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Abstract  

Stable carbon–, nitrogen–, and oxygen–isotope analyses of animal bones and teeth from 28 

archaeological sites are used to reconstruct human subsistence behaviour, i.e., increased 

maize horticulturalism, during the Late Woodland period (A.D. 1000–1650) in southwestern 

Ontario. The isotopic data provided dietary, seasonal, and geographic information, which 

was analysed within archaeological, symbolic, and ecological contexts and used to 

reconstruct the diets, hunting patterns, and animal processing practices of two neighbouring 

groups, the Ontario Iroquoian and Western Basin peoples.  

Paleodietary and seasonality analyses focused on the following species: canids (domestic 

dogs, foxes, and wolves), wild turkeys and white-tailed deer, though additional fauna 

(including black bears, raccoons, and squirrels) were also analysed. Bone (n=324) and 

dentine (n=11) collagen provided dietary information, specifically concerning access to 

maize and trophic position. The carbon– and nitrogen–isotope composition of modern plants 

(n= 8) and animals (n=87) was used to expand the local food web and understand abilities of 

modern animals to access crops. Structural carbonate isotopic analyses for archaeological 

(n=126) and modern (n=28) individuals provided additional information about trophic 

position, post–mortem alteration, and geographic affiliation. Serially sampled enamel was 

analysed for several deer and a dog, and was successfully paired with x–radiographs to create 

an enamel formation sequence, which enables reconstruction of short term (seasonal) diets.  

The domestic dog isotopic data expanded our understanding of human dietary change over 

the Late Woodland period for both Ontario Iroquoian and Western Basin peoples, including 

different emphases on protein sources (i.e., fish). Wild fauna, particularly foxes, wild 

turkeys, raccoons and squirrels, were able to access maize. The turkey isotopic data suggest a 

unique hunting strategy at some Ontario Iroquoian sites, i.e., the purposeful discard of maize 

to create a predictable field hunting zone. An unexpected relationship between the δ13Ccol and 

δ13Csc values of deer appears to reflect a post–mortem processing (i.e., boiling) practice. This 

thesis has expanded our understanding of Late Woodland diets, horticultural and hunting 

practices. It has also demonstrated that fauna may be used to reconstruct human behaviour 

and ideology in lieu of the destructive analysis of human remains.  
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Chapter 1  

1 Introduction 

1.1 Research objectives 
In this thesis, stable isotope analyses of archaeological faunal material are used to investigate 

how Ontario Late Woodland (A.D. 900 to 1650) human activities affected the isotopic 

composition of animal bones due to increased maize horticulture, hunting locale, season of 

hunting, and post-mortem treatment. During the Late Woodland period in southwestern Ontario, 

two neighbouring groups, Ontario Iroquoian and Western Basin peoples, lived 

contemporaneously until A.D. 1550 with a continuously westward shifting border. The 

importance of maize to Late Woodland Ontario Iroquoian people has long been understood from 

archaeobotanical remains and isotopic analyses of human remains (Katzenberg et al. 1995, 

Harrison and Katzenberg 2003; Schwarcz et al. 1985; van der Merwe et al. 2003; Pfieffer et al. 

2014). Until recently, the significance of maize in the diets of Ontario Western Basin peoples 

was underestimated. The recent analyses of human remains from three sites, Krieger, Great 

Western Park, and Inland West Pit 9 (Dewar et al. 2010; Spence et al. 2014; Watts et al. 2011), 

and excavations in the Arkona region Inland West Pit sites (Golder and Associates 2012) suggest 

heavy investment in maize among Western Basin people in southwestern Ontario.  

By A.D. 1000, Ontario Iroquoian populations were growing substantially larger compared to the 

preceding Middle Woodland period, and associated with increasing sedentism, a pattern that 

would continue throughout the Late Woodland. Expanding village sites, surrounded by 

horticultural fields, were in use for fifteen to twenty years and became more heavily fortified. 

Currently, there is no evidence of the same degree of population increase at Ontario Western 

Basin sites, nor was there a consistent shift to long-term village life style. Instead, Western Basin 

sites varied in terms of their size and occupation length. Many sites were occupied seasonally, 

usually near rivers or lakes during warmer months and further inland during cooler months. 

Other sites were occupied year round, though the length of occupation was variable. Because of 

smaller site size and shorter occupation length, the abundance of faunal remains is low and 

preservation is often poor.  
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This research pushes the boundaries of interpretations from isotopic analyses of faunal data 

beyond the reconstruction of food webs by combining isotopic analyses of the organic and 

mineral phases of bones and teeth to reconstruct both long and short-term behaviour within the 

archaeological context and human treatment of killed animals (i.e., presence of burning and cut 

marks). Emphasis has been placed on analysis of canids (wolves, foxes, and domestic dogs), wild 

turkeys, and white-tailed deer, though black bears, raccoons, groundhogs, grey/black squirrels, 

rabbits, and some aquatic species along with modern insects and nuts were also analysed to 

better understand the food web. The isotopic data are considered within the context of available 

social, economic, and cosmological understandings of animals using ethnohistoric accounts, 

previous zooarchaeological studies, and ethnographic analogy. Using these integrated data, this 

dissertation has the following research goals: 

(1) to determine which wild animals reflect maize consumption and, therefore, may serve as 
proxies for landscape change,  

(2) to analyse the carbon, nitrogen and oxygen isotopic composition of multiple tissue 
components (i.e., bone collagen and structural carbonate) of bones and teeth to provide a 
more complete dietary and geographic profile of the animals,  

(3) to determine the dental formation sequence of white-tailed deer, domestic dog, and black bear 
in order to provide a detailed profile of the early life of animals and enable reconstruction 
of seasonal dietary patterns,  

(4) to compare domestic dog diets, temporally and geographically, with published human data to 
determine whether dogs can serve as proxies for human diets in southwestern Ontario,  

(5) to examine the possible use of oxygen isotope data to reflect the geographic range of animal 
procurement for both hunted and domestic animals, and 

(6) to use carbon and oxygen isotopic data to address possible post-mortem processing of animal 
remains by humans.  

 

1.2 Stable isotopic analysis of faunal remains 

Carbon, nitrogen, oxygen and hydrogen stable isotope analyses have been used extensively by 

bioarchaeologists to answer questions regarding diet, migration, paleoclimate, and seasonality 

(see summaries Katzenberg 2007; Schoeninger and Moore 1992; Schwarcz and Schoeninger 
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1991; White 2004), but as access to human skeletal remains for destructive analysis becomes 

more and more limited, bioarchaeologists have turned to alternate sources of information. Today, 

a variety of ecologists, zooarchaeologists and bioarchaeologists have expanded their research to 

include such analysis of fauna (e.g., Allitt et al. 2008; Balasse et al. 2002; Drucker and 

Bocherens 2009; Emery 2004; Emery et al. 2000; Fraser et al. 2008, Hobson 1999; Katzenberg 

1989; 2006; Kwak and Zedler 1997; White et al 2001; 2004b), which not only act as an 

alternative to human remains but also provide additional information not previously available 

from the study of human remains alone. In southwestern Ontario, faunal data have been used 

primarily to establish a food web for the region (Katzenberg 1989; 2006; Ketchum et al. 2009; 

Pfeiffer et al. 2014). Although reconstructing the diet of ancient animals to create food webs is 

needed for interpreting human dietary data and is the most common use of faunal data, animal 

diets have also been used to: track the introduction of new foods (e.g., Burleigh and Brothwell 

1978), identify the domestication of wild species (Balasse and Tresset 2002; Barton et al. 2009; 

Thorton et al. 2012) and recognize the purposeful feeding of wild species for specific uses, such 

as ritual sacrifice and feasting (Finucane et al. 2006; White et al. 2001; 2004). Oxygen isotopes 

have been used to recognize animal migration and long distance trade (Britton et al. 2009; 

Hobson 1999), explore seasonal patterns of animal resource exploitation (Balasse et al. 2003; 

Kirsawnow et al. 2008) and reconstruct paleoclimate (Ayliffe and Chivas 1990; Fricke and 

O’Neil 1996; Stuart Williams and Schwarcz 1997). Faunal data are used in this dissertation for 

all of the above purposes and to address specific questions regarding behaviours of southwestern 

Ontario Woodland peoples.  

1.3 Stable isotopes 

Stable isotopes are naturally occurring variants of an element that differ in number of neutrons 

and, therefore, atomic mass. Variations in the ratios of one isotope to another are due to their 

difference in mass, which cause isotopic fractionation during biogeochemical processes (e.g. 

photosynthesis). The relative abundance of isotopes can be measured using a stable-isotope ratio 

mass spectrometer and are reported as ratios of heavy to light isotopes in units of per mil (‰) as 

expressed in the standard δ–notation: 

δ = (Rsample/Rstandard) / Rstandard   [Equation 1.1] 
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where R = 13C/12C, 15N/14N or 18O/16O (McKinney et al. 1950:730). Carbon isotopic 

compositions are standardized to Vienna PeeDee Belemnite (VPDB) (Coplen 1996; 2011). 

Nitrogen isotopic compositions are standardized to AIR (Mariotti 1983). Oxygen isotopic 

compositions are standardized to Vienna Standard Mean Ocean Water (VSMOW) (Coplen 1996; 

2011).  

1.3.1 Carbon-isotope systematics 

Carbon isotope ratios of preserved tissues can be used to explore diets of ancient organisms by 

identifying the consumption of varying plant types (C3, C4 and CAM) and as an indicator of 

degree of carnivory (DeNiro and Epstein 1978; van der Merwe 1982). Identifying the type of 

plants consumed by an organism is based on differences in the three photosynthetic pathways 

used by plants. C3 plants are the most common and include most vegetables, fruits, nuts, trees, 

wheat and barley. They photosynthesize using a 3–carbon pathway, and have low δ13C values 

(~–34 to –23‰, average –26.5‰) (O’Leary 1988; van der Merwe 1982). C4 plants, including 

maize and several other tropical grasses, are more adapted to hot climates (Beadle 1939; 

Matsuko et al. 2002). They photosynthesize using a 4–carbon pathway and are relatively 13C–

rich (~–16 to –9‰, average –12.5‰) (O’Leary 1988; van der Merwe 1982). Because these 

photosynthetic types have a bimodal distribution of δ13C values, isotopic analysis has been useful 

for tracking the spread of maize into North America (Allegreto 2007; Boyd et al. 2008; 

Katzenberg et al. 1995; Schoeninger 2009; Schurr and Redmond 1991; van der Merwe 1982; 

Vogel and van der Merwe 1977). A third plant type, Crassulacean Acid Metabolism (CAM), 

which includes cacti and succulents, has isotope compositions that cover the range of C3 and C4 

plants (van der Merwe 1982), but they were not a component of Ontario ecosystems.  

Plant δ13C values are affected by the composition of CO2 in the atmosphere. Due to the burning 

of fossil fuels and deforestation, addition of low-13C CO2 since the start of the Industrial 

Revolution, a phenomenon known as the Suess Effect, has resulted in steadily decreasing δ13C 

values of modern atmospheric CO2. As a consequence, the δ13C values of modern plants and 

animals are isotopically lighter (i.e., have lower δ–values) than archaeological ones (Friedli et al. 

1986; Verburg 2007; Yakir 2011). Thus all δ13C values of modern plants and animals mentioned 

in this text have been corrected by +1.65‰ to account for the Suess Effect (Yakir 2011). None of 
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the animal remains from the Late Woodland or earlier have been adjusted. The isotopic 

composition of plants can also be affected by micro-atmospheric environments, such as closed 

canopy forests, in which CO2 recycling from decomposing leaf litter is relatively depleted of 13C 

(Drucker and Bocherens 2009; van der Merwe and Medina 1989; 1991). The lower δ13C plant 

values produced are passed on to herbivores consuming plants in closed canopies and are 

reflected in their δ13C collagen and structural carbonate values (Cormie and Schwarcz 1994; 

Drucker and Bocherens 2009).  

Because of macronutrient partitioning, dietary carbon is differentially fractionated by different 

tissues, including the organic (i.e., collagen) and inorganic (i.e., structural carbonate) 

components of bone and teeth. The carbon-isotope composition of bone and dentine collagen 

(δ13Ccol) predominately reflect the protein portion of the diet, while their structural carbonate 

(δ13Csc) reflects the whole diet, i.e., protein, lipid and carbohydrates (Ambrose and Norr 1993; 

Clementz et al. 2009; Krueger and Sullivan 1984; Lee-Thorp et al. 1989; Kellner and 

Schoeninger 2007). Because of this macronutrient partitioning between tissue fractions, the 

difference between δ13Csc and δ13Ccol (i.e., Δ13Csc–col) or the carbonate-collagen spacing, can be 

used as an approximate indicator of degree of carnivory. In herbivores, there is an estimated 

+5‰ increase from diet to collagen, and approximately +12‰ increase from diet to structural 

carbonate resulting in Δ13Csc–col mean spacing of ~ +7‰ (Clementz et al. 2009; Krueger and 

Sullivan 1984; Lee Thorp and van der Merwe 1987). However, there may be a larger increase 

from diet to structural carbonate (i.e., +12.0 to +14.1‰) for large herbivores (Kellner and 

Schoeninger 2007; Cerling and Harris 1999). Small trophic increases in δ13Ccol (by ~ +1.2–

2.0‰) and δ13Csc (by ~+3‰) between predator and prey (i.e., carnivores) have also been 

reported, as well as between mothers and breastfeeding infants (Ambrose and Norr 1993; 

Bocherens and Drucker 2003; Fogel et al. 1989; Fuller et al. 2006; Herring et al. 1998; Krueger 

and Sullivan 1984; Richards et al. 2002; Tuross and Fogel 1994). The δ13Ccol value of 

breastfeeding juveniles primarily reflects the lipid and carbohydrate-rich (lactose) portion of the 

breast milk, as breast milk is protein poor (Whitney and Rolfes 2002; Williams et al. 2005). 

Because lipids have low δ13C values, the δ13Csc values of breastfeeding juveniles may be lower 

than their mothers (Wright and Schwarcz 1998).  
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1.3.2 Nitrogen-isotope systematics 

Nitrogen is also incorporated into the tissues of organisms through dietary sources and provides 

an additional means to infer an organism’s place within the food chain (DeNiro and Epstein 

1981). Nitrogen isotopic compositions of bone and teeth are used in paleodiet studies primarily 

to differentiate consumption of terrestrial versus marine or aquatic food sources (Schoeninger et 

al. 1983; Schoeninger and DeNiro 1984), and to identify the trophic position of an organism. 

The nitrogen isotope composition (δ15N) of  animal collagen reflects the source of nitrogen at the 

base of the food web e.g., nitrogen fixing plants (legumes) or fertilized plants. The δ15N values 

of plants will vary by their environmental context (i.e., soil conditions and climate) and how they 

incorporate nitrogen. For example, legumes, which fix atmospheric nitrogen, tend to have very 

low δ15N values (DeNiro and Epstein 1981). Plants in southwestern Ontario exhibit a wide–range 

of δ15N values (–9 to +3‰) (Longstaffe, unpublished data).  

With each trophic level (i.e., shift from diet to consumer tissue), δ15Ncol values increase by +2 to 

+5‰, depending on species. The δ15Ncol values for a particular individual may, therefore, be used 

to identify the trophic level of a particular organism (Chisholm et al. 1982; DeNiro and Epstein 

1981; Schoeninger and DeNiro 1984). The trophic level increase in δ15Ncol values from diet to 

the tissues of consumers includes breastfeeding juveniles who are one trophic level higher than 

their mothers in the food chain (Fogel et al. 1989; Williams et al. 2005; White et al. 2004a). As 

aquatic systems tend to have more trophic levels, δ15Ncol values may also be used to differentiate 

marine and freshwater resource consumers from terrestrial resource consumers (Schoeninger et 

al. 1983; Schoeninger and DeNiro 1984). The δ15Ncol values of an organism may also be affected 

by climatic conditions (e.g. aridity) and physiological stress (e.g. long-term disease or starvation) 

(Ambrose 1991; Hobson et al. 1993). 

1.3.3 Previous food-web carbon- and nitrogen-isotope studies in Ontario  

Figure 1.1 illustrates the carbon and nitrogen isotopic compositions of modern and 

archaeological plants from northeastern North America from published sources and the current 

study (Table 1.1). Indigenous southwestern Ontario plants, including most edible roots, berries, 

tubers and leaves are almost exclusively C3 plants (Allegreto 2007; Katzenberg et al. 1995; 

Schwarcz et al 1985). While there are a few natural C4 plant species found in pre-contact 
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Ontario, such as amaranth and possibly some varieties of chenopodiums, they were not 

cultivated extensively and may, in the case of amaranth, even be toxic in very high quantities 

(Oleszek et al. 1999). It is, therefore, unlikely that these plants contributed substantially to either 

human (Schwarcz et al. 1985) or wild animal diets. Maize would have been the only readily 

available, edible C4 plant in southwestern Ontario during the Late Woodland, with a distinct δ13C 

value (–9.1±0.3‰) (Schwarcz et al. 1985). It has been identified archaeologically at 

southwestern Ontario sites as early as A.D. 200 (Allegreto 2007; Boyd et al. 2008; Cappella 

2005; Crawford and Smith 1996; Crawford et al. 2006; Katzenberg 2006). By A.D. 1200 maize 

horticulture was practiced extensively and successfully across much of the region (Katzenberg 

2006; Cappella 2005; Crawford and Smith 1996; Crawford et al. 1997). Most of the isotopic 

information on the timing of maize introduction and its spread has come from human remains 

found in pre-contact southwestern and central Ontario, and the Western Lake Erie region 

(Allegretto 2007; Katzenberg 1989; Katzenberg et al. 1995; Katzenberg 2006; Schwarcz et al. 

1985; van der Merwe et al. 2003; Harrison and Katzenberg 2003; Pfeiffer et al. 2014; Stothers 

and Bechtel 1987; Watts et al. 2011; Dewar et al. 2010). Isotopic studies of the regional 

archaeological fauna and flora are scarcer, and were conducted primarily for the purpose of 

reconstructing food webs to use in the interpretation of the isotopic data for humans (Katzenberg 

1989; Katzenberg 2006; van der Merwe et al. 2003). There are no previously published 

archaeological Ontario insect studies. Accordingly, modern grasshoppers and crickets were 

analysed for this study because they are a food source for many of the animals in the food web 

(e.g. wild turkeys and canids) (Eaton 1992; Kleinman 1967) and may have been maize-pests 

(Starna et al. 1984) (Table 1.2 and Figure 1.1). Unpublished plant data from southwestern 

Ontario provide modern C3 plant values for grasses, trees, shrubs (Longstaffe, unpublished data), 

nuts and berries (this study). Suess Effect-corrected carbon isotopic data for modern plants are 

used to help complete the southwestern Ontario food web.  
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Table 1.1: Isotopic data for modern1 and archaeological plants from the Eastern Woodland 

region southwestern Ontario.  

 

δ13C ‰ (VPDB) 
±SD 

(range) 

δ15N 
 ‰ (AIR) ±SD 

(range) 
N References 

Archaeological Maize – 10.8±0.5 
(–11.7 to –9.6) – 16 Tieszen and 

Fagre 1994 
Archaeological Maize, SW 

Ontario 
–9.1±0.3 

(–9.8 to –8.7) – 10 Schwarcz et 
al. 1985 

Modern Maize, Illinois –10.1±0.1 1.66±1.4 3 Lavin et al. 
2003 

Modern C3 plants, Pinery 
Provincial Park, Ontario –28.3±2.0 –4.1±02.0 140 Longstaffe, 

unpublished 
Modern nuts 

London, Ontario 
–26.9±1.6 

(–81.3 to –26.7) 
–1.8±3.5 

(–8.2 to 2.4) 8 This study 

 

                                                 
1 The δ13C values of modern plants have been corrected by +1.65‰ to account for the Suess Effect. 
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Table 1.2: Isotopic data for Late Woodland archaeological fauna (bone collagen), published 

and this study. 

  δ13Ccol ‰ (VPDB)±SD 
(range) 

δ15Ncol, ‰ (AIR) ±SD 
(range) 

n References 

Beaver –21.8±1.2  
(–23.6 to –19.5) 

4.6±1.5 
(1.4 to 6.7) 20 Katzenberg 1989; 2006; 

This study 
Birds (Aquatic 

and Terrestrial) 
–20.4±1.5  

(–22.2 to –17.6) 
6.3±1.9 

(3.8 to 9.4) 11 Katzenberg 1989; 2006; 
This study 

Black Bear –20.9±0.9  
(–22.9 to –19.4) 

5.3±0.6 
(2.7 to 6.6) 39 Katzenberg 1989; 2006; 

This study 

Canids –14.3±3.4  
(–22.1 to –9.3) 

9.5±1.3 
(5.3 to 11.4) 103 

Katzenberg 1989; 2006; 
Booth et al. 2011; This 

study 

Cottontail –22.9±3.0  
(–27.4 to –19.4)  

3.7±0.8 
(2.1 to 4.7) 8 This study 

Freshwater 
Fish 

–19.6±2.5  
(–24.9 to –11.5) 

8.5±2.0 
(3.6 to 12.0) 71 

Katzenberg 1989; 2006; van 
der Merwe et al. 2003; This 

study 
Gray/black 

Squirrel 
–19.6±0.6  

(–20.5 to –18.5) 
5.0±0.8 

(3.8 to 6.7) 13 This study 

Muskrat –21.3±1.4  
(–23.0 to –20.4) 

6.3±1.4 
(4.7 to 7.3) 3 This study 

Porcupine –20.5±0.8  
(–21.4 to –19.9) 

5.0±0.6 
(4.4 to 5.6) 3 This study 

Raccoon –20.4±2.2  
(–24.5 to –14.0) 

8.8±2.0 
(4.6 to 11.9) 31 Katzenberg 1989; 2006; 

This study 
Small 

Carnivores 
–20.9±2.1  

(–23.3 to –19.5) 
8.9±0.3 

(8.5 to 9.2) 3 This study 

Turtle –23.7±1.2  
(–25.1 to –23.0) 

5.8±1.3 
(5.0 to 7.2) 3 This study 

White-tailed 
deer 

–22.6±1.4  
(–24.9to –20.2) 

5.4±0.9 
(2.8 to 8.6) 114 Katzenberg 1989; 2006; 

This study 

Wild Turkeys –20.5±2.7  
(–30.6 to –9.8) 

6.3±1.0 
(4.0 to 9.3) 76 Katzenberg 1989; 2006; 

This study 

Woodchuck –24.0±1.7  
(–26.5 to –19.4) 

3.2±0.9 
(1.1 to 5.5) 30 Katzenberg 1989; 2006; 

This study 
Modern 

Grasshoppers 
& Crickets2 

–24.9±3.2 
(–28.9 to –15.0) 

2.3±1.6 
(–0.8 to 6.2) 47 This study 

                                                 
2Modern grasshopper and cricket δ13C data are included, though the data reflects the analysis of whole, freeze-dried 
insects and not extracted collagen. Insect values are corrected by +1.65‰. 
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Figure 1.1 Theoretical southwestern Ontario food web based on archaeological bone collagen (δ13Ccol and δ15Ncol, mean±SD‰) 

data and whole organism, modern plant and insect data (δ13C and δ15N, mean±SD‰, corrected +1.65‰).3 

                                                 
3 Collagen data are not corrected for trophic level effect. See Tables 1.1 and 1.2 for data sources. 
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1.3.4 Oxygen-isotope systematics 

The δ18O values of bone and/or tooth bioapatite (structural carbonate or phosphate) can 

be used to track geographic and climatic variations in precipitation, humidity, latitude, 

altitude and temperature. Deciphering geographic and climatic variables is possible 

because the oxygen-isotope composition of skeletal tissue is at equilibrium with body 

water, which, in turn, is primarily derived from ingested water (Bryant and Froelich 

1995; Luz et al. 1984; Luz and Kolodny 1985). Oxygen enters the body from: inhaled 

atmospheric oxygen, ingested water, and water in food resources, but for most mammals, 

ingested water is the primary source (Luz et al. 1990). Luz et al. (1990) found a 

relationship between local meteoric water and the phosphate of white-tailed deer bones 

collected across much of North America, and the relationship between the δ18O values of 

body water and skeletal phosphate is well-established (Longinelli 1984; Luz et al. 1984; 

Luz and Kolodny 1985). In bone that has not undergone isotopic alteration after death, 

phosphate and structural carbonate δ18O values are correlated (Bryant et al. 1996; 

Iacumin et al. 1996). This suggests that body water and structural carbonate oxygen 

isotopic compositions should also be correlated, a hypothesis that is tested here by 

comparing the δ18Osc values of wild and domesticated animals with the predicted δ18O 

values of modern, local precipitation. Bone should provide a lifetime average of the 

oxygen isotope composition of consumed water, obscuring seasonal fluctuations, while 

tooth enamel should provide seasonal information related to the time of tissue formation. 

Intra-species variation has enabled the reconstruction of past climates (Clementz and 

Koch 2001; Longinelli 1984; Luz et al. 1984; Sponheimer and Lee–Thorp 1999; 

Kirsanow et al. 2008), seasonality (Balasse et al. 2003), geographic movement (Britton et 

al. 2009; Hobson 1999; Schwarcz et al. 1991) and transitions from breastfeeding to 

weaning (White et al. 2004a; Williams et al. 2005; Wright and Schwarz 1998). Because 

species-specific variations in δ18O can also be caused by differences in body size, 

physiology and drinking/feeding ecology (i.e. obligate drinkers versus drought–tolerant 

species) (Bryant et al. 1996; Bryant and Froelich 1995; Daux et al. 2008; Kirsanow and 

Tuross 2011), isotopic research designs need to be controlled by species.  
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Latitude, altitude, humidity and temperature all affect the oxygen isotopic composition of 

precipitation as it moves across continents (Ayliffe and Chivas 1990; Fricke and O’Neil 

1999). For example, as evaporated water condenses and precipitates as rain or snow, the 

distance it has traveled inland from the ocean, away from the equator and/or with 

increasing altitude contributes to preferential loss of 18O, resulting in precipitation that is 

increasingly depleted of 18O, a phenomenon known as the Rayleigh Distillation Effect 

(Dansgaard 1964; Craig and Gordon 1965). Although there are differences in the effects 

of evaporation among potential water sources for animals (i.e., puddles, small streams, 

Great Lakes, plant water), the δ18O values of animal tissue may still provide an indirect 

link to the δ18O value of local meteoric water. 

Southwestern Ontario is a relatively small region, with minimal oxygen isotopic variation 

due to distance from the ocean or altitude. There is, however, latitudinal and longitudinal 

variation in δ18O values across southwestern Ontario (Longstaffe 2013, personal 

communications). The precipitation data from sixteen stations spanning from Illinois to 

Quebec (IAEA/WMO 2013; Longstaffe unpublished data) show a decrease in the heavy 

isotope (18O) in precipitation moving across the Great Lakes region from west to east, 

resulting in an approximately 2‰ geographic difference in δ18O values likely due to 

temperature differences and the influx of air masses of different origin at different times 

of the year (Edwards et al. 1996; Larson and Longstaffe 2007). The precipitation station 

isotopic data were used to predict the annual precipitation δ18O values for the locations of 

Western Basin and Iroquoian sites examined in this study (Figure 1.2).4 

Over the past several thousand years there have been climatic events that may have 

affected the seasonal and annual local meteoric water δ18O values. For example between 

approximately A.D. 800 and 1200 there was the Medieval Warming Period (MWP), 

                                                 
4Predicted δ18O values of past, local precipitation for the archaeological sites mentioned in text (Figure 1.3) 
were interpolated using a Kriging analysis based on the δ18O values of local precipitation collected and 
analysed from sixteen water stations (six stations from IAEA/WMO 2013; ten stations from Longstaffe 
unpublished data). An ordinary, spherical Kriging analysis was performed with no special parameters. 
Only the Great Lakes region bounded by Lake Erie to the south, the western tip of Lake Ontario to the east, 
Lake St. Clair and the southeast tip of Lake Huron to the west and area south of Georgian Bay to the north 
(see Figure1.2 area of interest box) are considered in the proceeding discussions. 
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followed by the Little Ice Age (LIA) starting around A.D. 1450 and continuing through to 

the early 1800s (Bernabo 1981; Campbell and Campbell 1989; Foster 2012; Gajewski 

1988; Mullins et al. 2011; Viau and Gajewski 2012). During the MWP there may have 

been an annual temperature increase of up to +0.1°C in most of this region, which likely 

resulted in slightly higher δ18O values for meteoric water. During the LIA, there was 

likely a temperature decrease between 0.2 to 0.3°C resulting in slightly lower δ18O values 

(Viau and Gajewski 2012). Deer in this study come from sites dated to between 3500 to 

400 years BP, so some may have been affected by the MWP and beginning of the LIA. 

Nonetheless, Edwards et al. (1996) suggest that the temperature and precipitation patterns 

of the Great Lakes region from 4000 B.P. onward appear to have been relatively stable 

despite annual temperature changes (also see Bernabo and Webb 1977 for stability in 

pollen record 2000–500 BP). 
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Figure 1.2: Interpolated regional δ18O values based on the δ18O values of local precipitation collected and analysed from sixteen water 

stations (IAEA/WMO 2013; Longstaffe unpublished data). 5 The box delineates the study area.

                                                 
5All maps in the thesis were created by Zoe Morris in ArcGIS® software by ESRI, North American Datum (NAD) 1983, using the following data layers: World 
Country Boundaries, Source: ArcWorld Supplement; Canada Provincial Boundaries, Source: DMTI Spatial Inc.; United States of America State Boundaries, 
Source: ESRI, derived from Tele Atlas; Hydrology (Rivers and Lakes), Source: CanMap Water, DMTI Spatial Inc., 2011. 
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1.4 Research context: Late Woodland SW Ontario 
Southwestern Ontario is loosely associated with the larger Northeastern Woodland 

archaeological cultural area extending through southern Quebec, Ontario, and the 

Maritimes in Canada and US Atlantic and Midwest states. The southwestern Ontario 

Woodland region is bounded by Lake Erie to the south, Lake Huron and Lake St. Clair to 

the west and Lake Ontario to the east, within the northern limit of the Carolinian forest. 

Archaeologists have typically divided the material remains in this region into two groups;  

; the Ontario Iroquoian6 and Western Basin peoples. These two cultural groups inhabited 

this region contemporaneously and within shifting borders. Table 1.3 summarizes the 

phases of Ontario Iroquoian and Western Basin cultural traditions, which are identified 

primarily by pottery styles. Despite their proximity, there are differences in the 

subsistence and settlement strategies adopted by the Ontario Iroquoians and Western 

Basin peoples.  

Both groups employed a mixed subsistence strategy, incorporating domestic plant 

horticulturalism, with wild plant gathering, and hunting and fishing local faunal 

resources. White-tailed deer, small mammals, a variety of birds, and freshwater fish were 

all important dietary components throughout the Late Woodland time period. The 

emphasis on particular hunted and fished species, however, differed by cultural group and 

time period (Foreman 2011; Murphy and Ferris 1990; Prevec and Noble 1983; Stewart 

2000; Warrick 2000). Settlement patterns for both groups are variable, though after A.D. 

1000, generally Ontario Iroquoian sites appear to be occupied year round, while Western 

Basin sites are less consistent in terms of season of occupation, patterns of annual re–use, 

and length of occupation. The variation in settlement style had previously led researchers 

                                                 
6 The term Iroquoian is used in this dissertation to describe Iroquoian-speaking peoples living in the lower 
Great Lakes region prior to and following European contact. The term Iroquois specifically refers to 
peoples of the historic Five Nations of New York State, including Onodaga, Oneida, Mohawk, Seneca and 
Cayuga (Smith 1990:279; Trigger 1978:3). The Ontario Western Basin (herein referred to as Western 
Basin) name and sequence was adapted from Fitting (1965) and Stother (1975) by Murphy and Ferris 
(1990:189) to recognize the distinct cultural tradition present in the southwestern-most corner of Ontario, 
though it also extended into southeastern Michigan and northwestern Ohio. 
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to assume that the more sedentary Ontario Iroquoian people were more heavily reliant on 

domestic crops, particularly maize, compared to their Western Basin neighbours. Recent 

isotopic data for Ontario Western Basin peoples suggest a similar pattern of maize 

consumption (Dewar et al. 2010; Spence et al. 2014; Watts et al. 2011). The seasonal 

occupation evident at many Western Basin sites has created speculation as to where and 

how Western Basin people were growing large quantities of maize and, therefore, the use 

of additional proxies for landscape use warrant further investigation.  

Table 1.3: Cultural stages of southwestern Ontario. 

 Pre–A.D. 200  
Archaic ~8000–800 B.C. Ellis et al. 1990 
Early Woodland ~900 – 0 B.C.  
Middle Woodland 300 B.C. to A.D. 

500 
 

 Ontario Iroquoian  
Princess Point Phase A.D. 700–1000 Fox 1990 
Early Ontario Iroquoian Period A.D. 900–1300 Williamson 1990 
Middle Ontario Iroquoian Stage A.D. 1300–1450 Dodd et al. 1990; Finlayson 1998 
Late Iroquoian/Neutral A.D 1450–1650 Lennox and Fitzgerald 1990 
 Ontario Western Basin  
Riviere au Vase Phase A.D. 600–900 Murphy and Ferris 1990 
Younge Phase A.D 800–1200  
Springwells Phase A.D 1200–1400  
Wolf Phase A.D. 1400–1550  

 

1.5 Research sample  
Faunal samples were procured from twenty–eight previously excavated archaeological 

sites from southwestern Ontario (Appendix A). The samples ranged temporally from the 

Late Archaic Davidson site, dated to 3500 B.P, to contact period Neutral sites, dating into 

the mid–1650s. The majority of the sites, however, date between A.D. 1000 and 1650. 

Sixteen Ontario Iroquoian sites were sampled, including two Princess Point sites, as well 

as nine Western Basin sites. Three sites dating prior to as the entry ofmaize into the 

region are used as baselines for C3-only resource availablity (Figure 1.3).  
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The bulk bone collagen of 324 individuals and bulk dentine from 11 individuals (n=38 

teeth) were analysed (Appendix B and H). The bulk bone structural carbonate was 

analysed for a subset of the individuals (n= 126 animals) (Tables 1.4 and 1.5, Appendices 

D and I). Serially sampled enamel was analysed for 14 archaeological individuals (n=105 

tooth sections). Collagen and structural carbonate were analysed for an additional dataset 

of modern white-tailed deer (n=16, n=14 respectively) and wild turkey (n=19, n=14 

respectively) from known recovery/hunting locations (Appendices C and E). Bulk 

dentine (n=9 teeth) and enamel serial sections were completed for two modern deer 

(n=27 teeth sections) (Appendices H and I). The carbon and nitrogen isotopic 

compositions of modern crickets (n=17), grasshoppers (n=30), and plants (n=12), 

including seeds and fruit, were also analysed to help round out the southwestern Ontario 

food web (Appendix F and G, respectively). 
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Table 1.4: Total number of collagen and structural carbonate samples from 

archaeological animals (excluding canids, wild turkeys and white-tailed deer). 

SPECIES 

COLLAGEN STRUCTURAL CARBONATE 
Ontario 

Iroquoian 
A.D. 900–

1600 

Western 
Basin A.D. 
900–1600 

Ontario 
Iroquoian 
A.D. 900–

1600 

Western 
Basin A.D. 
900–1600 

Beaver 3 -   -  - 
Birds (Aquatic and Terrestrial) 4 1  -  - 

Black Bear 14 5 5 2 
Cottontail 8  - -   - 

Freshwater Fish  - 1  - -  
Gray/black Squirrel 14  - 1 -  

Muskrat 2 1  - -  
Porcupine 2 1  -  - 
Raccoon 13 16 3 1 

Small Carnivores (i.e., mink 
and skunk) 

2 1  - -  

Turtle 3  -  - -  
Woodchuck 16  - 1 -  

TOTAL 81 25 10 3 

Table 1.5: Total number of collagen and structural carbonate samples from modern 

and archaeological canids, wild turkey and white-tailed deer. 

COLLAGEN 
Pre–

horticulture 
pre A.D. 200 

Ontario 
Iroquoian A.D. 

900–1600 

Western 
Basin A.D. 
900–1600 

Modern  

Canids 3 58 15  - 
Wild Turkeys 2 44 15 19 

White-tailed deer 8 52 21 16 
TOTAL (253) 13 154 51 35 

STRUCTURAL 
CARBONATE 

Pre–
horticulture 
pre A.D. 200 

Ontario 
Iroquoian A.D. 

900–1600 

Western 
Basin A.D. 
900–1600 

Modern  

Canids 4 49 7 -  
Wild Turkeys  - 12 1 14 

White-tailed deer 6 22 10 14 
TOTAL (141) 10 85 18 28 
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Figure 1.3: Map of southwestern Ontario including all archaeological sites from which faunal samples were selected. 

Ancestral Ontario Iroquoian Sites: 1. Lightfoot; 2. Pipeline; 3. Rife; 4. Crawford Lake; 5. Bogle II; 6. Hamilton; 7. Winking Bull; 8. Old Lilac 
Garden; 9. Princess Point; 10. Cleveland; 11. Fonger; 12. Porteous; 13. Walker; 14. Van Besien, 15. Slack-Caswell; 16. Thorold. Pre-maize Sites: 

17. Cranberry Creek; 18. Bruce Boyd; 19. Davidson. Ontario Western Basin Sites: 20. Figura; 21; Inland West Pit Sites, Loc. 3, 9 and 12; 22. 
Montoya; 23. Dobbelear; 24. Liahn I; 25. Roffelson; 26. Silverman. 
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1.6 Organization of this dissertation  
The dissertation body is organized into three substantive chapters, which will eventually 

be published in peer-reviewed journals. Each chapter deals with a different group of 

animals and includes relevant background, research questions and methodology specific 

to that set of animals. In Chapter 2 the isotopic data of wild and domestic canids are used 

to reconstruct the diets of canids, which include probable wolves, a group of large canids, 

foxes, and domestic dogs. The domestic dog results are compared to published human 

data for Ontario Iroquoian and Western Basin sites through time in order to determine 

whether dogs can serve as proxies for southwestern Ontario humans. In Chapter 3 the 

bone collagen and structural carbonate of wild turkeys recovered from Ontario Iroquoian 

sites are compared to a set of modern wild turkeys from known locations as well as 

archaeological turkeys from sites in the southeastern and southwestern United States and 

Mexico. The unique pattern of maize access noted for the Ontario Iroquoian wild turkeys 

is hypothesized as purposeful feeding. In Chapter 4 radiographic data are used to 

reconstruct the dental formation sequence of white-tailed deer, which is corroborated 

with the analysis of oxygen–isotope data from enamel serial sections from ten deer 

mandibles. The same serial sections are also used to explore the diet and ecology of the 

first year of life. Compared with models from modern deer collagen and structural 

carbonate analyses, archaeological deer are not consuming significant quantities of maize 

and show an unusual relationship between bone collagen and structural carbonate. The 

lack of maize consumption indicates that these deer were hunted, and a specific post–

mortem treatment of deer is hypothesized to explain the unusual collagen–structural 

carbonate results. In each chapter, the oxygen isotopic composition of carbonate (δ18Osc) 

for each type of animal is compared with the predicted and/or measured oxygen isotopic 

composition of local precipitation (Figure 1.2) in order to determine whether the isotopic 

composition of the animals reflects their recovery locations/sites or if they have been 

obtained from a distant region. Chapter 5 summarizes all of the findings and suggests 

future directions for expanding this research. 
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Chapter 2  

2 Domestic and wild canids 

2.1 Introduction 
“Men should be good to their dogs, for kindness is due to those that aid us, and if they 

are unkind, there may be a penalty. There is an abyss between us and the land of souls, 

and over this two dogs hold a log in their teeth. Over this log, if fortunate, the soul passes 

to the happy hunting grounds. If voices are heard saying, ‘He fed us, he sheltered us, he 

loved us,’ then the dog at each end grips hard with his teeth, holding the log with all his 

might and the soul passes safely over. But if the voices say, ‘He starved us, he beat us, he 

drove us away,’ then, when he is halfway over, the dogs let go, and he falls into depths of 

woe.” An Onodaga Story, Brehm 2011:365 from Bear c. 1932 

During the Late Woodland period (A.D. 900–1600) two contemporary cultural traditions, 

Western Basin and Ontario Iroquoian existed along a shifting frontier in southwestern 

Ontario. Both traditions involved a mixed subsistence economy, based on hunting, 

fishing, gathering and cultivation of crops that were both introduced (maize, squash, 

beans) and locally domesticated (e.g., sunflower, tobacco). Archaeological evidence has 

suggested that during the Late Woodland, Ontario Iroquoian people emphasized maize 

horticulturalism and consequently occupied village sites for longer periods than their 

Western Basin neighbours (Murphy and Ferris 1990; Warrick 2000; Williamson 1990). 

In contrast, archaeological evidence has led to the belief that Ontario Western Basin 

people de-emphasized maize cultivation because of their seasonal mobility, economic 

and settlement flexibility (Murphy and Ferris 1990). Recent isotopic analyses of human 

remains from southwestern Ontario has, however, revealed that Western Basin 

individuals in Ontario were consuming amounts of maize comparable to their Ontario 

Iroquoian contemporaries (Dewar et al. 2010; Spence et al. 2010; Watts et al. 2011). 

Because human remains are rarely accessible for analysis, the animals with which they 

interacted are used here to investigate their usefulness as dietary proxies and to examine 

patterns of landscape use and subsistence activity. 
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The relationship between humans and animals provides insight into human cultural 

choices (both economic and symbolic), ecological relationships and landscape use 

(Comaroff and Comaroff 1990; Ingold 1994; Russell 2012; Shipman 2010). Dogs, and 

their closely related canid cousins, are a particularly interesting group of animals because 

of their varied and, at times, distinctive association with humans (Morey 2006; 2010; 

Clutton-Brock 1994). In this paper, the diets of domestic dogs and humans are compared 

and patterns of horticultural land-use and hunting choices related to wild canids are 

reconstructed isotopically to determine the nature of relationships among Late Woodland 

dogs, foxes and wolves and the humans who incorporated their remains into the 

archaeological record. 

Cultural norms and taboos often dictate human-animal relations, which are complicated 

by individual preference and environmental/climatic contexts. Dogs have long been 

integrated into human society, fulfilling a range of roles including hunting companions, 

components of ritual and medicine, sacrificial objects, food, pets, village and crop guards, 

tolerated scavengers and even bed-warmers (Brizinski and Savage 1983; Coppinger and 

Coppinger 2001; Hriscu et al. 2000; Kerber 1997; Morey 2010; Olsen 1985; Olsen 2000; 

Russell 2012; White 2004; Zeuner 1963). Social influences on the relationship between 

humans and canids will also have biological consequences, such as changes in diet that 

should be reflected in the stable isotopic composition of both species.  

The carbon, nitrogen and oxygen isotopic compositions of collagen and structural 

carbonate of canid bones (wolves, foxes and domestic dogs) recovered from fourteen 

Ontario Iroquoian and six Western Basin sites (A.D. 900 – 1650) as well as three sites 

pre-dating the entry of maize to the region (Figure 2.1) are used to determine whether the 

isotopic variability of animals reflects distinct human cultural practices. Interpretive 

frameworks include the use of: (1) diets of domesticated dogs as proxies for human 

subsistence practices in southwestern Ontario, (2) comparison of human hunting 

behaviours using the diets and deposition patterns of non–domestic canids, and (3) 

oxygen isotopic composition of canid bones to explore their usefulness as proxies for 

geographic movement (e.g. trade of dogs or range of hunting territories).  
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Figure 2.1: Map of southwestern Ontario with all sites with canid isotope data mentioned in the text, including previously 

published isotopic data (Booth et al. 2011; Conolly et al. 2014; Katzenberg 1989; 2006).7 

                                                 
7 Ancestral Ontario Iroquoian Sites: 1. Pipeline; 2. Rife; 3. Crawford Lake; 4. Bogle II; 5. Hamilton; 6. Winking Bull; 7. Old Lilac Garden; 9. Fonger; 9. Porteous; 10. Walker; 11. Van Besien, 12. 
Slack-Caswell; 13. Thorold. Pre-maize Sites: 14. Cranberry Creek; 15. Bruce Boyd; 16. Davidson. Ontario Western Basin Sites: 17. Figura; 18; Inland West Pit Sites, Loc. 9 and 12; 19. Dobbelear; 20. 
Roffelson; 21. Silverman. Sites with previously published dog isotope data: (A.) Ball; (B). Holly; (C.) Kelly-Campbell. (D.) Draper; (E.) Jacob’s Island; (F.) Seed; (G.) Wallace (H.) Cleveland. 
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2.1.1 History of dogs in North America 

The association of dogs with humans spans continents and millennia, and is a diverse and 

complicated relationship. It is generally accepted that dogs are the first and most 

successful domesticated species (Coppinger and Coppinger 2001; Clutton–Brock 1989; 

Wang and Tedford 2008), and are present on every continent occupied by humans by 

4000 B.P. (Crockford 2000). 

There is debate regarding the timing of the domestication of C. familiaris. Some genetic 

evidence suggests domestication occurred 100,000 years ago (Wayne 1993; Wayne and 

Lehman 1992; Vilà et al. 1997). Raiser (2004:222-3) argues that the dog-wolf split at that 

time was unrelated to human actions but set the stage for the domestication of dogs 

approximately 15,000 years ago. Recent genetic data along with archaeological and 

morphological evidence support the more recent domestication date (Benecke 1987; 

Morey 2006; Morey 2010: 81; Savolainen et al. 2002). It is possible that a subspecies of 

wolf emerged over 80,000 years earlier but Vilà et al. (1997) note that the morphological 

changes evident in the zooarchaeological record were only manifested with the 

emergence of agriculture.  

The social, hierarchical structure of wolf packs has been cited as key reason for their 

domestication (Coppinger and Copping 2001; Morey 2010; Schwartz 1997), though the 

mechanism for domestication is unclear. Hypotheses include: (1) hunting cooperation 

between humans and wolves stemming from competition within the same ecological 

niches, and resulting in mutually beneficial reduction of competition through cooperation 

(Clutton-Brock 1981; Cummins 2002; Morey 1990; 2010; Schwartz 1997; Zuener 1963), 

(2) “pet-keeping” of young wolf pups as companions (Clutton-Brock 1989; Morey 2004; 

Zuener 1963), and (3) a symbiotic relationship between canids and humans derived from 

tolerated scavenging and protection of crops and/or villages (Coppinger and Coppinger 

2001; Russell 2002; Zeuner 1963). 

Regardless of the timing and reason for dog domestication, as ancient humans crossed 

from the Old World into the New World during the Late Pleistocene, they were 

accompanied by domesticated dogs (Fiedel 2005; Wang and Tedford 2008). 
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Mitochondrial DNA from Alaskan and Central American dogs demonstrates that New 

World dogs originated from several lineages of Old World dogs (Leonard et al. 2002). 

Humans and dogs spread rapidly and successfully across many parts of North, Central 

and South America (Lupo and Janetski 1994; Raiser 2004; Schwartz 1997). The earliest 

remains of domestic dogs in North America are found in the northwest at Old Crow in the 

Yukon Territory dated to 11,450–12,660 B.P. and in Fairbanks, Alaska, dated to 10,000 

B.P. (Beebe 1980; Olsen 1985). By 7000 B.P., dogs are found in Illinois (Morey and 

Waint 1992), Wyoming (Walker and Frison 1982), Idaho (Yohe and Pauesic 2000, Haag 

1970, Lawrence 1967; 1968) and as far south as Arizona (Warren 2000). While dogs are 

presumed to be present in Ontario during the Paleo–Indian Phase (pre–10,000 B.P.), 

preserved dog remains are not found until the Ontario Archaic period (10,000–3000 B.P.) 

(Birzinski and Savage 1983; Oberholtzer 2002).  

2.1.2 Dogs and other canids in the Great Lakes region 
“The dogs in this country howl rather than bark, and all have upright ears like foxes, but 

in other respects all are like the moderate–sized mastiffs of our villagers. They are used 

instead of sheep to be eaten at feast, they bring the moose to bay and discover the 

animals’ lair, and they cost their master very little... On different occasions I have been 

present at feasts of dog. I freely admit that at first it was abhorrent to me, but I had not 

eaten of the meat twice before I found it good, with a taste rather like pork; moreover 

(like pigs) their [dog’s] most usual fare is nothing but the refuse they find in the streets 

and on the roads. They [dogs] also very frequently put their pointed nose into the 

savages' pot of sagamité: but it is not thought to be less' clean on that account”  

Wrong 1939:226 from Sagard’s 1632 The Long Journey into the Country of the Huron 

Domesticated dogs (C. familiaris), gray wolves (C. lupus) and foxes (V. vulpes and U. 

cinereoargenteus) co-habited southwestern Ontario prior to European contact, but 

coyotes (C. latrans) were absent in the region until two centuries after Europeans arrived 

(Geese and Bekoff 2004; Gomper 2002). Figure 2.2 provides the taxonomic relationships 

for extant canids in southwestern Ontario. Allen (1920) documented seventeen breeds of 

indigenous dogs present in the New World. In the Northeastern Woodland region, the 

“Larger or Common Indian Dog” (see also, the “North American” dog, “C. canadensis” 
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identified by Richardson 1829:80–2) was present (Allen 1920:457; Cummins 2002; 

Richardson 1829) and was significantly smaller than the Inuit dogs to the north (Allen 

1920:462; Richardson 1829 80–82). The smaller “Short–legged Indian Dog” may also be 

present in Ontario as remains of this variety were found in Ohio (Allen 1920). The 

possibility of wolf–dog hybrids exists according to some accounts (Barton 1805; 

Richardson 1829) as all members of the genus Canis are inter–fertile (Schwartz 1997). 

As the only domesticated animal in pre-contact Ontario (Cummins 2002; Ferris 1989; 

Thwaites 1896–1901 2), dogs served a variety of roles among the indigenous peoples of 

the Great Lakes. They were companions and protectors (Cummins 2002; Richardson 

1829; Thwaites 1896–1901 23), hunting partners (Thwaites 1896–1901 1; 2; 60; Barton 

1805) and components of ritual and feasts (Birzinski and Savage 1983; Oberholtzer 2002; 

Thwaites 1896–1901; 20). The role of dogs among Iroquoian groups, such as the Huron, 

is well-established in ethnohistoric accounts (Harrington 1921; Katzenberg 1989; 

Katzenberg 2006; Oberholtzer 2002; Wrong 1939) but the role dogs played among 

Ontario Western Basin peoples is not as well understood. 
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Figure 2.2: Taxonomic relationships of canids present in southwestern Ontario. 
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Dogs around the world are often both simultaneously revered and a practical food source 

(Schwartz 1997; Morey 2010). Schwartz (1997:62) attributes the “mystification” of dog 

consumption to the social nature of dogs and the personal bonds they form with humans 

compared with other modern domesticates. Globally dogs are also the most common 

animals used in sacrifice, and there is extensive ethnohistoric and archaeological 

evidence of dog consumption among Eastern Woodland groups, often within a ritualized 

context (Blau 1964; Brizinkski 1979; Brizinski and Savage 1983; Oberholtzer 2002; 

Thwaites 1896–1901 23; Wrong 1939). Sagard describes their consumption as well as the 

purposeful fattening of dogs for ceremonies: 

“But they will only feed dogs, and sometimes young bears for important feasts, because 

their flesh is very good; and, in order to have it ready they fatten them…. they give them 

the remains of their sagamite [a stew of corn and grease] to eat.” (Wrong 1939:220). 

Further, dog consumption in this area was often associated with specific events, such as 

marriage (Wrong 1939; Schwartz 1997; 2002), departure for hunts, voyages or battle 

(Cummins 2002; Kurath et al. 2009), and for healing the sick and injured (Thwaites 

1896–1901:43; 60; Wrong 1939). Archaeologists now anticipate the presence of dog 

burials (often attributed to ritual or social contexts) on Late Woodland sites because they 

are so ubiquitous (Smith 2000).  

Great Lakes mythologies provide further insight into the ambiguous ideological role of 

dogs (i.e., wild versus tame) (Schwartz 1997). By occupying the liminal space between 

the forest and village, dogs were regarded as ideal mediators between the worlds of man 

and animals because they possessed both human and animal traits (Engelbrecht 2003; 

Cantwell 1980). For example, some mythologies describe dogs as having souls that pass 

into the afterlife (Schwartz 1997). For these reasons, among the Iroquois, dogs could be 

substituted for humans in ceremonial sacrifices (Russell 2012), and the dog sacrifices of 

both the Algonkian and Iroquoian peoples were always made to the “Great Spirit” 

(Obeholtzer 2002:9). Numerous sacred legends from the northeastern region include 

dogs, foxes and wolves (Brehm 2011; Bruchac 1995; Engelbrecht 2003; Kurath et al. 

2009), and clan names and effigies provide further evidence of the symbolic significance 
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of canids in Great Lakes spiritualism (Dawson 1966; Ellis 2002; Lennox 2004; Mathews 

1980; Parmalee and Stephens 1972; Parmenter 2010). For example there is the thieving 

(or resourceful) fox in Ho–chunk, Ojibwe and Anisinâbe legends (see for example the 

stories by Hágaga, Wâsāgunäckang and Johnston collected by Brehm 2011). Wolves are 

often described as the wild analogs of dogs and are fiercely loyal to humans as 

exemplified by stories of the Anisinâbe, Ojibwe and Winnebago (see for example Brehm 

2011). The story of “How Graywolf Became Guardian of the World” (Smith 1997) is an 

illustration of the sacred place of wolves as the protagonist that is simultaneously wild 

and connected with humans: “Gray wolf is free, and his call is always heard the world 

over, for he is the mightiest wolf of them all. He is the protector of the human race” 

(Brehm 2011:364–5). Russell (2012) noted that the ideological value of wolves may 

account for their rarity in the archaeological record, as there are often taboos against 

killing them, except for symbolic purposes, or for self-protection or protection of food 

resources. Understanding the spiritual and practical roles of canids among Late 

Woodland people is critical for interpreting patterns of food access, hunting choice and 

discard practices (i.e., purposeful burial versus placement in middens). 

Published faunal data demonstrate the limited role of foxes and gray wolves as hunted 

species (Foreman 2011; Lennox 1977; Stewart 1991; 2000). The majority of canid 

remains found at Ontario Iroquoian and Western Basin sites are C. familiaris (domestic 

dogs) or Canis sp., and the majority of Canis sp. remains are probably domestic dogs 

(Foreman, personal communication 2013). Foxes are more ubiquitous than wolves at 

Ontario Iroquoian sites but are relatively rare at Western Basin sites. No known wolves 

have been recorded in the Western Basin faunal assemblage data.  

2.1.3 Dogs as proxies for human diet 

Burleigh and Brothwell (1978) were the first to use isotopic analyses of domesticated dog 

remains as proxies for human diet. They noted an unexpected enrichment in carbon-13 in 

3000 year old Peruvian dog hair and suggested the dogs had consumed large quantities of 

maize, positing that dogs, humans and other fauna could be used as supportive evidence 

of maize cultivation in the past. Since 1978, stable isotopic analyses of dogs have 

successfully provided evidence of: production of maize and other plant domesticates 
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(Allitt et al. 2008; Bentley et al 2005; 1978; Hogue 2003; 2006), trends in marine 

subsistence economy (Cannon et al. 1999; Clutton–Brock and Noe–Nygaard 1990; 

Fischer et al. 2007; Guiry and Graves 2013; Rick et al. 2011; Schulting and Richards 

2002) and canid-human relations, e.g., ritual uses of dogs (Booth et al. 2011; White 

2004a; White et al. 2001, 2004b). Guiry (2012:352) recently coined the term, “canine 

surrogacy approach (CSA),” by which he asserts that isotopic analyses of dogs can 

provide an analog for human subsistence practices that is either direct (e.g. dogs are 

“source” information regarding human diet) or indirect (e.g., dogs provide evidence of 

specific food procurement behaviour, such as maize cultivation). The assumptions 

underlying the belief that dogs can serve as proxies for human diet are: (1) dogs and 

humans are metabolically similar and incorporate isotopes in a similar manner, and (2) 

dogs would have accessed the same foods as their human companions either as 

scavengers of food waste or human faeces (coprophagy), or through purposeful feeding 

by humans (Alitt et al. 2008; Cannon et al. 1999; Guiry 2012; Katzenberg 1989: 

Tankerslay and Koster 2009). Intentional feeding of dogs may imply: (1) care and 

affection of a companion “pet”, guardian and/or hunting partner, (2) fattening for use as 

food, or (3) preparation for specific ritual or ceremonial contexts, whether or not the dog 

was to be eaten (Olsen 2000; White et al. 2001). Currently there are no studies examining 

the metabolic comparability of human and dog isotopic fractionation and incorporation of 

isotopes into tissues so it is not possible to directly assess this assumption. The 

assumption that dogs have access to human food should be established for each 

archaeological context independently.  

2.2 Materials and methods 

2.2.1 Stable isotopes 

As an organism interacts with its environment by drinking and eating, it incorporates the 

stable isotopic composition of ingested substances into its tissues. The stable isotopic 

compositions of animal tissues are expressed as δ–values in per mil (‰), using the 

formula (after McKinney et al. 1950:730):  

δ = (Rsample/Rstandard) / Rstandard [Equation 2.1] 
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where R = 13C/12C, 15N/14N or 18O/16O. Carbon isotopic compositions are standardized 

relative to Vienna PeeDee Belemnite (VPDB) (Coplen 1996; 2011). Nitrogen is 

standardized relative to AIR (Mariotti 1983). Oxygen is expressed 18O/16O ratio and is 

standardized to the Vienna Standard Mean Ocean Water (VSMOW) (Coplen 1996; 

2011). An expanded description of stable carbon, nitrogen, and oxygen isotope analysis is 

proved in Chapter 1, Section 1.3. 

2.2.2 Canid identification 

Samples were selected from previously excavated faunal collections housed at various 

institutes from across southwestern Ontario (D.R. Poulton & Associates Inc.; Department 

of Anthropology, McMaster University; Department of Anthropology, The University of 

Western Ontario; Ontario Museum of Archaeology see Appendix A for site descriptions). 

Specimen identification was completed by the author, Dr. Lindsay Foreman and Dr. Lisa 

Hodgetts using the Zooarchaeology Reference Collection, Department of Anthropology, 

The University of Western Ontario. The comparative collection includes a modern adult 

male husky (~ 35kg) as well as an adult male red fox, an adult coyote, and an adult, male 

gray wolf. Morphology was the primary method for evaluating species identification but 

size was used as an additional means to support identification. Figure 2.3 illustrates the 

variation in morphology and size among domestic dogs, foxes and wolves.
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Figure 2.3: Comparison of dog mandibles used for canid identification.   

Above: Archaeological samples including the largest canid mandible analysed in this study (Hamilton 26), and a typically–sized 

mandible (IWP(1)–27). The Kirche Site dog mandible8 is from a contemporary Late Woodland site and is comparable in size to canids 

identified as Canis familiaris. Below: modern fox, husky and gray wolf used for comparative purposes9.

                                                 
8Image courtesy of the Canadian Museum of Nature. 
9Images courtesy of the Department of Anthropology, The University of Western Ontario. 
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Due to the fragmentary nature of many of the remains examined and morphological 

similarities among different canid species, identification of species was made cautiously 

and conservatively. The archaeological record of the Late Woodland and preceding 

periods could include several canids: the domestic dog (C. familiaris), the gray wolf (C. 

lupus), the red fox (V. vulpes) and common gray fox (U. cinereoargeneus). Although the 

size of pre–contact, Ontario dogs appears to be slightly larger than that of full-sized, male 

foxes (Allen 1920; Cummins 2002; Richardson 1829), distinguishing large domesticated 

dogs from wolves can be particularly challenging (Morey 2010). 

For this study, the category of domestic dog (C. familiaris) was reserved for well-

preserved samples that usually had a mandible with teeth. The forty-four C. familiaris 

samples range in size from slightly larger than the modern, male red fox to approximately 

2/3rd the size of the adult husky, which corresponds well with the predicted size range for 

both the “Common Indian Dog” described by Allen (1920) and the Neutral dog described 

by Prevec and Nobel (1983). All juvenile remains were categorized as Canis sp. due to 

problems of differentiating the various canid species (Coppinger and Coppinger 2001), 

with the exception of Pip(2)–028, an older juvenile, which was categorized as a Canis sp. 

(lg.). Table 2.1 summarizes the canid samples collected and analysed for this study.  

Large Canis sp. was used to describe all remains larger or comparable in size to modern, 

adult male huskies (“Canis sp. (lg.) dog, hybrid or wolf”). The “Canid cf. sm. dog or fox” 

category was reserved for samples that were either small dogs or foxes and was usually 

comprised of long bone fragments. “Canid cf. fox” was used to designate foxes primarily 

identified by mandibles. Canid remains identified only as Canis sp. (no size designation) 

were comparable in size to the C. familiaris, but due to their fragmentary nature could not 

be definitively identified as to species. These canid remains were in almost all cases 

probably C. familiaris.  

Seventy-four specimens were selected for isotopic analysis (Table 2.1). An additional 

three adult specimens analysed by Booth et al. (2011) from the Cleveland (n=2) and 

Holly (n=1) sites are included in the discussion. While the majority of the specimens 

analysed in this study represent fragmentary remains recovered from midden or pit 
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features, some may represent purposeful or ritual burials. Those special case burials (for 

example; complete burials or burials associated with pottery) are noted in the 

Appendices. Published archaeological dog data (Allitt et al. 2008; Conolly et al. 2014; 

Katzenberg 1989; Katzenberg 2006) and modern canid isotopic data (Fox-Dobbs et al. 

2007; Lavin et al. 2003; Urton and Hobson 2007) are also used for comparison in the 

discussion (Table 2.7 A and B). Appendices B and D summarize the results and 

descriptions for all canids analysed in this study.  

Table 2.1: Summary of canids sampled and analysed for this study. 

 Pre–horticulture 
3500 B.C. – A.D. 

200 
(sites n=3) 

Western Basin 
A.D. 900–1600 

(sites, n=6) 

Ontario 
Iroquoian A.D. 

900–1600 
(sites, n=14) 

C. familiaris (Domestic Dog) 1 7 33 

Canis sp.(dog or hybrid) 0 6 juvenile 10 adult, 2 
juvenile 

Canis sp. lg. (Gray Wolf, 
Hybrid or lg. Dog) 

1 0 2 adult, 1 
juvenile 

Canid (sm. Dog or Fox) 0 0 4 
Canid cf. fox (red or gray) 0 1 6 

TOTAL 2 8 (6 juveniles) 55 (3 juveniles) 
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2.2.3 Bulk bone sampling 

Samples were selected based on availability and varied by bone type (e.g. mandible, 

tibia), side (left or right), preservation state and size (complete or fragmentary). In the 

case of complete bones or large bone fragments, a piece of the bone (approximately 

500mg) was removed using a handheld Dremel. All efforts to preserve the integrity of the 

remaining bone for future study were made. All bones were gently cleaned with a brush 

and distilled water and allowed to dry overnight at room temperature.  

Trabecular bone was separated from the cortical bone using clean dental instruments. The 

remaining 300–500mg piece of cortical bone was crushed with a porcelain mortar and 

pestle and put through a set of sieves. Powdered bone was collected at three intervals: (1) 

180 to 850 µm (for collagen analysis), 2) 63 to 180 µm (for carbonate analysis) and (3) 

45 to 63 µm (for FTIR analysis).  

2.2.4 Stable isotopic analysis 

All isotopic analyses were conducted at the Laboratory for Stable Isotope Science, in the 

Department of Earth Sciences at The University of Western Ontario. 

2.2.4.1 Collagen extraction protocol (δ13Ccol, δ15Ncol)  

Bone collagen analysis involved multiphase tissue preparation to remove lipids, 

inorganics and humics. The protocol used is a modification of Longin’s (1971) collagen 

extraction method (Szpak et al. 2009). Crushed bone samples were weighed and placed in 

vials. A 2:1 chloroform:methanol solution was used to extract lipids (adapted from the 

method of Bligh and Dyer 1959; Kates 1986). The inorganic portion of the bone or tooth 

was removed by treating the samples with 0.50M HCl at room temperature. The slow 

demineralization of the bioapatite took several days. Bone samples were deemed 

demineralized when fragments felt gelatinous and formed pseudomorphs. Once the 

demineralized tissue was rinsed, humic acids and soil contaminants were removed using 

multiple 0.1M NaOH washes.  
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The extracted collagen was then made water–soluble by heating the samples in slightly 

acidic water in order to produce a collagen “gelatin” (Chisholm 1989:14). The water–

soluble collagen was carefully transferred into clean vials and dried. The dried collagen 

was weighed to provide collagen yield. The extracted collagen was weighed (0.390 ± 

0.01 mg) into 3.5 x 5.0 mm tin capsules, which were introduced into the Costech 

Elemental Combustion System (ECS 4010) coupled to the Delta V Plus Isotope Ratio 

Mass spectrometer for isotopic measurements.  

The collagen provided δ13Ccol and δ15Ncol values as well as the carbon and nitrogen 

content, which was used to calculate its C:N ratio. The δ13Ccol values were calibrated to 

Vienna Pee Dee Belemnite (VPDB) using the standards USGS-40 (accepted value, –

26.39‰), and USGS-41(accepted value = +37.63 ‰). The δ15Ncol values were calibrated 

to AIR using USGS-40 and USGS-41 (accepted values = –4.52 ‰ and +47.57 ‰, 

respectively), following Coplen (1994) and Coplen et al. (2006). An internal laboratory 

standard, Keratin (#90211, MP Biomedicals), was analysed approximately every fifth 

sample to determine the accuracy and precision of the collagen analysis. Both were very 

good. The accepted keratin value for δ13Ccol is –24.04‰, which compares well with the 

mean δ13Ccol value of –24.07 ± 0.08‰ (n=72) obtained here; for δ15Ncol the accepted 

value for the keratin is 6.36‰, compared to the mean δ15Ncol value of 6.29 ± 0.17‰ 

(n=71) obtained here. Duplicates (i.e., replicate analyses of the same collagen extraction) 

and method duplicates (i.e., a different extraction and analysis of collagen on the same 

sample) were performed on ~10% of all samples. Method duplicates provided 

reproducibility values of ± 0.07‰ for δ13Ccol and ± 0.05‰ for δ15Ncol. The analytical 

precision for δ13Ccol duplicates was ±0.03‰, and for δ15Ncol was ±0.05‰. 

2.2.4.2 Carbonate extraction protocol (δ13Csc, δ18Osc) 

It was necessary to first determine whether or not tissue samples from all the animals 

(i.e., including both mammals and birds) should be pre-treated to remove secondary 

carbonates and organic matter. In order to determine this, Pre-treated versus untreated 

data were compared for fifteen bone pairs (n=30), three antler pairs (n=6), and fifty-four 

enamel pairs from twelve individuals (n=108). Pre-treatment of the structural carbonate 

was necessary because some samples showed the presence of secondary carbonates. 
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Therefore all bone and enamel samples were pretreated using the protocols developed by 

Lee-Thorp (1989) to remove organic material and secondary carbonates. Successful 

removal of the secondary carbonates was confirmed by FTIR analysis.  

The two-step process involved the removal of organic matter using an excess of 1% 

reagent grade  sodium hypochlorite, reacted with the powdered tissue at room temperature 

for 72 hours with bone and 24 hours with enamel. Samples were then rinsed multiple 

times with Millipore water to remove the sodium hypochlorite solution. Next, samples 

were reacted with 0.1 M acetic acid for 4 hours at room temperature in order to remove 

diagenetic (secondary) carbonates. The samples were again washed multiple times with 

Millipore water and then freeze-dried overnight to remove the remaining moisture. The 

pretreated samples were weighed (approximately 0.8–1.0mg) into Multiprep sample vials 

and the isotopic composition of the structural carbonate was analysed using a Micromass 

Multiprep autosampler attached to a VG Optima dual–inlet IRMS, following Metcalfe et 

al. (2009). 

The δ13Csc values were calibrated to Vienna Pee Dee Belemnite (VPDB), following 

Coplen (1994), using the NBS–19 standard (accepted value of 1.95 ‰) and Suprapur 

(accepted value of –35.28 ‰). The δ18O values were calibrated to Vienna Standard Mean 

Ocean Water (VSMOW), following Coplen (1996), using NBS-19 and NBS-18 standards 

(accepted values of 28.60 ‰ and +7.20 ‰, respectively). An internal laboratory calcite 

standard, World Standard 1 (WS-1), was analysed approximately every fifteenth sample 

in order to assess the accuracy and precision of the carbonate analyses. The mean δ13Csc 

value of 0.80 ± 0.18‰ (n=33) and the mean δ18Osc value of 26.24 ± 0.17‰ (n=32) 

compared favourably to the accepted WS-1 values of 0.76‰ and 26.23‰, respectively. 

