 

and subtracted the absorbance measured for free glucose in the untreated samples. 
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Differences in hemolymph trehalose concentrations between treatments were investigated 

using a one-tailed Welch’s t-test. 

2.4.4 Whole-body and hemolymph proline  

I measured the proline concentration of whole crickets (excluding gut) and their 

hemolymph in groups (n = 12 per treatment group) of control (Control-6) and freeze-

tolerant (COS-6; compressed outdoor simulation) G. veletis using a colorimetric assay 

(Carillo & Gibon, 2011). First, I collected 4 µL of hemolymph and placed it in a separate 

0.2 mL microcentrifuge tubes along with 50 µL of ice-cold 40 % ethanol. Hemolymph 

samples were then refrigerated at 4 ºC for 24 h. Using the same crickets, I dissected out 

the gut (to remove dietary proline) and gently dabbed the remaining tissues with a 

Kimwipe to remove hemolymph. I then weighed the crickets, placed them into separate 

1.7 mL microcentrifuge tubes and snap-froze the samples in liquid nitrogen vapour for 15 

min. At room temperature (22 ºC), I homogenized each sample with a pestle for 1 min, I 

then added 800 µL ice-cold 40 % ethanol and vortexed for 5 s. Tissue samples were then 

refrigerated at 4 ºC for 24 h.  

Following the 24 h incubation, hemolymph and tissue samples were centrifuged at 

21890 × g for 3 min at 4 °C. I removed the supernatant and further diluted the samples in 

ice-cold 40 % ethanol as follows: control hemolymph 1:1; control tissue 1:30; COS-6 

hemolymph 1:10; and COS-6 tissue 1:80. I then pipetted 50 µL of sample into a new 1.7 

mL tube along with 100 µL of ninhydrin reaction mix (1 % ninhydrin (w/v) in 60 % 

acetic acid (v/v) and 20 % ethanol (v/v)). I sealed the tubes, and heated at 95 ºC for 20 

min in an aluminum block connected to a VWR Signature heated/refrigerated circulator 

(model 1157, VWR International, West Chester, PA) containing 1:1 water:ethylene 

glycol. After cooling to room temperature (22 ºC), I centrifuged the samples (1 min, 600 

× g) and transferred 100 µL of the sample to 96-well plates. The absorbance of the 

samples were read at 340 nm on a microplate spectrophotometer (SpectraMax 340PC, 

Molecular Devices, Sunnyvale, CA, USA) and proline concentration was quantified with 

a standard curve of known concentrations of proline ranging from 4 mM to 0.015625 

mM. I compared whole-body and hemolymph proline concentrations between control and 
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freeze-tolerant crickets and tested for differences using separate one-tailed Welch’s t-

tests. Differences in whole-body and hemolymph proline concentrations between control 

and freeze-tolerant crickets were investigated using separate one-tailed Welch’s t-tests.  

2.4.5 Hemolymph ion concentration 

I measured the concentration of sodium (Na+) and potassium (K+) in the hemolymph of 

control (Control-6) and freeze-tolerant (COS-6) crickets following previously described 

methods (MacMillan & Sinclair, 2011a). I collected 4 µL of hemolymph from each 

cricket (n=8 per treatment group) and placed the hemolymph into separate 1.7 mL 

microcentrifuge tubes that contained 20 µL of 3 % nitric acid. I left the samples to digest 

in the acid for 24 h at room temperature (22 ºC). I then centrifuged the samples (1 min, 

600 × g) and diluted 20 µL of supernatant with 10 mL of double-distilled H2O to bring 

the samples within the measurable range of the atomic absorption spectrometer (iCE 

3300, Thermo Scientific, Waltham MA, USA). I compared the absorption values from 

my samples with standard curves of Na+ and K+ generated from diluted standards 

containing nitric acid. I compared hemolymph Na+ and K+ concentrations between 

control and freeze-tolerant crickets and tested for differences with separate two-tailed 

Welch’s t-tests. 
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3 Results 

3.1 Field acclimatization  

I recorded the temperatures at the soil surface, which I assumed to be experienced by 

juvenile male Gryllus veletis in the field cages from 10 October 2013 through 9 January 

2014 (Figure 3.1A) and 1 October 2014 through 5 December 2014 (Fig. 3.1B) with 

HOBO data loggers. In 2013-2014, 0 ºC was first reached on 20 November, and the 

minimum temperatures experienced by F-2013a and F-2013b crickets were -1.2 ºC on 25 

November and -7.5 ºC on 7 January, respectively. In the fall of 2014, 0 ºC was first 

reached on 13 November, with a minimum temperature of -2.4 ºC reached on 19 

November. Overall, the F-2013a and F-2013b crickets experienced lower temperatures 

than F-2014 crickets.  

The supercooling points (SCPs) of males that overwintered outdoors ranged from 

-2.4 ºC to -5.5 ºC. Mean SCP did not differ between groups of crickets that were placed 

outside at different time points during the late fall and early winter of 2013-14 or 2014 

(Table 3.1; F2,17 = 2.073, P = 0.156). All crickets survived internal ice formation, 

indicating that G. veletis become freeze tolerant while overwintering outdoors in London, 

Ontario.  
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Figure 3.1 - Microclimate temperatures experienced by Gryllus veletis in London, 

Ontario. A. Temperature trace recorded in 2013-2014 within the cage of F-2013a and F-

2013b acclimatization treatments. B. Temperature traces recorded in 2014-2015 with a 

logger recording ground temperature within the cage of the F-2014 acclimatization 

treatment. All temperatures were recorded with a HOBO data logger at ground level. 
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Table 3.1 – The effect of exposure to outdoor overwintering conditions on the 

survival of internal ice formation in juvenile male Gryllus veletis. Crickets were 

exposed to outdoor conditions in London, Ontario over the 2013-2014 and 2014-2015 

winters (Table 2.1). Treatments that led to greater than 75 % survival at 48 h post-thaw 

were considered to have successfully induced freeze tolerance. Treatment did not have a 

significant effect on cricket SCP (see text for statistics). 

 

Treatment	   N	   No.	  frozen	   Survival	  48	  h	  
post-‐thaw	  	  

Freeze	  
tolerant?	  

