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Abstract 

Chirp spread spectrum (CSS) is a suitable choice of modulation signals for wireless 

communications, due to its inherited advantages such as low transmission power, simplicity 

of implementation, good interference rejection capability. Linear chirps are common choices 

in practical CSS systems of binary orthogonal keying (BOK) mode. However, linear chirps 

generally require the time-bandwidth product of each chirp signal to be 60 sHz or more in 

order to achieve desirable orthogonality requirements. Thus, a BOK CSS system based on 

linear chirps has to occupy very wide bandwidth, which is a very precious resource for 

wireless communication. Clearly, the requirement on broad frequency bandwidth is a major 

limiting factor for the widespread adoption of the BOK linear CSS system in practice. To 

overcome this drawback, it is worthwhile to explore other types of chirp signals outside the 

linear domain, which can potentially reduce the bandwidth requirement without jeopardizing 

the system performance. This is the main objective of the current research. In this dissertation, 

a pair of non-linear chirps has been discovered, which has the potential to replace linear 

chirps for BOK CSS systems. 

After exploring desirable properties of non-linear chirps, it is demonstrated that a 

significant performance advantage on orthogonality over linear chirps can be achieved by a 

pair of sine or cosine chirps. Subsequently, properties of sine and cosine chirps are analyzed 

mathematically. Derivations of spectral characteristics, autocorrelation and cross-correlation 

for both sine and cosine chirps are carried out respectively. Finally, comparison of sine chirps 

of four different time periods (i.e. half time period, full time period, triple time period, and 

quadruple time period) are made in terms of their cross-correlation and autocorrelation 

properties. It has been concluded that full period sine (FPS) chirps are the better choice for 

this particular application among the sine chirps. 

Performance of a BOK CSS system based on FPS chirps has been evaluated in three 

typical scenarios. Firstly, BER (bit error rate) performance of the BOK FPS CSS system in 

an additive white Gaussian noise (AWGN) channel is derivated. Furthermore, performance 

comparison in terms of BERs between linear chirps and FPS chirps is examined. Secondly, 

effects of Doppler shift on the BOK FPS CSS system are analyzed. The effect of Doppler 
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shift between linear chirps and FPS chirps has been compared. Thirdly, BER performance of 

the BOK FPS CSS system in a fading environment (Rayleigh channel) has been analyzed. 

Moreover, BER performance comparisons between linear chirps and FPS chirps in the 

AWGN+Rayleigh channel with and without a Doppler shift have also been studied.  

Using analytic means and numerical simulations, this dissertation has conclusively 

demonstrated that a pair of orthogonal FPS chirps has the capability of replacing linear chirp 

in BOK CSS systems.   

 

Keywords: CSS; non-linear chirp; sine chirp; cosine chirp; orthogonality; conditional 

orthogonality; periodic orthogonality 
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1. Introduction 

1.1 Chirp Spread Spectrum Systems 

Three techniques have been accepted for implementing spread spectrum modulation: 

frequency hopping (FH), direct sequence (DS) and chirp spread spectrum (CSS). Unlike 

FH and DS that employ pseudorandom coding to spread the spectrum of the information-

bearing signal, CSS does not require additional coding to spread the spectrum since it can 

use chirp signal for coding. In addition, CSS signals exhibit a higher degree of 

interference rejection capability than a pure sinusoidal signal, thus making this class of 

signals a good candidate for use in spread-spectrum type communication systems [1]. 

CSS has also shown to be resistant to Doppler and other distortive effects [2, 3]. CSS-

based wireless systems can transmit the signal at low transmission power by spreading 

the spectrum [4]. Therefore, CSS is a good choice for wireless communications, due to its 

innate advantages such as low transmission power, simplicity of implementation, good 

interference rejection capability. 

The chirp spread spectrum uses chirps for signaling in data transmission, and uses 

associated pulse compression technique for decoding information. Chirp is a signal in 

which the frequency changes over a certain time interval, and the pulse compression 

technique is a practical implementation of matched filtering. Even though the pulse 

compression technique had been applied in radar systems since the early fifties, the first 

known paper suggesting it for applications other than radar was not published until 1962 

[5]. The inherent property of interference rejection makes chirps (with the associated 

modulation scheme) suitable candidates in spread spectrum communication systems [1]. 

Chirp spread spectrum, used in radar systems in the past, has received more and more 

attention for low-rate wireless personal networks (LR-WPAN). The chirp spread 

spectrum modulation has been touted as a method of sending data through indoor 

channels in dense multipath environments [6]. In March 2007, the Institute of Electrical 

and Electronics Engineers (IEEE) has adopted CSS as a physical layer (PHY) in its new 

wireless standard IEEE 802.15.4a [7]. This has laid the foundation for the widespread 
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adoption of  CSS  in various applications, such as real time location systems (RTLS) [8], 

industrial control [9], and sensor networking [10].  

Chirp spread spectrum systems can be grouped into two categories: binary orthogonal 

keying (BOK) and direct modulation (DM). The BOK CSS system uses two different 

chirps with the same bandwidth and duration but opposite sweep polarity, e.g. linear up-

chirp and linear down-chirp. A block diagram of a BOK CSS system is shown in Figure 

1.1. There, the up-chirp and down-chirps are used to represent different data symbols. For 

example, bits ‘1’ and ‘0’ can be represented by chirps with positive and negative 

instantaneous frequency change rates, respectively. At the receiver end, corresponding 

matched filters are used to decode the received signal. 

X

X

 

Figure 1.1: Principle of a BOK CSS system 

A DM CSS system uses chirps as a time-spreading mechanism rather than signaling. 

This system is similar in concept to the DSSS systems. Like a pseudo noise (PN) 

sequence in the DSSS systems, a chirp signal performs a similar function in the DM CSS 

system [11]. In the DM CSS systems, chirps are only used for the purpose of spreading 

and de-spreading, while data is modulated using a conventional non-coherent modulation 

scheme. Therefore, a DM CSS system is more complicated to implement as compared 

with a BOK CSS system. A block diagram of a DM CSS system with quadrature phase-

shift keying (QPSK) modulator/demodulator is shown in Figure 1.2.  
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Figure 1.2: Principle of a DM CSS system 

The DM method has to combine with other digital modulation schemes for data 

transmission, while the BOK method does not. Thus, the modulation scheme of the BOK 

method for wireless data communication is simpler than that of the DM method. 

Moreover, the BOK chirp method uses two different chirps for data modulation, while the 

DM chirp method can just use one chirp signal for spreading. Hence, the DM method 

focuses on the autocorrelation of the chirp signal, which is the same as in a radar system, 

while the BOK method depends not only on autocorrelation characteristics but also on 

cross-correlation characteristics between the two chosen chirps. The BOK method is more 

suitable for analyzing chirps, since its performance depends more on the characteristics of 

chirps than the DM method does. Therefore, the BOK method is chosen in this research. 

1.2 Previous Work 

The BOK CSS systems have been studied in the past decades. The BOK CSS system 

based on linear chirps was first proposed for wireless data communication by Winkler [5] 

in 1962. In 1973, Berni and Gregg compared the linear chirp BOK modulation with PSK 

(phase-shift keying) and FSK (frequency-fhift keying) modulation in [12], and concluded 

that the BER performance of the chirp BOK for coherent reception is better than that of 

FSK but worse than that of PSK. In 1994, many problems of chirp BOK systems have 

been studied such as the overlap in the multipath channel. Tsai [13] evaluated the BER 

performance of the linear chirp BOK and proved that a chirp system can be used to 

greatly reduce the effect of multipath environment on the BER performance. With the 

development of surface acoustic wave (SAW), which can be used to generate linear 

chirps, SAW chirped delay lines can be realized at a small size and low cost [14, 15]. The 

design and performance of a low-cost BOK CSS system for indoor and industrial 

environments using SAW chirped delay lines are presented in [6, 16]. In 2002, Hengstler 

[17] proposed a multi-access for chirp direct modulation. Pinkney [18] presented a 
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scheme of expanding the data throughput of a BOK CSS system by increasing the signal 

constellation from binary to N-ary piece linear chirps. All of these studies use linear 

chirps for the BOK CSS systems. 

Currently, non-linear chirps have attained little acceptance for the CSS system mainly 

due to the following reasons: (1) limited development of nonlinear-FM generation and 

processing devices; (2) mathematical derivation of performance analysis for non-linear 

chirp signals can be cumbersome; (3) greater system complexity; (4) the linear chirp 

already has acceptable performance, especially for wide time-bandwidth  product. 

Despite these factors, many attempts have been made to explore the non-linear chirps. 

A method of suppressing narrowband interference in ultra wideband (UWB) systems is 

realized using sine chirp in [19]. Several attempts to design the exponential chirp for 

radar applications have been published in [20, 21]. Sinh and tan function chirps are 

investigated for active sonar in [22]. Atan and asinh chirps are studied in [23] to construct 

UWB pulses and alleviate narrowband interference (NBI). Modified sine chirps and 

modified tanh chirps are proposed to be used in cognitive UWB system in [24]. Range 

and Doppler resolutions for Gaussian and Rayleigh chirps are compared in [25]. 

However, none of these investigations are for the BOK CSS system. Since no non-linear 

chirps are proven to have potential to replace linear chirps in the BOK CSS system, as of 

writing this paper, very few works introduce non-linear chirps into the BOK CSS system. 

Multiuser chirp spread spectrum communication systems using quadratic and exponential 

chirps are considered in [26]. However, in this paper, the assumption of orthogonality for 

these chirps has not been validated. 

1.3 Problems, Motivations and Objectives 

1.3.1  Problems 

The performance of the BOK CSS systems is dependent upon the type of chirp 

waveform selected and the method of generation and processing. The chirp waveforms 

can be classified into two types: linear chirps in which the frequency increases or 

decreases linearly with time, and non-linear chirps in which the frequency varies in a 
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nonlinear manner with time. Most of current works on the CSS systems are based on 

linear chirps [3, 27]. The performance of a BOK CSS system, such as bit error rate (BER), 

depends significantly on the orthogonality of the chirp signals used. The better the 

orthogonality of the chirp signals is, the better the BER performance of the BOK CSS 

system will be when other factors remain the same. Linear chirps generally require the 

time-bandwidth product of each chirp signal to be 60 sHz or more in order to achieve 

satisfactory orthogonality requirements between the chirp signals. Thus, a BOK CSS 

system based on linear chirps has to occupy a wide bandwidth, which is a precious 

communication resource. For instance, Nanotron’s CSS module nanoPAN 5360, which 

uses linear chirps, occupies 64 MHz bandwidth for one channel with 1µs time period for 

up to 2 Mbps data rate [28]. Clearly, the requirement on broad frequency bandwidth is a 

significant limiting factor for a linear CSS system. The question being investigated in this 

thesis research is to explore if there exist other forms of chirps, which provide improved 

orthogonality over linear chirps for the BOK CSS system. 

1.3.2  Motivations 

To address the above problem, it is worthwhile to explore other types of chirp signals 

outside the linear domain, which can potentially reduce the bandwidth requirement 

without jeopardizing the system performance. 

1.3.3  Objectives 

Based on the above motivation, the objectives of this research can be summarized as 

follows. 

• Develop the general representations to construct arbitrary kind of chirps, and 

construct  a pair of chirps for use in the BOK CSS systems 

• Determine a pair of non-linear chirps, which can potentially be used to improve the 

BOK CSS system over linear chirps 

• Analyze the properties or characteristics of the chosen non-linear chirps 

theoretically 
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• Evaluate the performance of the BOK CSS system based on the chosen non-linear 

chirps 

1.3.4  Methodology 

The following methods will be used respectively to carry out the above objectives: 

• Although some non-linear chirps are presented in some literature, there is no 

general representation to construct a pair of non-linear chirps for the BOK CSS 

system. Therefore, the first task for the first objective is to find a general way to 

represent an arbitrary chirp, and then construct a pair of chirps to be used in the 

BOK CSS system. Thus, some pairs of non-linear chirps can be determined for 

further research.  

• To be a good candidate to replace linear chirps in the BOK CSS systems, a pair of 

non-linear chirps should have a better orthogonal property than that of linear chirps. 

Thus, a comparison of cross-correlation of linear chirps and the proposed non-

linear chirps can be an efficient way to determine if the non-linear chirps are a good 

candidate.  

• To be a good candidate, the chosen chirp signals should have the following 

desirable properties: (1) They should have better orthogonal property than that of 

linear chirps; (2) they should have a similar autocorrelation property to linear chirps; 

and (3) they should lead to a reduced bandwidth requirement without jeopardizing 

system performance. Therefore, the properties (such as spectrum, cross-correlation, 

and autocorrelation) of the proposed pair of non-linear chirps need to be 

theoretically analyzed, so that their characteristics can be validated.  

• Accurate BER performance is a crucial parameter to evaluate the performance of a 

digital communication system. Therefore, in order to prove the proposed non-linear 

chirps can outperform their linear counterpart for the BOK CSS system, BER 

performance of the BOK CSS system based on the chosen non-linear chirps in 

different channel models (e.g. Gaussian, Rayleigh, effect of Doppler shift) needs to 

be analyzed and validated by a comparison to linear chirps. 
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1.3.5  Scope 

Since there are infinite number of non-linear chirps, it is not possible to investigate all 

non-linear chirps in this research. Instead, the scope of this thesis is limited to finding a 

pair of non-linear chirps, which can potentially be used to improve the BOK CSS system 

by replacing linear chirps. 

1.4 Contributions of the Thesis 

• One general representation is developed to construct an arbitrary kind of chirp for a 

given spectral bandwidth. Another general representation is generated to construct a 

pair of chirps for the BOK CSS system. With these two general representations, a 

class of non-linear chirps can be constructed and explored for the BOK CSS system. 

• A method is developed to observe if a pair of candidate chirps has improved 

orthogonal property over their linear counterpart.  

• Preliminary results have shown that significant performance advantage on 

orthogonality over linear chirps can be obtained using the pair of cosine or sine 

chirps. Thus, the properties of sine or cosine chirps are analyzed analytically. The 

derivations of the spectral characteristics, autocorrelation and cross-correlation for 

sine chirps are carried out. Similarly, the derivations of the spectral characteristics, 

autocorrelation and cross-correlation for cosine chirps are also carried out. A 

significant discovery is validated through mathematical derivation and simulation: a 

pair of sine or cosine chirps can become orthogonal under some conditions. 

• It is found that a pair of full period sine (FPS) chirp is the better choice among the 

different periods of sine chirps for the BOK CSS system, in terms of the cross-

correlation and autocorrelation properties.  

• The effect of a Doppler shift on the BOK FPS CSS system is derived, and then 

validated by simulation.  

• BER performance of the BOK CSS system based on FPS chirps in an additive 

white Gaussian noise (AWGN) channel is derived and then validated. Furthermore, 

a BER performance comparison between linear chirps and FPS chirps for the BOK 

CSS system in AWGN+Rayleigh channel has also been analyzed. The 



8 

 

corresponding results show that a pair of orthogonal FPS chirps can achieve better 

BER performance than its linear counterpart in these two types of channel. 

1.5 Organization of the Thesis 

The organization of this dissertation is as follows: 

Chapter 2 introduces the fundamental theory of the BOK CSS system, which includes: 

matched filter, pulse compression technique, principle of a BOK CSS system, and 

characteristics of linear chirps. 

Chapter 3 proposed two general representations to construct arbitrary kinds of chirps, 

and to construct a pair of chirps for using in the BOK CSS system. In this chapter, several 

non-linear chirps are constructed, and their capabilities of outperforming linear chirps are 

explored by analyzing their cross-correlation properties. Finally, two kinds of non-linear 

chirps, i.e. sine and cosine chirps, have shown some interesting characteristics that are 

more appealing than linear chirp signals for the BOK CSS systems. This interesting 

finding makes sine or cosine chirps a suitable choice for chirp based signaling approach. 

Hence, they are chosen for further investigation in this thesis. 

In Chapter 4, the properties of sine or cosine chirps are further investigated 

analytically. The derivations of the spectral characteristics, autocorrelation and cross-

correlation for both sine chirps and cosine chirps are carried out, respectively. Finally, by 

comparing sine chirps with four different time periods (half time period, full time period, 

triple time period, and quadruple time period) in terms of the cross-correlation and 

autocorrelation properties, it is concluded that full period sine (FPS) chirps have greater 

potential for the current applications. 

In Chapter 5, the performance of the BOK CSS system based on FPS chirps (BOK 

FPS CSS system) is evaluated in three scenarios. Firstly, BER performance of the BOK 

FPS CSS system in an additive white Gaussian noise (AWGN) channel is derivated. 

Furthermore, a comparison of BER performance in the AWGN between linear chirps and 

FPS chirps is given. Secondly, the effect of a frequency shift on the BOK FPS CSS 
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system is analyzed. The derivation of the effect of a Doppler shift on the FPS CSS system 

is carried out. The effect of Doppler shifts between linear chirp and FPS chirp is 

compared. Thirdly, BER performance of the BOK FPS CSS system in a fading 

environment (Rayleigh channel) is analyzed. Moreover, BER performance comparisons 

between linear chirps and FPS chirps in the AWGN+Rayleigh channel, with and without 

Doppler shift, are also carried out.  

The conclusions of the dissertation are summarized in Chapter 6. Several topics of 

interest are presented as potential subjects of future investigation as well. 
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2. Chirp Spread Spectrum 

A definition of spread spectrum that adequately reflects the characteristics of this 

technique is as follows [3]: “Spread spectrum is a means of transmission in which the 

signal occupies a bandwidth in excess of the minimum necessity to send the information; 

the band spread is accomplished by means of a code which is independent of the data, 

and a synchronized reception with the code at the receiver is used for despreading and 

subsequent data recovery”. Similarly, chirp spread spectrum derives its name from using 

modulated chirps for transmission, and the associated pulse compression techniques for 

encoding information. The matched filter and pulse compression concepts are 

fundamental to the CSS system. According to the pulse compression theory [29], the 

pulse compression of a chirp signal can be realized using a matched filter, which is the 

optimal filter in terms of achieving the maximal SNR (signal-to-noise ratio) at the filter 

output for performing signal detection  in a white Gaussian noise environment. 

2.1 Matched Filter 

Since a matched filter has a principle position in the pulse compression technique, its 

concept and properties are briefly introduced firstly. Matched filters are commonly used 

in radar in which a known signal is sent out and the reflected signal is examined for 

common elements of the outgoing signal. The receiver uses a matched filter to pass the 

effected signal that matches the pattern of the outgoing signal and rejects noise and other 

signals at the same time [30]. In short, matched filtering (correlation filtering) is a method 

to detect a known signal. The principle of the matched filter is shown in Figure 2.1. As 

shown, ( )s t is the transmitted signal, which is generated by the signal generator and is 

then sent from the transmitter, ( )y t  is the received signal by the receiver, ( )
m

h t  is 

impulse response of the matched filter, and ( )g t  is the output of the matched filter 

without Doppler shift. 
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( )
m

h t

( )s t ( )y t ( )g t

  

Figure 2.1: Principle of a matched filter 

The criterion for the matched filter has been defined by Klauder in [31] as: 

 ( ) ( )mH j F jω ω∗=  (2.1) 

where ( )
m

H jω  is the transfer function of a matched filter, ( )F ω  is the spectrum of the 

signal ( )s t , which is supposed to be inputted into the matched filter, and ∗  denotes the 

complex conjugate. From this equation, a filter is matched to the signal when its 

frequency response is equal to the complex conjugate of the signal spectrum. The impulse 

response of the matched filter to a general signal ( )s t  is: 

 ( ) ( )mh t s t
∗= −  (2.2) 

It can be seen that ( )
m

h t  is equal to the complex conjugate of the transmitted signal 

( )s t  after time reversion [32]. Therefore, if a signal is a real even function, i.e.

*( ) ( )s t s t= − , then the impulse response of the matched filter is the transmitted signal 

itself, i.e. ( ) ( )
m

h t s t=
. 

When ( )y t  is processed by the matched filter, the output of the matched filter without 

Doppler shift, ( )g t , can be expressed by the convolution integral between the filter's 

impulse response and the signal ( )y t : 

 ( ) ( ) ( )
m

g t y u h t u du
+∞

−∞
= −∫  (2.3) 
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By combining Eqn. (2.2) and Eqn. (2.3), the output of the matched filter can be written 

as: 

 ( ) ( ) ( ) ( , )g t y u s u t du C y s
+∞

∗

−∞
= − =∫  (2.4) 

where ( , )C y s  is a cross-correlation between the received signal ( )y t  and the transmitted 

signal ( )s t . Therefore, the output of the matched filter can be calculated by performing a 

cross-correlation between the received signal and the transmitted signal. If the received 

signal is the same as or similar to the transmitted signal, i.e. ( ) ( )y t s t= , the output of the 

matched filter would be the autocorrelation function of the received (or transmitted) 

signal [33]. 

In other words, output of a matched filter can be achieved by convolving the incoming 

signal with a conjugated and time-reversed version of the transmitted signal, or can be 

obtained by convolving the incoming signal with the transmitted signal if the transmitted 

signal is a real even function. A practical implementation of matched filtering is pulse 

compression because the impulse response is matched to the input pulse signals. 

2.2 Pulse Compression 

Pulse compression is a classical signal processing technique to increase the range 

resolution as well as the signal to noise ratio without having to increase the peak 

transmission power [34]. The critical functions in a pulse compression system are 

modulating the transmitted pulse in the transmitter, and the matched filtering (pulse 

compression) in the receiver.  

The simplest transmitted pulse can be a cosine signal. The pulse is transmitted 

periodically, but only a single pulse is considered here as an example. Assuming the 

pulse starts at 0t = , the signal ( )s t  can be defined by the following equation, where 0f  

is the carrier frequency, and T  is the duration of the signal in second. 
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( )0 0cos 2 cos( ) 0

( )
0 otherwise

f t t t T
s t

π ω= ≤ ≤
= 


 (2.5) 

A matched filter is used in the receiver to detect the incoming cosine signal. A cosine 

pulse to be transmitted and the corresponding output of the matched filter are shown in 

Figure 2.2, respectively. 

   

 Figure 2.2: Output of a matched filter for a cosine signal 

Instead of a fixed frequency signal, such as a cosine signal, a short pulse can be 

achieved after the matched filter if the transmitted signal is implied by the wide 

bandwidth, which can be called spread spectrum. Linear chirp, the frequency of which 

increases or decreases linearly with time, is the most typically used signal in the pulse 

compression system. The common representation of a linear chirp can be written: 

 

2

0cos 2 ( ) 0
( ) 2

0 otherwise

c

L c

B
f t t t T

c t T
π

  
+ ≤ ≤  

=   



 (2.6) 

where 0f  is the carrier frequency, B  is the frequency sweeping band, and c
T  is the 

duration of the chirp in seconds. This linear chirp signal and its output after the matched 

filter are shown in Figure 2.3. 
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Figure 2.3: Output of a matched filter for a linear chirp signal 

By comparing the outputs after the matched filter in Figure 2.2 and Figure 2.3 

respectively, a narrow pulse is achieved for the linear chirp signal but not for the cosine 

signal. Therefore, the energy of the linear chirp signal is compressed into a short pulse by 

the matched filter, is from which the term, pulse compression, is derived. Since the 

energy of the signal can be perserved during pulse compression [35], the short pulse will 

have a large increase in magnitude as shown in Figure 2.3.  

Pulse compression technique associated with a chirp signal has the capability of 

accumulating the energy of this signal into a short pulse with an amplification in 

magnitude [36]. Therefore, it is more likely to be detected by the corresponding receiver 

when operating at low power in order to avoid use of high peak power signals. Moreover, 

the transmission of chirps and the use of the associated pulse compression technique 

make the system highly robust against interference and multipath distortions [3]. Since 

the chirp spread spectrum system (CSS system) is based on chirps and pulse compression 

technique, it inherits these advantages. 

2.3 Principle of the BOK CSS System 

The pulse compression technique is used in the CSS system for decoding information. 

A signal model of the BOK CSS system is depicted in Figure 2.4.  
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Figure 2.4: Model of a BOK CSS system 

At the transmitter side, a switching circuit is trigged by a bit stream. If a bit "1" is to 

be sent, the switch will be connected to the #1 chirp generator and chirp signal 1( )c t  will 

be transmitted. If a bit "0" is to be sent, the switch will be connected to the #2 chirp 

generator and chirp signal 2 ( )c t  will be transmitted. Thus, the transmitted signal ( )s t  is 

either 1( )c t  or 2 ( )c t  within a symbol period. ( )y t  is the received signal at the receiver 

end. This signal becomes the input to both matched filters. The received signal ( )y t  may 

be corrupted by an additive channel noise, ( )n t . In this research, the effect of ( )n t  is not 

explicitly considered to simplify the analysis of the BOK CSS system, and will be 

considered in Section 5. Outputs of the filters can be expressed by the convolution 

integral between the impulse response of the filter and the received signal: 

 
1 1

2 2

( ) ( ) ( )

( ) ( ) ( )

g t y u h t u du

g t y u h t u du

+∞

−∞

+∞

−∞

 = −

 = −


∫

∫
  

(2.7) 

where 1( )h t  is the matched filter to the #1 chirp signal and 2( )h t  is the matched filter to 

the #2 chirp signal. Thus, according to Eqn. (2.2), these two matched filters can be 

represented as: 

 
1 1

2 2

( ) ( )

( ) ( )

h t c t

h t c t

∗

∗

 = −


= −
 (2.8) 
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By combining Eqn. (2.7) and Eqn. (2.8), the outputs of the matched filters can be 

written as: 

 
1 1 1

2 2 2

( ) ( ) ( ) ( , )

( ) ( ) ( ) ( , )

g t y u c u t du C y c

g t y u c u t du C y c

+∞
∗

−∞

+∞
∗

−∞

 = − =

 = − =


∫

∫
 (2.9) 

where 1( , )C y c  is a cross-correlation between the received signal ( )y t  and the 

transmitted chirp signal 1( )c t , while 2( , )C y c  is a cross-correlation between the received 

signal ( )y t  and the transmitted chirp signal 2 ( )c t . When 1( )c t  is transmitted, the 

received signal ( )y t  will be the #1 chirp signal, i.e. 1( ) ( )y t c t= . In this case, the filter 

1( )h t  is the corresponding matched filter, while the filter 2( )h t  does not match to the 

received signal. The outputs of the filters as defined in Eqn. (2.9) become: 

 11 1 1

2 1 2 2

( ) ( , ) ( )

( ) ( , ) ( )

m

u

g t C c c g t

g t C c c g t

 = =


= =
 (2.10) 

where 
1

( )m
g t  represents the output of filter 1( )h t  which is a matched output, while 

2
( )u

g t  

is the output of filter 2( )h t  which is an unmatched output. From Eqn. (2.10), the matched 

output is the autocorrelation of the #1 chirp signal 1( )c t ; while the unmatched output is 

the cross-correlation between 1( )c t  and 2 ( )c t . The output of the corresponding matched 

filter can be represented as the autocorrelation function of the received (or transmitted) 

chirp signal, while the output of the corresponding unmatched filter can be represented as 

the cross-correlation function between the two chirp signals.  