Carbonate pre-treatment duplicates and method duplicates were conducted ~10% of the 

canid samples with a mean reproducibility of ±0.09‰ for δ13Csc and ±0.17‰ for δ18Osc. 

The analytical precision for δ13Csc was ± 0.06‰ and for δ18Osc was ± 0.10‰.  

2.2.4.3 Fourier transform infra-red spectroscopy (FTIR)  

Prior to pre-treatment, Fourier transform infra-red (FTIR) spectroscopy was conducted 

for all canid bone samples whose structural carbonate isotopic composition was to be 
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analysed. FTIR spectroscopy provided crystallinity indices (CI), carbonate/phosphate 

(C/P) ratio and a peak profile that was used to detect contaminants or recrystallization, 

(e.g., peaks at 1096cm-1 may indicate introduction of francolite, caused by a substitution 

in the hydroxyl sites by fluorine) (Nielsen-Marsh and Hedges 2000; Shemesh 1990; 

Weiner and Bar-Yosef 1990; Wright and Schwarcz 1996). A high CI may indicate 

isotopic alteration (Surovell and Steiner 2001; Weiner and Bar-Yosef 1998). 

Crushed bone powder (~2mg) was mixed with 200mg potassium bromide and heated in a 

90 °C oven for at least 24 hours. The powder was then formed into a disk under pressure 

and analysed using a Bruker Vector 22 Spectrometer. TheCI, C:P ratios, and peak 

profiles were provided for each sample by the FTIR analysis. The expected CI for 

archaeological bone may reach as high as 3.5 and 4.2 (Stuart-Williams et al. 1998; 

Weiner and Bar-Yosef 1990). Tooth enamel has a higher expected CI index than bone 

(Wright and Schwarcz 1996). The generally accepted C:P ratio range for unaltered bone  

is 0.3 to 0.6 (King et al. 2011; Nielsen-Marsh and Hedges 2000; Pucéat et al. 2004; 

Wright and Schwarcz 1996).  

2.3 Results 

2.3.1 Sample integrity  

Post-mortem alteration of collagen was evaluated using collagen yield and 

carbon:nitrogen (C:N) ratios of the bone samples (Table 2.3). Fresh, modern bone 

contains approximately 22% collagen by weight (Van Klinken 1999), and samples 

yielding less than 1% are generally considered to be too degraded to give reliable results 

(Van Klinken1999; Ambrose 1993). The mean collagen yield was 12.1±6.1% (range 1.7 

to 22.2%). Only one canid sample, Cra-10, was excluded because of low collagen yield 

(0.6%). All samples fell within the 2.9 to 3.6 range for C:N ratio recommended by 

DeNiro (1985) (mean = 3.3±0.1, range 2.6 to 3.6).  

Post-mortem alteration of the inorganic portion of bone (bioapatite) was assessed using 

FTIR spectroscopy, percentage of bioapatite by weight and percentage of CO3 (as CO2) 

by weight (Table 2.3).  
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The FTIR analysis determined that the canid mean CI (2.74±0.16), and range (2.46 to 

3.26) are comfortably below the accepted upper limit (Table 2.2), and so re-

crystallization is not indicated for any samples. The mean C:P ratio for the canid bone 

samples was within the accepted range of  0.3 to 0.6 (0.53±0.33, range = 0.32 to 0.88) but 

some canids (n=20) had C/P ratios >0.6. These samples were not rejected, however, 

because their CI did not indicate re–crystallization and there is no evidence of 

contaminants or recrystallization in their FTIR peak profiles. Further, a C:P comparison 

between untreated and pretreated bone samples (n=26 canid sample pairs) showed that 

pre-treatment lowered the C:P ratio for over 92% of the canids, shifting the mean C:P to a 

mean of 0.33±0.08 and the range to 0.23 to 0.64 (Table 2.2). Finally, there were no 

significant correlations between the canid CI values or C:P ratios and δ13Csc values. No 

structural carbonate isotopic compositions were rejected based on the FTIR results 

because: (1) the CI indices were acceptable for all canid samples, (2) there were no 

unexpected peaks in the FTIR spectrum, and (3) pre-treatment lowered C:P ratios to 

within the expected range.  

Table 2.2: Summary of FTIR Crystallinity Indices (CI) and Carbonate/Phosphate 

ratios (C/P) for canid bone samples before and after pre-treatment 

Canids n mean±std dev (range) 
CI Before Pre-treatment 58 2.74 ±0.16 (2.46 to 3.26) 
CI After Pre-treatment 26 2.83 ±0.16 (0.32 to 0.88) 
       
C:P Before Pre-treatment 58 0.53 ±0.17 (2.48 to 3.28) 
C:P After Pre-treatment 26 0.33 ±0.08 (0.23 to 0.64) 

Fresh bone has an expected bioapatite [Ca10(PO4)6(OH)2]) yield by weight between 70 –

75% (Ambrose 1993; Sillen 1989) to 90% (Lee-Thorp 1989). After removal of the 

organic portion of the bone, the mean yield by weight for the canid bone was 72.3±7.6% 

(range 46.3 to 90.7%). For pretreated bone samples the percentage of CO3 should range 

from 2.0 to 7.9% (Lee-Thorp 1989; Lee-Thorp and Sponheimer 2003; Wright and 

Schwarcz 1996) while enamel has a narrower range of 4.5 to 4.1% (Rink and Schwarcz 

1995). The mean percentage of CO3 for canid samples fell within this range with a mean 

of 5.99±1.22% (range = 2.50 to 7.90%). There were no significant correlations between 

δ13Csc and δ18Osc values and percentage of inorganic content by weight or percentage of 
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CO3 by weight. Therefore, no isotopic data for structural carbonate samples were 

rejected. 

2.3.2 Adult canid remains isotope results 

The isotopic data for adult and juvenile canids (all identified species together) are 

summarized in Table 2.4 and a more comprehensive table including site dates and 

references is presented in Appendices B and D. For the canids from pre A.D. 200 sites, 

the mean δ13Ccol and δ15Ncol values were –21.32±0.76‰ and 9.35±1.37‰ respectively. 

The mean δ13Csc and δ18Osc values were –10.21±2.85‰ and 21.39±1.83‰, respectively. 

The mean Δ13Csc–col value was +9.87±1.87‰. 

The overall mean isotopic compositions for the Ontario Iroquoian canids by species are 

listed in Table 2.5 and visualized as box plots in Figure 2.4. The Ontario Iroquoian C. 

familiaris had a mean δ13Ccol value of –12.57±1.44‰ and a mean δ15Ncol value of 9.46 

±0.74‰. They also had a mean δ13Csc value of –6.55 ±1.42‰ with a mean Δ13Csc–col 

value of +6.84±0.54‰, and the mean δ18Osc value was 21.08±1.18‰. For the Western 

Basin sites, the mean δ–values were –14.03±1.45‰ for δ13Ccol, 10.25±0.76‰ for 

δ15Ncol,–6.35±1.00‰ for δ13Csc and 21.23±1.02‰ for δ18Osc with a mean Δ13Csc–col value 

of +7.48±3.89‰. 

Nine Ontario Iroquoian specimens could not be identified beyond Canis sp., though most 

likely represent C. familiaris based on size. Their mean δ13Ccol value was –12.04±1.79‰ 

and the mean δ15Ncol value was 9.50±0.56‰. The Canis sp. (n=8) had a mean δ13Csc of –

5.37±1.68‰ and a mean δ18Osc of 21.29±1.17‰. Six Ontario Iroquoian canids identified 

as foxes had mean values of –18.81±0.66‰ for δ13Ccol and 8.81 ±0.90‰ for δ15Ncol. 

Their mean δ–values were –10.20±1.89‰ for δ13Csc and 20.90±1.20‰ for δ18Osc. The 

single Western Basin fox had δ13Ccol and δ15Ncol values of –19.34‰ and 8.74‰, and 

δ13Csc and δ18Osc values of –10.37‰ and 20.61‰, respectively. Its Δ13Csc–col was 

+8.92‰. 
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Table 2.3: Summary of sample integrity checks for collagen (C:N ratio and collagen yield) and structural carbonate 

(bioapatite yield by weight and percentage of CO3 by weight). 

 ncol C:N Ratio 
(Range) 

% Collagen by Weight 
(Range) 

nsc % Bioapatite by Weight 
(Range) 

% CO3 by Weight  
(Range) 

Pre A.D. 200, Adults  2 3.03±0.47 4.1±3.3 3 86.5±3.4 5.64±2.27 
 (3 sites)  (2.59–3.53) (1.7 –6.5)  (82.6–88.8) (2.50–7.65) 

Western Basin Sites, Adults 10 3.34±0.13 5.6±2.9 7 78.6±012.6) 5.60±1.44 
(2 sites)  (3.19–3.52) (2.2–10.1)  (61.6±90.7) (3.70–7.62) 

Western Basin Sites, Juveniles 6 3.22±0.09 9.0±3.0 1 N/A N/A 
(4 sites)  (3.06–3.30) (6.8–11.1)    

Ontario Iroquoian Sites, Adults 55 3.30±0.09 13.0±6.1 46 70.7±6.3 6.05±1.12 
(2 sites)  (3.05–3.58) (1.9–22.2)  (46.3–79.4) (2.71–7.90) 

Ontario Iroquoian Sites, Juveniles 3 3.41±0.08 14.3±2.7 3 73.9±2.9 6.37±0.81 
(13 sites)  (3.34–3.50) (11.2–16.5)  (70.7–76.3) (5.47–7.04) 
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Table 2.4: Summary of collagen (δ13Ccol, δ15Ncol) and structural carbonate (δ13Csc, δ18Osc) results for all canids.  

 

 
ncol δ13Ccol (‰, VPDB) 

(Range) 
δ15Ncol (‰, AIR) 

(Range) 
nsc δ13Csc (‰, VPDB) 

(Range) 
δ18Osc (‰, VSMOW) 

(Range)  
∆13Csc–col 

(Range)  
Pre A.D. 200  3 –21.32±0.76 9.35±1.37 4 –10.21±2.35 20.87±1.96 10.31±1.54 

Adults  (–21.86 to –20.78) (8.38 to 10.31)  (–13.31 to –7.72) (18.42 to 22.57) (8.55 to 11.43) 
Western Basin 9 –14.56±2.2.17 10.10±086 6 –6.92±1.77 21.14±0.96 7.48±3.89 

Adults  (–19.34 to –12.00) (8.74 to 11. 41)  (–1037 to –4.98) (19.54 to 22.30) (4.73 to 10.23) 
Western Basin 6 –14.85±2.69 11.54±1.67 1 3.47 20.41 7.65 

Juveniles  (–18.54 to –11.12) (8.94 to 13.99)     Ontario Iroquoian  55 –13.74±3.19 9.28±0.92 46 –7.27±2.74 21.13±1.14 6.56±1.42 
Adults  (–22.13 to –9.30) (5.39 to 11.34)  (–15.79 to –3.19) (18.52 to 23.81) (4.11 to 11.18) 

Ontario Iroquoian  3 –17.00±5.97 8.08±1.80 3 –9.16±3.93 21.60±1.34 7.84±2.30 
Juveniles  (–21.60 to –10.26) (6.04 to 9.46)  (–11.48 to –4.63) (20.14 to 22.77) (5.63 to 10.22) 
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Table 2.5: Summary of collagen (δ13Ccol, δ15Ncol) and structural carbonate (δ13Csc, δ18Osc) results for adult remains by species. 

 
 

ncol δ13Ccol (‰, 
VPDB) (Range) 

δ15Ncol (‰, AIR) 
(Range) 

nsc δ13Csc (‰, VPDB) 
(Range) 

δ18Osc (‰, VSMOW) 
(Range)  

∆13Csc–col 

(Range)  
Western Basin Sites, Adults 9 –14.03±1.45 10.25±0.76 6 –6.35±1.00 21.23±1.02 7.48±3.89 

cf. C. familiaris  (–16.29 to –
12.00) 

(8.99 to 11.41)  (–7.54 to –4.98) (19.54 to 22.30) (4.73 to 10.23) 

Western Basin Sites, Adults 1 –19.34 8.74 1 –10.37 20.61 8.97 
Canid cf. fox        

Ontario Iroquoian Sites, 
Adults, cf. C. familiaris 

33 –12.57±1.44 9.46±0.74 27 –6.55±1.42 21.08±1.18 6.84±0.54 

  (–15.82 to –9.30) (7.87 to 11.34)  (–9.32 to –4.42) (18.52 to 23.40) (6.41 to 7.45) 
Ontario Iroquoian Sites, 

Adults, Canis sp. 
9 –12.04±1.79 9.50±0.56 8 –5.37±1.68 21.29±1.17 6.89±0.81 

  (–14.78 to –
10.14) 

(8.13 to 9.98)  (–7.49 to – 3.19) (19.81 to 23.81) (6.32 to 7.46) 

Ontario Iroquoian Sites, 
Adults, Canid cf. fox 

6 –18.81±0.67 8.81±0.90 6 10.26±1.82 20.91±1.18 7.98±1.62 

  (–19.67 to –
17.95) 

(7.57 to 10.30)  (–13.03 to –
8.58) 

(19.39 to 22.39) (5.74 to 9.58) 

Ontario Iroquoian Sites, 
Adults, Sm. Canid 

4 –15.84±5.29 9.15±0.95 4 –9.79±5.47 20.81±0.75 6.04±0.53 

  (–21.22 to –
11.19) 

(7.88 to 10.14)  (–15.79 to –
4.69) 

(19.85 to 21.50) (5.43 to 6.50) 

Ontario Iroquoian Sites, 
Adults, Canis sp. lg. 

2 –21.38±1.06 7.13±2.16 2 –12.15±1.70 22.28±1.24 9.23±2.76 

  (–22.13 to – 
20.63) 

(5.39 to 8.87)  (–13.35 to –
10.95) 

(21.40 to 23.15) (7.28 to 11.18) 
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An additional four Ontario Iroquoian canids could not be differentiated as either fox or 

small dog and had mean values of –15.84 ±5.29‰ for δ13Ccol and 9.13±0.90‰ for 

δ15Ncol. The four small canids had mean δ13Csc and δ18Osc values of –9.79±5.47‰ and 

20.81±0.75‰.  

Two fragments from a large Canis sp. (large dog, dog–wolf hybrid or wolf based on size) 

dated to the Late Woodland had δ13Ccol and δ15Ncol values of –21.38±1.06‰ and 

7.13±2.46, and δ13Csc and δ18Osc values of –12.15±1.70‰ and 22.28±1.24‰.  

For all the samples there was a significant correlation between δ13Ccol and δ15Ncol values 

(Pearson’s r = 0.308, p=0.007) and δ13Ccol and δ13Csc values (Pearson’s r = 0.897, 

p<0.000). Based on a one–way ANOVA, there are significant differences between the 

cultural groups. A Dunnett T3 reveals that the pre-200 A.D. canid remains have 

significantly lower δ13Ccol values compared to canids from the Late Woodland (A.D. 900 

to 1650), Western Basin (p<0.000) and Ontario Iroquoian (p<0.000). The test also 

demonstrated that the Western Basin adult canids had significantly higher δ15Ncol values 

(Dunnett T3, p=0.003) relative to the adult Ontario Iroquoian canids.  

2.3.3 Juvenile canid remains isotope results 

Mean δ13Ccol and δ15Ncol values for the three Ontario Iroquoian juvenile Canis sp. samples 

were –17.00 ±5.97‰ and 8.08±1.80‰. The mean δ13Csc and δ18Osc for the three Ontario 

Iroquoian juvenile Canis sp. samples was –9.16±3.92‰ and 21.60±1.34‰ (Table 9). 

Western Basin juvenile canids (n=6) had a mean δ13Ccol value of –14.85±2.69‰ and a 

mean δ15Ncol value of 11.54 ±1.67‰. Structural carbonate was examined for only one 

juvenile (fetal) Canis sp., which had δ13Csc and δ18Osc values of –3.47‰ and 20.41‰, 

respectively. The mean Δ13Csc–col for the Ontario Iroquoian juvenile canids was 

+7.84±2.30‰ and for the single Western Basin juvenile it was +7.65‰.  
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Figure 2.4: Box plot summaries of the stable-isotopic composition of the canids. 

Box plots (A) δ13Ccol values, (B) δ15Ncol values, (C) δ13Csc values,(D) δ18Osc values and (E) 

Δ13Csc–col values. 

Table 2.6: Stable isotopic ranges for the distinct canid categories 

 δ13Ccol (‰, VPDB) range δ15Ncol (‰, AIR) range Δ13Csc–col 
Category A:  
Domestic Dogs –16 to –9 8 to 11 +6.4±1.1 

Category B:  
Foxes  –20 to –17 8 to 10.5 +8.0±2.0 

Category C: 
Lg. feral dogs/Wolves –23 to –20 6 to 10 +9.3±1.7 
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2.4 Discussion  
This discussion is divided into several parts. First, the isotopic data for all adult canids 

are compared with those from two modern dietary behavioural studies (Figure 2.7) 

(Urton and Hobson 2006; Lavin et al. 2003) in order to describe and differentiate 

ecological niches. Second, juvenile remains are examined separately. Third, the isotopic 

data for adult domesticated dogs are compared to previously published isotopic data for 

humans in order to determine whether the use of domestic dogs as proxies for human 

subsistence practices is appropriate for this region. Finally, human–dog relationships are 

compared with subsistence practices of Late Woodland Western Basin and Ontario 

Iroquoian peoples within southwestern Ontario. 

2.4.1 Identifying canid ecological niches 

The variability in collagen isotopic compositions (δ13Ccol and δ15Ncol) of Late Woodland 

Ontario canids suggests a wide range of dietary strategies (Table 2.5). Ontario mammals 

with δ13Ccol values greater than –210‰ consumed some C4 foods, while those with values 

lower than –21‰ have diets consistent with a pure C3 food web (Katzenberg 2006; 

Morris unpublished data, this study). Osteological and collagen isotope data were used to 

identify three categories of canids, each of which occupies a distinct ecological and/or 

dietary niche (Table 2.6, Figure 2.5). Domesticated dogs have the greatest access to 

maize, followed by foxes, and then feral canids who consumed little or no C4 foods. The 

δ13Csc values (Figure 2.6) provided an additional means of indicating access to C4 foods 

and trophic position. There is a significant difference in Δ13Csc–col values (Figure 2.4 (E), 

Table 2.6) between domestic dogs (Category A) and both foxes (Category B) and feral 

dogs/wolves (Category C) (Tukey HSD, p>0.000 and 0.006, respectively), which 

indicates that domestic dogs were also more carnivorous.  

2.4.1.1 Category A – domestic dogs 

All the canids within Category A are definitively identified as domestic dogs (C. 

familiaris) based on their morphology and  isotopic compositions. These dogs are the 

most isotopically distinct canids analysed for this study. Significantly enriched in 13C 
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(Tukey HSD, p>0.000), they are all maize consumers. The species identification of 

domestic dog does not presume that all dogs were “pets” or actively kept. Some may have 

been strays who were tolerated in or near villages. Modern wild canids have relatively 

low δ15Ncol values (7.06±2.34‰) (Fox-Dobbs et al. 2007; Schwarcz et al. 1991; Urton 

and Hobson 2007) compared to the archaeological dogs analysed in this study who, like 

archaeological dogs in previous studies (9.57±0.78‰) (Katzenberg 1989: 2006), 

consumed protein from a higher trophic level, such as freshwater fish. Such high trophic 

level foods would only have been available if they were procured by humans. Wild 

canids, such as foxes and wolves, rarely have access to freshwater fish in spite of being 

flexible predators that consume hunted prey and carrion (Paradiso and Nowak 1982; 

Samuel and Nelson 1982; Voigt 1987). Modern Ontario wolves do consume a terrestrial 

meat-based diet but it is from a lower trophic level, i.e., up to 80% white-tailed deer 

(Pimlott et al. 1967:71), and foxes are more flexible consumers who eat small prey and 

foods like berries and insects (Samuel and Nelson 1982; Voigt 1987).  

The δ13Csc values support the interpretation of significant maize consumption by some 

Late Woodland dogs. Comparing the δ13Ccol and δ13Csc values also enables the separation 

of dogs into two groups (Figure 2.6). Most of one group (Ai.) pre-date A.D. 1450 

(hereafter referred to as Middle Ontario Iroquoian stage) and have significantly higher 

δ13Csc (–6 to –3‰) and δ13Ccol values (> –12‰). Most of the second group (Aii.) post-

date A.D. 1450 (hereafter referred to as Neutral) and have significantly lower δ13Csc (–9 

to –5‰) and δ13Ccol values (–16 to –12‰) (Tukey HSD, p>0.000). The isotopic 

compositions of the Middle Ontario Iroquoian dogs correspond to those of their 

contemporary humans, who have been interpreted as heavy maize-consumers (Harrison 

and Katzenberg 2003; Katzenberg et al. 1985). The predominately Neutral group of 

canids, however, has slightly lower δ13Ccol and δ13Csc values than humans, which suggests 

less maize (C4) consumption. (A more detailed exploration of the anthropological 

meaning of the dog data is provided below). 
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Figure 2.5: δ15Ncol versus δ13Ccol values for all canids. Distinct canid ecological/dietary categories are circled.  

Category A = dogs/kept canids, B =foxes living near human settlement/horticultural zones, and Category C= canids living in a 

C3-only food web. The latter includes pre–horticulture dogs, a fox, and four probable wolves/large dog hybrids. The dashed 

line at δ13Ccol –20‰ demarcates specimens believed to have a C4 component in their diet versus those in a C3-only food web. 
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Figure 2.6: δ13Ccol versus δ13Csc values for all canids. Category B and C are still distinct. 

Category A is further subdivided into dogs with more (Ai) and less (Aii) consistent access to maize products following 

Harrison and Katzenberg 2003:238, Figure 8.  
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Figure 2.7: δ15Ncol versus δ13Ccol values for all canids, plotted with published archaeological (dogs) and modern (foxes and 

wolves) data.10 Circled black diamonds = Western Basin dogs. Plain black diamonds = Ontario Iroquoian dogs. Ai and Aii 

categories based on δ13Csc and δ13Ccol values (Figure 2.6) are also shown. 

                                                 
10Archaeological dogs: Katzenberg 1989; 2006. Modern canids: Fox-Dobbs et al. 2007; Schwarcz et al. 1991; Urton and Hobson 2007 
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Figure 2.8: The relationship between δ13Csc and δ13Ccol values for Category A, B, and C canids. 

The data are  plotted according to the protein-line11 model developed by Kellner and Schoeninger (2007, Figure 2B). A diet comprised 

primarly of C3 protein with some C4 energy resources is enclosed in the gray square. Δ13Csc–col values > +10‰ are circled. 

                                                 
11 The protein-lines used in this study were developed by Kellner and Schoeninger (2007) as models for the relationship between protein and energy (i.e., 
carbohydrate and lipid) dietary sources based on experimental dietary data. Animals which fall on or near the C3 protein line have a diet primarily consisting of 
C3 protein but may have some energy sources that vary in C3 and/or C4 compositions depending on where they plot on or near the C3 protein line.     
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2.4.1.2 Category B – foxes  

Category B canid remains were identified as either foxes (n=7) or probable foxes (n=1) 

because of the considerable uniformity in size, morphology and isotopic compositions. 

Although they could have been either red or gray foxes (V. vulpes or U. cineroargenteus), 

they occupied an ecological niche near human settlement. Their δ13Csc and δ13Ccol values 

do not suggest the same access of C4 resources as the domestic dogs, but they are still 

enriched in 13C. As flexible consumers foxes eat a range of prey, scavenged food and 

plants (Voigt 1987). Modern fox diets mainly consist of meadow voles and other small 

rodents, along with rabbits, woodchucks, ducks, fruit, insects, carrion and human garbage 

(Samuel and Nelson 1982; Voigt 1987). The prey of archaeological foxes may reflect C4 

consumption, including human waste as  well as maize-consuming prey, e.g., gray/black 

squirrels (Sciurus carolinensis) and wild turkeys (Meleagris gallopavo silvestris) 

(Katzenberg 1989; 2006; Morris unpublished data this study), which could explain the 

isotopic composition of the archaeological fox collagen. For example, predators 

consuming large quantities of Late Woodland Ontario squirrel or turkey (Katzenberg 

1989; 2006; Morris unpublished data this study) would have a predicted δ13Ccol values of 

~–19 to –17‰ and δ15Ncol values of ~7 to 9‰, which correspond well with the results for 

the foxes in this study (Figure 1.1 and Figure 2.5).  

Published stable isotopic data from two modern dietary behavioural studies, which 

include foxes, are plotted with the archaeological data in Figure 2.7. The modern fox 

studies provide stable isotope profiles for three ecological niches: (1) a fox population 

from the Boreal forest (Urton and Hobson 2006), (2) a rural environment with 

agricultural access, and (3) an agricultural (maize and soybeans) farm (Lavin et al. 2003). 

The isotope data from this study closely correspond to Lavin et al.’s (2003) δ13Ccol and 

δ15Ncol values for foxes that exploited agricultural and rural environments, and ate 

obligate herbivores (i.e., rabbits, groundhogs) and higher trophic herbivores/omnivores 

(i.e., squirrels, birds) (Lavin et al. 2003: 1077: Figure 8).  The δ15Ncol values of the foxes 

are significantly lower than those of domestic dogs.  The difference suggests that the 

foxes are consuming different animal resources. Plotting the canid data onto previously 

established protein-source lines (after Kellner and Schoeninger 2007: Figure 2.8), certain 
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patterns emerge. All the wild canids (Category B, as well category C discussed in the 

proceeding section) fall on or above the C3 protein line, which suggests heavy 

consumption of C3–protein. There is a continuum of maize field niche exploitation by 

Late Woodland foxes that trends along the lower half of the C3 protein line and is distinct 

from all other wild and domestic canids. The δ13Csc values of foxes ranging between –12 

and –9‰ are consistent with those of swine experimentally fed 13–20% (by weight) 

protein comprised of 20% C4, and a non-protein portion between 23% and 50% C4 

(Warinner and Tuross 2009). A diet that consisted of wild foods with some C4–consuming 

game (i.e. squirrel) and/or occasional maize would adequately explain the majority of fox 

diets. Three additional foxes had diets with δ13Csc values lower than –13‰, which are 

more consistent with a diet comprised of ~100% C3 protein and 75 to 100% C3 non–

protein (i.e. diets that were almost exclusively C3–based); two of these foxes may have 

occasionally consumed maize or maize–consuming prey, while the third falls in Category 

C and is assumed to have consumed no C4 resources.  

Late Woodland Category B canids (i.e., foxes) likely preyed on C4-consuming herbivores 

(e.g., squirrels) and occasionally ate maize waste (from middens or caches). Maize fields 

offered a hunting ground for the foxes, placing them in close proximity to humans and 

making them convenient meat and/or fur source. Alternatively, foxes may have been 

viewed as crop pests because of their frequent appearance in fields. The behaviour 

inferred from these isotopic data suggests that the Late Woodland peoples hunted foxes 

living near their settlements. Foxes are, however, markedly underrepresented in Western 

Basin faunal assemblages (Foreman 2011). In fact, less than 25% of Western Basin sites 

had fox remains, compared to 51% of Ontario Iroquoian sites (Foreman 2011; Lennox 

1977; Stewart 2000). Only one Western Basin fox (Dobleaar site, Wolf phase [A.D. 1400 

to 1550]) could be obtained for isotopic analysis. This difference may be the result of 

preferential hunting of foxes by Ontario Iroquoian people, differences in the disposal of 

the remains, or differences in land-use. In the latter case, it may have been that Western 

Basin maize fields were less extensive, at least prior to A.D. 1400, and/or that the 

ecological niche exploited opportunistically by Ontario Iroquoian foxes was unavailable 

in the Western Basin region. The seasonal mobility of Western Basin people may also 

have had an influence on hunting practices. Western Basin peoples might have lived near 
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planted maize in the summer but only hunted/trapped foxes in the late fall or early winter 

(as in modern contexts, Samuel and Nelson 1982), at which time groups may have 

disbanded and moved to winter camps (Foreman 2011; Murphy and Ferris 1990). These 

smaller sites are less frequently identified by archaeologists and often have very few 

preserved animal bones, which may account for the underrepresentation of foxes at 

Western Basin sites. These behaviours would suggest that Western Basin peoples had a 

different relationship with their landscape than their eastern neighbours, the Ontario 

Iroquoian peoples.  

2.4.1.3 Category C – large Canis sp.  

Morphologically, this category is represented by an Archaic (pre-maize) dog, four large 

Canis sp. (large dogs, dog–wolf hybrids or small/female wolves) and one small canid. 

The small canid (Van–075) likely represents a fox or small, feral dog and dates to the 

Early Ontario Iroquoian period (A.D. 900 to 1200), but its diet is consistent with that of 

the other large canids in Category C as well as the forest environment of modern foxes 

(Urton and Hobson 2006).  

According to descriptions of the “Common Indian” or “North American” dog (Allen 

1920; Richardson 1929), the Category C husky-sized canids are most likely small wolves 

or dog-wolf hybrids. Dog-wolf hybridization is possible wherever dog and wolf 

populations overlap (Crockford 2000) and is discussed in some ethnohistoric accounts 

(Barton 1805; Richardson 1829) e.g.: 

“In Captain Parry's and Captain Franklin's narratives, instances are recorded of the 

female Wolves associating with the domestic dog... The resemblance between the 

northern wolves and the domestic dog of the Indians is so great, that the size and strength 

of the Wolf seems to be the only difference.” (Richardson 1829:64) 

Although other researchers have maintained that stories of hybridization are exaggerated 

in pre-contact North America (Allen 1920; Ryder 2000; Vilá and Wayne 1999), there is 

also zooarchaeological evidence of dog-wolf hybrids, primarily from the Plains region, 

where indigenous dogs were much larger (Ryder 2000; Schwartz 1997). The remains in 
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Category C are substantially larger than the majority of the dog remains collected for this 

study or the terrier-sized dogs described by Prevec and Nobel (1983) from Neutral sites. 

Even if dog-wolf hybrids are present in this sample, it is assumed that they would 

normally pursue a wild existence (Crockford 2000; Coppinger and Coppinger 2001). This 

assumption appears to be upheld as all Category C canids are also isotopically distinct 

from all other C. familiaris and Canis sp. samples. They have the lowest δ13Ccol values 

(indicative of pure C3-food consumption), highly variable δ15Ncol and δ13Csc values, and 

the largest Δ13Csc–col difference (Table 2.6). Their consumption of low trophic level prey 

in an exclusively C3 food web suggests an ecological niche that is generally isolated from 

human-altered (i.e. agricultural or urban) landscapes i.e., comparable to that of modern 

wolves from Ontario, Saskatchewan and Minnesota (Fox-Dobbs et al. 2007; Schwarcz et 

al. 1991; Urton and Hobson 2007) (Figure 2.6, Table 2.7).  

Regardless of the taxonomic classification of the large canid remains, the important 

question is whether Late Woodland people would have identified these four large canids 

as dogs or as wolves. Their isotopic distinctiveness makes them a behaviourally discrete 

group, and their large size would suggest that they were not only real wolves but also 

perceived as such. Henceforward, they will be referred to as wolves. Wolves are not 

common in the faunal assemblages of Ontario Iroquoian sites (present at 24% of sites) 

(Foreman 2011; Lennox 1977; Stewart 1991), and are not even reported at any Western 

Basin sites (Foreman 2011). Their limited appearance in faunal assemblages suggests that 

they had minimal interaction with humans. It is even possible that wolves were not 

actively hunted. Great Lakes mythology suggests they were sacred and that their loss was 

serious enough to “bring death unto the world” (Brehm 2011:28). Therefore, they may 

have been killed only in specific circumstances, e.g., if they were considered a threat to 

human life or competing for prey, such as white-tailed deer. Ellis (2002) noted a shift 

from the Archaic period emphasis on wolves in ritual, such as the inclusion of wolf 

remains in human burials (Donaldson and Wortner 1995) and the presence of wolf masks 

(Baby 1961; Parmalee and Stephens 1972) to an emphasis on the use of dogs in sacrifice 

and feasting in the Woodland period. The shift from wolves to other canids in ceremonial 

activities could explain the minimal presence of wolves in faunal assemblages. There is, 

however, continuity in cosmological role of wolves, and Wolf remained a central clan 
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and/or national symbol of both the Iroquoian and Alongkian-speaking people throughout 

the Late Woodland and Historic time periods (Ellis 2002). If wolves were given a special 

status, it is plausible that any purposefully killed wolves might have been given 

distinctive post-mortem treatment because of their sacred status, resulting in scarce 

inclusion in middens or refuse pits. Further evidence of this differential post-mortem 

treatment is the high Δ13Csc–col values of the wolves, discussed in detail in Chapter 4. 

The pre-agricultural Davidson Site dog (Dav-05) also represents pure C3 food web 

exploitation (–20.78), which is expected for a site pre-dating the entry of maize into the 

region by over 3000 years.  While the δ13Ccol values of this dog are lower than –20‰, 

they are not as low as the values of the wolves and one fox believed to be exploiting the 

C3 environment. Two potentially complementary explanations are: (1) the Archaic dog 

consumed freshwater fish (discussed below), and (2) the wolves exploited prey in deeper 

forest canopy areas, away from Late Woodland human-altered landscapes (Bonafini et al. 

2013; Cerling and Harris 1999; Druker and Bocherens 2009; Vogel 1978). For a 

discussion of deer who may have also exploited deeper forests, resulting in low δ13Ccol 

values, see Chapter 4.  

The pre-agricultural dog had a δ15Ncol value (10.31‰) that was high relative to the 

wolves but similar to the Category A domestic dogs, which suggests a different trophic 

feeding level and a domesticated relationship with humans. The Archaic dog probably 

consumed a lot of freshwater fish, an interpretation that is also consistent with their 

δ13Ccol and δ13Csc values (Figure 2.6). Such fish could include salmon, lake trout or 

burbot (Van der Merwe et al. 2003: 255). Furthermore the δ13Ccol and δ13Csc values of the 

Davidson dogs distinguish them from the other wild canids (Figure 2.5 and Figure 2.8). 

Although a high degree of herbivory could explain the dog’s large Δ13Csc–col spacing 

(+11.19‰), its high δ15Ncol value make this interpretation unlikely. Alternatively, its  

δ13Csc value may have been altered by post-mortem processing (i.e., boiling, see Chapter 

4), which might suggest that the Archaic dogs were eaten.  
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2.4.2 Juvenile Canids 

Juvenile canids were not morphologically identified beyond Canis sp. because of 

interpretive difficulties but their isotopic compositions suggest association with the same 

ecological niches identified for the adult canid remains (Figure 2.4). Five of the 

specimens fall within the expected range of isotopic compositions for dogs and two of the 

samples fall within the range for foxes. Sil–07 appears to be an outlier based on its high 

δ15Ncol value. As previously discussed, Pip (2)–028, an older immature (incompletely 

fused long bone) large Canis sp. shares its isotopic composition with that of wolves. 

As expected, there is a breastfeeding, trophic level enrichment evident in the δ15Ncol 

values for most of the juvenile canids (Williams et al. 2005; Wright and Schwarcz 1998). 

The mean δ15Ncol value of the juvenile canids is significantly higher relative to that of the 

adult canid remains (Tukey HSD, p=0.020). There are distinct patterns of C4 

consumption among the juvenile canids that suggest the same variation in maize 

consumption as that found in the adult canids, and most likely reflect species differences 

(i.e. domestic versus wild canids). The mean δ15Ncol value of juvenile domesticated dogs 

(i.e., those with δ13Ccol > –15‰) is significantly higher than that of adults (Tukey HSD, 

p=0.005). There is also a significant relationship between δ18Osc and δ15Ncol values of 

dogs (r2= –0.105, p=0.018), which probably also reflects infant breastfeeding (see 

Williams et al. 2005). Because the juveniles have statistically higher δ15Ncol values due to 

breastfeeding, they are not used in the further comparisons of dog-human diets. There is 

no significant difference between the δ15Ncol values of juvenile and adult foxes. This may 

be because foxes wean quickly, i.e., within four to five weeks of birth (Larivière, S., 

Pasitschniak-Arts 1996).  

2.4.3 Dogs as proxies for human diet 

In order to determine whether dogs can be used to reconstruct human subsistence 

practices, the isotopic compositions of the Category A dogs, as well as those of 

previously reported Late Woodland domesticated dogs (Booth et al. 2011; Katzenberg 

1989, 2006), have been compared to those published for adult humans from the Great 

Lakes region (Figure 2.9). The isotopic data for Western Basin dogs are compared with 
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those published for Western Lake Erie humans (Allegretto 2007; Dewar et al. 2010; 

Schurr and Redmond 1991; Stothers and Bechtel 1987; Spence et al. 2010; Watts et al. 

2011). The isotopic data for Ontario Iroquoian dogs are compared to those published for 

humans from southwestern and central Ontario (Harrison and Katzenberg 2003; 

Katzenberg 1995; Schwarcz et al. 1985; van der Merwe et al. 2003) (summary of human 

published data Table 2.8). For statistical purposes, dogs and humans were categorized 

into temporal phases that roughly correspond to recognized cultural periods/phases 

(Table 2.9). 
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Table 2.7: Summary of published modern canid (A.) and archaeological dog (B.) isotope data and references. 

A. Modern canids 

Species 
(TISSUE) Location N original δ13C        

(‰,VPDB) 
Corrected 

 δ13C (‰,VPDB)  ±SD Original δ15N        
(‰,AIR) 

Corrected δ15N        
(‰,AIR) ±SD Reference 

Canis lupus 
(COLLAGEN) 

Isle Royale  25 –23.2 –21.7 0.3 5.2 5.2 0.4 Fox–Dobbs et al 2007 
Central Ontario     5.9 5.9 0.5 Schwarcz 1991 

Northern Minnesota 18 –22.5 –21.0 0.9 6.7 6.7 0.7 Fox–Dobbs et al 2007 

Canis lupus 
(FUR*) 

PANP, Saskatchewan 16 –22.9 –22.7 0.3 6.6 7.8 1.0 Urton and Hobson 2006 
Outside PANP, SK 14 –22.5 –22.3 1.2 7.4 8.6 1.0 Urton and Hobson 2006 

La Ronge SK 17 –21.7 –21.5 1.3 7.9 9.1 1.5 Urton and Hobson 2006 
Vulpus vulpes 

(FUR*) 
  

Saskatchewan 
  
9 

  
–22.4 

  
–22.2 

  
1.3 

  
9.5 

  
10.7 

  
1.6 

 
Urton and Hobson 2006 

Vulpes vulpes 
(BLOOD**) 

Illinois: urban 21 –22.2 –19.4 0.4 7.9 8.3 0.2 Lavin et al 2003 
Illinois farm 7 –20.0 –17.1 1.1 8.6 9.0 0.3 Lavin et al 2003 
Illinois: rural 53 –17.2 –14.4 0.5 9.1 9.5 0.2 Lavin et al 2003 

Canis latrans 
(BLOOD**) Coyote 6 –17.4 –14.5 0.6 9.1 9.5 0.1 Lavin et al 2003 

*Fur δ13C data corrected +1.3‰ and δ15N data +1.2‰ to make them comparable to collagen data (Dairmont and Reimchen 2002).   

**Blood δ13C data corrected +0.8‰ and δ15N data +0.4‰ to make them comparable to collagen data (Roth and Hobson 2000).   

 
 
 
 
 
 
 
 
 



73 

 

B. Archaeological domestic dogs. 
 
 
Sample 
Name Site Name Date δ13Ccol        

(‰,VPDB) ±SD δ15N
col        

(‰,AIR) ±SD δ13Csc        
(‰,VPDB) References 

CLV-01.1 Cleveland A.D. 1540 - - - - -6.28 Booth et al. 2011 
CLV-02.1 Cleveland A.D. 1540 - - - - -7.85 Booth et al. 2011 
CLV-03.1 Cleveland A.D. 1540 - - - - -6.18 Booth et al. 2011 

IR-HOL20.1 Holly A.D. 1280-1330 -13.28 - 9.72 - -6.25 Booth et al. 2011 
55Ez13 Kelley-Campbell A.D. 1636 -11.5 - 10.0 - - Katzenberg 1989: Table 3 
5OEh16 Kelley-Campbell A.D. 1636 -11.0 - 9.6 - - Katzenberg 1989: Table 3 
6OEm4 Kelley-Campbell A.D. 1636 -10.6 - 9.5 - - Katzenberg 1989: Table 3 
50Ee54 Kelley-Campbell A.D. 1636 -12.4 - 9.6 - - Katzenberg 1989: Table 3 
50Eg13 Kelley-Campbell A.D. 1636 -10.7 - 9.3 - - Katzenberg 1989: Table 3 

Em8 Kelley-Campbell A.D. 1636 -10.1 - 9.7 - - Katzenberg 1989: Table 3 
S5E2 Kelley-Campbell A.D. 1636 -12.2 - 9.5 - - Katzenberg 1989: Table 3 
Ed69 Kelley-Campbell A.D. 1636 -10.3 - 9.7 - - Katzenberg 1989: Table 3 
n=5 Ball A.D. 1636 -11.6 0.5 10.7 1.3 - Katzenberg 1989: Table 3 
n=4 Seed A.D. 1600 -12.0 1.7 9.3 0.4 - Katzenberg 2006: Table 19.1 
n=5 Wallace A.D. 1600 -12.0 1.6 10.2 0.7 - Katzenberg 2006: Table 19.1 
n=-1 Draper A.D. 1210-1490 -11.4 - 8.4 - - Katzenberg 2006: Table 19.1 
n=4 Jacob's Island 2912-2889 B.P. -21.5 0.6 10.8 1.1 -15.9 Conolly et al. 2014: Table 3 

ACRF 1526 Swaiton, NJ  cal A.D. 1350 -13.7 - 12.1 - -10.3 Allitt et al. 2008: Table 3 
ACRF 1527 Newport, NJ  cal A.D.1193 -16.2 - 8.6 - -9.4 Allitt et al. 2008: Table 3 
ACRF 1528 Mohr Site, PN  cal A.D.1462 -14.2 - 6.6 - -7.3 Allitt et al. 2008: Table 3 
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Table 2.8: Summary of published Southern Ontario and Western Lake Erie human isotope data and references. 

 

Site Name
δ13Ccol        

(‰,VPDB)
SD

δ15Ncol        
(‰,AIR)

SD N
δ13Csc        

(‰,VPDB)
SD N References

Archaic
Jacob's Island -21.5 4.0 12.6 0.3 26 -14.0 1.9 22 Conolly et al. 2014: Table 3 and 4

Morrison's Island -20.8 1.4 12.3 0.4 3 -13.6 1 Schwarcz et al. 1985: Table 2, Harrison and Katzenberg 2003: Table 2
Donaldson 1* -19.2 0.3 13.3 0.7 3 -9.5 1 Schwarcz et al. 1985: Table 2, Harrison and Katzenberg 2003: Table 2

Jacob's Island -19.8 1.6 12.9 0.7 4 Conolly et al. 2014: Table 4
Donaldson 2 -18.9 0.9 12.4 1.2 3 -12.1 0.3 2 Schwarcz et al. 1985: Table 2, Harrison and Katzenberg 2003: Table 2
LeVesconte -21.4 0.7 13.3 0.9 9 -15.1 0.2 5 Schwarcz et al. 1985: Table 2, Harrison and Katzenberg 2003: Table 2

Serpent Mounds E -18.2 5.0 12.6 0.6 3 Schwarcz et al. 1985: Table 2, Harrison and Katzenberg 2003: Table 2

Serpent Mounds G and I -20.2 1.8 12.5 1.1 8 -14.6 0.3 5
Serpent Mounds E** -16.1 0.7 11.1 0.8 2 -9.2 0.1 2 Harrison and Katzenberg 2003

Monarch Knoll -20.5 11.2 1 Katzenberg et al. 1995
Surma -17.7 1.4 12.8 0.7 4 -12.0 0.6 3 Katzenberg et al. 1995, Harrison and Katzenberg 2003: Table 2

Varden*** -19.3 0.2 11.2 0.4 15 -12.0 1.6 5 Katzenberg et al. 1995: Table 4, Harrison and Katzenberg 2003: Table 2
Miller -13.9 0.9 13.5 0.9 5 -6.6 1 Katzenberg et al. 1995: Table 4, Harrison and Katzenberg 2003: Table 2

Serpment Mounds/ Pit 2 -15.3 0.8 12.4 0.2 3 Schwarcz et al. 1985: Table 2
Serpment Mounds/ Pit 3 -15.8 3.0 12.6 0.1 2 Schwarcz et al. 1985: Table 2

Bennett -11.5 12.1 1 - Katzenberg et al. 1995: Table 4
Force -12.4 0.6 11.6 0.4 4 -5.2 0.8 4 Schwarcz et al. 1985: Table 2, Harrison and Katzenberg 2003: Table 2

Moatfield -12.3 1.4 12.2 0.5 11 van der Merwe 2003: Table 2
Fairty Ossuary -11.3 1.1 11.8 0.4 4 -4.3 0.6 2 Schwarcz et al. 1985: Table 2, Harrison and Katzenberg 2003: Table 2

Uxbridge -10.8 0.5 11.1 0.7 9 -4.9 0.5 9 Harrison and Katzenberg 2003: Table 2
Woodbridge -11.6 1.1 10.8 0.7 3 Katzenberg et al. 1995: Table 4

Kleinberg Ossuary -12.2 0.4 12.2 0.2 4 -5.4 0.1 3 Schwarcz et al. 1985: Table 2, Harrison and Katzenberg 2003: Table 2
Ossossane Ossuary -11.8 0.8 12.6 1.1 9 -5.1 0.7 5 Harrison and Katzenberg 2003: Table 2

Ball -12.6 1.0 11.6 0.7 5 Schwarcz et al. 1985: Table 2
Cooper Ossuary -13.6 1.4 11.2 0.6 3 Schwarcz et al. 1985: Table 2

SOUTHERN ONTARIO

Middle Woodland (A.D. 50 to 300 )

Transitional Woodland (A.D. 500 to 800/900)

Early Ontario Iroquoian(A.D. 800/900 to 1200/1300)

Middle Ontario Iroquoian(A.D. 1200/1300 to 1450)

Neutral (A.D. 1450 to 1650)
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Table 2.8 continued.

 

Site Name
δ13Ccol        

(‰,VPDB)
SD

δ15Ncol        
(‰,AIR)

SD N
δ13Csc        

(‰,VPDB)
SD N References

Danbury, OH -19.3 8.2 1 -13.4 1 Allegretto 2007: Table 4.3
Williams, OH -21.6 1.4 1 Stothers and Bechtel 1987: Table 1

Marblehead, OH -27.5 0.0 1 Stothers and Bechtel 1987: Table 1

Missionary Island, OH -18.9 1 0.0 Stothers and Bechtel 1987: Table 1
Patyi-Dowling, OH -16.5 1 0.0 Stothers and Bechtel 1987: Table 1

Danbury, OH -12.1 1.8 10.9 1.1 12 -8.2 1.0 9 Allegretto 2007: Table 4.3
Gard Island No 2, MI -14.0 1.4 12.7 0.6 10 Schurr and Redmond 1991: Table 1
Riviere au Vase, MI -12.7 1.6 12.4 0.9 34 -11.6 2.3 29 Allegretto 2007: Table 4.3

Waterworks Mound, OH -12.4 1 Stothers and Bechtel 1987: Table 1
Danbury, OH -12.5 1.6 11.1 0.8 4 -8.1 0.5 4 Allegretto 2007: Table 4.3

Great Western Park, ON -11.7 1.7 11.7 0.1 2 Dewar et al. 2010: Table 1
Inland West Pit, Loc 9, ON -12.5 11.9 1 Spence et al. 2010

Krieger, ON -11.1 0.8 13.1 0.5 9 -3.7 1.2 9 Watts et al. 2011: Table1
Missionary Island, OH -15.5 1 Stothers and Bechtel 1987: Table 1
North Bass Island, OH -13.2 1 Stothers and Bechtel 1987: Table 1

Patyi-Dowling, OH -13.4 1 Stothers and Bechtel 1987: Table 1
Williams Floodplain, OH -13.2 1 Stothers and Bechtel 1987: Table 1

Black's Knoll, OH -11.7 1 Stothers and Bechtel 1987: Table 1
Dodge, OH -15.6 0.1 2 Stothers and Bechtel 1987: Table 1
LaSalle, OH -11.4 1 Stothers and Bechtel 1987: Table 1

Great Western Park, ON -11.7 0.8 12.3 0.4 3 Dewar et al. 2010: Table 1
Indian Hills, OH -10.7 1.1 2 Stothers and Bechtel 1987: Table 1

Site dates are based on C14 dates reported in citations referenced.
*Donaldson I, possible Transitional Woodland (Dr. Michael Spence, personal communication)
** Serpent Mound E, possibly only Middle Woodland  (Dr. Michael Spence, personal communication)
***Varden, newest date could shift site to the Transitional Woodland (Foreman and Molto 2008)

WESTERN LAKE ERIE

Riviere au Vase (A.D. 500 to 800)

Younge Phase (A.D. 800 to 1200)

Springwells Phase (A.D. 1200 to 1400)

Archaic
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Figure 2.9: Archaeological sites with published isotopic data for humans. 

Solid lines separate three zones: (1) sites north of the Carolinian Zone, (2) Ontario sites within the Carolinian zone, and (3) 

sites  along western Lake Erie. 
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Table 2.9: Distribution of dog and human samples (this study and published samples listed in Tables 2.7 [dogs] and 2.8 

[humans] by time, cultural period and location. 

Approximate Dates  Cultural Phase/Period 
 

Ontario 
Iroquoian 
Dogs 

Ontario 
Western 
Basin Dogs 

SW/Central 
Ontario 
Humans 

Western Lake 
Erie Humans 

Archaic Archaic–Early Woodland  
No evidence of maize 

ncol=2 nsc=3 n=0 ncol=7 nsc=3 ncol=13 nsc=1 

A.D. 50 to 500 Middle Woodland* 
Introduction of maize into Ontario 

n=0 n=0 ncol=19 nsc=7 n=0 

A.D. 500 to 800/900 
Princess Point/Riviere au Vase 
Transitional Phase  

n=1 n=0 ncol=15 nsc=10 ncol=56 nsc=37 

A.D. 800/900 to 
1200/1300 

~Early Ontario Iroquoian/Younge ncol=2 nsc=1 ncol=7 nsc=4 ncol=25 nsc=6 ncol=19 nsc=13 

A.D. 1200/1300 to 1450 ~Middle Ontario Iroquoian/Springwells ncol=23 nsc=18 n= 0 ncol=20 nsc=6 ncol=11 nsc=0 
A.D. 1450 to 1650 ~Late and Historic Neutral/Wolf ncol=28 nsc=21 n= 1 ncol=33 nsc=17 n= 0 
* No canid samples available from this period. 
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Table 2.10: Statistical summary (one–way ANOVA with post–hoc Dunnett T3) of dog and human δ13Ccol comparison. 

 

Approximate Dates  Ontario Iroquoian Dogs vs 
SW/Central Ontario Humans 

Ontario Western Basin 
Dogs vs Western Lake 

Erie Humans 

Ontario Iroquoian 
Dogs vs Ontario 

Western Basin Dogs 

SW/Central Ontario 
Humans vs Western 

Lake Erie Humans 
Archaic Dunnett T3, p=1.000 N/A N/A Dunnett T3, p=0.771 

A.D. 50 to 500 N/A N/A N/A N/A 

A.D. 500 to 800/900 N/A N/A N/A Dunnett T3, p=0.066 

A.D. 800/900 to 
1200/1300 Dunnett T3, p=1.000 Dunnett T3, p=1.000 Dunnett T3, p=1.000 Dunnett T3, p=0.002 

A.D. 1200/1300 to 
1450 Dunnett T3, p=0.669 N/A N/A Dunnett T3, p=1.000 

A.D. 1450 to 1650 Dunnett T3, p=0.252 N/A N/A N/A 

N/A = No statistical comparison possible due to sample size. 
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Figure 2.10: δ13Ccol values for dogs and humans through time; (A) compares Ontario Iroquoian dogs and southwest/central 

Ontario humans; (B) compares Ontario Western Basin dogs and Western Lake Erie Humans.
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2.4.4 3C values of humans versus dogs  

The δ13Ccol values of humans and dogs from southwestern/central Ontario and Western 

Lake Erie regions correspond well through time suggesting that dogs can serve as proxies 

for human maize consumption for the Great Lakes region (Table 2.10, Figures 2.10A and 

B). 

2.4.4.1 No evidence of maize: Archaic  

No dogs were analysed from the Western Lake Erie region earlier than the Younge Phase 

(A.D. 900 to 1200). Only two Archaic dogs were analysed and collagen was preserved in 

only one of those. The δ-value (δ13Ccol = -20.785‰), for the well–preserved sample from 

the Davidson site reflects the pre-maize values of humans (Table 2.9). The Davidson dog 

collagen value is similar to that of four other Archaic dogs from Jacob’s Island, Ontario, 

that had a mean  δ13Ccol value of -21.5±0.6‰  (Conolly et al. 2014, Table 3). Transitional 

Woodland: A.D. 500–800/900 

Archaeological evidence suggests that maize was introduced to Ontario as early as A.D. 

200 (Allegreto 2007; Capella 2005; Crawford et al. 2006). The Princess Point phase 

marks an important shift to the use of cultigens (Capella 2005) in Ontario. Only one dog 

is definitively dated to this period (Old Lilac Garden site [OLG–14], Coote’s Paradise, 

Smith 1997; Smith and Crawford 2002). The δ13Ccol and δ13Csc values for OLG-14 are 

unexpectedly high (–10.5 and –4.2‰, respectively), which suggests that the Old Lilac 

Garden site may actually date to the latter end of the Princess Point period as maize is 

found infrequently at sites early in the phase.  Conversely, these data may suggest that 

maize was adopted earlier as a staple crop than previously thought.  

2.4.4.2 Western Basin Younge/Early Ontario Iroquoian: A.D. 
900/1000 to A.D. 1200 

All isotopic measures suggest that post A.D. 900/1000 both groups of dogs and humans 

consumed significant quantities of maize. There is no significant difference between 

δ13Ccol values of the Ontario Iroquoian dogs and the humans dated to the Early Ontario 

Iroquoian Phase. Similarly the eight Western Basin Younge Phase dogs and humans are 
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not significantly different (Table 2.10). With the shift to the Late Woodland period, both 

Western Basin and Ontario Iroquoian dogs consumed significant amounts of maize, as 

did their human counterparts. In fact, Western Lake Erie humans have significantly 

higher δ13Ccol values than their Ontario Iroquoian neighbours, which could have resulted 

from consumption of either more maize or possibly more freshwater fish (another 13C-

enriched resource, see δ15Ncol discussion below).  

2.4.4.3 Western Basin Springwells/ Middle Ontario Iroquoian Phase: 
A.D. 1200 to 1400/1450 

No Western Basin dogs were available from the Springwells Phase (A.D. 1200 to 1400). 

Archaeological evidence supports heavy maize reliance among the Ontario Iroquoian 

peoples between A.D. 1280 and 1450, with evidence of increasing sedentism and 

population growth. Because of the well–established chronology of maize horticulturalism 

at Crawford Lake site (Finlayson and Bryne 1975), the traditional chronology of the 

Middle Ontario Iroquoian phase, A.D. 1300 to 1400 (Dodd et al. 1990), was extended to 

A.D. 1450 (Finlayson 1998). The δ13Ccol data support the assumption that both Ontario 

Iroquoian dogs (–11.33±0.94‰, n=23) and humans (–12.40±1.70‰, n=22) consumed 

maize year round and there was no significant difference between dogs and humans 

(Table 2.10). The isotopic composition of dogs is much less variable than that of the 

humans, which may simply reflect sampling differences i.e., the isotopic data for humans 

come from a much larger region. When separated by region, i.e. within and north of the 

Carolinian zone (Figure 2.9), the isotopic results for dog and human become more 

consistent (Table 2.11, Figure 2.11). The Eastern Carolinian, or Eastern Deciduous, forest 

range is a unique biotic niche that extends into the southwestern tip of Ontario. Not 

surprisingly, dogs and humans north of the Carolinian zone, where the growing season is 

shorter and average annual temperatures are lower, have slightly lower δ13Ccol values 

relative to the dogs and humans from sites with the Carolinian zone (Table 2.11, Figure 

2.11). 
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Table 2.11: Average δ13Ccol values for Middle Ontario Iroquoian and Neutral dogs 

and humans recovered from sites: (1) North of the Carolinian Forest Extent, and (2) 

within the Carolinian Forest (see Figure 8). 

 Zone 1: North of Carolinian Zone Zone 2: within the Carolinian zone 

1200–1450 A.D. dogs (n=2) humans (n=2)  dogs (n=21) humans(n=20) 
–12.34±1.33‰ –15.80±2.97‰ –11.24±1.33‰ –12.07±1.18‰ 

1450–1650 A.D. dogs (n=11) humans (n=23)  dogs (n=21) humans(n=10) 
–11.31±0.8‰ –11.60±0.98‰ –13.64±0.94‰ –12.44±1.22‰ 

 

 

 
Figure 2.11: Average δ13Ccol values of Middle Ontario Phase and Neutral dogs and 

humans recovered from sites (1) North of the Carolinian Forest Extent, and (2) 

within the Carolinian Forest (see Figure 2.9). 

2.4.4.4 Western Basin Wolf phase/Ontario Iroquoian Neutral: A.D. 
1450–1550/1650 

Only one Western Basin dog (Dob-1) was analysed from the Wolf phase (A.D. 1450 to 

1550), and its δ13Ccol value (–12.00‰) is very consistent with the Wolf Phase Western 

Lake Erie mean human value of –11.86±1.52‰. It is evident that Western Basin peoples 

in Ontario successfully combined seasonal movement with the demands of maize 

cultivation, which challenges the long held belief that sedentism is necessary for 
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extensive horticulturalism. The Western Basin context supports Cappella’s (2005) 

theoretical argument that maintenance of a mobile settlement system and the cultivation 

of maize are not mutually exclusive because minimal time planting and harvesting is 

required at a site.  

Overall, Ontario Iroquoian dog and human δ13Ccol values demonstrate increasing C4 

consumption over time (Spearman’s ρ=–0.338, p=0.010, Figure 2.11A). However, the 

Ontario Iroquoian Neutral phase is marked by increasing C4 food consumption by 

humans (–11.85±1.52‰) and decreasing C4 food consumption by dogs (–12.92±1.48‰), 

(Figure 2.10). Dogs and humans north of the Carolinian zone appear to have consumed 

more maize during the Neutral phase and the amount of variability between dogs and 

humans is virtually the same, unlike that for the Middle Ontario Iroquoian dogs and 

humans. The beginning of the Little Ice Age coincides with the beginning of the Neutral 

phase. Therefore, the increase in maize consumption is unlikely the result of increased 

length of growing season. Greater horticultural sophistication, larger fields and/or 

increased storage are more likely to account for the significant increase in δ13Ccol values 

at the northern sites. Conversely, maize consumption decreased for dogs and humans 

from sites within the Ontario Carolinian zone though only significantly for dogs (Tukey 

HSD, p>0.000), which suggests that for this region, human maize consumption was 

relatively consistent from A.D. 1200. The disparity in the isotopic data obtained for dogs 

is discussed in greater detail below.  

It is evident that both Late Woodland Western Basin and Ontario Iroquoian dogs had 

access to maize or C4 products year round in spite of inter–regional differences in 

settlement flexibility and seasonal site occupation. Overall, dogs serve as good proxies 

for maize consumption by contemporary humans for both cultural regions.  
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Figure 2.12: δ15Ncol values for dogs and humans through time; (A) compares Ontario Iroquoian dogs and southwest/central 

Ontario humans; (B) compares Ontario Western Basin dogs and Western Lake Erie Humans. 
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2.4.5 δ15Ncol values of humans versus dogs 

The δ15Ncol values of dogs are consistently lower relative to humans across all time 

periods for both regions (Figure 2.12A and B) (Tukey HSD, p<0.005 for all time 

periods). There is also a strong correlation between human and dog δ15Ncol values for 

both cultural groups (Western Basin, Pearson’s r=0.794 and p=0.019 Ontario Iroquoian, 

Pearson’s r=0.897, p<0.0005), which suggests that dogs had access to protein resources 

supplied by humans. 

In the Western Basin Lake Erie region, δ15Ncol values of both dogs and humans increase 

with time (Figure 2.12 B), which suggests increasing amounts of higher trophic level 

foods. By contrast, in the Ontario Iroquoian region, δ15Ncol values of both dogs and 

humans decrease slightly over time (Figure 2.12A), which suggests consumption of lower 

trophic level foods or decreased carnivory. The contrast in protein sources between the 

two traditions likely indicates that, while Western Basin Lake Erie people were 

increasing their dietary emphasis on fish, Ontario Iroquoian peoples were moving away 

from fish consumption.  

Dogs from combined Western Lake Erie and Central/Southwestern Ontario (i.e., Great 

Lakes) sites were on average 2–3‰ lower than their contemporaneous humans, i.e., 

slightly less than one trophic level (Table 2.12). The difference in δ15Ncol values between 

Great Lakes dogs and humans is the same and is consistent with previously reported 

human-dog δ15Ncol differences (see summary Guiry 2012), specifically in the Eastern 

Woodland region (Allitt 2007; Katzenberg 1989; Schwarcz and Schoeninger 1991), and 

elsewhere (Allitt 2007; Katzenberg 1989, 2006). Proposed explanations for the 

previously noted offsets include diet differences, trophic enrichment of humans from 

consumption of dogs, coprophagy by dogs, and/or metabolic differences between dogs 

and humans (Allitt 2007; Allitt et al. 2008; Cannon 1999; Guiry 2012; Katzenberg 1989; 

2006; Schwarcz and Schoeninger 1991; White et al. 1991).  
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Table 2.12: Average δ15Ncol values for dogs and humans by region 

 Western Lake Erie Central/Western 
Ontario 

Humans ~11.5 to 13‰ 10.5 and 13‰ 
Dogs ~9 to 11‰. 8.5 to 10.5‰ 
Average Δ15Nhuman–dog ~+2 to 2.5‰ ~+2 to 2.5‰ 

Diet differences do not provide an adequate explanation as the human-dog difference in 

δ15Ncol values is consistent across time periods and between different cultural traditions. 

In terms of trophic enrichment from dog consumption, the Jesuit Relations do describe 

dog consumption but only in ritual contexts (Thwaites 1896–1901 1; 23; 43; 60; Wrong 

1939). Ritual consumption of dogs, however, is unlikely to account for a significant 

portion of Late Woodland diet. It is more likely that humans consumed more, higher 

trophic protein sources, including a variety of carnivorous mammals (e.g. raccoons and 

minks, which are found in faunal assemblages) and freshwater fish (Chapter 1).  

The consumption of human faeces by dogs likely contributes to their lower δ15Ncol values 

(Katzenberg 1989) but this explanation is not well supported because dogs would also 

have had access to small, low–trophic level animals, such as rabbits and squirrels 

(Kleinman 1967) found in and around villages and campsites. Their access to hunted 

game (such as deer, beavers and bear) may have been  restricted for any number of 

reasons, including a cultural taboo against dogs eating the bones (and by extension, the 

meat) of hunted animals (Harrington 1921; Schwartz 1997; Thwaites 1896–1901 1; 20). 

One such account of this taboo is described in the Jesuit relations:  

 “When they [bones from a feast] have been well sucked and gnawed, they are not thrown 

to the dogs, as in France; that would be very unwise, because, they say, the animals 

would become much harder to catch, being informed by their brothers and kindred that 

their [page 301] bones are given to the dogs. Therefore, they throw them into the fire, or 

into the river, or else bury the bones of beavers, from fear lest the dogs may find them.” 

(Thwaites 1896–1901:44:301–3). 

The lower δ15Ncol values of dogs are probably due to the compounding effects of 

coprophagy, the restricted access of dogs to hunted game (including higher trophic 
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species), the consumption of low-trophic small prey by dogs, and the consumption of 

dogs by humans as an important ritual food source. Regardless of the reason for the 

Δ15Nhuman-dog offset of  2–2.5‰, its consistency in all time periods and for both traditions 

(Tukey HSD, p= 0.992) supports the premise that dogs can serve as proxies for human 

subsistence practices in this region. 

2.4.6 Models used for reconstructing dog diets 

Because the Late Woodland period was a time of shifting subsistence, settlement and 

cultural practices and because dogs appear to be good proxies for human subsistence 

related activities, their data are now used to shed more light on the nature of the Western 

Basin and Ontario Iroquoian traditions, in particular, the in vivo behaviour and treatment 

of dogs as related to subsistence, and their post-mortem treatment. The δ13Ccol, δ15Ncol 

and δ13Csc values are used to elucidate protein sources, i.e., C3 vs. C4/marine using a 

multivariate cluster model (after Froehle et al. 2012, Figure 2.13). This model was 

developed using archaeological human data from areas with well-established subsistence 

patterns, including data from the Great Lakes region.
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Figure 2.13: Comparison of Late Woodland dog diets using a modified version of Froehle et al’s (2012) multivariant model. 

Ontario Iroquoian dogs are differentiated by time period. Dogs with post-mortem alteration (burning and/or cut marks) are 

circled. Allitt et al.’s (2008) dog diets are plotted as examples of dogs with marine diets. 
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2.4.7 Western Basin dogs 

Published isotopic data for Western Basin humans are currently available for only three 

Ontario sites: Krieger (Watts et al. 2011), Great Western Park (Dewar et al. 2012) and 

Inland West Pit, Location 9 (Spence et al. 2010). The isotopic data for dogs in the current 

study significantly expand the number of Ontario Western Basin sites from which 

paleodietary information can be inferred (Figure 2.1, Dobleaar, Roffelsen and Inland 

West Pit, Location 12). The dogs associated with these sites not only consumed quantities 

of maize comparable to larger, contemporary Western Basin villages to the west in 

Michigan and Ohio, but also to Iroquoian villages to the east.  

Late Woodland Western Basin dogs from this study are not only significantly enriched in 
15N relative to Ontario Iroquoian dogs (Mann-Whitney, Z=–2.789, p=0.005) but also 

have significantly lower δ13Ccol values (Mann-Whitney, Z=–2.986, p=0.003). Although 

there is no difference in their δ13Csc values, Western Basin dogs have a significantly 

larger Δ13Csc–col values (Mann-Whiteny U, Z=–2.348, p=0.019). Increased herbivory 

could explain a larger Δ13Csc–col value, but it is also possible that a greater portion of the 

Ontario Iroquoian dog diet came from C4 resources. The most probable explanation for 

the difference in δ15Ncol values is that dogs from Western Basin sites consumed more 

higher trophic-level protein, such as freshwater fish, though perhaps less meat over-all, 

and similar amounts of maize relative to Ontario Iroquoian dogs. Although there is inter-

site variability among the Western Basin dogs in terms of freshwater fish access, their 

diets are consistent with archaeological evidence of subsistence and settlement patterns 

for their human counterparts, in particular the location of summer camp sites near 

lacustrine and riverine resources (Foreman 2011; Murphy and Ferris 1990). Of the 

structural carbonate isotopic compositions of six Western Basin dogs that were analysed, 

over half (all from Arkona) fall along the C3 protein line (Figure 2.8) and have diets 

corresponding with animals experimentally fed a diet that was 20% protein (100% C3 ) 

and 80% non–protein (70 to 100% C4) (Tieszen and Fagre 1993; Ambrose and Norr 

1993). The four Arkona dogs plot within the 30:70/C3:C4 and 35% C4 protein box shown 

on Figure 2.13 (the fourth plots just outside). Although there is some protein in maize 

(e.g. 3.2±0.04% in modern fresh maize and 8.6±1.1% in dried maize, USDA 2012), it is 
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negligible compared to that of game meat or fish, which is approximately 20% (raw) and 

30% (cooked) protein by weight (USDA 2012). However, a diet in which meat protein is 

supplemented with cooked maize could account for the isotopic results and still be 

consistent with the archaeological interpretation that Western Basin dogs consumed more 
13C-rich freshwater fish. Dogs from the Younge Phase, Arkona site cluster have the 

lowest δ15Ncol and δ13Ccol values, which suggests a regionally or temporally specific 

pattern in dog provisioning, i.e., unlimited maize access but limited access to freshwater 

fish or any game that may have consumed maize, including crop or village pests such as 

mice or squirrels. Interestingly, the Arkona sites represent more settled communities that 

have greater contact with their Iroquoian neighbours.   