Mean	  SCP	  (±	  
SEM)	  (ºC)	  	  

F-‐2013a	   6	   6	   6	   Yes	   -‐4.6	  ±	  0.40	  

F-‐2013b	   8	   8	   8	   Yes	   -‐3.8	  ±	  0.34	  

F-‐2014	   5	   5	   5	   Yes	   -‐3.6	  ±	  0.28	  
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3.2 Laboratory-acclimation 

3.2.1 Survival of internal ice formation 

To determine if juvenile male G. veletis become freeze-tolerant in the laboratory after 

acclimation treatments, I cooled crickets at -0.25 ºC min-1
, held them at -8 ºC for 1.5 h, 

and assessed their survival at 24 and 48 h post-thaw. In all but two treatment groups, less 

than 75 % of crickets survived 48 h post-thaw (Table 3.2). The OS-8 (eight-week outdoor 

simulation) and COS-6 (compressed, six-week outdoor simulation) laboratory-

acclimations successfully induced freeze tolerance in G. veletis, as the observed survival 

was 91 % and 92 %, respectively (Table 3.2). The survival of internal ice formation 

increased over the course of the OS-8 thermophotoperiod regime (Figure 3.2A), however, 

there was no difference in survival between groups of crickets exposed to isolated two-

week components of this regime (Figure 3.2B). The combination of a fluctuating 

temperature regime and reduction in photoperiod was essential for the induction of freeze 

tolerance under COS-6 conditions as exposure to isolated temperature (COS-6T) and 

photoperiod (COS-6P) regimes did not induce freeze tolerance (Figure 3.3).  

The SCPs of male G. veletis exposed to laboratory conditions ranged from -3.3 ºC 

(S-AgI) to -9.8 ºC (Control-SCP; Table 3.2). Not all control crickets reached their SCP 

during my assessment of survival at -8 ºC. However, the mean SCPs of control crickets 

that did freeze was not affected by the length of their treatment (Table 3.2; F3,101 = 0.964, 

P = 0.413). I determined the mean SCP of crickets exposed to control conditions for six-

weeks (Control-SCP; -7.7 ± 0.10 ºC) and used this value for comparisons to crickets 

exposed to other laboratory acclimations. Planned contrasts revealed that all laboratory-

acclimation treatments resulted in higher mean SCPs than the Control-SCP group (F28,299 

= 10.82, P < 0.05).
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Table 3.2 – Survival of internal ice formation in juvenile male Gryllus veletis 

following various laboratory acclimations. Treatments that led to greater than 75 % 

survival at 48 h post-thaw were considered to have successfully induced freeze tolerance. 

Asterisks indicate significant difference in mean SCPs between the treatment group and 

Control-SCP (P < 0.05). See tables 2.2 - 2.5 for treatment conditions. 

Treatment	   N	   No.	  Frozen	   Survival	  48	  
h	  post-‐thaw	  

Freeze	  
tolerant?	  

Mean	  SCP	  (±	  
SEM)	  (ºC)	  

Control-‐2	   24	   16	   0	   No	   -‐7.6	  ±	  0.10	  

Control-‐4	   24	   22	   0	   No	   -‐7.4	  ±	  0.15	  

Control-‐6	   48	   43	   0	   No	   -‐7.3	  ±	  0.10	  

Control-‐8	   36	   30	   0	   No	   -‐7.2	  ±	  0.14	  

Control-‐SCP	   64	   64	   n/a	   No	   -‐7.7	  ±	  0.10	  

S-‐HT	   8	   8	   0	   No	   -‐6.36	  ±	  0.21*	  

S-‐LT	   8	   8	   0	   No	   -‐5.6	  ±	  0.18	  *	  

CPCT-‐1	   8	   8	   0	   No	   -‐6.03	  ±	  0.21*	  

CPCT-‐2	   8	   8	   0	   No	   -‐6.9	  ±	  0.31*	  

RPCT-‐2	   8	   8	   0	   No	   -‐6.5	  ±	  0.26*	  

CPRT-‐2	   8	   8	   0	   No	   -‐6.8	  ±	  0.21*	  

CPCT-‐4	   8	   8	   0	   No	   -‐6.4	  ±	  0.25*	  

RPCT-‐4	   8	   8	   0	   No	   -‐6.4	  ±	  0.25*	  

CPRT-‐4	   8	   8	   1	   No	   -‐6.5	  ±	  0.25*	  

OS-‐8	   32	   32	   29	   Yes	   -‐6.7	  ±	  0.15*	  

OS-‐8.2	   8	   8	   0	   No	   -‐6.7	  ±	  0.22*	  

OS-‐8.4	   8	   8	   1	   No	   -‐6.2	  ±	  0.25*	  

Continued	  on	  next	  page	  
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Table 3.2 – Continued. 

Treatment	   N	   No.	  Frozen	   Survival	  48	  
h	  post-‐thaw	  

Freeze	  
tolerant?	  

Mean	  SCP	  (±	  
SEM)	  (ºC)	  

OS-‐8.6	   8	   8	   5	   4	   -‐6.5	  ±	  0.31*	  

OS-‐81+2	   8	   8	   0	   No	   -‐6.7	  ±	  0.22*	  

OS-‐83+4	   8	   8	   1	   No	   -‐6.7	  ±	  0.31*	  

OS-‐85+6	   8	   8	   2	   No	   -‐6.9	  ±	  0.24*	  

OS-‐87+8	   8	   8	   1	   No	   -‐6.6	  ±	  0.24*	  

COS-‐6	   24	   24	   22	   Yes	   -‐6.1	  ±	  0.15	  *	  

COS-‐6P	   8	   8	   0	   No	   -‐6.9	  ±	  0.28*	  

COS-‐6T	   8	   8	   0	   No	   -‐7.0	  ±	  0.29*	  

INOC	   8	   8	   0	   No	   -‐5.0	  ±	  0.38	  *	  

CPCT-‐2AgI	   8	   8	   0	   No	   -‐5.8	  ±	  0.21*	  

RPCT-‐2AgI	   8	   8	   0	   No	   -‐5.8	  ±	  0.27*	  

CPRT-‐2AgI	   8	   8	   0	   No	   -‐5.9	  ±	  0.33*	  

CPCT-‐4AgI	   8	   8	   0	   No	   -‐5.8	  ±	  0.21*	  

RPCT-‐4AgI	   8	   8	   0	   No	   -‐6.2	  ±	  0.25*	  

CPRT-‐4AgI	   8	   8	   0	   No	   -‐5.8	  ±	  0.29*	  

INOC	   8	   8	   0	   No	   -‐3.6	  ±	  0.36	  *	  
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Figure 3.2 - Survival of internal ice formation in juvenile male Gryllus veletis 

exposed to components of the OS-8 laboratory-acclimation. Crickets were acclimated 

in the laboratory (Table 2.2 and 2.3), prior to being held at -8 ºC for 1.5 h and the 

proportion survival (± Standard error of proportion; SEP) was assessed at 24 and 48 h 

post-thaw. A. Survival of freezing in crickets exposed to two, four, six and eight weeks of 

the OS-8 laboratory-acclimation. B. Survival of freezing in crickets exposed to isolated 

two-week components of the OS-8 laboratory-acclimation. N = 32 for OS-8; N = 8 for all 

other treatments. 
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Figure 3.3 - Survival of internal ice formation in juvenile male Gryllus veletis 

exposed to isolated temperature and photoperiod regimes of the COS-6 laboratory-

acclimation. Crickets acclimated in the laboratory (Table 2.4), prior to being held at -8 

