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Abstract
It is difficult to objectively measure performance of complex tasks such as a surgical op-

eration and surgical simulators require the ability to evaluate performance whether to predict
surgical outcome, determine competence, provide learning feedback, etc. With no standard
software framework for collecting, analyzing and evaluating performance data for complex
tasks in simulations, it is investigated whether a solution can be implemented that allows for
custom data collection schemes, all while being general enough to be used across many sim-
ulation platforms and can be used in a simple simulator. It is also investigated whether the
implemented framework can perform its functionality while leaving a small performance foot-
print on the simulator.

Hierarchical task analysis is investigated as a means to decompose complex tasks into their
simpler sub-tasks, where data can be collected for each task and evaluated. The framework is
based on hierarchical task representation to allow robust performance data of a complex task
to be collected and evaluated for any type of application. A client application is developed
and allows for the generation of custom scenario parameters for the task, robust performance
data collection and the ability to playback previous performances for evaluation purposes. It is
shown that the implemented framework has a small peformance footprint and does not affect
the performance of the simulator that is using the framework for performance data collection
and evaluation.

Keywords: Surgical Simulation, Performance, Human Computer Interface, Hierarchical
Task Analysis,Software Architecture, Design Patterns
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Chapter 1

Introduction

1.1 Using Simulators for Surgical Training and Evaluation

Surgical simulators can take all shapes and forms; there can be inanimate artificial tissue or
organs, fresh tissue or animal models and virtual reality simulation.[41, 40, 18] Inanimate
simulators represent simulators that use inanimate objects [22], artificial tissue or organs to
represent patients; these simulators can either fall into the low fidelity category or the high
fidelity category. Fidelity is a term used to define how realistic a simulator is; a low fidelity
simulator [30, 37] may not be as realistic as a high fidelity simulator, but they are usually much
less expensive to research and develop. Many studies have been conducted to investigate if
there is a correlation between fidelity and overall performance of the simulator and its ability
to help transfer, teach and provide safety, but no results show that they do correlate.[10]

Surgical simulation offers many benefits, but simulators are still far from being greatly in-
corporated into surgical training. In order for simulators to be recognized as legitimate training
and assessment tools that can partially replace or work in conjunction the existing master-
apprentice model, simulators must be proven valid. There are a number of validities associated
with simulators, these include: construct validity, content validity, concurrent validity and pre-
dictive validity. Construct validity represents the extent to which an intended trait is measur-
able, content validity represents the appropriateness of measures tested in the simulator to the
task being trained, the concurrent validity represents the correlation between the performance
in the simulator to the performance in the real operating room and predictive validity repre-
sents the correlation between the future surgical performance and the surgical performance in
the simulator. [24]

One of the main goals of all simulators is to prove that a given simulator is concurrently
valid, which means that if a trainee performs well in the simulator, they should perform well
in the operating room. The concurrent validity goes hand-in-hand with task transfer from the
surgical simulator to the real environment, in other words, if a trainee learns the skills in the
simulator, they should learn those skills for the real operation as well. One of the key goals of
simulators is to improve the transfer of skills from the simulator to the operating room; while,
studies have not shown any real transfer [4], other more recent studies have begun to show
more promising results. [15] Performance on a simulator can be a great assessment tool if it
can be proven that performance on a simulator is correlated to the performance in the operating

1



2 Chapter 1. Introduction

room. Studies have shown that trainees that have trained in a simulator have skills transferred
to the real life operative environment.[15] Simulator-trained trainees have been shown to score
significantly higher performance in surgical competency than trainees who did not train on
simulators.[13] Laparoscopic simulators have been shown to improve the surgical skills as
well as the quality of tasks and speed of the tasks. [21]

An over-arching goal of surgical simulators is to provide a safe and convenient means for
surgical residents to train practice surgical techniques. One of the great benefits of surgical
simulation is the removal of patients from the training process; this alone is incredible as it
will help lower the risk to patients in the operating room. Keeping with the previous point,
the use of simulators in training is the reduction in the need for patients for training.[15] The
reduction in need for the patients leads to greater patient safety as well as more flexible training
for trainees. With more flexibility offered to the trainees, the trainees can train more often and
even in their own home on their own time, if the simulator is portable enough. In keeping
with the convenience, simulators can provide instant feedback to the trainee and would not
require an experienced teacher or any evaluator for that matter to be present during the training
session.[4] One of the great benefits for using simulators for surgical training is that it allows
the trainee to perform the training and practice at their own convenience.[4] It has been shown
that trainees who use portable simulators in conjunction with the surgical training curriculum,
perform better than trainees who did not. [21]

Simulators with predictive validity essentially allow for the prediction of real operations
based off of the simulation. A goal of simulators is to provide the ability to be used as an
assessment tool, where simulators can predict real-life surgical procedure performance. Sur-
gical simulator results have been shown to be able to predict the surgical outcome [4], that is
where the trainees performed well in the simulator, they also performed well in the real surgical
procedure; thus simulators as assessment tools provide great potential.

Surgical perceptual and motor skills, just like any other perceptual and motor skills [16],
can be represented through time and accuracy metrics. Examples of accuracy metrics in the
surgical domain include position, trajectory, force, or unintended contacts.[24]

One weakness of the current training techniques is the lack of exposure to rare or extreme
cases in the operating room. There are complications that a resident may never witness or
need to experience in a surgical procedure that the resident may have to deal with after they
have finished their training in a real operation. Simulation can provide trainees the abilities to
experience and practice rare complications and events in a non-life threatening matter.[41] The
ability to practice rare or extreme cases that otherwise the resident would never experience,
they will be better equipped to deal with the complications if they arise in a real operation.