The other two Western Basin dogs are from very different contexts and plot closer to the 

upper C4 protein line (Figure 2.8) and to the 50% C4 protein consumption box (Figure 

2.13). The Roffelsen dog is one of two from a special context mortuary site that was used 

for a single family group and dates to approximately A.D. 900–1000 (Grant 2012; Spence 

et al. 2014). The dog buried at the site was given ritual treatment; i.e., located at the base 

of a wall (Grant 2012; Spence et al. 2014). Because of itsspecial treatment after death, 

this dog may also have received distinctive treatment in life. By contrast, the Dobleaar 

site is later in time (Wolf phase A.D. 1450–1550), and its assignation as a component of 

the Western Basin cultural continuum is contentious (Stothers and Pratt 1981). The high 

δ13C value of Dobleaar dog (–12.00‰) relative to all other Western Basin dogs, as well 

as the presence of the fox (discussed previously) at this site, distinguish it from other 

Western Basin sites, but without further data the reason for the differences cannot be 

explained.  

2.4.8 Ontario Iroquoian dogs 

An ethnohistoric account of Iroquoian dog diets comes from Sagard (1632) who 

describes the diet of dogs whose “most usual fare is nothing but the refuse they find in the 

streets and on the roads” (Wrong 1939:226). According to Eastern Woodland 

mythology, dogs were transitional creatures moving between domestic and wild spaces. 

Their ideologically transitional state would enable them to scavenge within villages as 

well as maize fields and caches. The lower δ15Ncol values of the Late Woodland Ontario 
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Iroquoian dogs would suggest they did not access as much fish as Western Basin dogs 

but may have een consumed scraps of fish and meat as well as scavenged maize/maize 

products, perhaps supplemented with small game hunting. Assuming they were mainly 

scavengers, the type of refuse they found appears to have changed over time and 

indicates two dietary patterns, which correlate roughly with the transition from the 

Middle Ontario Iroquoian phase (A.D. 1200 to 1450) to Neutral phase (A.D. 1450–1650), 

i.e., A-1 and A-2 groups of domestic dogs noted above.  

The primary dietary difference between the two clusters is the C4 protein contribution. 

The Middle Ontario Iroquoian dogs cluster in the 50% C4 protein box, whereas the 

Neutral phase dogs consumed only 35% C4 protein (Figure 2.13). The shift in protein 

source between the two time periods may represent human fishing strategies if lower 

δ13Ccol values indicate increased procurement of fish such as pike, bowfin and 

perciformes during later periods (see for example, van der Merwe et al 2003: Fig. 4, page 

255). Although this interpretation would be consistent with the composition of faunal 

assemblages (Foreman 2011), a similar shift is not noted in the isotopic data for humans. 

Alternatively, the shift may be related to variable scavenging ability caused by variable 

defensibility (presence or absence of palisades) of Middle Ontario Iroquoian sites. For 

example, the Crawford site was not palisaded, which would provide dogs with greater 

access to corn–pests in fields and refuse in middens found outside village fortifications, 

but Neutral sites were predominately and more heavily palisaded (Dodd et al. 1990), 

which potentially isolated dogs from the world outside the walls.  

The function of dogs and their changing role in the community through time could also 

account for the variation, and reflect a Middle Ontario Iroquoian emphasis on  specialized 

treatment for particular types of dogs (e.g. the use of certain dogs for ritual consumption) 

compared to a more generalized role of dogs during the Neutral. Wright (2004:1373) 

remarked on the number of butchered dogs found at Middle Ontario Iroquoian sites, 

postulating that this time period may have been one “of heightened ceremonial-political 

activity.” Campbell and Campbell (1989) noted increased numbers of dogs in middens at 

Neutral sites and suggested a shift to a more utilitarian role during the Neutral period. 

Burning [Fon-117, Ham-25, Rif-020] and cut marks [Pip(1)-180, Pip(2)-103 and Rif-020] 
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(see examples, Figure 2.15) were noted on five of the canids examined for this study 

suggesting the animals were butchered and probably consumed (Davis 1987; Prevec and 

Nobel 1983; Morey 2010; Tarcan et al. 2000; Wright 2004). The isotopic composition of 

the structural carbonate and collagen of butchered dogs indicates that these dogs 

consumed substantial quantities of maize year-round, which could imply human 

intervention in their diet (Figure 2.13, circled black diamonds). The purposeful feeding, 

post-mortem butchering, burning and probable consumption indicates planned ritual and 

different or favourable treatment of certain dogs during life. Such ideologically based 

interaction between humans and dogs has been found elsewhere, e.g., among the Maya, 

where dogs placed in special contexts had consumed pure C4 diets (White et al. 2001). 

These Middle Ontario Iroquoian dogs, however, did not exclusively consume a C4 food, 

which begs the question of whether they were purposefully cared for or simply successful 

scavengers.  

 

 
Figure 2.14: Examples of butcher marks on Pip(2)-103 (left) and Pip(1)-180 (right) 

Another plausible explanation for the shift from higher to slightly lower C4 diets from the 

Middle Ontario stage to the Neutral may be related to individual human-dog 

relationships. For example, associations between particular dogs and humans are 

remarked upon in many Eastern Woodland mythologies, including the naming of dogs, 

sleeping with them and grieving at their death. Isotopic variation may also be accounted 

1cm 
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for by individual human preference in the treatment of “their” dog or simply be a 

function of the sample size. Many of these explanations are not mutually exclusive as 

their multiple roles and ideological nature enables dogs simultaneously to occupy many 

positions within a single community. 

2.4.9 δ18Osc  of canids: geographic associations 

The δ18Osc values of the canid bones have the potential to reveal information related to in 

vivo geographic locations, e.g., whether wild canids were hunted near human settlements. 

There are several assumptions that need to be made: (1) the δ18O values of structural 

carbonate are well preserved and will reflect locally ingested waters; (2) locally ingested 

waters will be associated with local precipitation, and (3) local precipitation can be 

extrapolated from modern water station data. Local δ18Oprecipitation values were 

interpolated with a Kriging analysis using precipitation isotopic data from across the 

Great Lakes region (IAEA/WMO 2013; Longstaffe, unpublished data, Figures 1.2 and 

2.16). Structural carbonate isotopic data were transformed to phosphate isotopic 

compositions following Iacumin et al. (1996:4): 

δ18Ophosphate = 0.98(δ18Osc) –8.5   [Equation 2.2] 

Currently, there is no specific equation for the relationship between δ18Ophosphate and 

δ18Oprecipitation values for canids, as there is for humans (Daux et al. 2008), deer (Luz et al. 

1990), and experimental rats and pigs (see for example Longinelli 1984; Luz and 

Kolodny 1985). For this study, two equations were used to calculate δ18Oprecipitation values: 

Luz et al.’s general equation (1984:1690) and Luz et al.’s deer-specific equation 

(1990:1724). Neither produced significantly different results, and therefore Luz et al.’s 

(1990:1724) relationship was selected because it was developed from North American 

data, including the Great Lakes region, and allowed the addition of average humidity to 

the calculation.  

δ18Ophosphate = 34.63 + 0.6506(δ18Oprecipitation) – 0.171(humidity) 12 [Equation 2.3] 

                                                 
12 humidity was estimated at 85%, based on an Ontario average. 
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For the canids whose structural carbonate was analysed (n=56 adults, 4 juveniles), the 

δ18Osc values were compared with several geographic variables, including site longitude 

and latitude, and estimated δ18Oprecipitation for the site. The only statistically significant 

relationship was an association between δ18Osc values and latitude (Spearman’s ρ=0.255, 

p=0.049). In order to explore these variables further, juveniles were removed from the 

sample set because of a potential breast-feeding weaning bias, with the exception of Pip 

(2)-028, the near adult wolf/dog wolf hybrid. Domestic dogs and wild canids were 

analysed separately because they are expected to have different access to water sources 

i.e., domestic dogs may have consumed water within villages.  

Water sources may vary in their δ18O values for several reasons. First, the source of the 

water being consumed by an animal will affect the δ18O values (i.e., ground water, direct 

precipitation, surface water). For example, ground water δ18O values are usually the 

average δ18O value of precipitation from the recharge area, which may have a different 

δ18O composition than surface water depending on size and retention-time of the surface 

waters (i.e., large lakes versus streams) or if ground water is fed by multiple recharge 

areas (Clark and Fritz 1997; Sharp 2007). Variation in the precipitation feeding ground 

and surface water (as well as evaporation rates related to temperature and humidity) will 

be compounded by the time of year (i.e., changes in temperature, humidity and air mass 

sources) (Clark and Fritz 1997; Sharp 2007). Finally, drinking water sources may be 

altered by human behaviors, for example boiling of the water will result in highly 

evaporated water, which is expected to be enriched in 18O.  

The following analysis works on the assumption that if fauna are consuming largely 

unaltered precipitation (i.e., minimally evaporated surface water) there will be a 

relationship between the estimated δ18O value of local precipitation and the δ18Osc values 

of faunal tissues. However, the low geographic variability of the δ18Oprecipitation values 

across the Great Lakes region of interest (~2‰ based on the interpolation from 

IAEA/WMO 2013 and Longstaffe unpublished data water stations), relative to other 

factors, such as seasonal fluctuations and source water, means all interpretations should 

be taken with some caution. While a statistical analysis is completed in the following 

sections, further work is needed to confirm the findings.  
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Figure 2.15: Archaeological sites with canid remains overlaid on the interpolated δ18O values for local precipitation from the 

previously described Kriging model (IAEA/WMO 2013; Longstaffe unpublished data, Figure 1.2).  
Ancestral Ontario Iroquoian Sites: 1. Pipeline; 2. Rife; 3. Crawford Lake; 4. Bogle II; 5. Hamilton; 6. Winking Bull; 7. Old Lilac Garden; 8. 
Fonger; 9. Porteous; 10. Walker; 11. Van Besien, 12. Slack-Caswell; 13. Thorold.Pre-maize Sites: 14. Cranberry Creek; 15. Bruce Boyd; 16. 
Davidson. Ontario Western Basin Sites: 17. Figura; 18; Inland West Pit Sites, Loc. 3, 9 and 12; 19. Dobbelear; 20. Roffelson, 21. Silverman.. 
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Figure 2.16: Interpolated δ18Oprecipitation values13 compared to calculated δ18Oprecipitation values based on the δ18Osc values14. 

Ontario Iroquoian domestic dogs = black diamonds, Western Basin domestic dogs = circled black diamonds. 

                                                 
13 Interpolated from water station data from IAEA/WMO 2013; Longstaffe unpublished data, Figure 1.2 
14 Calculated from Iacumin et al. (1996:4) and Luz et al.’s (1990:1724). 
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There was a stronger association between the wild canid δ18Osc values and the predicted 

δ18Oprecipitation values (Spearman’s ρ=–0.631, p=0.028, Figure 2.16), but the correlation is 

negative making, which makes interpretation  difficult.   

For domestic dogs, the only geographic variable significantly correlated with δ18Osc 

values was latitude (Pearson’s R=–0.340, p=0.016), which suggests some geographic 

relationship between the δ18Osc values of their bones and site location. However, unlike 

the wild canids, water consumed by the domestic dogs does not reflect local δ18Oprecipitation 

values (Figure 2.16). One putative explanation is that domestic dogs were restricted 

geographically (e.g., by palisades or by choosing to stay close to scavenged food) and 

therefore limited to imbibing evaporated waters found within villages and campsites (e.g., 

puddles, water collected in pots, or boiled water in sagamite and stews). The δ18Osc 

values of the domestic dogs, however, are not significantly higher than those of the wild 

canids, which would be expected if the domestic dogs consumed evaporated waters. An 

alternative explanation is that dogs ranged between isotopic zones as hunting partners or 

were traded between isotopic zones. Ethnohistoric documents from the Eastern 

Woodland report that dogs may have been traded and/or sought across great distances 

(Thwaites 1896–1901 43; 23). The two possibilities are not mutually exclusive as 

multiple roles and treatments are evident for the domestic dogs.  

2.5 Conclusion  

This paper has demonstrated the importance of integrating multiple isotope analysis with 

zooarchaeological data and of using wild and domestic species to understand cultural 

preferences regarding hunting strategies and subsistence choices. Wild canids, i.e., foxes 

and wolves, have been used here to identify hunting locations and an opportunistic 

approach toward certain hunted species. Domestic dogs proved to be excellent proxies for 

human diet for both Ontario Iroquoian and Western Basin populations, thereby expanding 

the number of sites that could yield dietary data and enabling a better understanding of 

the similarities and differences in diet and subsistence.  
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Differences in the frequency of wild canid species recovered from Ontario Iroquoian and 

Western Basin faunal assemblages suggest different hunting strategies or patterns of 

disposal. The isotopic compositions of bone collagen and structural carbonate of dogs 

and wild canids demonstrate variable access to maize and protein sources. The four large 

Canid sp., presumed to be wolves, consumed only from a C3 food web, which suggests 

geographic separation from human settlement. However, their presence in Iroquoian 

faunal assemblages and their δ18Osc values suggest that overlapping hunting territories 

could have resulted in occasional interspecies aggression and/or ritual use of wolf 

remains. The carbon and nitrogen isotopic compositions of foxes from Ontario Iroquoian 

and post A.D. 1400 Western Basin sites indicate they were consuming ‘crop-pests’ and, 

in turn may, have been opportunistically hunted while in maize fields. The higher 

frequency of fox remains at Iroquoian sites suggests different seasonal land use, hunting 

strategies or disposal patterns. Ontario Iroquoian peoples may have actively pursued crop 

pests (explored further in the following Chapter 3) while Western Basin peoples pursued 

game more often during cold weather and their hunting grounds may have been 

geographically separated from the location of their maize fields.  

Dogs from both Late Woodland Iroquoian and Western Basin sites effectively serve as 

proxies for human diet, thus facilitating comparison of the well-known Ontario Iroquoian 

dedicated maize horticultural diet with the diet of the semi-mobile, horticultural Western 

Basin peoples. The findings suggest that domestic dogs ate protein from a higher trophic 

level than wild canids, which probably indicates more fish in their diet. Both Western 

Basin and Ontario Iroquoian dogs ate comparable amounts of maize, which supports 

recent evidence of heavy maize consumption by Western Basin human populations. 

These findings support year-round maize consumption at Western Basin sites despite the 

archaeological evidence of seasonal mobility.  

Western Basin dogs appear to have consumed a lot of fish in general, though inter-site 

variability suggests that site-specific patterns should be further explored. Younge Phase 

dogs at Arkona have distinct diets, marked by more C3 protein. A dog from Roffelsen, a 

unique Younge Phase site, has a diet consistent with purposeful maize feeding, which  

may be related to its roles before and after death as it was recovered from a special 
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context burial. The single, late phase Western Basin Dobleaar dog had a diet consistent 

with year-round maize access and is believed to have consumed large quantities of maize 

and presumably freshwater fish. 

The Late Woodland Ontario Iroquoian dogs varied both geographically (north of the 

Carolinian versus within the Carolinian forest) and temporally. As might be expected, 

domestic dogs recovered from within the Carolinian forest, an area marked by longer 

growing seasons, had greater access to maize. An unexpected finding was the higher δ13C 

values from the earlier, Middle Ontario Iroquoian stage (A.D. 1200–1450) relative to the 

Neutral (A.D. 1450 to 1650). Previous research has suggested that the Middle Iroquoian 

stage may have been a time of increasing ceremonialism, resulting in more dog sacrifice. 

Three of the Middle Ontario Iroquoian dogs display cut marks consistent with post-

mortem butchery and may have been ritually consumed or sacrificed. By contrast, the 

later Neutral dogs show no cut marks (although there were two incidences of burning), a 

reduction of maize access and more variability in δ15Ncol values. A shift in the type of 

freshwater fish consumed by humans (e.g., pike, bowfin and perciformes, which have 

lower δ13Ccol values) may explain some of the change, and is consistent with the species 

composition of faunal assemblages. In addition, the economic and spiritual role of 

Iroquoian dogs may have changed with increasing population size and sedentism. 

Whether or not such shifts were the result of stricter taboos, food scarcity or the 

development of a different relationship between dogs and people cannot be deciphered 

from the stable isotopic analysis alone.  

An Archaic dog from the Davidson site represents the oldest canid analysed isotopically 

in southwestern Ontario. The dog appears to have consumed high trophic level prey, 

probably from both terrestrial and aquatic systems within a C3–dominated food web. Itsr 

likely consumption of freshwater fish, not readily available to wild canids, marks its 

domesticated status. This finding makes this 3500 year old canid the earliest-known, 

definitively domesticated dogs in southwestern Ontario. 

No significant differences in oxygen isotopic composition were found between Ontario 

Iroquoian and Western Basin domestic dogs. There are, however, differences between 
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domestic dogs and wild canids, which may be related to water access. The negative 

correlation between wild canid δ18Osc values and local precipitation is problematic to 

interpret.  The δ18Osc values of domestic dogs are not correlated with precipitation 

isotopic compositions, perhaps because  they drank from variable water sources (i.e., 

puddles) or  moved around as hunting partners and/or trade items.  

The demonstration that dogs can provide a valid dietary proxy for contemporary humans 

is a significant step forward in our ability to reconstruct the life-ways of indigenous 

peoples in this region, especially as access to human remains is tightly restricted. This 

study also provided insight into other aspects of human-canid relationships. The analysis 

of both wild and domestic canids from Ontario Iroquoian and Western Basin sites 

successfully demonstrated: (1) differences in cultural relationships to land use; (2) dietary 

shifts that might reflect changing economic and spiritual roles of dogs during the Late 

Woodland period, and (3) differences in hunting patterns.  

2.6 Future Work 

Future research should focus on the selection of: (1) a wider temporal and geographic 

sample of canids in order to fill gaps, particularly from the Middle to Late Woodland 

transition, as well as the entire Western Basin temporal span in Ontario, and (2) 

specimens where multiple tissues (e.g. enamel, dentine and bone) are available. The latter 

would enable expansion of seasonal studies regarding canid access to maize, and 

geographic studies of the movement of dogs as proxies for trade. Future work should also 

expand on the structural carbonate isotopic analysis of all canids to create more detailed 

dietary profiles.  

In an exploratory study, isotopic analyses were performed on serial samples of the first 

and second permanent mandibular molar (the third permanent molar was not available) 

from an archaeological dog (Van 124) from Van Besien site, an Early Ontario Iroquoian 

village. The test was successful in capturing a clear weaning signal (Figure 2.17). Based 

on modern domestic dog eruption sequences (Hillson 2005:258, Mulligan et al. 1998:72) 

and radiographs (n=8) of juvenile dogs (Morris, unpublished), the two molars are 

estimated to form over approximately three months, the first molar completing formation 
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just prior to the second molar. The third permanent molar, estimated to form over the 

fourth and sixth month of life (Morris, unpublished) will be included in future serial 

section studies. This multiple tissue research can be used to reconstruct the geographic 

movement of dogs and patterns of seasonal maize consumption, which could be 

particularly informative of how the maize subsistence of Western Basin peoples was 

integrated with hunting and fishing activities.  

 
Figure 2.17: δ18Oenamel and δ15Ndentine values versus δ13Cenamel for serial sections of 

first and second permanent mandibular molar of Van Besien site dog specimen 

Van–124.   
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Chapter 3  

3 Wild Turkey 

3.1 Introduction 

“In some districts… there are turkeys, which they call Ondettontaque, not tame but 

migrating wild birds. The son–in–law of the great' chief of our town chased one for a 

long time near our hut but was unable to catch it. For though these turkeys are heavy and 

clumsy they can fly, and in spite of their weight make their escape from tree to tree, and 

in this way avoid the arrows. If the savages were willing to give themselves the trouble of 

feeding young ones they would domesticate them as well as we do here.” (Wrong 

1939:220) 

Gabriel Sagard’s quote, describing the relationship of turkey to the Iroquoian-speaking 

nations, highlights a commonly held belief that animals are limited to either wild or 

domestic spheres. This paper attempts to dispel the myth that human-animal relations are 

a dichotomy of the wild versus domestic, and instead, examines the nuanced and varied 

relationships of the ancestral Neutral Ontario Iroquoian people with the eastern “wild” 

turkey. Employing the concept of spectrum (Russell 2012:251) to explain a range of 

human-animal interactions, the stable isotopic and faunal data provide evidence of 

“protection” of wild turkeys in the form of purposeful discard of maize waste in fields, a 

behaviour that attracted the birds and provided increased food assurance for the Late 

Woodland Iroquoian people. As Harris (1996) notes, the range of relations between wild 

and domestic is neither inevitable nor unidirectional (i.e. it is reversible). Therefore no 

assumptions are made regarding wild turkey domestication in southwestern Ontario. 

As the largest terrestrial avian species indigenous to North and Central America, wild 

turkeys were an important hunted species, even in regions where domesticated turkeys 

are present (see for example use of Merriam’s turkey in the southwest, Speller 2009). The 

wild turkey was exploited by indigenous peoples for food, ritual, medicine, tools, and 

clothing (Dickson 1992; Laubin and Laubin 1977; McNeese 1998; Ritzenthaler and 

Ritzenthaler 1970; Schorger 1966). Numerous ethnohistoric accounts from the northern 
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Eastern Woodland region describe the hunting and consumption of wild turkeys 

(Thwaites 1896–1901 vols. 34; 47; 54; 58; 59; 60; 65; 66; 67; 69; 70; 71; Wrong 1939), 

the hunting of turkeys in colder months (Thwaites 1896–1901 vols. 21; 32; 34; 59; 60), 

the use of turkeys to construct cloaks and hair pieces (Leland 1886; Thwaites 1896–1901 

vol. 65), and the use of turkeys in ritual and medicine (Thwaites 1896–1901 vol. 13).  

Zooarchaeological data provide evidence of the ubiquity of wild turkeys in Late 

Woodland faunal assemblages, though their relative importance varies by site and time 

compared to other birds (such as the passenger pigeon), mammals and fish (Foreman 

2011; Prevec and Nobel 1983; Stewart 2000). Further, there was a decrease in wild 

turkey procurement over the course of the Late Woodland (A.D. 900 to 1600), which is 

attributed to a shift to spring planting and fall harvesting of domestic crops (Foreman 

2011). It is speculated that the diversion of labour necessitated by these activities would 

have caused a reduction of hunting opportunities for cold weather–hunted species 

including white-tailed deer and wild turkey. As long-term settlement use and domestic 

crop dependency increased over the 700-year period, faunal procurement became less 

specialized and more informal (Foreman 2011).  

Although there are ample archaeological and ethnohistoric data to indicate that turkeys of 

the Eastern Woodland were hunted wild for food, feathers and bones, there are no data to 

indicate they were domesticated by either Late Woodland groups of the northeast or 

Mississippian peoples of the southeast. They might, however, have been managed and/or 

loosely protected by food baiting, i.e., creating a winter feeding-ground by leaving maize 

in fields after harvest. This practice has not been described elsewhere in North American 

archaeology but is sometimes used today not only by individual hunters and farmers but 

also by jurisdictions attempting to aid re-introduction and survival of wild turkeys (see 

for example the New Hampshire Fish and Games and Department of Environmental 

Conservation [2014, updated May 2015) advisory for feeding wild turkey).  

The importance of maize horticulturalism increased significantly around A.D. 1000 

becoming a dietary staple for Ontario Iroquoian and Western Basin peoples, two 

neighbouring Great Lakes cultural groups. Despite a mutual growing dependence on 



117 

 

maize, the two groups maintained different subsistence-settlement strategies (Murphy and 

Ferris 1990). Sedentism and population growth increased exponentially after A.D. 1000 

among the Iroquois while Western Basin peoples pursued more varied settlement 

patterns, often moving in order to exploit seasonal resources. Examination of the animals 

exploited by archaeological peoples provides insight into ancient subsistence and hunting 

strategies. In this case, the isotopic compositions of wild turkeys from faunal assemblages 

were compared with those from modern Ontario wild turkeys and archaeological turkeys 

from Eastern Woodland, American Southwestern, and Mexican sites (Figure 3.1) in order 

to better understand the faunal record and determine whether Late Woodland Ontario 

peoples managed wild turkeys by using maize. Because maize was the only horticultural 

C4 plant in southwestern Ontario during the study period, stable isotopes can provide 

evidence of human provisioning of wild turkeys with maize. Furthermore, the fact that 

turkeys are non–migratory, terrestrial birds that opportunistically forage on available 

resources (Eaton 1992; Lippold 1974; Schorger 1966) makes them an ideal proxy for 

examining human landscape change in the past. 

3.2 Background 

3.2.1 The eastern wild turkey: habitat and behaviour 

Prior to European contact, the turkey (Meleagris gallopavo) was represented by six 

subspecies in Northern and Central America (Figure 3.1). The eastern wild turkey 

(Meleagris gallopavo silvestris, or M.g. silvestris) was native to the eastern United States 

and southwestern Ontario (Eaton 1992; Godfrey 1966; Shorger 1966). Because severe 

winters can devastate wild turkey populations (McIlwraith 1886), the mild climate of 

southwestern Ontario is the only Canadian location for these birds and represents their 

northern limit (Dean 1994; Prevec and Noble 1983). M.g. ocseola was found in Florida, 

and integrated with M.g. silvestris in the southeastern Atlantic and Gulf States. M.g. 

intermedia was found from eastern Texas along the northeastern coast of Mexico, while 

M.g. mexicana was originally dispersed along the west coast of Mexico. M.g. gallopavo 

was originally dispersed throughout central Mexico. Finally, M.g. merriami was found in 

the southwest, north of the Mexican border (Eaton 1992; Leopold 1944; Schorger 1966; 

Speller et al. 2010). 
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Figure 3.1: Distribution of wild turkey prior to European contact.15  

                                                 
15Adapted from Speller et al. (2010:Figure 4) (United States and Central America), Eaton (1992) (Ontario) and Schorger (1966:43, 49) (United States and 
Canada). Areas mentioned in text marked by white circles: (1) Southwestern Ontario (Katzenberg 1989, 2006; This Study), (2) Southeastern United States (Price 
et al. 2010; Price unpublished data), (3) Southwestern United States (Rawling and Driver 2010), and (4) north–central Mexico (Webster and Katzenberg 2008). 
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Figure 3.2: Archaeological sites with wild turkey remains analysed in this study and published isotope data (Katzenberg 2006). 

Approximate hunting and/or recovery locations of modern turkey samples analysed in this study are shown as black stars.  
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Wild turkeys (M.g. silvestris) were extirpated from Ontario due to a disease contracted 

from introduced domestic species, over hunting, and land clearing activities, but were re-

introduced to the region in the 1980s (Heckleau 1982; McIlwraith 1886; Weaver 1989). 

Weaver (1989:1) analysed the movement of a re–settled population of wild turkeys in 

southwestern Ontario describing them as “ecological generalists, adapted to variable and 

unpredictable environments.” The modern range of re-introduced wild turkeys is greater 

than their post-contact, historic range and considerably more diverse because they are 

broadly adaptable (Weaver 1989). Modern ecological studies of wild turkeys suggest that 

they can tolerate human population densities up to fifteen persons per km2, exploit a wide 

range of food resources and inhabit areas of mature forest that are interspersed with open 

meadow or agricultural fields (Hecklau et al. 1982), but they must be near water sources 

(Eaton 1992; Schorger 1966; Weaver 1989). Although the diet of the turkey is widely 

variable and best described as opportunistic, regionally and seasonally adaptable, it is 

dominated by hard and soft mast (i.e., nuts and fruits from trees and shrubs), as well as 

insects and small vertebrates (Eaton 1992; Schorger 1966; Weaver 1989). In areas with 

available agricultural sources more than half of the diet will include cultigens, with waste 

maize comprising up to 77% of the agricultural component or approximately 35% of the 

total diet (Groepper et al. 2013; Tefft et al. 2005). 

The adaptability of wild turkeys is also reflected in their flexible patterns of movement 

and use of home ranges. Researchers have argued that food location and abundance 

controls turkey movement, particularly in the winter (Ellis and Lewis 1967). Wild turkeys 

in southwestern Ontario do not significantly re-locate during winter (Weaver 1989), 

which suggests that they are able to meet nutritional requirements without increasing 

daily distance travelled. In fact, the average annual range of southwestern Ontario turkeys 

is approximately 1000 acres (Weaver 1989), which is lower than that for the northeastern 

United States (see for example Schroger 1960). However, their use of agricultural land, 

particularly maize fields, increases during winter months and is often a primary factor in 

selection of wintering areas (Ellis and Lewis 1967; Leopold 1944), contributing to higher 

survival rates (Hayden 1980; Porter 1977; Porter et al. 1980; Vander–Haegan et al. 1989; 

Weaver 1989). Although the feeding range of wild turkeys changes with season, once a 
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food source is found, it is often accessed using the same routes, which makes them 

vulnerable to predators, including human hunters (Schorger 1960). Their daily pilgrimage 

routes are predictable as are their times of arrival and departure.  

The presence of wild turkeys in maize fields has led to their characterization as crop–

pests but, in fact, they rarely cause crop damage. Extensive research in the mid–west and 

Ontario has demonstrated that they eat only maize damaged by wind or water, or knocked 

down by other animals or left in the fields after harvest (Greene et al. 2010; Groepper et 

al. 2013; Tefft et al. 2005; Wright et al. 1989). Turkeys can remove kernels from cobs 

that have fallen to the ground but cannot reach or pull down the cobs from standing 

stalks. Damage to crops is usually the result of depredation by other species, such as deer 

and raccoons (Ontario Ministry of Natural Resources 2007; Tefft et al. 2005). The 

presence of wild turkeys in fields may, in fact, benefit farmers because insects (including 

known crop-pests such as grasshoppers) are an important summer food for turkeys 

(Groepper et al. 2013; MacGown et al. 2006; Wright et al. 1989). Young poults born in 

the early summer consume far more insects than mature turkeys, and then convert to a 

primarily plant-based diet within four to five weeks after hatching (Dickson 1992; Eaton 

1992; Wright 1989). The fact that wild turkeys can only eat maize ears and other 

remnants left on the ground has profound implications for archaeological interpretation of 

human harvesting patterns and the possible management of wild turkey populations to 

create a stable cold weather food source for ancient peoples .  

Wild turkey hunting in the northeast, both today and in the past, appears to be restricted 

to colder months (October through March), likely because summer turkeys are low 

weight and tick-infested (Boone 1851; Foreman 2011; Lippold 1974; Schorger 1966).  

3.2.2 Wild versus domesticated: dichotomies versus continuums 

In reference to domestication of animals, including wild turkeys in the southwest 

United States;. “It has already been shown that agriculture was, in its beginning, an 

art of the desert; it may now be affirmed that the sister art, zooculture, is also a child 

of sun and sand,” (White 1945:230). 
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An important economic and ritual resource in many indigenous regions (Davis 2001; 

Dickson 1992; McKusick 1986; Rawlings and Driver 2010), the turkey was the only 

animal domesticated in North America prior to European contact. Even the dog arrived to 

the Americas already domesticated. After contact, turkeys quickly became a globally 

important food source as Europeans brought domesticated turkeys back to Europe and 

other colonies (Crawford 1992; McIlhenny 1914; Russell 2012; Schorger 1966).  

Currently, the widely accepted definition of domestication is the selective modification of 

a plant or animal in captivity (or isolation from wild counterparts) for the benefit of 

humans, resulting in genetic and morphological differences in that organism relative to 

their wild progenitors (Bökönyi 1969; Branford Oltenacu 2004; Clutton-Brock 1994; 

Harris 1996; Ingold 1994). Russell (2012) has argued that most definitions such as this, 

however, are either so broad as to become meaningless, or too exclusionary. Russell does 

note that having a definition of domestication is important for defining criteria to identify 

human-animal relationships in the past (i.e., morphological changes, shifts to animals as 

property, etc.). The concept of domestication defined above does provide a general 

understanding of how (isolated, selective breeding) and why (human benefit) 

domestication may occur. Therefore, it is possible to examine wild and domestic species 

morphologically and consider the various ways humans used those animals for their 

benefit. However, the definition does not leave room for other human-animal 

interactions. For example, management of certain species to maintain “wild” populations 

would not be recognized as domestication, but may alter natural distributions of a 

species. Even the population size and age profiles of “wild animals” may be changed for 

human benefit so may not be a clear example of an unaltered relationship (i.e., 

aquaculture, Webster et al. 2004). Nor does the above definition address why certain 

organisms may or may not be candidates for domestication. In fact, there are certain 

criteria that have been recognized as important for successful domestication for both 

plants and animals (see for example Chapter 2, domestication of the wolf). Wild turkeys 

exhibit behavioural patterns critical for animal domestication, which include their social 

nature (flocking behaviour), promiscuous mating system, strong parent-young bonding, 

high fertility, short flight response (non-migratory behaviour), low reactivity to humans 

and environmental change and their omnivorous diet and innate adaptability (Breitburg 
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1993:163, after Hale 1969). Their ease of domestication has been demonstrated in the 

American southwest and Mexico, where they became an important economic and ritual 

resource (Beachum and Durand 2007; Davis 2001; Dickson 1992; McKusick 1986; 

Rawlings and Driver 2010). 

While some organisms may be prone to domestication, the range of interactions between 

humans and animals, which are neither “domestication” nor “not-domestication” cannot 

be ignored, as they may be part of the process towards the domestication of species. For 

example, there may be different behaviours exhibited by humans interacting with 

animals, such as taming, protective herding and free-range management, including 

adaptation to human landscape changes and consumption of human waste products, 

which alters the nature of their relationship and may begin the process of modification in 

the organism, with or without intent for domestication (Harris 1996; Ingold 1994; Russell 

2012).  

The limiting dichotomy of wild versus domestic, therefore, has justifiably been 

challenged by many researchers who advocate a more fluid conceptualization or a 

continuum of this human-animal relationship (Harris 1996; Ingold 1994; Russell 2012; 

Zeuner 1963). For example, Russell (2012) remarks on the difficulty of defining 

domestication because it is only one of a myriad of human-animal relationships, and 

argues that the complicated nature of human-animal interactions should be viewed as a 

spectrum rather than a continuum, which implies a smooth and/or directional process 

(2012). Zeuner (1963:63) described stages of “intensity” where the relationship between 

animals and humans may pass from loose contact to the extermination of the wild 

ancestors, which is the most extreme result of domestication. The process of 

domestication is neither inevitable nor irreversible, but includes a stage of “protection,” 

which according to Harris (1996:447-8) falls between predation and domestication. 

Protection may include taming of wild animals or free-range management. The spectrum 

approach is particularly useful when considering the case of the wild turkey in 

southwestern Ontario.  
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Humans benefit from the food security conferred by domestication, as a domesticated 

organism is a more controllable, available, and predictable food source than a wild 

gathered plant or hunted animal. Increased access to secondary food products such as 

eggs, dairy, and by-products (e.g., honey) are also associated with domestication. Other 

reasons for domestication include companionship, hunting partners, and beasts of burden 

(Clutton–Brock 1994; Harris 1996; Russell 2012).  

Nearly simultaneous, but independent, domestication of turkeys in the Americas has been 

confirmed genetically, and occurred approximately 2000 years B.P. (Mock et al. 2002; 

Speller 2009; Speller et. al. 2010; Thornton et. al. 2012). M.g. gallopavos was 

domesticated in south-central Mexico (Schorger 1966) and an as-of-yet unknown 

progenitor, most likely M.g. silvestris or M.g. intermedia, was domesticated in the 

southwestern United States (Breitburg 1993). The motivation for turkey domestication is 

unclear. Some ethnohistoric accounts suggest turkey were domesticated as a food source 

for meat and eggs while others argued their feathers were valued more than meat because 

of their ritual significance (Breigburg 1993). The activity of feasting, which may involve 

the ritual and practical use of animals, has also been suggested as a major motivation for 

turkey domestication (Hayden 2009). The separation of ritual and food uses of turkey 

may, therefore, be artificial (see for example Zimmerman-Holt 1996) when trying to 

understand their domestication.  

3.2.3 Previous stable isotope bird studies 

The majority of bioarchaeological, paleodietary and paleoenvironmental isotopic studies 

focus on the analysis of mammals (human or other). There are fewer studies of ancient 

birds, though modern research has been conducted for several species (e.g., Kelly 2000 

for summary). Modern bird research has focused on metabolic factors (Hobson and Clark 

1992a; 1992b), migration (Hobson 1999; Rubenstein and Hobson 2004), starvation and 

fasting (Hatch 2012; Hobson 1993; Kempster et al. 2007), diet reconstruction (Mizutani 

et al. 1992) and seasonality (Stearns 2010). The latter study used δ13C values of wild 

turkey feathers collected during winter months in Utah to demonstrate the inclusion of 

agricultural fields in the winter feeding-range of wild turkeys. Generally, the principles of 
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stable isotopic analysis of bone apply to both birds and mammals, though some key 

differences are addressed below.  

Bone is a dynamic tissue that continuously remodels throughout life and generally 

represents a long-term average of what an organism eats and drinks, but the isotopic 

turnover rate of any tissue is correlated with metabolic rate (Hobson and Clark 1992a; 

Tieszen et al. 1983). Differences in metabolic rates have been noted between mammals 

and birds, and are influenced by habitat, dietary niche and body size (Nagy 1987, 2005). 

Birds, in general, have higher metabolic rates than land mammals (e.g., Hobson and 

Clark [1992a] calculated the half-life of carbon in Japanese quail collagen to be 173.3 

days) but captivity slows down metabolism (Hobson and Clark 1992a; Nagy 1987). 

Nonetheless, the family to which turkeys belong (Galliformes) has a low metabolic rate 

compared to other birds regardless of wild or captive state (Nagy 2005). As large 

terrestrial birds, turkeys most likely have a metabolic rate comparable to equivalent-sized 

mammals (Lasiewski et al. 1967). Young birds, however, have much faster bone turnover 

rates than adult birds. Consequently, the collagen of juveniles (i.e., < 1 yr old) is assumed 

to represent their growth phase, and that of adults, a life-time, post-growth phase average 

(Hobson and Clark 1992a). The results of adult and juvenile wild turkeys were therefore 

initially considered separately to ensure that there were no statistically significant 

differences between the adult and juvenile populations. 

Differences in tissue isotope fractionation between birds and mammals could also be 

caused by the fact that that birds produce uric acid instead of urea, but to date, no such 

differences have been found for collagen (Hobson and Clark 1992b). There are also no 

data to suggest that the structural carbonate contained in bone bioapatite behaves 

differently in birds and mammals.  

3.3 Materials and methods 

3.3.1 Materials 

Archaeological turkey samples were selected from previously excavated faunal 

collections housed at various institutes across southwestern Ontario (Department of 

Anthropology, McMaster University; Department of Anthropology, The University of 
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Western Ontario; Ontario Museum of Archaeology) Site descriptions may be found in  

Appendix A). Modern wild turkey samples were donated by the Comparative Faunal 

Laboratory, Department of Anthropology and Department of Biology, The University of 

Western Ontario, as well as by several individuals (Brad Tweddle, Jim Keron, Dr. Ryan 

Hladyniuk, Dr. Wendy Russell, and Ted Barney). Figure 3.2 shows the approximate 

locations for the modern turkeys and the locations of archaeological sites in Ontario 

discussed in the text. Due to variable preservation quality, archaeological wild turkey 

samples were selected based on their availability, but where multiple turkeys of the same 

age/size were found within a single feature, the same element and side were selected to 

avoid duplicate sampling of the same individual. The ulna was preferentially selected 

because the wings were the most common portion of the bird donated by hunters.  

De-fleshing of the modern turkey samples was completed by the author in the 

Zooarchaeology Laboratory, Department of Anthropology, The University of Western 

Ontario. Specimen identification was completed by the author, Dr. Lindsay Foreman and 

Dr. Lisa Hodgetts, all from the Department of Anthropology, The University of Western 

Ontario. The Western comparative collection includes several adult, eastern wild turkey 

(M.g. silvestris) skeletons, along with many other indigenous birds from Ontario, which 

were used for morphological comparison. Wild turkeys are the largest terrestrial bird in 

Ontario and therefore have a morphologically distinct skeleton, which helps to 

differentiate their fragmentary remains from those of other large bird species, most of 

which are migratory and/or aquatic. 

The collagen of eighty wild turkeys was analysed for this study (summarized in 

Appendix B). Forty–four Ontario Iroquoian wild turkeys, including 34 adults and 10 

juveniles, were selected for collagen analysis from ten sites located in southwestern 

Ontario. The isotopic analyses of two Late Woodland wild turkeys from previous work 

by Katzenberg (2006) expand the geographic range of the Ontario Iroquoian samples. An 

additional fifteen adult wild turkeys were analysed from the neighbouring Western Basin 

Inland West Pit sites (A.D. 1150–1270), near Arkona, Ontario. To provide an isotopic 

baseline for turkeys prior to the entry of maize to the region (Crawford et al. 2006), two 

wild turkeys from the Bruce Boyd site (component dating to ~700 to 400 B.C.) were also 
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analysed (Spence et al. 1978) (Table 3.1). Published isotopic data for archaeological wild 

and domestic turkeys from other North American sites were used for comparison 

including: the Donnaha Site in North Carolina, n=16 (Price et al 2010; Price 2009), 

several sites in Colorado, n=30 (Rawlings and Driver 2010), and a single sample from the 

Chihuahua region of Mexico (Webster and Katzenberg 2008) (Figure 3.1). Collagen from 

nineteen modern turkeys from southwestern Ontario was also analysed (Appendix C). 

Additionally, the isotopic composition of bone bioapatite structural carbonate from 

fourteen modern and thirteen archaeological turkey samples was analysed to assess 

whether the relationship between avian collagen and structural carbonate is comparable 

to that of mammals (Appendix D and E).  

Table 3.1: Summary of wild turkeys analysed for this study 

  Pre–
horticulture 
pre A.D. 200 
(sites n=1) 

Ontario 
Iroquoian 
A.D. 900–

1600 
(sites, n=10) 

Western 
Basin A.D. 
900–1600 

(sites, n=3) 

Modern Wild 
Turkey  

(known hunted 
locations, n=6) 

Adult 
 

Collagen 
Structural Carbonate 

2 
0 

34 
8 

15 
1 

18 
13 

Juvenile Collagen 
Structural Carbonate 

0 
0 

10 
4 

0 
0 

1 
1 

TOTAL Collagen 
Structural Carbonate 

2 
0 

44 
12 

15 
1 

19 
14 

3.3.2 Sample description 

Age and sex determinations are recorded in Appendix B for the archaeological samples 

and Appendix C for the modern samples. All but two modern wild turkeys were still 

fleshed when donated. Therefore aging and sexing of the modern birds was possible and 

either provided by the donator/hunter or assessed by the author prior to the removal of 

bone for sampling. All fleshed, modern turkeys were adult males, ranging in age from 

one to five plus years, based on spur and beard presence and length (beard length age was 

estimated by the hunter/donators) (Dickson 1992; Schroger 1966). Wild turkeys are 

sexually dimorphic, males being larger than females.  

For the archaeological remains definitive sex identification was difficult because of bone 

fragmentation; sex determination could only be made if the tarsometarsal bone was 
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present (males have a spur) (Gilbert et al. 1996). In some instances size was used to 

provide possible sex differences (i.e. distal coracoid breadth).  

For the juvenile samples, age was assigned as a relative category based on McKusick’s 

(1986) criteria. The majority of the samples represent older juveniles estimated to be 

three to five months of age at the time of death. In Ontario, wild turkeys begin nesting in 

the spring, as early as late April and into May with an incubation period of approximately 

thirty days. If early nests are destroyed, however, female turkeys may lay a clutch of eggs 

later in spring/summer (Weaver 1989). Based on the osteological analysis of the juvenile 

remains and breeding/nesting behaviour, it is estimated that the majority of juvenile 

turkeys were killed in the fall/winter, between late September and January (also see 

Lennox 1977).  

3.3.3 Burial context 

The burial context for many of the samples was not available. Despite this lack of 

contextual data, some assumptions can be made based on the osteology and available 

archaeological feature/square information. With the exception of Bruce Boyd, an Early 

Woodland burial that was part of a multi-component site (Spence et al. 1978), all turkeys 

were recovered from villages or hamlets of varying sizes that were occupied year round. 

The majority were recovered from middens, usually as single, fragmentary bones. For 

example, the vast majority of turkey remains at the Hamilton site were recovered from 

large middens (A and C) outside the palisades. One turkey bone, Ham–05, however, was 

buried in a small midden within the village walls (Lennox 1977). At the Walker site, a 

large, Neutral village, one turkey (Wal–50) was associated with a winter house (House 8) 

(Wright 1977). 

Several features appear to contain special context burials including multiple co-mingled 

turkeys of varying ages, complete or nearly complete turkeys, and ritual bundles. The 

burial of multiple individuals within the same feature might indicate consumption or 

disposal of the turkeys in a single event (i.e., the turkeys were killed and/or eaten at the 

same time) such as a feast (Hayden 1996). Cold weather feasting might explain the 

assemblage of one feature type at both Crawford Lake (A.D. 1435–1459) and Hamilton 
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(A.D. 1638–1651) sites (Lennox 1977). Both include multiple individuals and juveniles 

with fall/winter ages-at-death. Complete single burials were also found at these sites. The 

completeness of the Crawford Lake burial and lack of burning or cut marks might suggest 

the turkey was not butchered or eaten prior to burial. Turkeys were also interred on top of 

a male human burial in Feature 1 at the Bruce Boyd site (ca. 700–400 B.C.). The fauna in 

this bundle were likely procured during a spring hunt (Spence et al. 1978). 

3.3.4 Post-mortem alteration 

Burning was observed only infrequently on turkey remains, none of which were selected 

for analyses. Other forms of post-mortem alteration were noted, including cut marks 

consistent with butchery (Davis 1992; Prevec and Nobel 1983; Morey 2010; Wright 

2004) as well as carnivore puncture marks, consistent with canine teeth (Haynes 1983; 

Millner and Smith 1989) (Figure 3.3). One turkey, Ham–16, had distinct cut marks on its 

proximal tibiotarsus indicative of cultural modification, possibly caused by bone bead 

manufacture (Parker 1916), and was not analysed in this study. 

 
Figure 3.3: Examples of cut marks indicative of (A) canine puncture marks, , (B) cut 

marks, possibly indicative of butcheryand (C) cut mark,s possibly as a result bone 

bead manufacture. 

3.3.5 Analytical procedures 

All isotopic analyses were conducted at the Laboratory for Stable Isotope Science, in the 

Department of Earth Sciences at The University of Western Ontario. Bone was gently 

A. B. C. 
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cleaned with a brush and distilled water, and allowed to dry overnight at room 

temperature. A small sample of cortical bone (0.2–0.4 g) was removed from complete or 

large bone fragments. Because bird bone is almost exclusively cortical, it was rarely 

necessary to remove trabecular bone. The cortical bone was crushed with a porcelain 

mortar and pestle, sieved, and powder collected at several intervals. The feathers and 

flesh were cut away manually from the modern wild turkeys, and a piece of the mid–ulna 

was removed using a handheld Dremel. The bone was rinsed thoroughly in warm water 

and dried at room temperature. When necessary, additional removal of dried flesh was 

completed through manual scrubbing and additional rinses. 

3.3.5.1 Extraction and analytical protocols 

For complete collagen (δ13Ccol, δ15Ncol) and carbonate ((δ13Csc, δ18Osc) extraction 

protocols see Chapter 2, sections 2.2.3.1 and 2.2.3.2 respectively.  

The collagen was analysed to obtain δ13Ccol and δ15Ncol values and carbon and nitrogen 

contents, which were used to calculate a C:N ratio. The δ13Ccol values were calibrated to 

Vienna Pee Dee Belemnite (VPDB) using the standards USGS-40 (accepted value, –

26.39‰), and USGS-41 (accepted value = 37.63 ‰). The δ15Ncol values were calibrated 

to AIR also using USGS-40 and USGS-41 (accepted values = –4.52 ‰ and 47.57 ‰, 

respectively), following Coplen (1994) and Coplen et al. (2006). An internal laboratory 

standard, Keratin (#90211, MP Biomedicals), was analysed approximately every fifth 

sample to evaluate the accuracy and precision of the collagen analysis. Accuracy and 

precision were excellent. The accepted keratin value for δ13Ccol is –24.04‰ (compared to 

the mean sample δ13Ccol value of –24.08 ± 0.08‰, n=86), and for δ15Ncol it is 6.36‰ 

(compared to the mean δ15Ncol value of 6.31 ± 0.15‰, n=80). Method duplicate pairs 

(i.e., a different extraction and analysis of collagen on the same sample) were performed 

for ~10% of the turkey and had a mean reproducibility of ± 0.06‰ for δ13Ccol and ± 

0.11‰ for δ15Ncol. The analytical precision for ~10% δ13Ccol duplicates (i.e., replicate 

analysis of the same collagen) was ±0.03‰, and for δ15Ncol was ±0.05‰. 

The δ13Csc and δ18O values were obtained for structural carbonate from thirteen 

archaeological and thirteen modern turkey samples. The δ13Csc values were calibrated to 
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VPDB, following Coplen (1994), using the NBS-19 standard (accepted value of 1.95 ‰) 

and Suprapur (accepted value of –35.28 ‰). The δ18O values were calibrated to 

VSMOW, following Coplen (1996), using NBS-19 and NBS-18 standards (accepted 

values of 28.60 ‰ and 7.20 ‰, respectively). An internal laboratory calcite standard, 

World Standard 1 (WS-1), was analysed approximately every fifteenth sample in order to 

assess the accuracy and precision of the carbonate analysis. The mean δ13Csc value of 0.76 

± 0.22‰ (n=11) and the mean δ18Osc value of 26.20 ± 0.19‰ (n=10) compared 

favourably to the accepted WS-1 values of 0.76‰ and 26.23‰, respectively. Carbonate 

pre-treatment method duplicates were conducted on three pairs of turkey samples with a 

mean reproducibility of ±0.04‰ for δ13Csc and ±0.19‰ for δ18Osc. The analytical 

precision for duplicate analyses of the same structural carbonate preparation was ± 

0.07‰ for δ13Csc and ±0.07‰ for δ18Osc. 

3.3.5.2 Fourier transform infra–red spectroscopy (FTIR)  

For complete description of the Fourier transform infra–red spectroscopy (FTIR) 

procedures, see Chapter 2, Section 2.2.3.3.  

3.4 Results 

3.4.1 Sample integrity 

Collagen yields and carbon:nitrogen (C:N) ratios were used to assess post–mortem 

alteration of the organic portion of bone (Table 3.2). Samples yielding less than 1% 

collagen are considered to be too degraded to give reliable results (Van Klinken1999; 

Ambrose 1993). Yields varied, with slightly lower collagen yields at the oldest site 

(Bruce Boyd, 5.0±0.7%) relative to Late Woodland (A.D. 1000–1600) sites (Table 3.2). 

No archaeological turkeys had yields less than 4% yield, suggesting the preservation was 

acceptable for isotopic analysis. Modern turkey had excellent preservation, as is expected 

for fresh bone, with a mean collagen yield of 20.4% (Van Klinken 1999). The C:N ratios 

for all samples fell well within the range of 2.9 to 3.6 recommended by DeNiro (1985). 

There was no significant correlation (Pearson’s Correlation) between δ13Ccol and δ15Ncol 

values and either C:N ratio or percent collagen yield. Therefore, all isotopic collagen data 

were accepted. 
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For the structural carbonate, three checks were used to assess the integrity of the samples; 

FTIR analysis, percentage of bioapatite by weight, and percentage of CO3 (as CO2) in 

bioapatite by weight.  

The expected CI for fresh bone lies below 2.8 and 3.0, which is consistent with that 

measured for the modern turkeys (2.63±0.19, n=19) (Table 3.3). The mean CI of the 

archaeological turkey samples (2.78±0.23, n=19) was below that limit, and closer to that 

of the modern samples (Table 3.3). Re-crystallization is, therefore, not indicated and all 

wild turkey samples were retained for isotopic analysis. 

All fresh (i.e., de-fleshed) modern turkey bones had C:P ratios > 0.6 (Table 3.3), higher 

than is expected for bioapatite (King et al. 2011; Nielsen-Marsh and Hedges 2000; Pucéat 

et al. 2004), which is most likely related to a methodological error trying to analyse fresh 

bone that still contained a high percentage of organic matter such as lipids. The C:P ratio 

for the archaeological turkey bone samples was 0.53±0.33, suggesting a larger amount of 

structural carbonate than normally expected for some archaeological bone (Nielsen–

Marsh and Hedges 2000; Wright and Schwarcz 1996). A comparison of C:P ratios prior 

to pre-treatment and after pre-treatment of mammalian (n=41) and wild turkey samples 

(n=12) demonstrated that pre-treatment lowers the C:P ratio in over 70% of cases, 

shifting the mean C:P for archaeological turkey bone samples to an acceptable ratio of 

0.33±0.16 (Table 3.3).  

The structural carbonate from turkey samples used in this study for isotopic analysis is 

considered to represent unaltered material because (1) the CI indices were acceptable, (2) 

there were peaks in the FTIR profiles that suggest secondary contamination or 

recrystallization, and (3) pre-treatment lowered sample C:P ratios to within the expected 

range. 

Fresh bone has an expected bioapatite [Ca10(PO4)6(OH)2]) yield by weight of 70 –75% 

(Ambrose 1993; Sillen 1989) to 90% (Lee–Thorp 1989). The yields measured here 

aligned closely with those reported by Ambrose (1993) and Sillen (1989): modern turkey 

bone = 65.7±7.2%, range = 47.6–72.7%, and archaeological turkey bone = 79.3±3.9, 

range = 76.0–84.8% (Table 3.2). The higher bioapatite yield of archaeological turkey 
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bone relative to modern turkeys may be due to the fact the modern bone was fresh when 

weighed and some organics (i.e. lipids) were still present. The percentage of structural 

carbonate in bioapatite (CO3) should range from 2 to 7.9% for pretreated samples (Lee–

Thorp 1989; Lee–Thorp and Sponheimer 2003; Wright and Schwarcz 1996). The samples 

analysed in this study fell within this range for both modern (5.3±0.7%, range = 3.6–

6.6%) and archaeological (5.5±0.3%, range = 2.0–8.8%) turkey bone. The one sample 

with a value > 8% was regarded with caution, but its CI, C:P and FTIR peak profile did 

not indicate secondary carbonates, and hence it was retained for isotopic analysis. A 

Pearson’s correlation test showed no significant correlation between δ13Csc and δ18Osc 

values and yield of bioapatite by weight, structural carbonate content by weight, CI, or 

C:P ratio. Therefore, the isotopic results for all structural carbonate samples were retained 

for subsequent interpretation. 

Table 3.2: Summary of sample integrity checks for collagen (C:N ratio and collagen 

yield) and structural carbonate (bioapatite yield by weight and percentage of CO3 

by weight). 

 

ncol C:N Ratio % Collagen by 
Weight  

nsc % Bioapatite by 
Weight 

% CO3 by 
Weight  

 (Range) (Range)  (Range) (Range) 
Pre A.D. 200  2 3.11±0.01 5.0±0.7 0 – –  (sites, n=1)  (3.10–3.12) (4.5–5.5)  

Ontario 
Iroquoian A.D. 

900–1600  

34 
3.20±0.15 14.8±6.1 

8 
78.7±3.0 5.7±2.1 

Adult (sites, n=9)  (3.03–3.44) (5.6–25.2)  (76.0–84.7) (2.0–8.8) 
Ontario 

Iroquoian A.D. 
900–1600  

10 
3.25±0.17 15.6±2.5 

4 
79.3±2.9 5.0±1.0 

Juvenile (sites, 
n=6) 

 (3.05–3.47) (10.9–19.3)  (76.6–83.4) (3.8–6.1) 

Western Basin 
A.D. 900–1600  

15 3.10±0.11 12±6.2 1 84.80 5.90 

 (sites, n=3)  (2.96–3.31) (5.0–21.9)  – – 
Modern 19 3.31±0.13 21.0±4.7 14 65.7±7.2 5.3±0.7 

(locations, n=9)  (3.23–3.64) (9.6–31.4)  (47.6–72.7) (3.6–6.6) 

 



134 

 

Table 3.3: Summary of FTIR Crystallinity Indices (CI) and Carbonate/Phosphate 

(C/P) ratios for turkey bone samples before and after pre-treatment 

 Modern Turkey 
(Before n=19, After n=3) 

Archaeological Turkey 
(Before n=27, After n=9) 

CI Before Pre-treatment 2.63 ±0.19 2.78 ±0.23 
CI After Pre-treatment 2.99 ±0.36 2.83 ±0.17 
     
C:P Before Pre-treatment 0.70 ±0.15 0.53 ±0.18 
C:P After Pre-treatment 0.39 ±0.12 0.33 ±0.16 

3.4.2 Isotope results 

Table 3.4 summarizes the isotopic results for all, non-modern adult and juvenile turkeys 

analysed in this study (see also Figure 3.4). A Mann–Whitney U comparison of adult and 

juvenile Ontario Iroquoian turkeys showed no significant difference in their δ13Ccol, δ15N, 

δ13Csc, δ18Osc, or Δ13Csc–col values, despite slightly higher δ13Ccol values for juvenile 

turkeys. While the discussion will examine juvenile wild turkeys separately because of 

seasonal hunting implications, statistically they are not recognized as an independent 

sample based on their stable isotope results and were therefore combined with adult wild 

turkeys when compared with modern turkeys and other archaeological turkey groups. No 

Western Basin juvenile turkeys were available for comparative analysis. 

Table 3.4 shows that modern turkeys had significantly higher δ13Ccol (n=19) and δ13Csc 

(n=14) values relative to the archaeological (collagen n=61, structural carbonate n=13) 

turkeys, (Mann–Whitney U, Z=–2.730, p<0.000 and Z=–2.378, p=0.017, respectively). In 

addition the average Δ13Csc–col value for modern turkeys was significantly lower relative 

to the archaeological turkeys (Mann–Whitney U, 0.006). Modern wild turkeys also had 

significantly lower δ15Ncol values (Mann–Whitney U, Z–2.511, p=0.012) (Table 19). For 

modern turkeys, there was a strong correlation between δ13Ccol and δ13Csc values 

(Pearson’s R=0.767, p=0.001). There was no significant difference between the δ18O 

values of modern or archaeological turkeys (Table 3.4). 

An ANOVA test indicated that there were significant differences among the δ13Ccol 

values of archaeological turkeys, with Ontario Iroquoian (n=44) turkeys having 

significantly higher values relative to Western Basin turkeys (n=15), (Tukey HSD, 
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p=0.002) but not the two Early Woodland turkeys analysed from the Bruce Boyd site 

(700 – 400 B.C.). There was no significant difference in δ15Ncol values among the 

archaeological turkeys. It was not possible to statistically compare the δ13Csc results 

among the archaeological wild turkeys because of sample size. For the archaeological 

turkeys, the δ13Ccol and δ15Ncol values correlated significantly (Pearson’s R=0.295, 

p=0.021) as did the δ13Ccol and δ13Csc values (Pearson’s R=0.858, p<0.000). 

3.5 Discussion 

3.5.1 Modern wild turkeys: analogies for maize–waste access 

The significant differences in the δ13Ccol, δ15Ncol, δ13Csc, and Δ13Csc–col values of modern 

wild turkeys relative to ancient turkeys (Figure 3.4) from the same regions suggest 

differences in subsistence access or behaviours. Specifically, modern wild turkeys appear 

to have greater access to C4 foods, probably agricultural maize. The lower δ15Ncol values 

of the modern turkeys corroborates this hypothesis, as increased fertilization and/or 

access to agricultural legumes could produce lower δ15Ncol values, similar to those 

recorded for modern versus archaeological deer from the region (Cormie and Schwarcz 

1994; Katzenberg 1989; 2006; deer data, this study; see Chapter 4).  

A comparison with other modern birds with published collagen values from known 

habitats and dietary niches (summarized in Kelly 2000) (Figure 3.5) confirms that 

modern and archaeological turkeys occupy a terrestrial, herbivore trophic position. Even 

the single modern and ten potentially insectivorous juvenile turkeys more closely align 

with herbivorous δ15Ncol values. These results are somewhat surprising as modern 

ecology studies suggest that insects comprise the majority of young turkey poult diets 

during the spring and early summer (Eaton 1992; Wright 1989; Schorger 1966: 203). An 

analysis of the keratin from 47 modern grasshoppers and crickets collected from a maize 

field and C3 dominant meadow over several months offers an explanation for the lack of 

apparent, trophic enrichment of juvenile turkeys. Grasshoppers were selected for this 

short study because they are known maize-pests today and in the past (Thwaites 1896–

1906 vol 14). Grasshoppers, which are herbivores, were compared to crickets, which are 

omnivores and are generally found in the same niches. 
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Table 3.4: Summary of collagen (δ13Ccol, δ15Ncol) and structural carbonate (δ13Csc, δ18Osc) results. 

  ncol δ13Ccol (‰, VPDB) 
(Range) 

δ15Ncol (‰, 
AIR) (Range) 

nsc δ13Csc (‰, VPDB) 
(Range) 

δ18Osc (‰, 
VSMOW) 
(Range)  

∆13Csc–col 

(Range)  

Pre A.D. 200  2 –20.78±0.15  
(–20.89 to –20.68) 

5.39±0.16  
(5.28 to 5.50) 

0 – – – 

Ontario Iroquoian Adult 
A.D. 900–1600  

34 –20.49±2.17  
(–23.02 to –10.00) 

6.24±0.84  
(4.40 to 8.49) 

8 –10.73±2.40  
(–13.43 to –5.35) 

20.40±1.22  
(18.06 to 21.86) 

8.48±2.49  
(4.64 to 11.93) 

Ontario Iroquoian Juvenile 
A.D. 900–1600  

10 –19.72±1.96  
(–22.83 to –17.08) 

6.24±0.78  
(4.88 to 7.29) 

4 –10.47±1.51  
(–12.10 to –8.92) 

21.28±1.00  
(20.34 to 22.16) 

8.99±0.89  
(8.16 to 10.24) 

Western Basin A.D. 900–
1600  

15 –22.35±1.01  
(–23.71 to –20.21) 

6.45±1.00  
(4.72 to 8.49) 

1 –12.67 20.23 9.21 

Modern Wild Turkey 19 –15.95±1.70  
(–19.05 to –12.40) 

5.64±0.96  
(4.36 to 7.58) 

14 –7.72±1.64  
(–10.51 to –3.88) 

20.18±1.64  
(15.12 to 21.40) 

7.85±0.81  
(5.62 to 8.73) 
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Figure 3.4: δ15Ncol versus δ13Ccol values for all turkey samples from this study and Katzenberg (2006). 

Vertical dashed line delineates an entirely C3-based diet (left) from that which includes a C4-component (right).
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Figure 3.5: δ15Ncol versus δ13Ccol values for avian species within known dietary niches. 

All modern, collagen data for non-wild turkey species are from Kelly (2000, summary). 
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Figure 3.6: δ15N versus δ13C values for whole, modern grasshoppers and crickets. 

Samples are from two niches: a C3-dominated environment (meadow in a wooded area) and a C4-dominated environment 

(agricultural maize field). The insects were collected once a month from May through October, 2012. Suess corrected +1.65‰. 
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Figure 3.7: Approximate locations of modern turkeys from this study in relation to percentage of land seeded with corn in 201216. 

                                                 
16Percentage based on total seeded land with fodder, grain and sweet corn (maize) from the Ontario Ministry of Agriculture, Food and Rural Affairs 2012. 
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The mean δ13Ccol value for grasshoppers (n=30) was –26.29±2.09‰ and for crickets 

(n=16) was –23.01±3.64‰. The results suggested that all of the insects collected in the 

meadow were eating in a C3-only environment and, interestingly, many of the insects 

collected in the maize field did not consume maize, especially in the early spring growing 

stages. There was evidence that the crickets collected in the late summer/fall from maize 

fields had consumed some C4 resources (Figure 3.6). The mean δ15Ncol value for the 

grasshoppers was 1.84±1.41‰ and for the crickets was 2.93±1.64‰. Although, as 

omnivores, crickets have expectedly higher δ15Ncol values, both species are within the 

range expected for plants in the region (i.e., they are not a trophic level higher than the 

plants) (Longstaffe unpublished results; Cormie and Schwarcz 1994, 1996). The lack of a 

clear C4 signal in the spring/early summer-collected insects and the low δ15Ncol values 

means that, as a food item, grasshoppers and crickets would more closely resemble C3 

plants during the time period that insects play a role in the turkey’s diet. 

If, therefore, insects were an important part of juvenile turkey diets, they may not have 

caused the trophic enrichment expected based on published data (Kelly 2006; Rawlings 

and Driver 2010; Webster and Katzenberg 2008). The modern juvenile turkey and many 

of the archaeological juvenile turkeys analysed in this study, had, however, clearly 

consumed C4 resources. Grasshoppers and crickets, however, were unlikely to be the 

major C4 resource responsible for causing the measured enrichment in 13C.  

The data also suggest that modern wild turkeys occupy a dietary niche with significantly 

more maize relative to other birds for which isotopic data for collagen are available. 

These results are important for understanding maize availability and turkey behaviour 

because they demonstrate that (1) if available, modern turkeys in Ontario will eat maize, 

and (2) they are able access maize in quantities sufficient to alter their collagen isotopic 

composition significantly, despite the fact that turkeys can only eat maize waste (i.e., 

cobs and/or kernels already on the ground). As would be expected for the low waste 

production rates of ancient maize fields, many of the adult archaeological wild turkeys, 

plot close to the expected range for herbivorous birds from C3-dominated environments 

(Figure 3.5). Nonetheless, some archaeological turkeys have isotopic signatures 
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consistent with significant consumption of C4 foods (i.e., δ13Ccol > –21‰), so it is clear 

that some pre–contact turkeys lived in environments with access to relatively large and/or 

stable maize sources. 

Southwestern Ontario agricultural data can provide a useful analog for understanding the 

relationship between maize waste in fields and agricultural intensity. The mean annual 

home range for wild turkeys in southwestern Ontario is 1000 acres, but is variable by 

season and sex of the bird (Weaver 1989:60). Approximately 50% of the range of modern 

turkeys is comprised of agricultural areas and water sources (Schorger 1960:224). The 

hunters who donated the birds for this study reported hunting in forested or open areas all 

of which were located near agricultural fields in Elgin, Middlesex, and Norfolk counties 

during spring 2012. Examination of the Ontario Ministry of Agriculture, Food and Rural 

Affairs (OMAFRA) 2012 data indicates that in that same year, 30% of Middlesex and 

Elgin county land was seeded with maize (Figure 3.7).  

According to OMAFRA (2012), modern southern Ontario maize fields produce 

approximately 150 bushels per acre, where one bushel is equivalent to ~15 kilograms of 

maize (Murphy 2008). The δ13Ccol and δ13Csc values for the modern wild turkeys suggest 

that all of the birds analysed in this study consumed some maize, though in highly 

variable quantities. Because turkeys can only consume maize already on the ground, they 

probably consumed maize lost from combine machines during harvest, which ranges 

between 2 and 10% of the crop (Sumner and Williams 2012). Using estimates of maize 

loss from combine waste as well as wind and water damage, as much as 77 to 282 

kilograms of maize per acre (calculated from OMFARA 2012; William 2008) can be left 

in Ontario fields, an amount that creates a rich, post-harvest food source for modern wild 

turkeys and could provide an overwintering food source for a large number of turkeys, 

even in competition with other species dependent on agricultural waste, such as white-

tailed deer. These interpretations are consistent with a previous study by Groepper et al. 

(2013), which found that modern wild turkeys with access to maize fields had diets 

comprising up to 37% maize. 
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By comparison, the amount of waste maize in today’s fields is greater than the total 

production of ancient Ontario Neutral (A.D. 1450 to 1650) fields, which would rarely 

have “exceeded 14.5 bushels of shelled maize per acre” (Sykes (1981:30, adapted from 

Heidenreich 1971:191). Although the amount of maize needed to sustain a healthy wild 

turkey has not been accurately determined, only one tenth of a modern turkey’s 1000 acre 

home range would provide up to 7000 kilograms of maize waste (i.e., 100 acres x 77 to 

282kgs/acre of maize waste). These calculations suggest that even if ancient humans left 

a large amount maize behind after harvesting (which  is unlikely, as hand-harvesting 

would leave less waste) it would not come close to the amount left in fields today.  

Although the collagen isotopic data alone provide evidence of maize consumption in all 

of the modern turkeys, this study also offers a unique opportunity to determine if the 

relationship between collagen and structural carbonate carbon isotopic composition is the 

same for birds as mammals. 

Harrison and Katzenberg (2003) suggested that in Ontario, δ13Csc values > –14‰ in 

humans may indicate some C4 resource consumption. This study, however, will use a 

more conservative value of –12‰ to indicate C4 resource consumption, as it would be 

more consistent with the deer and dog isotopic compositions obtained in this study. All of 

the modern wild turkeys had δ13Csc values > –11‰, which, like the carbon isotopic 

results for collagen, suggests that all modern turkeys consumed C4 resources, probably 

maize. Further, there is a strong positive correlation between δ13Csc and δ13Ccol values. 