Given a signal ( )c t , its autocorrelation function ( )R τ  can be defined as [37]: 

 *( ) ( ) ( ) ( ) ( )R c c c t c t dtτ τ τ τ
∞

∗

−∞
= ∗ − = −∫  (2.11) 

where τ  is the time shift. Further, autocorrelation coefficient ( )r τ  of the signal ( )c t  can 

be defined in Eqn. (2.12). 
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( ) ( )( )

( )
( ) ( )

c t c t dtR
r

E c E c

ττ
τ

∞
∗

−∞
−

= =
∫

 (2.12) 

where 2( ) ( )E c c t dt
∞

−∞
= ∫  is the energy of the signal ( )c t  [12]. 

Similarly, for any two signals, 1( )c t  and 2 ( )c t , the cross-correlation ( )C τ  with time 

shift τ  can be defined in [37] by Eqn. (2.13).  

 
1 2 1 2

( ) ( ) ( ) ( ) ( )C c c c t c t dtτ τ τ τ
∞

∗ ∗

−∞
= ∗ − = +∫  (2.13) 

Further, the cross-correlation coefficient between 1( )c t  and 2 ( )c t  can be represented 

in Eqn. (2.14).  

 
1 2

11 22 11 22

( ) ( )( )
( )

(0) (0) (0) (0)

c t c t dtC

R R R R

ττ
ρ τ

∞
∗

−∞
+

= =
× ×

∫
 (2.14) 

where 11(0)R and 22 (0)R  are the autocorrelation of the signal 1( )c t  and 2 ( )c t  

respectively. The cross-correlation indicates the degree of linear association or 

correlation between two signals. 

2.4 The BOK Linear CSS System 

Linear up-chirp and down-chirp are common choices in a practical BOK CSS system 

since they are the least complex. In complex baseband form, one common way of 

representing a linearly swept chirp signal is given in [18]: 

 

[ ]

[ ]

2

1 0 0

2

2 0 0

Up : cos 2 ( ) cos (2 )
2 2 2

Down : cos 2 ( ) cos (2 )
2 2 2

c c
L

c c
L

T Tt
c f t f t t t t

T Tt
c f t f t t t t

π µ π πµ

π µ π πµ

  
= + = + − ≤ ≤  

  


  = − = − − ≤ ≤ 
 

 (2.15) 

The parameter c
B Tµ =  is the frequency sweep rate in Hz/s, 0f  is the center 

frequency in Hz, and c
T  is the chirp signal duration in seconds. Both signals have a 
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common bandwidth B . Since almost all existing literature about linear chirps uses 

2 2
c c

T t T− ≤ ≤  for the time period, the time period for all chirp signals in this thesis is 

set as 2 2
c c

T t T− ≤ ≤  in order to remain consistent. 

The linear up-chirp signal increases its instantaneous frequency with time. Inversely, 

the linear down-chirp signal decreases its instantaneous frequency with time. The time-

frequency characteristics of a linear up-chirp and down-chirp, along with their 

corresponding real parts are depicted in Figure 2.5. 
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Figure 2.5: Linear chirps and their output waveforms 

According to the theory of matched filter introduced in Section 2.1, by substituting 

Eqn. (2.15) into Eqn. (2.2), the impulse response of a matched filter for linear chirp 

signals can be obtained as shown in Eqn. (2.16). It is, again, a linear chirp signal but with 

a chirp rate of opposite sign. 
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2

1 0

2

2 0

Up Matched Filter: ( ) cos 2 ( )
2 2 2

Down Matched Filter: ( ) cos 2 ( )
2 2 2

c c
L

c c
L

T Tt
h t b f t t

T Tt
h t b f t t

π µ

π µ

  
= − − ≤ ≤  

  


  = + − ≤ ≤ 
 

 (2.16)  

where b  is a scaling factor for gain. In most applications of linear chirp, b  is set as  

4µ  so that the gain of the matched filter at frequency 0f  is a unit [38]. If the matched 

filter is centered at time t , an analytical expression for the output waveform of the 

matched filter ( ( )m

Lg t ) can be achieved by combining Eqn. (2.15) and Eqn. (2.16) into 

Eqn. (2.3) as given by [2]: 

 0

sin ( )
( ) cos(2 )

2 2 2

cm c c
L

t T t T T
g t f t t

t

πµ
µ π

πµ

 −  = − ≤ ≤  (2.17) 

The signal produced at the unmatched filter is also given in [18]: 

 ( ) ( )
2 2

0cos(2 )
( )

2 2

u

L c c

c

f t
g t C T B t jS T B t

T B

π π π
µ µ

    
= − + −    

    
 (2.18)  

where ( )C x  and ( )S x  are both Fresnel functions [39]. 

The matched output waveform ( ( )m

Lg t ) and unmatched output waveform ( ( )u

Lg t ) of a 

linear chirp signal are shown in Figure 2.6. As shown, the output of the matched filter is a 

function with most of its energy existing in the period of 1 1B t B− ≤ ≤ . The magnitude 

of the centre peak is amplified up to cT B , and low amplitude main-lobe width of 2 B  as 

its first zeroes are at B± [3]. Therefore, if a linear chirp waveform is fed into its matched 

filter, the output signal typically has a narrow peak at the center frequency of linear chirp. 

Thus, there will be an approximate difference of 1 2 cT B  in the peak amplitude of the 

envelope of the matched versus unmatched output waveform [18]. The BOK linear CSS 

system is to use this difference to identify which output is matched or unmatched, and 
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can then decide which signal ( 1L
c  or 2L

c ) is transmitting. The bigger this difference is, 

the more precise the achieved decision will be.  
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Figure 2.6: Matched and unmatched output waveforms of a linear chirp 

In digital communication theory, the most frequently assumed model for a 

transmission channel is the additive white Gaussian noise (AWGN) channel. Bit error 

rate for the BOK linear CSS system in the AWGN channel (
L

bP ) can be calculated by 

[18]: 

 ( )
( ) ( )2 2

2
1 0

1
, ( )

2

L La b

L

b L L L L
P Q a b I a b e

 +  −

= −  (2.19)  

where 1Q  is Marcum’s Q function, o
I  is the modified Bessel function of the first kind 

with order zero [40].  The coefficients L
a  and L

b  are defined as: 
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2

0

0

2

0

0

(1 1 ( ) )

2

(1 1 ( ) )

2

b L

L

b L

L

E J
a

N

E J
b

N

ρ

ρ


− − =



 + −
 =


 (2.20)  

where 
0b

E N  is the energy per bit to noise power spectral density ratio [41]. L
ρ  is a 

cross-correlation coefficient of the linear chirps, which can be obtained by substituting 

Eqn. (2.15) into Eqn. (2.14). The derivation process is presented in [18], and the result is 

given by Eqn. (2.21). 

 
2 2

2 2

0 0

1
( cos ) ( sin )

2 2

c cT B T B

L

c

v v
dv dv

T B

π π
ρ = +∫ ∫  (2.21) 

From Eqn. (2.21), it can be observed that L
ρ  depends on the time-bandwidth product 

( c
T B ). The relationship between c

T B  and L
ρ  is graphically shown in Figure 2.7.  

  

Figure 2.7: Cross-correlation coefficient vs. c
T B  for linear chirps 
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from 20 sHz to 100 sHz. If c
T B  goes beyond 60 sHz, the magnitude of L

ρ  will be less 

than 0.05. Even when c
T B

 is 100 sHz, these two chirps cannot be considered as 

orthogonal although L
ρ  is close to zero. Therefore, the linear chirps can only be 

considered as quasi-orthogonal [16].  

The relationship between L
ρ  and the BER performance of the BOK linear CSS 

system in the AWGN channel is depicted in Figure 2.8 [18]. It can be observed from 

Figure 2.8 that the value of L
ρ  has significant effects on the BER performance of the 

BOK CSS system. The smaller the value of L
ρ  is, the better BER performance will be. 

When L
ρ  is perfectly equal to zero, which means the two chirps are orthogonal with 

each other, the best BER performance for the BOK CSS system will be achieved. 

Generally, the time-bandwidth product ( c
T B ) of the BOK linear CSS system needs to be 

set as 60 sHz or higher for satisfactory orthogonality. As a result, the BOK linear CSS 

system has to occupy wide frequency bandwidth ( B ) when the chirp duration ( c
T ) is 

short such as 1 µs. Since the data rate is inversely proportional to the chirp duration, the 

shorter the chirp duration is, the higher data rate will be. For instance, the chirp duration 

in Nanotron’s CSS system [28] is 1µs for up to 2 Mbps data rate. 

 

Figure 2.8: Eb/No vs. BER of the BOK linear CSS system in the AWGN channel 
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2.5 Summary 

The above introduction shows (1) orthogonality is important factor to distinguish the 

transmitted signals at the receiver end, and (2) the time-bandwidth product of the BOK 

linear CSS system is generally set as a large value (e.g. 60 sHz or over) in order to 

achieve good orthogonality between linear chirps. Thus, the BOK linear CSS system has 

to occupy a very wide bandwidth for high-speed data rate. A worthwhile question is 

whether there are significant benefits of using non-linear chirps to provide similar level 

of orthogonality, but with smaller time-bandwidth product as compared with the linear 

CSS system.  
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3. Non-Linear Chirps for the BOK CSS 

System 

The linear chirps are the most commonly used signals in the CSS BOK system, but 

they have some drawbacks for the BOK mode as described in Section 2.4. A pair of non-

linear chirps may be a better choice if they can outperform their linear counterpart. 

Therefore, this section explores some non-linear chirps in two steps. Firstly, a method is 

presented to briefly analyze a pair of non-linear chirps against linear chirps for the BOK 

CSS system. Secondly, with this method, some non-linear chirps (such as 3rd power 

function chirps, sine chirps, cosine chirps, and exponential chirps) are explored 

respectively to determine if they have potential to replace linear chirps in the BOK CSS 

system. 

3.1 Method to Explore Non-Linear Chirps for the BOK 

CSS System 

Although representations for linear chirps and some non-linear chirps already exist, 

there is no general representation to construct an arbitrary chirp waveform. Moreover, 

most existing non-linear chirps are considered for a radar application or the DM mode in 

the CSS data communication systems, in which only one chirp is required. However, at 

least one pair of chirps is needed for the BOK mode in the BOK CSS system. Thus, there 

is also no general representation to construct a pair of chirps for the BOK CSS system. 

Therefore, a representation of a pair of non-linear chirps for the BOK CSS system also 

needs to be determined before the chirps are analyzed.  

3.1.1  General Representation for Arbitrary Chirps 

For a given spectral bandwidth B , a chirp waveform for CSS can be generally 

constructed through the following steps:  
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(1) Determine the type of chirp signal (e.g. linear, cosine, Gaussian, etc.) to be 

constructed. The type can be represented by the chirp rate function ( )tψ . For example, 

when ( )t tψ = , which is a linear function, a linear chirp signal is going to be constructed. 

(2) Calculate integral of ( )tψ : 

 
0

( ) ( )
t

t t dtψΘ = ∫  (3.1) 

(3) The proposed representation needs to use a parameter ξ defined as follows: 

 [ ] [ ] ( )max ( ) min ( ) 2, 2c ct t t T Tξ ψ ψ= − ∈ −  (3.2) 

where, [ ]max ( )tψ  means the maximum value of the function ( )tψ  for ( )2, 2c ct T T∈ − , 

while [ ]min ( )tψ  is the minimum value of the function ( )tψ  for the same time period.  

(4) Finally, this type of the chirp waveform ( ( )c t ) can be represented using Eqn. (3.3): 

 ( ) 0 0
cos 2 ( ) cos 2 ( )

B B
c t a t t a f t tω π π

ξ ξ

    
= + Θ = + Θ    

    
 (3.3) 

where a  is the envelope of the chirp signal, which usually uses the rectangle pulse. If a  

is chosen as a rectangle pulse with a value of 1, the representation of ( )c t  can be 

simplified as: 

 ( ) 0 0
cos 2 ( ) cos 2 ( )

B B
c t t t f t tω π π

ξ ξ

    
= + Θ = + Θ    

    
 (3.4) 

In order to better understand this general representation of an arbitrary chirp 

waveform, a linear chirp signal is taken as an example. To construct a linear chirp signal, 

the chirp rate function is a linear function, which means ( )
L

t ktψ =  in the simplest case. 

According to Eqn. (3.1), ( )tΘ  for linear chirp can be obtained as: 
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2

0 0

1
( ) ( )

2

t t

L t t dt ktdt kt qψΘ = = = +∫ ∫  (3.5) 

wherein, q  is a constant which can be set to 0. Therefore, Eqn. (3.5) can be simplified as: 
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( )
2

L t ktΘ =  (3.6) 

Similarly, the parameter ξ  for linear chirp can be given by Eqn. (3.2): 

 ( )when 2, 2
2 2

c c
L c c c

T T
k k kT t T Tξ

 
= − − = ∈ − 

 
 (3.7) 

Combining Eqn. (3.6) and Eqn. (3.7) into Eqn. (3.4), the representation for a linear 

chirp signal can be obtained as: 

 

( )
2

0 0

0

cos 2 ( ) cos 2
2

cos 2
2

L L

L c

c

B B t
c t f t t f t k

kT

B
f t t

T

π π
ξ

π

      
= + Θ = + ×     

       

  
= +  

  

 (3.8) 

Eqn. (3.8) is the exact same as the representation for the linear up-chirp as defined in 

Eqn. (2.15). 

3.1.2  Representation for a Pair of Chirps for the BOK CSS 

System 

As explained in Section 1.1, the BOK CSS system uses two different chirps with the 

same bandwidth and duration but opposite sweep polarity, e.g. an up-chirp and a down-

chirp. Therefore, from Eqn. (3.8), a pair of chirp can be represented in the following form.  
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( )

( )

1 0 0

2 0 0

cos 2 ( ) cos 2 ( )
2 2

cos 2 ( ) cos 2 ( )
2 2

c c

c c

T TB B
c t a t t a f t t t

T TB B
c t a t t a f t t t

ω π π
ξ ξ

ω π π
ξ ξ

     
= + Θ = + Θ − ≤ ≤     

     


    
= − Θ = − Θ − ≤ ≤    

    

 (3.9) 

In order to ensure that the two chirps have the same bandwidth but opposite sweep 

polarity, the chirp rate function [ ]( ) ( )t d t dtψ = Θ  should be confined to either of the 

following cases. 

(1) The chirp rate function ( )tψ  is an odd function, which means ( ) ( )t tψ ψ− = −  for 

( )2, 2c ct T T∈ − .  

(2) The chirp rate function ( )tψ  is an even function, which means ( ) ( )t tψ ψ− =  for 

( )2, 2c ct T T∈ − ; however, its value for ( )2, 2c ct T T∈ −  contains positive and 

negative periods, and is symmetrically around the frequency axis. Otherwise, the 

frequency band occupied by the two signals defined in Eqn. (3.8) will not be the same, 

and, thus, will reduce the usage efficiency of the frequency spread. 

3.1.3  Method to Determine Non-Linear Chirps for the BOK CSS 

System 

As stated at the end of Section 2.4, BER performance of a BOK CSS system depends 

heavily on the cross-correlation coefficient of the used chirps. The smaller the value of 

the cross-correlation coefficient is, the better BER performance will be. Therefore, to be a 

good candidate to replace linear chirps in the BOK CSS systems, a pair of non-linear 

chirps should possess the fundamental property: they should have better orthogonal 

property than that of linear chirps. Thus, the comparison of cross-correlation between 

linear chirps and the proposed non-linear chirps can be significant to evaluate the 

capability of the non-linear chirps.  

Moreover, it is observed that the cross-correlation of a pair of chirps normally depends 

on time-bandwidth product (
c

T B ). Thus, an efficient method can be used to determine a 
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pair of candidate chirps that have improved orthogonal property over its linear 

counterpart: (1) a graphical comparison of relationship between 
c

T B  and value of cross-

correlation coefficient for both linear chirps and the candidate chirps can be used to 

observe if the candidate chirps have improved orthogonal property. (2) Based on the 

graphical comparison, if the magnitude of the cross-correlation coefficient of the 

candidate chirps is smaller than that of the linear chirps for the same 
c

T B , the candidate 

chirps are deemed to have an improved orthogonal property. In this case, the candidate 

chirps deserve more detailed investigation. More especially, if a zero crossing point exists 

in the curve of the candidate chirps, the candidate chirps probably can be completely 

orthogonal under certain condition.  

3.2 Non-Linear Chirps 

With the method presented in Section 3.1, some non-linear chirps are explored to 

determine if they have the potential to replace linear chirps in the BOK CSS system. 

3.2.1  3rd Power Function Chirps  

The 3rd power function is an odd function, so it can be used as the chirp rate function 

to construct 3rd power function chirps for BOK system. This function can be defined in 

the simplest case as: 

 

3

( )
2 2

c c
P

c

T Tt
t t

T
ψ

 
= − ≤ ≤ 
 

 (3.10) 

By substituting Eqn. (3.10) into Eqn. (3.1), the parameter ( )tΘ  for the 3rd power 

function chirp can be obtained by: 

 

3 4

( )
4

c
P

c c

Tt t
t dt q

T T

   
Θ = = +   

   
∫  (3.11) 

wherein, q  is a constant which can be set to 0. Therefore, Eqn. (3.11) can be simplified 

as: 
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4

( )
4

c
P

c

T t
t

T

 
Θ =  

 
 (3.12) 

The parameter ξ  for the 3rd power function chirp can be obtained using Eqn. (3.2): 

 [ ] [ ]
3 3

1
max ( ) min ( )

2 2 4

c c
P P P

c c

T T
t t

T T
ξ ψ ψ

   
= − = − − =   

   
 (3.13) 

Since ( )
3

( )ψ =
P c

t t T  is an odd function, a pair of the 3rd power chirps for a BOK 

CSS can be given by combining Eqn. (3.12) and Eqn. (3.13) into Eqn. (3.9): 

 

4

1 0

4

2 0

Up: ( ) cos 2
2 2

Down: ( ) cos 2
2 2

c c

P c

c

c c

P c

c

T Tt
c t f t BT t

T

T Tt
c t f t BT t

T

π

π

       = + − ≤ ≤  
       


     
 = − − ≤ ≤   
      

 (3.14) 

The frequency spectrum of a pair of the 3rd power function chirp represented by Eqn. 

(3.14) is shown in Figure 3.1.  

3
( )y x= −

3
y x=

2/
c

T− 2/
c

T0

0
2/f B−

0
2/f B+

0
f

f

t

 

Figure 3.1: Frequency of a pair of 3rd power function chirps 
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The 3rd power function up-chirp signal increases its instantaneous frequency with 

time. Inversely, the down-chirp decreases its instantaneous frequency with time, as 

shown in Eqn. (3.15). 

 

3

1 0

3

2 0

Up:
2 2

Down:
2 2

c c

P

c

c c

P

c

T Tt
f f B t

T

T Tt
f f B t

T

  
 = + − ≤ ≤ 
  


 
= − − ≤ ≤ 

 

 (3.15) 

As stated at the beginning of this chapter, the graphical relationship between the time-

bandwidth product (
c

T B ) and the cross-correlation coefficient can be an efficient method 

to determine a candidate non-linear chirp. Thus, the graphical relationships between 
c

T B  

and the value of the cross-correlation coefficients for both linear chirps and 3rd power 

function chirps are shown in Figure 3.2. As depicted, the cross-correlation coefficient for 

3rd power function chirps also depends on 
c

T B . Similar to that of linear chirps, the cross-

correlation coefficients for 3rd power function chirps tend to decrease with the increase 

of 
c

T B ; however, their cross-correlation coefficients are higher than that of the linear 

chirps under the same value of 
c

T B . 

Taking 20
c

T B = sHz as an example, the cross-correlation coefficients of linear chirps 

and 3rd power function chirps are compared and the corresponding result is shown in 

Figure 3.3. In this figure, cross-correlation coefficient of 3rd power function chirps is 

higher than that of the linear chirps, especially around the area where the time shift is 0. 

This means that the orthogonality of 3rd power function chirps is inferior to that of linear 

chirps. 

Therefore, based on the comparative analysis as presented in Figure 3.2 and Figure 

3.3, it can be concluded that 3rd power function chirps would not outperform the linear 

chirp under the same c
T B , since 3rd power function chirps do not show improved 

orthogonal property over their linear chirp counterpart.  
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Figure 3.2: Comparison of the cross-correlation coefficient vs. 
c

T B  for linear and 3rd 

power function chirps 

 

 

Figure 3.3: Comparison of the cross-correlation coefficient between the linear chirps and 

3rd power function chirps 
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3.2.2  Sine Chirps 

If the chirp rate function is a sine function as defined in Eqn. (3.16), a sine chirp can 

be generated. 

 ( ) sin
2 2

c c

S

c

T Tt
t t

T
ψ π

 
= Ω − ≤ ≤ 

 
 (3.16) 

where the parameter Ω  is an integer relating to the number of sweep cycles of the sine 

chirp from 2B  to 2B−  during the signal time period ( c
T ). By substituting Eqn. (3.16) 

into Eqn. (3.1), the parameter ( )tΘ  for the sine chirp can be obtained by: 

 ( ) sin cosc

S

c c

Tt t
t dt q

T T
π π

π

   
Θ = Ω = − Ω +   

Ω   
∫  (3.17) 

wherein, q  is a constant which can be set to 0. Therefore, Eqn. (3.17) can be simplified 

as: 

 ( ) cosc

S

c

T t
t

T
π

π

 
Θ = − Ω 

Ω  
 (3.18) 

The parameter ξ  for sine chirp can be obtained using Eqn. (3.2): 

 [ ] [ ]max ( ) min ( ) sin sin 2
2 2

c c

S S S

c c

T T
t t

T T

π π
ξ ψ ψ

   Ω Ω
= − = × − × − =   

   
 (3.19) 

Since the chirp rate function ( )( ) sinψ π= ΩS ct t T  is an odd function, a pair of sine 

chirp signals for the BOK CSS can be obtained by combining Eqn. (3.17) and Eqn. (3.19) 

into Eqn. (3.9): 

 

( )

( )

1 0

2 0

cos 2 cos
2 2 2

cos 2 cos
2 2 2

c c c
S

c

c c c
S

c

BT T Tt
c t a f t t

T

BT T Tt
c t a f t t

T

π π
π

π π
π

     
= − Ω − ≤ ≤    

Ω      


     
= + Ω − ≤ ≤    Ω      

 (3.20) 
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The Eqn. (3.20) can be simplified as: 

 

( )

( )

1 0

2 0

cos 2 cos
2 2

cos 2 cos
2 2

c c c
S

c

c c c

S

c

BT T Tt
c t a f t t

T

BT T Tt
c t a f t t

T

π π

π π

   
= − Ω − ≤ ≤   

Ω    


  
= + Ω − ≤ ≤   Ω   

 (3.21) 

The frequency functions of the pair of sine chirps with different values of Ω  are 

shown in Figure 3.4. When the value of Ω  is set to 1, the frequency function is a half 

period sine curve. As a result, this kind of chirp will henceforth be referred to as a half 

period sine (HPS) chirp. Similarly, when the value of Ω  is set at 2, it is a full period sine 

curve. Hence, this kind of chirp is henceforth named as full period sine (FPS) chirp. 

Similarly, when the value of Ω  is equal to 3 and 4, the sine chirp is named triple period 

sine (TPS) chirp and quadruple period sine (QPS) chirp respectively.  

The relationship between c
T B  and values of the cross-correlation coefficient for sine 

chirps with different Ω  is described in Figure 3.5. As displayed, the value of the cross-

correlation coefficient of sine chirps ( S
ρ ) also depends on c

T B . S
ρ  is generally smaller 

than those of linear chirps for the same c
T B , particularly for the HPS and FPS chirps (

1,2Ω = ), and especially when c
T B  is less than 6 sHz. Thus, for the same c

T B , sine 

chirps have better orthogonality than linear chirps. An interesting characteristic that can 

be observed is that the pair of linear chirps cannot be orthogonal ( 0
L

ρ ≠ ) even if c
T B  

reaches 50 sHz, while sine chirp can result in perfect orthogonality ( 0
S

ρ = ) for specific 

values of c
T B . This characteristic constitutes a fundamental difference between sine 

chirps and linear chirps.  
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Figure 3.4: Frequency of sine chirps with different Ω  

 

 

Figure 3.5: Comparison of the cross-correlation coefficient vs. 
c

T B  for linear chirps and 

Sine chirps for four different Ω  
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Moreover, another interesting characteristic of sine chirps, which can be observed 

from Figure 3.5, is that perfect orthogonal points of sine chirps are periodic. As shown, 

an orthogonal point for FPS chirps is approximately at 5.5
c

T B =  sHz. Cross-correlation 

coefficient of linear chirps and HPS chirps are compared when c
T B  is 5.5 sHz. The 

comparison result is depictd in Figure 3.6. As displayed, the cross-correlation coefficient 

of the HPS chirps is slightly smaller than that of the linear chirps, especially when the 

time shift is around zero. This means that the orthogonality of sine chirps is superior to 

that of linear chirps. 

