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Abstract 

Potyviruses represent the largest genus of plant-infecting viruses and include many 

agriculturally important viruses such as Turnip mosaic virus (TuMV), Soybean mosaic 

virus (SMV) and Plum pox virus (PPV). The potyviral genome consists of a large open 

reading frame (ORF) and a small ORF owing to a translational or transcriptional slippage 

in the P3 cistron. The polyproteins encoded by these two ORFs are proteolytically 

processed into 11 mature proteins. Recent studies have shown that P3N-PIPO, the 

frameshift resulting protein, is a plasmodesmata (PD)-located protein and involved in 

potyviral cell-to-cell movement by mediating the targeting of the potyviral CI protein to 

PD to form canonical structures for potyviral cell-to-cell movement.  In this study, I 

introduced in a full-length cDNA infectious clone of TuMV a stop codon or point 

mutations into P3N-PIPO without affecting the amino acid sequence of other viral 

proteins including P3 and evaluated effects of these mutations on TuMV infection. It was 

found that elimination of PIPO or substitution of the positive charged amino acid lysine 

with the negatively charged amino acid glutamic acid within PIPO compromises TuMV 

cell-to-cell spreading in Nicotiana benthamiana plants. PEG-mediated transfection assay 

revealed that virus replication of these mutants is not affected in Nicotiana benthamiana 

protoplasts. Moreover, transient co-expression of CI and P3N-PIPO mutants showed that 

the PIPO mutants lose the ability to target the TuMV CI protein to plasmodesmata. 

Subcellular localization of these PIPO mutants indicated that the substitution mutants 

retain their PD-targeting. These data strongly support that the potyviral P3N-PIPO 

protein is likely a dedicated protein for potyviral intercellular movement via PD.  

Keywords:   Potyviruses, P3N-PIPO, TuMV, Intercellular movement, Plasmodesmata. 
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Chapter 1 

1    Introduction 

1.1 General background about plant viruses 

 

Plant viruses are grouped into 73 genera and 49 families (Hull, 2013). Like all other 

viruses, plant viruses are intracellular parasites that can replicated only inside living cells 

(Matthews and Hull, 2002; Hipper et al., 2013). All viruses have a very small genome 

that encodes a limited number of proteins, and thus depend on host factors for viral 

multiplication (Ahlquist et al., 2003; Laliberté and Sanfaçon, 2010). Viruses maintain 

very basic fundamental structures and limited properties but can display a great 

adaptability in different habitats by genetic variability over time (Thresh, 2006). Viruses 

are extremely small and can only be observed under an electron microscope. The simplest 

viruses are composed of a small piece of nucleic acid (DNA/RNA) surrounded by a coat 

protein (Ahlquist et al., 2003). Only a minority of plant viruses possess double-stranded 

DNA (dsDNA) genomes, and some have genomes composed of single-stranded (ss) 

DNA. However, the genomes of most plant viruses are composed of RNA. Most of these 

genomes are composed of ssRNA that is the same (positive-sense) polarity as the 

messenger RNAs of the cell (Laliberté and Sanfaçon, 2010; Hull, 2013). All types of 

living organisms, including plants, animals, fungi, and bacteria are hosts for viruses, but 

most viruses infect only one type of host. In the case of plant viruses, differences in host 

range and susceptibility or response of plants to infection suggest that viruses can act as 

selective pathogens between species in natural plants. To transmit from one plant cell to 

another, plant viruses must use strategies that are usually different from animal viruses. 

http://en.wikipedia.org/wiki/Genus_(biology)
http://en.wikipedia.org/wiki/Family_(biology)
http://en.wikipedia.org/wiki/Electron_microscope
http://en.wikipedia.org/wiki/Animal_virus
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Plants do not move, and so plant-to-plant transmission usually involves vectors such as 

insects (e.g., aphids) or mechanical inoculation (Ivanov et al., 2014). Plant viruses cause 

many important plant diseases and are responsible for losses in crop yield and quality 

around the world (Gergerich and Dolja, 2006). In addition, infection by plant viruses can 

cause a variety of symptoms in hosts, such as stunted growth, yellowing, ring spot 

(chlorotic or necrotic rings) or necrosis on different parts of the plants tissue (Matthews 

and Hull, 2002). Plant virology as a subject of study started in the late nineteenth century, 

when Dutch microbiologist Martinus Beijerinck and Russian researcher Dmitrii 

Iwanowski were studying the reason behind a mysterious disease of tobacco.  Tobacco 

mosaic virus (TMV) was the first virus to be discovered over a century ago and was the 

first virus ever purified. Since then, over 1000 species of plant viruses have been 

identified (Scholthof, 2008). 

1.2    The family Potyviridae 

1.2.1 General description of Potyviridae 

 

Potyviridae are very important as pathogens globally due to the great economic losses in 

crops caused by this family. Viruses in this family have also drawn the attention of the 

research community for years, and much effort has been made to study taxonomy, 

evolution, structure, functional characterization of viral proteins, diagnosis, control and 

interaction with hosts (López‐Moya et al., 2009). These types of research have resulted in 

positive steps for controlling virus propagation and designing antiviral strategies. The 

Potyviridae comprise more than 30% of known plant virus species (Fauquet et al., 2005). 

Potyvirus, the major genus in the Potyviridae family, includes many agriculturally 
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important viruses such as Plum pox virus (PPV), Potato virus Y (PVY), Potato virus A 

(PVA), Papaya ringspot virus (PRSV), Zucchini yellow mosaic virus (ZYMV), Bean 

common mosaic virus (BCMV), Maize dwarf mosaic virus (MDMV), Turnip mosaic 

virus (TuMV), Tobacco etch virus (TEV), Lettuce mosaic virus (LMV) and Soybean 

mosaic virus (SMV). The genus is named after the type virus Potato virus Y, and, based 

on the genome organization, belongs to the picorna-like viruses superfamily (Urcuqui-

Inchima et al., 2001; Wei et al., 2010; King et al., 2012). Potyviruses are flexuous, rod-

shaped particles 680-900 nm long and 11-15 nm wide. They are composed of a single 

positive stranded RNA around 10 kb long which is surrounded with a protein shell known 

as a capsid, but lack a lipid bilayer (envelope). The capsid is made of approximately 2000 

units of a single virally encoded protein, the capsid protein (CP). Potyviruses are 

transmitted predominantly by aphids in a non-persistent manner (Urcuqui-Inchima et al., 

2001; Walsh and Jenner, 2002). 

 1.2.2 Genomic organization of potyviruses  

The genomic RNA of potyviruses has a poly-adenine (A) tail of variable length at its 3' 

end and a VPg (viral protein genome linked) covalently bound to its 5' end. The genome 

codes for a long open reading frame (ORF) flanked by two untranslated regions (UTRs) 

(Majer et al., 2014) and also a small ORF owing to a translational or transcriptional 

slippage in the P3 cistron (Chung et al., 2008; Rodamilans et al., 2015). The two 

polyproteins encoded by the virus are processed co- and post-translationally by three viral 

encoded proteases (P1, HC-Pro, NIa-Pro) to generate 11 mature protein products (Chung 

et al., 2008; Wei et al., 2010). These viral proteins are, from the N to C terminus of the 

poly protein: P1 (the first protein), HC-Pro (the helper component/protease), P3 (the third 
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protein), P3N-PIPO (resulting from the frame-shift in the P3 cistron), 6K1 (the first 6 

kDa peptide), CI (the cylindrical inclusion protein), 6K2 (the second 6 kDa peptide), NIa-

VPg (nuclear inclusion ‘a’ – viral genome-linked protein; also VPg), NIa-Pro (nuclear 

inclusion ‘a’ protein – the protease), NIb (the nuclear inclusion ‘b’ protein), and CP (coat 

protein) (Riechmann et al., 1992; Urcuqui-Inchima et al., 2001; Wei et al., 2010). 

1.2.3 Overview of potyviral functions 

The first protein, P1, is a proteinase. P1 is a type of serine proteinase that self-cleaves the 

P1/HC-PRO junction at a specific conserved motif (Adams et al., 2005; Tena Fernández 

et al., 2013). The P1 protein has shown the ability to bind nonspecifically to RNA 

(Urcuqui-Inchima et al., 2001; Tena Fernández et al., 2013). P1 is also involved in host 

defense suppression. It was shown that the fusion of P1 and HC-Pro enhances viral 

pathogenicity through suppression of post-transcriptional gene silencing (PTGS) in the 

plant cells (Syller, 2006; Tena Fernández et al., 2013). HC-Pro is a multifunctional 

protein and is involved in various steps of the viral life cycle such as interaction with 

aphids and virus particles (Roudet-Tavert et al., 2002), self-interaction, amplification and 

systemic movement (Syller, 2006; Torres-Barceló et al., 2010; Hipper et al., 2013), 

synergism, symptom development and suppression of gene silencing (Mallory et al., 

2001). The P3 protein and P1 together are the most variable proteins in this family 

(Urcuqui-Inchima et al., 2001). The P3 protein plays a vital role in pathogenicity through 

interaction with other potyviral proteins (Saenz et al., 2000). CI is an important protein 

for viral replication. The N-terminal segment of this protein contains several conserved 

motifs which are involved in (nucleoside-triphosphate) NTP binding, NTPase, RNA 
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binding, and RNA helicase activity (Urcuqui-Inchima et al., 2001; Sorel et al., 2014). It 

was proposed that the 6k1 protein carries a determinant for pathogenicity. 6k2 is required 

for inducing the formation of viral replication vesicles (Grangeon et al., 2013). NIa is 

divided into two domains based on functions, the N-terminal VPg domain, and the C-

terminal proteinase domain. NIa is the major proteinase of Potyviruses: it processes the 

polyprotein in cis and in trans to produce functional products(Jebasingh et al., 2013). 