The majority of the modern turkey values plot close to Kellner and Schoeninger’s (2007) 

C3 protein line, while the two turkeys with highest δ13Csc and δ13Ccol values are shifted 

towards the C4 protein line (Figure 3.8). An annual mixed diet of C3 grasses, forbs, nuts 

and other plants, some insects and small vertebrates, and a significant portion of maize 

would correspond well with the measured isotopic data. Overall, the relationship between 

δ13Csc and δ13Ccol values appears to follow similar trends for the wild turkey data as that 

of mammalian tissue.  
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Figure 3.8: δ13Csc versus δ13Ccol values for archaeological and modern wild turkeys 

according to the model adapted from Kellner and Schoeninger (2007, Figure 2B). 

3.5.2 Ontario Iroquoian wild turkeys 

“The food and the clothing of this Nation [the Neutral] do not greatly differ from those of 

our Huron: they have Indian corn, beans, and squashes in equal plenty; the fishing 

likewise seems equal, as regards the abundance of fish, of which some species are found 

in one region, that are not in the other. The people of the Neutral Nation greatly excel in 

hunting [Page 195] Stags, Cows, wild Cats, wolves, black beasts, Beaver, and other 

animals of which the skin and the flesh are valuable... They have also multitudes of wild 

turkeys, which go in flocks through the fields and woods.” (Lalement 1642 in Thwaites 

1896–1901 21:193–5). 

Although the diet of Ontario Iroquoian wild turkeys was primarily comprised of C3 foods, 

some had δ13Ccol and δ13Csc values that indicated consumption of C4 foods, consistent 

with evidence for other C4 resource-consuming species during the Late Woodland in 

southwestern Ontario, including Sandhill cranes, raccoons, squirrels and foxes 

(Katzenberg 1989, 2006; this study). By the Middle Ontario Iroquoian period (A.D. 1200 
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to 1450) several sites, including Crawford Lake, Pipeline, Rife and Winking bull have 

some juvenile and adult birds with δ13Ccol values > –21‰ and this trend continues at 

Neutral (A.D. 1450 to 1650) sites such as Hamilton and Walker, as well as Ball and 

Kelley–Campbell (Katzenberg 1989; 2006). Even an earlier Princess Point site (~A.D. 

500–1000) juvenile wild turkey, Pri–07 had a δ13Ccol value of –18.33‰. Despite evidence 

that some turkeys were eating maize, this trend is not universal and at some later Neutral 

sites wild turkey carbon isotopic data for collagen and structural carbonate did not reflect 

maize consumption. For example, none of the birds from the sites of Cleveland, Thorold, 

or Fonger had values definitively associated with maize consumption, nor did the Early 

Ontario Iroquoian (~A.D. 900) site of Van Besien.  

As with the modern turkey, there was a strong, positive correlation between the 13Csc and 

δ13Ccol values, which suggests that the former can be used to identify maize consumption 

among this set of archaeological birds. Overall, Ontario Iroquoian wild turkeys more 

closely correspond to Kellner and Schoeninger’s (2007:1122) “C3 protein line” (i.e. the 

dietary protein source is primarily from C3 resources, whether vegetation or 

invertebrates), while the energy source (i.e., lipids and carbohydrates) is variably from C3 

and C4 resources, as the turkeys fall along the C3 protein line. The exception is the Ham–

05 turkey, which falls closer to the C4 protein line, suggesting a complete diet (i.e., 

proteins, carbohydrates and lipids) composed of C4 resources, most likely maize (Figure 

3.8). Three turkeys fall some distance from the C3 protein line and all had larger than 

expected Δ13Csc–col values (i.e., > +10‰). Figure 3.8 shows clear overlap between the 

modern and archaeological turkeys, which is striking when considering the large amount 

of maize waste available to modern agricultural fields, and not expected to be available in 

ancient maize fields. The isotopic evidence, however, is strong that there was sporadic, or 

perhaps seasonal, maize consumption by adult and juvenile wild turkeys at many of the 

Middle Ontario Iroquoian and Neutral sites analysed in this study.  

The spacing between δ13Csc and δ13Ccol values (Δ13Csc–col) varies by trophic niche (i.e., 

herbivore versus carnivore), digestive physiology (i.e., ruminants versus non–ruminants), 

and macronutrient composition of the food (i.e., high or low protein) (Ambrose and Norr 

1993; Cerling and Harris 1999; Howland et al. 2003; Kellner and Schoeninger 2007; 
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Krueger and Sullivan 1984; Tieszen and Fagre 1993). These studies, however, are based 

entirely on various mammals with resulting Δ13Csc–col values between +2 and 12‰. Based 

on the modern turkey samples analysed in this study, the expected Δ13Csc–col value is 

+7.85±0.81‰, which is significantly smaller than the archaeological mean 

(+8.55±1.92‰, range =4.64 to 11.93‰, Table 3.4). Removing archaeological samples 

with larger than expected Δ13Csc–col values based on the adult, fresh modern wild turkeys 

(Figure 3.8), results in greater consistency in the spacing, which may suggest that the 

three birds with larger spacings have undergone post-mortem alteration. For example, 

Tho–35 has the largest Δ13Csc–col value (+11.93‰) and was also the only sample with a 

structural carbonate content > 8%. Based on this combined evidence, the δ13Csc value of 

Tho–35, despite its acceptable CI and C:P values, is considered to be unreliable.  

3.5.2.1 Adult and juvenile Ontario Iroquoian wild turkeys  

There is no significant difference among any of the mean isotopic compositions of the 

Ontario Iroquoian adult and juvenile turkeys (Figure 3.9). This suggests that either there 

is no difference in the diet of adult and juvenile wild turkeys, or consumption of large 

quantities of insects, expected for juvenile turkeys, does not significantly alter the carbon 

isotopic compositions of collagen or structural carbonate.  

 
Figure 3.9: Box plot of δ 13Ccol values for all samples in this study. 
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The analysis of modern grasshoppers and crickets (above) has already shown that they 

had relatively low δ15Ncol and δ13C values, many closely mimicking C3 plants in the 

region, despite the fact some of the insects were collected in maize fields. The juvenile 

and adult turkeys that have carbon isotopic compositions reflecting C4 resource 

consumption are, therefore, believed to have consumed maize, as opposed to maize–

consuming insects. This is significant because insects are consumed earlier in the 

summer, while maize is consumed by turkeys in the fall or winter, after the crop harvest. 

It may also be possible that the predominately insectivorous diet, which only lasts the 

first four to five weeks of a poult’s life (Eaton 1992), contributes only a minor portion to 

the lifetime carbon isotopic average of the bone. The average age-at-death for poults in 

this study is between three to five months, based on a May/June hatching. The high bone 

turnover rate for young, growing birds (Hobson and Clark 1992a) may be obscuring any 

effect of insect consumption. As all the juvenile turkeys are less than one year of age at 

death, their carbon isotopic composition is the result of a single maize-harvest season. 

For young turkeys in particular, it may be possible to link the season during which they 

were killed to access to maize fields. 

The presence of three to five month-old juvenile turkeys in faunal assemblages supports 

the interpretation of a late fall/winter turkey hunt proposed by zooarchaeologists (e.g., 

Foreman 2010; Prevec and Noble 1983). The seasonality of the turkey hunt is also 

supported by ethnohistoric descriptions of tracking turkeys through snow and their winter 

consumption (Denke 1804; Thwaites 1896–1901 32; 59; 60). Juvenile birds were found 

from sites dating from the Princess Point through Middle Ontario Iroquoian and Neutral 

stages, which suggests continuity in cold weather turkey hunting throughout the Late 

Woodland period at Ontario Iroquoian sites. Except in rare cases (for example, Wal–50 

from a winter house at Walker village), it has not been possible to provide a season-of-

death for the adult turkey remains, so the ability to correlate cold weather turkey hunting 

with higher δ13C values (i.e., maize consumption) in juveniles of less than one year of age 

is an exciting find. In order to determine the archaeological significance of these results, 

Ontario Iroquoian turkeys are compared next to turkeys from other archaeological 

contexts across North America with maize horticulture. 
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3.5.3 Comparative collagen study  

The δ13Ccol and δ15Ncol values of Late Woodland Ontario Iroquoian wild turkeys were 

compared with those of modern wild turkeys and several data sets for archaeological wild 

and domestic turkeys (Table 3.17, Figure 3.10). At least three different dietary niches are 

identifiable: (1) a C3-only environment, with possible canopy effect, (2) a C3–

environment with occasional or seasonal C4 (i.e., maize) access and (3) consistent maize 

access (i.e., purposeful feeding of captive and/or free–ranging birds) (Figure 3.10). These 

dietary niches are statistically distinct based on a one–way ANOVA for both δ13Ccol 

(F=419.3, p<0.000) and δ15Ncol values (F32.7, p<0.000).  

Table 3.5: Summary of the published δ13Ccol and δ15Ncol values for wild and domestic 

archaeological turkey data from across North America.  

Site Name and 
Location 

δ13Ccol ‰ 
(VPDB) 

Std 
Dev 

δ15Ncol ‰ 
(AIR) 

Std 
Dev n Reference 

Western Basin, 
Ontario* –22.28 ±0.96 6.40 ±0.92 15 this study 

Donnaha Site, North 
Carolinian –21.51 ±0.49 4.57 ±0.46 16 Price 2009**; Price et al. 

2010  
Various sites, 
Colorado –9.00 ±1.07 7.73 ±1.10 30 Rawlings and Driver 

2010 
Ch–254, Chihuahua, 
Mexico –7.00 – 10.40 – 1 Webster and Katzenberg 

2008 
* All Western Basin samples are from the Arkona region Inland West Pit Sites (A.D. 1160–
1270). 
**Price’s summary data were provided by personal communication; individual data are not 
available (see Price et al. 2010). 
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Figure 3.10: Comparative δ15Ncol and δ13Ccol values for archaeological turkeys from several regions of North America. 

Inland West Pit sites (SW Ontario); Donnaha Site, North Carolina (Price et al. 2010; Price unpublished data); various sites, Colorado 

(Rawlings and Driver 2010); Mexico (Webster and Katzenberg 2008). Gray circle is the mean±StD, error bars are the range. 
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Based on the δ13Ccol values, Western Basin and Donnaha site wild turkeys are not 

significantly different from each other (post-hoc Dunnett T3 analysis of turkeys by each 

region) and were grouped together. Post-hoc Dunnett T3 (δ13Ccol) and Tukey HSD (δ15N) 

identified the three significantly different dietary niches (Table 3.6). Turkeys that ate 

from a C3–only environment (1) had significantly lower δ13Ccol values. Modern Ontario 

wild turkeys form a distinct group (2) that reflects a C3 environment with occasional 

maize access. The domestic turkeys from Colorado and Mexico formed the third 

isotopically distinct group (3), with significantly higher δ13Ccol and δ15Ncol values 

compared to the other turkeys. Ontario Iroquoian turkeys span the range of turkeys from 

C3 environment only to C3 environment with occasional maize access. 

Table 3.6: Summary of statistical significance (p-values) among the dietary niche 

groups identified by one–way ANOVA. 

δ13Ccol values (Dunnett T3) A. C3–only 
environment* 

B. C3 
environment, 
maize access 

C. 
Domestic 
turkeys** 

Ontario 
Iroquoian 

turkeys 

1. C3–only environment* – >0.000 >0.000 >0.000 

2. C3–environment, 
seasonal maize access   – >0.000 >0.000 

3. Domestic turkeys**     – >0.000 
Ontario Iroquoian turkeys       – 

     
δ15Ncolvalues (Tukey HSD) A. C3–only 

environment* 

B. C3 

environment, 
maize access 

C. 
Domestic 
turkeys** 

Ontario 
Iroquoian 

turkeys 

1. C3–only environment* – 0.901 >0.000 0.017 

2. C3 environment, 
seasonal maize access   – >0.000 0.274 

3. Domestic turkeys**     – >0.000 
Ontario Iroquoian turkeys       – 

*Group A includes pooled data from Western Basin and Donnaha sites. 
**Group C includes pooled data from Colorado and Mexico. 
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3.5.3.1 C3-only environment  

An entirely C3-based diet (i.e., all δ13Ccol values < –21.6‰, 95% confidence interval) is 

evident for wild turkeys from the southeast United States and western Ontario. Wild 

turkeys at the Donnaha site (A.D. 1000 to 1450), a village in North Carolina that was 

occupied year-round, do not appear to have had access to maize or any other C4 dietary 

sources (Price 2009; Price et al. 2010) despite the villagers’ mixed subsistence economy 

anchored variably to maize throughout its occupation (Lambert 2000; Woodall 1984). 

The δ15Ncol values of the Donnaha turkeys are also significantly lower than those of the 

Ontario turkeys (Dunnett T3, p>0.000), possibly indicating different soil conditions or 

plant access.  

The Arkona Inland West Pit sites, located to the west of the Late Woodland Iroquoian 

sites, include a group of consecutively occupied villages and camps and were the only 

Western Basin tradition sites with wild turkeys available for isotopic analysis. The sites 

date to the late Younge Phase (A.D. 1050 to 1270) and have δ13Ccol values indicative of a 

C3–only diet. In fact, the Inland West Pit turkeys have values lower than those of the pre–

maize Bruce Boyd site and the Princess Point site (~A.D. 500 –1000) and Early Ontario 

Iroquoian site of Van Besien (A.D. 920). These results are remarkable as there is ample 

evidence of maize storage and consumption at the Inland West Pit sites Locations 1 

(Figura), 3, and 9, including numerous pit features with charred maize remains (Golder 

and Associates 2012), and isotopic data for a human (–12.5‰, n=1, Spence 2010), dogs 

(–14.85±1.82‰, n=16, this study) and raccoons (–20.68±0.52‰, n=12, this study) 

showing maize availability similar to that at contemporary Ontario Iroquoian sites. 

Potential explanations to account for this significant variation are: (1) maize fields were 

not as extensive at these Younge Phase sites (A.D. 1050–1270) compared to the Ontario 

Iroquoian sites (ranging from A.D. 1250 and 1650), and/or (2) Western Basin and 

Ontario Iroquoian peoples were engaged in different turkey hunting strategies.  

While the Inland West Pit sites do date to slightly earlier than many of the Ontario 

Iroquoian sites analysed for this study, the evidence of maize production at these sites is 

extensive. Further, unlike some other Western Basin sites, the Inland West Pit, Figura 

and Location 9 sites appear to have been occupied year-round with somewhat larger 
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populations, particularly at Location 9. If maize dependency was increasing at the sites 

by this time, as seems probable based on the extensive maize storage pit system (Golder 

and Associates 2012), maize fields could have been quite large. Differences in human 

behavioural patterns at Western Basin versus Ontario Iroquoian sites related to turkey 

hunting practices may be the best explanation for the data. For example, maize 

production and turkey hunting may have been geographically separate activities at 

Western Basin sites. Western Basin peoples may have hunted turkeys away from maize 

fields and/or their harvesting techniques may have left minimal maize waste in fields 

leaving no cold weather food resource for turkeys. These ideas are explored in more 

detail below.  

3.5.3.2 C3 environment with seasonal maize access 

Although all of the modern turkeys consumed a mixed C3/C4 diet and were generally 

more enriched in 13C, their isotopic compositions overlap with archaeological turkeys 

from sites within the Grand River basin in central southwestern Ontario as well as the 

two sites to the north analysed by Katzenberg (1989; 2006). This dietary specialization 

indicates an interaction between humans and animals whereby: (1) the landscape is 

altered by domestic crops, (2) humans accidently or purposefully leave behind some of 

their domestic (maize) produce, creating a niche that will attract turkeys, and (3) humans 

then use this niche for hunting them. In the case of modern turkeys, maize waste may be 

accidental; however, modern hunters know that agricultural fields attract turkeys and will 

often hunt turkeys near the edge of fields. As discussed previously, there is osteological 

(i.e., juvenile skeletal remains with age-at-death estimates), contextual (i.e., winter house 

middens), zooarchaeological (Foreman 2011; Noble and Prevec 1983), and ethnohistoric 

(Thwaites 1896–1901) evidence of cold-weather hunting of turkeys, the time of year 

turkeys would be expected to be in maize fields. The turkeys analysed at the Ontario 

Iroquoian sites had eaten some maize suggesting that they may have been hunted in or 

near maize fields. The question is whether or not Late Woodland Ontario Iroquoian 

peoples purposefully or accidentally created this C3/C4 niche, which is discussed in detail 

below.  
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3.5.3.3 Domestic turkeys 

Not surprisingly, domestic turkeys have significantly higher mean δ13Ccol values, which 

indicate year-round access to maize, and are the compositions expected for domesticated 

birds. Almost all of the Ontario Iroquoian turkeys analysed in this study do not appear to 

have been domesticated turkeys provisioned year-round with maize. However, a single 

Neutral sample, Ham–05, from the Hamilton site, has a δ13Ccol value comparable to the 

domestic turkeys of the American southwest (Figure 3.10). This turkey was recovered 

from a small midden found within the palisades, as opposed to the majority of turkeys, 

which were recovered from middens outside the village walls (Lennox 1977). The 

location within the walls and the δ13Csc and δ13Ccol values suggest that this turkey was 

specially treated as discussed below. The domestic turkeys from the American southwest 

and Mexico also had significantly higher δ15Ncol values, which has been attributed to 

increased regional aridity causing higher δ15Ncol values of plants (Ambrose 1991).  

3.5.4 Wild turkey food security and garden hunting 

In the fall, turkeys will gorge on acorns, maize waste, and other readily available foods to 

fatten for the winter. During the winter, turkeys in Ontario, at the northern extremes of 

their natural range, actively seek out winter food resources or face starvation. The Jesuit 

Relations includes descriptions of turkeys venturing near human settlement to find food 

during winter scarcity (Thwaites 1896–1901 59:171). This behaviour creates hunting 

opportunities for humans because maize waste in fields provides a sustainable food 

resource for the turkeys during these months. Although it has been argued that the 

attraction of turkeys to food available in human settlements led to self-domestication in 

the southwest (Dickson 1992), based on the isotopic and zooarchaeological data, this did 

not happen in Ontario.  

Faunal assemblages indicate that starting in the Middle Ontario Iroquoian phase (A.D. 

1240 to 1450) there is a marked decrease in the number of cold-weather hunted species 

such as turkeys and white-tailed deer (Foreman 2011; Prevec and Noble 1983; Stewart 

2000). Foreman (2011) attributes the decrease in wild turkeys to a scheduling conflict 

between crop harvesting/nut collecting and the start of fall hunting season (deer, raccoon 
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and turkey). With heavier reliance on crops, there was an increasing emphasis on near-

settlement, opportunistic procurement of animals (Foreman 2011). A number of the 

turkeys at Middle Ontario Iroquoian and Neutral (A.D. 1450 to 1540) sites have high 

δ13Ccol values, which support the hypothesis that Ontario Iroquoian peoples hunted crop-

eating birds in their fields opportunistically.  

The number of archaeological turkeys exhibiting these high δ13C values, some of which 

overlap with modern turkeys known to live near maize fields, suggests access to 

relatively large quantities of maize. It is possible that accidental maize waste would not 

provide sufficient resources for these birds, and in fact, Ontario Iroquoian peoples 

probably left a certain amount of maize waste in fields on purpose after harvest, creating 

a cold-weather feeding space for several species, including wild turkeys. 

Providing food security for wild turkeys is not unheard of in modern contexts and it is 

possible to conclude that the ancient peoples of Ontario did the same thing. What may 

have begun as an observation that turkeys preferentially selected maize fields for fall 

fattening and winter food sources, therefore creating predictable hunting zones, may have 

shifted to food provisioning by ancient humans. This behaviour may explain why a great 

number of the turkeys from the central southwestern Ontario area sites (n=12 of 32) have 

δ13C values indicative of maize consumption. However, the provisioning of turkeys 

appears to be limited geographically to central southwestern Ontario. At sites west of this 

region, such as the Western Basin tradition Inland West Pit sites, and east of the region, 

such as Thorold, turkeys ate in an exclusively C3 environment. The question to consider 

is how and why this practice may have developed. 

Tending fields and harvesting was considered women’s work among the Iroquois-

speaking nations (Heidenreich 1971; Thwaites 1896–1901 65; Tooker 1991; Wrong 

1939). Carr (1883:36) recounted the words of Parker, an Iroquoian general, describing 

the Six Nations Iroquois: 

"Among all the Indian tribes, especially the more powerful ones, the principle that a man 

should not demean himself or mar his dignity by cultivating the soil or gathering its 

product was most strongly inculcated and enforced. It was taught that a man's province 
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was war, hunting, and fishing. While the pursuit of agriculture, in any of its branches, 

was by no means prohibited, yet, when any man, excepting the cripples, old men, and 

those disabled in war or hunting, chose to till the earth, he was at once ostracized from 

men's society, classed as a woman or squaw, and was disqualified from sitting or 

speaking in the councils of his people until he had redeemed himself by becoming a 

skillful warrior or a successful hunter." 

As women were responsible for harvesting crops, it may also have been the women and 

perhaps elderly men, who created a garden hunting niche by leaving behind maize in 

fields. Prior to 1200 A.D., turkeys may have been actively hunted in the forest by men 

(Dickson 1992; Engelbrecht 2003) but the opportunistic and supplemental turkey meat 

may have been managed by women. With decreasing winter hunting and greater 

opportunistic hunting, a shift to turkey hunting closer to fields and villages may have 

evolved.  

Wright (2004) has noted that the Middle Ontario Iroquoian phase was also a time of 

considerable ceremonial activity. Therefore the emphasis on a predictable turkey source 

may not have been for meat, but for feathers, an important component of medicine 

bundles, and ritual headdresses and cloaks.  

While turkey provisioning appears to have commenced during the Middle Ontario 

Iroquoian tradition, it continues at Neutral sites, which were distinguished not only by 

increasing populations, long-term habitation and maize exploitation but also climate 

change in which the Medieval Warm Period (MWP, ~A.D. 800 to 1200) was followed by 

the cooling effect of the Little Ice Age (LIA, ~A.D. 1450 to 1800). The impact of these 

major climatic events on northeastern North America would have been a shift from a 

notably longer growing season to a shorter growing season beginning at the end of the 

Middle Ontario Iroquoian stage and continuing throughout the Neutral (Bernabo 1981; 

Campbell and Campbell 1989; Dean 1994:7; Foster 2012; Gajewski 1988; Mullins et al. 

2011; Viau et al. 2012). The consequences of climate change to the Neutral include 

famine. The Jesuit Relations refer to famine during Historic Neutral times. In 1639, du 

Peron writes, “[t]he famine this year is rather serious; but it is worse in the Neutral 
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nation, where children are sold like slaves in order to procure corn” (Thwaites 1896–

1901 15:157), and in 1642 Lalemant describes a three-year famine that ravaged Neutral 

peoples (Thwaites 1896–1901 21). During this Neutral stage a trade-off between maize 

collection and predictable protein sources may explain variation in the δ13C values of 

turkey bones at different sites. For example, at two Neutral sites, Thorold on the Niagara 

Peninsula (A.D. 1620–1630) and Fonger located on the Grand River (A.D. 1580–1600), 

mean δ13Ccol values suggest dominantly wild C3 diets. By comparison, Neutral sites such 

as Walker, Hamilton, Ball and Kelly-Campbell (Katzenberg 1989; 2006) contain turkeys 

that had continued to access maize. Although variation in the turkey δ13Ccol values may 

be the result of sample size, based on the current data, it appears that site and/or region 

specific food provisioning of wild turkeys, a unique activity, was used by many Ontario 

Iroquoian peoples during the Late Woodland. 

3.5.5 Wild turkey for ritual and cold-weather feasting 

Wild turkey remains recovered from “distinct” contexts might also provide further insight 

into cultural ideology. Two specific cases are explored: the ritual bundles from an Early 

Woodland component of the Bruce Boyd site, and cold-weather feasting at Middle 

Ontario and Neutral phase sites. 

The two samples from an Early Woodland component (700 -400 B.C.) of the Bruce Boyd 

site (Table 3.7) were recovered from a human burial feature (Spence et al. 1978; M. 

Spence, personal communications). They have unexpectedly high δ13Ccol values (mean = 

–20.78±0.15‰) and slightly lower than expected δ15Ncol values (mean = 5.39±0.16‰). 

Although these turkeys were intended to provide a baseline for a C3–only environment 

because the Bruce Boyd site pre-dates maize horticulture, these birds may have 

consumed small amounts of C4 foods. This unexpected result could be explained by a 

much earlier entry of maize into Ontario than was previously known, an alternate C4 

resource (e.g., amaranth), and/or trade of bones or animal parts for ritually specific 

purposes from a location outside of Ontario (i.e., New York or Ohio) where maize was 

present much earlier (Allegreto 2007; Capella 2005; Crawford et al. 2006; Martin 2004). 

Exchange of animal remains with special properties, specifically of turkey wings as 

medicinal objects, is recorded in the Jesuit Relations; “[Saossarinon, a healer] taught the 
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secrets of his art and communicated his power,—as a token of which he left them each a 

Turkey's wing, adding that henceforth their dreams would prove true.” (Thwaites 1896–

1901 13).  

Table 3.7: Summary of results from Bruce Boyd’s Early Woodland component. 

Site Name Sample Name δ13Ccol (‰, VPDB) δ15Ncol (‰, AIR) 

Bruce Boyd (AdHc–4) BrB–02 (tibiotarsus) –20.89 5.50 
Bruce Boyd (AdHc–4) BrB–03 (humerus) –20.68 5.28 

The Ontario Iroquoian annual maize harvest took place in the early fall (i.e., late August, 

September and/or early October), but its timing fluctuated from year-to-year because of 

climatic and seasonal variation (Heidenreich 1971; Tooker 1991). The evidence of fall 

turkey hunting and the simultaneous disposal of multiple birds, which were apparently 

also eaten following the fall maize harvest, strongly suggests cold-weather feasting 

activity (see Hayden 1996), such as thanksgiving ceremonies (which was held after the 

harvest [Heidenreich 1971]) or the White Dog Ceremony (a ceremonial feast held in 

mid–winter) (Oberholtzer 2002). Characteristic faunal deposits resulting from feasting 

events and ceremonial use of animals (Hayden 2009) include burials of large numbers of 

birds together at Crawford Lake and Hamilton sites (including juveniles of known age at 

death), a winter house midden with turkey at the Walker Site (Wal-50) and a burial of a 

nearly complete large male turkey (Crf-051). Because there appears to be evidence of the 

ritual use of turkeys at Ontario Iroquoian sites, understanding their ideological role and 

categorization is important for understanding the relationship between humans and 

turkeys, as well as where turkeys fall on the spectrum of wild to domestic animals. 

Despite their use as food and in ritual, medicine and clothing, wild turkeys are not 

mentioned frequently in Great Lake stories, mythologies or clan names. Turkey remains 

may not have been treated the same way as those of mammals or hunted animals. Canid 

puncture marks on Middle Ontario and Neutral turkeys indicate that dogs were allowed to 

scavenge the birds, which is inconsistent with the taboo against allowing dogs to eat the 

remains of hunted animals (Thwaites 1896–1901 vol 44). Although parts of the wild 

turkey may have been important for feasting, ceremony, medicine and clothing (i.e., 

feathers for cloaks and the wing for healing), it might not have shared the same type of 

cosmology as species more frequently referenced in Great Lakes mythology (i.e., wolves, 
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bears, foxes, eagles and beavers) and on effigy pipes (owls, crows, ravens, ducks and 

eagles) (Mathews 1980; Noble 1979; Wonderley 2005).  

It is possible, therefore, that wild turkeys were categorized differently than the more 

frequently depicted aquatic and predatory bird species in Eastern Woodland art and myth 

(Mathews 1980). For example, the “native taxonomy” of the American Bottom, 

(southwestern Illinois around the Mississippian floodplain), which is based on faunal 

assemblages and depiction in art, sorts species into those that are ideologically important 

and commonly represented in art (bears, snakes and spider) versus others that were only 

eaten or economically important and less frequently represented (such as deer and fish) 

(Zimmerman Holt 1996:100). In the American Bottom, according to Zimmerman Holt’s 

categorization, turkeys could have been categorized with other opportunistically hunted 

terrestrial animals (i.e., muskrats and squirrels) or with the complicated category of birds. 

Based on the minimal imagery of turkeys in myths and on pottery, turkeys may have been 

categorized on their terrestrial nature (unlike aquatic or migrating birds), behavioural 

patterns (i.e., diurnal, flocking, non–migratory), and practical significance as a high 

reward-relatively low energy hunted species. There is a unique pattern of human 

provisioning that occurred in southwestern Ontario, not currently recognized elsewhere. 

The question remains whether this was a form of proto–domestication or simply a 

convenient hunting strategy for Late Woodland Ontario Iroquoian peoples. 

3.5.6 Domestication status 

Researchers in the southwest and Central America have hypothesized that the ceremonial 

uses of the turkeys (i.e. feather production and role in ritual) led to their domestication 

(Breitburg 1993). Because wild turkeys in southwestern Ontario appear to have been used 

for both feasting and ceremony from the Early (Bruce Boyd) to Late Woodland periods 

(Crawford Lake and Hamilton), it is possible that they were on a continuum to 

domestication for this reason as well. There is isotopic evidence at the Hamilton site that 

at least one Neutral wild turkey (Ham-05) was held in captivity within the village and 

purposefully fed. Likely the most important site within the Grand River region, the 

Hamilton village was occupied at the height of the Neutral famine (1638 to 1651) 

(Lennox 1977). Ham-05 was recovered from a small midden within the village and had 
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access to maize year round. Because it must have been kept in captivity, this bird was 

either raised for food or kept as a pet. The keeping of small mammals and birds as pets 

has been recognized in ethnohistoric accounts of the Neutral (Galton 1865; Wrong 1939), 

as well as in the practice of specifically capturing and raising turkey poults in other 

regions (Schorger 1966). Pet keeping has been argued by some researchers as a precursor 

to domestication given appropriate economic pressures (Serpell 1989). The close 

relationship between humans and turkeys that is implied by the purposeful feeding of a 

captive bird may mark a phase of raising turkeys within the village walls,. Overall, there 

was not enough evidence to support a theory of proto-domestication, but it is clear that 

there was a unique relationship between turkeys and humans at Ontario Iroquoian sites 

involving provisioning, cold-weather feasting and/or ritual use, purposeful feeding and 

captivity. Further, this relationship is variable and dynamic, changing regionally and 

temporally.  

3.5.7 Tracing hunting ranges using δ18Osc values 

Because wild turkeys are non-migratory and their habitats must include access to water, 

usually within 2.4 to 3.2 kms of their roost (Schorger 1966), their δ18Osc values should 

reflect those of the local water they drink. Based on this hypothesis, it may be possible to 

determine if turkeys were hunted locally (i.e., near sites) or away from sites. 

To estimate what the available δ18O values of water available to turkeys may have been at 

each of the sites sampled in this study, annual average oxygen isotopic compositions for 

precipitation (δ18Oprecipitation) were interpolated based on sixteen water stations across the 

Great Lakes region (IAEA/WMO 2013; Longstaffe unpublished data) see discussion 

Chapter 1, Section 1.3.4, Figure 1.2 and 3.11). The range of δ18Oprecipitation values for the 

region with available turkeys is less than 2%. The δ18O values of the turkeys’ structural 

carbonate was converted to phosphate following Iacumin et al. (1996:4): 

δ18Ophosphate = 0.98(δ18Osc) –8.5   [Equation 3.1] 

The bone phosphate values were converted to precipitation values following Luz et al.’s 

(1990:1724) formula: 
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δ18Ophosphate = 34.63 + 0.6506(δ18Oprecipitation) – 0.171(humidity)17 [Equation 3.2] 

and statistically compared to the interpolated δ18Oprecipitation for each site 

The results show no statistical relationship between turkey δ18Osc values and predicted 

δ18Oprecipitation values based on a Pearson’s correlation for either the archaeological turkeys 

(mean = 20.66±1.14‰, range = 18.06 to 22.16‰) or modern wild turkeys (mean = 

20.18±1.64‰, range =15.12 to 21.40‰).  

There are several explanations for this lack of correlation. The most likely explanation is 

the limitations of the current precipitation model, based on a very small range of 

δ18Oprecipitation values for the geographic region of interest.  

There may be other contributing factors affecting the lack of correlation between δ18Osc 

values and predicted δ18Oprecipitation values, such as different ages-of-death of the turkeys. 

As bone represents a lifetime average, depending on the metabolic rate and age at death, 

the turkeys’ structural carbonate could reflect different numbers of summers or winters 

survived. The seasonal effect on δ18Oprecipitation values can be quite significant in Ontario 

due to changing temperatures and air mass sources. Alternatively, the lack of correlation 

could be explained by changing water sources throughout the year. For example, in the 

winter turkeys may access spring–fed streams essential for cold weather survival 

(Schorger 1966), and which often include ground water, which may not directly reflect 

δ18Oprecipitation values (Darling et al. 2003). During the warmer months of the year, turkeys 

are able to access ponds, streams and rivers fed by local precipitation, more readily. 

                                                 
17 humidity was estimated at 85%, based on an Ontario average. 
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Figure 3.11: Modern and archaeological turkey locations overlaid on the interpolated δ18Oprecipitation values (IAEA/WMO 2013; 

Longstaffe unpublished data, Figure 1.2)
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3.6 Conclusions 
This study has demonstrated the importance of using modern species as comparative 

models for understanding human-animal interactions in the past, and that δ13Csc values for 

birds can be used to expand on traditional dietary δ13Ccol studies. The carbon and nitrogen 

isotopic data also provide insight into: (1) dietary adaptations of turkeys to changing 

environments; (2) varying behavioural patterns of past humans related to subsistence 

practice, and (3) the complexity of the relationship between humans and animals. Further, 

cultural differences in landscape and animal management used by Ontario Iroquoian and 

Western Basin peoples and responses by turkeys to environmental change were explored 

through regional comparison of turkey carbon-isotopic analyses. Although full 

domestication of wild turkeys is not part of the spectrum of human-animal relationships 

in southern Ontario, this study has shown an interaction between wild turkeys and 

Ontario Iroquoian people that is currently unique in the North American archaeological 

literature.  

The carbon isotopic composition of wild turkey remains from Grand River basin sites 

indicates that turkeys began consuming maize more consistently in the Middle Ontario 

Iroquoian phase. This behaviour continued into the historic Neutral period at some sites, 

along with evidence of year–round, purposeful feeding of at least one turkey at the 

Hamilton site. Age-at-death analysis of juvenile turkeys and burial context provided 

direct evidence of cold-weather turkey hunting, supported by previously established 

zooarchaeological and ethnohistoric descriptions of fall and winter hunting of wild 

turkeys in Ontario. The increasing number of turkeys that consumed maize combined 

with the decreasing numbers of turkeys in faunal assemblages starting around A.D. 1200 

may represent a shift to opportunistic, near-settlement hunting at Ontario Iroquoian sites. 

Based on the results, it is suggested that turkeys hunted at Late Woodland Ontario 

Iroquoian sites were purposefully provisioned with maize, post-harvest, ensuring the 

availability of turkey for food, feasting, ritual, and medicine during the colder months. 

Because the Iroquoian maize harvest was the responsibility of women, it is proposed that 

they were responsible for creating the garden-hunting niche by leaving surplus maize in 

fields and possibly hunting the turkeys there as well.  



163 

 

The use of δ18Osc values of turkey bones to confirm near-site hunting does not appear to 

be a useful method for tracking the geographic hunting ranges of Late Woodland hunters 

because of a lack of variation in local precipitation δ18O values within the geographic 

region. 

Our understanding of the wild turkey and its relationship to Ontario archaeological 

peoples should be expanded in future work by increasing the sample size, particularly for 

the Western Basin region, and incorporating multiple tissue analysis in order to better 

understand the influence of seasonality on human–animal interactions. 
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Chapter 4  

4 White-tailed deer 

4.1 Introduction 
“Perhaps it was the ever present problem of food, clothing and shelter from the earliest 

times that prevented the white-tailed deer from sharing much of this reverence and 

sanctity. For an animal of such utilitarian value could not carry the cultural impedimenta 

that go with totem and taboo, such as are found in the case of the black bear, and still be 

of so much value as a source of food, clothing, and shelter.”  

Curtis 1944:273 

Great Lake Woodland economies and life-ways were dependent on game, particularly 

white-tailed deer (Odocoileus virginianus), as food and raw materials for clothing and 

tools as well as social cohesion through meat sharing, hunting, and trade. In southwestern 

Ontario, neighbouring Western Basin and Ontario Iroquoian cultural groups both hunted 

deer extensively, regardless of changing settlement patterns and increasing importance of 

cultigens. Corresponding approximately with the onset of the Late Woodland (A.D. 

1000), Ontario Iroquoian settlement patterns shifted, reflecting greater sedentism and 

exponential population growth relative to the more variable settlement patterns seen at 

Western Basin sites. Many Western Basin sites appear to have been used only part of the 

year, with people following the movement of seasonally available resources, while 

contemporary Ontario Iroquoian sites were occupied year round for 10 and 20 years at a 

time. Despite these differences, starting around A.D. 1000, dedicated maize 

horticulturalism increased and year-round maize consumption is inferred from stable 

isotopic compositions of both Iroquoian and Western Basin humans (Dewar et al. 2012; 

Harrison and Katzenberg 2003; Katzenberg et al. 1995; Pfeiffer et al. 2014; Schwarcz et 

al. 1985; Spence et al. 2010; van der Merwe et al. 2003; Watts et al. 2011). In this study, 

isotopic analysis of enamel serial sections and bulk dentine along with paired bone 

collagen and structural carbonate samples are used to provide a more nuanced 

understanding of the feeding behaviour of white-tailed deer. These data enable the use of 

deer in reconstructing hunting patterns and tests their use as proxies of landscape change 
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(i.e., introduction and expansion of maize fields). Post-mortem cultural practices related 

to the processing and/or disposal of deer remains are also inferred. A clearer 

understanding of the long term relationship between humans and deer has significance for 

archaeological and paleoecological research, as well as modern wildlife management. 

Differences in the ability of deer to access maize fields are hypothesized to be related to 

time period, region and cultural affiliation. Variation in maize consumption has been 

hypothesized in previous studies in the Maya region as a means to identify deer browsing 

at field edges or purposeful feeding of deer for ritual sacrifice (Emery et al. 2000; White 

et al. 2001, 2004b). Collagen analysis of modern deer from the lower Great Lakes 

suggested that δ13C values higher than –21‰ indicated agricultural field browsing, and 

δ13C values higher than –12‰ indicated captive, purposefully maize-fed deer (Cormie 

and Schwarcz 1994). Using these parameters, analysis of deer bone may provide 

evidence of maize consumption by ancient Ontario deer, which may be associated with 

field expansion by Ontario peoples and reflect tolerance of field pests and/or hunting 

patterns, such as hunting of deer in or near maize fields. Modern studies in the region 

indicate deer will preferentially use agricultural fields for food, which reflects the 

behaviour of both deer and humans (i.e., major alteration of the landscape including 

extensive use of maize and other crops). The absence of maize consumption reported 

previously for archaeological Ontario deer (Katzenberg 1989; 2006; Ketchum et al. 2009; 

Pfeiffer et al. 2014) can similarly indicate that deer were avoiding maize fields because of 

predators (human hunters) and/or that humans were either protecting their maize fields 

from deer and other pests or hunting deer in the wild. 

In order to explore these possibilities, the bones and teeth of white-tailed deer from 25 

sites from southwestern Ontario, spanning 3000 years, were analysed isotopically. The 

analysis of radiographs of juvenile deer and enamel serial sections of mandibular 

dentition were used to determine the mineralization chronology of permanent, posterior 

mandibular dentition. The season of enamel mineralization during the first year of life 

was predicted using 150 radiographs and verified using δ18Osc and δ13Csc values of the 

structural carbonate preserved in the enamel from ten deer. Bulk bone collagen and 

structural carbonate of sixteen modern deer and 81 archaeological deer were used to 
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determine average life time diet (δ13Ccol and δ13Csc) and to explore human geographic 

(hunting) range (δ18Osc).  

4.2 Background 

4.2.1 White-tailed deer ecology and physiology 

White-tailed deer are the most ubiquitous and adaptable of the North American cervids 

with a range extending from the Canadian Shield to the jungles of Central America 

(Dobbyn et al. 1994; Hesselton and Hesselton 1982:878; Miller et al. 2003:906). Their 

wide range reflects flexibility in habitat use, social behaviour and food exploitation. 

White-tailed deer are ruminants but because they have relatively small rumen they need 

higher quality food, a requirement they meet with an “uncanny” ability to maximize 

nutritional selections (Hesselton and Hesselton 1982:883; Miller et al. 2003:1912). When 

food is plentiful, deer will select plants with the highest nutritional value and only 

become generalists when food is scarce. Anecdotal evidence has shown deer will select 

fertilized over non-fertilized foods, plant parts with higher nutritional values and foods 

with more quickly digestible nutrients (Hesselton and Hesselton 1982; Miller et al. 2003). 

White-tailed deer consume a wide range of mast, forbs and browse, including fruits, 

berries, nuts, mushrooms, leaves, twigs, and digestible grasses. Their nutritional and 

habitat requirements shift seasonally with behavioural changes (Table 4.1), particularly in 

northeastern North America, where seasons are more extreme and they are more affected 

by temperature and daylight changes (Hesselton and Hesselton 1982:884). Despite the 

variations in diet and food resource locations, deer are not considered a migrating 

species. In fact, their non-migratory nature led Cormie and Schwarcz (1994) to label 

them as ideal candidates for isotopic baseline studies. 
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Table 4.1: Summary of Ontario White-tailed deer annual life cycle, feeding, and activity patterns. 

Also shown; the archaeological Ontario maize annual cultivation and harvesting patterns (top row) and estimated sequence of 

tooth mineralization (bottom row). 
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During the spring all deer increase food intake after winter has depleted fat and muscle 

reserves. Spring is the only time period that deer routinely graze. Male deer begin to form 

antlers in late spring and for females, April and May are the last trimester of their 

pregnancies and when 90% of fetal growth takes place, making spring forage very 

important. In Ontario, fawns are usually born at the end of May or in early June (Smith 

and Verkruysse 1983). During the first few weeks of life, does and fawns stay hidden and 

isolated, usually within woodlots. By six weeks, fawns are weaned and accompanying 

mothers in the search for food. The growth rate of fawns is affected by sex, population 

density and soil fertility, with females maturing more quickly than males (Miller et al. 

2003). To permanently stunt growth it takes extreme nutritional deficiencies (i.e., less 

than 5% protein), as deer are able to recycle up to 90% of urea in cases of low dietary 

protein (Robbins et al. 1974). Urea recycling might result in low δ15Ncol tissue values 

(Ambrose 2002).  

During the summer, deer consume carbohydrates for energy, eating leaves and seedlings 

of a wide range of wild trees, shrubs, and in some areas, crops. Fall is a critical time 

period for fattening so that the deer will be able to endure the mating season (especially 

males entering rut) as well as harsh winters in the northeast (Smith and Verkruysse 

1983). A shift in daylight hours signals a hormonal change commencing rut and mating, 

and is followed by an exponential increase in fawn growth (Miller et al. 2003). The fall 

hormonal change also signals a peak in the intake of high energy foods to compensate for 

these activities; for example high energy hard masts, particularly maize, may constitute 

up to 70% of the fall diet. Ripening fruits are also an important dietary component at this 

time (Smith and Verkruysse 1983). Mushrooms, a major protein source, are also 

preferentially consumed during the fall, comprising up to 15% of the diet (Miller et al. 

2003:913). During the winter, deer survive primarily on their fat reserves but also 

consume available browse, including twigs, branches, needles, and bark and they dig 

through the snow to get to underlying grasses (Armstrong et al. 1983; Smith and 

Verkruysse 1983). Deer adapt their metabolism to extreme temperatures, and through 

much of the winter, their metabolism drops significantly (Holter et al. 1976; Mautz et al. 
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1992; Silver et al. 1969). In order to minimize energy expenditure during this time 

period, less nutritional food may be consumed if it is closer at hand.  

As a prey species, deer are highly adapted to predator avoidance. For example, does with 

young fawns will sacrifice nutrition for isolation. Rue (2004) also noted that bucks are 

more likely to exploit deeper, wood lot environments and that once fawns are able to 

travel, doe-fawn families will venture closer to open areas more frequently than bucks. 

Does may have higher δ13C values because they consume more maize crops, and bucks 

may have lower δ13C values because of a canopy affect created by forested environments 

(Loken et al.1992). Deer cannot live exclusively in deep forests, however, because of a 

lack of browse, and all deer need a variable landscape provided by use of forest edges, 

open spaces and wood lots. Deer are important prey species for wolves, often dictating 

wolf ranges and densities. In many regions, however, coyotes have largely replaced gray 

wolves as the major non-human predator of deer. Cougars, bobcats, domestic dogs, and 

black bears may also prey on deer, especially fawns and elderly or injured deer (Ballard 

2011; Starna and Relethford 1985; Wolverton 2008). Further, white-tailed deer are not 

only vulnerable to predators but also severe winter starvation as well as parasites and 

diseases because they will not disperse with increasing population size (and associated 

resource depletion) and actually aggregate in the winter when food is most scarce 

(Armstrong et al. 1983). While white-tailed deer can live up to 15 years, however, mean 

life expectancy for wild deer is typically 5.5 years for females and 3.5 years for males 

(Hesselton and Hesselton 1982:916; Miller et al. 2003:917; Smith and Verkruysse 1983). 

4.2.2 Modern white-tailed deer and humans 

White-tailed deer are regarded as one of the most important modern game animals in 

North America, particularly the Midwest (Arnold and Torgersen 1980; Hesselton and 

Hesselton 1982; Knoche and Lupi 2012; Smith and Verkruysse 1983). Millions of deer 

are hunted annually in the United States alone (Craven and Hygnstrom 1994), the 

revenue for which is estimated to be hundreds of millions of dollars (Hesselton and 

Hesselton 1982; Knoche and Lupi 2011). As wild deer populations continue to rise in 

many areas, some researchers have suggested a need for increased hunting in order to 

bring deer densities below carrying capacity, and protect forest ecosystems and more 
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sensitive species in competition with them (McShea 2012; VerCauteren et al 2011). 

Understanding deer habitat use throughout the year is essential for making management 

policy as well as survey and harvest regulations, important foci for state and provincial 

wildlife agencies (Creed and Haberland 1980:83 Roseberry 1980). Stable isotopes offer 

one means of tracking animal movement and seasonal patterns related to food access. 

The tolerance of deer for human altered landscapes has produced three major problems. 

First, as crop pests, white-tailed deer have economic and social implications. Hesselton 

and Hesselton (1982:883) noted that since 1900 deer have readily adapted to agricultural 

landscapes in regions such as the “corn belt” of the American Midwest, where they eat 

maize, alfalfa and soybeans. Although deer preferentially select a mosaic landscape of 

woodlots and open fields, a shift to significant crop consumption is reported to have 

occurred after heavy logging and landscape changes necessitated adaption by the deer in 

those regions. White-tailed deer cause more crop damage today than any other wildlife 

species in the US (see also Brittingham et al. 1997; Conover and Decker 1991; Craven 

and Hygnstrom 1994; Hewitt 2011; Tzilkowski et al. 2002), with staggering implications. 

For example, they can destroy up to 2/3 of a maize harvest (Harlen 1972, cited in 

Hesselton and Hesselton 1982:885) and some US states report crop damage in excess of 

$30 million (Craven and Hygnstrom 1994: 39). Crop dependence also results in higher 

reproduction and heavier deer, which further compounds the problem. In Ontario, both 

raccoons and deer are mainly responsible for damage to maize crops, with raccoons 

responsible for the majority of damage.  

Vehicle collisions are a second major problem related to shared space between white-

tailed deer and humans, causing millions of dollars in damages in the US and Canada 

each year (Heselton and Heselton 1982), and up to 3% mortality of deer populations in 

some regions (Munro et al. 2012). However, improved access to food and reduced 

numbers of predators in modern agricultural landscapes appear to outweigh the risk of 

collisions resulting in net population growth of deer in these shared landscapes (Munro et 

al. 2012). Lastly, deer can play a role in the transmission of disease to livestock. High 

population density and congregation in food habitats appear to be linked to bovine 

tuberculosis (Mycobacterium bovis) Kjær et al. 2008).  
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4.2.3 Ancient white-tailed deer and humans 

Late Holocene changes in hunting strategies are recognized by a shift from broad 

spectrum hunting to a focus on white-tailed deer in many areas of North and Central 

America (example Wolverton et al. 2008), which reflects the fact that deer became one of 

the most important species hunted for food, clothing and tools, as well as social cohesion 

and ritual across much of North and Central America. White-tailed deer remains (bone, 

teeth and/or antler) are common in North and Central American archaeological sites 

(Mesoamerica: Flannery 1966, Santley and Rose 1979, Emery et al. 2000, White et al. 

2001, Rosenwig 2006, ; Hamblin 1984; Southeast United States: Bolstad and Gragson 

2008; Midwestern United States: Zimmermann–Holt 1996, Hedman et al. 2009, Nelson 

1999; Eastern Woodland: Curtis 1952, Foreman 2011, Gramly 1977, Katzenberg 1989, 

2006; Prevec and Noble 1983; Stewart 2000; Turner and Santley 1979, Warrick 2000, 

Madigral and Zimmerman Holt 2002). 

As one of the largest and most common mammals in the faunal record, deer were clearly 

an important protein source for many pre-contact peoples, but ethnohistoric, 

archaeological and zooarchaeological evidence suggest that white-tailed deer were also 

prized for their hide, antlers, bone and sinews during the Woodland period in Ontario, 

(Gramly 1977; Katzenberg 1989; Ketchum et al. 2009; Prevec and Noble 1983; Stewart 

2000; Turner et al. 1979). With growing human populations, there was probably 

competition over deer hunting territories, which was likely linked to social and economic 

change (Theler and Boszhardt 2006) as well as hunting territory expansion, primarily into 

the uninhabited lands (Turner and Santley 1979; Webster 1979). Deer were fundamental 

to the economies of both Western Basin and Ontario Iroquoian traditions between A.D. 

1000 to 1600, dominating most faunal assemblages (Foreman 2011:74; Prevec and Noble 

1983; Wrong 1939:225).  

The ubiquity of white-tailed deer in faunal assemblages and their essential role for Late 

Woodland survival does not preclude them from playing a significant cosmological role 

in Great Lakes mythology and iconography. According to Menomini (Algonkin) myths, 

both the bear and deer ruled the underworld. However, Curtis (1952) speculated that the 

utility (and necessity) of deer for meat and skin would always out-weigh its ritual or 
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social value, and meant that they could not achieve the reverence, and therefore sanctity, 

of the black bear. It is similarly postulated that the economic importance of deer in the 

American Bottom (southwestern Illinois around the Mississippian floodplain) relegated 

them to a separate economic and non-ritual category in the “native taxonomy” of that 

area (Zimmerman-Holt 1996). This kind of ideology could explain the representation of 

Ontario Iroquoian and Western Basin deer as a food resource, rather than an 

anthropomorphized character in clan names, pipe effigies, and pottery (Matthews 1980), 

as well as in myth and legends, but it does not preclude their role in taboos and feasts. 

There are numerous references to specific taboos related to the disposal of deer. For 

example, Sagard states that;  

“[t]hey [the Neutral] have the same superstition in hunting deer, moose and other 

animals, believing that if any of the fat drops into the fire, or any bones are thrown into 

it, they will be unable to get any more,” (Wrong 1939:187), and from the Jesuit 

Relations; “they consider it a sin to throw the bones to the dogs; they either burn them in 

the fire or bury them in the ground. For, they say, if the bears, beaver, and other wild 

animals which we capture in hunting should know that their bones were given to dogs 

and broken to pieces, they would not suffer themselves to be taken so easily” (Thwaites 

1896–1901:1:283, from the Jesuit Relations).  

The taboos indicate specific depositional requirements for certain hunted species, 

including deer. Deer are also mentioned as key components of feasts, including the 

sharing of flesh and boiling of deer heads (Wrong 1939:111). Fenton (1953:106–107) 

summarizes the evolution of Great Lakes’ traditional ceremonies: 

"Feasts on an animal head echo an earlier ceremonial cannibalism. The Huron, 

Mohawk, and Oneida tribes held feasts where the head, frequently the head of an enemy 

captive after torture, went into the kettle and then as a choice morsel went first to the 

chiefs. In the war feast the head, often a dog's head cooked in the soup, was presented to 

the captain who carried it in his hands inciting others to enlist. By the middle of the 

eighteenth century, the accounts refer to whole hogs being boiled in the maize soup and 

warriors successively danced with the hog's head in their hands. Thus, pork replaced the 
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dog as the war feast food, and later it supplanted the bear and venison in all feasts, until 

today the pig's head is the ceremonial head, the pièce de résistance.” 

4.2.4 Stable isotopes 

Isotopes are variants of an element that differ in their number of neutrons and, therefore, 

in atomic weight. The differences in atomic weight cause isotopes to behave differently 

in chemical and physical reactions, resulting in variations in the ratios of one isotope to 

another. For example, as water evaporates, the lighter isotope of oxygen, 16O, is 

preferentially evaporated over the heavier isotope, 18O, resulting in the evaporated 

moisture being isotopically lighter relative to the source water. Organisms will 

incorporate the environmental isotopes into their tissues through the foods they ingest, air 

they breathe and water they drink. The isotopic compositions of animal tissues will, 

therefore, reflect their environment and are expressed as δ–values of the heavy to light 

isotope in per mil (‰), using the formula:  

δ = (Rsample/Rstandard) / Rstandard 

where R = 13C/12C, 15N/14N or 18O/16O (McKinney et al. 1950:730; Coplen 2011) . 

Carbon isotopic compositions are standardized to Vienna PeeDee Belemnite Limestone 

(VPDB) (Coplen 1996; 2011). Nitrogen isotopic compositions are standardized to AIR 

(Mariotti 1983). Oxygen isotopic compositions are standardized to Vienna Standard 

Mean Ocean Water (VSMOW) (Coplen 1996; 2011). An expanded description of stable 

carbon, nitrogen, and oxygen isotope analysis is proved in Chapter 1, Section 1.3. 

4.2.4.1 Previous isotopic studies of deer 

The δ13Ccol and δ15Ncol values of bone collagen from 33 archaeological white-tailed deer 

from five southwestern Ontario sites tightly cluster around –22.1±0.9‰ and 6.4±0.8‰, 

and are interpreted as consistent with terrestrial herbivores consuming non-leguminous 

plants in a C3 only environment (Katzenberg 1989; 2006). Almost identical means 

(δ13Ccol = –22.4±1.0‰ and δ15Ncol = 5.9±0.9‰) were reported for dentine collagen of 45 

more archaeological southwestern Ontario white-tailed deer (Pfieffer et al. 2014:341). A 

commonly considered upper end point for a C3 only diet is –21.4‰ (van der Merwe 

1982; Cormie and Schwarcz 1994; Katzenberg 1989; 2006). Deer with δ13Ccol values 
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lower than this could also have been feeding in more deeply wooded areas i.e., a canopy 

effect (Bonafini et al. 2013; Drucker and Bocherens 2009). Most studies of deer show 

δ13Ccol ranges from –22.5 to –19.5‰ (Bergh 2012 for southeast US; Loken et al. 1992 for 

Nebraska; Emery et al. 2000, White et al. 2001, 2004b for Mesoamerica), which are 

generally interpreted as reflecting C3 dominant diets, with the exception of some deer 

who had consumed small amounts of maize probably obtained by browsing at the edge of 

agricultural fields. Cormie and Schwarcz (1994) suggested a range of –21 to –16‰ to 

reflect C3 dominant diets with some degree of maize consumption (uncorrected for the 

Suess Effect for modern wild deer with access to maize), which mirrors the –21.5‰ cut 

off suggested by van der Merwe 1982 for a C3 only diet. Taking the Suess effect into 

consideration, a more conservative upper end value of –20.5‰ will be used to indicate a 

C3 only diet in this study. It will be assumed that deer with δ13Ccol values between –20 

and –18‰ have consumed some C4 resources, and those with higher values have 

consumed significant amounts.  

Cormie and Schwarcz (1994) analysed the effect of climatic variables, such as aridity, on 

the δ15Ncol values of modern white-tailed deer bone collagen across North America, 

including southwestern Ontario and Michigan. They noted that the δ15Ncol values from 

the Great Lakes region were relatively low, which they attribute to any combination of 

high precipitation, consumption of legumes, consumption of fertilized agricultural 

produce or plants growing in soil affected by agricultural inputs from fertilization and/or 

nitrogen fixing by agricultural legumes. The published archaeological deer data from the 

Great Lakes region have higher δ15Ncol values compared with the modern deer, 

suggesting that extensive agriculture inputs, not differences in precipitation, may be the 

primary cause for the low δ15Ncol values of the modern deer.  

There are a few published white-tailed deer structural carbonate oxygen and carbon 

isotopic results, though overall, such data for structural carbonate are not as frequently 

reported as for collagen (but see Booth et al. [2011] for bone collagen-carbonate pairs 

from Late Woodland Ontario deer, Loken et al. [1992] for collagen-carbonate bone pairs 

from archaeology sites in Dakota, and Repussard [2009] for bone structural carbonate of 

Maya deer [Table 4.2, summarized Figure 4.1]). 
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Luz et al. (1990) mapped variations in the δ18O values from the phosphate (δ18Ophosphate) 

of deer bone across North America, including portions of the Great Lakes, finding 

minimal variation between animals from the same region, which is interpreted as 

δ18Ophosphate values reflecting local environments. Precipitation across the Great Lakes 

region is only minimally affected by latitude or altitude. There is, however, longitudinal 

variation in δ18O values across southwestern Ontario with a 2‰ decrease in δ18O values 

moving east from Lake St. Clair to the western tip of Lake Ontario (IAEA/WMO 2013; 

Longstaffe unpublished data, Figure 1.2).  

4.2.5 Post-mortem alteration 

After death, the tissues of the body begin to change. Post-mortem alteration of bones and 

teeth can be due to any combination of factors including the natural breakdown of body 

tissues, environmental and human induced taphonomic changes and diagenetic alteration 

of chemical structures (Berner 1980:3; DeNiro 1985; Koch et al. 1997; Sandford 1993; 

Sillen 1989). The protein, collagen, in bones and the dentine of teeth is quite resilient 

(Collins et al. 2002; Lee-Thorp and van der Merwe 1987), but can be altered by either 

microbial attack or hydrolysis (Hedges 2002). In anaerobic, water-logged conditions or 

dry environments (e.g., caves) microbial attack is less likely to occur but is rapid in hot, 

humid conditions (Hedges 2002; Nielsen-Marsh and Hedges 2000; Stuart-Williams et al. 

1996). Collagen loss can also cause the remaining tissue to be contaminated with non-

collagenous substances, usually lipids or soil humic acids, resulting in low δ13C values 

and high carbon to nitrogen ratios (Ambrose and Norr 1992). Collagen content and the 

ratio of carbon to nitrogen are used to determine whether bone and dentine collagen have 

been altered. Collagen loss is believed to occur relatively early after death and may result 

in increased porosity, which reduces histological integrity (Nielsen-Marsh and Hedges 

2000) and can contribute to the alteration of the inorganic portion of the bone (Hedges 

2002). Von Endt et al. (1984) also demonstrated that within a site, depth of burial and 

size of bones will contribute to post-mortem alteration, with bones buried closer to the 

surface exhibiting great alteration. 
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Table 4.2: Summary of previously published archaeological deer collagen and structural carbonate data. 

 

CULTURAL COMPLEX SITE NAME Mean δ13Ccol SD n Mean δ15N SD n Mean δ13Csc SD n  Δ13Ccol-sc Source

Neutral Ontario
SW Ontario, multiple 

sites
-22.1 0.9 33 6.4 0.8 33 Katzenberg 1989: Table 3; 2006: Table 19.1

Neutral Ontario
SW Ontario, multiple 

sites
-22.4 1.0 45 5.9 0.9 45 Pfieffer et al. 2014

Neutral Ontario
SW Ontario, multiple 

sites
-23.1 2.7 4 5.4 0.7 4 -10.5 0.8 4 12.6 Booth et al. 2011

Late Archaic Indian Knoll, Kentucky -21.0 0.9 10 4.3 1.1 10 Ketchum et al. 2009: Table 1
Middle Mississippian Angel Site, Indiana -21.2 1.3 11 4.3 0.9 11 Ketchum et al. 2009: Table 1

Mississippian
St. Catherine's Island, 

Georgia
-21.6 0.8 26 4.7 1.1 26 Bergh 2012: Table 8.3

Woodland Dakota Site, Nebraska -20.5 1.5 11 5.6 0.9 11 -12.2 2.1 9 8.7 Loken et al. 1992: Table 2
Maya Aguateca -20.5 1.4 12 Emery et al. 2000: Table 3
Maya Arroyo de Piedra -20.7 0.8 10 Emery et al. 2000: Table 3
Maya Bayak -20.5 0.3 5 Emery et al. 2000: Table 3
Maya Colha Preclassic- -21.1 0.8 16 5.0 1.7 16 White et al. 2001: Table 3
Maya Copán Late Classic -20.0 1.6 20 4.9 1.4 20 White et al. 2004b: Table 9.1
Maya Copán Valley -20.4 1.6 5 3.8 1.3 Whittington and Reed, 1997: Figure 12.1
Maya Cuello Preclassic -20.5 0.9 5 5.8 1.3 6 -12.4 1.5 4 8.1 van der Merwe et al., 2002: Table 2.1 
Maya Dos Pilas -20.5 0.3 16 Emery et al. 2000: Table 3
Maya Lagartero Late Classic -18.2 5.4 8 5.4 0.9 8 White et al. 2004b: Table 9.1
Maya Lamanai -10.2 1.0 14 Repussard 2009: Table 5.7

Maya
Lamanai Historic 

Sprocket Deer
-21.8 0.3 2 4.5 0.3 2 White and Schwarcz 1989

Maya Maya region Classic -21.1 0.9 46 4.4 1.3 44 -10.4 0.8 16 9.2 Gerry, 1997: Table 2
Maya Motul de San Jose -10.5 1.0 10 Repussard 2009: Table 5.7
Maya Pacbitun Classic -19.2 3.9 5 8.1 4.1 4 White et al., 1993: Table 4
Maya Piedras Negras -10.6 1.0 67 Repussard 2009: Table 5.7
Maya Punta de Chimino -20.8 0.9 7 Emery et al. 2000: Table 3
Maya Tamarindito -20.5 0.7 3 Emery et al. 2000: Table 3
Maya Tikal Classic -19.7 2.8 9 5.0 1.2 9 White et al. 2004b: Table 9.1
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Figure 4.1: Summary of previously published δ13Ccol and δ13Csc values. See Table 4.2 for references. 
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The crystalline structure of the hydroxyapatite may be altered post-mortem by the uptake 

of F– and CO3
– from ground and soil water, the alteration of hydroxyapatite to brushite, 

and/or the dissolution and re-precipitation of hydroxyapatite under post-burial conditions 

(Hedges and Millard 1995; Hedges 2002; Wright and Schwarcz 1996). Some researchers 

have argued that the structural carbonate of bone (and in some cases dentine) may be 

unacceptably susceptible to contamination by environmental carbonates and, therefore, 

should not be considered a reliable tool for reconstructing past diets (Ketchum et al. 

2009; Kolodny et al. 1983; Shemesh et al 1983; Schoeninger and DeNiro 1982). Other 

archaeologists have argued that the information available in structural carbonate is 

valuable (Harrison and Katzenberg 2003; Koch et al. 1997; Lee-Thorp and van der 

Merwe 1987; Wright and Schwarcz 1996). As with collagen, there are methods for 

determining the presence of alteration, either by the uptake of secondary carbonates or by 

re-crystallization. Fourier transform infra-red (FTIR) analysis is used to identify re-

crystallization using the crystallinity index (CI), as well as the presence of peaks from 

secondary calcite or brushite (Nielsen-Marsh and Hedges 2000). Wright and Schwarcz 

(1996:934) and White (2004) stress that because structural carbonate is prone to 

alteration it is essential that each specimen be evaluated for alteration, after which the 

appropriate cleaning treatments (i.e., acetic acid wash) should be implemented. The high 

crystallinity and low porosity of tooth enamel makes it less susceptible to diagenesis than 

bone. Thus in cases where bone may be altered, enamel can provide a viable alternative 

sample source (Koch et al. 1997; Lee-Thorp and van der Merwe 1987; LeGeros 1981; 

Yang and Cerling 1994).  

 

The effects of human-induced bone changes (i.e. cooking or defleshing) on post-mortem 

alteration continues to be studied (Nielsen-Marsh and Hedges 2000; Pijoan et al. 2007; 

Roberts et al. 2002). Under laboratory conditions (i.e., boiling in distilled water), DeNiro 

et al. (1985) and Munro et al. (2007; 2008) found that boiling had no effect on either 

bone collagen or bone carbonate isotopic values. Sustained boiling, however, may mimic 

diagenesis through re-crystallization (Roberts et al. 2002), and/or make buried bones 

more susceptible to exchange with soil carbonates due to increased porosity (Pijoan et al. 

2007). Extended boiling (beyond nine hours) should be recognizable in bone, as it should 
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reduce collagen yields (<2%), produce poor C:N ratios (>3.6) and result in high CIs 

(>4.5) (Roberts et al. 2002). Heating of bone for shorter periods cannot be identified with 

post-mortem alteration tests for either collagen (collagen concentration and C:N ratio) or 

structural carbonate (CI index) unless the heat is over 350⁰ (Munro et al. 2007).  

4.2.6 Bone and dental tissue formation 

Bioarchaeologists are limited to those tissues that preserve post-mortem, and usually 

work with hard tissues such as bone and dentition. Bone is a dynamic tissue, and both the 

organic (collagen) and inorganic (structural carbonate) portions of bone continuously 

remodel throughout life. Estimating the rate of bone turnover has been a long-standing 

research question, but estimates suggest that humans have bone turnover rates of 15 to 25 

years (Frost 1969; Hedges et al, 2007; Martin et al. 1998). While basal metabolic rate, 

habitat and diet can have a direct effect on tissue turnover, it is generally accepted that 

larger bodied animals have slower tissue turnover (Nagy 1987). As such, bulk collagen 

and structural carbonate of large-bodied mammals, including white-tailed deer, is 

generally believed to reflect a life time average, with higher contributions from the sub-

adult growth stage (Hedges et al. 2007).  

Dental tissues (Figure 4.2), such as enamel and dentine, typically reflect the time period 

of tissue formation. Enamel formation, amelogenesis, is initiated quite early in embryonic 

development for most mammals but may continue for several months or years after birth. 

Enamel formation of the crown is always completed prior to eruption of the tooth and 

takes place in two phases: the initial secretion of proteins and organic matrix by 

amelobasts, followed by the mineralization phase whereby ameoblasts transport proteins 

needed to complete mineralization (Davis and Mead 2013; Garant 2003; Passey and 

Cerling 2002). The crown mineralizes sequentially from the coronal (crown) surface 

towards the cervical region (cemento-enamel junction) of the tooth. The dual 

secretion/mineralization process of enamel mineralization may result in some averaging 

of the isotopic signatures at the time of formation (Passey and Cerling 2002), but with 

appropriate sampling can provide incremental isotopic information. The sequential 

isotopic analysis of enamel (phosphate and structural carbonate) has been successfully 
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demonstrated by several studies, see for example Balasse (2002); Balasse et al. 2003; 

Metcalfe and Longstaffe (2012); Passey and Cerling (2002). 

 

 
Dentine also forms sequentially through a process known as dentinogenesis, initiated by 

mantle dentine and followed by primary dentine formation. The initial phases of dentine 

formation must occur prior to enamel formation (Spinage 1973). The mantle dentine 

forms along the coronal cusp surface from organic secretions by odontoblasts moving 

inward. At eruption the coronal dentine is formed, though secondary dentine continues to 

form after eruption by filling in around the pulp cavity of the roots (Garant 2003). In 

mammals, tertiary dentine (previously known as irregular secondary dentine) may form at 

Figure 4.2: Cross section of a deer tooth. 

Adapted from Stallibrass 1982: Figure 1, page 110. 
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any stage of life on the coronal surface due to extreme wear or injury of the primary 

dentine (Spinage 1973).  

While dental eruption studies have existed since the 1950s for white-tailed deer, there are 

no studies on their dental mineralization. In order to accurately determine the time period 

(i.e., month or season) of tooth formation as a means to link isotopic data with deer life 

stages, it is essential to determine the mineralization sequence for white-tailed deer teeth, 

specifically deer from northeast region as there is geographic variability in the 

development stages of deer across North America (Hesselton and Hesselton 1982). 

Because there are currently no published dental mineralization studies of white-tailed 

deer, two types of radiography are used here to provide this necessary information.  