Similarly, a comparison of the cross-correlation between linear chirps and FPS chirps 

when c
T B  is 5.5 sHz is shown in Figure 3.7. At the center of this figure, the cross-

correlation coefficient of the FPS chirps is nearly equal to zero, which is much smaller 

than that of linear chirps. This phenomenon means FPS chirps have a much improved 

orthogonality over linear chirps. 

Therefore, the following conclusion can be drawn from these comparative curves 

shown in Figure 3.5, Figure 3.6, and Figure 3.7: a pair of sine chirps has better 

orthogonal property than its linear counterpart under the same conditions, which means 

sine chirps have the potential to replace linear chirps in the BOK CSS system to achieve 

improved BER performance. 
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Figure 3.6: Comparison of the cross-correlation coefficient of linear chirps and HPS 

chirps when 5.5
c

T B =  sHz 

 

 

Figure 3.7: Comparison of cross-correlation coefficient of linear chirps and FPS chirps 

when 5.5
c

T B =  sHz 
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3.2.3  Cosine Chirps 

If the chirp rate function ( )tψ  is set as a cosine function as defined by Eqn. (3.22), a 

cosine chirp can be obtained as well. 

 ( ) cos
2 2

c c
C

c

T Tt
t t

T
ψ π

 
= Ω − ≤ ≤ 

 
 (3.22) 

By substituting Eqn. (3.22) into Eqn. (3.1), the parameter ( )tΘ  for the cosine chirp 

can be obtained by: 

 ( ) cos sinc
C

c c

Tt t
t dt

T T
π π

π

   
Θ = Ω = Ω   

Ω   
∫  (3.23) 

When 1Ω = , the chirp rate function ( )( ) sinψ π=C ct t T  is an even function and its 

value for ( )0, 2ct T∈  is changed from positive to negative; thus, it does not conform to 

the two cases stated in Section 3.1.2. Therefore, Eqn. (3.23) is not suitable to be used to 

represent a pair of half period cosine chirps for the BOK CSS system.  

As in the cases when 2Ω ≥ , although the chirp rate function ( )( ) sinψ π= ΩC ct t T  is 

also an even function, its value for ( )2, 2c ct T T∈ −  is symmetrical. Hence, Eqn. (3.23) 

can be used to represent a pair of cosine chirps when 2Ω ≥ . When 2Ω ≥ , the parameter 

ξ for the cosine chirp can be obtained using Eqn. (3.2) as follows: 

 [ ] [ ]
2 2

max ( ) min ( ) cos 0 cos 2
2

c
C C C

c c

T
t t

T T

π π
ξ ψ ψ

   
= − = × − × =   

   
 (3.24) 

A pair of cosine chirps for the BOK CSS system can be given by combining Eqn. 

(3.23) and Eqn. (3.24) into Eqn. (3.9): 
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( )

( )

1 0

2 0

cos 2 sin
2 2 2

cos 2 sin
2 2 2

c c c
C

c

c c c
C

c

BT T Tt
c t a f t t

T

BT T Tt
c t a f t t

T

π π
π

π π
π

     
= + Ω − ≤ ≤    

Ω      


     
= − Ω − ≤ ≤    Ω      

 (3.25) 

The Eqn. (3.25) can be simplified as: 

 

( )

( )

1 0

2 0

cos 2 sin
2 2

cos 2 sin
2 2

c c c
C

c

c c c

C

c

BT T Tt
c t a f t t

T

BT T Tt
c t a f t t

T

π π

π π

   
= + Ω − ≤ ≤   

Ω    


  
= − Ω − ≤ ≤   Ω   

 (3.26) 

The frequency functions of cosine chirps with different values of Ω  are shown in 

Figure 3.8.  
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Figure 3.8: Frequency functions of cosine chirps with different Ω  
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As shown in Figure 3.8 (a), one cosine chirp occupies the upper half bandwidth; the 

other only uses the bottom half bandwidth during a frequency sweep. There is no overlap 

in frequency function for cosine chirps when 1Ω = . Thus, the usage efficiency of the 

frequency spread for the case where 1Ω =  is only half of that of other cases. Therefore, 

cosine chirps represented by Eqn. (3.26) for 1Ω = are not a good candidate for the BOK 

CSS system, which is consistent with the statement at the beginning of this section: “Eqn. 

(3.23) is not suitable to represent a pair of half period cosine chirps for the BOK CSS 

system”. 

The relationship between the time-bandwidth product and value of the cross-

correlation coefficient for cosine chirps with different Ω  ( 2,3,4Ω = ) is shown in Figure 

3.9. As shown, the value of the cross-correlation coefficient of cosine chirps ( C
ρ ) also 

depends on the time-bandwidth product ( c
T B ). C

ρ  is generally smaller than those of 

linear chirps under the same c
T B , especially when c

T B  is less than 6 sHz for the full 

period cosine (FPC) chirps ( 2Ω = ).  

By comparing Figure 3.9 with Figure 3.5, it can be observed that the characteristics of 

cosine chirps in Figure 3.9 are almost same as their sine counterparts in Figure 3.5, 

respectively. Therefore, the orthogonal characteristics of cosine chirps are similar with 

that of sine chirps. As highlighted by the green circle in Figure 3.9, an orthogonal point 

for the FPC chirp is also approximately at 5.5
c

T B =  sHz. 

A comparison of the cross-correlation coefficient between linear chirps and FPC 

chirps when c
T B  is 5.5 sHz is shown as an example in Figure 3.10. At the centre of this 

figure, the cross-correlation coefficient of the FPC chirps is nearly equal to zero, which is 

much smaller than that of the linear chirps.  

Therefore, like sine chirps, a similar conclusion can be drawn from these comparative 

curves shown in Figure 3.9 and Figure 3.10, i.e. a pair of cosine chirps ( 2,3,4Ω = ) can 

be a suitable candidate for chirp-based BOK CSS systems. 
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Figure 3.10: Cross-correlation coefficient of linear chirps and FPC chirps when 5.5
c

T B =  

sHz 
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3.2.4  Exponential and Other Non-Linear Chirps  

Some other non-linear chirps such as exponential chirps have also been investigated. 

In order to construct a pair of exponential chirps for the BOK system, the chirp rate 

function can be defined as: 

 ( )
2 2

c

t

T c c

E

T T
t e tψ

 
 
 = − ≤ ≤  (3.27) 

Since 
( )/

( ) ct T

E t eψ =  is neither an even nor an odd function, and 
( )/

( ) 0ct T

E t eψ = > , it 

does not conform to the two cases stated in Section 3.1.2. Therefore, Eqn. (3.27) is not 

suitable to be used to construct a pair of exponential chirps for the BOK CSS system. 

Moreover, it may not be difficult to construct a non-linear chirp (such as sinh, tan, 

atan, Gaussian and Rayleigh chirps) according to the procedure defined in Section 3.1.1. 

However, since they also cannot conform to the two cases stated in Section 3.1.2, they 

are not suitable to be used for the BOK CSS system.  

3.3 Conclusions 

As stated at the end of Section 3.3 and Section 3.4, the preliminary results have shown 

that a significant performance improvement on orthogonality over linear chirps can be 

attained using the pair of cosine or sine chirps. Thus, cosine or sine chirps are chosen for 

further analysis in this research.  
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4. Properties of Sine and Cosine Chirps   

4.1 Introduction 

Although the numerical analysis in Section 3 have already shown that the pair of sine 

or cosine chirps both have some special properties, it is still necessary to perform 

mathematical analysis to validate these properties. Therefore, main objective of this 

Chapter is to validate the properties of sine or cosine chirps through mathematical 

analysis. Derivations of the spectral characteristics, autocorrelation and cross-correlation 

for both sine chirps and cosine chirps are carried out respectively. Moreover, 

autocorrelation and cross-correlation for a pair of sine chirps at different time period ( Ω ) 

are examined. Finally, full period sine (FPS) chirps are selected for comparison against 

linear chirps in terms of spectral characteristic, autocorrelation and cross-correlation. 

4.2 Spectral Characteristic 

Analysis of spectral characteristic is to determine the effective bandwidth of the 

signal, and then can determine how much bandwidth is required to transmit the signal. In 

theory, since a sine or cosine chirp signal contains an infinite number of side frequencies, 

bandwidth for transmitting such signal is also infinite. However, amplitude of some side 

frequencies are so small which can be practically ignored. Therefore, the bandwidth 

could be defined as the width over the spectrum of which has significant amplitude. 

General description for a pair of sine chirps can be defined in Eqn. (4.1): 

 

1 0

2 0

( ) cos cos
2 2

( ) cos cos
2 2

c c c
S

c

c c c

S

c

BT T Tt
c t a t t

T

BT T Tt
c t a t t

T

ω π

ω π

   
= − Ω − ≤ ≤   

Ω    


  
= + Ω − ≤ ≤   Ω   

 (4.1) 

General description for a pair of cosine chirps can be represented in Eqn. (4.2): 
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1 0

2 0

( ) cos sin
2 2

( ) cos - sin
2 2

c c c
C

c

c c c

C

c

BT T Tt
c t a t t

T

BT T Tt
c t a t t

T

ω π

ω π

   
= + Ω − ≤ ≤   

Ω    


  
= Ω − ≤ ≤   Ω   

 (4.2) 

where 0 02 fω π= . 

4.2.1 Sine Chirps 

The spectrum of sine chirps descripted in Eqn. (4.1) can be obtained by Fourier 

transform. 1 ( )
S

c t  is chosen as an example here to analyze spectral characteristic of 

sine chirps.  

 

/2

1 1
/2

/2

0
/2

1
( ) ( )

cos sin

c

c

c

c

T
j t

S S
T

c

T
j tc

T
c c

F c t e dt
T

BTa t
t e dt

T T

ω

ω

ω

ω π

−

−

−

−

=

  
= − Ω ×  

Ω   

∫

∫
 (4.3) 

Since positive and negative parts of the spectrum are symmetrical, only the positive 

side is considered as example, Eqn. (4.3) can be obtained as (A detailed description of 

how these values were obtained is given in Appendix B.): 

 ( )
( )0

1 2( ) 1 sinc
2 2

n cP c
S n

n

TBTa
F J n

ω ω
ω π

∞

=−∞

 −    
= − + Ω    Ω     

∑  (4.4) 

In Eqn. (4.4), n is an integer index, ( )2nJ x  is the Bessel function of the first kind of 

order 2n , and sinc( )x  is the unnormalized sinc  function defined in (4.5) [42]: 

 
sin

sinc( )
x

x
x

=  (4.5) 

The magnitude of sinc( )x  at 0x =  is defined to be sinc(0) 1= . An important 

properties for the unnormalized sinc( )x  is that the zero crossings are at non-zero 

multiples of π . Therefore, when n  is a non-zero integer, Eqn. (4.6) can be obtained: 
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 ( )
( )sin

sinc 0
n

n
n

π
π

π
= =  (4.6) 

Magnitude Spectrum 

Magnitude spectrum of sine chirp 1 ( )
S

A ω  can be obtained from Eqn. (4.4) as:  

 
( )

( )

1 1

0

2

( ) ( )

1 sinc
2 2

P

S S

n cc
n

n

A F

TBTa
J n

ω ω

ω ω
π

∞

=−∞

=

 −    
= − + Ω    Ω     

∑
 (4.7) 

As described in Eqn. (4.6), 1 ( )
S

A ω  will have many peaks at: 

 
( )0

0, 0, 1, 2, 3, 4...
2

c
T

n n
ω ω

π
−

+ Ω = = ± ± ± ±  (4.8) 

Frequencies of these peaks can be obtained from Eqn.(4.7): 

 0

2
, 0, 1, 2, 3, 4...

c

n
n

T

π
ω ω

Ω
= + = ± ± ± ±  (4.9) 

Since sinc(0) 1= , the amplitude at these peaks will be:  

 1 2 0

2
( ) when

2

c
S n

c

BTa n
A J

T

π
ω ω ω

Ω 
= = + 

Ω 
 (4.10) 

Phase Spectrum  

Since 1( )P

SF ω  is a real function, the phase spectrum of sine chirp 1( )
S

ωΦ  is always 

zero. 
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4.2.2 Cosine Chirps 

The spectrum of cosine chirps depicted in Eqn. (4.2) can also be found by Fourier 

transform. 1( )
C

c t  is used as an example here. Taking the Fourier transforms of both 

sides of Eqn. (4.2): 

 

/2

1 1
/2

/2

0
/2

1
( ) ( )

1
cos sin

c

c

c

c

T
j t

C C
T

c

T
j tc

T
c c

F c t e dt
T

BT t
a t e dt

T T

ω

ω

ω

ω π

−

−

−

−

=

  
= + Ω ×  

Ω   

∫

∫
 (4.11) 

Since positive and negative parts of the spectrum are symmetrical, only the positive 

side is considered. Hence, Eqn. (4.11) can be obtained as (A detailed description of how 

these values were obtained is given in Appendix C.): 

 
( )0

1 ( ) sinc
2 2

cP c
C n

n

T nBTa
F J

ω ω π
ω

∞

= −∞

 − + Ω   
=    

Ω    
∑  (4.12) 

In Eqn. (4.12), sinc( )x  is the unnormalized sinc  function defined in Eqn. (4.5).  

Magnitude Spectrum 

The magnitude spectrum of cosine chirp signal 1( )
C

A ω  can be obtained from Eqn. 

(4.12) as:  

 ( )

1 1

0

( ) ( )

sinc
2 2

P

C C

cc
n

n

A F

T nBTa
J

ω ω

ω ω π∞

=−∞

=

 − + Ω   
=    

Ω    
∑

 (4.13) 

As described in Eqn. (4.6), 1( )
C

A ω  will have many peaks at: 

 
( )0

0, 0, 1, 2, 3, 4...
2

c
T n

n
ω ω π− + Ω

= = ± ± ± ±  (4.14) 
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Frequencies of these peaks can be obtained from Eqn.(4.14): 

 0 , 0, 1, 2, 3, 4...
c

n
n

T

π
ω ω

Ω
= + = ± ± ± ±  (4.15) 

Since sinc(0) 1= , the amplitude at these peaks will be:  

 1 0( ) when
2

c
C n

c

BTa n
A J

T

π
ω ω ω

Ω 
= = + 

Ω 
 (4.16) 

Phase Spectrum  

Similarily, the phase spectrum of cosine chirp 1( )
C

ωΦ  is also always zero because 

since 1( )P

CF ω  is a real function. 

4.2.3 Summary 

From Eqn. (4.10) and Eqn. (4.16), the amplitude spectrum for sine and cosine chirps 

are similar: 

 

1 2 0

1 0

2
( ) when

2

( ) when
2

c
S n

c

c
C n

c

BTa n
A J

T

BTa n
A J

T

π
ω ω ω

π
ω ω ω

 Ω 
= = +  

Ω 


Ω  = = +  Ω 

 (4.17) 

From these results, it can be observed that the amplitude spectrums depend 

significantly on value of 2
c

n

BT
J

 
 

Ω 
 or c

n

BT
J
 
 

Ω 
, and are all indepentant on the carrier 

0ω . ( )nJ x  is the Bessel function of the first kind of order n. Value of ( )nJ x  versus x  

for different integer values of n  is shown in Figure 4.1. As shown in this figure, ( )nJ x  

also depends on x , so the amplitude spectrum significantly depends on value of c
BT

Ω
. 
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Figure 4.1: Bessel functions of the first kind at different orders 
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Ω

 for an example, the magnitude spectrum of sine chirp 
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=
Ω

 is depicted in Figure 4.2. As can be seen, peaks occur at the carrier 
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Figure 4.2: Discrete amplitude spectra of a sine chirp 
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4.3 Autocorrelation Properties 

As stated in Section 2.3: “The output of the corresponding matched filter can be 

represented as the autocorrelation function of the received chirp signal”. Therefore, 

autocorrelation of the chirps is an important property of the BOK CSS system. 

4.3.1 Sine Chirps 

Theorem 4.1: If a sine chirp is represented as 
1 0( ) cos cosc

S

c

BT t
c t a t

T
ω π
  

= + Ω  
Ω   

, 

the autocorrelation coefficient of sine chirp 1 ( )
S

c t  will be:  

 

( ) ( ) ( ) ( ){ }

( ) ( )

( ) ( ) ( ){ }

2 1 0

0 0 2

0 2 2

1

( ) 1 1 sinc 2

1 cos

2 1 cos sinc 2

n m

S n S c

nc

m

S

c

m

n S c

nc

r J k n T
T

J k
T

J k n T
T

τ
τ ω θ τ

τ
ω τ

τ
ω τ θ τ

∞

=−∞

∞

=

 
 = − − + −   

 

 
+ − 
 

 
 + − −   

 

∑

∑

 (4.18) 

where 

 
1 2

2 2
; cos ; sin

2 2 2

m mc c

S S

c c c

BT BT
k k

T T T

π π π
θ τ τ

   Ω Ω Ω
= = =   

Ω Ω   
 (4.19) 

Proof. The autocorrelation coefficient of sine chirp 1 ( )
S

c t  can be obtained as by 

using Eqn. (2.12):  

 

( )0

0

1

cos cos

cos cos

( )
( )

c

c

c

c

S

S

BT t
a t

T
dt

BT t
a t

T
r

E c

τ
ω τ π

ω π

τ

∞

−∞

   +
+ − Ω   

Ω    
 

   
× + Ω   Ω    =

∫

 (4.20) 
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where 1( )
S

E c , which is energy of 1 ( )
S

c t . Appendix D presents the detailed 

derivation for Eqn. (4.20).                                                                                         

– Q.E.D 

Theorem 4.2: If a sine chirp is represented as 
1 0( ) cos cosc

S

c

BT t
c t a t

T
ω π
  

= + Ω  
Ω   

, the 

autocorrelation coefficient of 1 ( )
S

c t  for analysis in the BOK CSS system can be 

simplified as: 

 ( )0 0

2
( ) cos 1 sin

2

c
S

c c

BT
r J

T T

τ π
τ ω τ τ

    Ω
≈ −     

Ω     
 (4.21) 

Proof. There are three terms in the autocorrelation coefficient of sine chirp 1 ( )
S

c t  as 

defined in Eqn. (4.18). Taking the parameters 
0

20(MHz)f = , 1(µs)
c

T = , 2Ω = , and 

20(MHz)B =  as an example, values of these terms are depicted in Figure 4.3 (a) to 

Figure 4.3 (c) respectively, and summary of these terms is also shown in Figure 4.3 (d).  

It can be observed from these figures that the second term of Eqn. (4.18) is dominant, 

while other two terms are so small that they can be ignored. The same conclusion can be 

achieved for different values of the parameters ( 0f , c
T , Ω , and B ) in Eqn. (4.18). For 

example, value of the first term in Eqn. (4.18) with different values of Ω  ( Ω =1, 2, …, 6) 

is shown in Figure 4.4. As shown, absolute value of the first term in Eqn. (4.18) is always 

less than 0.015. 

Comparisons between the corresponding vaule of the second term and that of all terms 

in Eqn. (4.18) when Ω  equals 1 and 2 are depicted as an example and shown in Figure 

4.5 and Figure 4.6 respectively.  
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0 cf =20(MHz), T =1(µs), Ω=2, and B=20(MHz)

 

Figure 4.3: Values of the terms in Eqn. (4.18) 
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Figure 4.4: Value of the first term in Eqn. (4.18) vs. different Ω  
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Figure 4.5: Comparison between the all terms and the second term defined in Eqn. (4.18) 

when 1Ω =  

 

 

Figure 4.6: Comparison between the all terms and the second term defined in Eqn. (4.18) 
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It can be observed from Figure 4.5 and Figure 4.6 that the second term is very similar 

to that of all terms, which means the second term in Eqn. (4.18) is overwhelming 

dominant. Therefore, it can be concluded that the second term in Eqn. (4.18) can be used 

to represent the entire equation. Therefore, autocorrelation coefficient of sine chirp 

1 ( )
S

c t  can be simplified as: 

 ( )0 0

2
( ) cos 1 sin

2

c
S

c c

BT
r J

T T

τ π
τ ω τ τ

    Ω
≈ −     

Ω     
 (4.22) 

– Q.E.D 

4.3.2 Cosine Chirps 

Theorem 4.3: If a cosine chirp is represented as 

1 0( ) cos sinc
C

c

BT t
c t a t

T
ω π
  

= + Ω  
Ω   

, the autocorrelation coefficient of this cosine 

chirp will be: 
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τ
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τ
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τ
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=
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+
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 
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 

 
+ − 

 

 
 + − − −   

 

 
 − − − + −   
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∑

∑

∑

 (4.23) 

where 

 
1 2

2 2
; cos ; sin

2 2 2

m mc c

C C

c c c

BT BT
k k

T T T

π π π
θ τ τ

   Ω Ω Ω
= = =   

Ω Ω   
 (4.24) 

Proof. The autocorrelation coefficient of cosine chirp 1( )
C

c t  can be obtained by using 

Eqn. (2.12): 
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( )0

0

1

cos sin

cos sin

( )
( )

c

c

c

c

C

C

BT t
a t

T
dt

BT t
a t

T
r

E c

τ
ω τ π

ω π

τ

∞

−∞

   +
+ + Ω   

Ω    
 

   
× + Ω   Ω    =

∫

 (4.25) 

Appendix E presents the detailed derivation for Eqn. (4.25). 

 – Q.E.D 

Theorem 4.4: If a cosine chirp is represented as 
1 0( ) cos sinc

C

c

BT t
c t a t

T
ω π
  

= + Ω  
Ω   

, 

the autocorrelation coefficient of this cosine chirp for analysis in the BOK CSS system 

can be simplified as: 

 ( )0 0

2
( ) cos 1 sin

2

c
C

c c

BT
r J

T T

τ π
τ ω τ τ

    Ω
≈ −     

Ω     
 (4.26) 

Proof. There are four terms in the autocorrelation coefficient of consine chirp 1( )
C

c t  

as defined in Eqn. (4.23). Taking the parameters 0 20(MHz)f = , 1(µs)
c

T = ,  2Ω = , and 

20(MHz)B =  as an example, values of these terms are depicted in Figure 4.7 

respectively.  

It can be observed from Figure 4.7 that the second term of Eqn. (4.23) is 

overwhelming dominant, while value of the first term is so small that can be practically 

ignored. The same conclusion can be drawn for different values of the parameters ( 0f , c
T , 

Ω , and B ) in Eqn. (4.23). For example, value of the first term in Eqn. (4.23) with 

different values of Ω  ( Ω =1, 2, …, 6) is shown in Figure 4.8. As shown in this figure, 

absolute value of the first term in Eqn. (4.23) is always less than 0.02, thus this term can 

be ignored.  
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0 cf =20(MHz), T =1(µs), Ω=2, and B=20(MHz)

 

Figure 4.7: Values of the terms in Eqn. (4.23) 

 

τΩ

Ω

 

Figure 4.8: Value of the first term in Eqn. (4.23) vs. different Ω  
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Comparison between value of the second term and all terms defined in Eqn. (4.23) 

when 2Ω =  is shown in Figure 4.9. It can be observed that the result of Eqn. (4.23) 

significantly depends on the second term, except when the time shift τ  is close to c
T± . 

As stated in Section 2.4, the narrow peak centered at 0τ =  will be used by the BOK CSS 

system to identify the matched output, therefore, the part around the peak where the time 

shift 0τ =  in the autocorrelation are mainly considered. The parts at the both side where 

the time shift τ  is close to 2
c

T±  is not important, since they will not be used by the 

BOK CSS system to identify the matched output. Thus, differences at the both sides in 

Figure 4.9 can also be ignored. 

 

Figure 4.9: Comparison between all terms and the second term defined in Eqn. (4.23) 

Therefore, the second term in Eqn. (4.23) can be used to represent the entire equation 

for analysis of the BOK cosine CSS system, so that autocorrelation coefficient of cosine 

chirps which is defined by Eqn. (4.23) can be simplified to Eqn. (4.27). Eqn. (4.27) is 

identical to Eqn. (4.22).  
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– Q.E.D 
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4.3.3 Summary 

It can be seen that the results given in Eqn. (4.22) and Eqn. (4.27) are the same. 

Therefore, a unified equation which can represent autocorrelation coefficients of both 

cosine chirp and sine chirp for the BOK CSS system is:  

 ( )0 0

2
( ) cos 1 sin

2

c

c c

BT
r J

T T

τ π
τ ω τ τ

    Ω
≈ −     

Ω     
 (4.28) 

Hence, it is expected that cosine chirps and sine chirps would produce similar results 

in a BOK CSS system. 

4.4 Cross-correlation Properties 

As stated in Section 2.3: “the output of the corresponding unmatched filter can be 

represented as the cross-correlation function between the two chirp signals”. Therefore, 

cross-correlation of the chirps is another important property of the BOK CSS system.  

4.4.1 Cross-correlation Coefficient  

A. Sine Chirp 

Theorem 4.5: If a pair of sine chirps are respectively represented as 

1 0( ) cos cosc
S

c

BT t
c t a t

T
ω π
  

= + Ω  
Ω   

 and 
2 0( ) cos cosc

S

c

BT t
c t a t

T
ω π
  

= − Ω  
Ω   

, 

the cross-correlation coefficient between these two sine chirps will be: 
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 (4.29) 
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where 
2

c
T

π
θ

Ω
= , ( )1

2
sinu c

S

BT
k τθ=

Ω
, and ( )2

2
cosu c

S

BT
k τθ=

Ω
 

Proof. The cross-correlation coefficient between sine chirps ( )1Sc t  and ( )2Sc t  can be 

obtained by substituting Eqn. (4.1) into Eqn. (2.14): 

 

( )0

0

11 22

cos cos

cos cos

( )
(0) (0)

c

c

c
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a t

T
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Ω    
 

   
× − Ω   Ω    =

×

∫

 (4.30) 

Detailed derivation for Eqn. (4.30) is presented in Appendix D. 