ºC for 1.5 h. Proportion survival (± SEP) was assessed at 24 and 48 h post-thaw. N = 24 

for COS-6; N = 8 for COS-6P and COS-6T. 
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3.2.2 Lethal limits 

To assess the lower lethal temperature of freeze-tolerant juvenile male Gryllus veletis, 

laboratory-acclimated (COS-6) and field-acclimatized (F-2014) crickets were exposed to 

a series of low temperatures (Figure 3.4). The survival of groups of field and laboratory 

crickets did not differ at decreasing temperatures (Wald’s statistic = 0.96 on one df, P = 

0.326) and crickets from both treatments were capable of surviving -12 ºC for 1.5 h. 

There was a sharp decline in survival at temperatures below -9 ºC (F-2014) and -10 ºC 

(COS-6), and laboratory-acclimated crickets did not survive exposure to -15 ºC for 1.5 h.  

To assess the influence of time frozen on survival, groups of COS-6 and F-2014 

were exposed to -8 ºC for durations of 1.5 to 196 h (Figure 3.5). Laboratory-acclimated 

crickets survived internal ice formation for a longer duration (37 % survival after 168 h) 

than field-acclimatized crickets (0 % survival after 96 h) (Wald’s statistic = 7.88 on one 

df, P < 0.05). 

 I compared the distribution of SCPs of groups of laboratory-acclimated (COS-6), 

field-acclimatized (F-2014), and control crickets (Figure 3.6). The mean SCPs differed 

between all treatments and ice nucleation occurred at significantly higher temperatures in 

freeze-tolerant crickets compared to control crickets (Tukey’s HSD, P < 0.05).  
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Figure 3.4 - Survival after acute low temperature exposure in laboratory-acclimated 

and field-acclimatized juvenile male Gryllus veletis. Acclimated (COS-6) and 

acclimatized (F-2014) crickets were held frozen for 1.5 h and survival was assessed 24 h 

post-thaw. Each point represents the proportion (± SEP) of crickets that survived the cold 

exposure. There was no difference in survival at decreasing temperatures between the 

two treatments (see text for statistics). N = 6 for F-2014; N = 24 for the -8 ºC COS-6 

exposure; and N = 8 for all other COS-6 cold exposures.  
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Figure 3.5 - Survival of juvenile male Gryllus veletis following extended freezing 

events. Lab-acclimated (COS-6) and field-acclimatized (F-2014) crickets were cooled at 

0.5 ºC min-1 and held at -8 ºC for 1.5 to 168 h, survival was assessed 24 h post-thaw. 

Each point represents the proportion (± SEP) of crickets that survived freezing. Lab-

acclimated crickets survived significantly longer exposures to sub-freezing conditions 

(see text for statistics). N = 6 for F-2014; N = 24 for the 1.5 h COS-6 exposure; and N = 8 

for all other COS-6 cold exposures.  
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Figure 3.6 - Distribution of supercooling points (SCPs) of field-acclimatized (A), 

laboratory-acclimated (B), and control (C) juvenile male Gryllus veletis. The dashed 

line indicates the mean SCP for each treatment. Lower-case letters indicate SCPs that 

significantly differ between treatments (Tukey’s HSD, P < 0.05). N = 24 for COS-6; N = 

36 for F-2014; N = 64 for Control-SCP.  
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3.3 Physiological changes associated with freeze tolerance 

To determine the potential physiological changes associated with becoming freeze 

tolerant, I characterized and compared control crickets (Control-6) to lab-acclimated, 

freeze-tolerant crickets (compressed, six-week outdoor simulation; COS-6).  

3.3.1 Site of ice nucleation 

To determine potential sites of ice nucleation in freeze-tolerant crickets, I compared the 

mean SCPs of tissues isolated from freeze-tolerant crickets with those from control 

crickets (Figure 3.7). The highest SCP recorded for a tissue was -4.6 ºC in the gut isolated 

from a freeze-tolerant (COS-6) cricket, and the lowest SCP recorded was -18.5 ºC in 

hemolymph from a control cricket. Planned contrasts revealed that all cricket tissues had 

higher SCPs than that of insect Ringer’s solution in 3 % ascorbic acid (F9,70 = 27.18, P < 

0.001, all contrasts P < 0.05). The SCPs of the hemolymph and gut were significantly 

higher in freeze-tolerant crickets than in controls (P < 0.05) and there was no difference 

in the SCPs of fat bodies or Malpighian tubules between treatments (P > 0.05).  
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Figure 3.7 - Supercooling points (SCPs) of tissues isolated from juvenile male 

Gryllus veletis exposed to a six-week laboratory-acclimation (COS-6) and control 

conditions (Control-6). The top and bottom of each box represents the upper and lower 

quartile, respectively, the horizontal line represents the median, the vertical lines extend 

to the minimum and maximum values within 1.5 times the inter-quartile range and black 

dots indicate outliers. Mean tissue SCPs that are significantly different between 

treatments are denoted with an asterisk (P < 0.05). The mean SCPs of all tissues differed 

from insect Ringer’s solution in 3 % ascorbic acid (P < 0.05). N = 8 for all treatments.  
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3.3.2 Biochemical composition of freeze-tolerant crickets  

 I compared hemolymph composition between freeze-tolerant (COS-6) and control 

(Control-6) crickets, specifically comparing carbohydrates, free proline, sodium, 

potassium, and total hemolymph osmolality (Figure 3.8). Freeze-tolerant crickets had a 

significantly higher hemolymph osmolality than control crickets (Figure 3.9; F1,14 = 

31.79, P < 0.001). I did not observe thermal hysteresis in the hemolymph of crickets 

from either group. 

I determined through qualitative gas chromatography that trehalose was the only 

carbohydrate present at detectable concentrations in G. veletis hemolymph. 