The use of dental eruption for determining age-at-death of Old World wild and domestic 

ungulates was first proposed in 1824 by Girard (McLean 1936; Spinage 1973). In 

general, determining age of juvenile white-tailed deer (and other ungulates, such as goat 

and elk) based on dental eruption and replacement is considered an accurate technique 

(Dirks et al. 2009; Gee et al. 1991; Gee et al. 2002; Hamlin et al. 2000; Hesselton and 

Hesselton 1982:881; Rees et al. 1966; Servinghaus 1949; Taber 1971), and is used by 

both wildlife management authorities (Deniz and Payne 1982; Miller et al. 2003; Ryel et 

al. 1961) and zooarchaeologists (see for example, Kay 1974 and Payne 1973). After two 

years of age, wear patterns, crown height (Gilbert and Stolt 1970; Hamlin et al. 2000; 

Klein et al. 1981; Ryel 1961; Taber 1971) and cementum annuli counts (Gilbert 1966; 

Hamlin et al. 2000; Lockard 1972; Low and Conwan 1963) have been used to determine 

age of mature white-tailed deer and other cervids. Unfortunately, these methods produce 

inconsistent results, regardless of species.  

4.3 Materials and methods 
This study included several methodologies, including (1) determining ages of modern, 

juvenile white-tailed deer based on dental eruption, (2) radiographic analysis of the same 

deer to determine the dental formation sequence, (3) the identification and selection of 

archaeological deer fragments from several Ontario archaeological sites, (4) the isotopic 

analysis of bone collagen and structural carbonate of modern and archaeological deer, 
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and (5) the isotopic analysis of the dentinal collagen and structural carbonate from 

enamel serial sections. The serial sections of enamel were manually removed from four 

mandibular teeth (fourth premolar, first, second, and third molar) and the dentine was 

separated for each of the four teeth.  

4.3.1 Age determinations based on dental eruption 

The age of each deer collected for radiography was determined by visible appearance of 

dental eruption. Each juvenile deer was assigned to one of nine age categories, adapted 

from previous white-tailed deer dental eruption sequences established by Servinghaus 

(1949) and revised by Knight (2001) and Taber (1971). The nine age categories represent 

distinct gross morphological changes with two to three month age spans, such as the 

emergence of a tooth above the bone, mid-eruption, and full eruption of teeth (e.g., Holly 

2007). Appendix J includes descriptions and example photographs of the nine categories 

used to age the white-tailed deer. In total, one hundred and fifty–two white-tailed deer 

mandibles were assigned to an age category (Table 4.3). 

Table 4.3: Summary of juvenile deer by estimated age and donating institution. 

 CMN, 
Gatineau 

ROM, 
Toronto 

UWO 
Biology 

– 
teaching 

UWO 
Biology 

– Griffith 
Island 

UWO 
Anthro – 
Faunal 

Lab 

Archaeological 
Samples 

Fetal 7 5    2 
0 to 1 month 2      
3 to 4 months    5   
5 to 6 months  3 1 24 1 2 
6 to 7 months   1 31 1 4 
7 to 9 months  3  21  4 
10 to 13 months 5  2 3 2 3 
15 to 17 months 1 3  3  3 
18 months   1 2  3 
19 to 22 months  1    1 
Total 15 15 5 89 4 22 

To confirm the repeatability of age assignment, intra- and inter-observer age estimates 

were performed on a sub-set of mandibles. Appendix L includes age estimates for all 

juvenile deer. To determine the degree of intra-observer error the author repeated the 

estimate process several months later for 12% (n=22) of the sample. To determine the 
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degree of inter-observer error a faunal expert and a non-expert estimated the age of 12% 

(n=22) of the sample. The intra- and inter-observer age estimations were compared using 

a 2–tailed, paired sample Student’s t-test, following Divljan et al. (2006). There was no 

significant difference between the two sets of the author’s observations (t=1.000, 

p=0.321), or between the author and the expert (p=0.331) and non-expert (p=0.186). The 

slightly higher error rate for the non-expert is most likely due to inexperience with the 

material. In all cases when a deer was categorized differently, it was only different by one 

category. Further, those deer that were categorized differently were at the “cusp” of their 

age categories. For example mandibles GI 10a and GI 10h, ZM1/2 were categorized as 

“closer to 9 months,” compared to the expert observer, who categorized them at the 

young end of 10 to 13 months. Overall, the intra- and inter- observer tests suggest high 

reliability in categorizing juvenile deer by dental eruption, especially for those with 

experience. Therefore, the age of the juvenile deer as estimated by the author are 

accepted as a valid. 

4.3.2 Age determination based on radiography 

Juvenile white-tailed deer mandibles were acquired from several sources in Ontario 

including the Canadian Museum of Nature (n=15); Royal Ontario Museum (n=15); The 

University of Western Ontario Department of Anthropology zooarchaeology reference 

collection [n=4], Department of Biology teaching collection [n=5], and the Griffith Island 

Collection [n=89] (see Table 4.4). An additional twenty-two archaeological samples were 

radiographed from Ontario Iroquoian and Western Basin sites. Chemical film and 

computed radiographs were used to capture the images (Table 4.4, see Appendix K for 

details). A small subset of the zooarchaeology lab and archaeological samples were 

radiographed twice to compare the chemical versus computed radiography. It was 

determined that while the computed radiography provided higher resolution images, the 

technique ultimately did not affect the ability to interpret dental mineralization. Only 

mandibular, posterior dentition is presented in this study.  

One hundred and fifty individuals were successfully radiographed. All film radiographs 

were digitized and all the digitized radiographs were imported into Picassa® so that the 

degree of mineralization could be determined for each adult posterior, mandibular tooth. 



196 

 

Each tooth was scored with one of the following categories: not present (X); not formed 

(NF); crypt only; partial crown mineralization (C0.1 to 0.9, based on relative 

completeness); complete crown (C); partial root mineralization (R0.25 to 0.75, based on 

relative completeness), complete tooth (based on root closure). Deciduous premolars 

were scored only on presence. Appendix M provides a complete list of radiographs with 

mineralization analysis of each tooth as well as radiograph specifications and estimated 

age based on dental eruption.  

Table 4.4: Summary of radiographed modern and archaeological deer samples. 

The results were then compared with the age-at-death categories assigned to each 

mandible based on dental eruption. There is a high degree of correlation between the 

sequence of mineralization and dental eruption. Therefore, by comparing the 

mineralization sequence with the expected age of the deer (in months), the predicted 

season of formation was made for each tooth. For example, the second permanent molar 

begins forming two to three months after birth and is complete by six months of age. 

Using an average birth date between late May and early June for Great Lakes deer (Smith 

Sample Source Total Location Radiographed Type of Radiograph 

UWO 
Anthropology – 
Faunal Laboratory 

4 Department Anthropology, 
UWO 

Faxitron 43855D 
Chemical Development 

UWO Biology – 
Teaching 
Collection 

5 Department of 
Anthropology, UWO 

Faxitron 43855D 
Chemical Development 

UWO Biology – 
Griffith Island 
Collection 

89 Sustainable Archaeology 
Ancient Images Lab 

Faxitron 43855F  
Scan–X CR Scanner/ Phosphor 
Plate 

Archaeological 
Samples 

22 Department of 
Anthropology, UWO 

Faxitron 43855D, 
Chemical Development 

Royal Ontario 
Museum, Toronto 

15 Royal Ontario Museum GE–Medical Systems  
Kodak ACR–2000i Scanner/ 
Phosphor Plate 

Canadian Museum 
of Nature, 
Gatineau 

15 Canadian Museum of Nature Security Defense Systems 
Orec PcCR812 HS 
Scanner/Phosphor Plate 

Total White-tailed 
deer Radiographed 

150   
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and Verkuysse 1983), the second molar is predicted to mineralize sequentially between 

August and November. 

4.3.3 Sampling for isotopic analysis  

Archaeological white-tailed deer were sampled from previously excavated faunal 

collections housed at various institutes from across southwestern Ontario representing 

deer spanning 3000 years (Table 4.5), including the Department of Anthropology, 

McMaster University; Department of Anthropology, The University of Western Ontario; 

Ontario Museum of Archaeology; and D.R. Poulton and Associates Inc.  Site descriptions 

may be found in Appendix A. Modern samples were donated by several individuals, 

including Monica and Greg Maika, Ted Barney, Richard Baskey, Mike Boyd, and Jim 

Keron, from several Ontario locations as hunted or road kill deer. Figure 4.3 includes the 

locations of archaeological sites in Ontario discussed in the text as well as approximate 

locations from which the modern deer came.  

Table 4.5: Number of white-tailed deer remains analysed by cultural stage. 
                           Pre–A.D. 200            Total 8 Deer 

Archaic ~8000–800 B.C. 3 
Early Woodland ~900 – 0 B.C. 4 

Middle Woodland 300 B.C. to A.D. 
500 1 

                              Ontario Iroquoian           Total 51 Deer 
Princess Point Phase A.D. 700–1000 8 
Early Ontario Iroquoian Period A.D. 900–1300 7 
Middle Ontario Iroquoian Period A.D. 1300–1450 7 
Late Iroquoian/Neutral A.D 1450–1650 29 

                              Ontario Western Basin      Total 21 Deer 
Riviere au Vase Phase A.D. 600–900 2 
Younge Phase A.D 800–1200 17 
Springwells Phase A.D 1200–1400 2 
Wolf Phase A.D. 1400–1550 0 
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Figure 4.3: Map of all Ontario locations of deer for which isotopic analyses of deer bone and teeth were completed. Modern 

deer collection/hunting locations are marked with a black triangle. Archaeological sites from this study18 (circles) and 

published sources (black squares) (Katzenberg 1989; 2006; Pfieffer et al. 2014). 

                                                 
18Ancestral Ontario Iroquoian Sites: 1. Pipeline; 2. Rife; 3. Crawford Lake; 4. Bogle II; 5. Hamilton; 6. Winking Bull; 7. Old Lilac Garden; 8. Princess Point; 9. 
Cleveland; 10. Fonger; 11. Porteous; 12. Walker; 13. Van Besien, 14. Slack-Caswell; 15. Thorold. Pre–A.D. 200 sites: 16. Cranberry Creek, 17. Bruce Boyd, 18. 

Davidson; Western Basin Sites: 19. Figura, 20. Inland West Pits site 3, 9 and 12, 21. Liahn 1, 22. Montoya, 23. Silverman.  
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4.3.4 Bulk bone selection and identification 

Bulk bone samples were collected from 95 white-tailed deer for collagen analysis, 

including sixteen modern deer. The structural carbonate of 50 of the 95 deer was also 

analysed (Table 4.6). Specimen identification of the archaeological remains was 

completed by the author, Dr. Lindsay Foreman and Dr. Lisa Hodgetts. Identification was 

conducted in the UWO Zooarchaeology Laboratory, which includes white-tailed deer 

skeletons of various ages. Other cervids with historic ranges in southwestern Ontario 

include the elk or wapiti (Cervus Canadensis) and moose (Alces alces), both of which are 

significantly larger than the white-tailed deer (Dobbyn et al. 1994) (Figure 4.4).  

 

Mandibles from faunal collections were always preferentially selected when available 

because they were easy to identify and often associated with dentition. Complete foot 

bones (for example, phalanges or astragali) were selected where mandibles were not 

available because they are identifiable and often better preserved than other bones. Long 

bone fragments were only selected where mandibles and foot bones were not available. 

Fleshed, modern deer mandibles were cleaned at the Zooarchaeology Laboratory, 

Department of Anthropology, The University of Western Ontario. 

  

Elk/wapiti White-tailed deer 

Figure 4.4: Comparison of elk/wapiti and white-tailed deer mandibles. 

Both cervids are juveniles from the Cleveland site. Note the size difference of the 

mandible and third, deciduous premolar between the two species. 
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Table 4.6: Summary of collagen and carbonate samples by cultural affiliation. 

 Pre–horticulture   
pre A.D. 200    
(sites, n=3) 

Ontario 
Iroquoian     A.D. 

900–1600   
(sites, n=15) 

Western 
Basin       A.D. 

900–1600    
(sites, n=7) 

Modern 
White-tailed 

deer 
(locations, 

n=5) 

Total 
Deer 

Analysed 

collagen 8 52 21 16 95 
carbonate 6 22 10 14 50 

4.3.5 Enamel serial section sampling 

Dentitions from ten white-tailed deer mandibles were serially sampled (hunted modern 

deer, n=2; Early Woodland, n=1; Late Woodland, n=7). All teeth were from adults and 

fully erupted, with the exception of an eighteen-month-old modern deer (Mod–deer-7) 

from which a bulk sample of a deciduous premolar was collected. Due to limited 

availability of complete mandibles among the Western Basin samples, Montoya 8 did not 

have a third molar.  

Serial sampling was completed using a Dremel 545 Diamond Wheel mounted on a 

Dremel rotary tool. The wheel was cleaned by sonicating in distilled water between cuts 

to prevent contamination between serial sections. The three to five serial samples were 

taken along the lingual aspect of the four posterior teeth: premolar 4 (PM4, also referred 

to as premolar 3 in some texts), molar 1 (M1), molar 2 (M2) and molar 3 (M3), for a total 

of 116 sections. Only half the tooth (lingual surface) was sampled to allow future, micro-

sampling of the enamel (Figure 4.6). Enamel and dentine were manually separated for 

each serial section. The enamel was pretreated for structural carbonate analysis (for 

protocol see Chapter 2, Section 2.2.3.2.2) and collagen was extracted from 38 bulk 

dentine samples (for protocol see Chapter 2, Section 2.2.3.2.1).  

Pieces of bone weighing between ~0.2–0.4g were collected for each sample. Trabecular 

bone was then manually removed using dental tools, and the remaining cortical bone was 

cleaned with distilled water and dried overnight. Once dry, the cortical bone was crushed 

with a porcelain mortar and pestle, passed through a set of sieves and powder was 

collected at several intervals.  
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4.3.6 Analytical procedures 

All isotopic analyses were conducted at the Laboratory for Stable Isotope Science, in the 

Department of Earth Sciences at The University of Western Ontario.  

4.3.6.1 Extraction and analytical protocols 

For complete collagen (δ13Ccol, δ15Ncol) and carbonate (δ13Csc, δ18Osc) extraction protocols 

see Chapter 2, sections 2.2.3.1 and 2.2.3.2 respectively. 

The collagen analysis produces δ13Ccol and δ15Ncol values for both bone and dentine, as 

well as the carbon and nitrogen contents, which were used to calculate the C:N ratio. The 

δ13Ccol values were calibrated to VPDB using USGS-40, with an accepted value –26.39 

‰, and USGS-41, with an accepted value of +37.63‰. The δ15Ncol values were 

calibrated to AIR also using USGS-40 and USGS–41, with accepted values of –4.52‰ 

and +47.57‰, respectively (following Coplen 1994; Coplen et al. 2006). An internal 

laboratory standard (Keratin #90211, MP Biomedicals) was analysed approximately 

every tenth sample to provide a measure of the accuracy and reproducibility of the 

collagen analysis. The accepted keratin value for δ13Ccol is –24.04‰ and for δ15Ncol is 

6.36‰, which compared well with the mean δ13Ccol value produced of –24.07±0.08‰ 

Figure 4.5: Example of manually serial sectioned posterior, dentition.  
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(n=107) and a δ15Ncol value of 6.29 ± 0.17‰ (n=106). Method duplicate pairs ((i.e., a 

different extraction and analysis of collagen on the same sample) were performed on 25% 

of samples with a mean reproducibility for δ13Ccol of ±0.03‰ and for δ15Ncol of ±0.08‰. 

The analytical precision of duplicate (i.e., replicate analyses of the same collagen 

extraction) analyses was ±0.03‰ for δ13Ccol and ±0.05‰ for δ15Ncol.  

The analysis of the bone structural carbonate provided δ13Csc and δ18O values, for which 

δ13Csc values were calibrated to VPDB, following Coplen (1994), using NBS-19, with an 

accepted value of +1.95 ‰ and Suprapur, with an accepted value of –35.28 ‰. The δ18O 

values were calibrated to VSMOW, following Coplen (1994), using NBS-19 and NBS-

18, with accepted values of +28.60 ‰ and +7.20 ‰, respectively. An internal laboratory 

calcite standard, World-Standard 1 (WS-1) was analysed approximately every fifteenth 

sample in order to assess the accuracy of the carbonate isotopic data, which produced a 

mean δ13Csc value of 0.79 ± 0.22‰ (n=32) and mean δ18Osc value of 26.26 ± 0.19‰ 

(n=32), comparing favourably with the accepted WS-1 values of 0.76‰ and 26.23‰, 

respectively. Method duplicates and duplicates were performed for ~10% of the deer 

samples. Method duplicates had a mean reproducibility for δ13Csc values of ±0.12‰, and 

for δ18Osc values, ±0.15‰. Duplicate precision for δ13Csc values was ±0.08‰ and for 

δ18Osc values, ±0.09‰.  

4.3.7 Fourier transform infra–red spectroscopy (FTIR)  

Prior to pre-treatment, Fourier transform infra–red (FTIR) spectroscopy was conducted 

for the 50 white-tailed deer bone samples Due to the small sample size of enamel serial 

sections, it was not possible to perform FTIR analysis of all serial sections. For complete 

description of the Fourier transform infra–red spectroscopy (FTIR) procedures, see 

Chapter 2, Section 2.2.3.3.  

4.4 Results 

4.4.1 Dental mineralization 

The results of the dental mineralization study show a clear, staggered formation pattern 

for the mandibular molar crowns, which corresponds with previously published data for 
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other deer species (Reese et al. 1966). By correlating the radiographic mineralization data 

with the age-at-death data it was possible to determine that the first permanent 

mandibular molar (M1) begins to form in utero and crown mineralization has finished by 

two months after birth. The second, permanent mandibular molar (M2) begins forming 

after the M1 is finished, approximately two months after birth, and the crown is 

completely mineralized between five and six months. The third permanent mandibular 

molar (M3) begins to form at approximately five to six months, and the crown is 

completely mineralized between nine and ten months after birth. The three permanent 

mandibular premolars (PM2 through PM4) start forming at approximately nine months 

and the crowns are completely mineralized by fifteen months (Table 4.7, 4.8).  

4.4.2 Sample integrity 

The mean CI for the archaeological white-tailed deer bone was 2.87±0.28 (range=2.20–

3.91) (Table 4.9), and for the enamel samples it was 3.30±0.26. The mean C/P for the 

archaeological deer was 0.42±0.13 (range = 0.24–0.69), which is within the generally 

accepted range (0.3 to 0.6) for well preserved samples  (King et al. 2011; Nielsen–Marsh 

and Hedges 2000; Pucéat et al. 2004; Thompson et al. 2009). All modern deer samples 

had C/P ratios above 0.6 with a mean C/P ratio of 0.72±0.15. It is believed that the 

untreated modern deer bones contained a high percentage of organic components 

(probably lipids) that interfered with the FTIR analysis. The mean C/P ratio of the 

modern deer bone after carbonate pre-treatment was 3.6±0.10, within the expected range 

(Table 4.9). 

The FTIR profile of each sample was also examined for unexpected peaks, such as 

francolite at 1096 cm–1and calcite at 711 cm–1 (Nielsen–Marsh and Hedges 2000). Two 

archaeological samples (Por–9 and Pip[1]–157) were rejected for carbonate analysis 

based on the presence of calcite peaks both before and after pre-treatment, and their high 

C/P ratios (0.71 and 0.98, respectively). All other modern and archaeological deer 

samples were accepted for carbonate analysis based on their combined CI, C/P ratios and 

peak profiles. 
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The minimum collagen yield for results to be considered reliable is 1% (Van 

Klinken1999; Ambrose 1993). All archaeological samples had yields greater than 1% and 

the mean was 9.1±6.1% (range=1.8–22.6%). The mean yield for modern deer was 

19.6±4.8%, which is similar to the predicted percent collagen by weight of 22% for 

modern bone (Van Klinken 1999). The average C:N ratio for all samples was 3.28±0.11, 

well within the expected range of 2.9 to 3.6 (DeNiro 1985; DeNiro et al. 1985). Only one 

sample, Win 157, had a C:N ratio higher than 3.6 and, therefore, its collagen isotopic 

compositions were not used in this study.  Based on the percent collagen yield and C:N 

ratio, all other collagen samples analysed were accepted (Table 4.9). 

Varying expected percentages of bioapatite in bone have been reported, ranging from 70 -

75% (Ambrose 1993; Sillen 1989) up to 90% (Lee–Thorp 1989). The percentage of 

bioapatie by weight was measured for each sample after pre-treatment, and averaged 

70.8±12.2% for modern deer and 72.9±8.4% (range=54.7–84.1%) for archaeological 

deer.  

The percentage of CO3 released as CO2 from bone bioapatite for pretreated samples 

should range from 2.0 to 7.9%, enamel having slightly lower and narrower values with a 

range of 4.5 to 4.1% ( (Lee–Thorp 1989; Lee–Thorp and Sponheimer 2003; Rink and 

Schwarcz 1995; Wright and Schwarcz 1996). The mean percentage of CO3 in the modern 

bone was within the expected range at 5.2±1.4%, as was archaeological bone at 6.2±1.3% 

(range = 3.5 to 8.7%). There was no difference between modern and archaeological 

enamel samples for this measure, which together had a mean of 4.6±1.1% (range=2.4–

7.1%). Samples with CO3 abundances higher than 8% (n=3) were regarded with caution, 

as this could indicate secondary carbonate that was not removed by the acetic acid pre–

treatment. However, other parameters for those bone samples, (CI, C/P, FTIR peak 

profile) did not indicate the presence of secondary carbonates, and hence no samples 

were rejected. 
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Table 4.7: Summary of crown mineralization and predicted season of formation.  

Estimates based on age-death and observed dental formation sequence from radiographic analysis of 150 deer. 

Tooth (mandibular) Mineral– 
ization 

~Corresponding Month Season Activity 

M1 begins (tip) fetal April to May/June Spring in utero/birth 
M1 complete 2 months July to August late spring/summer breast-feeding/weaning 
M2 begins (tip) 2 to 3 months August to September Summer Weaning 
M2 complete 5 to 6 months October to November late summer/fall prep winter 
M3 begins (tip) 5 to 6 months October to November late summer/fall prep winter/breeding 
M3 complete 9 to 10 months February to March Winter low quality food 
PM4 begins (tip) 9 months February to March Winter low quality food 
PM4 complete 15 months June to July spring/summer Fattening 

 

Table 4.8: Summary of the predicted sequence of Ontario white-tailed deer posterior mandibular dentition. 
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Table 4.9: Summary of average sample parameters by time period and cultural affiliation. 

* Win 157 C:N ratio 3.87 not included as collagen isotopic compositions were not accepted. 
** Por 9 (CI =0.98) and Pip(1)–157 (CI=0.71) not included because of their high CI values and the presence of a 712cm-1 calcite peak 

in the FTIR spectrum 
***Mod Deer–06 percent yield 26.1% not included in average and minimum/maximum because some sample powder was lost before 

weighing. 

 % Collagen by 
Weight  
(Range) 

C:N Ratio 
(Range) 

FTIR CI 
(Range) 

FTIR C/P 
(Range) 

% Bioapatite 
by Weight 

(Range) 

% CO3 by 
Weight (Td) 

(Range) 
Pre–horticulture           
pre A.D. 200 (sites, n=3) 

6.0±4.5 
(2.6–15.8) 

3.24±0.13 
(3.10–3.43) 

2.95±0.19 
(2.57–3.10) 

0.39±0.12 
(0.31–0.63) 

74.7±9.7 
(63.5–84.1) 

5.2±1.3 
(3.5–7.3) 

Ontario Iroquoian          
A.D. 900–1600 (sites, n=15) 

11.0±6.2 
(2.4–22.6) 

3.25±0.11 
(3.04–3.59)* 

2.84±0.33 
(2.20–3.91) 

0.42±0.13 
(0.24–0.68)** 

75.1±6.7 
(58.2–82.9) 

6.4±1.3 
(4.4–8.7) 

Western Basin              A.D. 900–
1600 (sites, n=7) 

5.7±4.1 
(1.8–19.3) 

3.3±0.10 
(3.08–3.48) 

2.88±0.20 
(2.64–3.28) 

0.43±0.13 
(0.27–0.69) 

66.2±8.6 
(54.7–82.0) 

6.2±1.2 
(5.1–8.1) 

Modern White-tailed deer 
(locations, n=5) 

19.6±4.8 
(5.5–25.2) 

3.7±0.05 
(3.31–3.49) 

2.59±0.14 
(2.39–2.83) 

0.72±0.15 
(0.46–0.98) 

70.8±12.2  
(52.5–92.7)*** 

5.2±1.4 
(2.7–8.6) 
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4.4.3 Isotope results 

4.4.3.1 Dentine collagen: δ13Ccol and δ15Ncol results 

The δ13Ccol and δ15Ncol values of dentine collagen varied only subtly by tooth (Table 4.10 

and Figure 4.6), which is expected as there is a greater averaging of isotopic composition 

over the course of tissue formation. Although dentine begins forming before enamel, 

secondary dentine can be laid down later in life, which may dampen seasonal signals. 

Even though only crown dentine was analysed, it may still represent several months of 

growth compared to the serial sections, which are hypothesized to represent several 

weeks of growth. The δ13Ccol and δ15Ncol values varied among individuals (Figure 4.6) 

obscuring possible changes from the first molar to the pre-molar. There were no 

correlations between tooth number and either δ13Ccol values or δ15Ncol values. There was 

also no correlation between δ13Ccol and δ15Ncol values. Therefore, instead of comparing 

the mean isotopic values, the difference of the tooth value from that of the first molar 

(M1) was calculated (ΔM1 – tooth) (Table 4.11 and Figure 4.7). 

The δ13Ccol values indicate that both modern deer were consuming C4 foods after the 

formation of the first molar, which forms from in utero to the breastfeeding period. Both 

modern deer appear to reduce their C4 consumption as their premolar begins forming 

(Figure 4.6 A). The δ13Ccol values of the archaeological deer also rise significantly after 

the formation of the first molar (F=–0.630, p=0.000), which is attributed to a shift from 

breastfeeding to solid foods (Williams et al. 2005; Wright and Schwarcz 1998). As would 

be expected for a weaning signal, the δ15Ncol dentine values decrease after the formation 

of the first molar (Figure 4.6 B), with the exception of two deer (Mod-deer-3 and Clv-

17). After their removal from the data set, the difference for δ15Ncol dentine values 

between the first molar and the PM4, which forms after weaning, suggests a breast-

feeding/weaning effect, but it is still much lower (ΔM1–PM4 = 0.67±0.43‰) than a 

trophic level. Nonetheless, the δ13Ccol and δ15Ncol values for the difference from M1 to 

PM4 (ρ=–0.513, p=0.003) are strongly correlated, which suggests that the dentine 

isotopic compositions do capture the shift from breast-feeding to a completely weaned 

diet, although the normally strong weaning pattern is probably obscured by the formation 
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of additional dentine on the crown of the teeth as the tooth wears in life, and the fact that 

no one tooth represents an exclusive period of breastfeeding. 

  

Table 4.10: Summary of mean δ13Ccol, δ15Ncol values, and ∆13Cenamel–dentine spacing for 

each tooth: A. archaeological and B. modern deer. 

A. Archaeological Deer Dentine (n=8 
deer) 

 B. Modern Deer Dentine           (n=2 
deer) 

 δ15Ncol δ13Ccol ∆13Cenamel–

dentine 
  δ15Ncol δ13Ccol ∆3Cenamel–

dentine 
M1 Mean 7.26 –23.27 6.66  M1 

Mean 
5.29 –20.81 4.79 

SD ±0.54 ±0.76 ±0.57  SD ±2.01 ±1.15 ±0.22 
M2 Mean 7.21 –22.97 7.25  M2 

Mean 
5.21 –18.86 6.01 

SD ±0.61 ±0.95 ±0.31  SD ±1.35 ±0.65 ±0.29 
M3 Mean 7.10 –22.43 7.87  M3 

Mean 
5.39 –18.17 7.65 

SD ±0.71 ±0.79 ±0.51  SD ±0.82 ±1.56 ±0.27 
PM4 

Mean 
6.69 –22.67 7.82  PM4 

Mean 
5.34 –19.89 6.84 

SD ±0.79 ±0.93 ±1.34  SD ±0.98 ±2.41 ±0.01 

 

Table 4.11: A. Mean difference for all individuals between the δ13Ccol (i.) and δ15Ncol 

(ii.) values for each tooth relative to M1.  

Bi and Bii. Mean difference between the δ13Ccol and δ15Ncol values for each tooth 

relative to M1, with outliers removed. 

*Mod Deer 3 and Clv 17 removed. 
**Mod Deer 3 and 7 removed. 

 Ai. Mean δ13Ccol 
ΔM1 – tooth  

Aii. Mean δ15Ncol 
ΔM1 – tooth  

Bi. Mean δ13Ccol 
ΔM1 – tooth*   

BIi. Mean δ15Ncol 
ΔM1 – tooth**  

M1 Mean 0.00 0.00 0.00 0.00 
SD ±0.00 ±0.00 ±0.00 ±0.00 

M2 Mean –0.70 –0.01 –0.31 –0.09 
SD ±0.97 ±0.37 ±0.75 ±0.04 

M3 Mean –1.27 0.11 –0.84 0.34 
SD ±1.39 ±0.64 ±0.74 ±0.50 

PM4 Mean –0.68 0.41 –0.58 0.67 
SD ±1.36 ±0.66 ±0.72 ±0.43 
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Figure 4.6: Individual δ13Ccol (A.) and δ15Ncol (B.) dentine values by tooth. 

 Bone isotopic results for each deer are also shown at left in gray box. 
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Figure 4.7: Mean difference in δ13Ccol (A.) and δ15Ncol (B.) values relative to M1 for individual bone (gray box) and dentine 

samples (graphed by tooth). 
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4.4.3.2  Bulk bone collagen: δ13Ccol and δ15Ncol results 

The mean δ13Ccol and δ15Ncol values for the modern deer bone (n=16) are –19.50±1.83‰ 

(range= –22.96 to –17.29‰) and 4.70±1.39‰ (range= 4.70 to 7.53‰) (Table 4.12) and 

the δ 13Ccol and δ15Ncol values of bone are not significantly correlated. The mean δ13Ccol 

and δ15Ncol values for all archaeological samples (n=80) are –22.83±0.85‰ (range = –

24.66 to –20.72‰) and 5.37±0.93‰ (range = 3.70 to 8.62‰) (Table 4.12), and there is a 

significant relationship between δ13Ccol and δ15Ncol values (F=0.394, p=0.001).  

A closer examination of deer by time period reveals no significant difference between the 

Late Woodland Ontario Iroquoian and Western Basin deer for either δ 13Ccol or δ15Ncol 

values (Table 4.13), and neither varied significantly over time. Among the Ontario 

Iroquoian Late Woodland time phases i.e., Princess Point to Neutral, there was no 

significant difference in terms of their δ 13Ccol and δ15Ncol values. The difference between 

the δ13Ccol values of archaeological deer and modern deer is significant (Dunnett T3, 

p<0.000), but there is no significant difference in δ15Ncol values.  

Table 4.12: Summary of mean bone δ13Ccol and δ15Ncol values by time period 

 δ13Ccol ‰ VPDB 
(range) 

δ15Ncol ‰ AIR 
(range) 

Pre–horticulture pre A.D. 200 (sites, n=3) –23.09±0.83 
(–23.92 to – 21.60) 

4.75±0.67 
(3.90 to 6.16) 

Ontario Iroquoian A.D. 900–1600 (sites, n=15) –22.83±0.84 
(–24.66 to –20.72) 

5.43±0.95 
(3.70 to 8.21) 

Western Basin A.D. 900–1600 (sites, n=7) –23.00±0.80 
(–23.66 to –20.72) 

5.48±0.90 
(4.43 to 8.62) 

Modern deer (locations, n=5) –19.50±1.83  
(–22.96 To –17.29) 

4.70±1.39  
(1.73 to 7.53) 
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4.4.3.3 Bulk bone structural carbonate: δ13Csc and δ18Osc results 

Bulk structural carbonate data for the modern deer are consistent with previously 

published modern deer from SW Ontario (Munro et al. 2008). For archaeological deer 

from this region there are few data (but see Booth et al. 2012 [Table 4.2], who present 

data for four deer with similar values [–10.46±0.77‰]). Published δ13Csc values for 

archaeological white-tailed deer from other regions, including Nebraska and the Maya 

region, are within the same range as the southwestern Ontario deer (Table 4.2).  

The mean δ13Csc values for the modern deer (–12.90±2.57‰, range = –17.82 to –8.94‰, 

n=14) and all archaeological deer (–10.52±2.15‰, range = –14.20 to –5.97‰, n=38) are 

significantly different (Mann Whitney U, z = –2.429, p=0.015). There is no significant 

difference between mean δ18Osc values for modern deer (22.18±1.11‰, range = 20.16 to 

23.93, n=14) and archaeological deer (21.47±1.03‰, range = 18.94 – 23.23, n=38). 

There is no significant difference among either δ13Csc or δ18Osc values for deer from 

Ontario Iroquoian and Western Basin sites or deer from pre-maize and Late Woodland 

sites (see Table 4.14 for summary). The only significant difference was noted when the 

cultural periods (Table 4.15) were examined by phase. There is a significant difference 

between Neutral deer (A.D. 1450–1650) and Middle Ontario Iroquoian deer (A.D. 1200–

1450), where the later period Neutral deer have significantly lower δ13Csc values.  

There was no significant correlation between the δ13Ccol and δ13Csc values of 

archaeological deer; however the δ13Ccol and δ13Csc values of modern deer show a strong, 

positive correlation (Pearson’s, r=0.992, n=11, p< .001). Modern deer have significantly 

smaller (6.71±0.96) ∆13Csc–col values than archaeological deer (12.19±2.10, range=7.95 to 

16.09) (t=–8.029, p<0.000). There are also significant differences in ∆13Csc–col spacing 

among the groups of archaeological deer (ANOVA, F=22.203, p<0.001). Among the 

Ontario Iroquoian Late Woodland deer, the Neutral deer (A.D. 1450 to 1650) had a 

significantly smaller ∆13Csc–col spacing than the Middle Ontario Iroquoian (A.D. 1200 to 

1450) deer (Table 4.15), which had the largest ∆13Csc–col spacing of all the deer 

(13.59±1.08).  
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Table 4.13: Statistical summary (p-values) comparing δ13Ccol, δ15Ncol and δ13Csc 

means by time period. Statistically different results are shown in bold–faced type. 

  Late Woodland Pre–AD 200 
δ13Ccol Modern 0.000 0.000 

 Late Woodland – 0.837 
δ15Ncol Modern 0.142 0.985 

 Late Woodland – 0.069 
δ13Csc Modern 0.014 0.350 

 Late Woodland – 0.020 
δ18Osc Modern 0.089 0.229 

 Late Woodland – 0.972 
∆13Csc–col Modern 0.000 0.000 

 Late Woodland – 0.931 

 

Table 4.14: Summary of mean δ13Csc and δ18Osc values by time period, as well as 

mean ∆13Csc–col spacing. 

 

Table 4.15: Statistical summary (p-values) comparing δ13Csc and ∆13Csc–col by Late 

Woodland Phase. Statistically significant results are shown in bold–faced font. 

  Middle Ontario Neutral 
δ13Csc Early Ontario 0.313 0.128 

 Middle Ontario – 0.004 
δ18Osc Early Ontario   

 Middle Ontario   
∆13Csc–col Early Ontario 0.905 0.317 

 Middle Ontario – 0.000 

 
  

 δ13Csc ‰ VPDB 
(range) 

δ18Osc ‰ VSMOW 
(range) 

∆13Csc–col ‰  
(range) 

Pre–horticulture pre A.D. 200 (sites, 
n=3) 

–11.92±0.76 
(–12.94 to –11.01) 

21.37±0.50 
(20.66 to 22.01) 

11.35±0.93 

Ontario Iroquoian A.D. 900–1600 
(sites, n=15) 

–10.21±2.16 
(–14.20 to –5.97) 

21.78±0.99 
(20.05 to 23.23) 

11.22±2.04 

Western Basin A.D. 900–1600 (sites, 
n=7) 

–10.31±2.49 
(–13.99 to –8.08) 

20.89±1.14 
(18.94 to 22.56) 

12.25±2.41 

Modern deer (locations, n=5) (–12.90 
(–17.82 to –8.94) 

22.46±1.01 
(20.16 to 23.93) 

6.64±0.96 
(5.14 to 8.35) 
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4.4.3.4 Bone versus dentine δ13Ccol and δ15Ncol values 

For all deer, the bone δ13Ccol isotopic compositions approximately reflect the average of 

the dentine of the four teeth, with an average difference of only 0.34±0.17‰ (Table 

4.16A). The δ13Ccol values of bone collagen and dentine (averaged) are strongly 

correlated (r2=0.9789). There are two explanations for the similarity. The first year of 

bone growth may be more heavily reflected in the life-long average of the deer than the 

remainder of life, which is consistent with the fact that the deer grow very quickly to 

maturity and have relatively short life expectancies. A second possibility is that the crown 

dentine is heavily influenced by secondary dentine, which formed later in life. These two 

possibilities are not mutually exclusive. Examination of the dentine of individual teeth 

suggests that there is a small temporal change, consistent with the expected pattern of 

weaning but that the weaning effect is dampened.  

The δ15Ncol values of dentine are poorly correlated with the bone isotopic compositions 

(r2=0.2649) (Table 4.16B). The δ15Ncol values of bone are lower than those of the 

averaged dentine (mean difference = 1.47‰), with the greatest difference between bone 

and the M1 (average = 1.72±0.64‰). After the formation of M1, the δ15Ncol values 

generally decrease, but not by an entire trophic level, as might be expected. The 

dampening of the trophic difference may be related to the fact that no one tooth 

represents a period of only breastfeeding. 

Table 4.16: Summary of average (A.) δ13Ccol and (B.) δ15Ncol dentine for all teeth for 

each individual deer, compared with their bone δ13Ccol and δ15Ncol values. 

 A. δ13Ccol 
bone 

∆13Ccol dentine 
averageM1–PM4 

 B. δ15Ncol 
bone 

∆15Ncol dentine 
averageM1–PM4 

mod deer 3 –18.59 –19.05  5.20 4.39 
mod deer 7 –19.20 –19.82  5.45 6.22 

BrB 11 –23.63 –23.37  4.90 6.75 
Clv 16 –22.38 –22.08  5.70 7.82 
Clv 17 –21.19 –21.64  7.90 8.04 
Clv 19 –22.65 –22.19  5.12 7.03 
Van 20 –23.95 –23.64  5.09 6.86 

IWP (1) 36 –23.66 –23.75  5.25 7.03 
IWP(9) 54 –23.43 –23.01  5.15 6.22 

Mon 8 –23.10 –23.02  5.40 6.53 
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4.4.3.5 Enamel δ13Csc and δ18Osc results 

The means of δ18Osc values by serial section are summarized in Table 4.17A. A clear 

pattern emerged for those ten deer whose mandibular teeth were serially sectioned. The 

first molar has the highest δ18Osc values while the third molar has the lowest δ18Osc values 

(Table 4.17B, Figure 4.8). There is significant variation among serial sections over the 

time of tooth formation (ANOVA, F=23.022, p<0.000), and by tooth (i.e., the average of 

the serial sections for each of the four teeth) (ANOVA, F=71.058, p<0000). A post-hoc 

Tukey test groups the serial sections into six subsets that demonstrate successive change 

in δ18Osc values, i.e., adjacent serial sections are more similar than non-adjacent serial 

sections (Table 4.18A and B). There is a progressive lowering of δ18Osc values from the 

coronal tip of M1, which is first to form, to completion of M2 formation, after which 

point there is a progressive increase in δ18Osc values. The six subsets correspond closely 

with the predicted order of dental formation (i.e., M1 forms first, overlapping with M2, 

etc.), and provide evidence for climatic seasonality in the first year of life. The high 

δ18Osc values of the first molar may represent not only the warmer spring climate, but 

also a breast-feeding signal resulting from 18O-enrichment relative to their mothers 

(Williams et al. 2005).  

Table 4.17: Summary of (A.) mean δ18Osc values for each serial section and (B.) 

mean difference for each serial section relative to the tip of M1. 
A. Mean±SD δ18Osc  

(‰ VSMOW) 
 B. Mean difference±SD from M1 tip ∆18O  

(‰ VSMOW) 
 Tip Middle CEJ*   Tip Middle CEJ* 

Molar 1 24.69 24.54 23.84  Molar 1 0.00 0.18 0.76 
 0.97 0.98 1.30   0.00 0.54 0.73 

Molar 2 23.14 22.18 21.38  Molar 2 1.50 2.43 3.32 
 0.63 0.71 1.06   0.43 0.79 0.74 

Molar 3 20.55 20.54 21.29  Molar 3 4.05 4.13 3.52 
 1.10 1.04 1.31   0.87 1.31 1.55 

Premolar 4 22.73 23.08 23.35  Premolar 4 1.96 1.65 1.34 
 1.05 0.97 0.95   1.47 1.27 1.17 

*CEJ = cementum-enamel junction 
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Table 4.18: ANOVA output showing the statistically significant grouping of serial 

sections by δ18Osc values  

Serial section 
All Samples (for alpha = 0.05 Tukey HSD) 

1 2 3 4 5 6 
M1 tip 24.69           

M1 middle 24.54 24.54         
M1 CEJ 23.61 23.61 23.61       
M2 tip     23.09 23.09     

M2 middle       22.08 22.08   
M2 CEJ         21.42 21.42 
M3 tip           20.51 

M3 middle           20.39 
M3 CEJ         21.38 21.38 
PM4 tip     22.54 22.54 22.54   

PM4 middle   23.2 23.2 23.2     
PM4 CEJ 23.28 23.28 23.28 23.28     

Sig. 0.086 0.352 0.189 0.22 0.398 0.051 
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Figure 4.8: δ18Osc values of enamel serial sections for modern (squares), pre–A.D. 200 (triangle), Ontario Iroquoian (circles) 

and Western Basin (diamond) deer. Bulk bone δ18Osc values are indicated at the left. The δ18Osc values of enamel serial 

sections are associated with the predicted month of formation based on radiographic analysis of juvenile deer. 
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The δ18Csc values of the enamel serial sections for modern (Figure 4.12) and 

archaeological (Figure 4.8) samples also show a pattern across the period of enamel 

formation. Earlier forming serial sections, from M1 and M2, have lower δ18Csc values 

relative to later forming serial sections, i.e., M3 and PM4 (Table 4.19A). Unlike the 

seasonal pattern observed in the oxygen-isotope data, the δ18Csc values most likely reflect 

dietary changes. The diet of the two modern deer reflects the introduction of maize 

during the initial formation of M2, corresponding with weaning (Table 4.20A, Figure 

4.12), increasing during the formation of M2 and M3, and decreasing with the formation 

of the premolars. Increasing δ18Osc values are strongly associated with increasing δ18Csc 

values (Pearson’s r=–0.679, n33, p>0.001) in the two modern deer. This relationship 

likely reflects both the weaning of the young deer and the introduction of C4 foods, 

probably maize, into their diet. Maize appears in the younger deer’s diet in the late 

summer/early fall, increasing exponentially for one of the deer until December. 

Table 4.19: Summary of mean δ13Csc values for each serial section (A.) and mean 

difference (B.) relative to the tip of M1. 

A post–hoc Tukey test for the archaeological deer alone suggests three subsets of δ13Csc 

values (Table 4.20B). The first includes the M1 and part of the M2, which have the 

lowest δ18Csc values and document the time period when the deer was in utero, 

breastfeeding, and weaning. Subset 2 is a transition phase, that is, post-birth and weaning 

as the deer shift to only solid foods. The third subset represents the post-weaning period 

and reflects a completely C3 plant-based diet. While the first two dietary phases (in utero 

and breastfeeding) and the transition from weaning are evident for the modern and 

A. Mean±SD δ13Csc  
(‰VPDB) 

 B. Mean difference from M1tip ∆13Csc 
(‰VPDB) 

 Tip Middle CEJ   Tip Middle CEJ 
Molar 1 –16.70 –16.93 –16.35  Molar 1 0.00 0.12 –0.39 
 0.46 0.75 0.98   0.00 0.34 0.76 
Molar 2 –15.82 –14.97 –14.56  Molar 2 –0.94 –1.88 –2.26 
 1.14 2.00 1.78   0.99 1.84 1.68 
Molar 3 –14.78 –14.68 –14.16  Molar 3 –2.01 –2.23 –2.49 
 0.76 0.00 0.60   0.54 0.54 0.48 
Premolar 4 –14.63 –14.33 –14.55  Premolar 4 –2.06 –2.56 –2.29 
 0.33 0.42 0.64   0.54 0.90 0.80 
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archaeological deer, there is a clear separation between modern and archaeological deer 

as they shift to a plant-only diet. The modern deer consumed some C4 plants, while the 

archaeological deer consumed only C3 plants. 

Table 4.20: ANOVA output showing the statistically significant grouping of serial 

sections by δ13Csc values, with (A.) modern deer and without (B.) modern deer. 

A. Serial 
section 

All samples (Subset for alpha = 0.05) 
1 2 3 4 

M1 tip –16.70       
M1 middle –16.93       

M1 CEJ –16.25 –16.25     
M2 tip –15.77 –15.77 –15.77   

M2 middle   –14.48 –14.48 –14.48 
M2 CEJ   –14.56 –14.56 –14.56 
M3 tip     –13.87 –13.87 

M3 middle       –13.06 
M3 CEJ     –13.72 –13.72 
PM4 tip   –14.33 –14.33 –14.33 

PM4 middle   –14.18 –14.18 –14.18 
PM4 CEJ   –14.50 –14.50 –14.50 

Sig. 0.805 0.063 0.07 0.447 
 

B. Serial section 
Archaeological samples only  

(Subset for alpha = 0.05) 
1 2 3 

M1 tip –16.74     
M1 middle –17.00     

M1 CEJ –16.39 –16.39   
M2 tip –16.13 –16.13   

M2 middle –16.01 –16.01   
M2 CEJ   –15.23 –15.23 
M3 tip     –14.61 

M3 middle     –14.57 
M3 CEJ     –14.35 
PM4 tip     –14.67 

PM4 middle     –14.26 
PM4 CEJ     –14.61 

Sig. 0.195 0.059 0.22 

For the archaeological deer there is a significant correlation (Pearson’s r=–0.278, n=110, 

p=0.003) between δ18Osc and δ13Csc values of the enamel serial sections, though it is not 

as strong as for the modern deer (Figure 4.9). The correlation is likely the result of 
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weaning as a slight increase in δ13Csc values marks the shift from feeding on the doe’s 

tissues to a complete plant-based diet and the decrease in δ18Osc values marks both 

weaning and changing temperature. This change appears to begin during the warmest 

summer months (approximately July), which corresponds with the weaning of modern 

fawns by six weeks after birth (Smith and Verkruysse 1983).  

The difference between the δ13Ccol values of dentine for each tooth and average δ13Csc 

values for the enamel serial sections (the Δ13Cenamel–dentine spacing) for each tooth was 

compared to determine whether this relationship could capture a shift in trophic position 

(Table 4.21, Figure 4.10).  The Δ13Cenamel–dentine value between the M1 (6.25±0.97‰) and 

M2 (6.96±0.62‰) is the lowest, which is probably related to the fact that both teeth are 

formed partially during a time period of breast-feeding (i.e., a form of carnivory), 

compared with the herbivorous diet indicated by the larger overall Δ13Cenamel–dentine value 

of 7.20±0.99‰. The larger spacing between the enamel and dentine of the M3 and PM4 

(7.76±0.93‰ and 7.82±0.47‰, respectively), approximately 1.5‰ larger than that of the 

earlier forming teeth, suggests a clear temporal, and associated dietary, change over the 

year of dental formation.  

Table 4.21: Summary of mean Δ13Cenamel–dentine value for each tooth for the 

archaeological (n=8) and modern (n=2) deer. 

Mean Δ13Cenamel–dentine ±SD (‰, 
VPDB) 

Molar 1 6.25±0.97 
Molar 2 6.96±0.62 
Molar 3 7.76±0.93 

Premolar 4 7.82±0.47 
All teeth 7.20±0.99 
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Figure 4.9: Relationship between δ13Csc and δ18Osc values for modern and archaeological deer. 
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Figure 4.10: Average ∆13Csc-col of enamel and dentine, respectively, by tooth (compared to ∆13Csc-col of bone in the gray box). 

Grey diamonds are average for the 10 serially sampled deer, while the black diamonds are bone average for all deer. 
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4.5 Discussion 

4.5.1 Modern and archaeological deer enamel (δ18Osc): Linking 
seasonality with dental formation 

Deer body water is a reflection of ingested waters, including water from foods, water 

taken directly from rivers, streams, ponds and puddles, and recycled body water, as 

discussed previously. The six significantly different subsets of enamel δ18Osc values are, 

therefore, a reflection of six subsets of body water composition (Table 4.18), which 

changes over approximately a one-year time period and thus corresponds with seasonal 

variation in δ18O of meteoric water (Figure 4.8). Precipitation will have higher δ18O 

values in warmer months and lower δ18O values in colder months. The first molar, the 

upper crown of the second molar and part of the lower crown of the premolar, appear to 

have formed in warmer months. The lower crown of the second molar and top of the 

crown of the premolar formed during a more temperate period. The third molar appears 

to have formed during the coldest period. The lack of correlation between time period 

(i.e., modern deer vs. pre-maize deer) and δ18Osc values of deer indicates good continuity 

of body water composition over the 2000 year period represented in this study. The same 

continuity was observed in the δ18Osc values for canids and wild turkeys. These data 

suggest that climate fluctuations occurring during this time period were not significant 

enough to produce measurable differences in the δ18O values of imbibed local waters. 

The enamel serial sections provide an accurate means to assess the first year of life of 

individual deer, establishing a link between the season of tooth formation and δ18Osc 

values. By determining when each tooth formed, it is possible to shed light on 

physiological patterns (i.e., weaning) and dietary changes (i.e., incorporation of maize 

into the diets of modern deer). In the proceeding sections, seasonality of each tooth is 

compared with its dentine (δ13Ccol) and enamel serial section (δ13Csc) values, as well as 

bulk bone (δ13Ccol and δ13Csc) results, to examine in detail the first year of life for the ten 

deer analysed in this study.
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4.5.2 Modern deer: Proxies for maize access and consumption 

The δ15Ncol values of the deer are consistent with those expected for an herbivore and are 

lower in modern deer relative to the archaeological deer. Although the difference is not 

significant, the lower modern deer results are similar to those observed by Cormie and 

Schwarcz (1994) and suggest the modern deer may have consumed some fertilized 

agricultural products. 

The δ13C values of bulk bone collagen suggest that some of the modern Ontario deer 

consumed maize, which is consistent with previous studies of modern deer from the 

region where δ13Ccol values greater than –20‰ were assumed to indicate a C4 component 

in the diet (Cormie and Schwarcz 1994). Further, the three modern deer designated by the 

donating hunters as maize pests had among the highest δ13Ccol values (mean = –

18.37±0.52‰), within the range of known crop pests from Michigan and Ohio (mean = –

17.03±1.43‰) (Cormie and Schwarcz 1994). By contrast, the sample (Mod-deer-5) from 

a northeastern region of Ontario, where there is significantly less maize agriculture, has 

the lowest δ13Ccol value. Although several of the modern deer from this study were crop 

pests they were consuming proportionately less maize than modern turkeys in this study 

(15% versus 45%, Stable Isotope Analysis in R [SIAR]) (Figure 4.11). These results are 

surprising because these deer were known to eat maize throughout its growth cycle, and 

were collected from some of the highest maize producing regions in Canada. On the other 

hand, there are limitations to wild turkey maize access (see Chapter 3).  

Because maize leaves can have δ13C values several per mil lower than the grains (Tieszen 

1991), the relatively low proportion of maize in the diets of modern deer may be 

explained by a preference for leaves that are available during warmer months of the 

growing season. For this explanation to be valid, deer would feed on leaves from spring 

until the harvest in the fall, which is consistent with (1) farmers’ statements that crop 

damage occurs mainly during the growing phase of maize (June through September), (2) 

with modern behavioural literature (Groepper et al. 2013; Gabrey et al. 1991; MacGowan 

et al. 2008; Tzilkowski et al. 2002) and (3) a previous isotopic laser analysis of individual 
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osteons in deer bone, which indicates increasing C4 consumption during warmer, summer 

months (Larson and Longstaffe 2007). 

 

Figure 4.11: Estimated proportion of maize19 in the diet of the modern deer (~15% 

maize to 85% C3) compared with that of modern turkey (~45% maize to 55% C3). 

                                                 
19Contributions of each food type (C4 [maize] and C3) were determined using the stable 
isotope in R (SIAR) package using δ13Ccol, δ13Csc and δ15Ncol. Trophic enrichment factors 
(TEFs) used to correct δ13C values were diet to collagen (+5‰), diet to structural 
carbonate (+12‰) and for δ15Ncol (+3‰). 
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The mean bone structural carbonate δ13C value for the modern deer is –13.21±2.70‰, 

and many of the deer are within the expected range for occasional C4 consumption 

(Harrison and Katzenberg 2003). A strong correlation between collagen and structural 

carbonate δ13C values of the modern deer (F=0.980, p=0.000) indicates that both the 

whole diet (δ13Csc) and protein portion (δ13Ccol) of diet reflect C4 consumption in some 

deer. It is also consistent with the hypothesis that the relatively protein–poor maize would 

have a greater impact on δ13Csc values relative to δ13Ccol values if eaten in small quantities 

(Harrison and Katzenberg 2003). This relationship is evident in the modern deer in this 

study where there is only ~+1‰ increase in δ13Ccol values for every +2‰ increase in 

δ13Csc values; these data also fit along Kellner and Schoeninger’s (2007) predicted C3 

protein line (Figure 4.12).  

 
Figure 4.12: Model for the relationship between δ13C values of structural carbonate 

and collagen for modern deer. The gray square indicates a diet primarily composed 

of C3 protein with some C4 energy (i.e., lipids and carbohydrates) sources. 

Developed by Kellner and Schoeninger (2007, Chart adapted from Figure 2B). 
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The mean ∆13Csc–col spacing for the modern deer is 6.71±0.96‰, which reflects a diet-

collagen spacing of +5‰ and diet-structural carbonate spacing of +12‰, which is 

slightly lower than that proposed by Cerling and Harris (1999) for ruminants (+14‰). 

The difference may be due, in part, to the lower methane production of white-tailed deer 

compared with bovids and equids (Crutzen et al. 1986).  

Compared to the previously published literature suggesting warm weather maize 

consumption, a very different seasonal pattern of maize consumption is suggested by the 

δ13Csc values of the serial-sectioned enamel data of modern deer, at least during the first 

year of life. For the modern deer in this study, C4 plant consumption appears to increase 

significantly with cooling temperatures, starting approximately in September, and drops 

again in the spring (Figure 4.13).  

The dentine δ13Ccol values for the modern deer were highest for the second and third 

molar (Table 4.10), thus corresponding with the δ13Csc values for the serial sections of the 

M2 and M3 (Figure 4.13). The second molar begins forming in August and third molar 

completes formation by March, covering the formation period of the fall through winter 

of the first year of life (Figure 4.10). Both dentine and enamel carbon isotopic 

compositions indicate some maize in the diet of these two deer but they may be 

exceptions, as they were hunted as pest deer. Alternately, as crop damage is generally 

self-reported by farmers, the presence of deer in winter fields may not be tracked and/or 

reported because it has little negative economic effect.  

Mod-deer-7 is a yearling that has higher δ13Csc enamel values than its bone for almost 

half of its first year of life and its third molar, which forms between November and 

March, has the highest enamel δ13Csc value of –8.82‰, which is 4‰ higher than its bone. 

Although tissue-specific isotopic routing differences (Warinner and Tuross 2009) might 

account for some of this difference, there are three other plausible explanations. First, the 

difference may reflect consumption of C4 foods (maize grains) during colder months i.e., 

after harvest when leaves are less available. Second, the isotopic composition of deer 

bone may be more heavily influenced by the period of major growth, i.e., the 
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spring/summer. The fact that deer bone is not a full trophic level lower than teeth formed 

during breast–feeding suggests that the majority of bone forms in utero and, in the first 

few months of life, during breast-feeding and weaning. The slowing metabolism of deer 

in the winter would also cause a reduction in bone turnover during colder months. If deer 

primarily consume maize during colder months, there may be a bias in the bone to reflect 

warmer (i.e., higher metabolism) diets. Mod-deer-3 is an adult so this single season of 

maize consumption may not reflect an annual pattern. Third, as deer are using fat and 

muscle tissues laid down in the late summer/fall fattening period to support cellular 

growth during colder months, the high δ18Csc values in the enamel may reflect the use of 

these tissues enriched in 13C from a late summer and fall diet that included maize. 

Consequently, the bone of deer in Ontario may not be ideal for identifying small amounts 

of maize consumption if it occurs during colder months or after deer are fully grown.  

4.5.3 Archaeological deer collagen (δ13Ccol, δ15Ncol): Tracking diet and 
canopy effect 

The δ13Ccol and δ15Ncol values for bulk bone collagen are consistent with previously 

published Great Lakes archaeological deer data that reflect herbivores in an entirely C3 

environment (Katzenberg 1989; 2006; Ketchum et al. 2009; Pfeiffer et al. 2014). On 

average, there is less than 2‰ variation among Ontario deer from sites spanning 3000 

years, suggesting consistency in deer diet (i.e., a C3 only diet) before and after the entry 

of maize into the region at least 1500 years ago (Capella 2005; Crawford et al. 1997; 

Crawford et al. 2006; Martin 2004; Warrick 2000).  

Half of the deer (n=35) have δ13Ccol values lower than –23‰ (Figure 4.14), which could 

reflect browsing in more heavily forested areas, i.e., a canopy effect (Cerling and Harris 

1999; Cormie and Schwarcz 1994; Bonafini et al. 2013; Druker and Bocherens 2009). 

The canopy effect is due to the depletion of 13C from understory atmosphere relative to 

the general atmosphere because of restricted ventilation, recycling of CO2 from leaf litter, 

and photosynthetic changes in plants abundant in the low light conditions (van der 

Merwe and Medina 1989; 1991; Vogel 1978). The result is that tropical and temperate 

plants growing in the lower canopy of a forested area will have relatively low δ13C values 

compared to plants growing at forest edges or open environments (Bonafini et al. 2013; 
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Cerling and Harris 1999; Druker and Bocherens 2009; Vogel 1978). Drucker and 

Bocherens (2009) interpreted the δ13C composition of ancient bovids to track the 

introduction of deep forests in France, while Bonafini et al. (2013) found a moderate 

canopy effect on roe deer living at the forest edge, as might be expected for animals 

living on plants both in open and closed environments. Both studies suggest that the 

canopy effect, well recognized for plants, may be also identifiable when moving up a 

trophic level to primary consumers. 

Like the roe deer in Bonafini et al.’s (2013) study, the ecology of modern white-tailed 

deer would suggest that they may hide in forests if disturbed, but in general they eat in 

more open areas, and therefore a canopy effect is unlikely. Many of the archaeological 

deer, however, appear to have δ13Ccol values consistent with a canopy effect, as described 

by Cormie and Schwarcz (1994) and Bonafini et al. (2013). The implication is that these 

deer, hunted by ancient Ontario peoples, did not access C4 (i.e., maize) plants, and 

further, may have browsed in more deeply shaded areas than their modern counterparts, 

avoiding open terrain. Modern deer are unable to move into deeply forested areas in 

southwestern Ontario because of deforestation over the last 200 years. Despite extensive 

Late Woodland maize agriculture, a large amount of the region would have remained 

closed forest before A.D. 1650. The collagen isotopic data indicate that the ancient deer 

may have actively avoided human predators and, therefore, foregone foraging in maize 

fields, despite its rich food resource potential. Deer hunting, therefore, likely occurred 

away from open and/or cleared lands. Because a large number of deer would have been 

required to support the food and clothing needs of past peoples, deer within the 

immediate vicinity of villages would have been quickly hunted out. According to Ripple 

and Breschta’s (2003) “terrain of fear” theory, prey species, including ungulates, will 

alter their foraging patterns in order to avoid sites with higher risk of predation (see also 

Wolverton 2008).  Any deer living near humans during the Late Woodland times may 

have either been immediately hunted out or fled the area, resulting in the need for Late 

Woodland hunters to go further afield to find enough deer to support growing 

populations. This theory is consistent with ethnographic descriptions of deer hunting 

among the Late Woodland Neutral people; “game was scarce near villages and Indians 
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had to travel considerable distances to obtain it” (Tooker 1991:65, summarized from the 

Jesuit Relations).  

The theory that the deer were hunted away from the village sites where the deer remains 

were recovered (i.e., where they may have been eaten and/or used for clothing etc.) is 

explored further in Section 4.5.6. In this section, the δ18Osc values of bulk bone and dental 

enamel are compared with predicted precipitation values for the southwestern Ontario 

region in order to determine if there is a correlation (or lack of correlation) between in 

vivo geographic range of the deer and the sample’s recovery location. 

4.5.4 Archaeological deer enamel (δ13Csc) and dentine (δ13Ccol): 
Tracking seasonal diet 

Serial sections of enamel suggest an entirely C3-based diet for the first year of life of 

eight archaeological deer (pre-maize, n=1, Western Basin n=3, Ontario Iroquoian n=4), 

which is consistent with their bulk collagen isotopic results. A weaning signal is evident 

for all deer because breast-feeding results in slightly lower δ13C values, which may be 

due to the lower δ13C value of lipids. There is variation in the enamel δ13C values as fawn 

diets shifted to plant foods during the formation of the second molar (Figure 4.15). The 

enamel serial section data are consistent with the δ13Ccol and δ15Ncol results discussed 

previously. From early winter (~November) until spring all eight deer maintained 

consistently uniform enamel δ13Csc values (–14.53±0.51‰) indicative of a C3 diet. Like 

the collagen results, the serial sampling of the enamel suggests that archaeological deer 

did not consume maize during the first year of life. If the deer consumed maize after 

tooth formation was completed, the effect on bulk collagen could be negligible (as 

previously discussed) because the isotopic composition of the bone may be biased 

towards this earlier growth stage. Therefore, if archaeological deer that browsed on maize 

fields were hunted later in their lives, maize consumption may not be detected from bone 

and tooth data alone. The adult deer consumption of maize would be best revealed using 

the isotopic compositions of antler and cementum serial sections.  



231 

 

 
Figure 4.13: Comparison of Modern Deer 7 and Modern Deer 3 δ13Csc and δ18Osc values obtained from enamel serial sections.
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Figure 4.14: Comparison of δ13Ccol and δ15Ncol of modern and archaeological deer bone from the Great Lakes region. 

Boxes indicate Cormie and Schwarcz’s (1994) proposed δ13Ccol ranges indicating: A. canopy effect, B. moderate C4 

consumption, and C. purposeful maize feeding. 
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Figure 4.15: δ13Csc values of the archaeological deer serial sections and bulk bone. 
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4.5.5 Archaeological deer structural carbonate (δ13Csc): Indication of 
maize access or post-mortem alteration? 

Unlike the bulk bone and dentine collagen isotopic results and enamel serial section 

structural carbonate isotopic results, the bulk bone structural carbonate isotopic data tell a 

very different story; the bone δ13Csc values suggest that all archaeological deer were 

consuming maize, including the Davidson deer, which is pre-horticultural (dated to > 

3000 years based on both stratigraphy and carbon-14 dating, personal communication 

Chris Ellis). Furthermore, archaeological deer from Late Woodland contexts have 

significantly higher δ13Csc values than modern deer (Dunnett T3, p=0.014). These results 

are not believed to reflect maize consumption by archaeological deer. First, there is no 

correlation between δ13Ccol and δ13Csc values as would be expected from published 

literature (Froele et al. 2010, 2012; Harrison and Katzenberg 2003; Kellner and 

Schoeninger 2007) and modern deer from this study (Figure 4.16). Second, the mean 

∆13Csc–col value (11.63±1.99‰) is unexpectedly large, relative to both the modern deer in 

this study and published data for ungulates (Kellner and Scheoninger 2007; Krueger and 

Sullivan 1984; Lee–Thorp et al. 1989) (Table 4.14).  

Western Basin deer had a higher mean ∆13Csc–col value (12.25±2.41‰) than Ontario 

Iroquoian deer (11.22±2.04), but the difference was not significant (Table 4.14). A more 

detailed analysis of the Late Woodland time period by phase (Table 4.15) reveals that the 

Middle Ontario Iroquoian phase deer (A.D. 1200–1450) had the highest ∆13Csc–col value 

(13.59±1.08‰) of any Iroquoian group, significantly higher than Neutral (A.D. 1450–

1650) deer (δ13Csc = 10.60±1.13‰, Table 1.18, Dunnett T3, p=0.004).  

The bulk structural carbon isotopic results and the results of the bulk bone collagen are 

contradictory; δ13Ccol values indicate none of the archeological deer were consuming 

maize while the δ13Csc values indicate all archaeological deer were consuming maize. 

Three hypotheses are proposed to explain these apparently contradictory results: (1) a 

specialized diet that alters the expected ∆13Csc–col, (2) a species-specific difference in 

susceptibility to diagenesis, or (3) taphonomic alteration of the bone resulting from 

boiling. Metabolic or physiological differences between modern and archaeological deer 
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are rejected as an explanation because the modern and archaeological deer are the same 

species.  

 
Figure 4.16: Model for the relationship between δ13C values of structural carbonate 

and collagen for modern and archaeological deer.  

The gray square indicates a diet primarily composed of C3 protein with some C4 energy 

(i.e., lipid and carbohydrate) sources. Developed by Kellner and Schoeninger (2007, 

Chart adapted from Figure 2B). 

4.5.5.1 Specialized diet 

Ambrose and Norr (1993) demonstrated that the ∆13Csc–col value could be increased by 

manipulating diet, specifically the macronutrients related to growth and maintenance (i.e., 

protein) versus those related to energy (i.e., lipids and carbohydrates). Theoretically, a 

diet that combines high δ13C foods rich in energy macronutrients with low δ13C foods 

rich in protein could artificially increase ∆13Csc–col. Consumption of either raw maize, 

both its fruits and leaves, or wild C3 foods available to deer in southwestern Ontario only 

fulfills the first condition for increasing the spacing i.e., a diet with high δ13C values, rich 
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in carbohydrates and lipids but very low in protein. As modern deer do not display the 

large ∆13Csc–col value of archaeological deer, a differential macronutrient routing model 

would not likely explain the different spacing. Furthermore, the archaeological deer do 

not fit anywhere among the expected relationships of macronutrients in major dietary 

groups, whereas modern deer follow the expected pattern for C3 protein consumption and 

variable C4 access for free-ranging herbivores. For example, based on the calculations of 

Kellner and Schoeninger (2007, Figure 2: 1122), using the following models, where x = 

δ13Ccol values and y = expected δ13Csc values: 

C3 protein diet y=1.74x+21.4   [Equation 4.1] 

C4 protein diet  y=1.71x +10.6  [Equation 4.2] 

the expected ∆13Csc–col value for the archaeological deer eating an exclusively C3 diet 

would be 4.58±0.57‰ (Figure 4.17). The predicted ∆13Csc–col value for the archaeological 

deer eating a diet with a C4 component resulted in the impossible situation of predicted 

structural carbonate values being more negative than their collagen values.  

4.5.5.2 Post-mortem alteration 

The idea of an inherent, species-specific susceptibility to diagenesis seems unlikely in the 

case of deer, as there is no evidence that deer exhibit any differences in their tissue 

preservation relative to other large bodied mammals. In order to evaluate whether a post-

mortem alteration pattern specific to deer could explain the results, the δ13Ccol and δ13Csc 

values for all animals from this study were re-considered. Although some sites produced 

higher or lower collagen yields, all of the other animals from those sites shared similar 

collagen yields and similar Δ13Csc–col values. The archaeological deer examined in this 

study appear to have distinct Δ 13Csc–col values relative to other Ontario animals, including 

humans (Harrison and Katzenberg 2003), dogs, turkeys, raccoons, and bears (this study) 

(Figure 4.18 –raccoons, dogs, and bears not displayed in figure). Only deer exhibit an 

unusually large Δ 13Csc–col relationship (12.19±2.10, range=7.95 to 16.09). Because no 

statistical patterns were noted by element (i.e., mandibles vs. long bones), age of 

individual (adult vs. juvenile), site or burial contexts, the idea of a post-mortem alteration 

pattern specific to deer is rejected.  
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Figure 4.17: Predicted δ13Ccol and δ13Csc relationship based on Kellner and Schoeinger’s model (2007, Chart adapted from 

Figure 2B) for C3-only (grey diamond) and C4 (white diamond) protein diets. 
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Figure 4.18: Comparison of δ13Csc and δ13Ccol values for modern and archaeological Ontario white-tailed deer, modern 

Ontario wild turkeys (this study) and southwestern Ontario archaeological humans (Harrison and Katzenberg 2003). 