NIa-VPg (N-terminal part of NIa) is referred to as VPg protein, which is involved in viral 

genome replication and movement (Urcuqui-Inchima et al., 2001). RNA polymerase ΙΙ 

(RdRp) that can produce complementary viral RNA during the replication process. The 

Glycine–Asparagine–Asparagine (GDD) motif is a highly conserved motif that is located 

in this protein, and -deletion or mutation of GDD is lethal to the virus (Riechmann et al., 

1992; Urcuqui-Inchima et al., 2001). CP is involved in the protection of viral genomes, 

systemic movement and aphid transmission (Blanc et al., 1997; Fernandez-Fernandez et 

al., 2002). The recently discovered protein PIPO (pretty interesting potyviridae ORF) is 

produced by +2 frameshifting in the P3 cistron. The possible roles of this protein include 

cell-to-cell movement and replication or combinations of those functions (Chung et al., 

2008). 

 1.2.4 Overlapping essential PIPO gene in the Potyviridae 

 

Based on bioinformatics results by MLOGD gene-finding software, Chung et al. (2008) 

suggested that the high conserved motif (G2A6) at the 5  ́end of PIPO frame facilitates 

ribosomal frame shifting. In addition to that they revealed that the PIPO ORF (+2 frame 

relative to polyprotein) is present in all 48 potyviral genome sequences in Genbank 
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(Chung et al., 2008). The length of  PIPO is quite variable among the different potyvirus 

species, ranging from 60 to 115 codons and this variability in length was associated with 

the host species, geographic province or other strain features (Hillung et al., 2013). 

Previously Chung et al. (2008) and Vijayapalani et al. (2012), presented evidence 

indicating that detection of 7 kDa PIPO protein was not successful in TuMV infected 

tissues and instead a 25 kDa protein product, consistent with the   predicted size for the 

fusion protein of the N-terminal region (upstream of the frameshift site) and PIPO, was 

detected. More recently, study by Rodamilans et al. (2015) suggested that P3N-PIPO is 

produced at least partially through polymerase slippage. They also mentioned that this 

possibility, previously considered by Chung et al. could not be demonstrated at that time 

likely due to the low rate of nucleotide insertion in this site.  Therefore, P3N-PIPO was 

chosen for this study.  

1.2.5 General life cycle of Potyvirus 

The  main steps of the Potyvirus life cycle are entry, decoating, translation, replication, 

assembly, cell-to-cell and systemic  movement and plant to plant transmission (Ivanov et 

al., 2014).  The Potyvirus genome is expressed as a polyprotein which is processed into 

eleven mature proteins.  The majority of these proteins are multifunctional proteins 

although most of the viral proteins are involved in some way in viral replication 

(Matthews and Hull, 2002). Initially, the virus penetrates a host cell by insect vector or 

mechanical transmission then uncoats and viral genomic RNAs are released from the 

virions into the host cytoplasm and act as templates for translation to produce viral 

proteins (which is processed by viral proteases) using the host’s translation machinery 

(Dreher and Miller, 2006; Simon and Miller, 2013). The viral replicase proteins associate 
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with cellular membranes where host factors are recruited to form the viral replication 

complex (VRC). Viral multiplication is carried out by the membrane bound VRC. The 

VRC synthesizes a complementary negative-strand RNA [(-)RNA] using the original 

genomic RNA as a template. The (-)RNA is then used as a template to synthesize many 

new (+)RNAs that undergo more rounds of translation and replication, or move to 

adjacent cells, or are encapsidated into virions. In the next step, viral cell-to-cell 

movement via plasmodesmata (PD) and formation of PD-associated pinwheel structures 

by viral proteins are followed (Wei et al., 2010; Nagy and Pogany, 2012) (Fig. 1.1). For 

long-distance, virus must move from the mesophyll via bundle sheath cells, phloem 

parenchyma, and companion cells into phloem sieve elements (SEs), and are then 

passively transported following the source-to-sink flow of photo assimilates and unloaded 

from SEs to sink tissues (distant sites) from which further infection will occur (Hipper et 

al., 2013). 
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Figure  1.1  Schematic infection cycle of positive-sense RNA viruses. Virion enters the 

plant cells by insect vector. Following virion uncoating, potyviral RNA is translated by 

host cell ribosomes into polyprotein. The resulting viral replication proteins then recruit 

the (+)RNA to membranous vesicles, where functional viral replication complexes 

(VRCs) are assembled. A small amount of negative-sense RNA ((−)RNA) is synthesized 

and serves as a template for the synthesis of a large number of (+)RNA progeny. The new 

(+)RNAs are released from the VRCs, whereas the (−)RNA is retained. The released 

(+)RNAs start a new cycle of translation and replication, become encapsidated, and then 

exit the cells move to neighboring cells through plasmodesmata. 
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1.2.6  Potyvirus movement 

The movement of viruses in plants is divided into three steps: intracellular, intercellular 

and long distance movement (Nelson and Citovsky, 2005; Benitez-Alfonso et al., 2010). 

Initially, the virus moves intracellularly from the sites of replication to plasmodesmata 

(PD). PD are a unique intercellular membranous channel which can control the 

intercellular trafficking of micro- and macro- molecules, including plant viruses. This 

complicated structure also establishes cytoplasmic and endomembrane continuity 

between neighboring cells  (Oparka, 2004). The virus further transverses the PD to spread 

intercellularly (cell-to-cell movement). Finally, long distance movement of the virus 

within the plant happens through phloem sieve tubes and xylem. The plant to plant 

transmission happened by aphids (Boevink and Oparka, 2005; Lucas, 2006).  

Viral cell-to-cell movement through PD is mediated by virus-encoded factors termed 

movement protein (MP) (Heinlein, 2015). The first evidence demonstrating that the 

process of plant virus movement is controlled by certain viral proteins came from early 

investigations of temperature sensitive mutants of TMV encoding a nonstructural 30 kDa 

MP (Taliansky et al., 2008; Harries and Ding, 2011).  

Plant viruses can be classified into several groups based on the characteristics of their 

intercellular transport. One group, which includes TMV and related viruses, encodes a 

single dedicated MP that associates with, and   increases the size exclusion limits of, PD 

to allow transport of viral genomes through the modified channel (van Regenmortel et al., 

2000; Ohshima et al., 2002). The second group includes many plant viruses with 

icosahedral particles, and requires both the MP and CP for cell-to-cell movement 

(Ohshima et al., 2002). The third group includes several viruses with filamentous 
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particles, such as Potexviruses, that contain a set of three movement genes called the 

triple gene block. These genes encode proteins that are assumed to function coordinately, 

but without forming the tubular structure, to transport viral particles or genomes through 

PD (Heinlein, 2015). In the case of Potyvirus, no dedicated MP, like those for other 

viruses, has been identified. However, some potyviral proteins, including HC-Pro, CI, 

VPg, CP, and P3N-PIPO, have been demonstrated to be involved in viral cell-to-cell 

movement (Dunoyer et al., 2004; Hofius et al., 2007; Wei et al., 2010; Vijayapalani et al., 

2012; Ivanov et al., 2014).. 

1.3    TuMV 

1.3.1 Taxonomy and genome organization 

 

TuMV was ranked the second most important virus infecting field-grown vegetables. 

Like other viruses in this genus, TuMV is transmitted by aphids (van Regenmortel et al., 

2000). This family, belonging to the picorna-like virus super group, includes plant and 

animal viruses (Culley et al., 2003).  Seventy-six isolates of TuMV were collected from 

around the world, mostly from Brassica and Raphanus crops, but also from several non-

brassica species (Ohshima et al., 2002). TuMV virions are non-enveloped, flexuous rod-

shaped particles of ~720 nm long and 15-20 nm wide (Walsh and Jenner, 2002) (Fig. 

1.2). The TuMV genomic RNA is 9830 nucleotides in length. The molecular mass of  

viral proteins is P1 (40 kDa),  HC-Pro (52 kDa), P3 (40 kDa), P3N-PIPO (25 kDa), 6K1 

(6 kDa), CI protein (72 kDa), 6K2 (6 kDa), VPg protein (22 kDa), NIa (27 kDa), NIb (60 

kDa) and the CP (33 kDa) as shown in (Fig. 1.2) (Walsh and Jenner, 2002; Chung et al., 

2008; Wei et al., 2010). An infectious clone  of TuMV has been produced, providing a 
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tool of enormous potential to study the molecular genetics of TuMV (Sánchez et al., 

1998). 

 

 

 

 

 

 

Figure  1.2 Schematic representation of TuMV genome. The viral RNA is symbolized 

by the horizontal line, linked to a single VPg at the 5′ end and to a poly (A) tail at the 3′ 

end. The poly protein is processed by three different proteinases to 11 mature proteins. 

The black arrows indicate the cleavage site. P3N-PIPO results from the translation of the 

5′ sequence of TuMV P3 cistron followed by a small open reading frame protein 

embedded in the cistron. The arrows indicated the place of proteinase cleavage. 
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1.3.2 Host range and transmission 

The wide host range of TuMV is one of its remarkable features. At least 318 species of 

plants including both dicots and monocots, in more than 43 families, are known to be 

infected by TuMV (Walsh and Jenner, 2002). TuMV is known to be particularly 

damaging in brassicas (members of the mustard family or Brassicaceae) in parts of Asia, 

North America and Europe. It has caused serious losses in arable crops, including oilseed 

rape (Brassica napus) and vegetable crops, including swede/rutabaga (B. napus), turnip, 

Chinese cabbage (B. rapa), cabbage, Brussel sprouts, cauliflower, kohlrabi and collards 

(B. oleracea) (Nguyen et al., 2013). It also infects and causes damage in many non-

brassica crops and ornamentals, including radish, lettuce, endive, escarole, horseradish, 

peas, courgette, rhubarb, statice (Limonium) and stock (Matthiola) (Walsh and Jenner, 

2002). TuMV occurs in many parts of the world, including the temperate and tropical 

regions of Africa, Asia, Oceania and North and South America (Nguyen et al., 2013). 

This virus is transmitted to plants through 40-50 species of aphids in a non-persistent 

manner. 