Unhydrolyzed hemolymph produced several peaks with retention times that did not 

correspond with retention times for xylitol, glycerol, ribitol, mannitol or sorbitol 

standards (Figure 3.10 A & C; Table 3.3). However, the peak with a retention time of 

30.5 min corresponded to that of my trehalose standard. Cricket hemolymph that had 

been hydrolyzed produced a single non-artifact peak with a retention time of 27.1 min, 

which corresponded with my sorbitol standard (Figure 3.10 B & D; Table 3.3). I 

attributed the appearance of the sorbitol peak in the hydrolyzed sample to the hydrolysis 

of trehalose into two glucose molecules and the subsequent reduction of glucose into 

sorbitol.  

I compared the concentrations of trehalose and sorbitol between control and 

freeze-tolerant crickets. Hemolymph isolated from freeze-tolerant crickets had greater 

area under the curve for their trehalose and sorbitol peaks compared to hemolymph 

isolated from control crickets (Figure 3.10). This suggested that freeze-tolerant crickets 

may have higher trehalose concentrations in their hemolymph than control crickets, 

however this needed to be confirmed with a trehalose assay.  

 I confirmed the presence of trehalose in G. veletis and measured its 

concentrations in the hemolymph of control and freeze-tolerant crickets using a 
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spectrophotometric assay. Freeze-tolerant crickets had 318% more trehalose in their 

hemolymph than control crickets (P < 0.001; Figure 3.9B).  

I compared the whole-body and hemolymph concentration of proline between 

control and freeze-tolerant crickets. Freeze-tolerant crickets had >300 % higher 

concentrations of proline in both their whole-body (P < 0.001) and hemolymph (P < 

0.001) than control crickets (Figure 3.9C,D). The accumulation of free proline in freeze-

tolerant crickets accounts for at least part of the difference in hemolymph osmolality 

between the two treatments (Figure 3.8).  

 I compared the concentrations of sodium and potassium in the hemolymph of 

freeze-tolerant and control G. veletis and found no difference between treatments in their 

concentrations (P > 0.05; Figure 3.9 E & F. The cumulative concentration of sodium and 

potassium accounts for approximately 44 % of total hemolymph osmolality in control 

crickets and 28 % in freeze-tolerant crickets.  
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Figure 3.8 – Hemolymph composition in freeze-tolerant Gryllus veletis. Hemolymph 

extracted from control and freeze-tolerant crickets were compared for differences in 

osmolality, trehalose, proline, potassium, and sodium concentrations.  
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Figure 3.9 – Concentrations of biochemicals associated with freeze-tolerance in 

Gryllus veletis. Control and freeze-tolerant crickets were compared with respect to: (A) 

hemolymph osmolality; the concentration of trehalose (B), proline (C), sodium (E), and 

potassium (F) in the hemolymph; and the concentration of proline in the tissues (D). 

Asterisk indicates significant difference in mean concentrations between control and 

freeze-tolerant crickets (P < 0.05). 
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Figure 3.10 – Carbohydrates identified in freeze-tolerant and control Gryllus veletis, 
using gas chromatography (GC). Chromatograms profiling reduced and acetylated 
hemolymph from control (A) and freeze-tolerant (C) crickets, and their respective 
hydrolyzed samples (B & D). Xylitol was used an internal standard and carbohydrates 
were identified by comparing retention time of peaks with known standards (Table 3.3).  

Table 3.3 – Retention time of known standards separated using gas chromatography 
and their presence (X) in hemolymph isolated from control and freeze-tolerant 
crickets.  

Carbohydrate	   Retention	  
time	  (min)	  

Freeze-‐tolerant	   Control	  

Unhydrolyzed	   Hydrolyzed	   Unhydrolyzed	   Hydrolyzed	  

Glycerol	   6.8	   	   	   	   	  
Ribitol	   20.6	   	   	   	   	  
Xylitol	  	  	  	  	  	  	  	  	  	  	  	  	  

(Internal	  std.)	   23.2	   X	   X	   X	   X	  

Mannitol	   25.5	   	   	   	   	  
Sorbitol	   27.1	   	   X	   	   X	  
Trehalose	   30.5	   X	   	   X	   	  
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4 Discussion  

Insects inhabit thermally variable environments where they can be exposed to sub-zero 

temperatures and are at risk of freezing. At these temperatures, freeze-intolerant insects 

are killed if internal ice formation occurs, while freeze-tolerant insects are not (Denlinger 

& Lee, 2010). Currently, the physiological mechanisms underpinning insect freeze 

tolerance are not fully understood, a result of limited manipulative experiments and the 

lack of a tractable model organism (Sinclair & Renault, 2010; Hayward et al., 2014). I 

found that juvenile male G. veletis can survive internal ice formation following a 

reduction in thermophotoperiod fluctuations in the field or laboratory. Freeze tolerance in 

G. veletis was accompanied by an accumulation of proline and trehalose, as well as 

evidence suggesting ice nucleation is initiated in the gut and hemolymph. My protocol for 

inducing freeze tolerance in G. veletis now allows for a direct comparison of crickets 

from the same population that are and are not freeze tolerant.  With this, G. veletis may 

be used in future manipulative studies to test hypotheses and determine the mechanisms 

underlying insect freeze tolerance.  

4.1 The induction of freeze-tolerance in Gryllus veletis 

When reared exclusively at constant summer conditions in the laboratory, G. veletis did 

not survive internal ice formation. However, crickets became freeze tolerant after an 

eight-week field acclimatization in London, Ontario from October through January. Thus, 

I conclude that freeze-tolerance is a seasonally acquired plastic trait in G. veletis, similar 

to other freeze-tolerant insects such as Eurosta solidaginis and Pyrrharctia isabella 

(Morrissey & Baust, 1976; Layne et al., 1999). I obtained the photoperiod and 

temperature conditions experienced by overwintering crickets, and used these conditions 

to guide my attempt to induce freeze tolerance in the laboratory.  

I was able to induce freeze tolerance in over 90 % of crickets exposed to eight-

week fluctuating thermophotoperiod regimes that simulate outdoor conditions (OS-8). I 

refined this acclimation into a six-week protocol (COS-6), which reduced acclimation 
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time by 25 % and allowed for a higher throughput of freeze-tolerant crickets. The 

proportion of crickets surviving internal ice formation increased with acclimation time, 

displaying a pattern of freeze-tolerance acquisition over time similar to that of E. 

solidaginis (Bennett & Lee, 2002). A minimum acclimation time may be required for 

insects to undergo the necessary physiological changes associated with freeze-tolerance 

such as the accumulation of cryoprotectants (Lee & Denlinger, 1991) and modifications 

of the lipid membranes to increase fluidity at low temperatures (Overgaard et al., 2006). 