The gray square indicates range of values with a predicted C4 component to the diet. The gray dashed line indicates the relationship 

between δ13Csc and δ13Ccol values for modern deer.
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There are only a few published, comparable datasets for archaeological deer (i.e., paired 

collagen and structural carbonate analyses). Table 4.2 shows that average Δ 13Csc–col 

values are much lower for deer from other North American archaeological sites.; i.e., 

mean Δ 13Csc–col =8.7±2.14‰ (n= 9) at the Dakota site, Nebraska ( (Loken et al. 1992) and 

mean Δ 13Csc–col=8.1‰ (SD not reported, n=4) at the Maya site of Cuello (van der Merwe 

et al. 2002). These spacings are more comparable to those reported for modern deer in 

previous work (Kellner and Schoeninger 2007) and for modern deer from this study. 

Isotopic data for deer from Dorchester, an additional southwestern Ontario Iroquoian site, 

had a mean Δ 13Csc–col value of 13.71±0.80‰, n=3 (Booth et al. 2012). The Ontario 

archaeological deer appear to exhibit exceptionally large Δ 13Csc–col values relative to 

other sites in North America.  

To further explore whether post-mortem alteration of Ontario archaeological deer is 

contributing to the high Δ 13Csc–col values, statistical analyses were performed for several 

post-mortem alteration checks. As discussed previously, the tests for preservation of 

structural carbonate, including CI and C/P, were normal. In fact, the pre-treatment C/P 

ratios measured for deer were better than those obtained for most other animals analysed 

in this dissertation, many of which had higher than acceptable C/P ratios prior to pre-

treatment (see Chapters 2 and 3). All deer bones but one also had expected C:N ratios and 

acceptable collagen yields and did not differ from those of the dogs and turkeys described 

in Chapters 2 and 3, which had expected δ13Csc values and ∆13Csc–col relationships.  

There were no statistically significant correlations between collagen isotopic values 

(δ13Ccol and δ15Ncol) and C:N ratio, percent collagen by weight, percent bioapatite by 

weight, percent CO3 by weight, CI or C/P. Similarly, there were no correlations among 

C:N ratio, percent CO3, CI or C/P and δ13Csc and δ18Osc values. There is also no clear 

trend by time period/cultural affiliation for post-mortem indicators relative to the ∆13Csc–

col spacing (Figure 4.19). There was, however, a significant correlation between δ13Csc 

values and collagen yield (Spearman’s, F=–0.452, p=0.002). While collagen yields are 

well above the acceptable level for isotopic analysis of collagen, as collagen yield 

decreases, the δ13Csc values increase (Figure 4.19A and B).  
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Figure 4.19: Comparison of (A.) mean ∆13Csc–col spacing, organized by time period, 

to post–mortem alteration indicators including: (B.) collagen yield, (C.) percent 

bioapatite by weight, (D.) percent CO3 by weight, (E.) CI Index and (F.) C/P ratio. 

Gray box indicates accepted ranges for each parameter.  
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Further exploration reveals that there are also statistically significant differences in 

collagen yield (ANOVA, F=8.434, p=0.000) by sub-group of archaeological deer. 

Western Basin deer had the lowest yield (5.3±4.3%) relative to those from Ontario 

Iroquoian (11.1±6.3%) and pre-maize (7.1±5.4%) sites. Within the Ontario Iroquoian 

sites, there were also statistically significant differences (ANOVA, F=8.343, p=0.001) by 

time period, with Neutral deer having higher yields (13.96±5.70%) than the Princess 

Point/Early Ontario Iroquoian (7.93±5.14%) and Middle Ontario Iroquoian (8.21±5.37%) 

deer. While the δ13Ccol values are not related to collagen yield, the δ13Csc values are. The 

δ13Csc and Δ13Csc–col values mirror the collagen yield pattern, with the highest δ13Csc and 

∆13Csc–col values found at Western Basin sites (1100 to 600 years old) and Middle Ontario 

Iroquoian sites (750 to 500 years old).  

Diagenetic alteration of the structural carbonate of the bone over time can explain the low 

collagen yield at early sites (i.e., pre-A.D 200) and in specific burial conditions (i.e., 

Western Basin and Middle Ontario Iroquoian sites), and the higher than expected δ13Csc 

values. As collagen is lost due to microbial invasion or other diagenesis-inducing 

processes (e.g., regular flushing with water) bone porosity and permeability increases as a 

consequence of bioapatite dissolution; this provides an opportunity for precipitation of, or 

exchange with, secondary carbonates. Therefore, structural carbonate may become so 

altered that it no longer represents its original isotopic composition, unlike collagen, 

which generally maintains its isotopic integrity until there is less than 1% remaining. 

Environmental carbonates have high δ13C values relative to biological carbonates, which 

can result in carbonate carbon isotopic compositions that mimic C4 consumption 

(Ketchum et al. 2009; Kovda et al. 2006).  

While the link between collagen yield and increasing δ13Csc values, and therefore Δ 13Csc–

col, can be explained by post-mortem alteration due to dissolution, it does not explain: (1) 

why only the deer bone at these sites are affected, (2) why the diagenesis checks (CI and 

C/P) are not registering alteration, and (3) how the post–mortem conditions at Western 

Basin and Middle Ontario Iroquoian sites differ from other sites. The specificity of this 

pattern could suggest cultural intervention, i.e., differential treatment of deer bones at 
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certain sites, during processing, cooking and/or discard of the deer, resulting in this 

specific pattern.  

4.5.5.3 Post-mortem processing of deer 

The way in which deer are processed may hold the key to understanding the unusual 

pattern of post-mortem alteration seen here. There is ample evidence that, during the time 

periods of this study, meats were cooked before consumption. Although burn marks 

indicative of roasting were noted on turkey and canid bones, they were not found on any 

of the deer processed in this study. The cooking of deer may therefore, have been done by 

boiling. The stewing of meat is mentioned throughout ethnohistoric accounts (Thwaites 

1896-1901 37:108; Peale 1872 see also Tooker 1991:68;70;73 and Fenton 1953). For 

example, Sagard (Wrong 1939:111) recounts “if it’s deer they say Gagenon Youry, and 

so with other kinds of food, naming the kind or the materials in the kettle one after 

another.” The preferential boiling of deer, in general, could explain the higher δ13Csc 

values. 

Although laboratory experiments on conventional boiling of deer bone (i.e., less than 8 

hours) did not alter its isotopic composition or FTIR patterns, it did increase porosity 

(and permeability) (Roberts et al. 2002). Increased porosity should make bone more 

susceptible to post-burial diagenesis, which should be reflected in the CI and C/P ratios. 

The alteration of CI and C/P ratios is not seen here, possibly indicating post-mortem 

alteration, but not post-burial alteration (i.e., the bones were altered due to the boiling, 

not the burial). The previously reported boiling experiments all used distilled laboratory 

water (i.e., water with no dissolved inorganic carbon [DIC]) without any added 

ingredients such as one would expect in a stew. If ancient Ontario people were boiling 

deer in local waters along with maize (i.e., making of saagamite), there could have been 

fractionation and exchange between the water and bone. The predisposition of carbonates 

to precipitate under boiling conditions with the added presence of dissolved inorganic 

carbon (DIC) in river or lake water could have also changed the isotopic composition of 

the bones. The δ13C values for DIC in river water (Grand and Thames Rivers) in 

southwestern Ontario is estimated to be between –11 to –8‰ (Yang et al. 1996), which 

could cause the high δ13Csc values and unusual δ13Csc–col spacing.  
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There are several reasons that deer may have been boiled. Low meat yield elements, such 

as the mandibles and foot bones that dominate the analysed samples, may have been 

boiled to extract marrow or grease. Foreman (2011) found evidence of grease extraction 

at Western Basin sites where there was extensive fragmentation of deer long bones. 

Church and Lyman (2003) argue that it was not necessary to pulverize bone to extract 

grease, but it was necessary to break the bones and boil them for approximately 2 to 3 

hours. The majority of the mandibles analysed in this study were also broken (n=18, 

90%), though not extensively fragmented. Although there are some differences in long 

bone fragmentation between Ontario Iroquoian and Western Basin sites (Foreman 2011), 

the mandibles used in this study were similarly broken with similar ranges in δ13Csc 

values. If low marrow/grease yielding parts of the deer are being boiled, extraction of 

grease or marrow may not have been the only reason for boiling deer elements. It should 

also be considered that since mandibles and foot bones were purposefully selected 

because they are readily identifiable as white-tailed deer, this may have inadvertently 

resulted in biased results if these elements were treated differently because of their low 

meat yield. 

Ideology may also have played a role in the apparent special processing of deer. It was 

not uncommon for whole skulls of animals, including bears, dogs, and deer to be boiled 

for feasting events (Fenton 1953), which might suggest that all the deer mandibles 

recovered were associated with feasting activity. However, other animals analysed in this 

study, including bears and dogs, do not show similar ∆13Csc–col patterns.  

Alternately, feasting activities might also have included the production of flesh-free 

animal parts (particularly skulls). References to animal skulls, specifically antlered 

animals, appear in the mythology of the Great Lakes. Descriptions of wendigos, for 

example, include terrifying imagery of a skeletal giant (from an Anishinâbe story, 

Johnston 2011:122): “The Weendigo was gaunt to the point of emaciation, its desiccated 

skin pulled tautly over its bones. With its bones pushing out against its skin, its 

complexion the ash gray of death, and its eyes pushed back deep into their sockets, the 

Weendigo looked like a gaunt skeleton recently disinterred” In creating tableaux or other 

forms of dramatization, the “mask”-like appearance of animal skulls may have been 



244 

 

coveted in rituals. Exploration of ritual site skulls should be investigated for unusual 

δ13Ccol and δ13Csc relationships that could be explained by boiling animals skulls as part of 

ceremonial feasts or tableaus.  

Another probable explanation for the specific boiling of deer skulls would be to access 

and liquefy the deer brains for tanning hides, a process known as brain-tanning. The most 

important and most commonly tanned animal hide in Ontario was without question the 

white-tail deer hide. According to Peale’s (1872:330) observations in North America, 

“[t]he material used for the preparation of the skins is principally the brains of the 

animal from which they were taken.” Baillargeon (2005:149) describes the most 

“common recipe” for tanning among First Nations cultures throughout North America is 

the incorporation of brains, possibly with fat from marrow and/or liver, boiled in water. 

Baillargeon (2005:1480-9) further notes that animal brains were important in the tanning 

process because they may have been considered restorative and transformative; “The 

transformation that takes place in hide tanning centers around the belief that the soul or 

power (energy) of the animal resides in the brain… The use of the animal's own brain in 

the tanning process would be essential to bring about revival and the restoration of 

power/life.”  

Lewis H. Morgan recounts a story heard during his mid-1800’s travels among the 

Iroquois, explaining the discovery of brain-tanning: “A stiff deer skin was one day 

walking around from house to house through an Indian village, frightening everyone it 

visited. At last it went to the house of a man who was boiling deer's brains [to induce] a 

vomit. He did not propose to be frightened by this mysterious skin out of his house, and 

therefore he poured the hot water solution of deer's brains upon the stiff skin which at 

once softened it down, took away from it all power of motion, and flattened it to the floor. 

The people in fright had been shooting it with arrows. After it was softened they began to 

pull it and thus resulted the tanned deer skins.”  

Richter and Dettloff (2002:307), in an experimental study recreating Midwestern 

Woodland brain-tanning as described at European contact, found that each deer’s brain 

was sufficient to tan its hide, an expression repeated in much of the modern, tanning 
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guides. Although Richter and Dettloff did not describe how they obtained the brains, they 

noted that traditional means of accessing the deer brain included cracking of the skull to 

extract the brain or boiling the entire skull then using a stick to draw out the liquefied 

mixture (Elpel 2003:164; Richards 1997:43). 

4.5.6 Modern and archaeological deer bone (δ18Osc): Tracking 
hunting ranges with oxygen-isotopes 

Deer were one of the most economically important animals of the Late Woodland. 

Because large numbers of deer were needed to feed and clothe growing populations, the 

need to hunt deer further afield may have increased, despite conflicts with fall harvest. 

Using every part of the deer, even low meat yield parts, may have increased with the 

growing Ontario Iroquoian populations. The pressure for tanned hides would also grow 

with increasing population size. The necessity to hunt further afield for deer, possibly in 

more closed shaded (i.e., forested) environments, may be visible in the oxygen isotopic 

composition of the deer. Very large hunting territories could result in a wide range of 

δ18Osc values among deer recovered from the same site. The δ18Osc values of bulk bone 

and δ18Osc of the dental enamel were therefore compared with predicted precipitation 

values for the southwestern Ontario region (Figure 4.20). 

The precipitation station isotopic data were used to predict the annual precipitation δ18O 

values for the locations of Western Basin and Iroquoian sites examined in this study (see 

discussion Chapter 1, Section 1.3.4, Figure 1.2 and 3.11). The deer δ18Osc values were 

converted to phosphate following Iacumin et al. (1996:4): 

δ18Ophosphate = 0.98(δ18Osc) –8.5   [Equation 4.3] 

The bone phosphate values were converted to precipitation values following Luz et al.’s 

(1990:1724) formula based on deer bone: 

δ18Ophosphate = 34.63 + 0.6506(δ18Oprecipitation) – 0.171(humidity) 20  [Equation 4.4] 

                                                 
20 humidity was estimated at 85%, based on an Ontario average. 
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and statistically compared to the interpolated δ18Oprecipitation for each site. 

Based on an ANOVA of the bulk bone δ18Osc values there is no indication of a temporal 

shift in δ18Osc values over the 3000+ year study period.  

In terms of geographic variation, modern bulk bone δ18Osc values did not correlate 

significantly with predicted δ18O values of water based on site precipitation (Figure 4.21). 

This is not surprising given that deer consume much of their water from plants, and 

waters in leaves and stems can be significantly enriched in 18O relative to local waters 

due to the effects of transpiration (Bryant and Froelich 1995; Yakir 1992; Wang and 

Yakir 1995). Dependence on plant water plus the limited variation in the average annual 

δ18O values of precipitation over this region could obscure any geographic re-locations 

by deer. The δ18Osc bone values of archaeological deer were, however, correlated with 

predicted δ18O values for precipitation (Spearman’s ρ=0.977, p=0.015, n=41). Either deer 

bone reflects the local waters that the deer imbibed, or the δ18Osc values of the 

archaeological deer bone may have been altered post–mortem as were the structural 

carbonate δ13C data, in this case via post-burial exchange with ground waters or 

evaporation and exchange during boiling.  
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Figure 4.20: Archaeological and modern sites with deer remains overlaid on the interpolated δ18O values for local 

precipitation from the previously described Kriging model (IAEA/WMO 2013; Longstaffe unpublished data, Figure 1.2).  
Ancestral Ontario Iroquoian Sites: 1. Pipeline; 2. Rife; 3. Crawford Lake; 4. Bogle II; 5. Hamilton; 6. Winking Bull; 7. Old Lilac Garden; 8. Princess Point; 9. 
Cleveland; 10. Fonger; 11. Porteous; 12. Walker; 13. Van Besien, 14. Slack-Caswell; 15. Thorold. Pre–A.D. 200 sites: 16. Bruce Boyd, 17. Cranberry Creek, 18. 
Davidson; Western Basin Sites: 19. Figura, 20. Inland West Pits site 3, 9 and 12, 21. Liahn 1, 22. Montoya, 23. Silverman. 
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Figure 4.21: Predicted precipitation δ18O values for modern and archaeological deer bulk bone δ18Osc values, calculated using 

the relationships presented by Bryant et al. (1996) and Luz et al. (1990), compared to the interpolated δ18O values for local 

precipitation from the previously described Kriging model (IAEA/WMO 2013; Longstaffe unpublished data, Figure 1.2). 



249 

 

In order to explore this possibility in more detail, the deer bones were examined by time 

period, as older bones are more likely to have been altered. Examination of individual 

subsets of bone based on time period and culture reveals that pre-maize bones are highly, 

negatively correlated with their predicted δ18Osc values (Spearman’s ρ= –0.877, p=0.022). 

By comparison, the Late Woodland (post-A.D. 900) bones were positively correlated 

with predicted δ18Osc values, though only Western Basin deer bulk bone is significantly 

correlated (ρ=0.770, p=0.003). In other words, at Late Woodland sites, increasing δ18Osc 

bone values are correlated with increasing interpolated δ18Oprecipitation values, and 

significantly so at Western Basin sites. As discussed previously, Western Basin deer 

appear to have been more heavily targeted for grease extraction (Foreman 2011). If these 

bones were boiled extensively, as hypothesized based on the δ13Csc results, the δ18Osc 

values may also have been altered towards local waters near sites used for boiling, as 

opposed to local waters imbibed by the deer. Unfortunately, these data make it difficult to 

use bulk bone structural carbonate isotopic data as a geographic proxy for the deer during 

life and, therefore, should not be considered a reliable indicator of hunting territories of 

Late Woodland people. The positive correlation between predicted and actual δ18Osc 

values may in fact lend support to the hypothesis that Late Woodland peoples were 

extensively boiling these low–meat yield parts. Whether boiling was done for grease 

extraction, hide-tanning, or other culturally specific practices still needs further study. 

The mean δ18Osc value for all serial sections of enamel for one individual should 

represent a first-year average and the bone δ18Osc value should represent a lifetime 

average. Indeed, the mean enamel δ18Osc values do not correlate significantly with 

corresponding bone isotopic compositions. For nine deer, the mean enamel δ18Osc value 

average is higher than bone (+1.35±0.81‰) (Table 4.22). The difference could be due to 

a trophic level effect in the first molar as its enamel was forming partly in utero and 

during breast-feeding, which is consistent with observations that δ18Osc values may be 

high for breastfeeding juveniles relative to females within the same population (White et 

al. 2004a; Williams et al. 2005; Wright and Schwarz 1998). The difference might also 

reflect routing differences to these tissues, wherein enamel structural carbonate has δ18Osc 

values that are 1.7‰ higher than those of bone (Warinner and Tuross 2009).  
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Table 4.22: Comparison of mean δ18Osc values for all enamel serial sections relative 

to the δ18Osc values of bone. 

 Mean δ18Osc enamel serial sections 
‰ VPDB 

δ18Osc Bone 
‰ VSMOW 

Difference 
‰ 

Bruce Boyd 11 22.64±1.72 21.6 1.05 
Cleveland 16 22.44±1.66 21.7 0.75 
Cleveland 17 23.91±1.37 20.7 3.26 
Cleveland 19 22.95±1.91 22.0 0.99 
IWP(01)–36 21.92±1.44 21.07 0.85 
IWP(09)–54 22.01±1.37 19.96 2.05 

Modern Deer 3 22.87±1.44 21.98 0.89 
Modern Deer 7 22.91±1.96 23.93 –1.02 

Montoya 8 23.16±1.19 21.90 1.26 
Van 20 22.72±1.31 21.7 1.04 

The use of teeth as proxies of geographic location requires careful consideration because 

of trends related to breastfeeding/weaning, and seasonal changes in temperature and diet. 

Since bulk bone may be altered by processing, as discussed above with regard to δ18Osc 

values, consideration of the teeth as a geographic indicator is important. Hence, mean 

δ18Osc enamel values were compared to the interpolated δ18O values of precipitation. 

Overall, there is a positive correlation between tooth δ18Osc value and the predicted 

δ18Oprecipitation value. The only significant correlation between enamel δ18Osc values and 

interpolated δ18Oprecipitation values is found for the first molar (Spearman’s, ρ=0.511, 

p=0.0131) (Figure 4.22). However, because this analysis is based on only ten deer from 

sites with less than 1‰ variation in predicted δ18Osc values the validity of the statistically 

significant relationship is questionable. To better test whether teeth could be used as 

means to reconstruct the geographic re-location of deer, a larger sample from a 

significantly wider geographic sampling range (i.e., an interpolated δ18Oprecipitation range of 

several per mil) should be used to test the usefulness of deer to reflect geographic 

relocations. For example, based on the Kriging model used in this paper (Figure 1.2), if 

deer mandibles were collected from Chicago to Ottawa, there would be an approximately 

6‰ range in δ18Oprecipitation values. This would provide excellent δ18Oprecipitation variation to 

test whether or not teeth accurately capture geographic variation and whether certain 

teeth (i.e., the first molar) better capture in vivo geographic location of the deer. 
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Figure 4.22: Predicted precipitation δ18O values for modern and archaeological deer δ18Osc enamel values (averaged by tooth), 

calculated using Bryant et al. (1996) and Luz et al. (1990), compared to the interpolated δ18O values for local precipitation 

from the previously described Kriging model (IAEA/WMO 2013; Longstaffe unpublished data, Figure 1.2).
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4.6 Conclusion  
By calibrating radiographic information on deer tooth mineralization with the enamel 

δ18Osc values it was possible to determine the season of formation for each tooth, and 

therefore access dietary information at a more detailed level. For example, the serial 

section data for both modern and archaeological deer provided evidence for a shift from 

breast-feeding to a plant-based diet within two months of birth. 

Collagen and structural carbonate carbon isotopic data suggest that modern deer in 

southwestern Ontario consumed maize but in spite of the fact that they were living and 

eating in a region of almost unlimited access to maize, their bulk bone δ13Ccol values 

suggest relatively low quantities of C4 consumption (~15%). The two modern deer whose 

teeth were serially sectioned began eating maize during cooler months and reduced their 

maize consumption in the spring, contrary to expectations that they would be consuming 

maize during the spring and summer. It is hypothesized that the decreased metabolic 

activity of deer during colder months inhibits the winter consumption of maize from 

being reflected in bone. Additionally, predation of maize leaves, which have lower mean 

δ13C values, may not alter bone chemistry to the same degree as consumption of grain. 

The carbon isotopic composition of bulk bone collagen from white-tailed deer cannot be 

used as proxy for landscape change in Ontario as it does not appear to be sensitive 

enough to detect small dietary changes, such as the occasional inclusion of maize leaves. 

The δ13Ccol and δ15Ncol data confirm that archaeological deer from southwestern Ontario 

sites spanning 3000 years (Archaic through to the Late Woodland contact periods) were 

consistently consuming plant material from a C3 only environment, and that they were 

not supplementing their diet by browsing in maize fields. This conclusion is supported by 

the serial sampling of teeth from an additional eight archaeological deer that provided 

detailed foraging history for the first year of life. Not only were deer not consuming 

maize but, according to previous work, their low δ13Ccol values may be indicate a 

temperate “canopy” effect (Cormie and Schwarcz 1994; Bonafini et al. 2013), i.e., they 

were browsing in forested areas away from open fields, perhaps to avoid human 

predation. The hypothesis that deer were being hunted at a distance from the villages 
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because of human population growth was unsupported by the δ18Osc values and requires 

further investigation. The expected patterning was obscured by low variability in the 

oxygen isotopic composition of precipitation across southwestern Ontario, the fact that 

deer receive much of their water from plant leaves, which is enriched in 18O due to 

transpiration, and relatively small sample size. Although the δ18Osc values of 

archaeological deer were correlated with the δ18Oprecipitation values, these data are 

interpreted as evidence of post-mortem exchange with local waters from either boiling of 

the bones in local waters or post-burial alteration.  

Although maize consumption is suggested by the bulk bone δ13Csc values of the 

archaeological deer, the contradiction between δ13Ccol and δ13Csc data, the predisposition 

of structural carbonate to post-mortem isotopic alteration, and the unusually high Δ13Csc–

col values, have led to the conclusion that, despite apparently normal FTIR values, the 

δ13Csc values of bone are unreliable because of post-mortem alteration of the structural 

carbonate. Boiling is hypothesized to explain: (1) large Δ13Csc–col values, (2), the 

correlation between high δ13Csc values and lower collagen yield, and (3) “normal” FTIR 

results. Boiling in river water or the production of sagamite may have caused 

replacement of the original structural carbonate in the bioapatite structure by new 

structural carbonate. The purposeful selection of mandibles and foot bones to ensure 

identification of the white-tailed deer may have inadvertently resulted in biased results, as 

these specific elements may have been treated differently because they have low meat 

yield. There are several practical reasons for boiling deer remains, which may include 

extraction of grease or marrow (particularly for low meat yield elements), facilitation of 

sinew removal, and extraction of marrow and brains for tanning of hides. There may also 

have been ideological reasons, such as the use of deer in specific ritual or feasting events, 

wherein presentation of a de-fleshed skull was central. Future work will be needed to test 

the boiling hypothesis by ascertaining the degree to which carbon and oxygen isotopic 

exchange takes place between bone structural carbonate and water during the boiling 

process. Testing this hypothesis may provide a new avenue for using isotopic 

investigations to understand the relationship between humans and animals; before death 

(i.e., what foods the animal ate in life), at death (i.e., season of hunting), and after death 

(i.e., why deer were processed differently than all other animals analysed in this study). 
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Chapter 5  

5 Conclusion 

This thesis investigated the human-altered landscapes, hunting patterns, dietary 

preferences, and post-mortem animal processing methods of Late Woodland Ontario 

Iroquoian and Western Basin peoples using isotopic analysis of organic and mineral 

phases of various animal tissues. Carbon-, nitrogen- and oxygen-isotope analyses of 

modern and archaeological animal tissue were used to reconstruct dietary patterns and in 

vivo geographic location histories of animals recovered from archaeological sites. Long 

term (from bone) and short term (from serial sections of enamel) diets were compared to 

reconstruct seasonal access to maize and maize products. The main conclusions of the 

research are summarized in the following sections along with the contributions of this 

research to isotopic zooarchaeology and Great Lakes archaeology. Finally, future 

research directions are considered. 

5.1 Research summary 
This research examined how isotopic analyses of faunal remains can be used 

interpretatively with other lines of evidence, such as burial context, state of the remains, 

ethnohistory, mythology and zooarchaeology, to understand human-animal relationships. 

Particular interest was taken in human-animal ecologies related to subsistence 

behaviours, landscape use and change, and how the cultural meaning of dogs, deer and 

turkeys affected their treatment in life, at death, and even in the post-mortem processing 

of their remains.  

A detailed examination of the role of domestic dogs from both Ontario Iroquoian and 

Western Basin sites revealed dietary parallels between humans and their canine 

companions, confirming the validity of using dogs from Ontario as proxies for human 

diets for both groups. Consequently, this research has significantly expanded our 

knowledge of human paleodiets at many sites without doing destructive analyses on 

human remains. Dogs from both Western Basin and Ontario Iroquoian sites clearly 

demonstrate the introduction and expansion of maize-dependent horticulturalism. 

Differences in protein source between the two traditions were also observed. Western 
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Basin dogs were eating at a higher trophic level than Ontario Iroquoian dogs, most likely 

because they were eating more freshwater fish. This difference in subsistence choices 

between the two cultural traditions may be related to geographic variation in resource 

exploitation and further evidence  suggests that Western Basin peoples relocated to 

riverine and lacustrine resources during the year (Foreman 2011; Murphy and Ferris 

1990).   

Analyses of the Late Woodland Ontario Iroquoian dogs (A.D. 950 to 1650) provided 

nuanced differences by geographic region. Dogs from centrally located sites in the Grand 

River displayed an unexpected pattern, i.e., they consumed more maize during the Middle 

Ontario time period than during the later Neutral period. Several hypothesis were put 

forth to explain this shift, including; a peak in ceremonialism that involved more dog 

sacrifices during the Middle Ontario Iroquoian period, a shift in the types of freshwater 

fish consumed by humans (and therefore accessible to dogs), and individual variation in 

the treatment of dogs, possibly due to a general shift in the economic and spiritual role of 

Iroquoian dogs as population size and sedentism increased. 

Western Basin sites consistently lack wild canids (i.e., foxes and wolves). The variation 

between the two neighbouring traditions in species presence in faunal assemblages and 

species access to maize suggests different hunting strategies. Isotopic analyses of the 

faunal tissue, paired with burial context and previous zooarchaeological research, has 

provided information on the hunting season (i.e., cold weather) and location of death (i.e., 

near or in maize fields). Analyses of raccoons, squirrels, wild turkeys, and foxes from 

Ontario Iroquoian sites consistently suggested that these animals were able to access 

maize and/or maize products from fields/middens from the Middle Ontario Iroquoian 

stage onward. Western Basin raccoons from faunal assemblages may have had access to 

maize, but the wild turkeys from Western Basin sites were clearly not accessing maize, 

and therefore were likely feeding in denser forested areas away from open fields. 

Seasonal dietary analyses inferred from age-at-death further indicate that Western Basin 

turkey hunting took place in cold weather away from summer maize fields. These data 

support the current understanding that Western Basin people used a different seasonal 
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subsistence strategy than the Ontario Iroquoian people despite the parallel expansion of 

maize dependency in both groups.  

The data indicating maize consumption by wild turkeys at Ontario Iroquoian sites 

(despite the fact turkeys are not known crop pests [Greene et al 2010; Groepper et al 

2013; Tefft et al 2005) is unexpected, and interpreted as evidence of purposeful food 

provisioning to create a winter hunting ground during colder months. This practice is not 

recognized elsewhere in Woodland archaeology, and may be evidence of a stage in the 

spectrum of human-animal relationships that could have led to domestication. A result of 

the relationship between humans and turkeys seems to be the opportunistic hunting of 

other predatory species, such as foxes, in the same fields.  

The lack of maize consumption by large canids (i.e., wolves), white-tailed deer, and 

Western Basin turkeys was also informative. The diets of these animals were strictly 

based on C3 foods, so they may have been exploiting a deep forest environment (Cerling 

and Harris 1999; Bonafini et al. 2013; Druker and Bocherons 2009). In the case of 

wolves, this pattern is not unexpected (Pimlott et al. 1967), but for deer and turkeys, who 

are known field edge browsers (Hecklau et al. 1982; Loken et al.1992), these findings 

were surprising and may suggest human hunting strategies that altered the behavior of the 

animals.  

The white-tailed deer data are very intriguing, as deer recovered from both groups are not 

consuming maize despite the fact modern deer in Ontario are known crop pests 

(Hesselton and Hesselton 1982; Hewitt 2011). In fact, the δ13Ccol values of many of the 

deer from both Western Basin and Ontario Iroquoian sites suggest a canopy-effect, i.e., 

consumption of forest foods. As human populations increased in size and density, there 

would have been more demand for meat and skins, driving deer further from human 

settlements (Gramly 1977, Katzenberg 1989, Ketchum et al. 2009; Prevec and Noble 

1983; Stewart 2000; Turner and Stantley 1979). 

The δ18O values of bones were used to determine whether it was possible to build a 

geographic profile of the animals’ movement in life. These values were compared to 

expected δ18O values of local precipitation for Ontario Iroquoian and Western Basin sites 
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using modern water station data from across the region (IAEA/WMO 2013; Longstaffe 

unpublished data). The low variability of δ18O values of local precipitation in this region 

unfortunately inhibited the usefulness of this measure, and the variability of water 

sources (i.e., streams, plant waters, evaporated puddles etc.) likely used by the animals 

further confounded interpretation. Oxygen isotope analysis was, however, useful for the 

wild canids whose δ18O values definitively correlated with those of local waters, and 

deer, whose teeth sampled in serial sections provided an excellent record of seasonal 

fluctuations in δ18O values.  

5.2 Contributions to zooarchaeology 
This work has expanded isotopic zooarchaeology methodologically, and in ways that can 

also be used by ecology researchers in Biology or Environmental Science. Previous 

isotopic zooarchaeology focused on the reconstruction of local food webs used in the 

interpretation of human diets. The current research has shifted the focus to the use of 

animal diets and behaviour as in an indirect means to reconstruct human diet and 

behaviour, expanding the interpretive models available without the destructive analysis of 

human remains. 

First, the enamel formation sequence of white-tailed deer has been clearly established and 

linked to monthly seasonal events. This information may be used for future studies 

examining both archaeological and modern deer to understand patterns of weaning and 

food access for the first eighteen months of life. Preliminary data for the tooth formation 

sequence of domestic dogs are also provided, and appear to capture the pre- and post- 

weaning period. Pairing this data with δ18O values may provide insight into seasonal diets 

of dogs (i.e., differences and similarities in the cold versus warm weather diet of dogs), 

which can be used to further expand studies of human diet and behavior. 

The use of modern animals known to exploit maize fields, notably white-tailed deer, wild 

turkeys and insects (grasshoppers and crickets) has enabled a better understanding of the 

effect of maize availability on the isotopic composition of faunal tissues. For example, 

wild turkeys will readily exploit maize when it is removed from standing stalks and left 

for them. By contrast, the bones of white-tailed deer, well known crop pests, are not as 
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heavily influenced by maize consumption as other species (e.g., turkeys), possibly due to 

short term consumption or lowered winter metabolism. Nonetheless, deer teeth can 

provide detailed seasonal maize consumption patterns for the first year and a half of life. 

Clearly the co-analysis of various tissues representing different time frames provides a 

more complete picture of an animal’s dietary profile. Finally, this research expands the 

database for insects, which are often consumed by many animals, particularly small 

species. Grasshoppers and crickets do not appear to eat maize in the spring or early 

summer, despite their presence in maize fields throughout the year. 

Oxygen isotope analyses of incrementally growing tissues (e.g., tooth enamel) have 

illustrated the presence of seasonal variation, but reconstructing the locational history of 

deer, canids and wild turkey from bone δ18O values representing long term environmental 

experiences is more complicated. Because no statistical relationship could be established 

between δ18O values of tissue and those expected for local precipitation, for either 

modern deer or turkey from known hunting locales, it can be inferred that this measure is 

of very limited use in this region. Oxygen isotope compositions of water vary by season 

(precipitation) plant type/part and water source (puddle, lake, river, etc.) all of which 

obscure the ability to successfully use δ18O values as geographic markers for most 

species in this study. Finally, although many studies of animals have included the 

analyses of both the organic and inorganic phases of bone, there are few such studies for 

either modern or ancient birds. The strong relationship between collagen and structural 

carbonate δ-values for both modern and archaeological turkeys suggests that the two 

phases of bird bone behave similarly, which provides an additional avenue of research for 

future bird studies.  

5.3 Contributions to Ontario archaeology 
The research has expanded southwestern Ontario food webs geographically and 

temporally. Pre-horticultural and modern animals have been used to anchor our 

understanding of how maize horticulture changed landscapes, and the effects those 

changes had on both human and animal behaviour. This research has also demonstrated 

that faunal remains may be used to not only reconstruct dietary profiles of animals but to 

also provide information about ancient human behavioural patterns. Domestic dogs from 
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both Western Basin and Ontario Iroquoian sites have been successfully used to expand 

our understanding of the transition to maize dependency during the Late Woodland, and 

support interpretations recently made from isotopic work on Western Basin humans 

(Dewar et al. 2010; Spence et al. 2014; Watts et al. 2011). Further, differences in dog 

diets support archaeological data indicating that Western Basin peoples were exploiting 

fish to a greater degree than their Ontario Iroquoian neighbours, using their landscapes 

very differently despite the fact that both groups consumed similar amounts of maize.   

The analysis of one the most ancient dogs in Ontario, dating to 3500BP from the 

Davidson site, provided invaluable data on the relationship between Archaic humans and 

dogs. The results suggest the dog was domesticated, as it was provisioned with high 

trophic level food (i.e., fresh water fish) during life, and may have been consumed (i.e., 

boiled) in death.  

Wild species, particularly wild turkey and foxes have expanded our understanding of the 

similarities and differences in subsistence practices by Ontario Iroquoian and Western 

Basin people. For example, wild turkey data support the hypothesis that Western Basin 

peoples continued to use a more mobile settlement pattern, wherein they followed 

seasonally available resources and geographically separated cold weather hunting 

activities and maize cultivation. On the other hand, some Ontario Iroquoian peoples 

appear to have capitalized on hunting in maize fields by purposefully leaving maize in 

fields, thereby creating food assurance for certain species (i.e., wild turkeys) and a cold 

weather hunting ground.  

The completely C3 food diets of white-tailed deer from both Ontario Iroquoian and 

Western Basin sites reflect a behavioral shift by deer who appear to have moved further 

away from cleared and open-lands to escape hunting pressures created by the effect of 

population increase on demand for deer skins and meat.   

It is hypothesized that extensive boiling of animal bone, particularly deer, as a method of 

Post-mortem processing caused abnormally high δ13Csc values and, therefore, 

unexpectedly large Δ13Csc-col values. Although commonly used tests for post-mortem 

alteration, such as the CI index, did not indicate alteration of structural carbonate values, 
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deer bone structural carbonate could not be used for reconstructing diet with validity. The 

prevalence of altered structural carbonate values indicates that extensive boiling, whether 

done for accessing grease and marrow or using brains for tanning, was a significant 

means of post-mortem processing for both Ontario Iroquoian and Western Basin peoples. 

This finding provides a new and meaningful use for altered data. 

5.4 Future research considerations 

Future research will continue to expand the data set by focusing on the selection of a 

wider temporal and geographic sample of fauna in order to fill gaps, particularly from the 

Middle to Late Woodland transition at Ontario Iroquoian sites, as well as the entire 

Western Basin temporal span in Ontario. Western Basin dog, wild canid and wild turkey 

data, as well as squirrel and raccoon data, are needed to more fully understand Western 

Basin landscape changes and subsistence strategies. 

Sampling of multiple tissues (e.g. enamel, dentine and bone) needs to be a component of 

future faunal analyses as a means to better understand long- and short-term dietary 

choices, seasonal patterns, geographic movement in life, and potential Post-mortem 

alteration of the bone. An additional tissue, cementum, which is an annually forming 

dental layer (Meaers 2005; Stallibrass 1982), should be included in mammalian studies as 

means to provide temporal profiles across the life span of the animal, not just the first few 

months of life (i.e., enamel and dentine).  

Finally, further work is currently being pursued to investigate the usefulness of altered 

structural carbonate data to reconstruct in vivo human behaviour, i.e. methods of post-

mortem processing of animal remains and its cultural meaning.  
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6 Appendices 

Appendix A:  Summary of Ontario sites with faunal material isotopically analyzed 
for this study. 

PRE-MAIZE SITES: 

Bruce Boyd (AdHc-4) is a burial site is located in Norfolk County, Ontario excavated in 
1976 by Spence, Williamson and Dawkin. The site is composed of several Early 
Woodland (700 to 900B.C.) burials located on a knoll, including that of an incomplete 
adult male (Feature 1) associated with the remains of animals (including wild turkey).   
There is no evidence of habitation structures, and Spence et al. (1978) speculate it may 
have been used repeatedly over several seasons to inter individuals in the spring/summer. 
In this thesis, Bruce Boyd samples are designated BrB. Samples were obtained with 
permission from the Museum of Ontario Archaeology and included faunal material from 
Feature 1 (two wild turkeys) as well as deer and a large canid (no feature information).   

References: Spence, M.W., Williamson, R.F., Dawkins, J.H., 1978. The Bruce Boyd Site: 
An early Woodland component in southwestern Ontario. Ontario Archaeology, 29,33–46. 

Cranberry Creek (AfGv-62), a Middle Woodland site in Hadlimand-Norfolk county, 
was excavated by Stothers and Lennox in 1974.  The site is estimated to be multi-
component with two occupation dates of 200 to 300 B.C. and A.D. 700 to 900.  Because 
Cranberry Creek was occupied during both the Middle and Late Woodland, only a 
limited number of samples were selected for analysis from site, including a deer, canid 
(probable dog), and woodchuck. Samples analysed from Cranberry Creek are designated 
as CrC in this thesis. Samples were obtained with permission from the Anthropology 
Department at McMaster University. 

Reference: Lennox, P.A. (n.d) The Cranberry Creek Site: An Early Middle and Late 
Woodland Component in Haldimand Country.  

Davidson (AjGw-4) is an unusually large Archaic site situated on the Ausable River near 
Grand Bend and is currently being excavated by Dr. Chris Ellis. Excavations began at the 
site by Kenyon in the late 1970s. The site is complex, multicomponent site occupied 
during the Archaic through Middle and Late Woodland. Investigations at the site have 
included test pitting, surface survey, and excavation but also gradiometer/magnetometer 
survey.  Site features include houses and large pits. An Archaic Broadpoint component 
(radiocarbon dated to ca. 2400 to 2030 B.C.) included the remains of a dog and deer.  A 
dog and three deer were analyzed for this study, courtesy of Dr. Chris Ellis. Davidson 
samples are designated Dav. 

References: Ellis, C., 2006. A Preliminary Report on the 2006 Test Excavations at the 
Davidson Site: An Archaic "Broad Point" Component. Kewa 06(7), 1-16. 

Kenyon, I.T., 1980. The George Davidson Site: An Archaic 'Broad Point' Component in 
Southwestern Ontario. Archaeology of Eastern North America 8, 11-28. 
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ONTARIO IROQUOIAN TRANSITIONAL AND LATE WOODLAND SITES: 

Bogle II (AiHa-11) is a Neutral hamlet located in the Hamilton-Wentworth region, part 
of the Bronte Creek site cluster (along with Hood, Christianson, Bogle I and Hamilton).  
The site was excavated in 1979 by Paul Lennox and is estimated to be relatively small, at 
approximately 50 x 50 m with a faunal assemblage of 1468. Bogle II dates to A.D. 1638 
to 1651, roughly contemporaneous with the larger Hamilton village site.  Lennox 
suggested that Bogle I and II represent hamlets (or satellite villages) based on their small 
size, though it is believed to been occupied year round based on the faunal data and the 
presence of at least four houses. Because there were an unusually high number of 
invertebrates (shell) at Bogle II, the site is hypothesized Bogle II was used by Hamilton 
site inhabitants for the collection and processing of shell for pottery production.   

Designated as Bog for this thesis, samples analyzed include black bear, beaver, raccoon, 
deer and dog.  Samples were obtained with permission from the Anthropology 
Department at McMaster University. 

Reference: Lennox, P.A., 1984. The Bogle I and Bogle II Sites: Historic Neutral Hamlets 
of the Northern Tier. National Museum of Man Mercury Series Paper 121. Canadian 
Museum of Civilization. 

Stewart, F. L., 2000. Variability in Neutral Iroquoian Subsistence, AD 1540–1651. 
Ontario Archaeology, 69, 92–117. 

Cleveland (AhHb-7) is located in Brant County, Ontario along a Grand River tributary 
and is a pre-contact Neutral village excavated by Noble in 1971. Cleveland was 
excavated by Noble in the early 1970s and is dated to A.D. 1540. A set of three near 
complete dog burials were found at Cleveland, including the skeleton of a diseased dog, 
investigated by Rhonda Bathurst and found to have tuberculosis. 

Designated Clv in this thesis and include several deer and a wild turkey. The Cleveland 
dog was analyzed by Laura Booth. Samples were obtained with permission from the 
Anthropology Department at McMaster University. 

Reference: Bathurst, R. R., Barta, J. L., 2004. Molecular evidence of tuberculosis induced 
hypertrophic osteopathy in a 16th-century Iroquoian dog. Journal of Archaeological 
Science, 31(7), 917-925. 

Prevec, R., Noble, W. C., 1983. Historic Neutral Iroquois faunal utilization. Ontario 
Archaeology, 39, 41–56. 

Stewart, F. L., 2000. Variability in Neutral Iroquoian Subsistence, AD 1540–1651. 
Ontario Archaeology, 69, 92–117. 

Crawford Lake (AiGx-6) village site is located on Crawford Lake on the Niagara 
Escarpment, West of Toronto, Ontario.  The site was dated to the Middle Ontario 
Iroquoian stage (A.D. 1435 to 1459) using stratified pollen layers in the lake sediment .  
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The site was excavated by Finlayson and Byrne starting in 1973, and six long houses 
were discovered. The use of flotation screening was used and provided evidence of not 
only maize cultivation (as was expected based on the pollen data) but also bean 
cultivation. 

Crawford Lake samples are designated Crf and include a number of turkey, deer, dog and 
raccoon. Samples were obtained with permission from the Museum of Ontario 
Archaeology. 

References: Finlayson, W. D., Bryne, R., 1975. Investigations of Iroquoian settlement 
and subsistence patterns at Crawford Lake, Ontario-a preliminary report. Ontario 
Archaeology, 25, 31-36. 

Fonger (AhHb-8) is a Neutral village site excavated by Gary Warrick in 1978 and 1979 
near Brantford, Ontario.  Fonger is a smaller village (0.8 ha) dating to A.D. 1580 to 1620. 
A large number of invertebrates (shell) at the site is believed to be related to pottery 
production (Holterman2007).  The site is composed of six middens and eighteen 
longhouses, encircled by palisades.  The Fonger site yielded 1621 faunal remains. 

Fonger samples are designated as Fon and include black bear, dog, squirrel, deer and wild 
turkey.  Samples were obtained with permission from the Anthropology Department at 
McMaster University. 

References: Holterman, C., 2007. So Many Decisions! The Fonger Site: A Case Study of 
Neutral Iroquoian Ceramic Technology. [Unpublished M.A. thesis]. McMaster 
University, Hamilton, ON. 

Prevec, R., Noble, W. C., 1983. Historic Neutral Iroquois faunal utilization. Ontario 
Archaeology, 39, 41–56. 

Warrick, G., 1984. The Fonger Site: A Protohistoric Neutral community, Monograph, 
Ontario Heritage Foundation, Toronto.  

Hamilton (AiHa-5) site is a large Neutral (A.d. 1638 to 1651) village located In West 
Flamborough township, Ontario.  The site was first investigated by Noble in 1970 and 
further excavated by Lennox in 1972.  The 3 ha site is surrounded by a double palisade 
and includes at least 8 middens (most at the periphery of the village, though midden B 
was within the village itself) and 5 houses. Lennox argues that, based on its size and 
location, Hamilton may represent a “capital” for the site clusters of the region.  The site 
yielded 20481 faunal samples, with emphasis on wild turkeys (and de-emphases on 
passenger pigeons) including a number of juveniles hunted in the fall.  

Hamilton samples are identified in this thesis as Ham and include bear, dog, deer and 
wild turkey. Samples were obtained with permission from the Anthropology Department 
at McMaster University. 

References: Lennox, P., 1977. The Hamilton Site: A Late historic Neutral Town. 
[Unpublished Ph.D. Thesis] McMaster University, Hamilton, ON. 
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Lightfoot (AjGw-5), located in Mississauga Ontario, is an Early Ontario Iroquoian site 
excavated by Mayer, Poulton and Associates Inc. in 1988 and 1989.  The Lightfoot camp 
is composed of 5 long houses and several middens and yielded 402 faunal remains.  

Bear and woodchuck were analyzed from the Lightfoot site, designated as Lig samples in 
this thesis.  Samples were obtained with permission from D.R. Poulton & Associates Inc. 

References: Prevec, R. 1989. The Lightfoot Site AjGw-5: Faunal Report submitted to 
Mayer, Poulton and Associates Inc., Burlington, Ontario. 

Pipeline (AiGx-12) site is a late Middle Ontario Iroquoian village (or early pre-contact 
Neutral) dating to A.D. 1400 and estimated to be over 2 ha. The site was first excavated 
in 1975 and 1977 and again in 2006 by D.R. Poulton & Associates Inc.  Pipeline includes 
at least six long houses, though no evidence of a palisade. Over 19,000 faunal samples 
were recovered in the excavations 

Pipeline samples are labelled as Pip and include a number of dog and deer as well as fox, 
rabbit, raccoon, and wild turkey. Samples were obtained with permission from D.R. 
Poulton & Associates Inc. and the Museum of Ontario Archaeology.  

References: Dodd, C.F., Poulton, D.R., Lennox, P.A., Smith, D.G., Warrick, G.A., 1990. 
The middle Ontario Iroquoian stage. In: Ellis, C.J., Ferris, N., (Eds.), The archaeology of 
southern Ontario to A.D. 1650. Occasional Publications of the London Chapter, OAS 
Number 5, pp. 321–360. 

Neill, C.G., 2008. The Faunal Specimens from Pipeline Site (AiGx-12). Report on file 
with D.R. Poulton & Associates Inc. 

Porteous (AgHb-1) is a village (43 x 160 m) near Brantford, Ontario dating to the 
Princess Point/Transitional Woodland (A.D. 700 to 900).  The site was first excavated in 
1969 by Noble.  The site has two longhouses (and probable third) and 17 distinct pit 
features. The longhouses are noted by Noble and Kenyon to be unusually “refined” for 
the date of the site. There is no evidence of palisades and shallow middens.  2753 faunal 
remains were recovered from Porteous.  

A small canid and deer were isotopically analyzed from Porteous, designated Por in this 
thesis. Samples were obtained with permission from the Anthropology Department at 
McMaster University. 

References: Crawford, G. W., Smith, D. G., 1996. Migration in prehistory: Princess Point 
and the Northern Iroquoian case. American Antiquity, 782-790. 

Noble, W.C., Kenyon, I.T., 1972. Porteous (AgHb-1): A Probable Early Glen Meyer 
Village in Brant County, Ontario. Ontario Archaeology, 19, 11-38. 

The Princess Point (AhGx-1) site (near Hamilton, Ontario) is part of the Princess Point 
complex (n = ~80 sites) of sites originally identified by Stothers as Transitional period 
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between the Middle and Late Woodland dating to A.D. 500 to 900/1000 (extended by 
Smith and Crawford).  The Princess Point site is believed to be a larger site within the 
complex, located in a wetland area. The site has evidence of maize, but does have a later 
Early Ontario Iroquoian component that could be intrusive. There is some debate as to 
whether site was occupied year-round or seasonally in warmer months as a macro-band 
site. 

A black bear, wild turkey and several deer were analyzed from the Princess Point site, 
identified as Pri.  Samples were obtained with permission from the Anthropology 
Department at McMaster University. 

References: Crawford, G. W., Smith, D. G., 1996. Migration in prehistory: Princess Point 
and the Northern Iroquoian case. American Antiquity, 782-790. 

Smith, D.G., Crawford, G., 1997. Recent Developments in the Archaeology of the 
Princess Point complex in Southern Ontario, Canadian Journal of Archaeology 21(1): 9–
32. 

Stothers, P. M., 1977. The Princess Point Complex. Musée National de l'Homme. 
Collection Mercure. Commission Archéologique du Canada. Publications d'Archéologie. 
Dossier Ottawa, (58), 1-403. 

Old Lilac Garden (AhGx-6) is a small Princess Point site located on a peninsula, 
elevated from the water. The site was excavated in1984. There is some debate as to 
whether site was occupied year-round or seasonally in warmer months as a macro-band 
site. 

Deer, rabbit, and a dog were analyzed isotopically and are designated as OLG. Samples 
were obtained with permission from the Anthropology Department at McMaster 
University. 

References: Smith, D.G., Crawford, G., 1997. Recent Developments in the Archaeology 
of the Princess Point complex in Southern Ontario, Canadian Journal of Archaeology 
21(1), 9–32. 

Rife (AiGx-7) is a Middle Ontario Iroquoian, 1.4 ha village site occupied between A.D. 
1474 and 1504.  The original small village site, excavated first in the 1980s and later 
again by Finlayson in 1998, was expanded twice to form a much larger village.  
Finlayson undertook careful excavations (i.e., half meter vs. 1 meter squares), particularly 
of House 2, an undisturbed longhouse, producing in situ took kits.   

Canids, deer and turkey were analyzed from Rife, designated Rif. Samples were obtained 
with permission from the Museum of Ontario Archaeology. 

References: Dodd, C.F., Poulton, D.R., Lennox, P.A., Smith, D.G., Warrick, G.A., 1990. 
The middle Ontario Iroquoian stage. In: Ellis, C.J., Ferris, N., (Eds.), The archaeology of 
southern Ontario to A.D. 1650. Occasional Publications of the London Chapter, OAS 
Number 5, pp. 321–360. 
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Finlayson, W. D., 2004. Archaeological Research in the Crawford Lake Area 1997-2003. 
Report for the Niagara Escarpment Commission. Leading Edge, March 3-5. 

Slack-Caswell (AfHa-1) is a multicomponent site, intensively used as hamlet site dated 
to A.D. 1300 to 1380 (Middle Ontario Iroquoian stage).  The site located in Townsend 
Township, Ontario was excavated over two seasons.  The hamlet is composed of a very 
large longhouse (90m), four middens, and possible additional structure. No palisade was 
identified. Eight-four faunal elements were identified from the site. 

Slack-Caswell samples, designated Sla, included a duck, squirrel, canid, turtle and deer. 
Samples were obtained with permission from the Anthropology Department at McMaster 
University. 

References: Dodd, C.F., Poulton, D.R., Lennox, P.A., Smith, D.G., Warrick, G.A., 1990. 
The middle Ontario Iroquoian stage. In: Ellis, C.J., Ferris, N., (Eds.), The archaeology of 
southern Ontario to A.D. 1650. Occasional Publications of the London Chapter, OAS 
Number 5, pp. 321–360. 

Jamieson, S.M.,  1986. Late Middleport Catchment Areas and the Slack-Caswell 
example. Ontario Archaeology, 45, 27-38. 

Thorold (AgGt-1) is a large, Historic Neutral (A.D. 1615-1630) town located in the 
Niagara Peninsula. The site was excavated by Noble in 1979 and estimated to be 4 ha, 
composed of at least five longhouses and several middens, enclosed within palisades. 
Noble suggest the site may have served as a regional capitol.   

The site faunal assemblage is notable in its relatively low numbers of deer. Samples 
analyzed from Thorold, abbreviated to Tho, include deer, turkey, a woodchuck, fox and 
dog.  Samples were obtained with permission from the Anthropology Department at 
McMaster University. 

References: Prevec, R., Noble, W. C., 1983. Historic Neutral Iroquois faunal utilization. 
Ontario Archaeology, 39, 41–56. 

Stewart, F. L., 2000. Variability in Neutral Iroquoian Subsistence, AD 1540–1651. 
Ontario Archaeology, 69, 92–117. 

Van Besien (AfHd-2) is an Early Ontario Iroquoian site dated to A.D 940 located in 
Oxford county, Ontario.  During its occupation, Van Besien expanded twice from 0.4 to 
0.6, finally, to 1.2 ha, and was palisaded during some of the time.  Noble began 
excavations at the site 1971 continuing for another season in 1972.  Despite the 
expansions at the site, Noble identified three long houses. Middens were excavated on the 
three, sloping hills of the sites sides.   

The remains of 4967 fauna, indicating year-round subsistence economy, were found at 
the site. Bear, fox, dog, squirrel, porcupine, rabbit, raccoon, deer, wild turkey and ground 
hog were all isotopically anlayzed from Van Besien, designated Van in this thesis. 
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Samples were obtained with permission from the Anthropology Department at McMaster 
University. 

References: Noble, W.C., 1975 Van Besien (AfHd -2): A Study in Glen Meyer 
Development. Ontario Archaeology 24, 3-95. 

Walker (AgHa-9) is located in Brant County and is identified as a large, 4 ha Neutral 
town excavated by Walker in the mid-1970s.  Despite its size and date, no palisades 
could be identified at the Walker site.   

Seven middens were excavated, along with twelve houses (including House 8 identified 
as a winter house). Over 10,500 faunal elements were recovered from the site. Noble 
interpreted the site as a regional capital. Black bear, passenger pigeon, beaver, dog, mink, 
squirrel, skunk, muskrat, porcupine, rabbit, raccoon, turtle, deer, wild turkey and 
woodchuck were all isotopically analyzed from the Walker site (Wal). Samples were 
obtained with permission from the Anthropology Department at McMaster University. 

References: Wright, J.W. 1977. The Walker Site. [Unpublished M.A. thesis] McMaster 
University, Hamilton, ON. 

Winking Bull (AiHa-20) is 0.8 ha Middle Ontario Iroquoian village from the Crawford 
Lake region dating to A.D. 1280.  The site was excavated by Finlayson in the early 
1980s.   1704 faunal samples were identified at Winking Bull, including a large number 
that had modified bone (bone beads).  

Canids, raccoons, deer and wild turkey were isotopically analyzed from Winking Bull 
(designated Win). Samples were obtained with permission from the Museum of Ontario 
Archaeology. 

References: Dodd, C.F., Poulton, D.R., Lennox, P.A., Smith, D.G., Warrick, G.A., 1990. 
The middle Ontario Iroquoian stage. In: Ellis, C.J., Ferris, N., (Eds.), The archaeology of 
southern Ontario to A.D. 1650. Occasional Publications of the London Chapter, OAS 
Number 5, pp. 321–360. 
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WESTERN BASIN TRANSITIONAL AND LATE WOODLAND SITES: 

Dobbelaar (no borden) is a Wolf Phase site dated to A.D. 1400-1550 located near the 
St. Clair river. The faunal material (n=5187) was analyzed by Lindsay Foreman, who 
interprets the sites emphasis on muskrat procurement as a warm weather settlement.  A 
fox and dog were analyzed from the Dobbelaar site. Samples from Dobbelaar (Dob) were 
accessed courtesy of the London Office of the Ministry of Tourism, Culture and Sport. 

References: Foreman, L., 2011. Seasonal subsistence in Late Woodland southwestern 
Ontario: An examination of the relationship between resource availability, maize 
agriculture, and faunal procurement and processing strategies. [Unpublished Ph.D. 
thesis]. The University of Western Ontario, London, ON. 

Figura (AgHk-52), also known as Inland Aggregate or Inland West Pit No. 1, is part of 
an aggregation of sites near Arkona, ON, excavated by Golder and Associates. The site 
was excavated in 2007 and 2008 along with Inland Aggregate locations 3 (AgHk-54), 9 
(AgHk-58) and 12 (AgHk-60) by Golder and Associates and were sampled courtesy of 
Sustainable Archaeology. 

The Stage 4 excavation at the Figura site (88 x 105 m) revealed 303 features (including 
two large middens), as well as six small house structures. Five houses and one midden 
are surrounded by a palisade.  Over 11,200 faunal remains were recovered at the site, but 
at the time of the 2008 excavation a detailed faunal report was still forthcoming. The site 
is dated to the Yonge Phase (A.D. 800 to 1200). In this thesis Figura samples are 
identified as IWP(01) and include deer, wild turkey, and raccoon. 

The Stage 4 excavation of Location 3 resulted in the recovery of 87 features and 3862 
faunal pieces, which have not been analyzed at this time. The site is, approximately 65 x 
45 m, and its features do not indicate the presence of house or palisade structures. The 
site is dated to the Yonge Phase (A.D. 800 to 1200).  A detailed faunal report for the site 
has not yet been completed. Thesis samples from Location 3 are identified as IWP(03) 
and include the isotopic analysis of deer and wild turkey.  

The Stage 4 excavation of Location 9 led to the recovery of over 23,000 faunal remains 
from 129 features (many were pits) with a partial palisade.  The excavation is interpreted 
as a portion of a large, Yonge Phase village.  A detailed faunal report for the site has not 
yet been completed. Faunal material (identified as IWP(09)) was analyzed from pits 2, 
18, 21, 38, 46, 56, 59, 61, 72, 102 and 107 and includes black bear, ruffed grouse, 
domestic dogs, raccoon, deer and wild turkey. 

The Stage 4 excavation of Location 12 identified 21 features and a partial palisade or 
fence. The remains of 4810 fauna were found at site, for which an assessment has been 
completed by Lindsay Foreman for two features (Feature 14 located within the 
palisade/fence and Feature 19 outside the palisade fence).  The initial report suggests the 
site was used during the Yonge Phase from A.D. 1050 to 1150, with an emphasis on 
cervid hunting and heavy processing of the remains on site.  Based on the faunal data, the 
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site has been interpreted as a cold weather site. Fauna analyzed for this study are labelled 
IWP(12) and  include a dog and several deer. 

References: Golder and Associates (2012) Stage 4 Archaeological Assessment: Inland 
West Pit Locations 1, 3, 6, 9 and 12. Part of Lots 28 and 29, Concession 5 N.E.R. 
Township of Warwick, Lambton County, Ontario. Ontario. Manuscript on file, Ontario 
Ministry of Tourism, Culture and Sport, Toronto, Ontario. 

Foreman, L., 2011. Seasonal subsistence in Late Woodland southwestern Ontario: An 
examination of the relationship between resource availability, maize agriculture, and 
faunal procurement and processing strategies. [Unpublished Ph.D. thesis]. The University 
of Western Ontario, London, ON. 

Spence, M.W., White, C.D., Ferris, N., Longstaffe, F.J., 2010. Treponemal Infection in a 
Western Basin Community. Kewa 10(3), 1-10. 

Liahn I (AcHo-1), located near the St. Clair River, was excavated in 1977 by Ian 
Kenyon.  The site is estimated to be 1.6 ha, but occupied intensively in a 0.6 ha area. The 
site, dated to the Springwells Phase (A.D. 1300 and 1600), includes large a long house 
and a large number of pit features.  The emphasis on lake resource exploitation is 
suggested by Kenyon to indicate warm weather site use.  Faunal samples analyzed in this 
thesis are designated as Lia and include a bowfin, muskrat, porcupine, raccoons and deer. 
Samples from Lianh I (designated Lia) were accessed courtesy of the London Office of 
the Ministry of Tourism, Culture and Sport. 

References: Kenyon, I. 1988. Late Woodland Occupations at the Liahn I Site, Kent Co. 
Kewa. 88(2), 2-22. 

Montoya (AfHi-243) is a Riviere au Vase (possibly used into the Yonge phase) site, 
dated to A.D. 800 to 1000. The site, located near Strathroy, ON, is believed to have been 
inhabited during the colder weather for cervid hunting, based on the faunal and artifact 
assemblages. The site was approximately 1.5 ha in size with over 6000 faunal remains 
recovered by Archaeologix Inc., who excavated the site in the early 2000s.  

In this thesis, Montoya samples are designated Mon and include the analysis of several 
deer and a raccoon.  Permission to sample Montoya site faunal material was granted 
courtesy of Golder and Associates Inc, 

References: Archaeologix Inc.,  2004 Archaeological Assessment (Stage 4): The 
Montoya Site (AfHi-243), Saxonville Estates Subdivision, Phase 2, Part of Lot 9, 
Concession 10, Geographic Township of Caradoc, Town of Strathroy, Middlesex County, 
Ontario. Manuscript on file, Ontario Ministry of Tourism and Culture, Toronto,  

Foreman, L., 2011. Seasonal subsistence in Late Woodland southwestern Ontario: An 
examination of the relationship between resource availability, maize agriculture, and 
faunal procurement and processing strategies. [Unpublished Ph.D. thesis]. The University 
of Western Ontario, London, ON. 
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The Roffelsen (AcHn-33) site is a Yonge phase (A.D. 900 to 1000) burial site located 
near Chatham on the Thames River.  The site was excavated by Archaeologix and 
analyzed by Adria Grant.  Michael Spence analyzed the burial features (7 individuals).  
The site is approximately 50 by 45m and is mostly encompassed within a palisade.  No 
house structures were identified, however a number of pit features were present within 
and outside the palisade.  Feature 54, just outside the palisade, consisted of a dog burial, 
analyzed isotopically in this study.  Permission to sample Roffelsen (designated Rof) site 
faunal material was granted courtesy of Golder and Associates Inc. 

References: Spence, M., Williams, L., Wheeler, S., 2014. Death and Disability in a 
Younge Phase Community. American Antiquity, 79(1), 108-126. 

Silverman (AbHr-5) site, located near Lake St. Clair beach, was first excavated in 1994 
by Mayer Heritage Consultants, and went to Stage 4 excavation in 1995.  The site covers 
an area of approximately 1.53 ha and is a multi-component relatively large campsite, 
occupied seasonal (spring through fall) between A.D. 700 and 1200. The features include 
a number of small houses and storage pit clusters.  Silverman samples analyzed for this 
study are designated Sil and include a black bear, dog, raccoon, and deer. Samples from 
Silverman, (designated Sil) were accessed courtesy of the London Office of the Ministry 
of Tourism, Culture and Sport. 