– Q.E.D 

Theorem 4.6: If a pair of sine chirps are respectively represented as 

1 0( ) cos cosc
S

c

BT t
c t a t

T
ω π
  

= + Ω  
Ω   

 and 
2 0( ) cos cosc

S

c

BT t
c t a t

T
ω π
  

= − Ω  
Ω   

, the 

cross-correlation coefficient between these two sine chirps at the time shift 0τ =  is 

0

2
(0) c

S

T B
Jρ
 

=  
Ω 

. 

Proof. The cross-correlation coefficient of sine chirps at the time shift 0τ =  can be 

obtained from Eqn. (4.29): 
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+ + − ×    Ω Ω    

∑

∑
 (4.31) 

According to the properties of ( )nJ x  as shown in Figure 4.1, the magnitude of ( )0nJ  

is equal to 1 when 0n = , and is always equal to 0 when n  is other integer values [39]. 

So, Eqn. (4.31) can be simplified as: 
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 ( ) ( ) ( )0 0 2

1

2 2
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T J J n Tρ ω θ

∞
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∑  (4.32) 

By substituting 
2

c
T

π
θ

Ω
=  and  0 02 fω π=  into Eqn. (4.32), it can be rewritten as: 

 ( ) ( ) ( )0 0 2
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2 2
(0) sinc 2 2 1 sinc
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f T J J nρ π π
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∑  (4.33) 

wherein ( )sinc nπΩ  is an unnormalized sinc  function. As defined in Eqn. (4.6), 

( )sinc nπΩ  is zero when n  is a non-zero integer. Hence, ( )sinc nπΩ  is always equal to 0 

because Ω  is also a non-zero integer. Similarly, ( )0sinc 2 cf Tπ  is also equal to 0 since 

0 c
f T  is an integer. Thus, Eqn. (4.33) can be further simplified as: 

 0

2
(0) c

S

T B
Jρ
 

=  
Ω 

 (4.34) 

– Q.E.D 

B. Cosine Chirp 

Theorem 4.7: If a pair of cosine chirps are respectively represented as 

1 0( ) cos sinc
C

c
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c t a t
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= − Ω  
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, the 

cross-correlation coefficient between these two cosine chirps will be: 
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cos 1

2cos 1 sinc 2

n u

C n C c

nc

u

C

c

u

n C c

nc

J k n T
T

J k
T

J k n T
T

τ
ρ τ ω θ τ

τ
ω τ

τ
ω τ θ τ

∞

=−∞

∞

=

 
 = − − + −   

 

 
+ − 

 

 
 + − −   

 

∑

∑

 (4.35) 
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where 
2

c
T

π
θ

Ω
= , ( )1

2
sinu c

C

BT
k τθ=

Ω
, and ( )2

2
cosu c

C

BT
k τθ=

Ω
 

Proof.  The cross-correlation coefficient between cosine chirps ( )1Cc t  and ( )2Cc t  can 

be obtained by substituting Eqn. (4.2) into Eqn. (2.14): 

 

( )0

0

11 22

cos sin

cos sin

( )
(0) (0)

c

c

c

c

C

BT t
a t

T
dt

BT t
a t

T

R R

τ
ω τ π

ω π

ρ τ

∞

−∞

   +
+ + Ω   

Ω    
 

   
× − Ω   Ω    =

×

∫

 (4.36) 

Detailed derivation for Eqn. (4.36) is descripted in Appendix E.  

– Q.E.D 

Theorem 4.8: If a pair of cosine chirps are respectively represented as 

1 0( ) cos sinc
C

c

BT t
c t a t

T
ω π
  

= + Ω  
Ω   

 and 
2 0( ) cos sinc

C

c

BT t
c t a t

T
ω π
  

= − Ω  
Ω   

, the 

cross-correlation coefficient between these two cosine chirps at the time shift 0τ =  will 

be 0

2
(0) c

C

T B
Jρ
 

=  
Ω 

. 

Proof. The cross-correlation coefficient of the two cosine chirps at the time shift 0τ =  

can be obtained from Eqn. (4.35): 

 

( ) ( ) ( )

( )

2 0

0 2

1

( ) 1 0 sinc 2

2 2
2 sinc 2

n

C n c

n

c c

n c

n

J n T

BT BT
J J n T

ρ τ ω θ

θ

∞

=−∞

∞

=

 = − × +   

    
+ + ×    Ω Ω    

∑

∑
 (4.37) 

Since value of ( )0nJ  is equal to 1 when 0n =  and is always equal to zero when n  is 

a non-zero integer [39], Eqn. (4.37) can be simplified as: 
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 ( ) ( )0 0 2

1

2 2
(0) sinc 2 sinc 2c c

C c n c

n

BT BT
T J J n Tρ ω θ

∞

=

    
= + + ×    Ω Ω    

∑  (4.38) 

By substituting 
2

c
T

π
θ

Ω
=  and  0 02 fω π=  into Eqn. (4.38), it can be rewritten as: 

 ( ) ( )0 0 2

1

2 2
(0) sinc 2 2 sincc c

C c n

n

BT BT
f T J J nρ π π

∞

=

    
= + + × Ω    Ω Ω    

∑  (4.39) 

wherein ( )sinc nπΩ  is an unnormalized sinc  function. As defined by Eqn. (4.6), 

( )sinc nπΩ  is equal to zero when n is a non-zero integer. Hence, ( )sinc nπΩ  is always 0, 

when n  is a non-zero integer because Ω  is also an integer. Similarly, ( )0sinc 2 cf Tπ  is 

always 0 since 0 c
f T  is an integer. Thus, a finally simplified expression for (0)

C
ρ  can be 

obtained as: 

 0

2
(0) c

C

T B
Jρ
 

=  
Ω 

 (4.40) 

– Q.E.D 

C. Summary 

From Eqn. (4.34) and Eqn. (4.40), it can be summarized that the cross-correlation 

coefficient for a pair of sine chirps and cosine chirps at the time shift 0τ =  are identical: 

 

0

0

2
(0)

2
(0)

c

S

c

C

T B
J

T B
J

ρ

ρ

  
=   Ω  


  =   Ω 

 (4.41) 

From Eqn. (4.41), it can be concluded that (0)
S

ρ  or (0)
C

ρ  only depends on the 

time-bandwidth product ( c
T B ) for a given Ω . 
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4.4.2 Orthogonal Characteristics  

As stated in Section 3.3 and Section 3.4, two interesting characteristics for sine or 

cosine chirps are observed. The first one is that a pair of sine chirps or cosine chirps can 

be orthogonal under centain conditions. Another one is that the cross-correlation 

coefficient of the two sine chirps or cosine chirps shows periodic characteristics. In order 

to prove these two characteristics, mathematical analysis is presented in this sub-section.  

A. Conditional Orthogonality 

In Eqn. (4.41), ( )0J x  is the Bessel function of the first kind of order zero. The curve 

for ( )0J x  is depicted in Figure 4.10. 

 

Figure 4.10: Bessel function of the first kind of order zero 

The first several roots of ( )0J x  are and shown in Table 4.1 [39].  

Table 4.1: Roots of Bessel function of the first kind of order zero 

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Bessel function of the first kind of order 0

x

J
0
(x

)

n  1 2 3 4 5 6 7 8 

x  2.4048 5.5201 8.6531 11.7915 14.9309 18.0701 21.2109 24.3519 
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From Eqn. (4.41), it can be concluded that the cross-correlation coefficient for a pair 

of sine chirps or cosine chirps can be zero as long as 
2

c
T B

Ω
 equals to the roots of ( )0J x : 

 
2

c
n

T B
x=

Ω
 (4.42) 

where n
x  is a root of ( )0J x . 

For a given Ω  and c
T , the frequency spread bandwidth B , by which a pair of cosine 

or sine chirps can be completely orthogonal at 0τ = , can be calculated by the following 

equation.  

 
2

n

c

B x
T

Ω
=  (4.43) 

B.Periodic Orthogonality 

The Bessel function of the first kind of order zero ( )0J x  has an infinite set of positive 

roots: 

 1 2 3 1n n
x x x x x +< < < <K K  (4.44) 

Hence, the number of orthogonal points for a pair of sine chirps or cosine chirps is 

also infinite. As n  is close to ∞ , value of the period ( )1n nx x+ −  is approached to π  [39]. 

If the product of time and bandwidth ( c
T B ) meets the condition as defined in Eqn. (4.42), 

a pair of sine chirps or cosine chirps become orthogonal. Therefore, orthogonal points for 

a pair of sine chirps or cosine chirps are periodic. This is very different from that in the 

linear chirp cases. As shown in Figure 2.7, there is no orthogonal point for the linear 

chirps, and the linear chirps are almost closer to be orthogonal as c
T B  becomes bigger. 
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C. Validation of the Orthogonal Characteristics 

Since sine chirps and cosine chirps have the same cross-correlation property, only full 

period sine chirps ( 2Ω = ) are chosen as an example to validate the orthogonal 

characteristics stated above. By using Eqn. (4.43), three different values of the frequency 

spread bandwidth B  for a pair of orthogonal full period sine (FPS) chirps can be 

obtained as follows: 

 

2 1 2 6

2 2 3 6

2 4 4 6

2 5.5201
5.5201(MHz)

2 8.6531
8.6531(MHz)

2 11.7915
11.79

2 2

15(M

10

2 2 1

0
)

0

2
H

2 1
z

c

c

c

B x
T

B x
T

B x
T

− −

− −

− −

Ω
= = =

×

Ω
= = =

×

Ω

 ×


 ×


 ×

= =


=
×



 (4.45) 

Moreover, an arbitrary bandwidth is also considered for comprising with the above 

three bandwidth. In this thesis, 2 3 10B − =  MHz is chosen as an example. Autocorrelation 

and cross-correlation of a pair of FPS chirps at these bandwidths are drawn in Figure 4.11 

to Figure 4.14, respectively. The red curves with circles show that values of cross-

correlation coefficient are all zero not only at 0τ =  but also during a short period around 

the center which is highlighted by the green circles. However, values of cross-correlation 

coefficient are not zero at 0τ =  in Figure 4.13 which the frequency bandwidth is 

2 3 10B − =  MHz. In other words, a pair of FPS chirps at bandwidths 2 1B − , 2 2B −  and 2 4B −  

can be orthogonal, while it is not orthogonal at 2 3B − . This is because 2 1B − , 2 2B −  and 2 4B −  

meets the condition defined in Eqn. (4.43), while 2 3B −  does not. Therefore, it is verified 

that a pair of sine chirps is conditional orthogonal. 

As stated in previous sections, when c
T  is constant, value of cross-correlation 

coefficient of linear chirps decreases as the bandwidth increases. However, sine chirps do 

not have this. From Figure 4.11 to Figure 4.14, value of cross-correlation coefficient at 

0τ =  for sine chirps at bandwidths 2 1B − , 2 2B −  and 2 4B −  are all equal to zero, while that at 

2 3B −  is nearly 0.3 even if 2 3B −  is bigger than both 2 1B −  and 2 2B − . Therefore, it is validated 
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a pair of sine chirps is periodically orthogonal. In addition, it also shows that whether two 

sine chirps are orthogonal or not depends on if the condition defined in Eqn. (4.43) is met, 

rather than the absolute value of the product of time-bandwidth ( c
T B ). 
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Figure 4.11: Autocorrelation & cross-correlation for FPS chirps when 2 1 5.5201B − = MHz 
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Figure 4.12: Autocorrelation & cross-correlation for FPS chirps when 2 2 8.6531B − = MHz 
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Figure 4.13: Autocorrelation & cross-correlation for FPS chirps when 2 3 10B − = MHz 
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Figure 4.14: Autocorrelation & cross-correlation for FPS chirps when 2 4 11.7915B − =

MHz 
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4.4.3 Simplification of the Cross-correlation Coefficient 

A. Sine Chirp 

Theorem 4.9: If a pair of sine chirps are respectively represented as 

1 0( ) cos cosc
S

c

BT t
c t a t

T
ω π
  

= + Ω  
Ω   

 and 
2 0( ) cos cosc

S

c

BT t
c t a t

T
ω π
  

= − Ω  
Ω   

, the 

cross-correlation coefficient between these two sine chirps can be simplified as: 

 

( ) ( )

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

0 0 2

0 2 2

1

0 2 1 2

0

( ) cos 1

2cos 1 1 sinc 2

2sin 1 1 sinc (2 1)

u

S S

c

n u

n S c

nc

n u

n S c

nc

J k
T

J k n T
T

J k n T
T

τ
ρ τ ω τ

τ
ω τ θ τ

τ
ω τ θ τ

∞

=

∞

+
=

 
= − 

 

 
 + − − −   

 

 
 − − − + −   

 

∑

∑

 (4.46) 

where 
2

c
T

π
θ

Ω
= , ( )1

2
sinu c

S

BT
k τθ=

Ω
, and ( )2

2
cosu c

S

BT
k τθ=

Ω
 

Proof.  There are three terms in the cross-correlation coefficient between the two sine 

chirps as defined in Eqn. (4.29). The first term is: 

 ( ) ( ) ( )( ){ }1 0
1 1 sinc

n u

n S c

nc

J k n T
T

τ
ω θ τ

∞

=−∞

 
 − − + −   

 
∑  (4.47) 

Value of this term with different values of Ω  is shown in Figure 4.15.  
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τΩ

Ω

 

Figure 4.15: Value of the first term in Eqn. (4.29) vs. different values of Ω  

As shown in Figure 4.15, absolute value of the first term in Eqn. (4.29) is always less 

than 0.015. Value of this term is so small that it can be ignored. Therefore, Eqn. (4.29) can 

be simplified as: 

 

( ) ( )

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }
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0 2 2

1

0 2 1 2
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( ) cos 1

2cos 1 1 sinc 2

2sin 1 1 sinc (2 1)
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ω τ θ τ
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ω τ θ τ

∞

=

∞

+
=

 
= − 

 

 
 + − − −   

 

 
 − − − + −   

 

∑

∑

 (4.48) 

where 
2

c
T

π
θ

Ω
= , ( )1

2
sinu c

S

BT
k τθ=

Ω
, and ( )2

2
cosu c

S

BT
k τθ=

Ω
 

– Q.E.D 
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B. Cosine chirp 

Theorem 4.10: If a pair of cosine chirps are respectively represented as 

1 0( ) cos sinc
C

c

BT t
c t a t

T
ω π
  

= + Ω  
Ω   

 and 
2 0( ) cos sinc

C

c

BT t
c t a t

T
ω π
  

= − Ω  
Ω   

, the 

cross-correlation coefficient between these two cosine chirps can be simplified as: 

 ( ) ( )
( )

0

sin2
( ) cos cos

cc
C n

n c

n TBT
J

n T

θ τ
ρ τ ω τ τθ

θ

∞

=−∞

  −    = ×  Ω   
∑  (4.49) 

where 
2

c
T

π
θ

Ω
= , and ( )2

2
cosu c

C

BT
k τθ=

Ω
 

Proof. There are three terms in the cross-correlation coefficient between the two 

cosine chirps as defined as Eqn. (4.35). The first term is: 

 ( ) ( ) ( )( ){ }2 1 0
1 1 sinc 2

n u

n C c

nc

J k n T
T

τ
ω θ τ

∞

=−∞

 
 − − + −   

 
∑  (4.50) 

Value of this term with different values of Ω  is shown in Figure 4.16.  

τΩ

Ω

 

Figure 4.16: Value of the first term in Eqn. (4.35) vs. different values of Ω  
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As shown in Figure 4.16, absolute value of the first term in Eqn. (4.35) is always less 

than 0.01. Value of this term is so small that it can be ignored. Therefore, Eqn. (4.35) can 

be simplified as: 

 

( ) ( )

( ) ( ) ( ){ }

0 0 2

0 2 2

1

( ) cos 1

2 cos 1 sinc 2

u

C C

c

u

n C c

nc

J k
T

J k n T
T

τ
ρ τ ω τ

τ
ω τ θ τ

∞

=

 
= − 

 

 
 + − −   

 
∑

 (4.51) 

where 
2

c
T

π
θ

Ω
= , and ( )2

2
cosu c

C

BT
k τθ=

Ω
 

Eqn. (4.51) can be written as: 

 ( ) ( )
( )

0

sin2
( ) cos cos

cc
C n

n c

n TBT
J

n T

θ τ
ρ τ ω τ τθ

θ

∞

=−∞

  −    = ×  Ω   
∑  (4.52) 

– Q.E.D 

C. Summary 

Using these simplified representations as defined in Eqn. (4.48) and Eqn. (4.52) 

respectively, it is more convenient to mathematically analyze some properties of cross-

correlation of sine chirps and cosine chirps, such as width of the orthogonal part, and 

magnitude of the maximum sidelobe. 

4.5 Sine Chirps of Different Time Period 

The parameter Ω  (time period) in the representation of sine chirps or cosine chirps 

can be an arbitrary integer. For the pair of sine chirps or cosine chirps with different Ω , 

their autocorrelation and cross-correlation properties will be different. Since it is found 

that the property of a pair of sine chirps is very similar to that of a pair of cosine chirps, 

without loss of generality, only sine chirps are analyzed in detail. It is expected that the 

conclusion is also applicable to cosine chirps. Therefore, sine chirps are selected as an 

example for analysis in the rest of this thesis. The following subsection will explore the 
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properties for a pair of sine chirps with different Ω , except for 2Ω =  since it has been 

presented in subsection 4.4.2.C already. 

4.5.1 Half Period 

When Ω  is equal to unity, the sine chirp is named as the half period sine (HPS) chirp. 

By using Eqn. (4.43), three different values of the frequency spread bandwidth B  for a 

pair of orthogonal HPS chirps can be obtained: 

 

1 1 4 6

1 2 6 6

1 4 8 6
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2 2 10
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1 18.0701
9.0351(MHz)

1 24.3519
12.176(

1
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2 2
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c
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B x
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B x
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B x
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− −

− −

− −

Ω
= = =

×

Ω
= = =



×

Ω
= =

×


 ×


 ×


=

×


 (4.53) 

Moreover, an additional 1 3 10B − =  MHz, which is between the 1 2B −  and 1 4B − , is also 

considered. As shown from Figure 4.17 to Figure 4.20, autocorrelation and cross-

correlation of a pair of HPS chirps at these different bandwidths (5.8957 MHz, 9.0351 

MHz, 10 MHz and 12.176 MHz) are drawn respectively, where the time period is set as 1 

µs and the center frequency 0f  is 20 MHz. The blue curves with points represent 

autocorrelation coefficient of a pair of HPS chirps, while the red curves with circles are for 

cross-correlation coefficient between the two HPS chirps. As can be seen, value of cross-

correlation coefficients are all zero when the bandwidth B  is 5.8957 MHz, 9.0351 MHz, 

and 12.176 MHz at 0τ = , while the value is almost 0.2 when the bandwidth 1 3B −  is 10 

MHz. Hence, under these conditions, this pair of HPS chirps is proved to be orthogonal 

with each other.  
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Figure 4.17: Autocorrelation & cross-correlation for HPS chirps when 1 1 5.8957B − =

MHz 
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Figure 4.18: Autocorrelation & cross-correlation for HPS chirps when 1 2 9.0351B − =  

MHz 
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Figure 4.19: Autocorrelation & cross-correlation for HPS chirps when 1 3 10B − = MHz 
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Figure 4.20: Autocorrelation & cross-correlation for HPS chirps when 1 4 12.176B − =  

MHz 
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4.5.2 Triple Period 

When the value of Ω  is equal to 3, the sine chirp is named as the triple period sine 

(TPS) chirp. Similarly, three different values of the frequency spread bandwidth B  for a 

pair of orthogonal TPS chirps can be obtained using Eqn. (4.43): 
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 (4.54) 

Moreover, an additional 
3 2

10B − =  MHz, which is between the 3 1B −  and 3 2B − , is also 

considered. Autocorrelation and cross-correlation of a pair of TPS chirps at these different 

bandwidths are drawn respectively from Figure 4.21 to Figure 4.24, where the time period 

is set as 1 µs and the center frequency 
0

f  is 20 MHz. The red curves with circles in Figure 

4.21, Figure 4.23 and Figure 4.24 show that value of cross-correlation coefficients are all 

zero at 0τ = . However, value of cross-correlation coefficients are not zero at 0τ =  in 

Figure 4.22 which the frequency bandwidth 3 2 10B − =  MHz. All of the four figures show 

that there exists a maximum peak valued more than 0.6 in both sides of the cross-

correlation curves, which is a property of cross-correlation of the TPS chirps.  
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Figure 4.21: Autocorrelation & cross-correlation for TPS chirps when 3 1 8.2802B − = MHz 
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Figure 4.22: Autocorrelation & cross-correlation for TPS chirps when 3 2 10B − = MHz 
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Figure 4.23: Autocorrelation & cross-correlation for TPS chirps when 3 3 12.9796B − =   

MHz 
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Figure 4.24: Autocorrelation & cross-correlation for TPS chirps when 3 4 17.6872B − =  

MHz 
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4.5.3 Quadruple Period 

When the value of Ω  is equal to 4, the sine chirp is named as the quadruple period sine 

(QPS) chirps. Similarly, three different values of the frequency spread bandwidth B  for a 

pair of orthogonal QPS chirps can be obtained using Eqn. (4.43): 
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 (4.55) 

Moreover, an additional 4 2 10B − =  MHz is also considered. Autocorrelation and cross-

correlation of a pair of QPS chirps at these different bandwidths are drawn respectively 

from Figure 4.25 to Figure 4.28. Value of cross-correlation coefficients are not zero at 

0τ =  in Figure 4.26 which the frequency bandwidth 4 2 10B − =  MHz. As shown by the 

zoomed inserts in Figure 4.25, Figure 4.27, and Figure 4.28, values of cross-correlation 

coefficients of QPS chirp are all zero not only at 0τ =  but also at a short period around 

the centre. Thus is similar with FPS chirps. However, all of the four figures show that 

there exists a maximum peak valued around 0.7 in both sides of the cross-correlation 

curves, which is a property of cross-correlation of QPS chirps. Moreover, it worth notice 

that there also exists a maximum peak valued around 0.5 in both sides of the 

autocorrelation coefficient (blue curve with points), which is a property of autocorrelation 

of QPS chirps. 
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Figure 4.25: Autocorrelation & cross-correlation for QPS chirps when 4 1 4.8096B − =

MHz 
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Figure 4.26: Autocorrelation & cross-correlation for QPS chirps when 4 2 10B − = MHz 
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Figure 4.27: Autocorrelation & cross-correlation for QPS chirps when 4 3 11.0402B − =  

MHz 
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Figure 4.28: Autocorrelation & cross-correlation for QPS chirps when 4 4 17.3062B − =  

MHz 
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4.5.4 Summary 

The cross-correlation coefficients of the sine chirp with different Ω  at the orthogonal 

points presented in the above section are compared in Figure 4.29.  As shown in Figure 

4.29 (b) and (d), the cross-correlation coefficients for FPS chirps or QPS chirps (where 

2Ω =  or 4Ω = ) are all zero not only at 0τ =  but also at a short period around the centre 

highlighted by the rectangle, as long as the bandwidth meets the condition defined in 

Eqn. (4.43). As shown in Figure 4.29 (a) and (c), although cross-correlation coefficients 

for HPS chirps or TPS chirps (where 1Ω =  or 3Ω = ) is zero only at 0τ =  highlighted by 

the green circle when the bandwidth meets the condition defined in Eqn. (4.43), but has 

no a short period around the centre. In a real BOK CSS system, it is difficult for the 

transmitter and receiver to be perfectly synchronized, which means it is difficult for the 

time shift (τ ) exactly to be zero. If there is a little time synchronization error, the FPS or 

QPS chirps can still be orthogonal, while HPS chirps or TPS chirps can not. Therefore, 

FPS chirps or QPS chirps are the better choices for the BOK CSS system than HPS chirps 

or TPS chirps, because they are more robust with respect to time synchronization errors. 
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Figure 4.29: Central parts of the cross-correlation for sine chirps with different Ω  
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By comparing Figure 4.11 and Figure 4.25, it can be observed that the cross-correlation 

curve of FPS chirp has a maximum peak valued 0.5 at around ( )0.5 2
c

T± , while QPS 

chirp has a maximum peak valued 0.7 at around ( )0.25 2
c

T± . Moreover, the 

autocorrelation curve of QPS chirp has a maximum peak valued 0.5 at ( )0.5 2
c

T± , while 

FPS chirp does not have. Thus, FPS chirp is better choice than QPS chirp for the BOK 

CSS system. Therefore, by comparing the above four kinds of sine chirps in terms of the 

cross-correlation and autocorrelation properties, FPS chirps are the best choice. 

4.6 Comparison with the Linear Counterpart 

Since sine chirps with different period exhibit similar properties, full period sine (FPS) 

chirps are selected for comparison with linear chirp under different parameters. The 

comparisons are in terms of spectral characterizatics, autocorrelation and cross-

correlation. 

4.6.1 Spectral Characteristic 

Two comparisons of spectrum between linear chirp and FPS chirp are shown 

respectively in Figure 4.30 and Figure 4.31 for two scenarios: 30B = MHz and 50B =  

MHz. The carrier frequency ( 0f ) has to be set no less than 2B  MHz because 0 2f B−  

should be positive. Therefore, 0f  is set as 50 MHz as an example in these two scenarios 

( 30B =  MHz and 50B =  MHz). 