1.3.3 Disease symptoms 

TuMV infection results in different symptoms depending on the plant, such as mosaic, 

mottling, chlorotic rings or color break on stems, foliage, flowers and fruits. The 

infection can also cause severe stunting of young plants and represents an important 

reduction of yield. Malformations of leaf, stem and fruit can also be observed as well as 

fruit drop and necrosis of different tissues (Shukla et al., 1994) (Fig. 1.3). 
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Figure  1.3 Turnip mosaic virus symptoms on a cabbage leaf of the variety 

Superdane. Photo courtesy of T.A. Zitter,  Cornell University, Ithaca, NY. 
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1.4 Proposed research 

Viruses are considered one of the major constraints to agricultural production in the 

world. A better understanding of the molecular biology of viruses and the functions of the 

viral proteins is essential for the control of virus propagation and the elaboration of 

antiviral strategies. For example, viral disease may be controlled by disruption of viral 

cell-to-cell movement.   Previously our lab (Wei et al., 2010) showed that the potyviral 

protein P3N-PIPO is a PD-located protein and directs the CI protein to PD, facilitating 

the deposition of the cone-shaped structures of CI at the PD by interacting with the CI 

protein. Therefore, CI and P3N-PIPO coordinate the formation of conical structures at PD 

for potyviral cell-to-cell spread (Wei et al., 2010). However, it is not clear how P3N-

PIPO directs CI targeting to the PD, if P3N-PIPO is directly involved in viral cell-to-cell 

movement and if P3N-PIPO is also involved in other steps of the viral cycle. This project 

aims to further characterize the functional role of the P3N-PIPO protein of TuMV using a 

pCambiaTunosGFP infectious clone containing the full-length cDNA of TuMV with GFP 

inserted at the junction between the P1 and HC-Pro protein. Our general research 

hypothesis is that like other potyviral proteins, the PIPO protein of TuMV plays  multiple 

roles in viral infection. Therefore, site-directed mutants in PIPO without alteration of 

P3N or P3 amino acid sequences will provide evidence of PIPO role in the virus life 

cycle. The objectives of this project are as follows: 

1. To generate P3N-PIPO mutants 

To explore the functional roles of P3N-PIPO, the recombinant TuMV infectious 

clone tagged by GFP has been used to generate various P3N-PIPO mutants. Since the 
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N-terminal region, i.e., P3N, of P3N-PIPO is also part of the P3 protein; I only 

mutated the C-terminal region, i.e., PIPO, of P3N-PIPO.     

2. To evaluate cell-to-cell movement of TuMV mutants in which P3N-PIPO is mutated. 

Transient expression of PIPO mutants in Nicotiana benthamiana has been used for 

evaluation of cell-to-cell movement. Constructed mutant plasmids were transformed 

in Agrobacterium tumefaciens strain GV310. Plants were agroinfiltrated with 

appropriate agrobacterial cultures and the agroinfiltrated plants were maintained 

under normal growth conditions for 14 days and then examined using confocal 

microscopy. 

3. To evaluate long distance movement of TuMV mutants in which P3N-PIPO is 

mutated 

Newly emerging leaves (new leaves which are located above the level of the 

inoculated leaves and can acquire infection from inoculated leaves after infiltration) 

were examined for GFP localization under UV light after 14 days post inoculation. 

4. To subcellularly co-localize  the P3N-PIPO mutated version with CI  

To determine if PIPO mutants can interact with the CI protein, I coexpressed the CI 

protein and P3N-PIPO mutants with different fluorescent tags, such as cyan 

fluorescence protein (CFP) and yellow fluorescence protein (YFP). The inoculated 

leaves with those plasmids were examined using confocal microscopy. 

5. To conduct a replication assay  

To study if the PIPO protein has any effect in replication, I examined the constructed 

PIPO mutants with respect to replication in protoplasts. PEG-mediated transfection 

was used to deliver mutant virus infectious plasmids into protoplasts and these were 



 16 

studied using confocal microscopy. Total RNA was extracted from the protoplasts, 

followed by real time RT-PCR with specific TuMV CP primers. 

6.   To determine possible interactions of CI and P3N-PIPO 

Constructs used for the expression of the punctate forms of CI in PD were prepared 

based on their predicted conserved domain structure. For this purpose, I divided the 

CI protein into the desired size of fragments and examined those fragments using 

two systems, bimolecular fluorescence complementation assay (BIFC) in planta and 

Y2H screen in yeast. 
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Chapter 2 

2    Material and method 

2.1 Plant material and growth conditions  

Nicotiana benthamiana plants were cultivated in a growth room at 16 hours in the light at 

24 °C and then 8 hours in the dark at 21 °C with 75% relative humidity. Four-to-five-

week-old plants were used for infiltration with Agrobacterium tumefaciens strain 

(GV1301) harboring appropriate plant expression vectors. For protoplast isolation from 

leaf cells, Nicotiana benthamiana plants were kept in a Percival growth chamber (Johns 

Scientific Inc., Canada) with a different photoperiod of 16 hours of darkness at 22 °C and 

8 hour of light at 20 °C (Wu et al., 2009).  

2.2 General molecular biology techniques 

 

General lab and molecular techniques essentially followed those in Molecular Cloning: A 

Laboratory Manual (Sambrook and Russell, 2006) unless otherwise stated. 

2.2.1 Bacterial strain and cultures 

 

In this study Escherichia coli DH5α or DH10B was used for cell transformation and 

Agrobacterium tumefaciens GV3101 was used for plant transformation. The bacteria or 

agrobacteria were cultured at 37 °C in Luria-Bertani (LB) broth [1% tryptone, 1% NaCl, 

0.5% yeast extract] or on LB agar plates (with 1.5% w/v agar). The LB media contained 

50 μg mL-1 of kanamycin which was selective for the desired plasmids in this work.  In 

addition to the kanamycin antibiotic the Agrobacterium culture media also contained 50 

μg mL
-1

 of rifampicin and gentamicin antibiotics. For long-term storage, 600 μL of 
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overnight LB culture containing the appropriate antibiotics, was mixed with 400 μL of 

50% glycerol and kept in the -80 ºC freezer. 

 

2.2.2 Antibiotic stock preparation 

 

 An antibiotic stock concentration of 100 mg/mL was used. For this purpose the powder 

was dissolved in miliiQ water (e.g. 1 g powder in 10 mL H2O), and was then sterilized 

through a 0.22 μm pore size filter. In the case of rifampicin the antibiotic powder was 

dissolved in methanol as a solvent. The aliquots were stored at -20 ºC. It was necessary to 

cool the LB medium before adding antibiotics as the heat could inactive them. In order to 

do this, the autoclaved medium was equilibrated in a water bath set at 55-60 ºC for a 

minimum of 30 min, and then the desired antibiotics was added. 

2.2.3 Preparation of E.coli competent cells 
 

A colony from a freshly streaked E. coli (DH10Β) was used for inocula tion in 5 ml of 

liquid LB medium and this inoculum allowed grown at in 37 °C with shaking at 200 rpm 

overnight. 500 μL of overnight culture was added to 50 mL of fresh liquid LB medium 

and placed at 37 °C in a shaker for 2-3 hours. OD600 was measured on an hourly basis 

until it reached 0.3-0.4 optical density. The cells were harvested by centrifugation at 3000 

rpm for 10 min at 4 °C. The pellet was gently resuspended in 30 mL of pre-chilled 

transformation buffer (0.1 M CaCl2, 1 M MgCl2) and the cells were incubated on ice for 

30 min and then centrifuged at 3000 rpm at 4 °C for 10 min. The supernatant was 

discarded and the pellet was resuspended in 1 mL of pre-chilled resuspension solution 
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(0.1 M CaCl2, 80% glycerol). The suspension was aliquoted in sterile eppendorf tubes. 

The cells aliquots were kept in a -80 °C freezer for long term storage. 

2.2.4 Preparation of Agrobacterium tumefaciens competent cells 

 

A colony from a freshly streaked Agrobacterium tumefaciens GV3101 was used to 

inoculate 100 mL of LB medium with appropriate antibiotics (50 μg mL-1 of gentamicin 

and rifampicin). The flask was incubated at 30 °C with vigorous shaking for overnight. 

The agrobacterial cells were washed three times by spinning at 5000 rpm for 5 min at 4 

°C and resuspended in 50 mL ice cold 10% glycerol. After washing, the agrobacterial 

pellet were resuspend in 1 mL of 10% glycerol. Aliquots of 40 μL of the Agrobacterium 

competent cells were transferred to Eppendorf tubes and placed in a -80 °C freezer for 

long term storage. 

2.2.5 Gel electroprosis and DNA isolation 

  
Plasmid DNA and DNA fragments were separated on 1% agarose gels which were 

prepared with a 1X (TAE) buffer (2 mM EDTA, 40 mM Tris-acetate) at pH 8.0.  

Ethidium bromide (0.5 μg mL
-1

) was added to the gel before solidification. DNA samples 

or PCR reactions were loaded with 1X loading dye and gels were run at 150 V. Gels were 

studied using a UV trans-illuminator. For cloning, the gel containing DNA fragments 

were sliced and the DNA fragments were isolated from the gel using the QIAquick Gel 

Extraction Kit (Qiagen) according to the manufacturer’s manual. 
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2.2.6 Restriction enzyme digestion  

  

Two μg of plasmids were digested with appropriate restriction enzymes (such as SnaBІ 

and KpnІ) in 15μl reaction mixtures with specific enzyme buffers. Reactions were 

incubated at 37 ºC for 1-1.5 hours then the whole mixture was separated on 1% agarose 

gels for 30 min. The desired fragments were isolated using the QIAquick Gel Extraction 

Kit. 

2.2.7 Bacterial transformation 

 

All bacterial transformations were performed by the heat shock method as recommended 

in the Invitrogen (Life Technologies) user guide. The plasmid DNA was gently added to 

50 μL of DH10B competent cells and the reaction was incubated on ice for 30 min. The 

cells were heat shocked at 42 ºC for 45 seconds and transferred to ice for about 2 min. 

250 μL of fresh LB medium was added to the reaction and incubated for 1 hour at 37 ºC, 

then the culture spread on LB agar plates supplemented with appropriate antibiotic and 

incubated at 37 ºC overnight. 

2.2.8 Transformation of Agrobacterium tumefaciens by electroporation 

 

Plasmid DNA (50-200 ng) was gently added to 40 μL Agrobacterium competent cells. 