1.2 Fitts’ Law: Evaluating Human Performance
In 1954, Paul Fitts investigated the human motor system’s ability to perform basic movement
tasks.[16] In this revolutionary paper, Fitts’ conducted three experiments; the first was the
reciprocal tapping task, where the user was given the task to touch the center plate, without
touch the error plate that was on either side of the center plate. The second task was the disk
transfer task, which required the user to transfer washers from one pin to the other pin. The
final task was the pin transfer task, which required the user to transfer pins from one hole to
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another. From these results, Fitts was able to formulate a model for determining the difficulty
of a task and the performance of a task.

Index of difficulty, ID is value that represents how difficult a particular task is to perform;
the units of index of difficulty are bits. The higher the index of difficulty, the higher difficulty
the task is to perform. To determine the index of difficulty the following formula was derived:

ID = log2
2D
W

(1.1)

Where D is the distance to the target and W is the width of the target or otherwise known
as the error tolerance area.

The index of performance, IP, represents how well a user performed a given task, where
index of performance is in bits per second. The higher the index of performance, the better the
performance by the user. Next one can calculate the index of performance, IP in the following
manner:

IP =
ID
MT

(1.2)

Where MT is the mean time to complete the task.
There are a few key observations to make here; firstly, the index of difficulty is directly

proportional to the width of the target and the distance to the target. As the target becomes
further away from the starting point, intuitively, the task becomes harder and this reflects in the
index of difficulty. Similarly, when the target’s error tolerance area becomes smaller, the index
of difficulty increases. Index of performance is relational to the index of difficulty, where the
greater the index of difficulty, the greater the index of performance; this supports such cases
where the performance of two tasks are compared with one another, if the tasks are performed
in the same time, but one is much more difficult, than that performance is more impressive.
Index of performance is also dependent on the time it takes to complete the task, where the
longer the time, the lesser the performance. The time versus performance relationship creates
the speed versus accuracy trade-off dynamic. The more difficult a task becomes, the more
attention the trainee pays to accuracy, the greater the time it takes to perform the task and vice
versa; this leads to interesting questions such as; will the user perform the task more quickly
and sacrifice accuracy or the other way around?

Another form of Fitts’ law that has been widely used by researchers was proposed by Scott
MacKenzie [26]:

MT = a + bID = a + blog2
2D
W

(1.3)

Where a and b are model parameters.
This form is derived from the practice of linear regression. Given a set of performance times

and index of difficulty (which can be derived from the distance and error tolerance parameters)
for each time, linear regression can be used to derive a formula similar to equation 1.3 Typically
researchers will vary the distance or the error tolerance to build a more robust model.

Up to this point, Fitts’ law has only been used for a 1-dimensional task, but very often, tasks
are more than 1 dimension. In 1997 Accot and Zhai, developed a model that was situated in
the 2-dimensional domain and focused on trajectory-based human computer interface tasks.[2]
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In the study, four experiments are conducted to study difficulty and performance of the tasks:
the goal passing task, where the user must navigate through a number of goal posts, second
was the increasing constraints task, where the user was required to navigate through a tunnel
that widened, third was the narrowing tunnel task, where the user navigated through a tunnel
that was narrowing as they progressed, and lastly was the spiral tunnel task, where the user
required to navigate through a sprial tunnel. In all of these tasks, the users had to keep in
mind both dimensions when navigating the various paths and tunnels, where the tasks in Fitts’
experiments did not contain two dimensions. The following is the general form of the steering
law that was found:

T = a + b
∫

C

ds
W(s)

(1.4)

Where T is the time it takes to navigate through the path, C that is parameterized with s.
For simpler paths, such as a straight tunnel, the steering law can be simplified to the following:

T = a + b
A
W

(1.5)

The paper also investigated the difficulty and performance of navigating cascading menus
that are common to graphical user interfaces. When navigating a cascading menu, the user can
go through multiple routes and the time it takes for each position and selection contributes to
the overall time. For example, if the user needs to navigate through three menu options, the
total time, T will be the sum of all of the sub-tasks (reaching each checkpoint). There has
been much research in applying Fitts’ law to more complex tasks such as three dimensional
targeting tasks, exploring how to model index of difficulty and index of performance for three
dimensional tasks.[12, 33]

Fitts’ law and the following works by other researchers over the past 60 years have estab-
lished an empirical and objective method to measure performance of targeting tasks. These
methods only allow for the evaluation of performance on simple targeting tasks that involve
only position and selection. How can a complex task such as surgery be evaluated using the
methods described in this section?

1.3 Hierarchical Task Analysis
Evaluating human performance with Fitts’ Law provides a means to evaluate index of diffi-
culty and index of performance for pointing tasks. Recall, that pointing tasks are essentially
composed of two types of actions; position and selection, where the user must move a device
to control the position element and perform a selection to signify the end of a task. Utilizing
Fitts’ law, there is a way to derive an objective methodology to evaluate performance of a given
task; given an accuracy and speed for the given task. There is one main issue, it is impossible
to calculate an objective performance value of a complex task such as surgery. Fitts’ law was
designed around positioning and selection tasks, but surgery is much more complicated than
that. It is possible calculate the speed of a complex task, as it is just the time required to com-
plete that given task, but how can accuracy be calculated? How does one calculate accuracy of
a surgical procedure? Hierarchical task analysis is based on the idea of developing a hierarchy
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of goals, where the goal represents the end means of a task. A complex task such as surgery is
represented by a collection of sub-tasks that compose that complex task. A parent or complex
task is decomposed into its sub-tasks to promote simplification of tasks and defining their plans
and goals. Each task or goal has a plan that indicates how the child goals are carried out; the
plans co-ordinate the unit (complex task composed of smaller simpler tasks)[36] Figure 1.1
displays the hierarchical definition and figure 1.2 illustrates the path or flow definition of a
simple example hierarchical task analysis.

Figure 1.1: An example task hierarchy.