From Figure 4.30 and Figure 4.31, significant parts of amplitude spectrum for both 

linear chirp and FPS chirp are all within the effective range ( )0 02, 2− +f B f B . 

Spectrum of linear chirp outside of this range is slightly higher than that of FPS chirp. 

This means that FPS chirp has more energy within this effective range than their linear 

chirp counterpart. 
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Figure 4.30: Comparison of the spectra for linear chirp and FPS chirp when 30
c

T B =  sHz 

 

 

Figure 4.31: Comparison of the spectra for linear chirp and FPS chirp when 50
c

T B =  sHz 
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4.6.2 Autocorrelation Property 

Autocorrelation function of a FPS chirp is compared against that of a linear chirp under 

the same conditions. The results are shown in Figure 4.32. As can be seen, there is a short 

pulse at the center for sine chirp. The width of the main-lobe is the same as that of the 

linear counterpart, which is 2 B . Therefore, sine chirp can achieve similar autocorrelation 

properties as that of linear chirp. Although most of the sidelobes of autocorrelation for 

sine chirps are bigger than that of linear chirps, excep for the first. Generally speaking, the 

higher sidelobe of the autocorrelation curve, the greater time interval between chirps is 

required for the same intersymbol interference [43]. Window functions and weighting 

techniques can be designed to reduce sidelobes [44-46]. 

 

Figure 4.32: Autocorrelation coefficient of linear chirps vs. FPS chirps 

4.6.3 Cross-correlation Property 

The cross-correlation coefficient for linear and FPS chirps under the same condition are 

also comparatively shown in Figure 4.33, where 8.6531
c

T B =  sHz. As shown, value of 

cross-correlation coefficient for FPS chirps is zero around the center of 0τ = , while that 

of the linear counterpart is approximately 0.25. This result shows that FPS chirps can 

achieve orthogonality at 8.6531
c

T B =  sHz since the condition of Eqn. (4.43)  is met, 

while the linear chirp cannot be orthogonal. 
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The only disadvantage of FPS chirp shown in Figure 4.33 is that there is a maximum 

point with the value of 0.5 in both sides of its cross-correlation curve. However, in the 

case of BOK CSS system, a time synchronization technique can be used to eliminate their 

potential effects on BER caused by these maximum points. Several time synchronization 

techniques have been proposed in [47-49] for the BOK CSS system. 

 

Figure 4.33: Cross-correlation coefficient of linear chirps vs. FPS chirps 

4.6.4 Summary 

The above analysis and comparison show that even though orthogonal characteristics 

of both linear and FPS chirps depend on the time-bandwidth product ( c
T B ), orthogonal 

characteristic of FPS chirps is not limited by the value of c
T B . Unlike linear chirps which 

have to occupy very wide frequency bandwidth (e.g. 64 MHz when 1
c

T =  µs) to achieve 

satisfied orthogonality, FPS chirps only need very small bandwidth (e.g. 2.4048 MHz 

when 1
c

T = µs) as long as the condition defined in Eqn. (4.43) is met. This is less than 4% 

of the normally adopted bandwidth of linear chirps which indicates that FPS chirps have 

the potential to significantly reduce the bandwidth requirement for a BOK CSS system. 

Moreover, for a BOK CSS system, shorter time period of the chirp signal ( c
T ) can 

achieve higher data rate in the system which is preferred in many wireless 
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communication systems. However, under a certain value of c
T B , shorter c

T  will result in 

wider frequency bandwidth ( B ) occupancy. Thus, for the BOK linear CSS system, it is 

usually not a preferred approach to increase the system data rate through shortening c
T , 

because the frequency bandwidth occupied by a BOK linear CSS system is already very 

wide. On the other hand, the BOK FPS CSS system does not have this limitation since its 

frequency bandwidth can be very small.  

Therefore, a pair of FPS chirps can be a good candidate to potentially replace the 

linear chirps in the BOK CSS system. 
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5. Performance of the BOK FPS CSS 

System 

Although a pair of full period sine (FPS) chirps has potential to replace linear chirps in 

the BOK CSS system, performance of the BOK FPS CSS system deserves in-depth 

analysis in order to ensure that it can indeed outperform its linear counterpart. The 

conventional approach to study the performance is either based on analytical models or 

by using simulation. In this chapter, both analytical models and simulation tools are used 

to investigate the performance. 

5.1 The BOK FPS CSS System 

According to Eqn. (4.1), a general description for FPS chirps ( 2Ω = ) can be given as: 
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 (5.1) 

where a is the maximal amplitude of the chirp signal, which usually uses the rectangle 

pulse. For simiplification, a  is chosen to be unity. 

According to theory of the matched filter introduced in Section 2.2, by substituting 

Eqn. (5.1) into Eqn. (2.2), the impulse response of a matched filter for FPS chirps can be 

obtained as Eqn. (5.2).  
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 (5.2) 

where b  is a scaling factor of the filter. For simiplification, b  is also set to 1. 
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The autocorrelation coefficient of a FPS chirp can be obtained from Eqn. (4.22) by 

setting the parameter Ω  as 2: 
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 (5.3) 

By substituting 0τ =  into Eqn. (5.3), it can be obtained as: 

 ( )2 0(0) 0 1Sr J= =  (5.4) 

Similarly, the cross-correlation coefficient of FPS chirps can be achieved from Eqn. 

(4.29) by setting the parameter Ω  as 2: 
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where 
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By substituting 0τ =  into Eqn. (5.5), it can be obtained as: 

 ( )2 0(0)S cJ BTρ =  (5.6) 

The above equations in this subsection will be used by the following subsections. 
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5.2 Performance of the BOK FPS CSS System in an 

AWGN Channel 

This section will examine the performance of the BOK CSS system based on a pair of 

FPS chirps in the AWGN channel environment. The performance will be measured in 

terms of BER. 

4.2.1 Analysis of the BOK FPS CSS System 

An illustrated diagram of a BOK FPS CSS system in the AWGN channel is depicted 

in Figure 5.1.  

X2 1( )Sc t−

2 1
( )

S
h t−

( )s t ( )y t

2 1
( )

S
g t−

( )n t
X

2 2
( )

S
c t−

1
u

2
u

2 2
( )

S
h t−

2 2
( )

S
g t−

{ }0,1d ∈

{ }0,1

 

Figure 5.1: A BOK FPS CSS system in the AWGN channel 

The binary data to be transmitted is denoted as { }0,1d ∈ . Suppose 2 1( )Sc t−  is to be 

sent out when 1d = , while 2 2 ( )Sc t−  is to be sent out when 0d = . Thus, the transmitted 

signal can be represented as: 

 ( )2 1 2 2( ) ( ) 1 ( )S Ss t dc t d c t− −= + −  (5.7) 

For an AWGN channel, a Gaussian noise sequence of zero mean and variance 

2

0 2n Nσ ∈  is denoted as ( )n t . When the transmitted signal ( )s t  passes through the 
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AWGN channel, a white Gaussian noise ( )n t  is added to the transmitted signal ( )s t . 

Hence, the received signal ( )y t  can be represented as: 

 ( ) ( ) ( )y t s t n t= +  (5.8) 

Substituting Eqn. (5.7) into Eqn. (5.8), the received signal becomes: 

 ( )2 1 2 2( ) ( ) 1 ( ) ( )S Sy t dc t d c t n t− −= + − +  (5.9) 

The signal ( )y t  is received at the receiver end, and then is simultaneously processed by 

the two matched filters (#1 chirp and #2 chirp matched filters). The output of the matched 

filter #1 can be obtained as: 

 
( )

( )

( )

2 1 2 1

2 1 2 2 2 1

2 2 2 1

2 2 2 1

( ) ( ) ( )

( ) 1 ( ) ( ) ( )

( ) 1 ( ) ( ) ( )

( ) 1 ( ) ( ) ( )

S S

S S S

S S S

b S b S S

g y t h t dt

dc t d c t n t h t dt

dR d C n t h t dt

dE r d E n t h t dt

τ τ

τ

τ τ τ

τ ρ τ τ

+∞

− −−∞

+∞

− − −
−∞

+∞

−−∞

+∞

−
−∞

= −

 = + − + − 

= + − + −

= + − + −

∫

∫

∫

∫

 (5.10) 

where b
E  is energy of the sine chirps. Similarly, the output of the matched filter #2 can 

be obtained as: 

 ( )

( )

2 2 2 2

2 1 2 2 2 2

2 2 2 2

( ) ( ) ( )

( ) 1 ( ) ( ) ( )

( ) 1 ( ) ( ) ( )

S S

S S S

b S b S S

g y t h t dt

dc t d c t n t h t dt

dE d E r n t h t dt

τ τ

τ

ρ τ τ τ

+∞

− −
−∞

+∞

− − −
−∞

+∞

−
−∞

= −

 = + − + − 

= + − + −

∫

∫

∫

 (5.11) 

At the output of the receiver, two variables ( 1u  and 2u ), which are the inputs to the 

decision device, are produced at the outputs of the matched filters as defined by Eqn. 

(5.10) and Eqn. (5.11) : 
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( )

( )

1 2 1 2 2 2 1

2 2 2 2 2 2 2

( ) ( ) 1 ( ) ( ) ( )

( ) ( ) 1 ( ) ( ) ( )

S b S b S S

S b S b S S

u g dE r d E n t h t dt

u g dE d E r n t h t dt

τ τ ρ τ τ

τ ρ τ τ τ

+∞

− −−∞

+∞

− −−∞

 = = + − + −


 = = + − + −


∫

∫
 (5.12) 

Hence, the difference between these two variables can be calculated as: 

 
( )

1 2

2 2 2 1 2 22 1 ( ) ( ) ( ) ( ) ( )b S S S S

u u u

d E r n t h t h t dtτ ρ τ τ τ
+∞

− −
−∞

∆ = −

   = − − + − − −   ∫
 (5.13) 

When 1d = , the correct result at the decision device should be 0u∆ > . Similarly, 

when 0d = , the correct result at the decision device should be 0u∆ < . Therefore, a bit 

error happens in two cases: 1d =  but 0u∆ < , and 0d =  but 0u∆ > . Hence, the total 

probability of bit error at the decision device can be calculated as: 

 

{ } { } { } { }

{ } { }

0 | 1 1 0 | 0 0

1
0 | 1 0 | 0

2

S

eP P u d P d P u d P d

P u d P u d

= ∆ < = × = + ∆ > = × =

= ∆ < = + ∆ > =  
 (5.14) 

Since the two cases are supposed to have the equal probability, Eqn. (5.14) can be 

simplified as:  

 { } { }0 | 1 or 0 | 0= ∆ < = ∆ > =S

eP P u d P u d  (5.15) 

Taking the second case as an example, the total probability of bit error can be obtained 

as: 

 

{ }

( ){ }2 2 2 1 2 2

0 | 0

( ) ( ) ( ) ( ) ( ) 0

S

e

b S S S S

P P u d

P E r n t h t h t dtτ ρ τ τ τ
+∞

− −
−∞

= ∆ > =

   = − − + − − − >   ∫
 (5.16) 

Let 2 1 2 2( ) ( ) ( )S

en S SP n t h t h t dtτ τ
+∞

− −
−∞

 = − − − ∫  , then its variance can be obtained as: 
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( )
2

2
2

2 1 2 2

2 2 2 2 2

2 1 2 1 2 2 2 2

2 2 2

2 2 2

0 2 2

( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ( ) ( ) ( )

( ) 2 ( ) ( )

( ) (

S

en en S S

S S S S

b S b S b S

b S S

E P E n t h t h t dt

n t h t dt n t h t h t dt n t h t dt

E r E E r

E N r

σ τ τ

τ τ τ τ

σ τ σ ρ τ σ τ

τ ρ

+∞

− −−∞

+∞ +∞ +∞

− − − −−∞ −∞ −∞

     = = − − −         

= − − − − + −

= − +

= −

∫

∫ ∫ ∫

( ))τ

(5.17) 

Since ( )n t  is a white Gaussian noise with zero mean and variance 0 2N , u∆  is a 

random variable with mean ( ) 2 2( ) ( )
b S S

E u E r τ ρ τ ∆ = − −   and variance 

( ) ( ) ( )
2 2

2

2 2 0( ) ( )S S

u e en S S bE P E P r E Nσ τ ρ τ   = = = −      
. Therefore, Eqn. (5.16) can be 

written as:  

 
( )

( )

2

20

1
exp

2 2

S

e

u u

x u
P dx

σ π σ

+∞  − ∆
= − 

  
∫  (5.18) 

Let 
u

x u
z

σ

− ∆
= , Eqn. (5.16)  can be represented as: 

 

( )

( )

2

2 2

2 2 0

2 2

0

1
exp

22

( )

( ) ( )
( )

( ) ( )

( ) ( )
( )

u

S
ue

u

b S S

S S b

b S S

z
P dz

u
Q

E r
Q

r E N

E r
Q

N

σ π

σ

τ ρ τ

τ ρ τ

τ ρ τ

+∞

∆
−

 
= − 

 

∆
= −

 − − = −
−

−
=

∫

 (5.19) 

where ( )Q x  is Q function, and is defined as in [50]: 

 ( )
2 /21

2

t

x
Q x e dt

π

∞
−= ∫  (5.20) 
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If time synchronization of the BOK CSS system is perfect, the time shift τ  equals to 

zero, thus 
S

eP  can be achieved by substituting Eqn. (5.4) and Eqn. (5.6) into Eqn. (5.19): 

 
0

0

1 ( )S b
e c

E
P Q J T B

N

 
=  −    

 
 (5.21) 

It can be seen from (5.21) that BER performance of the BOK FPS CSS system in the 

AWGN channel depends on 
0( )cJ T B . The BER performance vs. c

T B  can be shown in 

Figure 5.2. It can be observed that the BER performance depends on c
T B  and values of 

Eb/No. As value of Eb/No increases, value of BER is monotonously decreasing. As c
T B  

increases, value of BER can fluctuate.  

BER performance for different c
T B  at some values of Eb/No (such as 0 dB, 5 dB, etc) 

is shown as examples in Figure 5.3. As c
T B  increases, the curves for the all cases 

fluctuate. This fluctuation is more obvious for the bigger value of Eb/No. The lowest 

points of each curve in Figure 5.3 respectively correspond to the zero crossing points of 

the red curve with circles ( 2Ω = ) in Figure 3.5. Therefore, this fluctuation phenomenon 

is caused by the cross-correlation characteristic of sine chirps as stated in subsection 4.4.2. 

Comparison of the theoretical and the simulated BER curves for the BOK FPS CSS 

system in the AWGN channel is shown in Figure 5.4. The theoretical result is represented 

by Eqn. (5.21). The simulation is carried out by implementing the system depicted by 

Figure 5.1. This comparison is carried out at 5.52
c

T B =  sHz, which is an orthogonal 

point of the pair of FPS chirps. Total data transmitted for each test case is 10
8
. It can be 

observed that the two curves are overlapping with each other.  
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Figure 5.2: Eb/No vs. BER of the BOK FPS CSS system for different c
T B  

 

 

Figure 5.3: BER of the BOK FPS CSS system vs. c
T B  for different Eb/No 
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Figure 5.4: Theoretical and simulated BER for the BOK FPS CSS system 

5.2.2 Performance Comparison in the AWGN Channel 

BER performance vs. Eb/No in AWGN channel for linear and FPS chirps is shown in 

Figure 5.5 with different B  while c
T  is 1µs. As shown in this figure, the linear chirp set 

shows a performance improvement due to the increased B  from 5.5201 MHz to 10 MHz. 

The BER performance of FPS chirp is better than linear chirp under the same B , such as 

5.5201 MHz and 10 MHz. There are very close performance for FPS chirps with three 

different B  (5.5201 MHz, 8.6531 MHz, and 11.7915 MHz) as defined in Eqn. (4.45). 

Even if the bandwidth ( B ) for a pair of FPS chirps is larger than another bandwidth, its 

performance in Gaussian channel may not be better than the latter. For example, the 

performance of FPS chirps with 10 MHz bandwidth is worse than that with 5.5201 MHz 

bandwidth. This interesting phenomenon is to be expected, since the correlation 

coefficient of FPS chirps shows periodic characteristic as discussed in previous sections. 

As shown in Figure 5.5, when bandwidth is 5.5201 MHz and Eb/No is 12 dB, the bit 

error rate of linear chirp is nearly 
43 10−× , while the bit error rate of FPS chirp is 

approximately 
57 10−× . Thus, BER of the FPS chirp is only 23.3% of that of the linear 

chirp. Therefore, it can be concluded that the BOK CSS system based on a pair of 
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orthogonal FPS chirps can achieve significant performance improvement over its linear 

counterpart in the AWGN channel. 

 

Figure 5.5: Performance of linear chirp and FPS chirp with different bandwidths in the 

AWGN channel 

5.3 Effect of Doppler Shifts 

Doppler shift (or Doppler Effect) can cause frequency offset to the transmitted 

waveform due to the relative movement between the transmitter and receiver. Doppler 

shift normally decreases the quality of communication systems using modulation 

schemes, such as OFDM (Orthogonal Frequency-Division Multiplexing). In a CSS 

system, the transmitted signal is Doppler-shifted by a moving target, while the filter at the 

receiver side remains matched to an unshifted signal. An important advantage of the CSS 

system is that it is insensitive to frequency shift [16, 44]. A chirp signal is based on 

change in instaneous frequencies. Doppler shift can bring in frequency offset to a chirp 

signal, but it will damage its change in instaneous frequencies. Hence, chirp signal is 

inherently robust to Doppler shift. 
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A signal ( )s t  which is distorted with a Doppler shift d
f  of a moving target is given as 

in [51]: 

 
2

( ) ( ) dj f t

ds t s t e
π= ×  (5.22) 

wherein the Doppler frequency offset d
f  is represented as: 

 0
r

d

v
f f

c
=  (5.23) 

where r
v  is the relative velocity between the transmitter and the receiver, c  is the 

velocity of light,  and 0f  is the frequency of the transmitted signal. 

5.3.1 Linear Chirps 

5.3.1.1 Effect at the Matched Filter Output 

It is widely accepted that CSS is insensitive to Doppler shift. Suppose the linear up-

chirp signal ( 1L
c ) as defined in Eqn. (2.15) with no Doppler shift, the output of the 

matched filter can be described by Eqn. (2.17) which is rewritten here for convenience: 

 0

sin ( )
( ) 4 cos(2 )

2 2 2

cm c c
L

t T t T T
g t f t t

t

πµ
µ π

πµ

 −  = − ≤ ≤  (5.24) 

If the above linear chirp signal is received by the receiver with a certain frequency 

offset / 2
d

ε ω π= , then the received signal will become [52]: 

 ( )
2

1 0cos
2 2 2

d c c
L d

T Tt
c t tω ω µ

 
= + + − ≤ ≤ 

 
 (5.25) 

Output of the matched filter for this signal can be represented as [52]: 
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0

sin
2 22

( , ) cos ,
2 2 2

d c

dm d c c

L d

d

t T
t

T T
g t t t

t

ω µ

ωµ
ω ω

π ω µ

 +  
−       = + − ≤ ≤   +  

 (5.26) 

By comparing Eqn. (5.24) and Eqn. (5.26), one can conclude that the two outputs have 

the same form of a sinc  function except for a time-shifted autocorrelation peak. The shift 

can be represented by: 

 
/

d d d c
t

c

T

B T B

ω ω ω
δ

µ
= − = − = −  (5.27) 

Therefore, the peak exists at t
t δ= . Thus, value of the output of the matched filter 

with Doppler shift (frequency offset) for linear chirp can be obtained as: 

 
( )

0

0

2
( , ) cos

2

22
cos

2

dm d d c
L t d

d d c

T
g

B

T

B

ω ωµ
δ ω ω

π

ω ω ωµ

π

    
= + × −    

    

+ 
=  

 

 (5.28) 

A simulation is performed to demonstrate effect of the matched output and unmatched 

output of the BOK linear CSS system. The matched outputs under three different cases 

(no frequency offset, 1 MHz, and 3 MHz frequency offset) are comparatively shown in 

Figure 5.6. Time shifts exists in the both cases with Doppler shift (frequency offset). 

Meanwhile, magnitude of the matched output also changes. On comparison of the two 

simulation results, the larger the Doppler frequency offset is, the bigger the time shift will 

be, and the smaller magnitude of the matched output will be. 

5.3.1.2 Effect of the Unmatched Filter Output 

Similarly, the unmatched filter outputs under three different cases (no frequency offset, 

1 MHz, and 3 MHz frequency offset) are shown in Figure 5.7.  As can be seen, effects of 

Doppler frequency offset on time shifts and the magnitude of the unmatched output are 

not obvious, because the signal does not match the filter regardless whether there is a 

Doppler shift or not. 
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Figure 5.6: Output of the matched filter with different frequency offsets 
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5.3.2 Full Period Sine Chirp  

Definition 5.1: Suppose FPS chirp signal 2 1( )Sc t−  reaches the receiver with a certain 

amount of frequency offset d
ω , the received signal can then be represented as: 

 
2 1 0( ) cos ( ) cos 2

2 2 2

d c c c
S d

c

BT T Tt
c t t t

T
ω ω π−

  
= + + − ≤ ≤  

  
 (5.29) 

The impulse response 2 1( )Sh t−  of the matched filter to the FPS chirp 2 1( )Sc t−  is: 

 
2 1 0( ) cos cos 2

2

c
S

c

BT t
h t t

T
ω π−

  
= −  

  
 (5.30) 

5.3.2.1 Effect at the Matched Filter Output 

Theorem 5.1: If 2 1( )d

Sc t−  is inputted into the matched filter 2 1( )Sh t− , output of the 

matched filter will be: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2 2 1 0

2 1 1 0

0 2

( , ) 1 cos 1 sinc 2 2

1 sin 1 sinc 2 2

1 cos 2 1 sinc

ndm dm

S d d n S d c

nc

n dm

d n S d c

nc

n dm

d n S d c

nc

g f J k f f n T
T

f J k f f n T
T

f f J k f n T
T

τ
τ ω π τ π π θ τ

τ
π τ π π θ θ τ

τ
πτ π θ τ

∞

=−∞

∞

+
=−∞

∞

=−∞

 
 = − − + + −   

 

 
 + − − + + + −   

 

 
 + − + − + −      

 

∑

∑

∑

(5.31) 

where 
c

Tθ π= , ( )1 cosdm

S ck BT θτ= , ( )2 sindm

S ck BT θτ= .  

Proof.  Output of the matched filter can be calculated by:  
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( )

2 2 1 2 1 2 1 2 1

0

0

( , ) ( ) ( ) ( ) ( )

cos ( ) cos 2
2

cos cos 2
2

dm d d

S d S S S S

c

d

c

c

c

g c t h t c t h t dt

BT t
t

T
dt

BT t
t

T

τ ω τ

ω ω π

τ
ω τ π

∞

− − − −−∞

∞

−∞

= ∗ = −

   
+ +   

   
=  

  − 
× − +   

   

∫

∫
 (5.32) 

Detailed derivation for the calculation is presented in Appendix H. 

When d
ω  is set as zero which means no Doppler shift, this equal is the same as Eqn. 

(5.5) which represents output of the matched filter for the FPS chirp without Doppler 

shift. 

– Q.E.D 

Theorem 5.2: If 2 1( )d

Sc t−  is inputted into the matched filter 2 1( )Sh t− , the matched filter 

output at 0τ =  can be simplified as: 

 ( )2 (0, ) sincdm

S d d cg f Tω π=  (5.33) 

Proof. The frequency-shifted output of the matched filter at 0τ =  can be obtained by 

substituting 0τ =  to Eqn. (5.31): 

 

( ) ( ) ( )

( ) ( ) ( )

2 2 0
(0, ) 1 sinc 2 2

1 0 sinc 2

ndm

S d n c d c

n

n

n d c

n

g J BT f f n T

J f n T

ω π π θ

π θ

∞

=−∞

∞

=−∞

= − + +  

+ − +  

∑

∑
 (5.34) 

As shown in Figure 4.1, ( )0nJ  equals to 1 when 0n = , while ( )0nJ  is always zero 

when n is non-zero integer. Therefore, Eqn. (5.34) can be simplified as follows: 

 ( ) ( ) ( ) ( )2 2 0
(0, ) 1 sinc 2 2 +sinc

ndm

S d n c d c d c

n

g J BT f f n T f Tω π π θ π
∞

=−∞

= − + +  ∑  (5.35) 

Recall c
Tθ π= , then Eqn. (5.35) can be obtained as: 
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 ( ) ( ) ( ) ( )2 2 0
(0, )=sinc 1 sinc 2 2

ndm

S d d c n c d c

n

g f T J BT f f T nω π π π
∞

=−∞

+ − + +  ∑  (5.36) 

Value of the second term in Eqn. (5.36) with different values of d
f  and c

T B  is shown 

in Figure 5.8. As shown in this figure, absolute value of this term in Eqn. (5.36) is always 

less than 0.01. Comparing with the second term in Eqn. (5.36) which normally equals 1, 

the second term in Eqn. (5.36) is so small that it can be ignored. Thus, Eqn. (5.36) can be 

simplified as: 

 ( )2 (0, ) sincdm

S d d cg f Tω π=  (5.37) 
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Figure 5.8: Value of the first term in Eqn. (5.36) vs. different Doppler shifts and c
T B  

– Q.E.D 

Definition 5.2: ε is an allowable error, which is 0 1ε< < . 
mt

dSf  is the tolerable frequency 

shift of FPS chirp to the matched output, which means effect on the matched output of 

sine chirp caused by this frequency shift is under the allowable error ε . 
1sinc−
 is inverse 

function of sinc . 



101 

 

Theorem 5.3: Given an allowable error ε, then there exists 
1sinc (1 )mt

dS

c

f
T

ε

π

− −
≤ . 

Proof. It can be observed from Theorem 5.2 that the magnitude of the peak (at 0τ = ) 

totally depends on ( )sinc d cf Tπ . For a given ε, the following can be obtained from Eqn. 