References: Mayer Heritage Consultants, 1996. Archaeological Mitigative Excavation 
(Stage 4) Silverman Site (AbHr-5), Registered Plan 12R-13025 Town of St. Clair Beach, 
Essex County, Ontario. Manuscript on file, Ontario Ministry of Tourism, Culture and 
Sport, Toronto, Ontario. 
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Appendix B: Bone collagen isotopic composition and sample description (archaeological) 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 
Beaver (genus Castor) 

Bog-038 mandible     –21.37 4.79 3.22 17.0 
Wal-040 mandible, right     –19.48 1.40 3.25 15.3 
Wal-041 mandible, right     –22.34 6.12 3.25 10.9 

Black bear (Ursus americanus)  
Bog-033 phalanx     –20.00 5.97 3.32 7.5 
Bog-043 phalanx     –20.46 4.75 3.28 9.3 
Fon-067 phalanx, proximal     –20.89 4.98 3.02 17.1 
Fon-072 phalanx, proximal     –22.32 5.78 3.02 23.0 
Ham-024 mandible     –19.92 4.90 3.40 13.6 

IWP(01)-052 metatarsal     –22.20 5.71 3.27 6.8 
IWP(01)-052 DUP Duplicate     –22.04 5.72 3.40 - 

IWP(09)-058 mandible     –21.12 4.35 3.30 5.7 
IWP(09)-058 mDUP Method duplicate     –21.07 4.44 3.24 5.2 

Lig-012 metapodial, left distal     –19.98 4.47 3.31 8.7 
Lig-012 DUP metapodial, left distal     –20.04 4.27 3.31 8.7 

Pri-018 scaphoid, right     –20.86 4.92 3.13 8.0 
Pri-018 DUP scaphoid, right     –20.80 4.93 3.11 - 

Sil-018 innominate, fragments     –21.10 6.24 3.24 9.1 
Sil-020 metatarsals     –20.71 6.21 3.35 2.6 

Van-039 phalanx, II     –20.15 5.62 3.23 19.9 
Van-067 phalanx, II     –22.90 6.59 3.12 9.0 

Van-067 DUP Duplicate     –22.93 6.56 3.10 - 
Van-071 phalanx, II     –21.45 6.19 3.27 12.3 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 

Black bear (Ursus americanus) continued 
Van-071 DUP Duplicate     –21.47 6.19 3.27 - 

Van-097 phalanx, V     –21.79 5.98 3.23 22.7 
Van-114 phalanx, I Juvenile   –21.38 4.69 3.30 5.8 
Wal-045 phalanx, II     –20.23 4.76 3.22 22.5 
Wal-046 phalanx, II     –21.85 5.87 3.21 23.0 
Wal-047 phalanx, II     –20.48 5.89 3.18 22.2 

Bird (Aves) 
Wal-033 ulna, left     –22.15 6.63 3.19 18.9 
Sla-035 femur, right     –17.63 6.56 3.27 11.7 

Aves cf. duck (Anas)               
Sla-011 phalanx     –18.25 8.22 3.37 15.4 

Passenger pigeon (Ectopistes migratorius)  
Wal-031 ulna, left     –21.01 4.16 3.28 18.9 

Ruffed grouse (Bonasa umbellus) 
IWP(09)-019 tibiotarsus     –20.80 3.77 3.28 14.7 

Canid cf fox 
Crf-077 DUP Duplicate     –19.62 10.40 3.32 - 

Crf-077 mDUP Method Duplicate     –19.59 10.21 3.35 5.4 
Crf-077 mandible     –19.67 10.30 3.32 6.3 

Pip(2)-016 left metapodial     –18.59 8.51 3.07 19.8 
Tho-011 mandible, right     –17.95 7.57 3.23 7.1 
Van-070 atlas     –19.53 8.90 3.28 4.1 
Win-154 humerus, distal     –18.37 9.08 3.31 5.5 



292 

 

Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 
Canid cf fox continued  

Win-229 mandible, right     –18.77 8.50 3.25 18.5 
Dob-002 right humerus     –19.34 8.74 3.23 10.1 

Canid cf. fox  or small C. familiaris 
Pip(2)-010 right humerus, shaft     -11.46 10.17 3.28 15.6 

Pip(2)-010B mDUP Method Duplicate     -11.33 10.12 3.25 15.8 

Pip(2)-103 left humerus (cutmarks)     -11.19 9.13 3.27 16.0 

Por-012 right humerus, distal     -19.53 7.88 3.25 11.7 
Por-012B mDUP Method Duplicate     -19.55 7.95 3.26 11.9 

Van-075 left zygomatic/partial skull     -21.22 9.45 3.25 18.3 
IWP(09)-016       -13.90 11.41 3.52 - 

Canis sp. 
Bog-030 phalanx     –13.91 9.73 3.26 20.5 
Bog-042 tarsal     –14.78 9.98 3.24 9.1 

IWP(09)-005 right femur, complete Juvenile   –14.68 11.13 3.06 6.8 
IWP(09)-005B DUP Duplicate Juvenile   –14.64 11.11 3.06 - 

IWP(09)-034 humerus Juvenile   –18.56 8.93 3.26 11.1 
IWP(09)-034 DUP humerus Juvenile   –18.51 8.95 3.35 - 

IWP(09)-066 mandible, right Fetal   –11.12 12.02 3.26 LB 
IWP(09)-068a mandible, right Fetal   –12.96 12.17 3.16 LB 
IWP(09)-068b mandible, right Fetal   –14.69 10.97 3.29 LB 

OLG-14 left distal tibia     –10.51 9.61 3.46 10.2 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 
Canis sp. continued  

Pip(1)-175 mandible 10-12 
weeks   –19.15 9.46 3.40 15.1 

Pip(2)-028 right tibia Juvenile   –21.60 6.04 3.50 11.2 
Pip(2)-049 right calcaneous     –11.15 9.29 3.40 8.5 

Pip(2)-049B DUP Duplicate     –11.19 9.06 3.39 - 
Pip(2)-110~ atlas     –10.62 9.92 3.18 3.83 

Pip(2)-110B DUP Duplicate     –9.95 9.74 3.21 - 
Rif-097 mandible, right, no teeth     –11.79 9.75 3.40 7.9 
Sil-07 left tibia Fetal   –17.11 13.99 3.23 LB 

Wal-034 left calcaneous     –14.19 8.13 3.30 6.1 
Win-182 cervical vertebrae     –10.14 9.61 3.28 18.3 
Win-249 ulna Juvenile   –10.30 8.30 3.35 16.5 

Win-249B DUP Duplicate Juvenile   –10.28 9.03 3.33 - 
Win-249B DUP Duplicate Juvenile   –10.19 8.86 3.34 - 

Rif-020^^ left and right calcaneous     –11.62 9.72 3.40 1.9 
Canis sp. cf. C. familiaris 

Bog-016 mandible     –13.65 9.40 3.31 8.2 
Cra-010 right ulna, proximal     –21.81 6.38 5.12 0.6 
Crf-054 axis     –11.89 9.49 3.27 21.1 

Crf-054 mDUP Method Duplicate     –11.88 9.46 3.29 21.3 
Dav-005 maxilla, fragment     –20.75 10.38 2.97 1.7 

Dav-005 mDUP maxilla, fragment     –20.82 10.24 2.59   
Dob-001 mandible     –12.00 10.06   6.4 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 
Canis sp. cf. C. familiaris continued  

Fon-061 mandible, left     –12.78 8.35 3.80 7.3 
Fon-117 mandible, right     –12.59 8.79 3.38 2.3 
Fon-121 mandible, left     –14.76 8.97 3.05 19.6 
Ham-026 mandible, right     –13.21 9.53 3.37 22.2 
Ham-027 mandible, right     –15.14 9.33 3.39 16.9 
Ham-028 mandible, right     –13.82 9.65 3.39 9.1 
Ham-029 mandible, right     –15.82 9.18 3.38 17.8 

IWP(01)-027 mandible, right     –14.57 9.40 3.13 5.1 
IWP(01)-027B mDUP Method Duplicate     –15.01 9.38 3.52 5.6 

IWP(01)-035 mandible, right     –15.58 10.05 3.50 2.2 
IWP(09)-091 mandible, left      –14.30 10.87 3.42 LB 

IWP(09)-091B mDUP mandible, left     –14.04 10.44 3.32 LB 
IWP(12)-01 tibia, complete     –16.29 8.99 3.24 5.0 
Pip-(1)-138 radius, left complete     –10.55 9.81 3.35 12.4 

Pip-(1)-138B DUP Duplicate     –10.51 9.79 3.36 - 
Pip(1)-180+ ulna, left complete     –11.40 10.87 3.31 17.0 
Pip(2)-018 atlas     –12.54 9.10 3.20  

Pip(2)-018B mDUP atlas     –12.54 9.07 3.22  
Pip(2)-044 scapula, left     –10.93 10.32 3.33 19.2 
Pip(2)-087 ulna, right proximal     –12.15 10.13 3.32 3.1 

Rif-008 Femur, left     –10.46 9.22 3.30 19.0 
Rif-019 mandible, left     –10.82 9.47 3.37 16.0 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 
Canis sp. cf. C. familiaris continued  

Rof-001 tibia     –12.87 10.14 3.21 2.6 
Rof-001 mDUP mandible     –12.27 10.48 3.25 4.1 

Sla-018       –10.57 9.72 3.33   
Sla-018 DUP  Duplicate     –10.53 9.76 3.35 - 

Sla-019 phalanx     –11.40 9.44 3.19 17.8 
Tho-006 mandible     –12.80 8.85 3.24 9.1 
Tho-010 ulna, proximal     –12.74 8.52 3.19 19.1 
Tho-053 calcaneus, left      –13.12 7.87 3.40 13.2 
Van-120 humerus, right complete     –13.13 9.13 3.32 5.4 
Van-124 mandible, right     –13.09 9.62 3.43 8.8 
Wal-032 right maxilla     –14.01 8.68 3.21 13.7 
Wal-057 mandible, left     –12.94 9.40 3.41 7.1 
Wal-058 mandible, left     –13.81 9.06 3.38 19.1 

Wal-058B DUP Duplicate     –13.76 9.10 3.37 - 
Wal-059 mandible, left     –12.19 9.17 3.38 21.3 
Wal-060 mandible, left     –13.19 8.78 3.41 7.6 
Win-002 calcaneous     –13.38 11.34 3.25 16.5 
Win-084 vertebrae lumbar     –11.66 9.86 3.25 19.2 

Win-084B mDUP Method Duplicate     –11.68 10.01 3.20 16.2 
Win-150 radius     –10.81 10.28 3.29 19.9 

Win-150B DUP radius     –10.85 9.65 3.33 - 
Win-161 cranial, fragment     –11.10 10.97 3.15  

Ham-025^^ mandible, right     –13.44 9.95 3.37 21.5 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 
Canis sp. cf. C. lupus or lg. C. familaris 

BrB-004 tibia, left distal     –21.86 8.38 3.53 6.5 
Van-111 phalanx I     –22.13 8.87 3.29 10.8 
Win-183 maxilla, right fragment     –20.88 5.48 3.34 6.4 

Win-183B DUP duplicate     –20.37 5.29 3.39 - 
IWP(09)-067 tibia     –14.40 11.05 3.19 LB 

IWP(09)-067B DUP tibia     –14.35 11.04 3.19 - 
Carnivora skunk (Mephitidae) 

IWP(01)-023 mandible     –20.02 9.04 3.47 2.6 
Wal-030 maxilla, right     –19.48 9.17 3.25 18.2 

Carnivora American mink (Neovison vison) 
Wal-023 mandible     –23.30 8.53 3.22 16.0 

Eastern gray/black squirrel (Sciurus carolinensis) 
Fon-030 femur     –18.53 5.54 3.07 16.7 
Fon-064 femur     –20.45 4.64 3.09 14.2 
Fon-091 femur     –19.83 5.04 3.01 18.4 
Fon-113 femur     –20.02 5.15 3.04 13.3 

Fon-113 DUP femur     –19.92 5.41 3.22 - 
Fon-113 DUP femur     –19.91 5.09 3.23 - 

Sla-032 innominate     –19.38 4.34 3.16 19.4 
Sla-032 DUP innominate     –19.25 4.38 3.17 - 

Tho-005 humerus     –19.20 5.03 3.24 8.8 
Van-041 femur, right     –20.42 4.52 3.05 15.2 
Van-042 tibia, right     –20.28 4.09 3.01 16.5 
Van-052 humerus, right     –18.50 6.66 3.25 16.2 
Van-085 mandible, left     –19.49 4.97 3.23 14.6 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 

Eastern gray/black squirrel (Sciurus carolinensis) continued 
Van-090 innominate, right     –19.76 6.39 3.22 19.8 
Van-091 femur, right Juvenile   –19.60 4.86 3.24 17.3 

Van-091 DUP Duplicate Juvenile   –19.60 4.85 3.23 - 
Wal-048 mandible     –19.32 4.54 3.22 17.2 

Wal-048 DUP Duplicate     –19.42 4.56 3.23 - 
Wal-049 mandible     –19.47 3.84 3.25 19.1 

Fish, Bowfins (Amia calva) 
Lia-003 post-orbitals     –20.14 8.46 3.19 4.5 

Mammal, large 
Lig-008 long bone, fragment     –23.27 3.97 3.33 7.8 

Mammal, medium 
Sla-025 radius     –25.84 1.05 3.21 13.3 

Muskrat (Ondatra zibethicus) 
Lia-014 mandible     –20.43 4.71 3.26 11.2 

Wal-025 maxilla     –23.00 7.28 3.25 12.0 
Wal-052 mandible, left     –20.55 6.79 3.30 13.6 

Porcupine (Hystricomorph Hystricidae) 
Lia-007 mandible     –19.86 4.93 3.25 2.9 

Lia-007 DUP Duplicate     –20.00 4.92 3.26 - 
Van-102 maxilla     –21.41 5.60 3.12 4.4 
Wal-054 mandible, right     –20.21 4.42 3.28 9.8 

Rabbit or hare (Leporidae ) 
OLG-015 femur, right     –19.74 4.66 3.08 12.8 

Pip(2)-017 innominate, left     –19.49 4.11 3.07 19.6 
Tho-019 humerus     –22.12 3.44 3.20 17.4 



298 

 

Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 
Rabbit or hare (Leporidae ) continued 

Tho-019 DUP Duplicate     –22.16 3.48 3.17 - 
Tho-023 femur, left     –22.08 3.46 3.20 17.9 
Van-068 femur, right     –27.35 3.96 3.33 4.1 
Van-118 femur, right     –23.10 4.14 3.05 8.4 
Wal-024 humerus, right     –22.05 4.08 3.22 12.9 
Wal-053 femur, right     –27.08 2.09 3.25 14.1 

Raccoon (Procyon lotor) 
Bog-002 calcaneous     –20.96 8.09 3.26 13.9 
Crf-039 mandible     –13.98 6.76 3.07 12.4 

Crf-039 DUP Duplicate      –13.99 6.64 3.07 - 
Crf-039 DUP Duplicate     –13.93 6.65 3.21 - 

Crf-040 mandible     –15.52 7.51 3.20 12.8 
Crf-040 DUP Duplicate     –15.52 7.46 3.20 - 

Fon-109 mandible, right     –20.96 8.95 3.07 13.8 
IWP(01)-017 radius     –20.36 9.47 3.14 6.1 
IWP(09)-001 mandible     –19.88 7.84 3.08 6.0 
IWP(09)-004 ulna, left     –21.28 9.65 3.07 8.9 
IWP(09)-010 ulna, right     –20.66 9.72 3.33 5.1 
IWP(09)-014 mandible     –20.07 9.03 3.15 5.7 
IWP(09)-018 humerus, right     –21.56 9.45 3.28 6.9 
IWP(09)-040 fibula     –21.27 10.35 3.13 19.0 
IWP(09)-078 maxilla     –20.13 7.68 3.03 7.9 

IWP(09)-078 DUP Duplicate     –19.98 8.38 3.21 - 
IWP(09)-111 calcaneous, right     –20.82 9.13 3.15 9.2 
IWP(09)-116 humerus, distal     –20.77 5.83 3.13 7.5 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 
Raccoon (Procyon lotor) continued 

IWP(09)-118 ulna     –20.93 8.49 3.14 7.5 
IWP(09)-131 ulna, proximal     –20.48 9.64 3.09 5.4 

Lia-001 radius     –23.48 9.84 3.26 3.4 
Lia-012 maxilla     –21.36 4.62 3.25 2.2 
Lia-013 mandible, right     –23.61 9.11 3.25 12.9 

Lia-013 DUP Duplicate     –23.72 9.09 3.25 12.9 
Mon-001 ulna, proximal     –21.29 9.25 3.37 4.1 

Pip(1)-151 mandible     –22.87 9.58 3.14 6.4 
Sil-006 mandible, left     –20.46 9.08 3.25 2.4 

Van-103 mandible, right     –20.50 9.59 3.29 9.7 
Van-106 mandible, left     –20.94 8.87 3.30 5.0 
Wal-042 mandible, right     –21.27 7.44 3.26 8.6 
Wal-055 mandible, right     –22.25 8.30 3.20 19.3 
Wal-056 ulna, shaft     –21.27 8.81 3.20 18.4 
Win-218 mandible     –19.73 7.46 3.07 19.1 

Win-218 DUP Duplicate     –19.73 7.44 3.07 - 
Win-233 mandible     –21.67 9.56 3.21 17.8 
Sla-007 carapace     –23.18 5.04 3.21 16.1 
Sla-034 carapace     –22.96 5.08 3.23 16.7 
Wal-026 femur     –25.05 7.23 3.22 13.0 

White-tailed deer (Odocoileus virginianus) 
 BrB-010  mandible, right     –23.46 4.75 3.10 4.8 
 BrB-011  manidle, right     –23.63 4.88 3.14 3.3 
 BrB-012  mandible, left     –21.60 4.35 3.11 5.4 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 

 BrB-013  mandible, left     –23.60 4.99 3.17 2.7 
Bog-054  mandible, right     –23.02 5.03 3.37 8.0 

Bog-054 mDUP Method Duplicate     –23.01 4.87 3.36 8.0 
Clv-015  mandible, right     –22.05 6.12 3.34 8.1 
Clv-016  mandible, right     –22.38 5.68 3.43 -  
Clv-017  mandible, right     –21.19 8.16 3.44 8.3 

Clv-017 DUP Duplicate     –21.20 7.65 3.44 - 
Clv-019  mandible, right     –22.65 5.13 3.40  - 
Cra-001  astragulus     –23.33 4.58 3.26 16.3 

Cra-001 mDUP Method Duplicate     –23.26 4.76 3.32 15.2 
Crf-002 phalanx     –23.45 4.15 3.24 9.7 
Crf-095 mandible     –21.85 5.17 3.38 6.3 

Crf-095 DUP Duplicate     –21.86 5.39 3.32 6.0 
Dav-001  long bone, fragment     –23.92 3.90 3.38 3.7 
Dav-003  long bone, fragment     –23.16 4.27 3.43 2.6 
Dav-004  fkull, fragment     –22.01 6.16 3.30 9.5 
Fon-001 phalanx     –22.80 4.98 3.07 18.1 

Fon-001 DUP Duplicate     –22.79 4.97 3.06 - 
Fon-001 mDUP Method Duplicate     –22.82 5.03 3.28 17.6 

Fon-001 mDUP DUP Method Duplicate     –22.82 5.05 3.28 - 
Fon-009  mandible     –22.79 6.14 3.31 15.8 

Fon-009 mDUP Method Duplicate     –22.78 6.10 3.31 14.5 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 

Fon-014  mandible     –22.19 5.81 3.04 15.7 
Fon-019        –22.79 5.46 2.97 21.9 

Fon-019 mDUP Method Duplicate      –22.64 5.61 3.25 23.4 
Fon-047        –22.91 5.12 3.06 16.2 

Fon-047 DUP Duplicate      –24.88 2.83 3.25 - 
Ham-004  mandible     –22.02 4.98 3.36 6.1 

IWP(01)-001  mandible, right     –23.34 5.29 3.36 6.1 
IWP(01)-001 mDUP Method Duplicate     –23.38 5.31 3.32 6.3 

IWP(01)-009  mandible, left     –23.36 5.68 3.41 4.7 
IWP(01)-025  mandible     –24.07 5.65 3.07 6.2 

IWP(01)-025 DUP Duplicate     –23.85 5.34 3.29 - 
IWP(01)-036 DUP Duplicate     –23.64 5.47 3.18 12.9 

IWP(01)-036 mDUP Method Duplicate     –23.68 4.96 3.31 16.7 
IWP(03)-23 phalanx     –23.49 4.85 3.47 6.8 

IWP(09)-002  mandible     –23.84 4.92 3.08 5.0 
IWP(09)-047  maxilla     –22.95 4.78 3.04 6.0 

IWP(09)-047 DUP Duplicate     –23.32 4.80 3.49 - 
IWP(09)-047 DUP Duplicate     –22.79 4.91 3.36 - 

IWP(09)-054  mandible     –23.31 5.07 3.33 18.7 
IWP(09)-054 mDUP Method Duplicate     –23.54 5.25 3.26 19.9 

IWP(09)-134  mandible     –23.43 5.19 3.42 2.6 
IWP(09)-134 mDUP Method Duplicate     –23.40 5.13 3.37 2.9 

IWP(12)-003  metatarsal     –22.54 4.70 3.28 3.2 
IWP(12)-004  navicular     –22.14 5.35 3.27 5.3 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 

IWP(12)-005        –22.94 5.14 3.24 4.2 
Lia-006  bulla     –23.82 6.82 3.45 4.0 

Lia-006 mDUP Method Duplicate     –23.69 7.08 3.52 5.2 
Lia-010  mandible     –20.72 8.62 3.24 6.0 

Mon-004  innominate, right     –22.48 5.96 3.43 6.6 
Mon-005  mandible     –21.79 4.40 3.46 3.3 

Mon-005 DUP Duplicate     –21.72 4.47 3.44  - 
Mon-006  mandible     –22.66 4.78 3.32 2.3 

Mon-006 mDUP Method Duplicate     –22.54 5.08 3.46 1.3 
Mon-007  mandible     –23.05 5.33 3.38 2.3 
Mon-008 mandible     –23.10 5.41 3.38 3.9 
OLG-001  mandible, right     –22.12 7.00 3.32 18.3 

OLG-001 mDUP Method Duplicate     –22.19 7.00 3.29 18.3 
OLG-002  phalanx     –21.70 6.07 3.05 22.6 
OLG-013  ulna, proximal left     –23.22 5.08 3.12 2.9 

OLG-013 mDUP Method Duplicate     –23.32 5.57 3.35 3.0 
Pip(1)-103 mandible, left     –22.06 3.73 2.98 14.7 

Pip(1)-103 mDUP Method Duplicate     –22.03 3.79 3.26 15.5 
Pip(1)-157 phalanx, II     –22.43 4.54 3.15 19.1 

Por-009  phalanx II     –22.09 6.12 3.27 5.8 
Por-009 DUP Duplicate     –22.08 6.06 3.09 - 

Por-009 mDUP Method Duplicate     –22.19 6.05 3.36 - 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 

Por-017 carpal, left radial     –22.13 5.01 3.12 6.3 
Por-017 mDUP Method Duplicate     –21.99 5.04 3.31 6.5 

Pri-008  astragulus, right     –23.05 4.95 3.16 9.6 
Pri-017  vertebrae, cervical     –22.35 4.91 3.19 8.4 

Pri-017 DUP Duplicate     –20.24 5.85 3.01 - 
Pri-019  tibia, distal, left     –22.54 4.41 3.16 8.1 

Pri-019 DUP Duplicate     –22.46 2.99 3.19 - 
Rif-007 mandible     –21.25 8.23 3.92 4.0 

Rif-007 mDUP Method Duplicate     –21.32 8.05 3.27 3.9 
Rif-077 mandible     –22.65 6.80 3.40 6.3 
Sil-019        –22.65 5.54 3.34 2.4 

Sil-019 DUP Duplicate      –23.25 5.48 3.29 - 
Sil-026        –23.81 6.09 3.34 4.0 

Sil-026 DUP Duplicate      –23.95 6.17 3.24 - 
Sla-017  carpal     –24.18 5.82 3.06 19.3 
Tho-002  humerus, distal      –22.07 5.73 3.30 4.9 
Tho-012  phalanx     –22.08 5.75 3.08 12.7 

Tho-012 mDUP Method Duplicate     –22.00 5.87 3.31 13.2 
Tho-018  ulna, proximal     –22.07 5.69 3.30 10.2 
Van-001  astragulus, right     –23.00 5.52 3.09 5.3 

Van-001 mDUP Method Duplicate     –23.03 5.82 3.35 4.7 
Van-003  astragulus, right     –21.82 4.49 3.06 3.1 

Van003 mDUP Method Duplicate     –21.82 4.47 3.44 1.6 
Van-018  maxilla, left     –21.45 6.33 3.33 4.7 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 

Van-019  maxilla, left     –22.20 5.56 3.25 12.2 
Van-020 mandible, right     –23.84 5.35 3.15 5.2 
Van-022 mandible, right     –24.06 4.92 3.33 5.4 
Van-108  skull     –23.10 5.45 3.15 5.2 
Wal-003  radius, left     –23.79 4.18 3.19 14.2 
Wal-005  phalanx, proximal     –23.29 4.29 3.17 19.7 
Wal-008  phalanx, middle     –23.71 6.11 3.17 15.0 
Wal-009   calcaneous, right     –24.32 5.86 3.24 17.3 
Wal-010  phalanx, proximal     –23.65 5.54 3.25 12.5 

Wal-010 DUP Duplicate     –23.63 5.60 3.24 - 
Wal-011  mandible     –22.56 4.77 3.36 3.7 
Wal-013  phalanx, proximal     –23.54 4.49 3.31 6.8 
Wal-014  phalanx, proximal     –24.06 5.61 3.21 - 
Wal-014  phalanx, proximal     –23.56 4.26 3.24 16.4 

Wal-014 DUP Duplicate     –23.53 4.24 3.25 - 
Wal-016  phalanx, proximal     –23.84 4.26 3.36 5.0 
Wal-018  phalanx, proximal     –22.37 5.08 3.19 21.5 
Wal-021  phalanx, distal     –24.66 5.35 3.20 19.3 
Wal-036  phalanx, proximal     –22.40 6.13 3.25 7.3 
Wal-037  maxilla, right     –23.36 4.76 3.20 20.6 

Wal-037 DUP Duplicate     –23.33 4.88 3.21 - 
Wal-038  maxilla, left     –21.91 5.54 3.22 18.2 
Win-157       –21.19 8.17 3.79 3.3 

Win-157 mDUP Method Duplicate      –21.25 8.25 3.95 - 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 
Win-159 mandible     –21.93 7.29 3.30 3.3 

Win-159 DUP Duplicate     –21.86 7.33 3.35 3.3 
BrB-02 tibiotarsus, right     –20.89 5.50 3.12 4.5 
BrB-03 humerus, right     –20.68 5.28 3.10 5.5 

Clv-033 + scapula, right Juvenile, 
large   –20.77 6.25 3.45 14.4 

Clv-033 DUP Duplicate Juvenile, 
large   –20.77 6.26 3.47 14.4 

Crf-043~ tarsosmetatarsus, left   Possible 
female –20.61 6.04 3.04 24.7 

Crf-044~ tarsosmetatarsus, left   Possible 
female –20.16 5.77 3.04 8.5 

Crf-045~ tarsosmetatarsus, proximal, 
left     –17.75 6.74 3.06 16.3 

Crf-046~ tarsosmetatarus, left Juvenile, 
large   –18.53 6.60 3.05 16.3 

Crf-047 mDUP Method Duplicate Juvenile, 
large   –17.45 7.33 3.32 19.3 

Crf-047~ tarsosmetatarus, left Juvenile, 
large   –17.44 7.24 3.04 19.2 

Crf-048 DUP Duplicate   Possible 
female –18.77 6.48 3.03 - 

Crf-048~ tarsosmetatarsus, right   Possible 
female –18.78 6.56 3.04 15.5 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 

 Crf-051~ tarsosmetatarsus, right 4 + years Probabl
e male –20.92 6.17 3.09 6.7 

Fon-020 carpometacarpus, left     –21.59 6.31 3.09 7.0 
Fon-020 mDUP   Method Duplicate     –21.65 6.80 3.41 7.0 

Fon-020 mDUP DUP Duplicate     –21.63 6.67 3.41 - 
Fon-033 foot phalanx     –21.01 6.90 3.23 23.3 

Fon-033 DUP foot phalanx     –21.01 6.94 3.22 - 
Fon-104 foot phalanx     –21.29 5.39 3.10 9.0 
Ham-05 humerus, right distal     –9.93 8.17 3.32 16.5 

Ham-05 DUP Duplicate     –9.83 7.89 3.36 - 
Ham-05 mDUP Method Duplicate     –10.23 7.91 3.29 15.3 

Ham-06 coracoid     –19.80 6.25 3.42 12.9 

Ham-07 long bone frag (id'd by 
McMaster)     –20.64 6.13 3.34 15.1 

Ham-07 mDUP Method Duplicate     –20.72 6.17 3.32 14.5 

Ham-08 coracoid, left Juvenile, 
large   –17.08 6.75 3.39 18.1 

Ham-09~ coracoid, distal, left   Possible 
female –19.59 6.39 3.44 12.4 

Ham-10~ humerus, right Juvenile, 
large   –22.83 4.88 3.47 13.0 

Ham-11~ coracoid, left Juvenile, 
large   –19.13 5.55 3.37 16.9 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 

IWP(01)-30 coracoid, left proximal     –22.37 6.75 3.07 8.3 
IWP(01)-30 DUP Duplicate     –22.31 6.76 3.08 - 

IWP(03)-02 ulna, right shaft     –21.88 6.76 3.01 17.2 
IWP(03)-06 sternal rib     –21.45 6.58 3.00 21.9 
IWP(03)-07 carpometacarpus, left     –23.48 5.79 3.00 18.7 
IWP(03)-08 phalanx     –23.18 5.47 3.03 18.9 

IWP(03)-15 coracoid, left   Possible 
female –21.85 6.14 2.96 18.9 

IWP(09)-009 radius, left distal     –21.49 5.67 3.31 5.0 
IWP(09)-012 phalanx, third     –23.56 5.75 3.14 11.9 

IWP(09)-012 DUP Duplicate     –23.28 6.60 3.31 - 
IWP(09)-032 carpometacarpus, left     –22.07 6.78 3.11 7.2 
IWP(09)-048 carpometacarpus, right     –20.21 4.72 3.03 9.1 
IWP(09)-079 scapula, right     –23.24 6.67 3.24 8.1 
IWP(09)-083 humerus, left     –23.67 5.96 3.07 5.7 

IWP(09)-083 mDUP Method Duplicate     –23.75 6.29 3.42 5.2 
IWP(09)-088 phalanx, third     –22.45 8.49 3.09 5.3 
IWP(09)-119 vertebrae     –23.17 5.71 3.08 8.1 
IWP(09)-122 phalanx, first     –21.30 7.64 3.24 19.9 
Pip(1)-010^ femur, left     –20.52 6.18 3.05 17.1 

Pip(1)-023 + coracoid, right+   Possible 
male –20.76 6.39 3.05 18.9 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 

Pip(1)-024 + coracoid, right   Possible 
male –21.05 6.03 3.04 12.6 

Pip(1)-024 mDUP Method Duplicate   Possible 
male –20.83 6.15 3.43 18.9 

Pip(1)-024 mDUP DUP Duplicate   Possible 
male –20.77 5.21 3.39 - 

Pip(1)-025 coracoid, right   Possible 
male –21.52 6.03 3.10 19.3 

Pip(1)-048 phalanx, third     –19.88 6.84 3.09 21.9 
Pip(1)-075 skull, complete     –20.62 8.49 3.03 25.2 
Pip(1)-179 vertebrae, axis     –20.40 5.97 3.06 20.5 
Pip(1)-184 scapula, left     –22.50 5.44 3.04 20.6 

Pip(2)-070 scapula, left Juvenile, 
medium   –20.07 6.86 3.05 16.1 

Pri-007 vertebrae, cervical Juvenile   –18.33 5.24 3.16 10.9 
Rif-062 scapula     –20.63 7.12 3.06 13.5 

Rif-080 coracoid, left Immature Possible 
male –22.34 6.81 3.07 16.6 

Rif-092 vertebrae     –19.80 6.78 3.29 19.5 
Rif-092 mDUP Method Duplicate     –19.74 6.72 3.30 18.9 

Rif-107 phalanx, second wing, right     –22.96 5.18 3.03 22.4 
Rif-107 DUP Duplicate     –23.07 5.05 3.03 - 

Tho-035 carpometacarpus, left     –22.36 5.03 3.42 7.5 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 
Tho-046 humerus     –22.31 5.86 3.40 5.6 
Tho-054 humerus, right     –21.78 4.00 3.40 12.9 

Tho-054 DUP Duplicate     –21.80 4.81 3.45 12.9 
Tho-058 ulna, shaft     –22.22 4.87 3.40 11.7 
Tho-065 synsacrum     –22.16 6.60 3.41 10.2 
Van-011 tibiotarsus, left distal     –21.33 5.56 3.34 5.9 
Van-012 tarsometarsus, left distal     –21.32 6.76 3.32 5.6 
Van-017 synsacrum     –20.93 6.31 3.30 6.7 
Wal-050 ulna, shaft     –20.19 5.46 3.25 17.1 

Wal-050 mDUP Method Duplicate     –20.20 5.61 3.48 18.4 
Wal-051 vertebrae, cervical     –21.95 5.63 3.22 22.1 
Win-047 coracoid, left     –19.55 6.92 3.09 19.0 

Win-047 DUP Duplicate     –19.58 6.85 3.08 19.0 

Win-221 humerus, right (very large)   Possible 
male –19.02 6.11 3.04 5.6 

Woodchuck/groundhog (Marmota monax) 
Cra-015 skull     –23.30 4.25 3.22 19.9 
Fon-025 innominate     –24.22 2.53 3.01 21.5 
Fon-049 mandible     –19.40 3.94 3.04 11.6 
Lig-004 mandible     –23.21 2.27 3.30 17.2 
Lig-009 ulna, left     –23.05 2.79 3.13 2.0 
Lig-014 mandible     –23.30 2.67 3.27 6.2 
Tho-007 radius     –23.76 2.27 3.19 19.3 
Van-044 femur, left     –25.60 3.09 3.02 15.1 
Van-056 humerus, left Juvenile   –23.66 3.11 3.08 13.8 
Van-069 humerus, left     –25.49 3.05 3.07 7.4 
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Appendix B continued 

Sample ID 
(Genus and/or species) Sample Description Age** Sex δ13Ccol        

(‰,VPDB) 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 
Van-072 tibia, right Juvenile   –26.39 3.13 3.24 15.6 
Van-080 mandible, left     –25.75 2.73 3.24 16.1 
Van-093 mandible, left     –25.67 3.20 3.11 5.7 
Van-095 mandible, left     –26.45 2.95 3.07 14.9 
Van-113 femur, left Juvenile   –22.89 4.86 3.16 2.9 
Van-119 mandible, left     –25.76 3.01 3.16 4.7 
Wal-017 mandible     –23.17 2.13 3.21 20.0 
Wal-020 mandible, left     –25.05 3.34 3.25 14.9 

Sex = unknown, unless noted      
 Age = probable or definite adult, unless noted       ^ = carnivore puncture marks 

^^=partially burnt        
 ~ possible purposeful burial (complete individual or special circumstance)    + cut marks                

        

 

  



311 

 

Appendix C: Bone collagen isotopic composition and sample description (modern) 

Sample Name Sample 
Description Age Sex Location δ13Ccol        

(‰,VPDB) 
δ13Ccol 

+1.65‰ 
δ15N

col        
(‰, AIR) C:N Collagen 

Yield (%) 
White-tailed deer (Odocoileus virginianus) 

  Mod-Deer-01 mandible, left adult male London, Middlesex 
County –20.17 –18.52 4.58 3.37 21.2 

  Mod-Deer-01 DUP Duplicate     - –20.22 –18.57 5.85 3.36   

  Mod-Deer-01 mDUP Method 
Duplicate      - –20.20 –18.55 5.29 3.27 21.2 

  Mod-Deer-01 mDUP 
DUP Duplicate      - –20.21 –18.56 5.42 3.37   

  Mod-Deer-02^ mandible adult male outside Strathroy, 
Middlesex County –19.42 –17.77 3.62 3.36 19.0 

  Mod-Deer-03^ mandible, 
right adult male outside Strathroy, 

Middlesex County –20.22 –18.57 5.26 3.36 21.3 

  Mod-Deer-03 DUP Duplicate      - –20.27 –18.62 5.26 3.35   

  Mod-Deer-04^       outside Strathroy, 
Middlesex County 

–20.38 –18.73 4.02 3.31 21.13 

  Mod-Deer-04 DUP Duplicate      - –20.46 –18.81 3.47 3.35   
  Mod-Deer-05        Renfrew County –24.61 –22.96 2.07 3.41 21.7 

  Mod-Deer-05 DUP Duplicate      - –24.61 –22.96 1.76 3.42   

  Mod-Deer-06 mandible adult male Haldimand-Norfolk 
County –22.05 –20.40 7.78 3.31 21.1 

  Mod-Deer-06 DUP Duplicate      - –22.02 –20.37 7.27 3.32   
  Mod-Deer-07 mandible adult male Kitchener-Waterloo –20.82 –19.17 5.65 3.39 22.5 

  Mod-Deer-07 DUP Duplicate      - –20.87 –19.22 5.25 3.36   

  Mod-Deer-08 mandible adult male Haldimand-Norfolk 
County –22.25 –20.60 4.23 3.31 22.2 
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Appendix C continued 

Sample Name Sample 
Description Age Sex Location δ13Ccol        

(‰,VPDB) 
δ13Ccol 

+1.65‰ 
δ15N

col        
(‰, AIR) C:N Collagen 

Yield (%) 

  Mod-Deer-09 mandible adult male Haldimand-Norfolk 
County –23.38 –21.73 2.80 3.31 23.5 

  Mod-Deer-09 DUP Duplicate       –23.37 –21.72 2.78 3.31   

  Mod-Deer-10 mandible adult male Haldimand-Norfolk 
County –23.67 –22.02 5.17 3.49 17.9 

  Mod-Deer-11 mandible adult male Haldimand-Norfolk 
County –22.89 –21.24 4.56 3.37 17.7 

  Mod-Deer-12 mandible adult unknow
n 

south London, 
Middlesex County –20.93 –19.28 5.70 3.37 25.2 

  Mod-Deer-12 DUP Duplicate       –20.49 –18.84 5.41 3.38   

  Mod-Deer-13 mandible juveni
le 

unknow
n Peel County –21.22 –19.57 5.32 3.38 5.5 

  Mod-Deer-14 mandible adult male Middlesex County –18.94 –17.29 4.52 3.44 14.9 

  Mod-Deer-15 mandible adult male Haldimand-Norfolk 
County –18.66 –17.01 4.21 3.18  - 

Mod-Deer -15 mDUP Method 
Duplicate      - –19.33 –17.68 4.23 3.12  - 

Mod-Deer -16 mandible adult male Haldimand-Norfolk 
County –18.44 –16.79 6.44 3.11  - 

Mod-Deer -16 mDUP Method 
Duplicate      - –18.66 –17.01 6.36 3.13  - 

Wild turkey (Meleagris gallopavo) 
 Mod-turk-01B ulna, left 3 male Elgin County –14.07 –12.42 6.03 3.28 22.1 

 Mod-turk-01B DUP Duplicate     Duplicate –14.04 –12.39 6.10 3.27   

 Mod-turk-02B ulna, left 5+ male Haldimand-Norfolk 
County –17.65 –16.00 4.45 3.23 21.0 
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Appendix C continued 

Sample Name Sample 
Description Age Sex Location δ13Ccol        

(‰,VPDB) 
δ13Ccol 

+1.65‰ 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 

 Mod-turk-03B ulna, left 1 male Haldimand-Norfolk 
County –20.08 –18.43 5.11 3.29 23.0 

 Mod-turk-04B ulna, right 2 male Elgin County –16.35 –14.70 5.10 3.23 22.4 

 Mod-turk-05B ulna, left 2 male Haldimand-Norfolk 
County –17.31 –15.66 6.21 3.25 24.7 

 Mod-turk-06B ulna, right 4 male Norfolk County –18.48 –16.83 6.63 3.24 12.8 
 Mod-turk-06B DUP Duplicate     -  –18.54 –16.89 6.67 3.23   

 Mod-turk-07B ulna, left 2+ male near London, Middlesex 
County –17.82 –16.17 6.57 3.22 24.8 

 Mod-turk-07B mDUP Method 
Duplicate      - –17.95 –16.30 6.53 3.25 24.0 

 Mod-turk-08B ulna, right 2+ male near London, Middlesex 
County –19.36 –17.71 6.11 3.30 22.3 

 Mod-turk-09B ulna, left 1 male near London, Middlesex 
County –19.17 –17.52 5.93 3.24 22.5 

 Mod-turk-10B ulna, left 1 male near London, Middlesex 
County –17.59 –15.94 5.41 3.23 22.9 

 Mod-turk-11B ulna, left adult male near London, Middlesex 
County –17.39 –15.74 4.92 3.24 21.3 

 Mod-turk-11B mDUP Method 
Duplicate adult male  - –17.75 –16.10 5.00 3.24 20.8 

 Mod-turk-12B ulna, right adult male near London, Middlesex 
County –16.60 –14.95 4.37 3.27 21.3 

Mod-turk-13B ulna, right adult male near London, Middlesex 
County –17.02 –15.37 4.55 3.24 31.4 
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Appendix C continued 

Sample Name Sample 
Description Age Sex Location δ13Ccol        

(‰,VPDB) 
δ13Ccol 

+1.65‰ 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 
 Mod-turk-14B ulna, left adult male unknown –17.86 –16.21 4.35 3.30 20.2 

 Mod-turk-14B mDUP Method 
Duplicate       –17.88 –16.23 4.37 3.29 19.7 

 Mod-turk-15B phalanx adult male near London, Middlesex 
County –18.43 –16.78 4.90 3.62 21.2 

 Mod-turk-16B phalanx adult male near London, Middlesex 
County –20.85 –19.20 6.81 3.64 9.6 

 Mod-turk-17B femur adult  unknown –14.23 –12.58 7.63 3.44 15.3 

 Mod-turk-17B mDUP Method 
Duplicate     

 –14.22 –12.57 7.53 3.29 16.8 

 Mod-turk-18B ulna adult  London City Centre, 
Middlesex County –17.61 –15.96 6.33 3.45 19.2 

Mod-turk-19B tarsometarsu
s 

juveni
le 

unknow
n 

Walsingham Township, 
Norfolk County –17.74 –16.09 6.21 3.37 10.3 

Mod-turk-19B DUP Duplicate       –17.85 –16.20 6.03 3.22   
^ hunted in maize field            
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Appendix D: Bone structural carbonate isotopic composition and sample description (archaeological) 

Sample Name Age** Sex Element δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P* δ13Csc-col         

American black bear (Ursus americanus)  
Bog-043     phalanx –11.29 22.22 66.6 7.1 2.85 0.42 9.16 

Fon-072     phalanx, 
proximal –14.87 22.01 75.6 6.6 2.54 0.84 7.45 

Ham-024     mandible –11.56 22.45 70.7 n/a 2.75 0.44 8.36 
IWP(01)-052     metatarsal –11.55 18.93 55.7 5.7 2.86 0.40 10.65 

Pri-018     scaphoid, right –12.51 22.70 66.3 n/a 2.86 0.42 8.35 
Sil-020     metatarsals –13.79 22.19 71.6 5.2 3.19 0.25 6.92 

Van-071     phalanx, II –11.58 21.46 71.0 6.5 2.75* 0.39* 9.87 
Canid cf fox 

Crf-077     mandible –8.58 19.39 68.5 6.7 2.71* 0.52* 11.09 

Crf-077 DUP     mandible, no 
teeth –8.01 19.30 - 7.1 - - 11.61 

Tho-011     mandible, right –9.92 21.19 79.1 6.7 2.77 0.39 8.03 
Van-070     atlas –10.97 22.39 75.3 5.3 2.66 0.40 8.57 
Win-154     humerus, distal –9.17 19.21 71.2 6.8 2.72 0.48 9.20 

Win-154B mDUP     humerus, distal –8.41 20.97 68.7 6.9 - - - 
Win-229     mandible, right –13.03 21.49 68.4 6.1 2.60 0.72 5.74 
Dob-002     right humerus –10.37 20.61 77.3 5.4 2.96 0.35 8.97 

Dob-002B DUP     right humerus –12.27 21.59 - 5.2 - - - 
Canid cf. fox  or small C. familiaris 

Pip(2)-010     right humerus, 
shaft –5.66 20.43 66.1 5.5 2.73 0.49 5.81 

Pip(2)-010B DUP     right humerus, 
shaft –5.51 20.44 - 5.4 - - - 
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Appendix D continued 

Sample Name Age** Sex Element δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P* δ13Csc-col         

Pip(2)-010B mDUP     right humerus, 
shaft –5.59 20.47 66.8 5.4 - - 5.74 

Pip(2)-103     left humerus 
(cutmarks) –4.83 19.85 63.0 5.8 2.71 0.73 6.35 

Pip(2)-103B DUP     left humerus 
(cutmarks) –4.54 19.85 - 5.7 - - - 

Por-012     right humerus, 
distal –13.05 21.50 64.5 5.4 2.84 0.71 6.48 

Por-012B mDUP     right humerus, 
distal –12.81 22.03 75.0 4.7 - - 6.74 

Van-075     
left 

zygomatic/parti
al skull 

–15.79 21.30 72.4 7.8 2.65 0.73 5.43 

Van-075B DUP     
left 

zygomatic/parti
al skull 

–15.89 21.24 - 7.2 - - - 

IWP(09)-016       –6.09 19.54 80.4 3.7 3.03 0.27 7.80 
Canis sp. 

Bog-030     phalanx –7.49 21.45 67.4 5.2 2.68 0.75 6.42 
Bog-042     tarsal –7.47 21.29 65.7 6.0 2.80 0.45 7.32 

IWP(09)-066 Fetal   mandible, right –3.47 20.41     7.65 
OLG-14     left distal tibia –4.31 24.06 75.6 4.7 2.90* 0.36* 6.20 

OLG-14B mDUP     left distal tibia –4.12 23.57   5.3 - - - 
Pip(1)-175 10-12 weeks   mandible –11.48 22.77 74.6 6.6 2.64 0.71 7.67 
Pip(2)-028 juvenile   right tibia –11.38 21.90 76.3 5.5 2.82* 0.57* 10.23 
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Appendix D continued 

Sample Name Age** Sex Element δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P* δ13Csc-col         

Pip(2)-049     right calcaneous –3.19 21.64 66.1 - 2.69 0.51 7.96 
Pip(2)-110     atlas –3.81 20.81     6.81 

Sla-026     metacarpal –4.74 20.52 70.5 6.6 2.61 0.73 - 
Wal-034     left calcaneous –6.73 20.95 73.4 - 2.49 0.53 7.45 
Win-249 juvenile   ulna –4.63 20.14 70.7 7.0 2.75 0.68 5.67 

Rif-020     
left and right 
calcaneous 

(burnt) 
–5.30 19.81 65.2 7.4 2.81* 0.40* 6.32 

Canis sp. cf. C. familiaris 
Bog-016     mandible –7.52 22.03 76.5 6.5 2.85 0.38 6.13 

Cra-010     right ulna, 
proximal –7.72 22.32 88.0 7.7 2.93 0.32 14.09 

Crf-054     axis –4.87 18.71 69.7 4.4 2.59* 0.63* 7.02 
Crf-054 mDUP     axis –4.70 18.34 68.2 5.2 - - 7.18 

Dav-005     maxilla, 
fragment –9.80 18.42 88.8 6.9 2.73 0.36 10.95 

Dav-006     maxilla, 
fragment –9.38 20.16 60.7 2.5 3.24 0.28 11.44 

Dob-001     mandible –4.92 22.30 100.3 4.8 2.99* 0.36* 7.08 
Dob-001B mDUP     mandible –5.01 22.37 81.1 7.6 - - - 
Dob-001B mDUP 

DUP     mandible –5.02 22.01 - 7.1 - - - 

Fon-061     mandible, left –7.71 22.32 75.9 7.3 2.68 0.53 5.07 
Fon-117     mandible, right –6.59 19.99 63.0 6.1 2.46 0.61 6.00 
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Appendix D continued 

Sample Name Age** Sex Element δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P* δ13Csc-col         

Fon-121     mandible, left –8.35 20.93 75.8 7.6 2.63 0.88 6.41 
Ham-026     mandible, right –7.01 20.25 75.0 5.7 2.61* 0.82* 6.20 
Ham-027     mandible, right –9.32 19.83 75.5 4.4 2.63 0.51 5.82 

IWP(01)-027     left & mandible, 
right –5.89 21.83 61.6 7.6 2.75 0.46 8.67 

IWP(01)-035     mandible, right –7.51 21.66 84.7 4.4 3.00 0.29 8.07 
IWP(12)-01     tibia, complete –6.06 20.49 80.5 7.6 2.78* 0.42* 10.23 

Pip-(1)-138     left radius, 
complete –4.42 20.32 75.0 7.0 2.59 0.21 6.13 

Pip(1)-180     
left ulna, 
complete 

(cutmarks) 
–5.30 20.40 75.1 5.7 2.64 0.71 6.10 

Pip(2)-044     left scapula –5.65 20.79 72.7   2.61 0.71 5.28 

Pip(2)-087     right ulna, 
proximal –6.47 21.70 46.3 5.4 2.88 0.38 5.68 

Rif-008     left femur –5.13 21.95 73.4 4.9 2.56 0.63 5.33 
Rif-008B repeat     left femur –5.18 21.61 - 5.8 - - - 

Rif-019     left and 
mandible, right –5.33 20.02 74.9 7.8 2.69 0.54 5.48 

Rof-002     mandible –7.37 22.35   4.8 - - 4.90 
Rof-2B mDUP     mandible –7.54 21.57 100.9 7.5 3.26 0.35 - 

Sla-019     phalanx –4.77 20.16 72.2 6.2 2.63 0.60 6.63 
Tho-006     mandible –5.38 21.65 75.9 7.5 3.00 0.33 7.42 
Tho-010     ulna, proximal –7.11 21.93 69.0 6.3 2.73 0.82 5.64 
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Appendix D continued 

Sample Name Age** Sex Element δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P* δ13Csc-col         

Tho-053     left calcaneus,  –7.59 21.60 77.5 7.9 2.66 0.68 5.53 
Van-124     mandible, right –7.05 22.08 82.3 5.0 2.85* 0.40* 6.04 

Van-124B mDUP     mandible, right –7.01 21.23 76.5 5.6 - - - 
Wal-032     right maxilla –7.79 21.96 77.4 7.4 2.57 0.48 6.22 
Wal-057     mandible, left –7.31 23.40 69.3 3.5 3.11 0.27 5.63 
Wal-058     mandible, left –7.91 22.71 66.8 6.7 2.61 0.62 5.90 
Wal-059     mandible, left –6.51 21.82 69.9 5.5 2.63 0.57 5.68 
Wal-060     mandible, left –7.05 22.24 71.4 5.9 2.69 0.36 6.14 
Win-002     calcaneous –5.93 18.96 64.8 5.4 2.78 0.51 7.45 

Win-084     lumbar 
vertebrae –5.00 19.48 65.3 5.9 2.69* 0.60* 6.66 

Win-084B mDUP     lumbar 
vertebrae –5.03 19.68 68.8 6.0 - - 6.65 

Win-150     radius –4.42 20.80 75.0 5.7 2.47 0.85 6.39 

Ham-025     mandible, right 
(burnt) –9.46 21.38 72.5 4.9 2.79 0.78 3.98 

Ham-025 DUP     mandible, right 
(burnt) –9.20 21.40 - 5.1 - - - 

Canis sp. cf. C. lupus or lg. C. familaris 
BrB-004     left tibia, distal –13.31 22.57 82.6 5.5 3.01* 0.37* 8.54 
Van-111     phalanx I –10.95 23.15 53.7 6.1 2.74 0.43 11.18 

Win-183     right maxilla, 
fragment –13.61 21.64 76.0 7.1 2.60 0.49 7.27 
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Appendix D continued 

Sample Name Age** Sex Element δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P* δ13Csc-col         

Win-183B DUP     right maxilla, 
fragment –13.09 21.15 - 7.1 - - 7.28 

Eastern gray/black squirrel (Sciurus carolinensis) 
Van-085     mandible, left –13.64 20.53 69.5 n/a 2.47 0.79 5.85 

Mammal, medium 
Sla-025     radius –17.03 20.98 70.5 6.8 2.61 0.73 8.81 

Raccoon (Procyon lotor) 
Crf-039     mandible –8.67 22.45 69.6 n/a 3.14 0.24 5.31 
Crf-040     mandible –8.60 22.66 85.1 6.2 3.20 0.24 6.93 
Sil-006     mandible, left –11.94 21.30   n/a 2.83 0.38 8.52 

Win-233     mandible –15.83 19.44 71.2 6.2 2.61* 0.75* 5.84 
White-tailed deer (Odocoileus virginianus) 

 Bog-054      mandible, right –11.12 22.41 73.9 6.1 2.61 0.47 11.89 
 BrB-011      manidle, right –12.29 21.93 70.0 4.9 3.06 0.34 11.34 

 BrB-011 DUP     mandible, right –12.28 21.24 -   - - - 
 BrB-013      mandible, left –12.94 21.75 63.5 5.5 2.99 0.31 10.66 
Clv-015      mandible, right –11.35 22.55 66.3 5.0 2.99 0.36 10.70 
Clv-016      mandible, right –11.71 21.69 75.5 7.7 2.20 0.44 10.68 
Clv-017      mandible, right –10.72 20.99 82.4 7.5 2.61 0.57 9.81 

Clv-017 DUP     mandible, right –11.39 20.64 - 7.7 - - - 
Clv-019      mandible, right –10.59 21.96 80.0 8.6 2.62 0.55 12.06 
Cra-001      astragulus –12.50 20.66 64.6 4.6 2.57 0.63 10.83 
Crf-002     phalanx –8.84 23.00 78.0 6.1 2.80 0.41 14.61 
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Appendix D continued 

Sample Name Age** Sex Element δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P* δ13Csc-col         

Crf-002 mDUP     phalanx –8.67 22.92 79.6 6.7 - - - 
Crf-095     mandible –6.72 20.10 79.9 7.2 2.96 0.32 15.13 

Crf-095 DUP     mandible –6.61 20.03 - 7.4 - - 15.25 
Dav-001      long bone frag –11.01 22.01 83.4 3.5 3.03 0.35 12.91 
Dav-003      long bone frag –11.26 21.23 84.1 7.3 3.10 0.34 11.90 
Dav-004      skull frag –11.51 20.96 82.4 5.8 2.92 0.38 10.50 

Dav-04 DUP     skull frag –11.56 21.04 - 5.3 - - - 
Fon-001     phalanx –13.04 20.05 69.8 7.3 2.09 0.67 9.77 
Fon-019        –14.15 20.34 69.6 4.8 3.06 0.31 8.64 

IWP(01)-001      mandible, right –8.03 19.33 61.6 5.8 2.87 0.37 15.30 
IWP(01)-001 mdup     mandible, right –8.13 20.21 59.9 5.6 - - 15.25 
IWP(01)-036 mDUP     mandible –14.02 21.07 63.9 8.4 2.68 0.63 9.66 
IWP(01)-036 rerun     mandible –13.95 21.12 64.7 7.9 - - 9.69 

IWP(09)-054      mandible –13.66 20.06 65.9 7.8 2.68 0.63 9.65 
IWP(09)-054 mDUP     mandible –13.72 19.98 66.8 7.8 2.60 0.74 9.81 
IWP(09)-054 mdup 

DUP     mandible –13.72 19.84 - 7.1 - - - 

IWP(09)-134      mandible –8.29 18.94 54.7 5.8 2.82 0.37 15.14 
IWP(12)-003      metatarsal –8.40 21.06 68.5 5.7 2.87 0.33 14.14 
IWP-(03)-023       –8.16 20.09   8.0 - - 15.33 

IWP-(03)-023 DUP       –8.33 20.45   7.3 - - - 
IWP-(03)-023 mDUP       –8.01 19.85   7.8 - - - 

Lia-006      bulla –13.69 22.68 72.6 6.4 2.78 0.46 10.13 
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Appendix D continued 

Sample Name Age** Sex Element δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P* δ13Csc-col         

Lia-006 mDUP     bulla –13.68 22.44 75.0 5.5 - - 10.01 

Mon-004      innominate, 
right –8.90 21.90 n/a 5.1 3.07 0.37 13.59 

Mon-006      mandible –9.87 21.14 59.5 5.6 2.93 0.35 12.79 
Mon-006 mDUP     mandible –9.89 21.63 - 4.7 - - 12.64 

Mon-008     mandible –9.73 21.78 76.9 5.7 3.28 0.27 13.36 
Mon-008 mDUP     mandible –9.99 22.01 87.0 4.5 - - - 

OLG-001      mandible, right –14.20 21.44 72.2 5.5 2.57 0.63 7.92 

OLG-013      ulna, proximal 
left –8.91 21.35 71.7 7.3 2.68 0.33 14.31 

Pip(1)-103     mandible, left –8.74 21.82 83.0 8.9 2.73 0.64 13.32 
Pip(1)-103 mDUP     mandible, left –9.17 21.99 77.9 8.5     12.86 

Por-017     carpal, left 
radial –5.97 22.28 82.1 5.3 2.83 0.40 16.16 

Rif-007     mandible –7.95 23.76 83.0 5.5 3.00 0.30 13.30 
Rif-007 mDUP     mandible –8.52 22.62 82.7 5.1 - - 12.80 

Rif-077     mandible –11.11 22.88 - 6.3 2.94 0.32 11.54 
Tho-012      phalanx –11.03 21.74 58.2 5.7 2.75 0.46 11.04 
Van-001      astragulus, right –11.32 20.57 66.5 6.3 2.81 0.40 11.68 
Van-003      astragulus, right –10.12 21.78 74.6 4.2 2.97 0.29 11.70 

Van-003 mDUP     astraguls, right –10.12 21.96   4.6 3.11 0.26 11.70 
Van-020     mandible, right –8.80 22.05 87.1 7.8 2.78 0.42 15.04 

Van-020 DUP     mandible, right –8.52 21.88 - 8.1 - - - 
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Appendix D continued 

Sample Name Age** Sex Element δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P* δ13Csc-col         

Van-020 mDUP 
rerun     mandible, right –8.48 21.43 63.3 8.8 2.79 0.42 - 

Win-157       –8.59 22.77 83.6 4.9 3.21 0.24 12.60 
Win-157 mDUP       –8.62 22.41 81.5 4.7 - - 12.63 

Win-159     mandible –8.98 23.27 79.6 6.2 2.96 0.37 12.95 
Win-159 DUP     mandible –9.08 23.18 - 5.8 - - 12.78 

Wild turkey (Meleagris gallopavo) 

Crf-045~     tarsosmetatarsu
s, proximal, left –11.10 21.09 76.0 2.0 3.39 0.18 6.65 

Crf-048~   Possible 
female 

tarsosmetatarsu
s, right –11.21 19.59 78.2 3.4 2.93* 0.33* 7.57 

Ham-005     humerus, right 
distal –5.41 19.98 76.6 6.1 2.57 0.52 4.52 

Ham-005 DUP     humerus, right 
distal –5.53 19.92   6.7     4.30 

Ham-005 mDUP     humerus, right 
distal –5.42 19.94 76.6 7.0     4.82 

Ham-008 Juvenile, 
large   coracoid, left –8.92 22.16 76.6 5.0 2.97 0.46 8.16 

IWP(03)-002     ulna, right shaft –12.67 20.23 84.8 5.9 3.07 0.30 9.21 

Pip(2)-070 Juvenile, 
medium   scapula, left –11.13 22.11 78.1 4.5 2.65 0.61 8.94 

Pip(2)-070 DUP Juvenile, 
medium   scapula, left –11.63 22.15 - 5.7 - - - 
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Appendix D continued 

Sample Name Age** Sex Element δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P* δ13Csc-col         

Pri-007 
Juvenile, 

undetermin
ed 

  vertebrae, 
cervical –9.48 20.48 83.4 3.8 2.86 0.44 8.86 

Rif-062     scapula –13.43 21.19 76.4 5.2 2.55 0.68 7.20 

Rif-080 Immature Possible 
male coracoid, left –12.19 20.49 79.1 6.1 2.68* 0.66* 10.15 

Rif-080 DUP Immature Possible 
male coracoid, left –12.13 20.67 - 9.1 - - - 

Rif-092     vertebrae –10.22 20.60 80.1 6.8 2.71 0.74 9.58 

Rif-107     phalanx, second 
wing, right –11.87 21.54 80.8 5.9 2.67 0.77 11.09 

Rif-107 DUP     phalanx, second 
wing, right –12.28 22.18 - 9.7 - - 10.79 

Tho-035     carpometacarpu
s, left –10.19 21.52 84.7 7.9 2.60 0.53 12.17 

Tho-035 DUP     carpometacarpu
s, left –10.68 20.67 - 8.2 - - - 

Win-047     coracoid, left –12.01 18.06 76.6 6.7 2.58 0.79 7.54 
Sex = unknown, unless noted        
Age = probable or definite adult, unless noted        
+ cut marks 

 
         

~ possible purposeful burial (complete individual or special circumstance)  
^ = carnivore puncture marks       
^^= partially burnt      
* CI or C/P value based on mDuplicate      
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Appendix E: Bone structural carbonate isotopic composition and sample description (modern) 

Sample Name Sample 
Description Age Sex Location δ13Csc        

(‰,VPDB) 
δ13Csc        

+1.65‰ 
δ18Osc      

(‰,VSMOW) 
Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P

* 
δ13C
sc-col         

White-tailed deer (Odocoileus virginianus)   

  Mod-Deer-01 mandible, 
left adult   London, 

Middlesex –12.81 –11.16 22.51 81.5 5.4 2.54     

  Mod-Deer-02^ mandible adult   
outside 

Strathroy, 
Middlesex 

–11.91 –10.26 22.56 59.3 4.7 2.39 0.89 
  

Mod-Deer-02 
mDUP 

Method 
Duplicate adult     –12.05 –10.40 22.62 54.9 4.2       

  Mod-Deer-03^ mandible, 
right adult   

outside 
Strathroy, 
Middlesex 

–12.89 –11.24 22.10 79.7 8.8 2.50 0.74 
  

  Mod-Deer-03 
DUP Duplicate adult     –12.97 –11.32 21.86   8.4       

  Mod-Deer-04^ mandible adult   
outside 

Strathroy, 
Middlesex 

–13.59 –11.94 22.73 70.0 5.4 2.47 0.67 
  

  Mod-Deer-04 
DUP Duplicate adult     –13.95 –12.30 22.54   5.3       

  Mod-Deer-05 mandible adult   
Combermer
e Renfrew 

County 
–19.47 –17.82 22.27 92.7 4.8 2.57 0.72 

  
  Mod-Deer-06 mandible adult   Norfolk –16.11 –14.46 20.16 26.1 5.8 2.57 0.81   
  Mod-Deer-06 

DUP Duplicate adult       1.65             

  Mod-Deer-07 mandible adult   Kitchener-
Waterloo –14.10 –12.45 23.93 66.5 4.8 2.58 0.57   
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Appendix E continued 

Sample Name Sample 
Description Age Sex Location δ13Csc        

(‰,VPDB) 
δ13Csc        

+1.65‰ 
δ18Osc      

(‰,VSMOW) 
Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P

* 
δ13C
sc-col         

  Mod-Deer-08 mandible adult     –15.58 –13.93 23.12 67.0 5.8 2.55 0.70   
  Mod-Deer-08 

DUP Duplicate adult     –15.54 –13.89 23.55   6.1       
  Mod-Deer-09 mandible adult   Norfolk –17.29 –15.64 22.30 62.8 5.6 2.83 0.79   
  Mod-Deer-10 mandible adult   Norfolk –18.27 –16.62 23.53 52.5 2.8 2.83 0.60   
  Mod-Deer-11 mandible adult   Norfolk –15.86 –14.21 19.80 32.9 0.9 n/a     
  Mod-Deer-11 

DUP Duplicate adult     –15.10 –13.45 20.46   0.9       
  Mod-Deer-11 

DUP Duplicate adult     –11.70 –10.05 22.32   1.0       

  Mod-Deer-14 mandible adult   
richard 

baskeyMidd
lesex 

–10.78 –9.13 21.83 77.7 4.5 2.70 0.46 
  

 Mod-deer-14 
DUP Duplicate adult     –10.41 –8.76 21.79   3.8       

Mod-Deer -15       Norfolk –18.66 –17.01 4.21 3.18         
Mod-Deer -15 

mDUP 
Method 

Duplicate     Norfolk –19.33 –17.68 4.23 3.12         
Mod-Deer -16       Norfolk –18.44 –16.79 6.44 3.11         
Mod-Deer -16 

mDUP 
Method 

Duplicate     Norfolk –18.66 –17.01 6.36 3.13         
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Appendix E continued 

Sample Name Sample 
Description Age Sex Location δ13Csc        

(‰,VPDB) 
δ13Csc        

+1.65‰ 
δ18Osc      

(‰,VSMOW) 
Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P

* 
δ13C
sc-col         

Wild turkey (Meleagris gallopavo)       

 Mod-turk-01B ulna, left 3 male Elgin County –5.53 –3.98 21.40 59.5 
  

2.56 0.81 8.53 

 Mod-turk-02B ulna, left 5+ male Norfolk 
County –9.79 –8.24 20.92 65.5   2.61 0.65 7.85 

 Mod-turk-03B ulna, left 1 male Norfolk 
County –12.16 –10.61 19.57 47.6   2.56 0.84 7.92 

 Mod-turk-04B ulna, right 2 male Elgin County –8.93 –7.38 20.80 70.1   2.55 0.74 7.42 
 Mod-turk-04B 

DUP Duplicate 2 male Elgin County –9.16 –7.61 20.85 -   - - - 

 Mod-turk-06B ulna, right 4 male Norfolk 
County –10.69 –9.14 20.81 67.7   2.56 0.74 7.79 

 Mod-turk-07B ulna, left 2+ male 

near 
London, 

Middlesex 
County 

–10.35 –8.80 20.57 72.7 

  

2.47 0.79 7.47 

 Mod-turk-09B ulna, left 1 male 

near 
London, 

Middlesex 
County 

–11.35 –9.80 18.82 66.1 

  

2.52 0.76 7.82 

 Mod-turk-09B 
mDUP 

Method 
Duplicate 1 male 

near 
London, 

Middlesex 
County 

–11.28 –9.73 19.83   
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Appendix E continued 

Sample Name Sample 
Description Age Sex Location δ13Csc        

(‰,VPDB) 
δ13Csc        

+1.65‰ 
δ18Osc      

(‰,VSMOW) 
Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P

* 
δ13C
sc-col         

 Mod-turk-09B 
DUP Duplicate 1 male 

near 
London, 

Middlesex 
County 

–10.75 –9.20 20.43   

  

      

 Mod-turk-10B ulna, left 1 male 

near 
London, 

Middlesex 
County 

–8.79 –7.24 21.27 66.1 

  

2.61 0.64 8.80 

 Mod-turk-11B ulna, left adult male 

near 
London, 

Middlesex 
County 

–9.92 –8.37 21.19 71.4 

  

2.54 0.74 7.47 

 Mod-turk-12B ulna, right adult male 

near 
London, 

Middlesex 
County 

–8.19 –6.64 20.54 71.0 

  

2.54 0.69 8.42 

 Mod-turk-13B ulna, right adult male 

near 
London, 

Middlesex 
County 

–8.30 –6.75 20.85 70.7 

  

2.56 0.71 8.72 

 Mod-turk-13B 
DUP Duplicate adult male 

near 
London, 

Middlesex 
County 

–8.28 –6.73 20.59   
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Appendix E continued 

Sample Name Sample 
Description Age Sex Location δ13Csc        

(‰,VPDB) 
δ13Csc        

+1.65‰ 
δ18Osc      

(‰,VSMOW) 
Bioapatite 
Yield (%) 

CO3 
(%) CI* C/P

* 
δ13C
sc-col         

 Mod-turk-14B ulna, left adult male unknown –9.32 –7.77 19.74 57.1   
2.57

* 
0.64

* 8.54 

 Mod-turk-14B 
mDUP 

Method 
Duplicate adult male   –9.46 –7.91 19.65 68.1   - - 8.42 

 Mod-turk-17B femur adult unkn
own unknown –8.60 –7.05 15.12 56.0   2.56 0.79 5.63 

^Hunted in maize field 
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Appendix F: Whole insect isotopic composition and sample description 

Sample Name Location Date Collected δ13C      
(‰,VPDB) 

δ15N        
(‰,AIR) C:N 

Cricket (Order: Gryllidea) 
Cricket CO july #2 Cornfield July-11 –21.00 4.84 5.04 

Cricket CO july #2 DUP Cornfield July-11 –20.68 4.71 4.94 
Cricket FO july#1 Meadow July-11 –27.54 2.21 5.40 

cricket 1c Cornfield September-11 –16.81 4.70 5.36 
cricket 1f Meadow September-11 –28.67 1.52 7.54 

cricket 1f DUP Meadow September-11 –28.79 1.48 8.03 
cricket 2c Cornfield September-11 –16.61 6.19 4.55 
cricket 2f Meadow September-11 –28.16 1.53 5.21 
cricket 3f Meadow September-11 –27.49 1.05 5.58 

06CRcorn1 Cornfield June-12 –22.22 5.94 4.87 
06CRfield1 Meadow June-12 –25.27 1.22 5.10 
08CRcorn1 Cornfield August-12 –24.28 4.57 5.70 

08CRcorn1 DUP Cornfield August-12 –24.46 4.59 5.31 
08CRfield2 Meadow August-12 –26.88 3.41 5.06 
09CRcorn1 Cornfield September-12 –23.65 2.05 5.28 
09CRcorn2 Cornfield September-12 –23.62 3.31 6.00 
09CRcorn3 Cornfield September-12 –23.28 3.09 5.46 
09CRfield1 Meadow September-12 –26.55 1.55 4.79 
09CRfield2 Meadow September-12 –27.01 2.49 4.87 
09CRfield3 Meadow September-12 –26.55 2.09 4.51 

Grasshopper (Order: Caelifera) 
Grasshopper FO june#2 Meadow June-11 –27.10 1.81 5.19 
Grasshopper FO june#3 Meadow June-11 –28.65 1.30 5.13 

Grasshopper FO june#3 DUP Meadow June-11 –28.41 1.16 5.01 
Grasshopper CO july #3 Cornfield July-11 –26.99 1.75 4.68 

Grasshopper CO july #3 DUP Cornfield July-11 –27.16 1.81 4.80 
11GHfield1 Meadow September-11 –28.62 5.63 5.47 

grasshopper 1c Cornfield September-11 –29.70 1.86 5.36 
grasshopper 1f Meadow September-11 –29.53 –0.75 5.14 
grasshopper 2c Cornfield September-11 –30.08 2.09 5.46 
grasshopper 2f Meadow September-11 –27.81 1.65 4.44 
grasshopper 3c Cornfield September-11 –30.56 2.22 6.18 
grasshopper 3f Meadow September-11 –28.99 0.68 5.36 

Grasshopper FO sept #1 Meadow September-11 –26.56 1.85 4.45 
05GHcorn1 Cornfield May-12 –29.36 0.75 4.39 
05GHcorn2 Cornfield May-12 –28.72 0.16 4.78 
05GHcorn3 Cornfield May-12 –28.77 2.84 4.69 

05GHcorn4 (new corn) Cornfield May-12 –28.31 0.65 4.36 
05GHfield1 Meadow May-12 –29.27 1.59 5.67 
05GHfield2 Meadow May-12 –27.38 1.00 3.97 
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Appendix F Continued 

Sample Name Location Date Collected δ13C      
(‰,VPDB) 

δ15N        
(‰,AIR) C:N 

05GHfield3 Meadow May-12 –30.36 4.19 4.41 
05GHfield4 Meadow May-12 –30.33 –0.33 4.69 
05GHfield5 Meadow May-12 –29.40 0.31 4.89 
06GHcorn1 Cornfield June-12 –30.48 1.34 6.49 
06GHcorn2 Cornfield June-12 –26.03 3.38 4.98 
06GHcorn3 Cornfield June-12 –27.88 3.10 4.68 

06GHcorn3 DUP Cornfield June-12 –27.85 3.02 4.68 
06GHcorn4 Cornfield June-12 –27.20 2.90 5.21 
06GHfield1 Meadow June-12 –28.03 1.46 4.85 

06GHfield1 DUP Meadow June-12 –28.05 1.38 4.84 
06GHfield2 Meadow June-12 –28.43 1.03 4.86 
06GHfield4 Meadow June-12 –29.81 –0.63 6.02 
08GHcorn1 Cornfield August-12 –27.02 3.27 5.17 

08GHcorn1 DUP Cornfield August-12 –26.81 3.41 5.00 
08GHcorn2 Cornfield August-12 –20.95 4.49 5.15 
08GHfield1 Meadow August-12 –27.15 2.48 4.47 
08GHfield2 Meadow August-12 –28.28 0.52 5.84 
08GHfield3 Meadow August-12 –27.73 3.85 5.20 
09GHcorn1 Cornfield September-12 –19.66 3.10 5.04 
09GHcorn2 Cornfield September-12 –25.89 3.77 4.49 
09GHcorn3 Cornfield September-12 –25.89 3.21 4.38 
09GHfield2 Meadow September-12 –27.25 1.23 4.55 
09Ghfield3 Meadow September-12 –27.30 1.60 4.38 
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Appendix G: Whole plant isotopic composition and sample description 

Specimen Name (Genus species) δ13C       
(‰,VPDB) 