Figure 1.2: An example flow definition of a hierarchical task anaylsis.

What exactly is a task? Shepherd mentions tasks can be seen from the perspective of a
problem that needs to be solved; the problem that needs to be solved will contain an initial state,
responses that affect the state and an environment.[36] Hierarchical task analysis is designed to
be the starting point of a task analysis and then other techniques can extend the analysis. [39]
Viewing a task from this perspective illustrates one key concept; that if the purpose of a task
is to complete a specific goal or solve a specific problem, then determining how well a user
performed the task can be determined from whether they completed the goal or how close they
were to completing the goal. Representing the tasks as a problem to be solved, simplifies both
the performance and the evaluation process as both the performer and the evaluator has a clear
a goal in mind on what to complete or evaluate.

A hierarchical task analysis is composed of specified task analysis, their sub operations and
the plans that lay out the order of the operations.[35] The tree of tasks represents the structure
of the hierarchical task definition, but the plan is what defines the flow of the task. Seeing
how a hierarchical task definition is composed of both a hierarchical structure and a flow chart
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component (for each task), the hierarchical task definition is drawing many similarity to state
charts. [20] Introducing hierarchical task analysis to the state chart domain allows for real
time use of the definition as the definition will now contain a state or set of states. To make
the transition from a hierarchical task definition to a state chart definition requires two main
connections; one is the transformation of a task, and thus problem, to a state. It is natural
to think that when a performer is performing a task to complete the goal, they are in the act
or state of performing that task. For example, if the task is to insert a tool in the patient’s
head, before the performer completes that goal, they are in the state of inserting the tool in
the patient’s head. The completion of the goal of the task represents the desired input for
the state to transition to the next task. Transitions in the state chart representation would be
transformed from the path definition; where the source task is the completed task, the input
to trigger the transition is the completion of the task and the destination is the next task in
the path definition. Since state charts support hierarchy of states, the hierarchical relationships
between tasks in the hierarchical task definitions are maintained. The link between hierarchi-
cal task analysis and state-space combination with transition matricies has been proposed.[9]
Figure reffig:StateChartRepresentation illustrates the state representation of a hierarchical task
definition.

Hierarchical task analysis definitions are mainly constructed through research in the do-
main and consultation with domain experts and task performers. [34, 23, 35] Software toolkits
have been developed to create hierarchical task analysis definitions. [42] These tools typically
involve a method in define the hierarchical task tree structure, that will contain the name and
information for each node. (or task) The tools will also support the ability to define paths for
the definition. The tools also offer the ability to generate the tabular representation as well.[8]
Hierarchical task analysis can be used to break down a very complex task into smaller sub
tasks.

1.4 Hierarchical Task Analysis for Surgical Procedures
Given the ability to break down complex tasks and goals into their sub-tasks produces many
new opportunities to a variety of industries. Surgical procedures are very complex tasks that
contain many sub-tasks and phases that must be completed during the surgical procedure and
since the field is always looking to improve the analysis and performance of tasks, hierarchical
task analysis has been researched as a viable tool to aid in analysis of surgical procedures. Hi-
erarchical task analysis can be used to decompose a surgical operation into smaller operation
tasks, where these tasks are able to be simply evaluated and provide a link between actions and
errors.[14] Various research studies have been conducted around the idea of applying hierar-
chical task analysis to the field of surgery.[34, 35, 5] Hierarchical task analysis has also been
applied outside the surgical context in regard to medication application in hospitals.[23]

A 2006 study by Sarker et. demonstrated that a hierarchical task description can be formu-
lated for a laparoscopic surgical procedure.[34] In the experiment, expert consultant surgeons
were recorded and research task analysts watched the videos, while developing a hierarchical
task description of the surgical procedures. The expert surgeons were also asked to create a
hierarchical task description and the results showed a very high similarity between the defi-
nitions from both sides. The study showed that the hierarchical task analysis of the surgeons
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Figure 1.3: A state chart representation of a hierarchical task definition.

had content and face validity. An interesting concept was that the hierarchical task analysis
provided a definition of the tasks that correlate to the interaction between team members in the
operating theatre. A multiple role task analysis allows for the performance of each member of
the team to be measured, but also allows for the performance of the interaction between two
members to be evaluated as well.

Later in 2008, Sarker et. all once again released a study where they generalized their results
to work on a number of different surgical procedures.[35] A surgical procedure is not performed
single-handedly by a surgeon and the interaction between team members can be represented
through hierarchical task analysis. Once again, they touched upon the idea of hierarchical task
analysis its use for team interaction definition and how hierarchical task analysis can be used
to illustrate how the team members will interact and work together to achieve a goal. It is
proposed that key components of a surgical hierarchical task analysis can be used to develop
a tool to assess the technical skill of the operator. In the paper, they proposed an eight phase
that can be used to construct a hierarchical task analysis definition that effectively represents a
surgical procedure.
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1.5 Evaluating Human Performance Using Hierarchical Task
Analysis

The main issue that was mentioned in evaluating human performance was that methods such
as Fitts’ Law are designed for simple targeting tasks. A complex task such as ETV or other
surgical procedures cannot be simply measured using a single score, as it is not objective.
Hierarchical task analysis has provided a way for task analyzers to break down a complex task
into smaller tasks. It has been shown that surgical procedures can be represented as a hierarchy
of tasks using the methods of hierarchical task analysis.[35] The first step of the evaluation
paradigm is task decomposition, where task at hand must be decomposed into a number of
sub-tasks. This decomposition is recursive and creates a tree of tasks where the nodes higher
up in the tree are more abstract and complex tasks and the leaf nodes are the basic and simple
tasks.