The mixture was transferred into a pre-chilled electroporation Gene Pulser® cuvettes 

(Bio-Rad) with 2mm separation. The cells were pulsed with Bio-Rad MicroPulserset at 

1.8 kV and recovered immediately in 1 mL of fresh LB medium and allowed to grow in 

28 °C with vigorous shaking for 1-2 hours, and then 20 μL of culture was plated on an 
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LB agar plate supplemented with appropriate antibiotics. The plates were incubated at 28 

°C for 2-3 days. 

2.2.9 DNA sequencing 

 

DNA  Sanger sequencing was done by DNA sequencing facility by using applied 

biosystem AB3100XC at the Southern Crop Protection and Food Research Center, 

Agriculture and Agri-Food Canada, London, Ontario.  

2.3 TuMV PIPO protein-coding region  

 

To functionally characterize P3N-PIPO, the vector pCambiaTunos/GFP infectious clone 

which contains the full-length cDNA of TuMV (Cotton et al., 2009) was used to generate 

various PIPO mutants (Fig. 2.1 B). Since the N-terminal region, i.e., P3N, of P3N-PIPO 

is also part of the P3 protein, I only mutated the C-terminal region, i.e., PIPO, of P3N-

PIPO. Previously Chung et al. (Chung et al., 2008) analyzed 48 potyvirus sequences 

including TuMV strain UK1 (Gene bank accession NC-002509) and predicted that 

TuMV PIPO is 60 amino acid in length and is encoded by the nucleotide sequence 3079-

3258. Based on this information, the codon AAA (3079-3081) encoding Lysine is the 

first amino acid of the PIPO.  
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Figure 2.1 Schematic representation of the TuMV genome. The viral RNA is 

symbolized by the horizontal line, linked to a single VPg at 5ʹ end and to a poly (A) tail 

at the 3ʹ end. Two polyproteins are processed by three different proteinases into 11 

mature proteins. Of them, P3N-PIPO, resulting from the translation of the 5ʹ sequence 

of TuMV P3 cistron is followed by a small open reading frame protein embedded in the 

cistron (A). Different PIPO mutants were created in cDNA, an infectious clone of TuMV 

(pCambiaTunos/GFP) which is GFP fused between P1 and HC-Pro. Red letters within 

the PIPO sequences indicates the location of the introduced mutation (B). 
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2.4 Plasmid construction for PIPO mutants   

 

All PIPO mutant constructs were obtained by overlapping PCR using Phusion™ High-

Fidelity DNA Polymerase® (Fermentas). Mutations were introduced into the full-length 

cDNA infectious clone of TuMV (pCambiaTunosGFP) strain UK1 (Gene bank accession 

NC-002509) (Cotton et al., 2009). Mutagenic primers for specific positions are shown in 

Table 2.1. All of the primers in this study were designed using Lasergene 10 software. In 

the first step, two pairs of primers were used to generate DNA fragments with 

overlapping ends containing the desired mutation. These two DNA fragments were then 

mixed and annealed to get hybrid duplexes. In the second step, the resulting hybrids were 

then extended and amplified to yield recombined PCR products that could be directly 

cloned into an appropriate plasmid vector following restricted digestion (Tomlinson, 

1987) (Fig. 2.1). The amplified products were purified from agarose gels by QIAquick 

Gel Extraction Kit (Qiagen). The PCR product was ligated into the pCR™-Blunt vector 

(Invitrogen) and then transformed by heat shock to E.Coli DH5α strain according to the 

manufacturer’s manual (Invitrogen). Single colonies were used to inoculate 3 mL of LB 

medium with appropriate antibiotics and grown overnight at 37 ºC. Plasmid extraction 

was performed for each culture by QIAprep Spin Miniprep Kit (Qiagen). Digestion was 

performed with appropriate restriction enzymes SnaBІ and KpnІ (NEB). The desired 

fragment was inserted back into the corresponding restriction sites of the parental 

infectious clone (pCambiaTunosGFP). The modified plasmid was confirmed by DNA 

sequencing (Shukla et al., 1994). 
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Table   2.1 Mutagenic Primers for PIPO mutants and plasmid construction. 

Gene ID Primer Sequence (5′ to 3′) Target gene 

P3-FW GGGGTACCAAATGGGTCACGGAAA P3 

P3-REV CGC CGGTACGTAATCTAT TACCTATA P3 

PIPO(R9St)-FW ACAAATCTTGGATGAAGCATGGAACGA PIPO 

PIPO(R9St)-REV TCGTTCCATGCTTCATCCAAGATTTGT PIPO 

PIPO(K15E)-FW ATGGAACGAGTTGAGTTGGTCGGAGCG PIPO 

PIPO(K15E)-REV CGCTCCGACCAACTCAACTCGTTCCAT PIPO 

PIPO(K28E)-FW ATACTACTCGTCGAAGCAAGCAATCTT PIPO 

PIPO(K28E)-REV AAGATTGCTTGCTTCGACGAGTAGTAT PIPO 

PIPO(K41E)-FW TTTGCCAATGAAGAGCGAAGCCGATTT PIPO 

PIPO(K41E)-REV AAATCGGCTTCGCTCTTCATTGGCAAA PIPO 
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Figure 2.2 Schematic representation of overlapping PCR. Overlapping PCR was used 

to create specific nucleotide mutations or generate chimeric gene products. The AB 

segment is amplified using primers a and b, and the CD segment is produced with 

primers c and d. The PCR products AB and CD are the two overlapping fragments of 

AD. AD can be obtained using AB and CD as template and primers a and d. 
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2.5 Transient expression in Nicotiana benthamiana 

 

Plant expression vectors were transformed by electroporation into Agrobacterium 

tumefaciens strain GV3101. For agroinfiltration, agrobacterial cultures were grown 

overnight in LB medium containing appropriate antibiotics. Cells were collected by 

centrifugation at 4500 rpm for 3 min at room temperature (RT), and the pellet 

resuspended in an infiltration buffer (500 µM MgCl 2 and MES buffer containing 200 

mM acetosyringone) and 2-3 hours incubation at room temperature performed. For the 

cell-to-cell movement assay the culture was diluted to an optical density of 0.01–0.001 at 

600 nm (OD600). Fully expanded leaves of four-week-old Nicotiana benthamiana plants 

were agroinfiltrated with diluted agrobacterial cultures and the agroinfiltrated plants were 

maintained under normal growth conditions in a growth room for 3 weeks.  

2.6 Cell-to-cell movement assay 

 

To determine whether P3N-PIPO is a necessary factor for cell-to-cell movement of 

TuMV, transient expression of the PIPO mutant in Nicotinia benthamiana leaf cells was 

used and inoculated leaves were observed under a Leica TCS SP2 inverted confocal 

microscope with an Argon ion laser in various time intervals. The intervals were 3, 6, and 

9 days post inoculation (dpi). Plants tissue inoculated with various PIPO mutants were 

imaged at room temperature. Distal leaves were examined for systemic infection by GFP 

localization under UV light and followed by RT-PCR analysis for viral detection after 14 

days postinoculation. 5-8 replicates were considered for this assay (Wei et al., 2010). 
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2.7 Confocal microscopy 

 

For confocal microscopy, YFP was excited at 514 nm and captured at 525-650 nm. CFP 

was excited at 458 nm and captured at 465–525 nm. GFP was excited at 488 nm and the 

emitted light was captured at 500 to 555 nm. Images were captured digitally and handled 

using the Leica LCS software. 

2.8 Protoplast isolation and transfection assay 
 

Mesophyll protoplasts were prepared from using leaves from four-week-old Nicotiana 

benthamiana by the Tape-Arabidopsis Sandwich method (Wu et al., 2009). The leaves 

were incubated in 1–1.5% cellulase Onozuka R-10 and 0.2–0.4% macerozyme R-10 in 

0.4 M D-sorbitol, 20 mM KCl and 20 mM MES, pH 5.7 for 2 hours at room temperature. 

Protoplasts were washed in W5 buffer (154 mM NaCl, 125 mM CaCl2, 5 mM KCl and 2 

mM MES, pH 5.7) and resuspended in MMg (0.4 M Mannitol, 15 mM MgCl2, 4 mM 

MES, PH at 5.7) buffer at a concentration of 105 cells/mL. Approximately 5 × 10
4
 

protoplasts in 0.2 mL of MMg solution were mixed with approximately 30 (20-40) μg of 

plasmid DNA at room temperature. An equal volume of a freshly-prepared solution of 

40% (w/v) PEG with 0.1 M CaCl2 and 0.2 M mannitol was added, and the mixture was 

incubated at room temperature for 5 min. After incubation, 3 mL of W5 buffer was added 

slowly, the solution was mixed, and protoplasts were pelleted by centrifugation at 100 × 

g for 1 min. This protoplast W5 washing step was repeated twice. The protoplasts were 

resuspended gently in 1 mL of W5 and incubated at room temperature in the light. 
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Protoplasts were imaged at room temperature after 48 hours post-transfection, using the 

confocal microscope described above (Vijayapalani et al., 2012). 

2.9 RNA extraction and Quantitative reverse transcription –PCR 

 

To verify the level of replication of the introduced mutations in vivo, total RNA was 

extracted from virus-infected TuMV PIPO mutant’s protoplasts using the RNeasy Plant 

Minikit (Qiagen) and treated with RNase-free DNaseI. One microgram of RNA 

pretreated with DNaseI was used as a template for first strand cDNA synthesis. RT 

reactions were performed with the SuperScriptIII First-Strand Synthesis System for RT-

PCR kit (Invitrogen) according to the manufacturer’s instructions. QRT-PCR was 

performed using SsoFast EvaGreen Supermix (Bio-Rad) in the CFX96 real-time PCR 

system (Bio-Rad) following the manufacturer’s instructions. Relative amounts of all 

mRNAs were calculated from threshold cycle values. The Nicotiana benthamiana actin 

reference gene was used for normalization. Primers CP-F and CP-R were used for TuMV 

detection (Wei et al., 2013). Data were statistically evaluated by the unpaired Student’s t-

test.  