(5.37):  

 ( )2 (0, ) sinc 1dm

S d d cg f Tω π ε= ≤ −  (5.38) 

Thus, 
mt

dSf  can be obtained from Eqn. (5.38) as: 

 
1sinc (1 )mt

dS

c

f
T

ε

π

− −
≤  (5.39) 

– Q.E.D 

Example 1. Let 0.01ε = , then 
mt

dSf  can be calculated by Eqn. (5.37): 

 
1 1 1sinc (1 ) sinc (1 0.01) sinc (0.99) 0.245mt

dS

c c c c

f
T T T T

ε

π π π π

− − −− −
≤ = = =  (5.40) 

From Eqn. (5.40), it can be observed that 
mt

dSf  only depend on the time period of sine 

chirp ( c
T ). The smaller c

T  is, the bigger 
mt

dSf  will be. Given c
T  is 1 µs, 

mt

dSf  will be: 

 60.245
10 78(kHz)mt

dS
f

π
≤ × ≈  (5.41) 

Effects with 78 kHz frequency offsets on the matched output of the FPS chirp are 

simulated when B  is set as 5.5201 MHz as an example; the corresponding results are 

shown in Figure 5.9. It is worth of noting that the results remain valid for different values 

of B  as listed in Table 4.1. As shown in Figure 5.9, the outputs with no frequency offset 

and 78 kHz frequency offset are almost the same, which means that the effect with a 78 

kHz frequency offset can be ignored.  
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Figure 5.9: Comparison of the matched output of the BOK FPS CSS system with no 

frequency offset and 78 kHz frequency offset 

Example 2. Let 0.1ε = , then 
mt

dSf  can be calculated by Eqn. (5.37): 

 
1 1 1sinc (1 ) sinc (1 0.1) sinc (0.9) 0.787mt

dS

c c c c

f
T T T T

ε

π π π π

− − −− −
≤ = = =  (5.42) 

Given c
T  is 1 µs, 

mt

dSf  will be: 

 60.787
10 250(kHz)mt

dS
f

π
≤ × ≈  (5.43) 

Comparison of the matched output of FPS chirp with no frequency offsets and 250 

kHz are shown in Figure 5.10. Although the two curves in Figure 5.10 are almost 

overlapped, magnitude of the peak at 0t =  for the case with 250 kHz frequency offset is 

smaller than that for the case without frequency offset. Moreover, peak time shift exists 

when frequency offsets are 250 kHz.  
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Figure 5.10: Comparison of the matched output of the BOK FPS CSS system with no 

frequency offset and 250 kHz frequency offset 

5.3.2.2 Effect on the Unmatched Filter Output 

Theorem 5.4: If 2 1( )d

Sc t−  is inputted into the unmatched filter 2 2( )Sh t− , the unmatched 

filter output will be: 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

2 1 0

0 2 2

0 2 1 2

( , ) 1 cos 1 sinc 2 2

1 cos 2 1 sinc 2

1 sin 2 1 sinc 2

ndu du

S d d n S d c

nc

n du

d n S d c

nc

n du

d n S d c

nc

g t f J k f f n T
T

f f J k f n T
T

f f J k f n T
T

τ
ω π τ π π θ τ

τ
πτ π θ τ

τ
πτ π θ θ τ

∞

=−∞

∞

=−∞

∞

+
=−∞

 
 = − − + + −   

 

 
 + − + − + −      

 

 
 − − + − + + −      

 

∑

∑

∑

(5.44) 

where ( ) ( )1 2/ ; sin ; cosdu du

c S c S cT k BT k BTθ π θτ θτ= = =  

Proof. The unmatched filter output can be calculated by: 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
The Matched Output of the BOK FPS CSS System when f0=20(MHz), Tc=1(us), and B=5.5201(MHz) 

Time Shift (Tc/2)

O
u
tp

u
t 

o
f 

th
e
 M

a
tc

h
e
d
 F

ilt
e
r

 

 

Frequency Offset = 0(MHz)

Frequency Offset = 250(kHz)



104 

 

 

( )

2 2 1 2 1 2 1 2 2

0

0

( , ) ( ) ( ) ( ) ( )

cos ( ) cos 2
2

cos cos 2
2

du d d

S d S S S S

c

d

c

c

c

g c t h t c t h t dt

BT t
t

T
dt

BT t
t

T

τ ω τ

ω ω π

τ
ω τ π

∞

− − − −−∞

∞

−∞

= ∗ = −

   
+ +   

   
=  

  − 
× − +   

   

∫

∫
 (5.45) 

Detailed derivation for the calculation is presented in Appendix I. 

– Q.E.D 

Theorem 5.5: If 2 1( )d

Sc t−  is inputted into the unmatched filter 2 2( )Sh t− , the unmatched 

filter output at 0τ =  can be simplified as: 

 ( ) ( ) ( ) ( )2 2 0
(0, )= 1 sinc 2 +sinc 2

ndu

S d n c d c d c

n

g J BT f T n f f Tω π π π
∞

=−∞

 − + +   ∑  (5.46) 

Proof. The frequency-shifted output of the unmatched filter at 0τ =  can be obtained 

by substituting 0τ =  to Eqn. (5.44): 

 

( ) ( ) ( )

( ) ( ) ( )

2 0

2

(0, ) 1 0 sinc 2 2

1 sinc 2

ndu

S d n d c

n

n

n c d c

n

g J f f n T

J BT f n T

ω π π θ

π θ

∞

=−∞

∞

=−∞

 = − × + +   

 + − × +   

∑

∑
 (5.47) 

By substituting c
Tθ π=  into Eqn. (5.47), Eqn. (5.47) can be simplified as: 

 

( ) ( ) ( )

( ) ( ) ( )

2 0

2

(0, ) 1 0 sinc 2 2

1 sinc 2

ndu

S d n d c

n

n

n c d c

n

g J f f T n

J BT f T n

ω π π

π

∞

=−∞

∞

=−∞

= − × + +  

+ − × +  

∑

∑
 (5.48) 

Since ( )0nJ  equals to 1 when 0n = , while ( )0nJ  is always zero when n  is a non-

zero integer. Therefore, Eqn. (5.48) can further be simplified as follows: 
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 ( ) ( ) ( ) ( )2 0 2
(0, )=sinc 2 + 1 sinc 2

ndu

S d d c n c d c

n

g f f T J BT f T nω π π
∞

=−∞

+ − +      ∑  (5.49) 

– Q.E.D 

Definition 5.3: 
ut

dSf  is the tolerable frequency shift of FPS chirp to the unmatched output, 

which means effect on the unmatched output of sine chirp caused by this frequency shift 

can be ignored. 

Theorem 5.6: If 2 1( )d

Sc t−  is inputted into the unmatched filter, then there exists 

0.1ut

dS

c

f
T

≤ . 

Proof. From Theorem 5.5, value of 2 (0, )du

S dg ω  as a function of the time-frequency 

offset product ( d c
f T ) is depicted in Figure 5.11 when B  is set as the values listed in 

Table 4.1. Since it can be observed that value of 2(0, )du

S dg ω  is less than 0.005 when 

0.1
d c

f T ≤ , value of 2(0, )du

S dg ω  can be considered as zero when 0.1
d c

f T ≤ . 

 

Figure 5.11: Value of Eqn. (5.49) vs. time-frequency offset product 
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In other words, 
ut

dSf  can be obtained from the following: 

 
0.1ut

dS

c

f
T

≤  (5.50) 

It can be observed from Eqn. (5.50) that 
ut

dSf  also only depends on the time period of 

FPS chirp ( c
T ). The smaller c

T  is, the bigger 
ut

dSf  could be toleranted. Given c
T  is 1 µs, 

ut

dSf  will be: 

 60.1
10 100(kHz)

1

ut

dS
f ≤ × =  (5.51) 

Comparisons of the unmatched filter output between no frequency offset and different 

frequency offsets (50 kHz, 100 kHz, 200 kHz, and 300 kHz) are shown from Figure 5.12 

to Figure 5.15 respectively. These results are obtained under the condition that B  is set 

as 5.5201 MHz. As shown in Figure 5.12 and Figure 5.13, the output of the unmatched 

filter with no frequency offset is almost the same as the output with 50 kHz and 100 kHz 

frequency offsets. Thus, the effect of frequency offset under 100 kHz can be effectively 

ignored. It can be observed from Figure 5.14 and Figure 5.15 that there is slight different 

for the output of the unmatched filter between with no frequency offset and 200 kHz 

frequency offset, while the different becomes bigger when the frequency offset is 

increased to 300 kHz. 

– Q.E.D 
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Figure 5.12: Comparison of the unmatched output of the BOK FPS CSS system between 

no frequency offset and 50 kHz frequency offset 

 

 

Figure 5.13: Comparison of the unmatched output of the BOK FPS CSS system between 

no frequency offset and 100 kHz frequency offset 
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Figure 5.14: Comparison of the unmatched output of the BOK FPS between no frequency 

offset and 200 kHz frequency offset 

 

 

Figure 5.15: Comparison of the unmatched output of the BOK FPS CSS system between 

no frequency offset and 300 kHz frequency offset 
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5.3.2.3 Summary 

In summary, the tolerable frequency shift at the matched filter output for the FPS 

chirps  is 
1sinc (1 )mt

dS

c

f
T

ε

π

− −
≤  for a given allowable error ε, while the tolerable frequency 

shift at the unmatched filter output for the FPS chirps is
0.1ut

dS

c

f
T

≤ . So, tolerable 

frequency shift for the BOK FPS CSS system (
t

dSf ) should be the smaller one between 

mt

dSf  and 
ut

dSf . Given the time period of a FPS chirp signal ( c
T ) is equal to 1 µs and 

0.01ε = , 
mt

dSf  and 
ut

dSf  are 78 kHz and 100 kHz respectively. In this case, 
t

dSf  is chosen as 

78 kHz.  

It should be noted that Doppler frequency offset in practice is normally less than 10 

kHz [52]. For example, given the relative velocity between the transmitter and the 

receiver is 300 km/h and 0f  is assumed to be 2.4 GHz, the Doppler frequency offset d
f  

is 1.33 kHz as calculated from Eqn. (5.23). Therefore, it can be concluded that the 

performance of the BOK FPS CSS is insensitive to any Doppler shift in considerable 

practical situations. 

5.3.3 Comparison of BER Performance under Different 
Frequency Shifts 

A comparison between the BOK CSS system using linear chirp vs. FPS chirp under 

different frequency shifts (no offsets, 50 kHz offset, and 200 kHz offset) in the Gaussian 

Channel in terms of BER. The corresponding results are shown in Figure 5.16. As shown, 

BER performance for FPS chirp without frequency offset and 50 kHz frequency offset 

are almost identicial. This is also true for linear chirp. When frequency offset is changed 

to 200 kHz, the BER performance for both kinds of chirps has degraded. For the three 

scenarios (no offsets, 50 kHz offset, and 200 kHz offset), BER performance of FPS chirp 

is always superior than that of linear chirp, especially when Eb/No is greater than 8 dB. It 

is worthy mentioning that the FPS chirp even at 200 kHz offset outperform the linear 

chirp with no frequency offset. 
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Figure 5.16: Eb/No vs. BER performance in the Gaussian channel for linear and FPS 

chirps with different frequency shifts 

In conclusion, the BOK CSS system based on a pair of orthogonal FPS chirps can 

achieve superior performance than that of linear chirps under the same frequency offset. 

In other words, the BOK CSS system based on a pair of orthogonal FPS chirps is also 

immunized to the frequency offset caused by Doppler effects. 

5.4 Performance in a Rayleigh Fading Channel 

Although the AWGN channel is a simple way to model a noisy channel, it may not 

capture all characteristics of a communication channel. More realistic channel models 

needs to be considered. One commonly used non-Gaussian channel in practice is a fading 

channel. A typical model for such case is Rayleigh fading channel. The main difference 

between an AWGN channel and a Rayleigh channel resides in the fact that the fading 

amplitude is now a Rayleigh-distributed random variable. In a Rayleigh fading channel, 

there are no direct or line-of-sight (LOS) pathes, and all paths fade independently. 

In this section, a Rayleigh channel model is selected to evaluate the performance of 

FPS chirp. Comparative simulations for three different scenarios are carried out 

respectively using the parameters listed in Table 5.1. Since 5.5201
c
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orthogonal point for FPS chirps, the symbol interval ( c
T ) and bandwidth ( B ) are set as 

5.52 MHz and 1 µs respectively. The number of multipath is selected to be 2 for scenario 

#1 and scenario #2, and 4 for scenario #3. The multipath delay is assumed to be 10 ns, 

which means that the equivalent difference in transmission distance is 3 meters (the 

transmission speed × the delay = 
83×10 (m s)×10(ns)=3m ).  

Table 5.1: System and channel parameters 

Channel Type Rayleigh Fading+AWGN 

Modulation BOK  

Chirp Signal Linear chirp, and FPS chirp 

Carrier Frequency ( 0f ) 20 MHz 

Symbol Interval ( c
T ) 1 µs 

Bandwidth ( B ) 5.52 MHz 

Total data transmitted for each test case 100,000 

Scenario #1 

Number of Path 2 

Maximum Doppler shift 0 Hz 

Path Delay 0, 10 (ns) 

Path Gain 0 dB, -0.9 dB 

Scenario #2 

Number of Path 2 

Maximum Doppler shift 50 kHz 

Path Delay 0, 10 (ns) 

Path Gain 0 dB, -0.9 dB 

Scenario #3 

Number of Path 4 

Maximum Doppler shift 0 Hz 

Path Delay 0, 10 (ns), 20 (ns), 30 (ns) 

Path Attenuation 0 dB, -0.9 dB, -1.7 dB, -2.6 dB 

For the Rayleigh fading channel, it is practical to have a scheme to combine the signal 

power distributed in different paths. However, such combining scheme has not been 

implemented in this simulation in order to avoid its effects on the performance 

comparison. As a consequence, at the receiver end, the matched filter is always to be 

synchronized with the strongest path in the multipath fading, while the other paths in 

multipath fading will be considered as interferences. The corresponding results are shown 

in Figure 5.17. 
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Figure 5.17: Eb/No vs. BER performance for linear and FPS chirps in a 

Rayleigh+Gaussian channel 

An important observation from the simulation results is that the BOK CSS system 

based on FPS chirps can achieve improved performance than linear chirps in all three 

sceranios. For example, as to the scenarios #3 when Eb/No is 12 dB, the bit error rate of 

linear chirp is nearly 
26.2 10−× , while the bit error rate for FPS chirp is approximately 

22 10−× . Thus, BER of FPS chirp is only 32.3% of that of linear chirp. Therefore, the 

BOK CSS system based on a pair of orthogonal FPS chirps can lead to significant 

improvement than its linear counterpart in an AWGN+Rayleigh channel. 

5.5 Summary 

Using both theoretical analyses and simulations, it has been demonstrated that the BOK 

CSS system based on a pair of orthogonal FPS chirps can achieve improved BER 

performance than its linear counterpart in both AWGN and AWGN+Rayleigh channels. 

Moreover, the BOK CSS system based on a pair of orthogonal FPS chirp is also 

immunized to the frequency offset. 
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6. Conclusions 

This chapter concludes the dissertation by summarizing major contributions. Future 

research relevant to this topic is also outlined. 

Through rigorous mathematical analysis and simulation studies, this thesis has proved 

that a pair of sine or cosine chirps can be completely orthogonal under some conditions. 

The results have far-reading implications in BOK CSS system in terms of reduced time-

bandwidth product. 

6.1 Summary of Specific Contributions 

1. Two general representations are developed respectively to construct an arbitrary 

kind of chirps for a given spectral bandwidth B , and to construct a pair of chirps 

for the BOK CSS system. With these two general representations, many kinds of 

non-linear chirps can be constructed for the BOK CSS system before they are 

analyzed.  

2. An efficient method is proposed to determine a pair of candidate chirps which have 

improved orthogonal property over its linear counterpart. (1) A comparison of 

relationship between the time-bandwidth product ( c
T B ) and value of cross-

correlation coefficient for both linear chirps and the candidate chirps can be used to 

observe if the candidate chirps have improved orthogonal property. (2) Based on 

the graphical comparison, if the magnitude of cross-correlation coefficient of the 

candidate chirps is smaller than that of the linear chirps for same c
T B , the 

candidate chirps are deemed to have improved orthogonal property. More 

especially, if a zero crossing point exists in the curve of the candidate chirps, the 

candidate chirps probably can be completely orthogonal under a certain condition. 

This proposed method can be used by other researchers to quickly evaluate if a pair 

of candidate chirps has improved orthogonal property over its linear counterpart. 
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3. Preliminary results have shown that a significant performance advantage on 

orthogonality over linear chirps can be attained using the pair of cosine or sine 

chirps. Thus, the properties of sine or cosine chirps are analyzed in detail. The 

derivations of the spectral characteristics, autocorrelation and cross-correlation for 

sine chirps are carried out. Similarly, the derivations of the spectral characteristics, 

autocorrelation and cross-correlation for cosine chirps are also carried out. This 

significant discovery is validated by mathematical derivation and simulation: a pair 

of sine or cosine chirps is orthogonal as long as 
2

c
BT

Ω
 is equal to the roots of the 

Bessel function of the first kind of order zero ( 0( )J x ). A significant of this 

discovery is that a pair of orthogonal sine or cosine chirps can be determined. 

4. The effect of Doppler shift on the BOK FPS CSS system has been investigated, and 

then validated by simulation. The tolerable frequency shift to the matched filter 

output of sine chirp (
mt

dSf ) is 
-1sinc (1 )mt

dS

c

f
T

ε

π

−
≤  for a given allowable error ε, while 

the tolerable frequency shift to the unmatched filter output of sine chirp (
ut

dSf ) is 

0.1ut

dS

c

f
T

≤ . Therefore, tolerable frequency shift for the BOK FPS CSS system (
t

dSf ) 

should be the smaller one between 
mt

dSf  and 
ut

dSf . It is proven that the BOK CSS 

system based on a pair of orthogonal sine chirp is immuned to frequency offsets in 

considerable practical situations. This means the BOK FPS CSS system can be used 

in some applications which have serious Doppler or frequency offsets, such as high 

speed train wireless communication. 

5. BER performance of the BOK CSS system based on FPS chirps in an additive 

white Gaussian noise (AWGN) channel is derived and then validated. The results 

prove that a pair of orthogonal FPS chirps can outperform its linear counterpart in 

the AWGN channel. Furthermore, the performance comparison between linear 

chirps and FPS chirps for the BOK CSS system in an AWGN+Rayleigh channel 

has been analyzed. The corresponding result also shows that a pair of orthogonal 
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FPS chirps can achieve superior BER performance than its linear counterpart in the 

AWGN+Rayleigh channel. From a communication system point of view, this means 

a pair of orthogonal FPS chirps are much quanified to replace linear chirps for the 

BOK CSS system. 

6.2 Suggestions for Future Research 

1. In this thesis, some properties of the BOK CSS system based on FPS chirp are 

analyzed analytically and by simulations. However, practical design and 

implementation techniques for the BOK CSS system based on FPS chirp are not 

considered in this thesis, and, thus, could be a future research topic. 

2. Though FPS chirps are shown to be robustness in a fading environment, it is 

possible some enhancement can be done to obtain improved performance. The 

performance degradation caused by multipath fading can be reduced using different 

techniques, such as a RAKE receiver [53]. In this way, chirp energy distributed 

along multipath can be collected and the performance of the system will be further 

improved. The method used to collect chirp multipath signals is an interesting 

research topic. 

3. An open topic for future research is to develop a method to increase the data rate 

for the BOK CSS system based on sine chirps. In this thesis, only a BOK CSS 

system is considered. One of the possibilities is to use M-ary sine chirps, and to 

increase the speed of the chirp system up to log2
M

. 
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Appendix A: Formulas Used 

The Jacobi’s expansions in series of Bessel coefficient is defined by [39]: 
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∑

  (A.1) 

In this equation, ( )nJ x  is the Bessel function of the first kind of order n  [42]. As to 

Bessel functions of the first kind, for integer order n , the following relationship is valid 

[42]:  

 ( ) ( ) ( )1
n

n n
J x J x− = −   (A.2) 

When n  in Eqn. (A.2) is even, the following equation for ( )nJ x  can be obtained: 

 ( ) ( )n nJ x J x− =   (A.3) 

When n  in Eqn. (A.2) is odd, the following equation for ( )nJ x  can be obtained: 

 ( ) ( ) ( )1n nJ x J x−= −   (A.4) 

A.1 Cosine Extension in term of Cosine Jacobi’s expansion 

A.1.1 Cosine extension 

The following equation can be achieved from Eqn. (A.1): 
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  (A.5) 

Since 2n  is even in Eqn. (A.5), Eqn. (A.5) can become by recalling Eqn. (A.3): 
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A.1.2 Sine extension 

The following equation can be achieved from Eqn. (A.1): 
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Since 2 1n +  is odd in Eqn. (A.7), Eqn. (A.7) can become by recalling Eqn. (A.4): 
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+
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A.1.3 Summary 

The following equation can be achieved as: 

 ( ) ( ) ( )cos cos cos( )cos cos sin( )sin cosα β θ α β θ α β θ± =          m   (A.9) 
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By combining Eqn. (A.6) and Eqn. (A.8) into Eqn. (A.9), then Eqn. (A.9) becomes as:  
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A.2 Sine extension in term of Cosine Jacobi’s expansion 

A.2.1 Sine & Cosine extension 

The following equation can be achieved from Eqn. (A.1): 
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  Since 2n  is even in Eqn. (A.11), Eqn. (A.11) can become by recalling Eqn. (A.4): 
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A.2.2 Cosine & Sine extension 

The following equation can be achieved from Eqn. (A.1): 
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Since 2 1n +  is odd in Eqn. (A.13), Eqn. (A.13) can become by recalling Eqn. (A.4): 
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Eqn. (A.14) can be simplified as: 
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A.2.3 Summary 

The following equation can be achieved as: 

 ( ) ( ) ( )sin cos sin( )cos cos cos( )sin cosα β θ α β θ α β θ± = ±             (A.16) 

By combining Eqn. (A.12) and Eqn. (A.14) into Eqn. (A.16), then Eqn. (A.16) 

becomes as:  
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A.3 Cosine extension in term of Sine Jacobi’s expansion 
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A.3.1 Cosine extension 

The following equation can be achieved from Eqn. (A.1): 
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  Since 2n  is even in Eqn. (A.18), Eqn. (A.18) can become by recalling Eqn. (A.3): 
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A.3.2 Sine extension 

The following equation can be achieved from Eqn. (A.1): 
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  (A.20) 

Since 2 1n +  is even in Eqn. (A.20), Eqn. (A.20) can become by recalling Eqn. (A.4): 
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= − + +      ∑   (A.21) 

A.3.3 Summary 

The following equation can be achieved as: 

 ( ) ( ) ( )cos sin cos( )cos sin sin( )sin sinα β θ α β θ α β θ+ = −             (A.22) 
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By combining Eqn. (A.19) and Eqn. (A.21) into Eqn. (A.22), then Eqn. (A.22) 

becomes as:  
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  (A.23) 

The following equation can be achieved as: 

 ( ) ( ) ( )cos sin cos( )cos sin sin( )sin sinα β θ α β θ α β θ− = +             (A.24) 

By combining Eqn. (A.19) and Eqn. (A.21) into Eqn. (A.24), then Eqn. (A.24) 

becomes as:  
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  (A.25) 

Finally, Eqn. (A.23) and Eqn. (A.25) can be summarized as: 
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  (A.26) 

A.4 Sine extension in term of Sine Jacobi’s expansion 

A.4.1 Sine & Cosine extension 

The following equation can be achieved from Eqn. (A.1): 
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 (A.27) 

Since 2n  is even in Eqn. (A.27), Eqn. (A.27) can become by recalling Eqn. (A.3): 
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A.4.2 Cosine & Sine extension 

The following equation can be achieved from Eqn. (A.1): 
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 (A.29) 

  Since 2 1n +  is odd in Eqn. (A.29), Eqn. (A.29) can become by recalling Eqn. (A.4): 

 

( ) ( ) ( ){ }

( ) ( ){ }

( ) ( ){ }

2 1

0

1

(2 1)

2 1

cos( )sin sin sin 2 1

sin 2 1

sin 2 1

n

n

n

n

n

n

J n

J n

J n

α β θ β α θ

β α θ

β α θ

∞

+
=

−

+
=−∞

∞

+
=−∞

= + +      

+ + +  

= + +  

∑

∑

∑

  (A.30) 

A.4.3 Summary 

The following equation can be achieved as: 
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 ( ) ( ) ( )sin sin sin( )cos sin cos( )sin sinα β θ α β θ α β θ+ = +             (A.31) 

By combining Eqn. (A.28) and Eqn. (A.30) into Eqn. (A.31), then Eqn. (A.31) 

becomes as:  
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 (A.32) 

The following equation can be achieved as: 

 ( ) ( ) ( )sin sin sin( )cos sin cos( )sin sinα β θ α β θ α β θ− = −             (A.33) 

By combining Eqn. (A.28) and Eqn. (A.30) into Eqn. (A.33), then Eqn. (A.33) 

becomes as:  

 

( ) ( ) ( ) ( ){ }

( ) ( ) ( )

2 2 1sin sin sin( 2 ) sin 2 1

1 sin

n n

n n

n

n

n

J n J n

J n

α β θ β α θ β α θ

β α θ

∞ ∞

+
=−∞ =−∞

∞

=−∞

− = + − + +          

 = − +
 

∑ ∑

∑
 (A.34) 

Finally, Eqn. (A.32) and Eqn. (A.34) can be summarized as: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

sin sin sin

sin sin 1 sin

n

n

n

n

n

J n

J n

α β θ β α θ

α β θ β α θ

∞

=−∞

∞

=−∞


+ = +      



  − = − +    

∑

∑
  (A.35) 