It is a principle of the analysis of human-computer interaction that tasks can be decomposed
into basic components, which at their bottom level are one of the following types: Selection,
Quantification, Position and Text. The hierarchical task description of user inputs completes
when the sub-tasks corresponding to user interactions are iteratively decomposed until they are
low-level primitives of positioning and selection. At this point, the prescription for evaluation
of performance is based on Fitts’ methodology, which respects the trade-off between the users’
criteria of speed versus accuracy. Their sub-task performance for each interaction is the product
of their speed and accuracy, averaged over a number of trial conditions, in which the difficulty
of the spatial configuration of the task is varied systematically.[38, 26]

Although Fitts’ law focuses on 1-dimensional cases, in an interactive immersive 3-dimensional
environment, the same is true when one considers extending quantification and position from
1-dimensional or 2-dimensional cases to 3-dimensional positions, or by extension to 6 degree
of freedom systems. Selection can take the form of button presses, but also within interactive
virtual environments can be events where objects are made to be touched by the user (such
as selecting a region, selecting a menu item from a virtual menu or by expressing a single
recognizable gesture.) Text can be input from a keyboard, voice recognition, or sequences of
gestures intended as the symbols for an input stream.

Let it be assumed that the HTA of a surgical procedure such as ETV can produce a hierarchy
of tasks that produces a task tree structure where the leaf nodes are such simple tasks that they
are essentially positioning and selection tasks. These low level tasks that are simple positioning
and selection tasks can be evaluated and models can be derived using Fitts’ Law. This leads
to the following finding: The basic and simple tasks at the bottom of the tree can be measured
quantifiably with Fitts’ Law: position and selection. The over-arching performance of a task,
as related to training scenarios, must be aggregated over systematically controlled variations
of the index of difficulty for the sub-phases of the training task scenario categories. When
assessing the performance of each sub-task, we do not advocate aggregating these performance
metrics into a single overall task score for training scenarios. Rather, we advocate keeping the
sub-component scores as separated so that they can be exposed to the trainee as indicators for
subsequent learning or training exercises (ie. they indicate the precise aspects of a task which
may require focused remedial or tutorial work). The complex and abstract tasks higher up in
the tree cannot be measured in such a way, because of their complex nature. There is still one
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issue at hand, the performance of the low level tasks can be evaluated, but the evaluation of the
higher level tasks still remain in question.

Part of the process of analysis in the construction of a hierarchical task description is that
certain low-level aspects of the tasks will invariably include perceptual detection, localiza-
tion, and spatial reasoning. In these phases of the task, the evaluation of user performance is
formulated using experimental paradigms from psychophysics. For detection tasks, staircase
paradigms can be used to establish just-noticeable difference (JNDs) [25, 7] of features that are
salient to the task, in the graphical or live stream media.

By extension, aspects of the tasks which require decision-theoretic criteria to be applied,
or to perform spatial reasoning in order to assess topological properties within the scene, then
receiver operating characteristic models [19, 43] from signal detection theory are utilized to
assess user performance in terms of the area under the curve (AUC) of the users’ perceptual
receiver operating characteristic (ROC) and the logarithmic transformation from the ROC to
the detection error trade off (DET) curve. [27, 3]

In each case, the accuracy of detection or spatial reasoning is also an entropy measure,
which is a function of the difficulty of the task in terms of its effective signal to noise ratio;
similar to that of Fitts’ Law. Accordingly, the user performance in the perceptual components
of the task is the product of speed and accuracy, just as for the perceptual-motor components.

In order to evaluate performance of a complex, overarching task, one needs to aggregate
the performance over its sequence of sub-tasks. Following this approach, any complex task in
the hierarchy can be evaluated based on its sub tasks. (Which can be complex tasks as well)
Given a task A that is composed of two tasks B and C, then the mean time to accomplish A
will be the mean time to accomplish both B and C:

MTA = MTB + MTC (1.6)

Now, suppose that task B has two child tasks, D and E; the mean time to complete B would
be the sum of the mean times to complete D and E.

MTA = MTB + MTC = MTD + MTE + MTC (1.7)

By extension, any task T that is composed of a number of child tasks can be represented as
such:

MTT =

N∑
i=1

MTi (1.8)

Where N is the number of leaf nodes in the subtree under task T . Taking this equation and
substituting the formula from equation 1.3, the following is obtained:

MTT =

N∑
i=1

ai + biIDi (1.9)

MTT =

N∑
i=1

biIDi + A (1.10)
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Where A =
∑N

i=1 ai. Given this definition, it is possible to determine the mean time to com-
plete a complex task by using it’s simple position and selection sub-tasks. This representation
also demonstrates how any sub-task in the hierarchical task definition affects the time to com-
plete the complex task. Using a hierarchical representation allows the ability to investigate the
data collected and evaluate the performance of all tasks in the hierarchy and to investigate the
affect of various child tasks on the performance of their parent tasks.

1.6 Software Framework
The representation for hierarchical tasks, including software-based aspects that encode the in-
teractions with methods that assess interaction task times, to subsequently assess the speed
component of performance, and which aggregate each trial’s position, to subsequently assess
the accuracy component of performance by comparing inter-subject and intra-subject variabil-
ity is the basis by which the developed simulator modules are instrumented in order to assess
users’ performance across their training regime.

It is natural to assume that a software-based framework for interleaving the graphics-based
and physics-based interactions in the virtual training environment needs to be interleaved with
the accompanying objective metrics of performance. It would be ideal that the software frame-
work would be able to support a variety of different applications, where it can be a simulator,
a simple desktop targeting task or a simulator on a mobile device. The software framework
would present the ability to users to input a hierarchical task definition into custom scenarios
and performance will be calculated and analyzed by the framework. Trainees and other users
would be able to perform the tasks that were defined in the hierarchical task definition and
while doing so, the framework will be collecting the data from the performance and calculate
metrics such as speed and accuracy, such that Fitts’ Law index of difficulty and index of per-
formance values can be calculated over time. The motivation behind each consumer of the
framework can vary, a simulation designer and developer will want to collect performance for
the purpose of training and evaluation of a surgeon’s ability to perform a real surgery.