2.10 P3N-PIPO artificial frame shift for subcellular localization 

 

Previous high-resolution ultra-structural studies of TuMV revealed that CI protein 

colocalizes with P3N-PIPO protein and formed conical structures which anchored to  and 

extended through PD (Wei et al., 2010). To investigate whether P3N-PIPO mutants retain 

their ability for targeting TuMV CI in PD, agrobacterium-mediated transient 

coexpression was used for subcellular localization studies in this project. A DNA 
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fragment, which encodes a PIPO-YFP fusion in-frame with the N-terminus of P3 to 

generate P3N-PIPO-YFP, was constructed. In order to do that, two nucleotides in the 

G2A6 motif in the TuMV infectious clone was deleted by mutagenic overlap PCR to 

create an artificial frame shift (Fig. 2.3). 

 

 

 

 

Figure 2.3 Schematic representation of TuMV P3N-PIPO reading frame. The TuMV 

P3N-PIPO fragment was amplified by artificial frame shift with the introduction of two 

nucleotides deletion in G2A6 motif of PIPO protein by overlap PCR. The modified 

fragment was introduced to appropriate destination vectors, which was used for 

downstream experiments. 
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2.11 Gateway cloning 

  

Gateway technology (Invitrogen) was used to generate all expression vectors for 

subcellular localization, bimolecular complementation assay (BIFC) and yeast two hybrid 

screening (Y2H). Gene sequences were amplified by PCR using Phusion® DNA 

polymerase (NEB) and primers containing the recombinant sites (Table 2.1). The 

resulting DNA fragments were separated on 1% agarose gels and then purified using the 

QIAquick Gel Extraction Kit. The purified fragment was transferred by recombination 

into the entry vector pDONR221 (Invitrogen) using BP Clonase® enzyme mixtures 

(Invitrogen) that were set up and incubated overnight at 25 ºC  following the supplier’s 

recommendations. Then pDONOR vectors were verified by sequencing (Wei and Wang, 

2008). For BIFC and Y2H, the afore-mentioned pDONR221 constructs were ligated with 

a (35S-YN) gateway or (35S-YC) gateway vector and also a modified (pGADT7) 

gateway or (pGBKT7) gateway vector respectively (Lu et al., 2010; Xiong and Wang, 

2013). For subcellular localization in Nicotiana benthamiana plant cells P3N-PIPO 

mutants and CI modified Gateway fragment ligated with (pEarly101) or (pEarly102) 

vector to produce P3N-PIPO mutants which were tagged with yellow fluorescence 

protein (P3N-PIPO-YFP) and CI protein with cyan fluorescent protein (CI-CFP). 
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Table  2.2 List of primers used for gateway cloning. Gateway sequences were 

underlined. 

Gene ID Primer Sequence (5′ to  3′) Target gene 

dP3N-PIPO-F 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGGAACAGAAT 

GGGAGGACAC 
P3N-PIPO 

dP3N-PIPO-R 
GGGGACCACTTTGTACAAGAAAGCTGGGTCCTCCGTTCGTAAG 

ATGACATG 
P3N-PIPO 

dPIPO-F 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAAAAGTTAT 

CTACAAATCTTG 
PIPO 

dCI-F 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGACTCTCAATG 

ATATAGAGG 
CI 

dCI-R 
GGGGACCACTTTGTACAAGAAAGCTGGGTCTTGATGGTGAACTG 

CCTC 
CI 

PIPO Frame 

shift-F 
TTGAAAAAGTTATCTACAAATCTTGGACGA PIPO 

PIPO Frame 

shift-R 
TTTCAAAATGGAGATGCTATGATCCCTC PIPO 
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2.12    Yeast related methods 

2.12.1 Yeast strain and culture 

 

The yeast strain used in this work was the AH109 strain, a derivative of strain PJ69-2A 

that includes the ADE2 and HIS3 markers (James et al., 1996). Yeast cells were grown at 

30 °C in either YPD (1% bacto-yeast extract, 2% bacto-peptone and 2% glucose) or in a 

synthetic dextrose (SD) medium (0.67% bacto-yeast nitrogen base without amino acids, 

2% glucose) supplemented with necessary nutrients. To make SD or YPD plates, 2% agar 

was added to the liquid medium. The SD or YPD media were autoclaved, and stored in 

4°C. Yeast cells were stored on SD plates sealed with Parafilm® at 4 °C for up to several 

months. For long-term storage, yeast cells were grown in an appropriate liquid medium at 

30 °C overnight, then 0.6 mL of the culture was added to 0.4 mL of 50% sterile glycerol 

and stored at -80°C. 

2.12.2 Yeast two hybrid screening 

 

Yeast strain AH109 was grown at 28 °C in minimal synthetic defined (SD) base liquid 

medium [0.17% yeast nitrogen base without amino acids, 2% dextrose] mixed with 

appropriate drop out (DO) supplement powder. For SD solid medium, SD was 

supplemented with 1.5% w/v agar. Y2H assays were performed following the Clontech® 

yeast protocol handbook. In brief, yeast cells were made competent with the LiAC 

method (Xiong and Wang, 2013) and transformed cells were plated onto a selective 

medium lacking tryptophan and leucine (SD-Trp-Leu) and a selective medium lacking 

tryptophan, leucine, histidine, and adenine (SD-Trp-Leu-His-Ade) respectively. 
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2.13Statistical analysis 

 

All statistical analyses were performed using Microsoft Excel spreadsheet software. 

Significant differences between the amount of the genomic RNA of mutants relative to 

that of the wild type virus in the qRT-PCR assay were analyzed using unpaired Student’s 

t-test. 
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Chapter 3 

 3    Results 

3.1  Knock-out of the P3N-PIPO expression 

 

To test if P3N-PIPO is essential for TuMV cell-to-cell movement, a P3N-PIPO knock-out 

mutant was created by the introduction of a single stop codon into the PIPO frame 

without affecting the amino acid sequence of other viral proteins including P3 (Fig. 

2.1B). The wild type infectious clone pCambiaTunos/GFP was used as a positive control 

and the viral replication defective mutant  pCambiaTunos/GFP-NIb-GDD (Fellers et al., 

1998) was created as a negative control. In the replication-defective mutant, the core 

motif GDD of the viral RNA-dependent RNA polymerase was mutated to abolish viral 

replication. The wild type virus, PIPO knock-out and the GDD mutants were 

agroinfiltrated into Nicotinia benthamiana leaf cells. It was found that the PIPO knock-

out mutant (GFP-PIPO (R9Stop)) was contained in a single cell only and lost the ability 

to move to the neighboring cells, even after 9 days post agroinfiltration (dpa) (Fig. 3.1B). 

In contrast, the leaves agroinfiltrated by the wild type clone (pCambiaTunos/GFP) 

showed a group of cells of virus infection at 3 dpa that gradually expanded to a large area 

of virus infection (Fig. 3.1A).  As expected, the replication-defective mutant was only 

found in isolated single cells of Nicotinia benthamiana leaves which were agroinfiltrated 

by the GDD mutant (Fig. 3.1C). The GFP fluorescence derived from the replication-

defective GDD mutant came from translation of the non-replicative transcript of the 

TuMV cDNA (tagged by GFP) under the control of 35S promoter. To monitor if these 

viruses can establish systemic infection, newly emerging leaves (distal - not infiltrated) 

were observed under ultraviolet light (UV) for GFP localization after 14 days post 
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agroinfiltration. Only the wild type clone produced strong green fluorescence signal. This 

did not occur in other mutants (Fig. 3.2B). Therefore, both PIPO knock-out and GDD 

mutants cannot move systemically. Consistently, no viral symptoms were evident in 

plants inoculated with these two mutants 14 dpa (Fig. 3.2B). RT-PCR was conducted to 

detect the virus in the newly emerging leaves of these plants. No virus was detectable in 

the new leaves of plants inoculated with these two mutants 14 dpa (Fig. 3.2A). 
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C) GFP/NIb-GDD-TuMV 

Figure 3.1 Cell-to-cell movement of TuMV requires P3N-PIPO. (A) 

pCambiaTunos/GFP-TuMV, (B) GFP-PIPO(R9Stop), and (C) GFP/NIb-GDD 

(negative control) were introduced into Nicotiana benthamiana leaves cells via 

agroinfiltration, respectively. Infiltrated leaves were examined by confocal 

microscopy 3, 6 and 9 days post infiltration. Scale bar 100 µm.  
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(A) 

 

 

 

 

 

(B) 

 

 

 

 

 

 

Figure 3.2 Detection of TuMV accumulation in upper newly emerging leaves of 

Nicotinana benthamiana plants inoculated with PIPO mutants. A) Specific TuMV 

primers were used to amplify a P3N-PIPO cDNA fragment derived from viral RNA 

isolated from upper newly emerging leaves 14 days post agroinoculation. 

pCambiaTunos/GFP-TuMV (Lane 1) and TuMV PIPO substitution mutants respectively 

GFP-PIPO(K15E), GFP-PIPO(K28E), GFP-PIPO(k41E), PIPOknock-out (2, 3, 4 and 5) 

and mock (Lane 6). B) Nicotinia benthamiana leaves were infected with 

pCambiaTunos/GFP-TuMV and TuMV PIPO mutants 14 days post inoculation under 

normal and UV light. 

        1           2              3            4            5              6 

                Mock                       PIPO(K15E)        PIPO(K28E)       PIPO(K41E)         PIPOknock-out           WT 
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3.2 Synonymous mutations in P3N-PIPO 

 

The substitution mutation in PIPO also was performed by site-directed mutagenesis.  

These mutations were synonymous with respect to the polyprotein frame. They resulted 

in replacement of a negatively charged amino acid with positively charged residue.  A 

total of three mutants were derived through these substitutions: PIPO(K15E), 

PIPO(K28E), and PIPO(K41E) (Fig. 3.3). Transient expression of PIPO mutants in 

Nicotinia benthamiana leaf cells was subsequently performed and agroinfiltrated leaves 

cells were observed by confocal microscopy in different time intervals (3, 6, and 9 days 

post agroinfiltration) (Fig. 3.3). Moreover, RT-PCR results of newly emerging leaves 

(not inoculated ones) and GFP localization assay under UV light showed the same GFP 

fluorescence pattern as the knock-out mutant and no indication of viral symptoms was 

determined 14 day post agroinfiltration (Fig. 3.2 A and B). 
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Figure  3.3 TuMV P3N-PIPO substitution mutants impaired intercellular 

movement. (A) pCambiaTunos/GFP-TuMV,  (B) GFP-PIPO(K15E), (C) GFP-

PIPO(K28E), (D) GFP-PIPO(K41E), and (E) GFP-NIb-GDD-TuMV(negative control) 

were introduced into Nicotiana benthamiana  via agroinfiltration, respectively. Images 

were taken 9 days post inoculation. Scale bar 100 µm. 