A.5 Some Frequently Used Equations 

A.5.1 #1 Equation 

One equation frequently used in the following appendies is: 
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Recalling Eqn. (A.2), the following results can obtained: 
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  (A.37) 

A.5.2 #2 Equation 

Another equation frequently used in the following appendies is: 
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Recalling Eqn. (A.2), the following results can obtained: 
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  (A.39) 

A.5.3 #3 Equation 

Another equation frequently used in the following appendies is: 
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Recalling Eqn. (A.2), the following results can obtained: 
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Appendix B: Spectrum of Sine Chirps 

In this appendix, spectrum of sine chirp is derived. In general, a pair of sine chirp can 

be represented as: 
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 (B.1)  

The spectrum of sine chirp Signals depicted in Eqn. (B.1) can be obtained by taking 

the Fourier transform of itself. ( )1Sc t  is taking as an example here for analyze spectral 

characteristic of sine chirps.  
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Let 
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  (B.3) 

Recalling the Euler's formula ( ) ( )= cos sinj t
e t j t

ω ω ω− − , Eqn. (B.2) becomes: 
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  (B.4) 

Let 0 0,ω ω ω ω ω ω+ −= + = − , then: 
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where 1( )P

SF ω and 1 ( )N

SF ω  are positive and negative sides of the spectrum respectively. 
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and 
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B.1 Calculation of the positive side 

Only positive side of the spectrum is considered as example, so Eqn. (B.6) can be 

simplified as: 
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and 1

PI

SF  is the image part: 
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B.1.1 Calculation of the real part  

Substituting Eqn. (A.10) into Eqn. (B.9), the real part 1

PR

SF  can be obtained as: 
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Eqn. (B.11) can be simplified as:  
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B.2.2 Calculation of the image part 

Substituting Eqn. (A.17) into Eqn. (B.10), the image part 1

PI

SF  can be obtained as: 
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B.2.3 Summary 
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By substituting Eqn. (B.10) and Eqn. (B.13) into Eqn. (B.8), positive side of the 

spectrum can be obtained as: 
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By substituting Eqn. (B.3) into Eqn. (B.14), finally, positive side of the spectrum is: 
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Appendix C: Spectrum of Cosine Chirps 

In this appendix, spectrum of cosine chirp is derived. In general, a pair of cosine chirp 

can be represented as: 

 

1 0

2 0

( ) cos sin
2 2

( ) cos sin
2 2

c c c
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C

c

BT T Tt
c t a t t
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BT T Tt
c t a t t
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

  
= − Ω − ≤ ≤   Ω   

  (C.1) 

The spectrum of cosine chirp signals depicted in Eqn. (C.1) can be obtained by taking 

the Fourier transform of itself. ( )1Cc t  is taking as an example here for analyze spectral 

characteristic of cosine chirps.  
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Let 

 andc

c

BT
z
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π
ϑ

Ω
= =

Ω
  (C.3) 

Recalling the Euler's formula ( ) ( )cos sinj t
e t j t

ω ω ω− = − , Eqn. (C.2) becomes: 
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 (C.4) 

Let  
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  (C.5) 

then Eqn. (C.4) can be simplified as: 
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  (C.6) 

where 1 ( )N

CF ω  is negative side of the spectrum of cosine chirp: 

 ( ) ( ){ }/2 /2

1
/2 /2

( ) cos sin sin sin
2

c c

c c

T T
N

C
T T

c

a
F t z t dt j t z t dt

T
ω ω ϑ ω ϑ+ +

− −
   = + + +   ∫ ∫   (C.7) 

1( )P

CF ω is positive side of the spectrum of cosine chirp:
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 (C.8) 

C.1 Calculation of the positive side 

Only positive side of the spectrum is considered as example, so Eqn. (C.8) can be 

simplified as: 

 { }1 1 1( )
2

P PR PI

C C C

a
F F jFω = −   (C.9) 

where 1

PR

CF  is the real part: 
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and 1

PI

CF  is the image part: 
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C.1.1 Calculation of the real part 

Substituting Eqn. (A.26) into Eqn. (C.10), the real part 1

PR

CF  can be obtained as: 
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  (C.12) 

C.1.2 Calculation of the image part 

Substituting Eqn. (A.35) into Eqn. (C.11), the real part 1

PI

CF  can be obtained as: 
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C.1.3 Summary 

Substituting Eqn. (C.12) and Eqn. (C.13) into Eqn. (C.9), positive side of the spectrum 

of cosine chirp can be obtained as: 
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Again, substituting Eqn. (C.3) and Eqn. (C.5) into Eqn. (C.14), Eqn. (C.14) can be 

represented as:  
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Appendix D: Autocorrelation of Sine Chirps 

The sine chirp ( )1Sc t  is defined as: 

 1 0
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  (D.1) 

Aautocorrelation coefficient of ( )1Sc t  can be obtained as: 
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where ( )1SE c , which is energy  of ( )1Sc t , can be obtained as: 
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and 
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Ω
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  (D.5) 

Then Eqn. (D.4) can be represented as: 
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Let,  
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By substituting Eqn. (D.3) and Eqn. (D.6) into Eqn. (D.2), then autocorrelation 

coefficient of ( )1Sc t  can be obtained as: 
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By recalling Eqn. (A.10) and Eqn. (A.26), then Eqn. (D.8) can be rewritten as: 

 

( ) ( )

( ) ( ) ( ){ }

( ) ( )

( ) ( )

( )

2 1 0 0

2 1 1 0 0

2 0

2 1 1

2 1

1 cos(2 2 )

1
( ) 1 sin 2 2 1

1 cos( )

1
1

1

ω ω τ

τ ω ω τ

ω τ

∞

∞ =−∞

∞−∞

+
=−∞

∞∞

−∞
=−∞

∞

=−∞

+

   − − +        = − − − + +      
 

 + − +   

 − ×Κ
 

=

− −

∑
∫

∑

∑∫

∑

n m

n S

n

n m

S n S

nc

n m

n S

n

n m m

n S S

n

nc

n

J k t nk

dt

r J k t n k
T

J k nk dt

J k

T
J k( ) ( ) ( )1 2 2 31

∞ ∞

=−∞ =−∞

 
 
 
 
    ×Κ + − ×Κ

     
∑ ∑

nm m m m

S S n S S

n n

J k

  (D.9) 



141 

 

where 
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Substituting ( )2k t τ θ= +  defined in Eqn. (D.7) into Eqn. (D.10), Eqn. (D.10) can be 

rewritten as: 
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Eqn. (D.11) can be simplified as: 
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D.1 When 0τ ≥  

Since the chirp duration is 2 2
c c

T t T− ≤ ≤  shown in Eqn. (D.3), value of ( )1Sc t   

when t  is out of the duration is zero. Similarly, value of ( )1Sc t τ−  when t τ+  is out of 

the duration is also zero. So, the integral range for (D.12) when 0τ ≥  can be calculated 

as: 
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Eqn. (D.12) in the case of 0τ ≥  can be achieved by substituting Eqn. (D.13): 
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Result of the first term in Eqn. (D.14) can be obtained as: 
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Result of the second term in Eqn. (D.14) can be obtained as: 
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Result of the third term in Eqn. (D.14) can be obtained as:  
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Then Eqn. (D.14) for 0τ ≥  can be updated by recalling the results shown in Eqn. 

(D.15), Eqn. (D.16) and Eqn. (D.17): 
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D.2 When 0τ ≤  

Since the chirp duration is 2 2
c c

T t T− ≤ ≤  shown in Eqn. (D.3), value of ( )1Sc t  when 

t  is out of the duration is zero. Similarly, value of ( )1Sc t τ−  when t τ−  is out of the 

duration is also zero. So, the integral range for (D.12) when 0τ ≤  can be calculated as: 
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Eqn. (D.12) in the case of 0τ ≤  can be achieved by substituting Eqn. (D.19): 
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( )( )

( )( )

( )

/2

1 0
/2

/2

2 0
/2

/2

3 0
/2

cos 2 2

sin 2 2

cos 2

c

c

c

c

c

c

T
m

S
T

T
m

S
T

T
m

S
T

n t dt

n t dt

n t n dt

τ

τ

τ

ω θ τ

ω θ θ τ

θ ω θ τ

+
−

−

+
−

−

+
−

−

Κ = + +  

Κ = + + +   

Κ = + +  

∫

∫

∫

  (D.20) 

Result of the first term in Eqn. (D.20) can be obtained as: 

 

( )( )

( )
( )( )

( )

( )( )

( )( )

( )( )
( )

/2

1 0
/2

/2

0

/2

0

0 0

0

0

cos 2 2

1
sin 2 2

2 2

sin 21

2 2 sin 2

sin 2

2

c

c

c

c

T
m

S
T

T

c T

c

c

c

n t dt

n t
n

n T

n n T

n T

n

τ

τ

ω θ τ

ω θ τ
ω θ

ω θ τ

ω θ ω θ τ

ω θ τ

ω θ

+
−

−

+

−

Κ = + −  

= + −  +

 + +    
=  

+ − + − −    

+ +  =
+

∫

  (D.21) 

Result of the second term in Eqn. (D.20) can be obtained as: 

 

( )( )

( )
( ) ( )

( )

( ) ( )

( ) ( )

/2

2 0
/2

/2

0

0 /2

0

0 0

sin 2 2

1
cos 2 2

2 2

cos 21

2 2 cos 2

0

c

c

c

c

T
m

S
T

T

T

c

c

n t dt

n t
n

n T

n n T

τ

τ

ω θ θ τ

ω θ θ τ
ω θ θ

ω θ θ τ

ω θ θ ω θ θ τ

+
−

−

+

−

Κ = + + −  

−
= + + −  + +

 + + +    
=  

+ + − + + − −    

=

∫

  (D.22) 

Result of the third term in Eqn. (D.20) can be obtained as: 
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( )

( )

( ) ( )

( )

( ) ( ){ }

( ) ( )

/2

3 0
/2

/2

0

/2

0

0

0

0

cos 2

1
sin 2

2

sin 21

2 sin

1
2cos sin

2

cos sin

c

c

c

c

T
m

S
T

T

T

c

c

c

c

n t n dt

n t n
n

n T n

n n T n

n T
n

n T

n

τ

τ

θ ω θ τ

θ ω θ τ
θ

θ τ ω θ τ

θ θ ω θ τ

ω τ θ τ
θ

ω τ θ τ

θ

−

− +

+

−

Κ = + −  

= + −  

 + + −   
=  

− − + −    

= +  

+  =

∫

  (D.23) 

Then Eqn. (D.14) for 0τ ≤  can be updated by substituting the results shown in Eqn. 

(D.21) , Eqn. (D.22) and Eqn. (D.23): 

 

( ) ( )
( )

( ) ( )

0

1

0

2

0

3

sin 2

2

0

cos sin

cm

S

m

S

cm

S

n T

n

n T

n

ω θ τ

ω θ

ω τ θ τ

θ

−

−

−

 + +  Κ =
+


Κ =


+  Κ =



  (D.24) 

Combing Eqn. (D.18) and Eqn. (D.24), a uniform representation for Eqn. (D.12) when 

0τ ≥  or 0τ ≤  can be given: 

 

( )( )
( )

( ) ( )

0

1

0

2

0

3

sin 2

2

0

cos sin

cm

S

m

S

cm

S

n T

n

n T

n

ω θ τ

ω θ

ω τ θ τ

θ

  + − Κ =
+


Κ =


 −  Κ =


  (D.25) 

D.3 Summary 

Substituting Eqn. (D.25) into Eqn. (D.9), autocorrelation coefficient of sine chirp 

( )
S

r τ  can be represented as: 
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( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( )( )

( )

( ) ( ) ( )
( )

2 1 1 2 1 1 2

2 3

0

2 1

0

0 2

1 1
1

( )

1

sin 2
1

2

sin
cos 1

τ

ω θ τ

ω θ

θ τ
ω τ

θ

∞ ∞

+
=−∞ =−∞

∞

=−∞

∞

=−∞

∞

=−∞

    − ×Κ − − ×Κ     
=  

  + − ×Κ
   

 + −  = −
  +

 −  + −
 

∑ ∑

∑

∑

∑

n nm m m m

n S S n S S

n n

S
n m mc

n S S

n

cn m

n S

n c

cn m

n S

n c

J k J k

r
T

J k

n T
J k

n T

n T
J k

n T

  (D.26) 

Eqn. (D.26) can be rewritten in form of sinc  function as follows: 

 

( ) ( ) ( )( )

( ) ( ) ( ) ( )

2 1 0

0 2

( ) 1 1 sinc 2

1 cos 1 sinc

n m

S n S c

nc

n m

n S c

nc

r J k n T
T

J k n T
T

τ
τ ω θ τ

τ
ω τ θ τ

∞

=−∞

∞

=−∞

 
   = − − + −    

 

 
   + − − −    

 

∑

∑

  (D.27) 

Recalling Eqn. (A.37), autocorrelation coefficient of sine chirp ( )
S

r τ  can be achieved 

as: 

 

( ) ( ) ( )( ){ }

( ) ( )

( ) ( ) ( ){ }

2 1 0

0 0 2

0 2 2

1

( ) 1 1 sinc 2

1 cos

2 1 cos sinc 2

n m

S n S c

nc

m

S

c

m

n S c

nc

r J k n T
T

J k
T

J k n T
T

τ
τ ω θ τ

τ
ω τ

τ
ω τ θ τ

∞

=−∞

∞

=

 
 = − − + −   

 

 
+ − 
 

 
 + − −   

 

∑

∑

  (D.28) 

where 
1 2

2 2
; cos ; sin

2 2 2

π π π
θ τ τ

   Ω Ω Ω
= = =   

Ω Ω   

m mc c

S S

c c c

BT BT
k k

T T T
. 
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Appendix E: Autocorrelation of Cosine Chirps 

The cosine chirp 
1( )

C
c t  is defined as: 

 
1 0( ) cos sin

2 2

c c c
C

c

BT T Tt
c t a t t

T
ω π
  

= + Ω − ≤ ≤  
Ω   

  (E.1) 

Autocorrelation coefficient of ( )1Cc t  can be obtained as: 

 
1 1

1 1

( ) ( ) ( )
( )

( ) ( )

τ τ
τ

∞

−∞
−

= =
∫ C C

C
C

C C

c t c t dt R
r

E c E c
 

 (E.2) 

where ( )1CE c , which is energy  of ( )1Cc t , can be obtained as: 

 

2
/2

2

1 1
/2

( ) ( )
2

c

c

T

C C
T

c

a
E c c t dt

T−
= =∫   (E.3) 

and 

 

( )
( )

0

2

0

cos sin

( )

cos sin

ω π

τ
τ

ω τ π

∞

−∞

   
+ Ω   

Ω    
=  

 −  
× − + Ω   Ω    

∫

c

c

C

c

c

BT t
t

T
R a dt

tBT
t

T

  (E.4) 

Let  

 and
2

c

c

BT
z

T

π
θ

Ω
= =

Ω
  (E.5) 

Then Eqn. (E.5) can be represented as: 
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( ) ( ) ( ){ }
( ) ( )

( ) ( )

( ) ( ){ }

0 0

0 0
2

0

0 0
2

( ) cos 2 sin 2 cos sin 2

cos 2 sin 2 sin 21

2 cos sin 2 sin 2

cos 2 2 sin 2 cos
1

2 co

τ ω θ ω τ θ τ

ω ω τ θ θ τ

ω τ θ θ τ

ω ω τ τ θ θτ

∞

−∞

∞

−∞

∞

−∞

 = + × − + −       

  − + + −    
=  

 + + − −     

 − + −   
=

+

∫

∫

∫

CR a t z t a t z t dt

t z t z t
a dt

z t z t

t z t dt
a

( ) ( ){ }0
s 2 cos 2 sinω τ τ θ θτ

∞

−∞

 
 
 

  + −    ∫ z t dt

  (E.6) 

Let,  

 

( )

( )

( )

1

2

2
2 cos cos

2

2
2 sin cos

2

2

m c

C

c

m c

C

c

BT
k z

T

BT
k z

T

k t

π
τθ τ

π
τθ τ

τ θ

  Ω
= =  

Ω  
  Ω

= =  
Ω  

 = −



  (E.7) 

Then Eqn. (E.7) can be represented as: 

 
( ){ }

( ){ }
0 0 1

2

0 2

cos 2 sin1
( )

2 cos cos

ω ω τ
τ

ω τ

∞

−∞

∞

−∞

  − +  =  
  + +  

∫

∫

m

C

C
m

C

t k k dt
R a

k k dt

  (E.8) 

By substituting Eqn. (E.3) and Eqn. (E.8) into Eqn. (E.2), then autocorrelation 

coefficient of ( )1Cc t  can be obtained as: 

 
( ){ }

( ){ }
0 0 1

0 2

cos 2 sin1
( )

cos cos

ω ω τ
τ

ω τ

∞

−∞

∞

−∞

  − +  =  
  + +  

∫

∫

m

C

C
m

c
C

t k k dt
r

T k k dt

  (E.9) 

By recalling Eqn. (A.26) and Eqn. (A.10), then Eqn. (E.9) can be rewritten as: 
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( )

( ) ( )

( ) ( ) ( ){ }

( )

( ) ( )

1 0 0

2 2 0

2 1 2 0

1 1

2 2

cos(2 )

1
( ) 1 cos( 2 )

1 sin 2 1

1

1

ω ω τ

τ ω τ

ω τ

∞∞

−∞
=−∞

∞

∞ =−∞

∞−∞

+
=−∞

∞

=−∞

=−

   − +     
   = − +     +   

  − − + +      

× Κ

=

 + −
 

∑∫

∑
∫

∑

∑

m

n C

n

n m
C n C

nc

n m

n C

n

m m

n C C

n

n mc

n C

n

J k t nk dt

r J k nk
T

dt

J k n k

J k

T
J k ( ) ( )2 2 1 2 31

∞ ∞

+
∞ =−∞

 
 
 
 
  × Κ + − × Κ

   
∑ ∑

nm m m

C n C C

n

J k

  (E.10) 

where 

 

( )

1 0 0

2 0

3 0

cos(2 )

cos( 2 )

sin 2 1

m

C

m

C

m

C

t nk dt

nk dt

n k dt

ω ω τ

ω τ

ω τ

∞

−∞

∞

−∞

∞

−∞

Κ = − +



Κ = +

Κ = − + +  

∫

∫

∫

  (E.11) 

Substituting ( )2k t τ θ= +  defined in Eqn. (E.7) into Eqn. (E.11), Eqn. (E.11) can be 

rewritten as: 

 

( )

( )

( )( )

1 0 0

2 0

3 0

cos 2 2

cos 2 2

sin 2 1 2

m

C

m

C

m

C

t n t dt

n t dt

n t dt

ω ω τ τ θ

ω τ τ θ

ω τ τ θ

∞

−∞

∞

−∞

∞

−∞

Κ = + + −  


Κ = + −   

Κ = − + + −  

∫

∫

∫

  (E.12) 

Eqn. (E.12) can be simplified as: 

 

( )( )

( )

( ) ( )

1 0

2 0

3 0

cos 2

cos 4 2

sin 2 2 1 2

m

C

m

C

m

C

n t dt

n t n dt

n t n dt

ω θ τ

θ ω θ τ

θ ω θ θ τ

∞

−∞

∞

−∞

∞

−∞

Κ = + −  


Κ = + −   

Κ = − + + − −  

∫

∫

∫

  (E.13) 
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E.1 When 0τ ≥  

Since the chirp duration is 2 2
c c

T t T− ≤ ≤  shown in Eqn. (E.1), value of ( )1Cc t  when 

t  is out of the duration is zero. Similarly, value of ( )1Cc t τ−  when t τ−  is out of the 

duration is also zero. So, the integral range for Eqn. (E.13) when 0τ ≥  can be calculated 

as: 

 

( )

2 2

2 2

2 2 2 2

c c

c c

c c c c

T T
t

T T
t

T T T T
t t

τ

τ τ τ


− ≤ ≤

⇒ − + ≤ ≤
− ≤ − ≤ ⇒ − + ≤ ≤ +


  (E.14) 

Eqn. (E.13) in the case of 0τ ≥  can be achieved by substituting Eqn. (E.14): 

 

( )( )

( )

( ) ( )

/2

1 0
/2

/2

2 0
/2

/2

3 0
/2

cos 2

cos 4 2

sin 2 2 1 2

c

c

c

c

c

c

T
m

C
T

T
m

C
T

T
m

C
T

n t dt

n t n dt

n t n dt

τ

τ

τ

ω θ τ

θ ω θ τ

θ ω θ θ τ

+

− +

+

− +

+

− +

Κ = + −  

Κ = + −   

Κ = − + + − −  

∫

∫

∫

  (E.15) 

Result of the first term in Eqn. (E.15) can be obtained as: 

 

( )( )

( )
( )( )

( )
( )( ) ( )( ){ }

( )( )
( )

/2

1 0
/2

/2

0

/2

0 0

0

0

cos 2

1
sin 2

2

1
sin sin

2

sin

c

c

c

c

T
m

C
T

T

c T

c c

c

c

n t dt

n t
n

n T n T
n

n T

n

τ

τ

ω θ τ

ω θ τ
ω θ

ω θ τ ω θ τ
ω θ

ω θ τ

ω θ

+

− +

− +

Κ = + −  

= + −  +

= + − − + − +      +

+ −  =
+

∫

  (E.16) 

Result of the second term in Eqn. (E.15) can be obtained as: 
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( )

( )

( )

( ) ( )

( ) ( )

/2

2 0
/2

/2

0

/2

0

0

0

cos 4 2

1
sin 4 2

4

sin 2 21

4 sin 2 2 2

cos sin 2

2

c

c

c

c

T
m

C
T

T

T

c

c

c

n t n dt

n t n
n

n T n

n n T n

n T

n

τ

τ

θ ω θ τ

θ ω θ τ
θ

θ ω θ τ

θ θ τ ω θ τ

ω τ θ τ

θ

+

− +

− +

Κ = + −  

= + −  

 + −    
=  

− − + + −    

−  =

∫

  (E.17) 

Result of the third term in Eqn. (E.15) can be obtained as:  

 

( ) ( )

( )
( ) ( )

( )

( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( ){ }

( )

/2

3 0

/2

0

0

0

0

0

sin 2 2 1 2

1
cos 2 2 1 2

2 2 1

cos 2 1 21

2 2 1 cos 2 1 2 2

1
2sin sin 2 1

2 2 1

sin sin 2

c

c

c

c

T
m

C
T

T

T

c

c

c

n t n dt

n t n
n

n T n

n n T n

n T
n

n

τ

τ

θ ω θ θ τ

θ ω θ θ τ
θ

θ ω θ θ τ

θ θ τ ω θ θ τ

ω τ θ τ
θ

ω τ

+

− +

− +

Κ = − + + − −  

= + + − −  +

 + + − −    
=  

+ − + − + + − −    

= − + −  +

= −

∫

( ) ( )
( )

1

2 1

c
T

n

θ τ

θ

+ −  
+

  (E.18) 

Then Eqn. (E.15) for 0τ ≥  can be updated by recalling the results shown in Eqn. 

(E.16), Eqn. (E.17) and Eqn. (E.18): 

 

( ) ( )
( )

( ) ( )

( ) ( ) ( )
( )

0

1

0

2

0

3

sin

cos sin 2

2

sin sin 2 1

2 1

cm

C

c

cm

C

cm

C

n T

n

n T

n

n T

n

ω θ τ

ω θ

ω τ θ τ

θ

ω τ θ τ

θ

+

+

+

 + −  Κ =
+


−   Κ =


 + −  Κ = −

+


  (E.19) 

E.2 When 0τ ≤  
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Since the chirp duration is 2 2
c c

T t T− ≤ ≤  shown in Eqn. (E.1), value of ( )1Cc t  when 

t  is out of the duration is zero. Similarly, value of ( )1Cc t τ−  when t τ−  is out of the 

duration is also zero. So, the integral range for Eqn. (E.13) when 0τ ≤  can be calculated 

as: 

 

( )

2 2

2 2

2 2 2 2

c c

c c

c c c c

T T
t

T T
t

T T T T
t t

τ

τ τ τ


− ≤ ≤

⇒ − ≤ ≤ +
− ≤ − ≤ ⇒ − + ≤ ≤ +


  (E.20) 

Eqn. (E.13) in the case of 0τ ≤  can be achieved by substituting Eqn. (E.20): 

 

( )( )

( )

( ) ( )

/2

1 0
/2

/2

2 0
/2

/2

3 0
/2

cos 2

cos 4 2

sin 2 2 1 2

c

c

c

c

c

c

T
m

C
T

T
m

C
T

T
m

C
T

n t dt

n t n dt

n t n dt

τ

τ

τ

ω θ τ

θ ω θ τ

θ ω θ θ τ

+
−

−

+
−

−

+
−

−

Κ = + −  

Κ = + −   

Κ = − + + − −  

∫

∫

∫

  (E.21) 

Result of the first term in Eqn. (E.21) can be obtained as: 

 

( )( )

( )
( )( )

( )
( )( ) ( )( ){ }

( )( )
( )

/2

1 0
/2

/2

0

0 /2

0 0

0

0

0

cos 2

1
sin 2

2

1
sin sin

2

sin

c

c

c

c

T
m

C
T

T

T

c c

c

n t dt

n t
n

n T n T
n

n T

n

τ

τ

ω θ τ

ω θ τ
ω θ

ω θ τ ω θ τ
ω θ

ω θ τ

ω θ

+
−

−

+

−

Κ = + −  

= + −  +

= + + − + − −      +

+ +  =
+

∫

  (E.22) 

Result of the second term in Eqn. (E.21) can be obtained as: 
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( )

( )

( ) ( )

( )

( ) ( )

/2

2 0
/2

/2

0

/2

0

0

0

cos 4 2

1
sin 4 2

4

sin 2 2 21

4 sin 2 2

cos sin 2

2

c

c

c

c

T
m

C
T

T

T

c

c

c

n t n dt

n t n
n

n T n

n n T n

n T

n

τ

τ

θ ω θ τ

θ ω θ τ
θ

θ τ ω θ τ

θ θ ω θ τ

ω τ θ τ

θ

+
−

−

+

−

Κ = + −  

= + −  

 + + −   
=  

− − + −    

+  =

∫

  (E.23) 

Result of the third term in Eqn. (E.21) can be obtained as: 

 

( ) ( )

( )
( ) ( )

( )

( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( ){ }

( )

/2

3 0
/2

/2

0

/2

0

0

0

0

sin 2 2 1 2

1
cos 2 2 1 2

2 2 1

cos 2 1 2 21

2 2 1 cos 2 1 2

1
2sin sin 2 1

2 2 1

sin s

c

c

c

c

T
m

C
T

T

T

c

c

c

n t n dt

n t n
n

n T n

n n T n

n T
n

τ

τ

θ ω θ θ τ

θ ω θ θ τ
θ

θ τ ω θ θ τ

θ θ ω θ θ τ

ω τ θ τ
θ

ω τ

+
−

−

+

−

Κ = − + + − −  

= + + − −  +

 + + + − −   
=  

+ − − + + − −    

= − + +  +

= −

∫

( ) ( )
( )

in 2 1

2 1

c
n T

n

θ τ

θ

+ +  
+

  (E.24) 

Then Eqn. (E.15) for 0τ ≤  can be updated by substituting the results shown in Eqn. 