1.7 Research Questions
Can a simulation software framework that allows the custom data collection and evaluation of
the performance of a complex hierarchical task be implemented?

Can the simulation software framework be proven to robustly collect data without leaving
a large performance footprint?

Can the simulation software framework be integrated into a simple surgical simulation
scenario to collect meaningful and evaluate performance data for that scenario?

1.8 Surgical Simulation Frameworks
Several surgical simulation frameworks have been actively researched developed with the goal
to facilitate the development of surgical simulators; these include SPRING [29], GiPSi [11]
and SOFA [6] to name a few. These simulation frameworks mainly focus on the management
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of physics and graphics and don’t provide much functionality in the realm of performance
evaluation.

SPRING [29] was developed in the early 2000s by a group from Stanford. SPRING is
implemented in C++, while using OpenGL for rendering and aimed to provide a general base
of functionality that would be required in any simulators such as visual rendering, physics
calculations, input, etc. The SPRING framework’s architecture was divided into several main
components, these being: visual rendering, the core, which would handle the physics and
collision calculations and logic, the object and asset management system and user input, which
supported haptics, network and other types of input schemes. There is no mention of any type
of data collection or user performance review and evaluation in the SPRING framework.

GiPSi [11] is a simulation framework that came after SPRING and was also developed in
the early 2000s. GiPSi is also implemented in C++ and provides functionality such as visual
rendering, haptic interfacing, collision detection and the majority of attention to object models.
The framework provides a great amount of flexibility when defining computational models to
represent simulation objects, for example, heart tissue deformation. There is no mention of any
type of data collection or user performance review and evaluation in the GiPSi framework.

SOFA [6] is a simulation framework that was developed in the mid-2000s is completely
open source and developed in C++. SOFA’s main goal is to provide a very flexible and cus-
tomizable surgical simulation framework. The framework offers a very modular architecture
where the functionality of the framework can be highly flexible and extendable. The main fo-
cus of this modularity is in the modelling of simulation objects, somewhat similar to the goal
of the GiPSi framework. SOFA allows the ability to combine multiple modelling components
through a mapping component, such that they may work together to provide the overall be-
haviour of an object, for example, a behaviour model may contain a collision model, a visual
model, a haptic model, etc. SOFA is still open source and is still actively developed to this day
and many new features have been contributed by the community that supports SOFA. SOFA
did not originally have any mention of performance data collection or evaluation, but upon
further review of the current state of the project, it does contain a monitoring component, that
provides some monitoring and data collection functionality. The monitoring component allows
the ability to visualize positions, trajectories, velocities and forces of particles in the GUI or
output them to a file. This monitoring provides the ability to collect property data about ob-
jects in the scene. The performance is not calculated and evaluation is not determined by the
monitoring module itself, just the ability to log properties of objects.

1.9 Contributions
The main contributions of this thesis are:

• An approach to determine human performance of a complex task using principles of
hierarchical task analysis and Fitts’ Law.

• An algorithm for representing a hierarchical task analysis as a state chart.

• An abstract representation of a task-based scenario is developed.
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• A software component that provides flexible, extendable and robust hierarchical task
performance data collection to simulator applications with very minimal overhead that
is controlled by the scenario definition.

• A software component that provides playback of previous scenario performance in a
variety of formats.

• A scenario for a brain tumour removal task is developed and a simulator application is
developed in Unity3D for the task.

• The simulator utilizes the software components to provide performance data collection
and playback functionality.

1.10 Layout of Thesis
This document will discuss a proposed software framework to conduct scenario simulations,
collect data and playback a performance, as well as an example client application in a number
of sections. The document contains many illustrations to aid in clarification of ideas that are
written in text; types of illustrations include: UML class diagrams, UML sequence diagrams,
UML use case diagrams, state charts, basic illustration diagrams, charts and screen shots. The
document also contains many source code snippets; these code snippets will aid in understand-
ing how the system is able to implement the ideas that are discussed in text. The source code
of the framework and client application are written in the C# programming language and thus
the code snippets reflect that.

The remaining part of this thesis is broken into four main sections:

• The Framework Overview and Domain

• Data Acquisition

• Performance Playback and Review

• Design of the Ellipsoid Orientation Matching Application

• The Implementation of the Application in Unity

The framework overview and domain will give an overview of the proposed task-based
performance evaluation software framework and discuss the core module in detail. The sec-
tion includes discussion on the actors of the domain and how they interact with the proposed
framework, high level architecture of the system, the various modules and applications in the
framework. Lastly, the section concludes with a detailed description and analysis of the core
module of the framework.

Data acquisition will discuss in great deal the scenario simulator module, which is the
module responsible for collecting data from a scenario performance. Module requirements,
design decisions and implementation details are discussed and analyzed. Interfacing details
and explainations of how the module is utilized are also presented.
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Performance playback and review will discuss the playback module, which allows the abil-
ity to playback a previous performance to a viewer for the purposes of review and evaluating
performance. The principles and design behind the playback are presented as well how the
module interfaces with other components.

Design of the ellipsoid orientation matching application will discuss the design of an appli-
cation that will require the trainee to perform a simple targeting task while using the framework
to collect data and provide playback functionality. The section will discuss the hierarchical task
analysis of a basic targting task and how to formulate a scenario from the analysis. Scenario set
generation is discussed to provide a means for generating many scenarios for a trainee to per-
form. The section will also discuss the performance calculations that will be used to evaluate
performance of the task.