A) TuMV-GFP (Positive Ctrl)  

B) GFP-PIPO(K15E) 

C) GFP-PIPO(K28E) 

D) GFP-PIPO(K41E)  

A) 

B) 

                                                    GFP                         Bright Field                      Merged 

E) (GFP/NIb-GDD TuMV ) 

 

 

E) (GFP/NIb-GDD TuMV) 
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3.3 Protoplast transfection and quantitative RT-PCR assay 

 

Since three PIPO substitutions mutants [PIPO(K15E), PIPO(K28E), PIPO(K41E)] and  

PIPO knock-out mutant lost ability to move between cells, it is necessary to determine if 

these mutations affect viral replication (Fig. 3.4). The wild type virus and all the five 

mutants including three substitution mutants, PIPO knock-out mutant and the replication-

defective GDD mutant were subjected to the replication assay in protoplasts. The strong 

green fluorescence signal, similar to the wild type, was observed of transfected protoplast 

by PIPO mutants. Weak GFP signals were also evident for the GDD mutant due to 

transcription of the viral cDNA directed by the constitutive 35S promoter. Quantitative 

RT-PCR was applied to compare the TuMV transcript levels of different PIPO mutants in 

protoplast. For this purpose, total RNA was extracted from transfected protoplast 22 

hours post transfection and followed by real time PCR with specific TuMV primers. The 

result showed that knock-out or substitution mutations of P3N-PIPO did not significantly 

affect TuMV viral replication (Fig. 3.5). 
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Figure 3.4 Replicaiton assay of TuMV P3NPIPO mutants in Nicotiana benthamiana 

mesophyll protoplasts. (A) pCambiaTunos/GFP-TuMV, (B) PIPO knock-out, (C) GFP-

PIPO(K15E), (D) GFP-PIPO(K28E), (E) GFP-PIPO(K41E) were transfetcted into the 

isolated protoplasts, respectively. Images were taken 48 hours after transfection. Scale 

bar 10 µm. 

A)TuMV-GFP 

B)GFP-PIPOknock-out 

C)GFP-PIPO(K15E) 

D)GFP-PIPO(K28E) 

                    GFP                                  Bright Field                          Merged 

E)GFP-PIPO(K41E)  
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Figure 3.5 RT-PCR quantification of PIPO mutants RNA in protoplast. RNA was 

extracted from transfected protoplast after 22 hours. The TuMV RNA levels were 

normalized to the amount of actin transcript in each sample and then further to that of 

wild type virus (pCambiaTunos/GFP-TuMV (WT). The values SEs were calculated from 

three biological replicates. Statistical significance was analyzed by the unpaired Students 

t-test and (P<0.05)*. 
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3.4 P3N-PIPO mutants lost their ability to target the TuMV CI protein 

 

To examine why P3N-PIPO mutations affect cell-to-cell movement, I determined the 

subcellular localization of TuMV P3N-PIPO and further tested if TuMV P3N-PIPO 

mutants still have ability to direct the targeting of CI to PD. Consistent with the 

distribution of TEV P3N-PIPO, TuMV P3N-PIPO-YFP was also located at PD in 

Nicotiana benthamiana epidermal cells (Fig. 3.6 B). When expressed alone, the TuMV 

CI protein formed aggregates in the cytoplasm (Fig. 3.6 A). However, when TuMV CI 

and P3N-PIPO were coexpressed, both of them targeted the PD (Fig. 3.7A). This is in 

agreement with the previous finding that TEV P3N-PIPO modulates the PD-localization 

of TEV CI (Wei et al. 2010). However, coexpression of the TuMV PIPO knock-out 

mutant (which is P3N, N-terminal portion of P3) and TuMV CI failed to direct CI to PD 

and both proteins were present in the cytoplasm as aggregates (Fig. 3.7 B). These data 

suggest that PIPO is essential for PD-localization of P3N-PIPO and for directing CI to 

PD. Coexpression of TuMV CI with P3N-PIPO substitution mutants revealed that these 

P3N-PIPO mutants lost the ability to target the CI protein to PD (Fig. 3.8 A, B and C). To 

examine if these P3N-PIPO mutants remain to be PD-located proteins like P3N-PIPO, 

they were coexpressed with the PD marker PDLP1 (PD-located protein 1). The results 

showed that the P3N-PIPO mutants still maintained their ability for PD localization (Fig. 

3.9). 
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         CFP                                Bright field                         Merged 

         YFP                                Bright field                         Merged 

A) CI-CFP 

B) P3N-PIPO-YFP 

 

Figure 3.6 Subcellular localization of TuMV CI and P3N-PIPO proteins in 

Nicotiana benthamiana leaf cells. Transient expression of CI-CFP (A) and P3N-PIPO-

YFP (B) was examined by confocal microscopy. Images were taken 48 hrs post 

agroinfiltration. Scale bar 10 µm. 



 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) P3N-PIPO-YFP+CI-CFP 

B) PIPOknock-out-YFP+ CI-CFP 

 

               CFP                          YFP                         Merged 

Figure 3.7 Subcellular localization of TuMV CI in Nicotiana benthamiana leaf 

cells. Transient coexpression of CI-CFP with P3N-PIPO-YFP (wild type) (A) or with 

the PIPO knock-out mutant (B) was examined by confocal microscopy. Images were 

taken 48 hrs post agroinfiltration. The arrows indicated the aggregates of both proteins 

in cytoplasm. Scale bar 10 µm. 
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A)PIPO(K15E)-YFP+CI- CFP 

 

 

B)PIPO(K28E)-YFP+CI-CFP 

 

C)PIPO(K41E)-YFP+CI-CFP 

 

 

Figure 3.8 Subcellular localization substitutions of PIPO mutants in 

Nicotiana benthamiana leaf cells. Transient coexpression of CI-CFP with the 

PIPO(k15E)-YFP (A), PIPO(K28E)-YFP (B), PIPO(K41E)-YFP (C) was 

observed under a confocal microscope. Images were taken 48 hrs post 

agroinfiltration. Scale bar 10 µm. 

 



 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.9 P3N-PIPO substitution mutants keep their ability for PD localization in 

Nicotiana benthamiana leaf cells. Transient coexpression of PDLP-CFP (PD marker) 

with P3NPIPO-YFP wild type (A), PIPO(K15E)-YFP (B), PIPO(K28E)-YFP (C), and 

PIPO(K41E)-YFP (D) was monitored by confocal microscopy. Images were taken 48 hrs 

post agroinfiltration.  The arrows indicated the colocalization of two proteins. Scale bar 

10 µm. 

A) PIPO-YFP+PDLP1-CFP 

 

                            CFP                                   YFP                                Merged 

B) PIPO(K15E)-YFP+ PDLP1-CFP 

 

 

C) PIPO(K28E)-YFP+ PDLP1-CFP 

 

 

D) PIPO(K41E)-YFP+ PDLP1-CFP 
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3.5 The P3N-PIPO mutants lost the ability for interaction with TuMV CI in PD   

To assess the possibility of interactions of P3N-PIPO mutants and CI protein in planta, 

then bimolecular fluorescence complementation (BIFC) assay was carried out and leaf 

epidermal cells were observed under the confocal microscope after 48 hours post 

agroinfiltration. P3N-PIPO mutants and CI protein were translationally fused at the N-

(YN) and the C-terminal half (YC) of YFP, respectively or in the reciprocal combination 

(Appendix. A). P3NPIPO-YC mutants and CI-YN were transiently coexpressed in 

Nicotinia benthamiana plants by agroinfiltration. A strong yellow fluorescence was 

observed in PD of cells coexpressing P3N-PIPO-YC and CI-YN (Fig. 3.10 B). However, 

yellow fluorescence signal was not observed in infiltrated Nicotinia benthamiana leaf 

cells coexpressing P3N-PIPO-YC mutants with CI-YN (Fig. 3.10). The P3N-PIPO 

mutants which had defective cell-to-cell movement were examined for interactions with 

TuMV CI protein in yeast two-hybrid systems (Y2H). Co-transformants were selected 

and plated on selective media to detect activation of the reporter genes ADE2 and HIS3. 