δ15N        
 (‰,AIR) 

Wt   
Carbon 

Wt  
Nitrogen 

C/N 
ratio 

"Cherry" 1 (Prunus) -26.37 -6.22 42.73 0.44 113.19 
"Cherry" 2 (Prunus) -26.71 2.42 47.15 4.17 13.20 

Acorn nut  3 (Quercus) -27.74 -0.98 44.59 0.78 66.66 
Acorn nut 1 (Quercus) -27.83 1.76 49.60 0.84 68.79 
Acorn nut 2 (Quercus) -29.61 0.56 48.71 0.94 60.21 

Beech (Fagus) -28.20 -3.30 54.98 3.21 19.94 
Blackwalnut flesh (Juglans nigra) -30.69 -8.18 46.90 0.33 163.30 
Blackwalnut seed (Juglans nigra) -31.34 1.17 55.71 3.54 18.33 

Chestnut (Castanea) -27.23 -2.30 45.17 1.23 42.81 
Crabapple (Malus) -26.29 -5.59 45.88 0.51 105.00 

Hickory (Carya) -28.85 -4.04 54.56 1.18 53.88 
Raspberry (Rubus occidentalis) -29.11 -2.24 49.87 0.91 64.24 

Raspberry DUP (Rubus occidentalis) -29.20 -1.00 49.57 1.28 45.08 
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Appendix H: Dentinal collagen isotopic composition and sample description 
Appendix Hi: Modern white-tailed deer 

Tooth δ13Ccol        
(‰,VPDB) 

δ13Ccol 

+1.65‰ 
δ15N

col        
(‰,AIR) C:N Collagen 

Yield (%) 

Mod-deer-03 
M1 –21.62 –19.97 3.87 3.27 11.49 
M2 –19.32 –17.67 4.25 3.26 8.06 
M3 –17.06 –15.41 4.81 3.24 8.94 

PM4 –18.19 –16.54 4.64 3.22 7.81 
Mod-deer-07 

M1 –20.00 –18.35 6.71 3.26 8.51 
M2 –18.41 –16.76 6.17 3.25 8.45 
M3 –19.27 –17.62 5.97 3.24 8.16 

PM4 –21.59 –19.94 6.03 3.26 8.40 
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Appendix Hii: Archaeological white-tailed deer 

Tooth δ13Ccol        
(‰,VPDB) 

δ15N
col        

(‰,AIR) C:N Collagen Yield 
(%) 

BrB-011 
M1 –23.98 7.10 3.41 3.65 
M2 –23.76 6.62 3.36   
M3 –22.78 6.95 3.43 11.90 

PM4 –22.98 6.33 3.44 3.01 
Clv-016 

M1 –22.55 7.97 3.22 9.00 
M2 –22.34 8.00 3.20 6.62 
M3 –21.94 7.75 3.14 7.19 

PM4 –21.51 7.56 3.24 5.99 
Clv-017 

M1 –22.44 7.73 3.46 6.34 
M2 –21.54 8.07 3.24 3.69 
M3 –21.26 8.20 3.24 3.08 

PM4 –21.32 8.15 3.26 3.94 
Clv-019 

M1 –22.79 7.57 3.20 726.00 
M2 –21.99 7.47 3.19 5.87 
M3 –22.26 6.75 3.22 8.57 

PM4 –21.73 6.31 3.14 7.47 
Van-020 

M1 –22.96 6.61 3.25 5.36 
M2 –24.22 7.15 3.25 2.94 
M3 –23.45 7.26 3.28 3.61 

PM4 –23.93 6.43 3.30 4.67 
IWP(01)-036 

M1 –24.28 7.31 3.32 4.50 
M2 –23.80 7.20 3.25 4.61 
M3 –23.33 6.72 3.29 3.87 

PM4 –23.58 6.89 3.26 11.75 
IWP(09)-054 

M1 –23.90 6.55 3.30 11.08 
M2 –23.09 6.57 3.24 7.73 
M3 –22.02 6.05 3.25   

PM4 –23.01 5.69 3.24 6.87 
Mon-008 

M2 –23.02 6.53 3.10 0.89 
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Appendix HiiI:  Archaeological dog 

Tooth δ13Ccol        
(‰,VPDB) 

δ15N
col        

(‰,AIR) C:N Collagen Yield 
(%) 

Van-124 
M1 –16.53 10.67 3.73 3.71 
M2 –14.84 9.99 3.43 3.77 
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Appendix I: Enamel structural carbonate isotopic composition  
Appendix Ii: Modern white-tailed deer 

Sample δ13Csc        
(‰,VPDB) 

δ13Csc        
+1.65‰ 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
(%) 

  CO3 

(%)  CI C/P 

Mod-deer-03 
 Mod-Deer-03M1 
tip –18.43 –16.78 24.72 82.2 5.9     

 Mod-Deer-03M1 
middle –18.77 –17.12 24.59 65.6 6.4 3.25 0.28 

 Mod-Deer-03M1 
cervix –17.78 –16.13 23.69 84.7 5.9     

 Mod-Deer-03M2 
tip –17.26 –15.61 22.37 54.9 3.7     

 Mod-Deer-03M2 
tip DUP –16.51 –14.86 22.81 54.9 3.7 3.01 0.32 

 Mod-Deer-03M2 
middle –13.93 –12.28 22.17 84.7 4.1     

 Mod-Deer-03M2 
cervix –12.98 –11.33 20.89 78.9 4.0     

 Mod-Deer-03M3 
tip –11.38 –9.73 21.17 81.0 3.7     

 Mod-Deer-03M3 
middle –10.99 –9.34 20.66 80.2 4.3 3.20 0.22 

 Mod-Deer-03M3 
middle DUP –10.63 –8.98 20.83 - 6.3     

 Mod-Deer-03M3 
cervix –10.47 –8.82 22.07 76.3 4.0     

 Mod-Deer-03PM3 
tip –12.03 –10.38 22.54 21.6 5.8     

 Mod-Deer-03PM3 
middle –12.41 –10.76 24.23 18.9 3.9 3.22 0.35 

 Mod-Deer-03PM3 
cervix –14.54 –12.89 24.61 80.8 5.4     
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Appendix Ii continued 

Sample δ13Csc        
(‰,VPDB) 

δ13Csc        
+1.65‰ 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
(%) 

  CO3 

(%)  CI C/P 

Mod-deer-07 
 Mod-Deer-07dpm3 
bulk –17.07 –15.42 25.71 39.3 4.8     

 Mod-Deer-07M1 
tip –17.95 –16.30 25.30 25.0 4.5     

 Mod-Deer-07M1 
middle –17.81 –16.16 25.20 50.3 5.5     

 Mod-Deer-07M1 
cervix –16.74 –15.09 23.60 27.6 4.5 3.06 0.3 

 Mod-Deer-
07M2tip –15.56 –13.91 23.74 43.9 3.5     

 Mod-Deer-07M2 
middle –12.95 –11.30 21.98 - 4.6     

 Mod-Deer-07M2 
middle DUP –12.85 –11.20 22.29 83.4 3.9     

 Mod-Deer-07M2 
cervix –14.04 –12.39 22.53 109.6 4.0     

 Mod-Deer-07M3 
tip –12.62 –10.97 20.32 85.0 1.8 3.45 0.2 

 Mod-Deer-07M3 
tip DUP –12.44 –10.79 20.42 - 3.3     

 Mod-Deer-07M3 
middle –13.89 –12.24 19.24 38.4 4.6     

 Mod-Deer-07M3 
middle DUP –13.69 –12.04 19.08 - 3.7     

 Mod-Deer-07M3 
cervix –14.70 –13.05 20.65 65.1 3.2     

 Mod-Deer-07PM3 
tip –16.23 –14.58 24.29 65.8 2.7     

 Mod-Deer-07PM3 
middle –16.57 –14.92 24.23 81.6 5.3     

 Mod-Deer-07PM3 
middle –16.23 –14.58 24.33 - 4.0     

 Mod-Deer-07PM3 
cervix –16.61 –14.96 23.51 56.7 4.0     
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Appendix Iii: Archaeological white-tailed deer 

Sample δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
(%) CO3 (%) CI* C/P* 

BrB-011 (Bruce Boyd Site) 
BrB-011 M1 tip  –17.28 24.18 85.7 4.1     
BrB-011 M1 middle  –17.77 24.65 179.7 3.7     
BrB-011 M1 cervix  –17.53 24.63 85.0 3.7     
BrB-011 M2 tip  –17.77 23.35 91.1 3.8     
BrB-011 M2 middle –17.49 23.02 91.8 4.1 3.65 0.18 
BrB-011 M2 cervix  –16.25 20.78 95.9 3.7     
BrB-011 M3 tip   –15.21 21.36 86.0 1.8     
BrB-011 M3 tip DUP –15.43 21.54 - 3.9     
BrB-011 M3 middle –14.56 18.82 92.4 3.4 3.62 0.18 
BrB-011 M3 middle DUP –14.79 19.10 - 3.7     
BrB-011 M3 cervix –14.84 18.99 123.5 3.5     
BrB-011PM3 tip  –14.63 21.86 93.2 3.1     
BrB-011PM3 middle  –14.31 21.87 194.4 3.7     
BrB-011PM3 cervix  –14.08 23.09 95.2 3.3     
BrB-011PM1 bulk –13.98 23.63 - 2.5 3.65   
BrB-011PM1 bulk mDUP –13.81 23.66 64.5   3.43 0.22 
Clv-016 (Cleveland Site) 
Clv-016M1 tip  –15.94 25.06 86.6 4.9     
Clv-016M1 middle  –16.02 23.98 85.0 4.8 3.14 0.29 
Clv-016M1 cervix  –15.90 24.43 81.3 4.2     
Clv-016M2 tip  –15.62 23.31 87.3 4.0     
Clv-016M2 middle –15.39 22.32 85.5 3.8 3.32 0.21 
Clv-016M2 cervix  –14.99 20.69 84.5 4.9     
Clv-016M3 tip  –14.82 20.09 93.9 3.5     
Clv-016M3 tip mdup –13.62 19.42 - 2.4     
Clv-016M3 tip mdup DUP –13.61 19.82 76.3 3.8 3.50 0.19 
Clv-016M3 middle –14.21 21.31 85.5 4.0     
Clv-016M3 middlemDUP –14.88 20.59 85.3 4.0     
Clv-016M3 cervix  –13.58 22.10 131.3 4.9     
Clv-016M3 cervix  DUP –14.16 22.17 - 4.7     
Clv-016PM3 tip  DUP –14.90 21.78 - 4.5     
Clv-016PM3 tip  –14.82 21.95 85.9 4.0     
Clv-016PM3 middle  –14.68 22.46 74.6 4.0     
Clv-016PM3 cervix  –14.70 23.40 40.5 4.0     
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Appendix Iii continued 

Sample δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
(%) CO3 (%) CI* C/P* 

Clv-017 (Cleveland Site) 
Clv-017M1 tip –16.36 25.96 84.3 5.4     
Clv-017M1 middle –16.07 26.00 84.7 5.9     
Clv-017M1 cervix –15.90 25.62 84.3 5.6     
Clv-017M2 tip –14.60 24.03 87.2 5.5     
Clv-017M2 middle –14.17 22.69 80.6 5.6 3.52 0.21 
Clv-017M2 cervix –14.18 22.99 89.4 6.2     
Clv-017M3 tip –14.36 22.31 91.6 4.4 3.45 0.21 
Clv-017M3 middle –14.42 22.22 89.1 4.9 3.34 0.23 
Clv-017M3 cervix –14.59 22.86 88.6 4.5     
Clv-017PM3 tip –14.10 23.79 83.4 5.2     
Clv-017PM3 middle DUP –13.88 24.47 80.0 3.3     
Clv-017PM3 cervix –13.81 23.92 84.4 5.4     
Clv-019 (Cleveland Site) 
Clv-019M1 tip –16.53 25.84 83.7 5.0     
Clv-019M1 middle –16.43 25.83 85.0 5.4     
Clv-019M1 cervix –14.66 24.02 87.0 6.4 3.13 0.27 
Clv-019M2 tip –15.71 23.65 94.2 4.7     
Clv-019M2 middle             
Clv-019M2 cervix –13.49 22.27 91.5 7.0     
Clv-019M3 tip  –14.33 20.74 87.0 3.3     
Clv-019-M3 middle –13.99 20.16 85.3 4.6 3.39 0.22 
Clv-019-M3 cervix –13.95 21.20 85.4 4.5     
Clv-019PM3 tip  –14.94 21.78 88.2 3.7     
Clv-019PM3 middle  –14.13 23.22 87.0 3.5     
Clv-019PM3 cervix  –13.66 23.73 84.1 4.0     
Van-020 (Van Besien Site) 
Van-020M1 tip  –16.91 23.85 86.7 4.2     
Van-020M1 middle  –17.61 24.13 88.8 4.9     
Van-020M1 cervix  –17.35 23.01 77.9 4.7     
Van-020M2 tip  –16.53 22.71 90.9 5.2     
Van-020M2 middle –16.89 22.81 81.9   2.95 0.26 
Van-020M2 middle  DUP –17.21 22.60 -       
Van-020M2 cervix  –17.21 22.21 87.3 4.5     
Van-020M3 tip  –15.38 20.49 87.1 4.3     
Van-020M3 tip mDUP –15.19 20.41 81.5   3.33 0.22 
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Appendix Iii continued 

Sample δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
(%) CO3 (%) CI* C/P* 

Van-020M3 middle  –14.99 20.48 90.0 4.4     
Van-020M3 middle  DUP –14.94 20.60 - 4.6     
Van-020M3 cervix  –14.86 21.92 88.6 4.9 3.44 0.22 
Van-020PM3 tip  –14.49 22.83 86.0 3.9     
Van-020PM3 middle  –14.54 23.90 88.9 3.8 3.40 0.22 
Van-020PM3 cervix  –14.84 24.43 87.4 4.1     
IWP(01)-036 (Figura Site) 
IWP(01)-036M1 tip –17.30 22.97   5.8 2.67 0.63 
IWP(01)-036M1 middle –17.49 22.98   5.7     
IWP(01)-036M1 cervix –16.63 21.88   5.4     
IWP(01)-036M1 cervix DUP –16.67 21.55   5.2     
IWP(01)-036M2 tip –17.15 21.93   5.4     
IWP(01)-036M2 middle –15.68 20.62   6.0     
IWP(01)-036M2 middle mdup –16.52 20.65   4.0 3.47 0.19 
IWP(01)-036M2 cervix –15.75 19.57   6.2     
IWP(01)-036M3 tip –15.86 19.74   4.7     
IWP(01)-036M3 middle –15.14 21.12   5.6     
IWP(01)-036M3 cervix –14.51 22.38   5.1     
IWP(01)-036PM3 tip –15.10 23.64   4.8     
IWP(01)-036PM3 middle –14.69 23.94   5.3     
IWP(01)-036PM3 cervix –14.99 22.69   6.1 3.08 0.32 
IWP(01)-036PM3 cervix DUP –14.92 22.63   5.7     
IWP(09)-054 (Inland West Aggregate Pit, Location 9) 
IWP(09)-054 M1 tip –16.86 24.37 85.7 7.1 3.47 0.21 
IWP(09)-054 M1 middle –16.66 23.31 79.8 6.3     
IWP(09)-054 M1 cervix  –15.98 23.56 85.7 6.8     
IWP(09)-054 M1 cervix DUP –16.92 23.71 - 4.6     
IWP(09)-054M2 tip –15.98 22.87 88.8 6.1     
IWP(09)-054M2 middle –15.53 21.57 88.5 6.1     
IWP(09)-054M2 cervix –15.37 20.85 50.7 6.5     
IWP(09)-054M3 tip –13.90 19.68 86.4 6.4     
IWP(09)-054M3 tip mdup –14.42 19.44 72.2 3.0     
IWP(09)-054M3 tip –13.83 19.40 86.4       
IWP(09)-054M3 middle  –13.81 19.84 88.6 6.2     
IWP(09)-054M3 cervix –14.32 20.85 58.9 6.4 3.47 0.21 
IWP(09)-054PM3 tip –14.33 21.81 79.2 5.8     
IWP(09)-054PM3 middle –14.84 22.14 72.9 6.1 3.47 0.19 
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Appendix Iii continued 

Sample δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
(%) CO3 (%) CI* C/P* 

IWP(09)-054PM3 cervix –15.18 21.48 78.3 6.3     
IWP(09)-054PM3 cervix DUP –15.71 21.65 - 5.3     
Mon-008 (Montoya Site) 
Mon-008M1 bulk  –17.94 24.75 92.2 4.2 3.36 0.19 
Mon-008M2 tip –15.71 23.21 93.9 3.4     
Mon-008M2 middle –15.19 22.22 73.8   3.51 0.20 
Mon-008M2 cervix  –14.62 21.06 90.9 3.9     
Mon-008PM2 tip  –14.70 23.78 89.0 3.7     
Mon-008PM2 middle –13.76 23.46 96.9 3.8     
Mon-008PM2 cervix mDUP –14.15 23.66 77.2 3.5     
Mon-008PM2 cervix –14.66 23.81 90.9 3.5     

 
 
 

Appendix Iii: Archaeological dog 

Sample δ13Csc        
(‰,VPDB) 

δ18Osc      
(‰,VSMOW) 

Bioapatite 
(%) CO3 (%) CI* C/P* 

Van-124 Van Besien Site       
Van-124 M1 tip 1.1 –6.87 24.51 82.30 5.15     
Van-124 M1 tip 1.2 –6.81 24.08 78.00 5.24     
Van-124 M1 tip 1.2 mDUP –7.06 23.89 84.10 5.59     
Van-124 M1 tip 2 –6.50 23.92 78.90 5.14     
Van-124 M1 tip 2 DUP –6.54 23.83 - 5.32     
Van-124 M1 middle –6.38 23.53 84.00 5.20     
Van-124 M1 cervix –6.07 22.84 86.50 5.94     
Van-124 M2 bulk –5.96 23.01 88.00 5.09     
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Appendix J: White-tailed deer eruption categories 
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Appendix J continued
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Appendix J continued 
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Appendix K: Radiograph specimen and parameters description 

X-Ray Name Specimen 
Name Date X-Rayed X-Ray Type Notes from Donator 

I20120814155112 GI 051 14-Aug-12 10secs 45kv male 1 1/2, also labeled 
with a "7" 

11-04 F74 CMN 40158 Jul-11 55-18-20 Quebec, 1973 
11-04 F75 CMN 75332 Jul-11 60-18-20 1y ear female 

I20120814144528 GI 707 14-Aug-12 10secs 40KV yearling 
11-04 F69 CMN Z-119 Jul-11 35-20-20 2 months 

I20120814163917 GI 057 14-Aug-12 10secs 45kv 5 mo or less 
I20120814145815 GI 070 14-Aug-12 10secs 40KV 5-6 mo fawn 

11-04 F65 CMN 75424 Jul-11 30-17-17 fetal, whole skull 
11-04 F66-4 CMN 41065 Jul-11 30-36-20 mislabeled as 75332 
11-04 F72 CMN 41063 Jul-11 60-18-20  

11-04 F66-5 CMN 75331 Jul-11 30-36-20 fetal 
11-04 F66-6 CMN Z-676 Jul-11 30-36-20 fetal 

10-03 DF1-A ROM 1052 Nov-10 Kodak digital 
xray fetal, near birth 

10-03 DF1-C ROM 1464 Nov-10 Kodak digital 
xray  

10-03 DF1-D ROM 5625 Nov-10 Kodak digital 
xray 1.1171 kg, fetal 

10-03 DF1-F ROM 6842 Nov-10 Kodak digital 
xray 3.275kg, fetal 

11-04 F66-1 CMN 75029 Jul-11 30-36-20 fetal, near birth 
11-04 F66-2 CMN 75247 Jul-11 30-36-20 fetal, near birth 
11-04 F66-3 CMN 75330 Jul-11 30-36-20 fetal, near birth 

I20120814163917 GI 1004 14-Aug-12 10secs 45kv small male, yearling? 
I20120814145815 GI 1000 14-Aug-12 10secs 40KV small female 

11-04 F71* CMN 75212 Jul-11 50-19-20 0 to 2 months 

I20120814161705^ GI 194 14-Aug-12 10secs 45KV  
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Appendix K continued 

X-Ray Name Specimen 
Name Date X-Rayed X-Ray Type Notes from Donator 

I20120814151009 GI 075 14-Aug-12 10secs 40KV  
I20120814163917 GI 1003 14-Aug-12 10secs 45kv fawn mandible 
I20120814161705 GI 118 14-Aug-12 10secs 45KV  

11-03 F1-2* Arch - Clv 07 Jun-11 Faxitron 60 
kvp, 5secs  

11-03 F1-3* Arch - Clv 08 Jun-11 Faxitron 60 
kvp, 5secs  

11-03 F2-4* Arch - Clv 09 Jun-11 Faxitron 60 
kvp, 5secs  

11-03 F1-1* Arch - Clv 11 Jun-11 Faxitron 60 
kvp, 5secs  

11-01 F3-3* max Arch - Van 
25BT Mar-11 Faxitron 60 

kvp, 5secs  

11-03 F2-3 Arch - Clv 03 Jun-11 Faxitron 60 
kvp, 5secs  

10-01 F3-3 Bio 87B Mar-10 Faxitron 60 
kvp, 5secs  

I20120814142803 GI 010 k 14-Aug-12 10sec 40kv  
I201208141701019 GI 015 e 14-Aug-12 10secs 45kv  
I20120814160757 GI 061 14-Aug-12 10secs 45kv  
I20120814163917 GI 063 14-Aug-12 10secs 45kv  
I20120814151009 GI 064 14-Aug-12 10secs 40KV  
I20120814150424 GI 066 14-Aug-12 10secs 40KV  
I20120814162642 GI 078 14-Aug-12 10secs 45KV  

I20120814151009* GI 085 14-Aug-12 10secs 40KV  
I20120814103616 GI 098 14-Aug-12 5secs 50kv mandible only 

I20120814155112 GI 098  14-Aug-12 10secs 45KV skull with connected 
mandibles 

I20120814144528 GI 099 14-Aug-12 10secs 40KV  
I20120814165412 GI 1006 14-Aug-12 10secs 45kv small female, 1965 

hunter kill 
I20120814161705 GI 117 ? 14-Aug-12 10secs 45KV  
I20120814103616 GI 123 14-Aug-12 5secs 50kv  
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Appendix K continued 

X-Ray Name Specimen 
Name Date X-Rayed X-Ray Type Notes from Donator 

I20120814152015 GI 129 14-Aug-12 10secs 40KV  
I20120814165412 GI 159 14-Aug-12 10secs 45kv  
I20120814161705 GI 184 14-Aug-12 10secs 45KV  
I20120814160757 GI 189 a 14-Aug-12 10secs 45kv  
I20120814160757 GI 189 b 14-Aug-12 10secs 45kv  
I20120814144528 GI D-3 14-Aug-12 10secs 40KV  

10-03 DF2-A ROM 1207 Nov-10 Kodak digital 
xray  

10-03 DF4-C ROM 5452 Nov-10 Kodak digital 
xray 85lbs, males 

10-03 DF1-G* ROM 744 Nov-10 Kodak digital 
xray  

I20120814103616 Zooarch 
0001 14-Aug-12 5secs 50kv  

I20120814141622* Arch - 
Pip(01) 001B  10secs 40KV archaeological deer, 

missing teeth 
I20120814154054 GI 008 h 14-Aug-12 10secs 40KV  

11-03 F1-6 Arch - Clv 01 Jun-11 Faxitron 60 
kvp, 5secs  

11-03 F3-2 DUP Arch - Clv 01 Jun-11 no screen  

11-03 F2-2 Arch - Clv 05 Jun-11 Faxitron 60 
kvp, 5secs  

11-03 F3-4 DUP Arch - Clv 05 Jun-11 no screen  

11-01 F3-2 Arch - 
IWP(1) 25BT Mar-11 Faxitron 60 

kvp, 5secs  

11-01 F4-2b DUP Arch - 
IWP(1) 25BT Mar-11 no screen  

11-01 F4-1 DUP Arch - 
Pip(01) 001B Mar-11 no screen  

10-01 F4-5 Bio T297 Mar-10 Faxitron 60 
kvp, 5secs  

I20120814154054 GI 008 a 14-Aug-12 10secs 40KV  
I20120814154054 GI 008 f 14-Aug-12 10secs 40KV  
I20120814154054 GI 008 i 14-Aug-12 10secs 40KV  
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Appendix K continued 

X-Ray Name Specimen 
Name Date X-Rayed X-Ray Type Notes from Donator 

I20120814154054 GI 008 k 14-Aug-12 10secs 40KV  
I20120814154054 GI 008 m 14-Aug-12 10secs 40KV  
I20120814154054 GI 008 n 14-Aug-12 10secs 40KV  
I20120814154054 GI 008 o 14-Aug-12 10secs 40KV  
I20120814103616 GI 010 m 14-Aug-12 5secs 50kv  

I201208141701019 GI 015 a 14-Aug-12 10secs 45kv  
I201208141701019 GI 015 b 14-Aug-12 10secs 45kv  
I201208141701019 GI 015 c 14-Aug-12 10secs 45kv  
I201208141701019 GI 015 d 14-Aug-12 10secs 45kv  
I201208141701019 GI 015 f 14-Aug-12 10secs 45kv  
I201208141701019 GI 015 g 14-Aug-12 10secs 45kv  
I201208141701019 GI 015 h 14-Aug-12 10secs 45kv  
I201208141701019 GI 015 i 14-Aug-12 10secs 45kv  
I20120814155112 GI 018c 

SAND 11 14-Aug-12 10secs 45kv  
I20120814145815 GI 095 14-Aug-12 10secs 40KV  
I20120814165412 GI 1007 14-Aug-12 10secs 45kv small fawn male, 

summer 66 
I201208141701019 GI 101 14-Aug-12 10secs 45KV also labelled with a "3" 
I20120814103616 GI 114 14-Aug-12 5secs 50kv  
I20120814162642 GI 116 14-Aug-12 10secs 45KV  
I20120814162642 GI 124 14-Aug-12 10secs 45KV  
I20120814150424 GI 132 14-Aug-12 10secs 40KV  
I20120814161705 GI 150 14-Aug-12 10secs 45KV 6 mo fawn 

I20120814162642 GI 162 14-Aug-12 10secs 45KV bad xray, mandible 
tilted 

I20120814165412 GI 167 14-Aug-12 10secs 45kv 5 to 6mo fawn, possible 
107? 
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Appendix K continued 

X-Ray Name Specimen 
Name Date X-Rayed X-Ray Type Notes from Donator 

I20120814160757 GI 169 14-Aug-12 10secs 45kv  
I20120814150424 GI 199 14-Aug-12 10secs 40KV  
I20120814160757 GI 210 14-Aug-12 10secs 45kv  
I20120814103616 Zooarch 

0105 14-Aug-12 5secs 50kv  

11-01 F3-5 Zooarch 
0105 Mar-11 Faxitron 60 

kvp, 5secs adult 

I20120814154054 GI 008 g 14-Aug-12 10secs 40KV  
10-01 F9-Mac Arch - Mac Mar-10 Faxitron 60 

kvp, 5secs  

11-01 F1-1 Arch - 
Pip(01) 001B Mar-11 Faxitron 60 

kvp, 5secs  

10-03 DF3-B ROM 3972 Nov-10 Kodak digital 
xray  

10-03 DF4-A ROM 598 Nov-10 Kodak digital 
xray  

11-03 F1-5 Arch - Clv 10 Jun-11 Faxitron 60 
kvp, 5secs  

11-03 F3-3 DUP Arch - Clv 10 Jun-11 no screen  

11-01 F2-1 Arch - 
IWP(1) 9BT Mar-11 Faxitron 60 

kvp, 5secs  

I20120814154054 GI 008 b 14-Aug-12 10secs 40KV  
I20120814154054 GI 008 c 14-Aug-12 10secs 40KV  
I20120814154054 GI 008 d 14-Aug-12 10secs 40KV  
I20120814154054 GI 008 e 14-Aug-12 10secs 40KV  
I20120814154054 GI 008 j 14-Aug-12 10secs 40KV  
I20120814154054 GI 008 l 14-Aug-12 10secs 40KV  
I20120814154054 GI 008 p 14-Aug-12 10secs 40KV  
I20120814141622 GI 010 a 14-Aug-12 10sec 40kv  
I20120814141622 GI 010 h 14-Aug-12 10sec 40kv  
I20120814141622 GI 010 j 14-Aug-12 10sec 40kv  
I20120814155112 GI 018b 

SAND 14 14-Aug-12 10secs 45kv  
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Appendix K continued 

X-Ray Name Specimen 
Name Date X-Rayed X-Ray Type Notes from Donator 

I20120814152015 GI 1001 14-Aug-12 10secs 40KV juv, female, july 12, 
1966, I-10 

I20120814160757 GI 1002 14-Aug-12 10secs 45kv small female, summer 

I20120814163917 GI 1005 14-Aug-12 10secs 45kv small male, july '66 
(labelled 6a and 6b) 

I20120814162642 GI 151 14-Aug-12 10secs 45KV  
I20120814163917 GI 181 14-Aug-12 10secs 45kv  
I20120814163917 GI 185 14-Aug-12 10secs 45kv  
I20120814165412 GI 196 14-Aug-12 10secs 45kv  
I20120814141622 GI 228 14-Aug-12 10secs 40KV also labelled with "5b" 
I20120814152015 GI 233 14-Aug-12 10secs 40KV very small 

10-03 DF2-B ROM 6736 Nov-10 Kodak digital 
xray  

11-04 F73 CMN 57060 Jul-11 60-18-20  
10-01 F2-10 Zooarch 

VanSas Mar-10 Faxitron 60 
kvp, 5secs  

I20120814142803 Arch - Clv 06 14-Aug-12 10sec 40kv  
11-03 F1-8 Arch - Clv 06 Jun-11 Faxitron 60 

kvp, 5secs  

11-03 F3-1 DUP Arch - Clv 06 Jun-11 Faxitron 60 
kvp, 5secs  

11-03 F1-4 Arch - Clv 12 Jun-11 Faxitron 60 
kvp, 5secs  

10-01 F9-Van Arch - Van Mar-10 Faxitron 60 
kvp, 5secs  

11-01 F3-4 Arch - Van 
21BT Mar-11 Faxitron 60 

kvp, 5secs adult 

11-01 F4-4 DUP Arch - Van 
21BT Mar-11 no screen  

10-01 F5-1 Bio 211 Mar-10 Faxitron 60 
kvp, 5secs  

10-01 F5-2 Bio 87c? Mar-10 Faxitron 60 
kvp, 5secs  

11-04 F76 CMN 55118 Jul-11 60-18-20  
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Appendix K continued 

X-Ray Name Specimen 
Name Date X-Rayed X-Ray Type Notes from Donator 

I20120814142803 GI 010 f 14-Aug-12 10sec 40kv  
I20120814142803 GI 010 g 14-Aug-12 10sec 40kv  
I20120814141622 GI 010 l 14-Aug-12 10sec 40kv  

10-02 F1-3 Zooarch no 
name Apr-10 Faxitron 60 

kvp, 5secs no sample ID with xray 

11-03 F2-1 Arch - Clv 02 Jun-11 Faxitron 60 
kvp, 5secs  

11-03 F3-5 Arch - Clv 02 Jun-11 no screen repeat 11-03 F2-1 

11-01 F1-6 Arch - Fon 
60BT Mar-11 Faxitron 60 

kvp, 5secs  

11-03 F2-7 Arch - Ham 1 Jun-11 Faxitron 60 
kvp, 5secs  

11-04 F70 CMN 75135 Jul-11 55-18-20  
I20120814152015 GI 012 h 14-Aug-12 10secs 40KV also labelled with "3" 
I20120814152015 GI 012 i 14-Aug-12 10secs 40KV  

10-03 DF2-C ROM 1088 Nov-10 Kodak digital 
xray  

10-03 DF3-A ROM 451 Nov-10 Kodak digital 
xray  

10-03 DF3-C ROM 568 Nov-10 Kodak digital 
xray  

11-01 F2-4* Arch - 
IWP(1) 36BT Mar-11 Faxitron 60 

kvp, 5secs  

10-01 F3-4 man Bio H Mar-10 Faxitron 60 
kvp, 5secs 10-1 F4-4 max 

I20120814142803 GI A-1 14-Aug-12 10sec 40kv  

11-01 F6-1 Zooarch 
0106 Mar-11   

11-01 F2-5 Arch - 
IWP(1) 47BT Mar-11 Faxitron 60 

kvp, 5secs  

10-03 DF3-D ROM 3973 Nov-10 Kodak digital 
xray  

11-03 F1-7 Arch - Clv 04 Jun-11 Faxitron 60 
kvp, 5secs fetal 

11-03 F3-6 DUP Arch - Clv 04 Jun-11 no screen  
10-01 F9-Fon Arch - Fon Mar-10 Faxitron 60 

kvp, 5secs  

11-01 F1-7 Arch - Fon 
92BT Mar-11 Faxitron 60 

kvp, 5secs  
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Appendix K continued 

X-Ray Name Specimen 
Name Date X-Rayed X-Ray Type Notes from Donator 

10-03 DF1-B ROM 1050 Nov-10 Kodak digital 
xray  

11-01 F1-2 
Arch - 

Pip(01) 
017BT 

Mar-11 Faxitron 60 
kvp, 5secs  

11-01 F1-3 
Arch - 

Pip(01) 
103BT 

Mar-11 Faxitron 60 
kvp, 5secs  

11-01 F1-4* 
Arch - 

Pip(01) 
112BT 

Mar-11 Faxitron 60 
kvp, 5secs  

10-01 F9-IWP Arch - IWP Mar-10 Faxitron 60 
kvp, 5secs  

10-01 F7-6 Bio 
T427/T429 Mar-10 Faxitron 60 

kvp, 5secs  

11-04 F68 CMN 75330 Jul-11 35-20-20 man and max 
11-04 F67 CMN 75331 Jul-11 35-20-20 man and max 

10-03 DF5-A ROM 1205 Nov-10 Kodak digital 
xray  

10-03 DF4-B ROM 1208 Nov-10 Kodak digital 
xray  

10-03 DF2-D ROM 744 Nov-10 Kodak digital 
xray  

Specimen Name: 
Arch = archaeological specimen 
ROM = specimen courtesy of the Royal Ontario Museum 
Bio = specimen courtesy of the Department of Biology, University of Western Ontario  
CMN = specimen courtesy of from the Canadian Museum of Nature 
GI = Griffith Island, specimen courtesy of the Department of Anthropology, University of 
Western Ontario  
Zooarch = specimen courtesy of the Department of Anthropology, University of Western Ontario  

*Not enough data or poor radiograph: Radiograph not used in analysis 
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Appendix L: Estimated age-at-death by eruption (with inter and intra obervations) 

X-Ray # Specimen 
Name 

Estimated 
by Zoe 
Morris 

Estimated 
by Donor (if 
provided) 

Estimated 
by Zoe 
Morris 
(Intra) 

Estimated 
by Faunal 

Expert 
(inter 1) 

Estimated 
by Non- 
Expert 

(inter 2) 

I20120814155112 GI 051 15 to 17 
months 1 1/2    

11-04 F74 CMN 
40158 

10 to 13 
months 1 year    

11-04 F75 CMN 
75332 

10 to 13 
months 1 year    

I20120814144528 GI 707 18 
months 

1 year 6 
mos    

11-04 F69 CMN Z-
119 

0 to 2 
months 2 months    

I20120814163917 GI 057 5 to 6 
months 5 mo or less    

I20120814145815 GI 070 5 to 6 
months 5 to 6mo    

11-04 F65 CMN 
75424 fetal 80 days old    

11-04 F66-4 CMN 
41065 

9 to 11 
months fetal    

11-04 F72 CMN 
41063 fetal fetal    

11-04 F66-5 CMN 
75331 fetal fetal    

11-04 F66-6 CMN Z-
676 fetal fetal    

10-03 DF1-A ROM 
1052 fetal fetal    

10-03 DF1-C ROM 
1464 fetal fetal    

10-03 DF1-D ROM 
5625 fetal fetal    

10-03 DF1-F ROM 
6842 fetal fetal    

11-04 F66-1 CMN 
75029 fetal near birth    

11-04 F66-2 CMN 
75247 fetal near birth    

11-04 F66-3 CMN 
75330 fetal near birth    

I20120814163917 GI 1004 7 to 9 
months yearling?    
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Appendix L continued 

X-Ray # Specimen 
Name 

Estimated 
by Zoe 
Morris 

Estimated 
by Donor 

(if 
provided) 

Estimated 
by Zoe 
Morris 
(Intra) 

Estimated 
by Faunal 

Expert 
(inter 1) 

Estimated 
by Non- 
Expert 

(inter 2) 

I20120814145815 GI 1000 ~6 
months     

11-04 F71 CMN 
75212 

0 to 2 
months     

I20120814161705 GI 194 4 months  4 months 
b/w 2 to 

4 and 5 to 
6 months 

5 to 6 
months 

I20120814155112 GI 002 
possibly 

4 to 5 
months     

I20120814151009 GI 075 4 to 5 
months     

I20120814163917 GI 1003 4 to 5 
months     

I20120814161705 GI 118 4 to 5 
months     

11-03 F1-2 Arch - Clv 
07 

5 to 13 
months     

11-03 F1-3 Arch - Clv 
08 

5 to 13 
months     

11-03 F2-4 Arch - Clv 
09 

5 to 13 
months     

11-03 F1-1 Arch - Clv 
11 

5 to 13 
months     

11-01 F3-3 max Arch - 
Van 25BT 

5 to 13 
months     

11-03 F2-3 Arch - Clv 
03 

5 to 6 
months     

10-01 F3-3 Bio 87B 5 to 6 
months     

I20120814142803 GI 010 k 5 to 6 
months  

5 to 6 
months 

5 to 6 
months 

5 to 6 
months 

I201208141701019 GI 015 e 5 to 6 
months     

I20120814160757 GI 061 5 to 6 
months     

I20120814163917 GI 063 5 to 6 
months     

I20120814151009 GI 064 5 to 6 
months     

I20120814150424 GI 066 5 to 6 
months     
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Appendix L continued 

X-Ray # Specimen 
Name 

Estimated 
by Zoe 
Morris 

Estimated 
by Donor (if 
provided) 

Estimated 
by Zoe 
Morris 
(Intra) 

Estimated 
by Faunal 

Expert 
(inter 1) 

Estimated 
by Non- 
Expert 

(inter 2) 

I20120814162642 GI 078 5 to 6 
months     

I20120814151009 GI 085 5 to 6 
months     

I20120814103616 GI 098 ? 5 to 6 
months  5 to 6 

months 
5 to 6 

months 
5 to 6 

months 

I20120814155112 GI 098 ? 5 to 6 
months     

I20120814144528 GI 099 5 to 6 
months     

I20120814165412 GI 1006 5 to 6 
months     

I20120814161705 GI 117 ? 5 to 6 
months     

I20120814103616 GI 123 5 to 6 
months  

5 to 6 
months 

5 to 6 
months 

5 to 6 
months 

I20120814152015 GI 129 5 to 6 
months     

I20120814165412 GI 159 5 to 6 
months     

I20120814161705 GI 184 5 to 6 
months     

I20120814160757 GI 189 a 5 to 6 
months     

I20120814160757 GI 189 b 5 to 6 
months     

I20120814144528 GI D-3 5 to 6 
months     

10-03 DF2-A ROM 
1207 

5 to 6 
months     

10-03 DF4-C ROM 
5452 

5 to 6 
months     

10-03 DF1-G ROM 744 5 to 6 
months     

I20120814103616 Zooarch 
0001 

5 to 6 
months  

5 to 6 
months 

5 to 6 
months 

5 to 6 
months 

I20120814141622 
Arch - 

Pip(01) 
001B 

5 to 7 
months     

I20120814154054 GI 008 h 5 to 7 
months     
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Appendix L continued 

X-Ray # Specimen 
Name 

Estimated 
by Zoe 
Morris 

Estimated 
by Donor 

(if 
provided) 

Estimated 
by Zoe 
Morris 
(Intra) 

Estimated 
by Faunal 

Expert 
(inter 1) 

Estimated 
by Non- 
Expert 

(inter 2) 

11-03 F1-6 Arch - Clv 
01 

6 to 7 
months     

11-03 F3-2 Arch - Clv 
01 

6 to 7 
months     

11-03 F2-2 Arch - Clv 
05 

6 to 7 
months     

11-03 F3-4 Arch - Clv 
05 

6 to 7 
months     

11-01 F3-2 
Arch - 
IWP(1) 
25BT 

6 to 7 
months     

11-01 F4-2b 
Arch - 
IWP(1) 
25BT 

6 to 7 
months     

11-01 F4-1 
Arch - 

Pip(01) 
001B 

6 to 7 
months  

5 to 7 
months   

10-01 F4-5 Bio T297 6 to 7 
months     

I20120814154054 GI 008 a 6 to 7 
months     

I20120814154054 GI 008 f 6 to 7 
months     

I20120814154054 GI 008 i 6 to 7 
months     

I20120814154054 GI 008 k 6 to 7 
months     

I20120814154054 GI 008 m 6 to 7 
months     

I20120814154054 GI 008 n 6 to 7 
months     

I20120814154054 GI 008 o 6 to 7 
months     

I20120814103616 GI 010 m 6 to 7 
months  

6 to 7 
months 

6 to 7 
months 

7 to 9 
months 

I201208141701019 GI 015 a 6 to 7 
months     

I201208141701019 GI 015 b 6 to 7 
months     

I201208141701019 GI 015 c 6 to 7 
months     
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Appendix L continued 

X-Ray # Specimen 
Name 

Estimated 
by Zoe 
Morris 

Estimated 
by Donor 

(if 
provided) 

Estimated 
by Zoe 
Morris 
(Intra) 

Estimated 
by Faunal 

Expert 
(inter 1) 

Estimated 
by Non- 
Expert 

(inter 2) 

I201208141701019 GI 015 d 6 to 7 
months     

I201208141701019 GI 015 f 6 to 7 
months     

I201208141701019 GI 015 g 6 to 7 
months     

I201208141701019 GI 015 h 6 to 7 
months     

I201208141701019 GI 015 i 6 to 7 
months     

I20120814155112 GI 018c 
SAND 11 

6 to 7 
months     

I20120814145815 GI 095 6 to 7 
months     

I20120814165412 GI 1007 6 to 7 
months     

I201208141701019 GI 101 6 to 7 
months     

I20120814103616 GI 114 6 to 7 
months  

5 to 6 
months 

5 to 6 
months 

5 to 6 
months 

I20120814162642 GI 116 6 to 7 
months     

I20120814162642 GI 124 6 to 7 
months     

I20120814150424 GI 132 6 to 7 
months     

I20120814161705 GI 150 6 to 7 
months     

I20120814162642 GI 162 6 to 7 
months     

I20120814165412 GI 167 6 to 7 
months     

I20120814160757 GI 169 6 to 7 
months     

I20120814150424 GI 199 6 to 7 
months     

I20120814160757 GI 210 6 to 7 
months     

I20120814103616 Zooarch 
0105 

6 to 7 
months  

6 to 7 
months 

6 to 7 
months 

7 to 9 
months 

11-01 F3-5 Zooarch 
0105 

6 to 7 
months     
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Appendix L continued 

X-Ray # Specimen 
Name 

Estimated 
by Zoe 
Morris 

Estimated 
by Donor (if 
provided) 

Estimated 
by Zoe 
Morris 
(Intra) 

Estimated 
by Faunal 

Expert 
(inter 1) 

Estimated 
by Non- 
Expert 

(inter 2) 

I20120814154054 GI 008 g 7 to 7 
months     

10-01 F9-Mac Arch - 
Mac 

7 to 8 
months     

11-01 F1-1 
Arch - 

Pip(01) 
001B 

7 to 8 
months     

10-03 DF3-B ROM 
3972 

7 to 8 
months     

10-03 DF4-A ROM 598 7 to 8 
months     

11-03 F1-5 Arch - Clv 
10 

7 to 9 
months     

11-03 F3-3 Arch - Clv 
10 

7 to 9 
months     

11-01 F2-1 
Arch - 
IWP(1) 

9BT 

7 to 9 
months     

I20120814154054 GI 008 b 7 to 9 
months     

I20120814154054 GI 008 c 7 to 9 
months     

I20120814154054 GI 008 d 7 to 9 
months     

I20120814154054 GI 008 e 7 to 9 
months     

I20120814154054 GI 008 j 7 to 9 
months     

I20120814154054 GI 008 l 7 to 9 
months     

I20120814154054 GI 008 p 7 to 9 
months     

I20120814141622 GI 010 a 7 to 9 
months  

7 to 9 
months 

10 to 13 
months 

7 to 9 
months 

I20120814141622 GI 010 h 7 to 9 
months  

7 to 9 
months 

10 to 13 
months 

7 to 9 
months 

I20120814141622 GI 010 j 7 to 9 
months  

7 to 9 
months n/a 7 to 9 

months 

I20120814155112 GI 018b 
SAND 14 

7 to 9 
months     

I20120814152015 GI 1001 7 to 9 
months     
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Appendix L continued 

X-Ray # Specimen 
Name 

Estimated 
by Zoe 
Morris 

Estimated 
by Donor (if 
provided) 

Estimated 
by Zoe 
Morris 
(Intra) 

Estimated 
by Faunal 

Expert 
(inter 1) 

Estimated 
by Non- 
Expert 

(inter 2) 

I20120814160757 GI 1002 7 to 9 
months     

I20120814163917 GI 1005 7 to 9 
months     

I20120814162642 GI 151 7 to 9 
months     

I20120814163917 GI 181 7 to 9 
months     

I20120814163917 GI 185 7 to 9 
months     

I20120814165412 GI 196 7 to 9 
months     

I20120814141622 GI 228 10 to 13 
months  

10 to 13 
months 

10 to 13 
months 

10 to 13 
months 

I20120814152015 GI 233 7 to 9 
months     

10-03 DF2-B ROM 
6736 

7 to 9 
months     

11-04 F73 CMN 
57060 

9 to 11 
months     

10-01 F2-10 Zooarch 
VanSas 

10 to 11 
months     

I20120814142803 Arch - Clv 
06 

10 to 13 
months  

10 to 13 
months 

10 to 13 
months 

10 to 13 
months 

11-03 F1-8 Arch - Clv 
06 

10 to 13 
months     

11-03 F3-1 Arch - Clv 
06 

10 to 13 
months     

11-03 F1-4 Arch - Clv 
12 

10 to 13 
months     

10-01 F9-Van Arch - 
Van 

10 to 13 
months     

11-01 F3-4 Arch - 
Van 21BT 

10 to 13 
months     

11-01 F4-4 Arch - 
Van 21BT 

10 to 13 
months     

10-01 F5-1 Bio 211 10 to 13 
months     

10-01 F5-2 Bio 87c? 10 to 13 
months     

11-04 F76 CMN 
55118 

10 to 13 
months     
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Appendix L continued 

X-Ray # Specimen 
Name 

Estimated 
by Zoe 
Morris 

Estimated 
by Donor (if 
provided) 

Estimated 
by Zoe 
Morris 
(Intra) 

Estimated 
by Faunal 

Expert 
(inter 1) 

Estimated 
by Non- 
Expert 

(inter 2) 

I20120814142803 GI 010 f 10 to 13 
months  10 to 13 

months 
10 to 13 
months 

10 to 13 
months 

I20120814142803 GI 010 g 10 to 13 
months  10 to 13 

months 
10 to 13 
months 

10 to 13 
months 

I20120814141622 GI 010 l 10 to 13 
months  10 to 13 

months 
10 to 13 
months 

10 to 13 
months 

 GI 110 10 to 13 
months     

10-02 F1-3 Zooarch 
no name 

10 to 13 
months     

11-03 F2-1 Arch - Clv 
02 

15 to 17 
months     

11-03 F3-5 Arch - Clv 
02 

15 to 17 
months     

11-01 F1-6 Arch - Fon 
60BT 

15 to 17 
months     

11-04 F70 CMN 
75135 

15 to 17 
months     

I20120814152015 GI 012 h 15 to 17 
months     

I20120814152015 GI 012 i 15 to 17 
months  

15 to 17 
months 

15 to 17 
months 

15 to 17 
months 

10-03 DF2-C ROM 
1088 

15 to 17 
months     

10-03 DF3-A ROM 451 15 to 
17months     

10-03 DF3-C ROM 568 15 to 
17months     

 C-1 17 
months  

17 to 18 
months 

18 
months 

18 
months 

11-01 F2-4 
Arch - 
IWP(1) 
36BT 

18 
months     

10-01 F3-4 man Bio H 18 
months     

I20120814142803 GI A-1 18 
months  

18 
months 

18 
months 

18 
months 

11-01 F6-1 Zooarch 
0106 

18 
months     
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Appendix L continued 

X-Ray # Specimen 
Name 

Estimated 
by Zoe 
Morris 

Estimated 
by Donor (if 

provided) 

Estimated 
by Zoe 
Morris 
(Intra) 

Estimated 
by Faunal 

Expert 
(inter 1) 

Estimated 
by Non- 
Expert 

(inter 2) 

11-01 F2-5 
Arch - 
IWP(1) 
47BT 

18 months 
+     

 D-1 18 months 
+  19 to 22 

months 18 months 18 months 

10-03 DF3-D ROM 3973 19 months 
+     

 13 i 19 to 22 
months     

11-03 F1-7 Arch - Clv 
04 fetal     

11-03 F3-6 Arch - Clv 
04 fetal     

10-01 F9-
Fon Arch - Fon fetal     

11-01 F1-7 Arch - Fon 
92BT fetal  fetal   

10-03 DF1-B ROM 1050 fetal     

11-01 F1-2 
Arch - 

Pip(01) 
017BT 

less than 
10 months     

11-01 F1-3 
Arch - 

Pip(01) 
103BT 

less than 6 
months     
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Appendix M: Mandibular dental mineralization descriptions 

X-Ray # Specimen 
Name 

Estimated 
Age 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 
11-04 F65 CMN 75424 fetal NF NF NF NF NF NF 

11-04 F66-5 CMN 75331 fetal forming forming forming C.010 NF NF 
11-04 F66-6 CMN Z-676 fetal decid decid decid C.010 NF NF 
10-03 DF1-A ROM 1052 fetal forming forming forming C.25 NF NF 
10-03 DF1-C ROM 1464 fetal forming forming forming C.10 NF NF 
10-03 DF1-D ROM 5625 fetal forming forming forming crypt NF NF 
10-03 DF1-F ROM 6842 fetal decid decid decid C0.1 NF NF 
11-04 F66-1 CMN 75029 fetal decid decid decid C0.5 NF NF 
11-04 F66-2 CMN 75247 fetal decid decid decid C0.5 NF NF 
11-04 F66-3 CMN 75330 fetal decid decid decid C0.25 NF NF 

11-03 F1-7 Arch - Clv 04 fetal x x x C1, 
RIGHT075 x x 

10-01 F9-Fon Arch - Fon fetal x x decid x x x 

11-01 F1-7 Arch - Fon 
92BT fetal x x decid .75 x x x 

10-03 DF1-B ROM 1050 fetal forming forming fomring crypt NF NF 

11-04 F69 CMN Z-119 0 to 2 
months decid decid decid C1, R0.50 C0.10 NF 

11-04 F71 CMN 75212 0 to 2 
months decid decid decid C0.75 crypt NF 

I20120814161705 GI 194 4 months decid decid decid C1 R0.5 C0.5 NF 

I20120814155112 GI 002 
possibly 

4 to 5 
months decid decid decid C1, R0.50 C0.25 NF 

I20120814151009 GI 075 4 to 5 
months decid decid decid C1, R0.75 C0.90 crypt 

starting 
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Appendix M continued 

X-Ray # Specimen 
Name 

Estimated 
Age 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 

 I20120814163917 GI 1003 4 to 5 
months decid decid decid C1 R0.9 C0.75 NF 

I20120814161705 GI 118 4 to 5 
months decid decid decid complete C1, RIGHT10 crypt 

11-03 F1-2 Arch - Clv 07 5 to 13 
months decid decid decid complete x x 

11-03 F1-3 Arch - Clv 08 5 to 13 
months decid decid decid complete x x 

11-03 F2-4 Arch - Clv 09 5 to 13 
months decid decid decid complete x x 

11-03 F1-1 Arch - Clv 11 5 to 13 
months decid decid decid complete x x 

11-01 F3-3 max Arch - Van 
25BT 

5 to 13 
months decid decid decid complete x x 

I20120814163917 GI 057 5 to 6 
months decid decid decid C1, R0.50 C.050 NF 

I20120814145815 GI 070 5 to 6 
months decid decid decid complete C1, R0.10 C0.10 

11-03 F2-3 Arch - Clv 03 5 to 6 
months decid decid decid complete x x 

10-01 F3-3 Bio 87B 5 to 6 
months decid decid decid complete C1, 

RIGHT025 NF 

I20120814142803 GI 010 k  5 to 6 
months x decid decid complete C1, R0.10 C0.10 

I201208141701019 GI 015 e 5 to 6 
months decid decid decid complete C1, R0.10 C0.10 
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Appendix M continued 

X-Ray # Specimen 
Name 

Estimated 
Age 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 

I20120814160757 GI 061 5 to 6 
months decid decid decid C1, RIGHT90 C0.75 NF 

I20120814163917 GI 063 5 to 6 
months decid decid decid complete C1, R0.10 NF 

I20120814151009 GI 064 5 to 6 
months decid decid decid C1, R0.75 C0.90 crypt 

starting 

I20120814150424 GI 066 5 to 6 
months decid decid decid C1, R0.90 C1 crypt 

I20120814162642 GI 078 5 to 6 
months decid decid decid C1, RIGHT90 C0.75 crypt 

I20120814151009 GI 085 5 to 6 
months decid decid decid C1, R0.75 C0.90 crypt 

starting 

I20120814103616 GI 098 5 to 6 
months decid decid decid complete C1, R0.10 barely there 

I20120814155112 GI 098 5 to 6 
months decid decid decid complete C1, R0.10 C0.10 

I20120814144528 GI 099 5 to 6 
months decid decid decid complete C1, R0.10 C0.10 

I20120814165412 GI 1006 5 to 6 
months decid decid decid complete C1, R0.10 C0.10 

I20120814161705 GI 117 ? 5 to 6 
months decid decid decid complete C1, RIGHT10 crypt 

I20120814103616 GI 123 5 to 6 
months decid decid decid complete C1, R0.10 C0.10 

I20120814152015 GI 129 5 to 6 
months decid decid decid complete C1, R0.10 C0.10 
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Appendix M continued 

X-Ray # Specimen 
Name 

Estimated 
Age 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 

I20120814165412 GI 159 5 to 6 
months decid decid decid complete C0.90 NF 

I20120814161705 GI 184 5 to 6 
months decid decid decid complete C1, R0.10 C0.10 

I20120814160757 GI 189 a 5 to 6 
months decid decid decid complete C1, R0.10 C0.10 

I20120814160757 GI 189 b 5 to 6 
months decid decid decid complete C1, R0.25 C0.10 

I20120814144528 GI D-3 5 to 6 
months decid decid decid complete C1, R0.10 C0.10 

10-03 DF2-A ROM 1207 5 to 6 
months decid decid decid C1, R0.75 C0.75 NF 

10-03 DF4-C ROM 5452 5 to 6 
months decid decid decid complete C0.75 NF 

10-03 DF1-G ROM 744 5 to 6 
months decid decid decid C1, R? C? forming 

I20120814103616 Zooarch 
0001 

5 to 6 
months decid decid decid complete C1, R0.25 C0.10 

11-01 F1-3 
Arch - 

Pip(01) 
103BT 

less than 6 
months decid decid decid C1, RIGHT90 x x 

I20120814145815 GI 1000 ~6 months decid decid decid complete C1, R0.10 C0.10 

I20120814141622 Arch - 
Pip(01) 001B 

5 to 7 
months decid decid decid x C1, R0.50 C0.10 
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Appendix M continued 

X-Ray # Specimen 
Name 

Estimated 
Age 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 

I20120814154054 GI 008 h 5 to 7 
months decid decid decid complete C1, R0.10 C0.10 

11-03 F1-6 Arch - Clv 01 6 to 7 
months decid decid decid complete c1, right50 c.25 

11-03 F2-2 Arch - Clv 05 6 to 7 
months decid decid decid complete c1, right25 c.25 

11-01 F3-2 Arch - 
IWP(1) 25BT 

6 to 7 
months decid decid decid complete c1, right25 cavity 

10-01 F4-5 Bio T297 6 to 7 
months decid decid decid complete C1, R0.25 C.25 

I20120814154054 GI 008 a 6 to 7 
months x x decid complete C1, R0.10 C0.10 

I20120814154054 GI 008 f 6 to 7 
months decid decid decid complete C1, R0.10 crypt 

I20120814154054 GI 008 i 6 to 7 
months decid decid decid complete C1, R0.10 C0.10 

I20120814154054 GI 008 k 6 to 7 
months x decid decid x C1, R0.10 C0.10 

I20120814154054 GI 008 m 6 to 7 
months decid decid decid complete C1, RIGHT25 C0.10 

I20120814154054 GI 008 n 6 to 7 
months decid decid decid complete C1, RIGHT25 C0.10 

I20120814154054 GI 008 o 6 to 7 
months x decid decid C1, RIGHT90 C1, R0.10 C0.10 

I20120814103616 GI 010 m 6 to 7 
months decid decid decid complete C1, R0.50 C0.25 
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Appendix M continued 

X-Ray # Specimen 
Name 

Estimated 
Age 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 

I201208141701019 GI 015 a 6 to 7 
months decid decid decid complete C1, R0.25 C0.10 

I201208141701019 GI 015 b 6 to 7 
months x decid decid x C1, R0.10 crypt 

I201208141701019 GI 015 c 6 to 7 
months decid decid decid complete C1, R0.10 crypt 

I201208141701019 GI 015 d 6 to 7 
months decid decid decid complete C1, R0.10 C0.10 

I201208141701019 GI 015 f 6 to 7 
months decid decid decid x C1, R0.10 C0.10 

I201208141701019 GI 015 g 6 to 7 
months decid decid decid complete C1, R0.10 crypt 

I201208141701019 GI 015 h 6 to 7 
months decid decid decid complete C1, R0.10 x 

I201208141701019 GI 015 i 6 to 7 
months decid decid decid complete C1, R0.25 x 

I20120814155112 GI 018c 
SAND 11 

6 to 7 
months decid decid decid complete C1, RIGHT10 crypt 

I20120814145815 GI 095 6 to 7 
months decid decid decid complete C1, R0.10 C0.10 

I20120814165412 GI 1007 6 to 7 
months decid decid decid complete C1, R0.10 C0.10 

I201208141701019 GI 101 6 to 7 
months decid decid decid complete C1, R0.25 C0.25 

I20120814103616 GI 114 6 to 7 
months decid decid decid complete C1, R0.10 C0.10 
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Appendix M continued 

X-Ray # Specimen 
Name 

Estimated 
Age 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 

I20120814162642 GI 116 6 to 7 
months decid decid decid complete C0.75 NF 

I20120814162642 GI 124 6 to 7 
months decid decid decid complete C1, R0.25 C0.10 

I20120814150424 GI 132 6 to 7 
months decid decid decid complete C1, R0.10 C0.10 

I20120814161705 GI 150 6 to 7 
months decid decid decid complete C1, R0.10 C0.25 

I20120814162642 GI 162 6 to 7 
months decid decid decid n/a n/a n/a 

I20120814165412 GI 167 6 to 7 
months decid decid decid complete C1, R0.25 C0.25 

I20120814160757 GI 169 6 to 7 
months decid decid decid complete C1, R0.10 C0.10 

I20120814150424 GI 199 6 to 7 
months decid decid decid complete C1, R0.10 C0.25 

I20120814160757 GI 210 6 to 7 
months decid decid decid complete C1, R0.10 C0.25 

I20120814103616 Zooarch 
0105 

6 to 7 
months decid decid decid complete C1, R0.50 C0.25 

11-01 F3-5 Zooarch 
0105 

6 to 7 
months decid decid decid c1, rightx x x 

I20120814154054 GI 008 g 7 to 7 
months decid decid decid complete C1, R0.10 C0.10 

10-01 F9-Mac Arch - Mac 7 to 8 
months decid decid decid complete C1, RIGHT50 C.25 
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Appendix M continued 

X-Ray # Specimen 
Name 

Estimated 
Age 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 

11-01 F1-1 Arch - 
Pip(01) 001B 

7 to 8 
months decid decid decid x c1, right25 c.50 

10-03 DF3-B ROM 3972 7 to 8 
months decid decid decid complete C1, R0.10 crypt 

10-03 DF4-A ROM 598 7 to 8 
months decid decid decid complete C1, R0.10 crypt 

I20120814163917 GI 1004 7 to 9 
months decid decid decid complete C1, R0.10 C0.10 

11-03 F1-5 Arch - Clv 10 7 to 9 
months decid decid decid complete c1, right50 x (cavity) 

11-01 F1-4 
Arch - 

Pip(01) 
112BT 

n/a decid decid x x x x 

11-01 F2-1 Arch - 
IWP(1) 9BT 

7 to 9 
months decid decid decid complete c.1 x 

I20120814154054 GI 008 b 7 to 9 
months decid decid decid complete C1, RIGHT25 C1, R0.10 

I20120814154054 GI 008 c 7 to 9 
months decid decid decid complete C1, RIGHT25 C0.10 

I20120814154054 GI 008 d 7 to 9 
months decid decid decid complete C1, RIGHT25 C0.25 

I20120814154054 GI 008 e 7 to 9 
months decid decid decid complete C1, RIGHT25 C0.10 

I20120814154054 GI 008 j 7 to 9 
months decid decid decid complete C1, RIGHT25 C0.10 
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Appendix M continued 

X-Ray # Specimen 
Name 

Estimated 
by Zoe 
Morris 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 

I20120814154054 GI 008 l 7 to 9 
months decid decid decid complete C1, RIGHT25 C0.25 

I20120814154054 GI 008 p 7 to 9 
months decid decid decid complete C1, R0.10 C0.10 

I20120814141622 GI 010 a 7 to 9 
months decid decid decid complete C1, R0.50 C0.50 

10-01 F9-IWP Arch - IWP   decid decid decid complete 0.5 nf 

I20120814141622 GI 010 h 7 to 9 
months decid decid decid complete C1, R0.50 C0.25 

I20120814141622 GI 010 j  7 to 9 
months decid decid decid complete C1, R0.50 C0.25 

I20120814155112 GI 018b 
SAND 14 

7 to 9 
months decid decid decid complete C1, RIGHT25 C0.10 

I20120814152015 GI 1001 7 to 9 
months decid Ccrypt decid C0.10 decid C0.10 complete complete C1,R0.90 

I20120814160757 GI 1002 7 to 9 
months decid decid decid complete C1, R0.25 C0.10 

I20120814163917 GI 1005 7 to 9 
months decid decid decid complete C1, R0.50 C0.25 

I20120814162642 GI 151 7 to 9 
months decid decid decid complete C1, R0.25 C0.25 

I20120814163917 GI 181 7 to 9 
months decid decid decid complete C1, R0.25 C0.25 

I20120814163917 GI 185 7 to 9 
months decid decid decid complete C1, R0.25 C0.10 
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Appendix M continued 

X-Ray # Specimen 
Name 

Estimated 
by Zoe 
Morris 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 

I20120814165412 GI 196 7 to 9 
months decid decid decid complete C1, R0.50 C0.25 

I20120814152015 GI 233 7 to 9 
months decid decid decid complete C1, R0.50 C0.25 

10-03 DF2-B ROM 6736 7 to 9 
months decid decid decid complete C1, R0.75 0.1 

11-04 F66-4 CMN 41065 9 to 11 
months decid decid decid complete C1, R0.75 C1 

11-04 F73 CMN 57060 9 to 11 
months decid decid decid complete C1, R0.75 C1 

11-01 F1-2 
Arch - 

Pip(01) 
017BT 

less than 10 
months decid decid decid x x x 

10-01 F2-10 Zooarch 
VanSas 

10 to 11 
months decid decid decid complete C1, RIGHT75 C0.90 

11-04 F74 CMN 40158 10 to 13 
months decid decid decid complete complete C1, 

RIGHT010 

11-04 F75 CMN 75332 10 to 13 
months decid, C0.10 decid, C0.10 decid, C0.10 complete complete C1, RIGHT0.1 

I20120814141622 GI 228 10 to 13 
months decid decid decid complete complete C1, R0.10 

I20120814142803 Arch - Clv 06 10 to 13 
months decid decid decid complete complete C1, R0.10 

11-03 F1-8 Arch - Clv 06 10 to 13 
months decid decid decid complete c1, right95 c1 
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Appendix M continued 

X-Ray # Specimen 
Name 

Estimated 
by Zoe 
Morris 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 

11-03 F3-1 Arch - Clv 06 10 to 13 
months             

11-03 F1-4 Arch - Clv 12 10 to 13 
months decid decid decid complete root socket x 

10-01 F9-Van Arch - Van 10 to 13 
months decid decid decid complete c1, right75 c.5 

11-01 F3-4 Arch - Van 
21BT 

10 to 13 
months decid decid decid complete c1, right75 c.75 

11-01 F4-4 Arch - Van 
21BT 

10 to 13 
months             

10-01 F5-1 Bio 211 10 to 13 
months decid decid decid complete C1, R0.25 C.25 

10-01 F5-2 Bio 87c? 10 to 13 
months decid decid decid complete c1, right5 c.5 

11-04 F76 CMN 55118 10 to 13 
months decid decid decid complete C1, R0.75 C1, R0.25 

I20120814142803 GI 010 f  10 to 13 
months decid C.10 decid C.10 decid C.25 complete complete C1, R0.10 

I20120814142803 GI 010 g 10 to 13 
months x C.10 decid C.10 decid C.10 complete complete C1 

I20120814141622 GI 010 l 10 to 13 
months decid decid decid complete complete C1, R0.10 

10-02 F1-3 Zooarch no 
name 

10 to 13 
months decid decid decid complete complete C1, R0.25 

I20120814155112 GI 051 15 to 17 
months 

decid C1, 
RIGHT50 

decid C1, 
RIGHT50 

decid C1, 
RIGHT50 complete complete C1,R0.10 
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Appendix M continued 

X-Ray # Specimen 
Name 

Estimated 
Age 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 

11-03 F2-1 Arch - Clv 02 15 to 17 
months complete complete c1, right95 complete complete complete 

11-01 F1-6 Arch - Fon 
60BT 

15 to 17 
months C1, R0.75 C1, R0.75 C1, R0.75 x x x 

11-03 F2-7 Arch - Ham 1 15 to 17 
months c1, right5 c1, right75 c1, right75 complete complete x 

11-04 F70 CMN 75135 15 to 17 
months decid, C0.75 decid, C0.75 decid, C0.75 complete complete C1, 

RIGHT0.75 

I20120814152015 GI 012 h 15 to 17 
months 

decid C1, 
RIGHT75 

decid C1, 
RIGHT75 

decid C1, 
RIGHT75 complete complete C1,R0.90 

I20120814152015 GI 012 i 15 to 17 
months 

decid C1, 
RIGHT75 

decid C1, 
RIGHT75 

decid C1, 
RIGHT75 complete complete C1,R0.90 

10-03 DF2-C ROM 1088 15 to 17 
months decid, C0.75 decid, C0.75 decid, C0.75 complete complete C1, 

RIGHT0.50 

10-03 DF3-A ROM 451 15 to 
17months decid, C0.75 decid, C0.75 decid, C0.75 complete complete C1, 

RIGHT0.50 

10-03 DF3-C ROM 568 15 to 
17months decid, C0.50 decid, C0.50 decid, C0.50 complete complete C1, 

RIGHT0.25 
I20120814144528 GI 707 18 months x x C1, RIGHT90 complete complete C1,R0.90 

11-01 F2-4 Arch - 
IWP(1) 36BT 18 months x complete complete complete complete complete 

10-01 F3-4 man Bio H 18 months Erupting Erupting Erupting complete complete complete 

I20120814142803 GI A-1 18 months C1, R0.75 C1, R0.75 
decid 

resorbed C1, 
R0.75 

complete complete complete 
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Appendix M continued 

X-Ray # Specimen 
Name Estimated Age 

mandibular dental mineralization  
(x = missing, nf= not formed, crown [C] and root [R] estimate 0-1) 

premolar 1 premolar 2 premolar 3 molar 1 molar 2 molar 3 
11-01 
F6-1 Zooarch 0106 18 months c1, right75 x c1, right75 complete complete complete 

11-01 
F2-5 

Arch - IWP(1) 
47BT 18 months + x complete complete complete complete complete 

10-03 
DF3-D ROM 3973 19 months + complete complete complete complete complete complete 
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