The implementation of the ellispoid orientation matching application in Unity will discuss
the implementation of the designed application using the Unity3D game engine. The imple-
mentation of re-usable Unty3D components are analyzed and discussed. Specific examples are
given on how to incorporate and use the various framework functionality, such as simulated
scenarios, extracting the data and playing back the performance.



Chapter 2

Scenario Simulator Framework

2.1 Framework Overview

The framework caters to many different roles in the training and performance evaluation do-
main. There are a few roles that exist in the domain:

• Trainee

• Experimenter

• Evaluator

• Scenario Author

• Curriculum Designer

The trainee is the actor that performs a scenario and will be a part of evaluation of the
performance process. The trainee will interact with the domain through the scenario simu-
lator application to perform a scenario and a playback application to review an performance.
The experimenter is the actor that conducts the scenario that the trainee will perform. The
experimenter interacts through the scenario simulator application to conduct the scenario per-
formance sessions with the trainee. The evaluator is the actor that evaluates the performance
with the trainee. The evaluator interacts through the playback application to review a perfor-
mance with the trainee and they will use a data analysis application to evaluate the performance.
The scenario author is the actor that creates the scenarios that are designed by a curriculum de-
signer and performed by the trainee. The scenario author will interact with the domain through
a scenario creation application, which would enable them to create scenarios with tasks, com-
plications, etc. The curriculum designer is the actor that designs the elements to be authored
in the scenarios; they interact with the playback and data analysis applications to discover
short-term and long-term trends to seek improvements in the curriculum.

14
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Figure 2.1: The actors and the domain.

2.2 Framework Architecture
The architecture of the framework is split into three main modules: the simulation, the playback
and the core modules. Refer to figure 2.2 for a package diagram of the framework; which
displays the three main modules and their dependencies on one another.

The core module represents all of the core entities of the framework; these entities are
POCO (Plain Old C# Objects) that do not have any dependencies on any other module or
framework. The core module is used by the other modules of the framework and client appli-
cations that use the framework. The benefit of using only POCOs in core module is that since
they do not have any dependencies they will not have to change for any reason other than high
level business policy changes. It will also be simpler to incorporate the core domain module
into any other module or application, since the consumer of the package will not need to con-
sume any other packages as well. The simulator module represents all of the components of the
framework that are responsible for the functionality of the data acquisition of the framework.
The simulator module depends on the core module and a third party state chart framework.
The playback module represents all of the components of the framework that are responsible
for the functionality of the playback of the framework. The playback module depends on the
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Figure 2.2: The high level architecture of the framework.

core module and the simulator module for replaying previous performances.
In section 2.1, it was illustrated and described how a variety of actors interact with different

applications. The following applications would interact with the framework like so:

• Scenario Creator Application: The creator application is responsible for authoring the
scenarios and thus would rely on the core module of the framework. Since the creator
application does not need any simulator or playback functionality, the core is the only
module of the framework that it would rely on.

• Scenario Simulator Application: The simulator application can take many forms such
from a simulator to a mobile application. These applications will contain the scenarios
that the user performs and will collect data through the scenario simulator module.

• Scenario Playback Application: The playback application can be used as an evaluation
and learning tool. The playback application will use the playback module to review and
replay previous performances.

• Scenario Performance Application: The performance application can be used to analyze
and review data results obtained by the simulator module. The performance application
will use the playback module to access the ability to review previous performances.

The architecture of the framework conforms to an onion architecture[32], similar to that
shown in figure 2.4. The benefit of an onion architecture is that layers of the framework only
depend on items that are on the same layer or interior layers. With external frameworks and
details on the outside of layers of the architecture, they will not affect the interior of the ar-
chitecture: the business objects (Core) and services. (Simulator and Playback) The motivation
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Figure 2.3: The interaction between interior modules and exterior applications.

behind this is the Dependency Inversion Principle (DIP), which states that high level policies
should not depend on the details.[28] With high level modules such as the core module and
even the simulator and playback services not depending on the details of the outside layers of
the architecture, the outside layers can simply be swapped out as if they are plugins. The ele-
gance of the proposed architecture means that the framework would not care about care about
details such as the persistent storage mechanisms; it would be trivial to swap out the support
for SQL Server database to MongoDB to XML serialized files. Another benefit of placing
implementation details on the outside of the architecture is that it allows custom simulation
components, which will be discussed in section 3.6, to be easily implemented and plugged into
the framework with no additional development effort.

2.3 The Core Module

One of the main goals of the framework is to be abstract enough to allow any type of scenario
to be executed, for example an endoscopic third ventriculostomy surgical procedure scenario, a
laparoscopic surgical procedure scenario or even non-surgical related scenario such as entering
data into a web-based application. With abstraction and re-usability being a key goal for the
framework, the presentation to the user must go through a client application. A client appli-
cation can take many forms and it may be a simulator that is based in a 3-dimensional virtual
environment, it may be an augmented reality application, a mobile application or even a form-
based web application. The input from the user shall go through the client application into the
framework, then the input is processed by the framework and finally, the feedback is pushed
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Figure 2.4: The onion architecture of the framework.

from the framework to the client application and presented to the user. While the scenario is
being performed by the user, the correct flow and hierarchy of the tasks must be presented to
the users through the feedback mechanism, which will be the client application.

Please note for the rest of the chapter, terms such as actors and scenarios relate to the
domain of task performance analysis and not with software engineering.

2.4 Scenario

A scenario in the contexts of the framework, which is a hierarchical task-based performance
evaluation framework, contains a few elements: an actor, a sequence of events and a context.
The actor represents the role that submits or responds to events in the scenario, the events are
a compilation of the actions performed by the user, as well as complications. The context
describes the environment that the scenario takes in. Refer to figure 2.5 for the scenario class
structure.

The scenario contains a task that the actor needs to perform, a list of transitions between
tasks, a list of entities that represent physical objects in the environment and a list of compli-
cations that allow for custom events to be fired.