No positive reaction was observed either between P3N-PIPO (wild type one) and CI 

protein or between P3N-PIPO mutants and CI on selective media (Fig. 3.11) or in the 

reciprocal combination (Appendix. B).  
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E) PIPO(K28E)-YC+ CI-YN 

 

 

F)  PIPO(K41E)-YC + CI-YN 

 

 

 

G) P3N-PIPO-YC+YN only  

(Negative Ctrl) 

 

 
Figure  3.10 TuMV PIPO mutants lose their ability for interaction with CI 

protein in planta. Bimolecular fluorescence complementation (BIFC) of P3N-

PIPO knock-out, substitution mutants and TuMV CI protein in Nicotiana 

benthamiana plants.  Extended leaves of three-week-old seedlings were 

coagroinfiltrated with TuMV CI-YN and CI-YC (positive control) (A),  P3N-PIPO-

YC mutants and CI-YN (C through F), and P3N-PIPO-YC and YN only (negative 

control). Yellow fluorescence signals were monitored two days after 

agroinfiltration, using a confocal microscope. Scale bar 10 µm. 
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Figure 3.11 P3N-PIPO or P3N-PIPO mutants do not interact with TuMV CI protein 

in the yeast two-hybrid assay. Yeast two-hybrid assay of protein-protein interaction 

between P3N-PIPO and CI, or between P3N-PIPO mutants PIPO(K15E), PIPO(K28E), 

PIPO(K41E) and TuMV CI protein. Ten-fold serial dilutions of cultures of yeast co-

transformants were grown on the selective medium.  
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3.6 P3N-PIPO and CI interactions in plant cells co-localized with CI protein 

and formed a thread like structure 

The mixture of agarobacterial culture composed of BIFC complex (P3N-PIPO-YC, CI-

YN) and CI-CFP plasmids coagroinfiltrated in 2:1 ratio manner in Nicotiana 

benthamiana leaf cells. The yellow fluorescent signals from the P3N-PIPO and CI 

interactions (the BIFC complex) colocalized with the CI-CFP fusion protein after 48 

hours post agroinfiltration (Fig. 3.12A). Under higher magnification, it is evident that the 

cyan fluorescence of CI-CFP fusion protein extended inwards from the PD-located CI-

P3N-PIPO interaction site and also penetrated though PD to reach the neighboring cell 

(Fig. 3.12 ).  The data suggested that the P3N-PIPO protein anchors the CI protein at PD 

via its interaction with CI and the further extension of the CI structure may be through the 

CI-CI self-interaction. 
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P3N-PIPO-YC+CI-YN  

Figure  3.12 Colocalization of BIFC complex (P3N-PIPO-YC :: CI-YN) and TuMV CI-

CFP protein in planta. Infiltrated Nicotiana benthamiana leaves cells were observed under 

a confocal microscope. Images in top panels were taken 48 hrs post agroinfiltration and 

images in low panels 72 hrs post agroinfiltration. The arrow points to the CI structure 

extended inwards from PD. Scale bar 10 µm. 
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3.7 The N-terminal portion of TuMV CI protein is responsible for P3N-PIPO 

interaction 

To test which fragment(s) of CI are responsible for interactions with P3N-PIPO, 

expression vectors for the transient expression of the N- and C-terminal fragments of CI 

were constructed based on their predicted conserved domain structure (Fig. 3.13). BIFC 

analysis in Nicothinia benthaminia leaves cells and Y2H assay in yeast revealed that the 

positive interaction of the N-terminal half of the CI protein (1-334 aa) containing the 

most conserved motifs for helicase activity with TuMV P3N-PIPO (Fig. 3. 15and 3.16). 

No positive interaction with PN3-PIPO was detected for the C-terminal region of CI 

(335-644aa)  (Fig. 3.15 and 3.16). The data indicated that the N-terminal region of TuMV 

CI protein is responsible for the P3N-PIPO interaction. To further map the region 

responsible for the interaction with P3N-PIPO, the N-terminal half of CI protein (1-334 

aa) was split into two fragments CIF3 (1-213aa) and CIF4 (214-334aa) (Fig. 3.16). The 

BIFC results were positive for both the N-terminal portions (CIF3, CIF4) with P3N-PIPO 

in planta. However, the distribution patterns of their interacting complexes were different 

(Fig. 3.17). CIF3 interacted with P3N-PIPO took place in PD, whereas the interacting 

complex of CIF4 and P3N-PIPOs was found apparently in the cytoplasm and nucleus 

(Fig. 3.17 A and B). Interestingly, Y2H assay identified only the CIF3 and P3N-PIPO 

interaction but not for the CIF4 and P3N-PIPO interaction (Fig. 3.18). 
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Figure 3.13 Multi-sequence alignments of the CI proteins of  potyviruses TuMV, 

TEV, PPV, PVA and SMV. The alignment was done using the CLUSTAL W program: 

TuMV (GenBank accession no. NC002509), PPV (Plum pox virus; GenBank accession 

no. P13529), PVA (Potato A virus; GenBank accession no. Q85197), PVY (Potato Y 

virus; GenBank accession no. S70722), SMV (Soybean mosaic virus; GenBank accession 

no. Q90069), and TEV (Tobacco etch virus; GenBank accession no. P04517). Ordinal 

numbers indicated conserved motifs in CI proteins. 
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Figure 3.14 Schematic representation of full length of TuMV CI protein. CIF1, CIF2, 

CIF3, CIF4 represent desired fragments, which were studied independently in terms of 

interaction with TuMV P3N-PIPO.  
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  B) P3N-PIPO-YN + CIF1-YC 

 C) P3N-PIPO-YN+CIF2-YC 

 

 D) CIF1-YC+ YN (Only) 

(Negative Ctrl) 

 

  A) Positive Ctrl 

Figure  3.15 The N-terminal region of  TuMV CI interacts with P3NPIPO in 

planta. BIFC interaction assay for P3N-PIPO and CIF1 (1-334 a.a ), CIF2 (335-644 

a.a). Nicotiana benthamiana leaves were observed under a confocal microscope after 

two days post agroinfiltration. Scale bar 10 µm. 
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Figure  3.16 The N-terminal region of  TuMV CI interacts with P3N-PIPO in 

the yeast two-hybrid assay. Ten-fold serial dilutions of cultures of yeast co-

transformants were grown on the selective medium. 

Negative  

Controls 
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 B)CIF3-YC+P3N-PIPO-YN 

 

 

C)CIF4-YC+P3N-PIPO-YN 

 

 

 D)CIF3-YC+YN Only 

(Negative control) 

 

 

    YFP                          Bright Field                   Merged 
 

A)Positive Ctrl 

Figure 3.17 The N-terminal region of  TuMV CI showed interactions with P3N-

PIPO. Infiltrated Nicotiana benthamiana leaves were observed through a confocal 

microscope after two days post agroinfiltration. Scale bar 10 µm. 
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 Controls 

Figure 3.18 The CIF3 fragment of TuMV CI interacts with P3N-PIPO in 

the yeast two-hybrid assay. Ten-fold serial dilutions of cultures of yeast co-

transformants were grown on the selective medium. 
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3.8 The N-terminal portion of TuMV CI protein is necessary for self-assembly 

 

It is well known that CI interacts with CI (Sorel et al., 2014). To test what region(s) are 

responsible for CI self-interactions, the N- and C-terminal region regions (CIF1 and 

CIF2) of CI protein (1-334 aa) of TuMV  BIFC assay in planta (Fig. 3.19) and Y2H 

assay in yeast (Fig. 3.20). The N-terminal region showed strong self-interactions in both 

assays. However, no positive self-interaction was found for the C-terminal region of CI 

protein either in planta or in yeast (Fig. 3.19 and 3.20). 
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    YFP                          Bright Field                   Merged 

Figure 3.19 The N-terminal region of  TuMV CI is responsible for the self-

interaction in planta. BIFC self-interaction assay for positive control (A) N-terminal 

region (B), C-terminal region of  TuMV CI (C) and negative control (D). Images were 

taken two days post inoculation. Scale bar 10 µm. 
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Figure 3.20 The N-terminal region of  TuMV CI shows self-interaction 

in the yeast two-hybrid assay. CIF1 (1-334 aa), and CIF2 (335-644 aa) 

were examined individually for self-interaction. Ten-fold serial dilutions 

of cultures of yeast co-transformants were grown on the selective medium. 
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Chapter 4 

 4   Discussion 

 

4.1 The potyviral P3N-PIPO protein is essential for intercellular movement 

 

The cell-to-cell movement of potyviruses is composed of several ordinal steps  including 

the elevated PD size exclusion limit, formation of the movement complex, viral 

intracellular transportation to and subsequent passage through the PD, and entry into the 

neighboring cell (Nelson and Citovsky, 2005; Benitez-Alfonso et al., 2010). This study 

was conducted to elucidate the functional roles of P3N-PIPO. My data showed that the 

introduction of a stop codon (TGA) to knock-out out the expression of the PIPO protein 

in TuMV impeded cell-to-cell movement and resulted in plants as healthy as un-

inoculated ones and the negative control (Fig. 3.2 A, B and C). This finding is consistent 

with the results of several publications. Chung et al. (2008) discovered PIPO in 

potyviruses and reported that the introduction of stop codons in various places of PIPO is 

lethal for the TuMV life cycle (Chung et al., 2008). In an earlier study, Choi et al. (2005) 

reported wheat streak mosaic virus (WSMV) mutants containing the synonymous 

mutations in the C-terminal region of P3 lost the ability to infect plants systemically  

(Choi et al., 2005). In this study, I also provided evidence that the PIPO knock-out 

mutant that lost the ability for local movement remained competent for replication in 

Nicotiana benthamiana protoplast cells. Moreover, no systemic infection was detected in 

the upper newly emerging leaves of Nicotiana benthamiana seedlings inoculated by the 

PIPO knock-out mutant (Fig. 3.6). This result is consistent with the findings reported by 

Wen et al. (2010). They reported that SMV PIPO knock-out mutants, irrespective of 
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harboring one or multiple premature stop codons, were replication competent but 

restricted to small clusters of cells within the inoculated leaves (Wen et al., 2010).  More 

recently, Geng et al. (2014) demonstrated that Tobacco vein banding mosaic virus 

(TVBMV) mutants expressing truncated PIPOs failed to move between cells and showed 

compromised systemic infection in the host plants (Geng et al., 2014). In addition to the 

PIPO knock-out mutant, I also generated several TuMV PIPO substitution mutants in 

which a positively charged residue (Lysine) at different positions was substituted with a 

negatively charged amino acid (Glutamic acid).  These mutations were synonymous with 

respect to P3. Interestingly, like the PIPO knock-out mutant, these mutants lost the ability 

of cell-to-cell movement but viral replication was not affected (Fig. 3.5 and 3.7). It is 

possible that these substitutions change the structure of PIPO, leading to the loss of 

function. Similar substitution mutations in PIPO of SMV also compromised cell-to-cell 

movement of SMV without affecting SMV replication (Wen and Hajimorad, 2010). 

These data strongly support that the potyviral P3N-PIPO protein likely is a dedicated 

movement protein for potyviral intercellular movement. 

  4.2 Targeting the CI protein in PD is necessary for intercellular movement in 

potyviruses  

Genetic and ultrastructural investigations in potyviruses revealed that cylindrical 

inclusion (CI) protein is involved in cell-to-cell spreading, likely through the formation of 

conical structures in the PD, a process that is mediated by P3N-PIPO (Wei et al., 2010). 