In future studies, cryoprotectants could be measured at time points throughout the 

acclimation to determine if a relationship exists between their accumulation and survival 

of internal ice formation. Investigating this relationship may identify critical components 

of the acclimation process relevant to refining the laboratory-acclimation protocol.  

 I found that a greater proportion of crickets became freeze tolerant following 

exposure to a fluctuating thermal regime compared to crickets exposed to constant-

temperature and linear ramping thermal regimes. Exposure to fluctuating thermal regimes 

during acclimation increased cold tolerance of chill-susceptible Drosophila melanogaster 

(Overgaard et al., 2011) and helped reduce chilling-injuries in the freeze-intolerant 

Orthoptera, Locusta migratoria (Jing et al., 2005). Compared to constant and linear 

ramping thermal regimes, fluctuating thermal regimes may better simulate the natural 

cues that are more likely to induce phenotypic plasticity (Colinet et al., 2015). 

Alternatively, intermittent periods of higher temperatures may allow insects to undergo 

physiological changes (e.g. cryoprotectant accumulation, tissue repair, membrane 

modifications) that would not occur during constant low temperatures (Colinet et al., 

2015). This hypothesis could be tested by measuring and comparing response variables 

associated with insect freeze tolerance (e.g. cryoprotectant concentrations) at several time 

points throughout a fluctuating thermal regime to determine if cryoprotectant 

accumulation occurs more readily during periods of exposure to high-temperatures 

compared to low-temperatures. 

Photoperiod and temperature are two of the most common cues that trigger 

seasonal cold hardening in insects (Block et al., 1990). The interaction of physiological 

responses (e.g. cryoprotectant accumulation, supercooling capacity) to temperature and 
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photoperiod cues can lead to increased cold tolerance in insects, as observed by Kim and 

Song (2000) in the beet armyworm, Spodoptera exigua. While I did not determine the 

extent to which reduced photoperiod and fluctuating temperature are required for freeze 

tolerance, I found that their combination was necessary to induce freeze-tolerance in G. 

veletis. In order to further assess the relative contribution of temperature, photoperiod, 

and their interaction to insect freeze tolerance, physiological changes associated with 

freeze tolerance should be compared between groups of G. veletis exposed to isolated and 

combined thermophotoperiod regimes.  

The majority of my laboratory treatments did not induce freeze tolerance in G. 

veletis. No crickets became freeze-tolerant following two weeks of constant low 

temperatures, daily reduction in temperatures, constant short day length, daily reduction 

in day length or diet manipulations. The multiple laboratory manipulations that did not 

result in freeze tolerance underscore the complexity of the cues and responses required to 

induce insect freeze tolerance. In E. solidaginis, exposure to a reduced photoperiod can 

produce responses in the nervous and endocrine systems, which induce overwintering 

diapause but does not directly trigger polyol synthesis, which is regulated by temperature 

and development stage (Storey & Storey, 1991). Teets et al. (2008) demonstrated that an 

insect’s response to low temperature exposure is a cellular response in freeze-tolerant 

Antarctic midge, Belgica antarctica. G. veletis may require an interaction of similar 

cellular and organismal level responses to survive internal ice formation.  

While freeze tolerance has been observed in other Orthoptera (Table 4.1), these 

species are freeze-tolerant year-round. The seasonally acquired freeze tolerance that I 

observed in G. veletis reflects an ecological pattern described by Sinclair et al. (2003), 

who suggest that environmental predictability (or lack thereof) leads to two scenarios in 

which alternate freeze tolerance strategies would be advantageous for insects. The first is 

an unpredictable environment (common to the southern hemisphere) in which moderate, 

year-round freeze tolerance allows insects to survive summer cold snaps and take 

advantage of mild winters without the expense of seasonal cold hardening. Conversely, in 

more predictable environments like those inhabited by G. veletis, freeze-tolerant insects 

can withstand very low sub-zero temperatures for long periods but generally only become 
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freeze-tolerant prior to overwintering. Teets & Denlinger (2013) suggest that exploring 

limits of insect cold tolerance will provide insight into how different strategies evolved, 

and is essential for predicting future insect ranges in a changing climate.  

4.2 Lethal limits of freeze tolerance in Gryllus veletis 

I determined the lower lethal temperature (LLT) and the length of time that G. veletis 

could survive freezing, and compared these measurements between groups of freeze-

tolerant crickets that were field-acclimatized or laboratory-acclimated. There was no 

difference in survival after acute low temperature exposure (90 min; LLT), but 

laboratory-acclimated crickets survived longer being held frozen at -8 ºC (168 h) than 

field-acclimatized crickets. Although specific mechanisms for this difference cannot be 

inferred from my study, I speculate that this is because of the laboratory-acclimated 

crickets having easier access to food and water, which might allow them to better 

accumulate energy stores to fuel the physiological responses of acclimation. 

Manipulating diet and access to water for G. veletis throughout acclimation and tracking 

survival could be used to test this hypothesis. Additionally, the acclimatized crickets 

experienced repeated exposures to more extreme absolute temperatures, which can result 

in the accumulation of chilling and freezing injuries (Marshall & Sinclair, 2012a), which 

may have limited their capability of surviving prolonged exposure to sub-zero 

temperatures. Nevertheless, I can conclude that crickets acclimated in the laboratory are 

equally, if not more, cold-hardy than crickets exposed to outdoor conditions.  

While I cannot draw definitive conclusions about specific mechanisms of freezing 

damage in G. veletis, the decline in survival after exposure to decreasing sub-freezing 

temperatures and increased time spent frozen suggests that mortality from freezing in G. 

veletis was both temperature- and time-dependent. The LLTs for freeze-tolerant insects 

range from -4 ºC to -196 ºC (Sinclair, 1999) with the LLT for G. veletis falling between -

12 and -15 ºC, which is comparable to other freeze-tolerant Orthoptera (Table 4.1). 

However, the steep decline in survival at temperatures below -10 ºC suggests that 

freezing damage begins to accumulate at temperatures slightly warmer than the LLT. 