2.5. Actors 19

Figure 2.5: The scenario class.

2.5 Actors

An actor is a role in the scenario that initiates or participates in the flow of events of the
scenario. An actor can be controlled by the trainee or by an artificial intelligence-controlled
agent. Actors in surgical simulator scenarios for example, are represented most often by 3-
dimensional avatars that have the ability to move around in the 3-dimensional world and inter-
act with the virtual world around them. Actors in other environments can be represented by
2-dimension avatars in a 2-dimensional environment, or not at all where there is no avatar for
the user. The trainee’s interactions alone represent an actor in the system. Thus, an actor can
simply be abstracted to the role of an entity that can submit or receive events to/from the sys-
tem. In the current implementation, each actor will have its own scenario. Figure 2.6 illustrates
the actor class.

Figure 2.6: The actor class.
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2.6 Task Hierarchy
To allow the ability to track performance on a task-by-task basis, hierarchical task analysis
(HTA) was proposed as a solution in section 1.5. Since, HTA is based around tasks, it is
intuitive to create an object to represent tasks and this leads to the Task class. The task class
contains a name for the task and a list of accuracy metrics, which coincide with accuracy also
discussed in section 1.5. Another key proponent to HTA is the hierarchical structure of the
tasks, which follows an N-ary tree structure. A tree node generic data structure, with the Task
class as its given type, where each node is a task, allows for the hierarchical task structure to
be represented in the framework; for example:
Task matchOrientationTask = new Task() { Name = "Match Ellipsoid Orientation" };
TreeNode <Task > matchOrientationNode = new TreeNode <Task >( matchOrientationTask);

Given this structure, there a few properties to observe; the root node task will be the task
in the scenario; an example task could be "Perform Endoscopic Third Ventriculostomy Pro-
cedure". The generic tree structure allows for simple traversal, retrieval of child objects and
insertion of child objects; for example:
matchOrientationNode.AppendChild(positionToolTask);

The decision to create a generic tree node class was made to accommodate any future
requirements that would require a tree-like structure. The tree node structure will contain a
reference to all of its child nodes and the task node, where the task node will hold the task
specific data. The tasks are essentially the goals or items to complete that will contribute to the
success of the overall task. [36]

Figure 2.7: The task and tree node classes.

2.7 Task Transitions
The task hierarchy represents how tasks are organized in a structural way, but not how the
tasks interact with one another. There are two definitions to keep in mind with HTA: one is
the structure of the tasks (this is handled by the TreeNode class with the Task type) and the
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flow from one task to another. HTA proposed a plan, which would organize the tasks into a
chronological order, such that a flow can be established from one sub task to another. The
TaskTransition class governs how the tasks flow from one to another. Each task transition
contains the source task’s name, the destination task’s name and the identification number of
the event or action that triggers the control to flow from one task to another. This structure
resembles an entry in a state transition table.
TaskTransition transition = new TaskTransition () { EventId = 2, Source = "Translate Tool",

Destination = "Rotate Tool" }

Refer to figure 2.8 for the class diagram of the task transition class.

Figure 2.8: The task transition class.

2.8 Entities
The context of the scenario is the geometrical definition of the scenario, or otherwise known as
the scene. The context contains the physical items in the scenario; examples of this would be a
patient, the trainee or a tool. In a 3-dimensional virtual environment, 3-dimensional mesh mod-
els can represent these items in the geometric context. In a 2-dimensional environment, sprites
or event UI elements such as buttons can represent entities. The entity class contains a refer-
ence to the Transform structure which contains three 3-dimension vector objects (Vector3f );
position, rotation and scale.
Transform tool = new Transform(new Vector3f(0, 0.8f, -90.3f), new Vector3f (270, 180, 0), new

Vector3f (0.25f, 0.25f, 0.25f));
Entity toolEntity = new Entity () { Id = 2, Name = "Tool", transform = tool }

The position controls the position of the entity in the context, the rotation controls the euler
angles of rotation and the scale controls the scaling of the entity in the three directions. Refer
to figure 2.9 for the structure and relationship between these structures.

2.9 Complications
Complications are a form of feedback mechanism from the HTA [36]; a complication repre-
sents an event that arises based on the simulation performance of a scenario. Complications
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Figure 2.9: The entity class structure.

allow scenario authors to inject custom events into an ideal scenario to introduce new obsta-
cles to be faced by the user. Complications are the elements that separate the base or template
scenario from the custom and specific scenarios. There are a variety of complications:

1. Task Entry complications: Complications that are triggered when entering the phase of
completing a new task. This will be an event that is triggered from another event.

2. Task exit complications: Complications that are triggered when exiting the phase of
completing a task This will be an event that is triggered from another event.

3. Timed Task Entry complications: Complications that are triggered after a certain time
value after entering a new task.

4. Timed task exit complications: Complications that are triggered after a certain time value
after exiting a task.

5. Random timed complications: These complications are triggered at a random time. Ran-
dom events.
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Figure 2.10: The complication class hierarchy.

2.10 Metrics
To be able to calculate accuracy metrics for a task as described in section 1.5, an accuracy met-
ric structure was created. The AccuracyMetric is a abstract base class that follows the template
method design pattern, where the CalculateError method is the abstract method implemented
by the derived child classes. The accuracy metric is responsible for holding the expected value,
the name of the metric, the place to find the actual value of the metric (this is in the form of
a event-parameter pair). Currently, there are two sub-classes that follow the template method
pattern, these are the DirectionAccuracyMetric and the PositionAccuracyMetric. The template
method design pattern is used to abstract common behaviour between the position accuracy
metric class and the direction accuracy metric class to a common inherited class, while keep-
ing the different behaviour in the sub-classes though the Calculate method. These two metrics
and their calculation will be discussed in great detail later in section 5.4.1. Refer to figure 2.11
for the accuracy metric class structure.