TuMV P3N-PIPO is a PD-located protein and its trafficking to PD requires the secretary 

pathway rather than the actomysoin motility system (Wei et al., 2010). In this study, I 

found that upon introduction of a stop codon to knock-out the expression of PIPO, the 

P3N lost the ability to accumulate to PD, and in the presence of this mutant, the TuMV 
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CI protein did not target to PD and instead was present in the cytoplasm (Fig. 3.11B). 

These data suggest the PIPO domain is essential for the localization of P3N-PIPO to PD 

as well as for tagerting of CI to PD.  

Interestingly, although a substitution mutation at several different positively charged 

residues in TuMV P3N-PIPO did not affect PD-localization, these mutants lost the ability 

to move from cell-to-cell (Fig. 3.9). Transient coexpression of TuMV P3N-PIPO 

substitution mutants and CI revealed that they failed to target the CI protein to PD and the 

CI protein was apparently redistributed to the nucleus and cytoplasm (Fig3.12). The 

mechanism by which these P3N-PIPO substitution mutants are unable to mediate CI 

targeting to PD is not clear. Previous genetic analysis of TEV CI showed that a 

substitution affecting two aspartic residues at positions 3 and 4 of the CI protein disrupted 

the PD localization of CI, leading to an intercellular movement defective phenotype 

(Carrington et al., 1998; Wei et al., 2010).  Taken together, these data suggest that 

trafficking of CI to PD is required for potyviral cell-to-cell movement and the PIPIO 

domain is essential in mediating this process.  

4.3 P3N-PIPO anchors CI at PD likely via an indirect interaction with CI  

  

Experimental Y2H data have been crucial for the evolution of protein interaction 

networks (Schwikowski et al., 2000; Uetz and Hughes, 2000) despite the limitation of 

yeast two-hybrid screens which can include non-specific or false interactions even with 

the most stringent screening conditions (Munder and Hinnen, 1999; Legrain and Selig, 

2000; Brückner et al., 2009). This technique remains one of the most powerful methods 

and offers a sensitive and cost-effective mean to test the direct interaction between two 
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targeted proteins (Brückner et al., 2009). In this study I used the Y2H assay to determine 

if there is a direct interaction between TuMV P3N-PIPO and CI. The result was negative 

(Fig. 3.15). However, TuMV P3N-PIPO-YN and CI-YN showed a strong yellow 

fluorescence signal in the BIFC assay in Nicothinia benthaminia plants (Fig. 3.14B). This 

might suggest a possible indirect interaction between TuMV P3N-PIPO and CI proteins. 

Recently, PD was shown to to interact with the host protein PCaP1 (host hydrophilic 

cation binding protein) and knock-out of the PCaP1 expression significantly suppresses 

TuMV infection in Nicotinia benthaminia (Vijayapalani et al., 2012). It was speculated 

that PCaP1 links a complex of viral proteins and genomic RNA to the plasma membrane 

by binding P3N-PIPO, enabling localization to PD and cell-to-cell movement 

(Vijayapalani et al., 2012). However, it is not clear if PCaP1 binds to CI to bridge an 

indirect interaction between P3N-PIPO and CI. More recently, Geng et al. (2014) 

presented evidence showing that a developmentally regulated plasma membrane protein 

of Nicotiana benthamiana, referred to as NbDREPP, interacts with both the P3N-PIPO 

and CI of the Tobacco vein banding mosaic virus (TVBMV). Silencing of NbDREPP 

expression in Nicothinia benthamiana significantly impeded the viral spreading of 

TVBMV (Geng et al., 2014). Therefore, this protein might be a better candidate to build 

the link between P3N-PIPO and CI, although the recruitment of other host factors cannot 

be excluded.  

4.4 The N-terminal region of TuMV CI protein is responsible for the 

interaction with P3N-PIPO and self-interaction 

 

Previously, Carrington et al. provided evidence that most mutations in the N-terminal half 

of TEV CI protein affect virus spreading in tobacco plants (Carrington et al., 1998). In 
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this present work, I found that the N-terminal region of TuMV CI protein is a determinant 

domain for P3N-PIPO interaction in planta (Fig. 3.19). Moreover, I found a positive 

interaction between P3N-PIPO and the N-terminal fragment of TuMV CI protein (CIF1) 

in the Y2H assay. This is in contrast to my observation that no interaction was found 

between the full-length CI and P3N-PIPO in the yeast system (Fig. 3.16 and Fig. 3.11). 

As discussed earlier, host factor(s) may be involved in this process. For example, CI may 

interact with a host factor to expose the P3N-PIPO interacting domain in the N-terminal 

region that will make the interaction of P3N-PIPO and CI possible. It is also possible that 

there lacks a specific chaperone in yeast which assists the correct folding of viral proteins 

such as CI in comparison to plant cells. Therefore, truncated CI can be folded more easily 

in absence of the functional chaperone even without mediation of the specific host factor 

(Hartl et al., 2002).  

Self-interaction was demonstrated in planta for the full-length CI protein of PPV and 

TEV by the BIFC assay (Wei et al., 2010; Zilian and Maiss, 2011). Targeting of TuMV 

CI to PD by P3N-PIPO may also be affected by CI self-interactions (Wei et al., 2010). 

Previously defective cell-to-cell movement CI mutants (DD3, 4AA and KK101, 102AA) 

in the N-terminal region of PPV, were shown to have reduced self-interacting strength 

and they were distributed to the cell periphery and the nucleus. Similar results were 

obtained from studies with PPV CI (Gomez de Cedron et al., 2006). In this study, I also 

found that the N-terminal region (177 amino acids of CI) is necessary for self-interaction 

(Fig. 3.19).  In contrast to these findings, in the case of WSMV, the C-terminal region of 

the CI protein was shown to be responsible for self-interaction (Choi et al., 2005). Taken 
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together these data suggest that CI self-assembly is virus-specific and mutations that 

affect self-interaction abolish viral cell-to-cell movement (Sorel et al., 2014). 

4.5 Conclusions and Prospective for Future Research 

In this thesis, the involvement of TuMV P3N-PIPO protein in intercellular movement in 

Nicotinia benthaminia leaves’ cells was assessed. I studied the effect of mutations in 

P3N-PIPO protein but synonymous in P3 on virus movement by using confocal 

microscopy and determined the ability of mutants to targeting CI protein to PD by 

subcellular co-localization. In addition, P3N-PIPO mutants were examined to see if viral 

replication is affected or not by PEG-mediated transfection assay in Nicotinia 

benthaminia protoplasts. The results revealed that insertion of stop codon and substitution 

mutations in PIPO ORF abolished viral intercellular movement and the mutated P3N-

PIPO lost the ability to to target the CI protein to PD. My data also suggest that the 

mutation in P3N-PIPO do not affect viral replication. These findings strongly suggest that 

TuMV P3N-PIPO is a dedicated MP required for virus cell spreading. Further, the 

interaction of P3N-PIPO and CI, detected by BIFC was limited in PD and the extended 

CI structure inwards to the cytoplasm came from the CI-CI interaction without P3N-

PIPO. This result suggests that P3N-PIPIO is an anchor protein to fix CI in PD and is in 

agreement with the previous observation that the CI protein is directly involved in cell-to-

cell movement through the formation of cone-shaped structure anchored and extended 

through PD (Wei et al., 2010). 

Viruses recruit host factors for their movement in plants (Raffaele et al., 2009; Amari et 

al., 2010; Ueki et al., 2010). The nature of host proteins contributing to cell-to-cell 

trafficking of potyvirus is poorly understood (Vijayapalani et al., 2012). In comparison to 
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the molecular characterization of MPs, not much work has been done to identify MP-

interacting host proteins and understand their roles in viral intercellular movement (Geng 

et al., 2014). There are still many unanswered questions about the molecular mechanisms 

by which MPs and their interacting factor are delivered to PD (Harries et al., 2010). 

Therefore, the molecular identification of P3N-PIPO interacting host proteins and further 

characterization of their functional role in potyviral infection process will be one of the 

major research directions (Geng et al., 2014). Collectively, the knowledge obtained from 

this study has provided new insights into TuMV cell-to-cell movement. Since majority of 

potivral proteins are multifunctional proteins, it would also be interesting to examine 

other possible functions of P3N-PIPO such as the possible role in intracellular movement 

and the virulence determinant or symptom development factor (Choi et al., 2013; Hisa et 

al., 2014). 
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  Appendices: 

 

 

    Appendix A: List of all the interactions tested by BIFC* 

     
YN/YC 

    

P3N-
PIPO 

PIPO 
(R9St) 

PIPO 
(K15E) 

PIPO 
(K28E) 

PIPO 
(K41E) CI CIF1 CIF2 CIF3 CIF4 

P3N-
PIPO 

     
+ 

PD 
+ 
C 

-_ 
++ 
PD 

+ 
N,C 

PIPO 
(R9St) 

     
_ 

    
PIPO 

(K15E) 
     

_ 
    

PIPO 
(K28E) 

     
_ 

    
PIPO 

(K41E) 
     

_ 
    

CI + 
PD _ _ _ _ + 

C,N 
    

CIF1 + 
C 

    
 

    
CIF2 _ 

    
 

    
CIF3 + 

PD 

    
 

    
CIF4 + 

N,C 

    
 

    
 

*YN, protein fused to N-terminal YFP; -YC, protein fused to C-terminal YFP, 

N-Nucleus; C-cytoplasm, PD-plasmodesmata. 
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           Appendix B: List of all the interactions tested by Y2H* 

 
AD/BD 

P3N-PIPO PIPO 
(K15E) 

PIPO 
(K28E) 

PIPO 
(K41E) CI PGBKT7 

P3N-PIPO 
    

_ _ 

PIPO 
(K15E) 

    
_ _ 

PIPO 
(K28E) 

    
_ _ 

PIPO 
(K41E) 

    
_ _ 

CI _ _ _ _ 
 

_ 

PGADT7 _ _ _ _ _ _ 

 

 

 

 

 

 

 

 

*BD-, protein fused to Gal4 binding domain; AD-, protein fused to 

    Gal4 activation domain; pGADT7 & pGBKT7, empty vectors for Y2H. 
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