(E.22) , Eqn. (E.23) and Eqn. (E.24): 

 

( ) ( )
( )

( ) ( )

( ) ( ) ( )
( )

0

1

0

0

2

0

3

sin

cos sin 2

2

sin sin 2 1

2 1

cm

C

cm

C

cm

C

n T

n

n T

n

n T

n

ω θ τ

ω θ

ω τ θ τ

θ

ω τ θ τ

θ

−

−

−

 + +  Κ =
+


+   Κ =


 + +  Κ = −

+


  (E.25) 

Combing Eqn. (E.19) and Eqn. (E.25), a uniform representation for Eqn. (E.13) when 

0τ ≥  or 0τ ≤  can be given: 
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( )( )
( )

( ) ( )

( ) ( ) ( )
( )

0

1

0

0

2

0

3

sin

cos sin 2

2

sin sin 2 1

2 1

cm

C

cm

C

cm

C

n T

n

n T

n

n T

n

ω θ τ

ω θ

ω τ θ τ

θ

ω τ θ τ

θ

  + − Κ =
+


 −  Κ =


  + − Κ = −

+


  (E.26) 

E.3 Summary 

Substituting Eqn. (E.26) into Eqn. (E.10), autocorrelation coefficient of cosine chirp 

( )1Cc t  can be represented as: 

 

( )
( ) ( )

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( )

0

1

0

0

2 2

0

2 1 2

sin
( )

cos sin 2
1

2

sin sin 2 1
1

2 1

ω θ τ
τ

ω θ

ω τ θ τ

θ

ω τ θ τ

θ

∞

=−∞

∞

=−∞

∞

+
=−∞

 + − =
+

 −  + −
 

 + −  − −
  +

∑

∑

∑

cm

C n C

n c

cn m

n C

n c

cn m

n C

n c

n T
r J k

n T

n T
J k

n T

n T
J k

n T

  (E.27) 

where 
1 2

2 2
; cos ; sin

2 2 2

m mc c

C C

c c c

BT BT
k k

T T T

π π π
θ τ τ

   Ω Ω Ω
= = =   

Ω Ω   
. 

Eqn. (E.27) can be rewritten in form of sinc  function as follows: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 0

0 2 2

0 2 1 2

( ) 1 sinc

cos 1 1 sinc 2

sin 1 1 sinc 2 1

m

C n C c

nc

n m

n C c

nc

n m

n C c

nc

r J k n T
T

J k n T
T

J k n T
T

τ
τ ω θ τ

τ
ω τ θ τ

τ
ω τ θ τ

∞

=−∞

∞

=−∞

∞

+
=−∞

 
 = − + −   

 

 
   + − − −    

 

 
   − − − + −    

 

∑

∑

∑

  (E.28) 
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Recalling Eqn. (A.39) and Eqn. (A.41), autocorrelation coefficient of sine chirp ( )
C

r τ  

can be achieved as: 

 

( ) ( )( ){ }

( ) ( )

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }

1 0

0 0 2

0 2 2

1

0 2 1 2

0

( ) 1 sinc

cos 1

2cos 1 1 sinc 2

2sin 1 1 sinc 2 1

m

C n C c

nc

m

C

c

n m

n C c

nc

n m

n C c

nc

r J k n T
T

J k
T

J k n T
T

J k n T
T

τ
τ ω θ τ

τ
ω τ

τ
ω τ θ τ

τ
ω τ θ τ

∞

=−∞

∞

=

∞

+
=

 
 = − + −   

 

 
+ − 

 

 
 + − − −   

 

 
 − − − + −   

 

∑

∑

∑

  (E.29) 

where 
1 2

2 2
; cos ; sin

2 2 2

m mc c

C C

c c c

BT BT
k k

T T T

π π π
θ τ τ

   Ω Ω Ω
= = =   

Ω Ω   
. 
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Appendix F: Cross-correlation of Sine Chirps 

Cross-correlation coefficient of sine chirps can be obtained as: 

 
1 2

11 22 11 22

( ) ( ) ( )
( )

(0) (0) (0) (0)

S S
S

S

c t c t dt C

R R R R

τ τ
ρ τ

∞

−∞
−

= =
× ×

∫
  (F.1) 

In Eqn. (F.1), ( )11 0R , which is autocorrelation of sine chirp ( )1Sc t  when the time shift 

equals zero, can be given as: 

 

2

11(0)
2

=
c

a
R

T
  (F.2) 

In Eqn. (F.1), ( )22 0R , which is autocorrelation of sine chirp ( )2Sc t  when the time 

shift equals zero, can be similarly obtained as: 

 

2

22(0)
2

=
c

a
R

T
  (F.3) 

In Eqn. (F.1), ( )SC τ , which is cross-correlation between ( )1Sc t  and ( )2Sc t , can be 

represented as: 

 

( )
( )

0

0

cos cos

( )

cos cos

c

c

S

c

c

BT t
a t

T
C dt

tBT
a t

T

ω π

τ
τ

ω τ π

∞

−∞

   
+ Ω   

Ω    
=  

 −  
× − − Ω   Ω    

∫   (F.4) 

Let 

 and
2

c

c

BT
z

T

π
θ

Ω
= =

Ω
  (F.5) 

Then Eqn. (F.4) becomes: 
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( ) ( ) ( )( ){ }
( ) ( )( )

( ) ( )( )

( )( ) ( )

( )( ) ( )

0 0

0 0
2

0

0 0
2

0

( ) cos cos 2 cos cos 2

cos 2 cos 2 cos 21

2 cos cos 2 cos 2

cos 2 2 sin 2 sin1

2 cos 2 cos 2 cos

S
C a t z t a t z t dt

t z t z t
a dt

z t z t

t z t
a

z t

τ ω θ ω τ θ τ

ω ω τ θ θ τ

ω τ θ θ τ

ω ω τ θ τ θτ

ω τ θ τ θτ

∞

−∞

∞

−∞

 = + × − − −    

  − + − −  
=  

 + + + −   

 − − − 
=

 + + −

∫

∫

dt
∞

−∞

 
 
 
  

∫

  (F.6) 

Let,  

 

( ) ( )

( ) ( )

( )

1

2

2
2 sin sin

( )

2
2 cos cos

( )

2

u c
S

u c
S

BT
k z

s

BT
k z

s

k t

τθ τθ

τθ τθ

τ θ


= = Ω




= =
Ω

 = −



  (F.7) 

Then Eqn. (F.6) becomes: 

 ( ) ( ){ }2

0 0 1 0 2

1
( ) cos 2 sin cos cos

2

u u

S S SC a t k k k k dtτ ω ω τ ω τ
∞

−∞
   = − − + +   ∫   (F.8) 

By substituting Eqn. (F.2), Eqn. (F.3), and Eqn. (F.8), then cross-correlation 

coefficient of sine chirps defined in Eqn. (F.1) can be written as: 

 ( ) ( ){ }0 0 1 0 2

1
( ) cos 2 sin cos cosρ τ ω ω τ ω τ

∞

−∞
   = − − + +   ∫

u u

S S S

c

t k k k k dt
T

  (F.9) 

By recalling Eqn. (A.35), then Eqn. (F.9) can be obtained as: 
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( ) ( )

( ) ( )

( ) ( ) ( ){ }

( ) ( )

( ) ( )

1 0

2 2 0

2 1 2 0

1 1

2 2

1 cos(2 )

1
( ) 1 cos( 2 )

1 sin 2 1

1
1

1

ω ω τ

ρ τ ω τ

ω τ

∞∞

−∞
=−∞

∞

∞ =−∞

∞−∞

+
=−∞

∞

=−∞

  − − +  
 
   = − +     +    − − + +      

 − ×Κ
 

=

 + −
 

∑∫

∑
∫

∑

∑

n u

n S c

n

n u

S n S

nc

n u

n S

n

n u u

n S S

n

n uc

n S

n

J k t nk dt

J k nk
T

dt

J k n k

J k

T
J k ( ) ( )2 2 1 2 31

∞ ∞

+
=−∞ =−∞

 
 
 
 
  ×Κ − − ×Κ

   
∑ ∑

nu u u

S n S S

n

J k

  (F.10) 

where 

 ( )

[ ]

1 0

2 0

3 0

cos(2 )

cos 2

sin (2 1)

u

S c

u

S

u

S

t nk dt

nk dt

n k dt

ω ω τ

ω τ

ω τ

∞

−∞

∞

−∞

∞

−∞

Κ = − +



Κ = +

Κ = + +


∫

∫

∫

  (F.11) 

By substituting ( )2k t τ θ= +  defined in Eqn. (F.7), then Eqn. (F.11) can be rewritten 

as: 

 

( )

( )

( )

1 0 0

2 0

3 0

cos 2 2

cos 2 2

sin (2 1) 2

u

S

u

S

u

S

t n t dt

n t dt

n t dt

ω ω τ τ θ

ω τ τ θ

ω τ τ θ

∞

−∞

∞

−∞

∞

−∞

Κ = − + −  


Κ = + −   

Κ = + + −  

∫

∫

∫

  (F.12) 

Eqn. (F.12) can be simplified as: 

 

( )( )

( )

( )

1 0

2 0

3 0

cos 2

cos 4 2

sin 2 (2 1) 2

u

S

u

S

u

S

n t dt

n t n dt

n t n dt

ω θ τ

θ ω θ τ

θ ω τ θ θ τ

∞

−∞

∞

−∞

∞

−∞

Κ = + −  


Κ = + −   

Κ = + + − −  

∫

∫

∫

  (F.13) 
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F.1 When 0τ ≥  

Since the chirp duration shown in Eqn. (F.4) is 2 2
c c

T t T− ≤ ≤ , the integral range for 

(F.13) when 0τ ≥  can be calculated as: 

 

( )

2 2

2 2

2 2 2 2

c c

c c

c c c c

T T
t

T T
t

T T T T
t t

τ

τ τ τ


− ≤ ≤

⇒ − + ≤ ≤
− ≤ − ≤ ⇒ − + ≤ ≤ +


  (F.14) 

Eqn. (F.13) in the case of 0τ ≥  can be achieved by recalling Eqn. (F.14): 

 

( )( )

( )

( )

/2

1 0
/2

/2

2 0
/2

/2

3 0
/2

cos 2

cos 4 2

sin 2 (2 1) 2

c

c

c

c

c

c

T
u

S
T

T
u

S
T

T
u

S
T

n t dt

n t n dt

n t n dt

τ

τ

τ

ω θ τ

θ ω θ τ

θ ω τ θ θ τ

− +

− +

− +

Κ = + −  

Κ = + −   

Κ = + + − −  

∫

∫

∫

  (F.15) 

Result of the first term in Eqn. (F.15) can be obtained as: 

 

( ) ( )

( )
( ) ( )

( )
( )( ) ( ) ( ){ }

( )
( ) ( ){ }

( )( )
( )

/2

1 0
/2

/2

0

0 /2

0 0

0

0

0
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cos 2

1
sin 2

2

1
sin sin

2

sin1
2sin

2

c

c

c

c

T
u

S
T

T

T

c c

c

c

n t dt

n t
n

n T n T
n

n T
n T

n n

τ

τ

ω θ τ

ω θ τ
ω θ

ω θ τ ω θ τ
ω θ

ω θ τ
ω θ τ

ω θ ω θ

− +

− +

Κ = + −  

= + −  +

= + − − − + −      +

+ −  = + − =  + +

∫

  (F.16) 

Result of the second term in Eqn. (F.15) can be obtained as: 
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( ) ( ) ( ){ }

( ) ( )
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2 0
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0
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0 0
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0
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1
sin 4 2

4

sin 2 2 sin 2 2 2

4

sin 2 2 sin 2 2

4

cos sin 2

2

c

c

c

c

T
u

S
T

T

T

c c

c c

c

n t n dt

n t n
n

n T n n T n

n

n T n n T n

n

n T

n

τ

τ

θ ω θ τ
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Result of the third term in Eqn. (F.15) can be obtained as: 
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Then Eqn. (F.15) can be updated by recalling Eqn. (F.16) , Eqn. (F.17) and Eqn. 

(F.18): 
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F.2 When 0τ ≤  
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 Since the chirp duration is 2 2
c c

T t T− ≤ ≤  shown in Eqn. (F.4), the integral range 

for Eqn. (F.13) when 0τ ≤  can be calculated as: 
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By recalling (F.20), then Eqn. (F.13) for 0τ ≤  becomes: 

 

( )( )

( )

( )

/2

1 0
/2

/2

2 0
/2

/2

3 0
/2

cos 2

cos 4 2

sin 2 (2 1) 2

c

c

c

c

c

c

T
u

S
T

T
u

S
T

T
u

S
T

n t dt

n t n dt

n t n dt

τ

τ

τ

ω θ τ

θ ω θ τ

θ ω τ θ θ τ

+

−

+

−

+

−

Κ = + −  

Κ = + −   

Κ = + + − −  

∫

∫

∫

  (F.21) 

Result of the first term in Eqn. (F.21) can be obtained as: 
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Result of the second term in Eqn. (F.21) can be obtained as: 
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Result of the third term in Eqn. (F.21) can be obtained as: 
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Then Eqn. (F.15) can be updated by recalling Eqn. (F.16) , Eqn. (F.17) and Eqn. 

(F.18): 
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F.3 Summary 
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Combing Eqn. (F.19) and Eqn. (F.25), a uniform representation for Eqn. (F.13) for 

both 0τ ≥  or 0τ ≤  can be given: 
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After substitution of Eqn. (F.26) into Eqn. (F.10), cross-correlation coefficient of sine 

chirps can be finally represented as: 
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Eqn. (F.27) can be rewritten in form of sinc  function as follows: 
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Recalling Eqn. (A.39) and Eqn. (A.41), cross-correlation coefficient of sine chirp 

( )
S

ρ τ  can be achieved as: 
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Appendix G: Cross-correlation of Cosine Chirps 

Cross-correlation coefficient of cosine chirps can be obtained as: 
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In Eqn. (G.1), ( )11 0R , which is autocorrelation of cosine chirp ( )1Cc t  when the time 

shift equals zero, can be given as: 
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In Eqn. (G.1), ( )22 0R , which is autocorrelation of cosine chirp ( )2Cc t  when the time 

shift equals zero, can be given as: 
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In Eqn. (G.1), ( )CC τ , which is cross-correlation between ( )1Cc t  and ( )2Cc t , can be 

represented as: 
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Then Eqn. (G.4) becomes: 
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Then Eqn. (G.7) becomes: 
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By substituting Eqn. (G.2), Eqn. (G.3), and Eqn. (G.8), then cross-correlation 

coefficient of sine chirps defined in Eqn. (G.1) can be written as: 
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By recalling Eqn. (A.10) and Eqn. (A.26), then Eqn. (G.9) can be obtained as: 
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By substituting ( )2k t τ θ= +  defined in Eqn. (G.7), then Eqn. (G.11) can be rewritten 

as: 
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Eqn. (G.12) can be simplified as: 
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G.1 When 0τ ≥  

Since the chirp duration is 2 2
c c

T t T− ≤ ≤  shown in Eqn. (G.4), the integral range for 

Eqn. (G.13) when 0τ ≥  can be calculated as: 
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Eqn. (G.13) in the case of 0τ ≥  can be achieved by recalling Eqn. (G.14): 

 

( )( )

( )( )

( )

/2

1 0
/2

/2

2 0
/2

/2

3 0
/2

cos 2 2

sin 2 2

cos 2

c

c

c

c

c

c

T
u

C
T

T
u

C
T

T
u

C
T

n t dt

n t dt

n t n dt

τ

τ

τ

ω θ τ

ω θ θ τ

θ ω θ τ

− +

− +

− +

Κ = + −  

Κ = + + −   

Κ = + −  

∫

∫

∫

  (G.15) 

Result of the first term in Eqn. (G.15) can be obtained as: 
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  (G.16) 

Result of the second term in Eqn. (G.15) can be obtained as: 
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Result of the third term in Eqn. (G.15) can be obtained as: 
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Then Eqn. (G.15) can be updated by recalling Eqn. (G.16) , Eqn. (G.17) and Eqn. 

(G.18): 
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G.2 When 0τ ≤  

 Since the chirp duration is 2 2
c c

T t T− ≤ ≤  shown in Eqn. (G.4), the integral range 

for Eqn. (G.13) when 0τ ≤  can be calculated as: 
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By recalling (G.20), then Eqn. (G.13) for 0τ ≤  becomes: 
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  (G.21) 

Result of the first term in Eqn. (G.21) can be obtained as: 
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  (G.22) 

Result of the second term in Eqn. (G.21) can be obtained as: 
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  (G.23) 

Result of the third term in Eqn. (G.21) can be obtained as: 
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Then Eqn. (G.21) can be updated by recalling Eqn. (G.22) , Eqn. (G.23) and Eqn. 

(G.24): 

 

( )( )
( )

( ) ( )

0

1

0

2

0

3

sin 2

2

0

cos sin

cu

C

u

C

cu

C

n T

n

n T

n

ω θ τ

ω θ

ω τ θ τ

θ

 + +  Κ =
+


Κ =


+  Κ =



  (G.25) 

Combing Eqn. (G.19) and Eqn. (G.25), a uniform representation for Eqn. (G.13) for 

both 0τ ≥  or 0τ ≤  can be given: 
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G.3 Summary 

After substitution of Eqn. (G.26) into Eqn. (G.10), cross-correlation coefficient of sine 

chirps can be represented as: 
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Eqn. (G.27) can be rewritten in form of sinc  function as follows: 
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Recalling Eqn. (A.2), the following results can obtained: 
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Eqn. (G.28) can be simplified by substituting Eqn. (G.29) as: 
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Appendix H: Doppler Effect on Matched Output of Sine 

Chirps 

A pair of sine chirps can be represented as: 
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Suppose 1( )Sc t  has reached the receiver with a certain frequency offset 
d

ω , then the 

received signal can be represented as: 
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According to the definition of a matched filter in Eqn. (2.7), the impulse response 

( )1Sh t  of a filter matched to the signal ( )1Sc t  is: 
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Output of the matched filter is: 
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Let  



174 

 

 and
2

c

c

BT
z

T

π
θ

Ω
= =

Ω
  (H.5) 

Then Eqn. (H.4) can be represented as: 
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Eqn. (H.6) can be rearranged as: 
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Eqn. (H.7) can be represented as: 
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By recalling Eqn. (A.10) and Eqn. (A.26), then Eqn. (H.9) can be obtained as: 
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where: 
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Recall ( )2k t τ θ= − , Eqn. (H.11) can be represented as: 
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Eqn. (H.12) can be rearranged as: 
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H.1 When 0τ ≥  
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Since the chirp duration is 2 2
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T t T− ≤ ≤  shown in Eqn. (H.2), the integral range for 

(H.13) when 0τ ≥  can be calculated as: 
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Eqn. (H.13) in the case of 0τ ≥  can be achieved by recalling Eqn. (H.14): 
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  (H.15) 

Result of the first term in Eqn. (H.15) can be obtained as: 
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Result of the second term in Eqn. (H.15) can be obtained as: 
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Result of the final term in Eqn. (H.15) can be obtained as: 
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Then Eqn. (H.15) can be updated by recalling Eqn. (H.16) , Eqn. (H.17) and Eqn. 

(H.18): 
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 (H.19) 

H.2 When 0τ ≤  



178 

 

Since the chirp duration is 2 2
c c

T t T− ≤ ≤  shown in Eqn. (H.2), the integral range for 

(H.13) when 0τ ≤  can be calculated as: 
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Eqn. (H.13) in the case of 0τ ≤  can be achieved by recalling Eqn. (H.20): 
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  (H.21) 

Result of the first term in Eqn. (H.21) can be obtained as: 

 

( ) ( )

( ) ( )

( )

( )

( )( ) ( )

( )( ) ( )

( )

/2

1 0 0
/2

/2

0 0
/2

0

0 0

0 0 0

0

cos 2 4 2

sin 2 4 2

2 4

sin 2 4 / 2 21

2 4 sin 2 4 / 2 2

2
cos

2 4 2

c

c

c

c

T t
dm

S d
T

T

d
T

d

d c

d d c

d

d

M n t n dt

n t n

n

n T n

n n T n

n

τ

ω ω θ ω θ τ

ω ω θ ω θ τ

ω ω θ

ω ω θ τ ω θ τ

ω ω θ ω ω θ ω θ τ

ω
τ

ω ω θ

+
−

−

+

−

= + + − +  

+ + − +  
=

+ +

 + + + − +   
=  

+ + − + + − − +    


=

+ + 

∫

( )( )0
2 4

sin
2

d c
n Tω ω θ τ+ + + 

  
  

  (H.22) 

Result of the second term in Eqn. (H.21) can be obtained as: 
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Result of the final term in Eqn. (H.21) can be obtained as: 
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Then Eqn. (H.15) can be updated by recalling Eqn. (H.22) , Eqn. (H.23) and Eqn. 

(H.24): 
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H.3 Summary 
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Combing Eqn. (H.19) and Eqn. (H.25), a uniform representation for Eqn. (H.13) for 

both 0τ ≥  or 0τ ≤  can be given: 
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After substitution of Eqn. (H.26) into Eqn. (H.10), finally, Doppler Effect on the 

matched output of sine chirp signals can be represented as: 
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Eqn. (H.27) can be written in form of sinc  function as: 
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Recalling 0 02 fω π=  and 2
d d

fω π= , then Eqn. (H.28) can be: 
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Appendix I: Doppler Effect on Unmatched Output of 

Sine Chirps 

A pair of sine chirps can be represented as: 
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Suppose 1( )Sc t  has reached the receiver with a certain frequency offset 
d

ω , then the 

received signal can be represented as: 
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According to the definition of an unmatched filter in Eqn. (2.7), the impulse response 

( )2Sh t  of a filter unmatched to the signal ( )1Sc t  is: 
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Output of the unmatched filter is: 
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Let  



183 

 

 and
2

c

c

BT
z

T

π
θ

Ω
= =

Ω
  (I.5) 

Then Eqn. (I.4) can be represented as: 
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Eqn. (I.6) can be rearranged as: 
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Then Eqn. (I.7) can be represented as: 
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By recalling Eqn. (A.26) and Eqn. (A.10), then Eqn. (I.9) can be obtained as:  
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where: 
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Recall ( )2k t τ θ= − , Eqn. (I.11) can be represented as: 
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Eqn. (I.12) can be rearranged as: 
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  (I.13) 

I.1 When 0τ ≥  
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Since the chirp duration is 2 2
c c

T t T− ≤ ≤  shown in Eqn. (I.2), the integral range for 

(I.13) when 0τ ≥  can be calculated as: 
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Eqn. (I.13) in the case of 0τ ≥  can be achieved by recalling Eqn. (I.14): 
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  (I.15) 

Result of the first term in Eqn. (I.15) can be obtained as: 
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Result of the second term in Eqn. (I.15) can be obtained as: 
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  (I.17) 

Result of the final term in Eqn. (I.15) can be obtained as: 
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  (I.18) 

Then Eqn. (I.15) can be updated by recalling Eqn. (I.16), Eqn. (I.17) and Eqn. (I.18): 
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  (I.19) 

I.2 When 0τ ≤  

Since the chirp duration is 2 2
c c

T t T− ≤ ≤  shown in Eqn. (I.2), the integral range for 

(I.13) when 0τ ≤  can be calculated as: 
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Eqn. (I.13) in the case of 0τ ≤  can be achieved by recalling Eqn. (I.20): 
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Result of the first term in Eqn. (I.21) can be obtained as: 
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Result of the second term in Eqn. (I.22) can be obtained as: 
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Result of the final term in Eqn. (I.22) can be obtained as: 
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Then Eqn. (I.21) can be updated by recalling Eqn. (I.22), Eqn. (I.23) and Eqn. (I.24): 
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  (I.25) 

I.3 Summary 

Combing Eqn. (I.19) and Eqn. (I.25), a uniform representation for Eqn. (I.13) for both 

0τ ≥  or 0τ ≤  can be given: 
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After substitution of Eqn. (I.26) into Eqn. (I.10), finally, Doppler Effect on the 

unmatched output of sine chirp signals can be represented as: 
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Eqn. (I.27) can be written in form of sinc  function as: 
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Recalling 0 02 fω π=  and 2
d d

fω π= , then Eqn. (I.28) can be: 
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