Laboratory-acclimated G. veletis demonstrate greater than 85 % survival after being 
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frozen for 48 h, but survival decreases to 38 % after being frozen for one week. The 

relationship that I observed in G. veletis between mortality, temperature and time frozen 

could be a result of the quantity of ice in the cricket that surpasses a critical quantity, 

leading to lethal accumulation of cellular damages (Sinclair et al., 1999). Measuring ice 

content in G. veletis over time and at different temperatures using a calorimeter and 

tracking survival could test this hypothesis. If no correlation between ice content and 

mortality is observed, then it is likely that mortality results from mechanisms other than 

cellular dehydration and high solute concentration.  
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Table 4.1 Characteristics of freeze-tolerant orthopterans. (NZ = New Zealand, NA = North America, SA = South America)  

Family	   Species	  
Life	  
stage	   Habitat	  

SCP	  
(ºC)	  

LLT	  
(ºC)	  

	  Length	  of	  
freeze	  
survival	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Cryoprotectant	   	  

Trehalose	   Proline	  
Ice	  nucleating	  

activity	  
Antifreeze	  
activity	   Reference	  

	  
Prophalgopsidae	  

	  
Cyphoderris	  
monstrosa	  

	  
Nymph	  

	  
Montane,	  

NA	  

	  
-‐6	  

	  
-‐12	  

	  
>	  12	  h	  

	  
n/a	  

	  
n/a	  

	  
n/a	   n/a	  

	  
McKinnon,	  
unpubl.	  

Acrididae	   Arphia	  
conspersa	   Nymph	   Alpine,	  NA	   -‐9.2	   -‐19	   n/a	   n/a	  	  	   n/a	   n/a	   n/a	   Alexander,	  1967	  

	   Meridacris	  
subaptera	  

Adult	   Alpine,	  SA	   -‐4	   -‐10	   >	  8	  h	   n/a	   n/a	   hemolymph	   n.a	   Sømme,	  1986	  

	   Sigaus	  
australis	   Adult	   Alpine,	  NZ	   -‐4	   -‐11	   >	  48	  h	   n/a	   n/a	   endogenous	   n/a	  

Sinclair,	  2001;	  
Hawes,	  2014	  

	  

	   Xanthippus	  
corallipes	  

Nymph	   Alpine,	  NA	   -‐9.4	   -‐19	   n/a	   n/a	   n/a	   n/a	   n/a	   Alexander,	  1967	  

Stenopelmatidae	   Deinacrida	  
connectens	   Adult	   Alpine,	  NZ	  	   -‐5	   -‐12	   n/a	   n/a	   n/a	   n/a	   n/a	   Sinclair,	  1999	  

	   D.	  parva	   Adult	  
Montane,	  

NZ	  	   -‐5	   -‐5	   n/a	  
n/a	   n/a	   n/a	   n/a	  

Sinclair,	  1999	  

	   Hemideina	  
maori	  

Adult	   Alpine,	  NZ	  	   -‐5	   -‐10	   >	  5	  days	   >300	  mM	   41	  mM	   hemolymph	  
protein	  &	  gut	  	  

None	  

Ramløv	  et	  al.,	  
1992;	  Sinclair	  et	  

al.,	  1999;	  
Neufeld	  &	  

Leader,	  1998	  

	   H.	  thoracica	   Adult	   Lowland,	  
NZ	   -‐5	   -‐5	   230	  min	   n/a	   n/a	   hemolymph	  &	  

gut	   None	  
Sinclair,	  1999;	  
Sinclair	  et	  al.,	  

1999	  

	   H.	  crassidens	   Adult	  
Lowland,	  

NZ	   -‐5	   -‐6.5	   165	  min	   n/a	   n/a	  
hemolymph	  &	  
gut	  content	   n/a	   Sinclair	  et	  al.,	  

1999	  
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4.3 Physiological changes associated with freeze tolerance in 

Gryllus veletis 

I compared SCPs, hemolymph composition, and tissue concentration of proline 

between control and freeze-tolerant crickets to identify physiological changes associated 

with becoming freeze-tolerant. I found that freeze-tolerant crickets initiate ice formation 

at higher temperatures in the hemolymph and gut tissue. Additionally I found freeze-

tolerant crickets have higher hemolymph osmolality due, in part, to higher trehalose and 

proline concentrations, as well higher whole-body proline concentrations. While I do not 

provide direct evidence that these physiological changes are necessary or sufficient for 

the survival of internal ice formation, they can provide a starting point for future 

manipulative studies that will help determine the underlying mechanisms of insect freeze 

tolerance.  

4.3.1 Ice nucleating activity 

 In freeze-tolerant insects the transition to the cold-hardy state is accompanied by 

an increase in nucleating activity and subsequent increase in supercooling point 

(Zachariassen & Kristiansen, 2000). I found that freeze-tolerant crickets have higher and 

more tightly distributed SCPs than control crickets, suggesting some form of control over 

ice nucleation. Similar to other Orthoptera, this control of ice formation is likely initiated 

in the hemolymph and gut, as these appear to be the first tissues that freeze, and SCPs of 

these tissues were significantly higher in freeze-tolerant crickets (Table 4.1; Sinclair et 

al., 1999). Control and freeze-tolerant crickets received the same diet and it is unlikely 

that exogenous ice nucleators were introduced to freeze-tolerant crickets in another form. 

Thus, I hypothesize that like other Orthoptera, G. veletis are producing an endogenous ice 

nucleator (Table 4.1). An exogenous ice nucleator, such as food or bacteria may have 

been introduced to the acclimatized crickets which would account for increase in SCP 

compared to the freeze-tolerant crickets acclimated in the lab. However, this increase in 

SCP did not enhance survival of internal ice formation.   
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Zachariassen and Hammel (1976) suggest that ice-nucleating agents in freeze-

tolerant insects ensure that ice formation begins in the extracellular space, which leads to 

the cryoprotective dehydration of insect’s cells. This is a potential mechanism by which 

ice nucleators present in the hemolymph and gut of G. veletis may aid in surviving 

internal ice formation. However, the manipulation of SCP through the introduction of an 

exogenous ice nucleator, silver iodide, did not induce freeze tolerance. This may be a 

result of ice-nucleators needing to be present in both the hemolymph and the gut 

simultaneously and silver iodide not being transferred from the gut to the hemolymph and 

vice versa. Alternatively, the control of ice-nucleation may not be sufficient for freeze 

tolerance in G. veletis.  

The prevalence of intracellular ice formation in freeze-tolerant insects is not fully 

understood. However, of the freeze-tolerant insects studied, many appear to survive 

intracellular freezing in at least one cell type, usually fat body or gut cells (Sinclair & 

Renault, 2010). Sinclair and Renault (2010) speculated that intracellular freezing may be 

advantageous to an insect by reducing cellular and organismal dehydration. The real-time 

tracking of ice formation in vivo, using microscopy and other visualization techniques 

(X-ray, magnetic resonance) is needed to further explore the process of ice formation in 

G. veletis, particularly in the gut.  

4.3.2 Hemolymph composition 

I compared the hemolymph composition of freeze-tolerant and control crickets to 

identify potential cryoprotectants that would contribute to an increase in freeze-tolerance. 

I expect that the majority of cryoprotectants are present in the hemolymph if they are 

interacting with extracellular ice and protecting the outside of cell membranes. 

Additionally, many insects possess aquaporins, aquaglyceroporins and aquaglyceroporin-

like proteins and other transporters that allow cryoprotectants to readily cross cellular-

membranes to the extent that it is reasonable to assume that their intra- and extracellular 

concentrations would be similar (Philip & Lee, 2010). Thus, the cryoprotectants that I 

identified in G. veletis hemolymph are likely present in the tissues as well.  
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Hemolymph osmolality increased by 63 % in freeze-tolerant compared to control 

crickets. Approximately 25 % and 10 % of this difference in hemolymph osmolality is 

accounted for by the accumulation of trehalose and proline, respectively, in the 

hemolymph of freeze-tolerant crickets. I found no difference in sodium or potassium 

concentrations, which account for 30-40 % of the hemolymph solutes in G. veletis. I 

predict that large portions (~50-80 %) of the unidentified osmolytes are chloride and 

other anions that allow for a net ionic balance. Altogether, hemolymph extracted from 

control and freeze-tolerant G. veletis mirrors the composition and concentrations of 

hemolymph extracted from summer and overwintering H. maori, respectively (Neufeld & 

Leader, 1998; Ramløv et al., 1991). I did not measure protein or amino acid content 

(other than proline), but these solutes may also account for a portion of the remaining 

unidentified osmolytes.  

The ~200 mM increase in hemolymph osmolality that I observed in freeze-

tolerant crickets may function to reduce the quantity of extracellular ice. Layne and 

Blakely (2002) found that a 200-300 mM increase in glycerol significantly reduced the 

amount of freezable water in P. isabella by approximately 12.5 %. In addition to 

colligative cryoprotection, some of these osmolytes, particularly trehalose and proline, 

may provide non-colligative cryoprotection by stabilizing membranes and other 

macromolecules in G. veletis.  

 Similar to other freeze-tolerant Orthoptera (Table 4.1), trehalose was the only 

major carbohydrate present in G. veletis hemolymph, and its accumulation corresponded 

with the induction of freeze tolerance. It is possible that carbohydrates other than 

trehalose are present in G. veletis; however, the concentrations of these carbohydrates 

were too low to detect using gas chromatography and likely too low to contribute to 

overall cryoprotection, in comparison to trehalose. Proline, like trehalose, has been 

identified as a potential non-colligative cryoprotectant that accumulates over winter in 

freeze-tolerant Orthoptera (Ramløv, 1999). Consistent with this, I found increased 

hemolymph and whole-body concentrations of proline in freeze-tolerant crickets 

compared to controls.  
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Under the assumption of extracellular freezing, ice does not penetrate into cells 

unless membranes are broken from ice or other low-temperature stresses (Storey & 

Storey, 2004). Trehalose and proline are both known anhydroprotectants and are often 

associated with membrane protection during dehydration stress in insects (Storey, 1997). 

Both compounds are believed to interact directly with the polar head groups of membrane 

lipids to stabilize the bilayer structure and prevent destructive events such as fusion, 

phase transitions and elevation of permeability (Crowe et al., 1987). However, other 

membrane components (e.g. aquaporins, ion channels, trehalose transporters, cholesterol, 

etc.) should be examined in G. veletis as they may also play a role in insect cold tolerance 

(MacMillan & Sinclair, 2011b). 

The concentrations of sodium and potassium in the hemolymph were the same for 

groups of control and freeze-tolerant G. veletis. Inorganic ions, such as sodium and 

potassium, perform a wide range of necessary functions within an insect (e.g. signaling, 

co-factors, electrochemical gradient), and a disruption in ion homeostasis is a primary 

cause of injury to insects during cold exposure (Zachariassen et al., 2004; MacMillan & 

Sinclair, 2011a). Compared to the less cold-hardy field cricket, Gryllus pennsylvanicus, 

G. veletis better maintains ion homeostasis during exposure to low temperatures (Coello 

Alvarado et al., 2015). The ability to maintain ion concentrations throughout acclimation 

and at low temperatures may be a beneficial trait in G. veletis as ion balance plays an 

important role in an insect’s recovery from low-temperature exposure and is likely driven 

by ion-motive ATPases, ion channel gating mechanisms, and/or the lipid membrane 

composition (MacMillan & Sinclair, 2011b). Zachariassen et al. (2004) suggest that 

freeze-tolerant insects specifically, have large ATP stores that facilitate active transport 

of sodium and are able to rapidly restore sodium gradients upon thawing.  

Hayward et al. (2014) suggest that the adoption of single gene ablations will 

provide direct and compelling evidence for the role of specific genes, and thus 

mechanisms, underlying insect freeze tolerance. Access to a G. veletis transcriptome 

along with other molecular techniques such as RNA-interference, which has been 

successfully performed on other Gryllidae (Takekata et al., 2012), could allow for future 

manipulations of cryoprotectant synthesis and transport. Inhibiting cryoprotectant 
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synthesis and transport in acclimated G. veletis would help determine which molecules 

are necessary. However, because both trehalose and proline are involved in other 

physiological processes, most importantly energy metabolism, their reduction may be 

lethal regardless of freezing. Thus, experiments that increase cryoprotectants in control 

crickets prior to exposure to sub-freezing may be required to determine which molecules 

are sufficient for the survival of internal ice formation. Koštál et al. (2012) were able to 

induce freeze tolerance in Drosophila melanogaster by augmenting the insect’s diet with 

proline. Similarly, cryoprotectant concentrations could be manipulated in G. veletis by 

diet manipulations and as well as direct injections into the hemolymph.  

4.4 Future directions 

This study is a step forward in our ability to determine the underlying 

mechanisms of insect freeze-tolerance. In G. veletis, we have a tractable model system to 

manipulate the potential mechanisms of insect freeze tolerance in a controlled, laboratory 

setting. While I have identified three potential cryoprotective molecules in G. veletis 

(trehalose, proline and ice nucleators in the gut and hemolymph), these results are strictly 

correlative. Further studies are needed to test the hypothesis stemming from my results as 

well as to determine how and where freezing damage is accruing, to evaluate the 

advantages of becoming freeze-tolerant, and to build and test hypotheses for the 

mechanisms underlying insect freeze tolerance.  

I propose that proline and trehalose work concurrently with ice nucleating agents 

in freeze-tolerant G. veletis to limit intracellular damage during extracellular freezing. 

Multicomponent cryoprotectant systems are present in other freeze tolerant insects, such 

as E. solidaginis (Baust, 1986). This multicomponent hypothesis could be examined in a 

manipulative experiment, similar to that done on H. maori by Sinclair and Wharton 

(1997). In this experiment, tissues from G. veletis would be isolated and frozen in a 

medium with or without ice-nucleating agents and varying concentrations of proline and 

trehalose, with cellular survival measured post-thaw. This would help determine the role 

of each proposed cryoprotectant and the potential necessity of multiple cryoprotectant 

mechanisms. However, in vivo manipulations (RNA-interference, augmenting diets, 
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hemolymph injections) are also required to determine which biochemicals are necessary 

and sufficient for insect freeze tolerance.  

I suggest that initial studies could focus on determining where lethal cryoinjury is 

occurring in freeze-intolerant G. veletis, as this would provide insight into the 

mechanisms of freezing injury and where cryoprotection is likely provided in freeze-

tolerant crickets. This study could utilize live/dead staining (see Marshall & Sinclair, 

2011) to compare cellular survival between crickets that die or survive exposure to sub-

freezing temperatures. For this experiment, I suggest that crickets should first be exposed 

to one of the several laboratory-acclimations that resulted in approximately 50 % survival 

of internal ice formation. Therefore, differences in cellular survival between groups that 

die or survive freezing, can be attributed to the freezing event rather than differences in 

the acclimation conditions. Furthermore, the relationship between mechanisms for 

chilling and freezing damage is not fully understood as it these injuries can be difficult to 

tease apart (Hayward et al., 2014; Teets & Denlinger, 2013). Cooling G. veletis to their 

mean SCP would lead to freezing in approximately half of the individuals, cellular 

damage could then be compared to differentiate between chilling and freezing damages.  

The advantages of adopting a freeze-tolerance rather than a freeze-avoidance 

strategy remain unclear (Sinclair et al., 2003). While the goal of my study was to assess 

the suitability of G. veletis as a model for studying the underlying mechanisms of insect 

freeze-tolerance, my protocol for laboratory-induced freeze-tolerance in G. veletis could 

also be used to understand why an insect would evolve freeze tolerance. With no 

phylogenetic patterns to explain for the distribution of freeze-tolerance within insects 

(Block, 1991), energetic models are likely to provide insight on the evolution of insect 

freeze tolerance. A current model, developed by Voituron et al. (2002) assumes a fitness 

cost associated with freezing and thawing. Although this assumption does not hold true 

for all freeze-tolerant insects (Marshall & Sinclair, 2012b), we can use G. veletis as a 

model to further understand the fitness (e.g. survival, reproduction) and energetic (e.g. 

cryoprotectant synthesis) costs associated with insect freeze tolerance, while controlling 

for factors such as diet, genetics and life history. Additionally, we can begin to examine 

benefits of freeze tolerance including the potential for protection against pathogens and 
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parasites. By determining the costs and benefits associated with freezing using empirical 

data from model insects such as G. veletis, we can begin to explain the use of freeze 

tolerance as a strategy to survive cold.  

Gryllus veletis can become freeze-tolerant during a six-week laboratory 

acclimation and likely utilize several mechanisms to survive internal ice formation. The 

osmolytes I measured in freeze-tolerant G. veletis account for less than half of the 

increase in total osmolality during the acclimation treatment. Thus, it seems likely that 

unidentified osmolytes could also play an important role in G. veletis freeze tolerance. 

Using a metabolomics approach, Michaud & Denlinger (2007) identified 62 metabolites 

including amino acids, polyols, carbohydrates and metabolic intermediates in 

overwintering Sarcophaga crassipalpis. A similar metabolomics profile that utilizes gas 

chromatography-mass spectroscopy, liquid chromatography-mass spectroscopy, or 

nuclear magnetic resonance would identify other carbohydrates, polyols and amino acids 

that are potentially relevant to freeze tolerance. Additionally, other ions, specifically 

chloride should be measured to confirm that the majority of unidentified osmolytes in G. 

veletis are anions.  

Hypothesis generating “-omics” approaches would be an ideal way to identify the 

mechanisms underlying insect freeze tolerance during acclimation. One could combine 

transcriptomic and metabolomic profiles of freeze-tolerant G. veletis to provide a holistic 

view of the physiological processes within freeze-tolerant insects (Teets & Denlinger, 

2013). I have recently helped to assemble and annotate the transcriptome of control G. 

veletis, which will expedite the pipeline for differential gene expression comparing 

freeze-tolerant and freeze-intolerant (control) crickets. Furthermore, these “-omics” 

approaches could be used to connect gene expression to changes in phenotype (Teets and 

Denlinger, 2013). Together, these comparisons would help identify potential mechanisms 

of freeze tolerance in G. veletis, which as Hayward et al. (2014) suggest, can now be 

tested using manipulative experiments, similar to experiments that I have outlined above. 

Knocking down cryoprotectant synthesis and transport pathways using RNA-interference 

as well as artificially enhancing cryoprotectant concentrations via diet-augmentation and 
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hemolymph injections will help to determine what molecules are sufficient and necessary 

for insect freeze tolerance.  

4.5 Conclusions  

Freeze tolerance in G. veletis is a phenotypically-plastic trait acquired during 

exposure to a fluctuating reduction in thermophotoperiod. The acquisition of freeze 

tolerance is accompanied by increased control of ice formation in the hemolymph and gut 

tissue, as well as an accumulation of trehalose and proline that account for a portion of 

increased hemolymph osmolality. These patterns of cryoprotectant accumulation in G. 

veletis are similar to what is observed in other freeze-tolerant orthopterans. This study is 

one of the first to induce insect freeze tolerance in the laboratory and may provide 

researchers with an effective tool to determine what mechanisms are necessary and 

sufficient for surviving internal ice formation. Altogether, G. veletis has the necessary 

attributes to be further developed as a new model system for studying insect freeze 

tolerance.  
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