Once a scenario has been performed by a trainee, the results of a task need to be recorded.
The TaskResult class is responsible for storing the results of a task; it stores the speed and a
collection of accuracy metric results. The accuracy metric results stores the ideal value, actual
value and error of a metric. The task result class will correspond one-to-one with the task class
and thus can be used in the TreeNode class to store a hierarchy of results. Refer to figure 2.12
for a structure of the task result class.
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Figure 2.11: The accuracy metric structure.

Figure 2.12: The task result structure.



Chapter 3

Data Acquisition: The Simulation Module

Recall in chapter 1 it was established through the methods of hierarchical task analysis that
a complex task can be broken down into a hierarchical tree of tasks. The flow of the tasks
from one to another was defined in the plan of the hierarchical task analysis. In chapter 2,
the hierarchical task tree and the task transitions are defined in the scenario inside of the core
domain of the framework. The scenario domain definition is great for defining a hierarchical
task definition, a task flow definition, the environment of the scenario, the actors participating
in the scenario and the events that arise in a scenario.

The next step is to establish the link from the hierarchical task analysis and scenario domain
to the evaluation domain. In order to evaluate performance of a scenario by a user, the data of
a scenario performance must be collected; the data acquisition functionality of the framework
is handled by the simulation module, which will be explained in detail in this chapter. The
simulator module allows a hierarchical-task-based-scenario to be played through by a user in a
client application, who assumes the role of an actor in the scenario.

3.1 Requirements
The following list is composed of the current requirements of the module; these have grown
over time and originally started as only an initial few.

• The complications in the scenario must be sent as feedback to the user at the correct time.

• The correct parameter data must be collected in the correct moments based on what the
scenario author specifies.

• The correct metrics and calculations must be performed based on the correct events and
tasks.

• To keep track of the performance of tasks, time spent performing each task must be kept.
This will help with the evaluation of the speed of each task.

• When analyzing the requirements, it was difficult to envision a hierarchical structure that
would essentially interact with the user through a client application.

25
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• The component would operate as follows:

• Accept an input from the user via the client application.

• Calculate any metrics based on the current task.

• Determine if the current task was completed.

• Start the new task if it was.

Figure 3.1: A use case diagram of the scenario simulator module

3.2 The State Chart Module
State charts were used to provide a component that would trigger complications and collect
data based on the scenario and hierarchical task definition. The benefits of using state charts
are the following:

• State charts allow the ability to input events into the state chart and the proper transitions
will be taken.

• Intuitively a task and state correspond to one another. When the user is performing a
task, they are in the state of performing that task.

• This is very similar to the flow of tasks from one to the other defined in the plan in HTA.

• It is easy to tell if a task is being started or has just finished because the corresponding
state will be entering or exiting.



3.2. The State ChartModule 27

• It is easy to tell if a task is currently being performed, by checking if that state is currently
active.

• It is easy to spawn complications based off of tasks by using the state entry or exit actions.

• The hierarchy of tasks is preserved and once again, it is simple to see what tasks are
currently being performed (including the parent tasks) because it is easy to see what
states are active in a state chart, even the hierarchical states.

• It is simple to produce entry, do and exit actions that are synonymous with state charts to
inject complications into the task hierarchy execution.

• It is simple to create events to send into the state chart to trigger state changes.

• Parallel tasks can be represented with concurrent states in the state chart.

• Control of the behavior of the application can be based on the current task(s), since all
of the active tasks (states) are known.

3.2.1 The State Chart Interface
The state chart implementation follows that of UML state chart notation, a variation of Harel
state charts. With modularity and loose coupling in mind, the implementation of the state chart
module is hidden behind a series of interfaces that are used by the rest of the scenario simulator
module.

The motivation behind this design decision is the dependency inversion principle (DIP)
[28], which states that high level modules such as the scenario simulator module should not
depend on low level modules such as the UML state chart module. Both modules should de-
pend upon abstractions. Figure 3.2 illustrates a typical architecture where a high level module
such as the scenario simulator module will depend on a low level module, such as the third
party UML state chart framework.

To conform to the DIP, one simply has to invert the dependency of the low level module on
the high level module; this is done by creating an abstraction layer in the high level module,
which the high level module’s components will depend on. Next, a wrapper module or middle
man module is developed outside of the high level module, which will depend on both the ab-
straction layer and the low level module. The wrapper module will implement the abstractions
from the high level module and use the low level module to implement the abstractions. Refer
to figure 3.3 for the architecture after applying these changes.

Keeping this principle in mind, allows the scenario simulator module to switch out state
chart implementations or make changes to the state chart implementation with ease. Figure 3.4
illustrates the interfaces between the state chart module and the scenario simulator module.

3.2.2 The UML State Chart Module
The UML state chart module is a small wrapper module that implements the state chart inter-
face and wraps around the third party UML state chart framework. The first class is the Uml-
StateChartEngine class that implements the IStateChartEngine interface and wraps around the
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Figure 3.2: A typical architecture between high level modules and low level modules before
DIP.

state chart behaviour of the third party framework. The UmlStateChartEvent class implements
the IStateChartEvent interface and wraps around the StateChartEvent class from the third party
framework. Lastly, the UmlStateChartBuilder class implements the IStateChartBuilder inter-
face and is responsible for creating the state chart from the scenario. Refer to figure 3.5 for an
illustration of the module.

3.2.3 Hierarchical Task Definition to State Chart
The state chart building algorithm takes in a scenario definition, which contains the following:
a task hierarchy, which is in the form of a generic tree structure, with a task as the data type
and complications, which is a generic collection of complication objects. The algorithm will
produce a state chart based on the task hierarchy and the complications. The algorithm is
designed around a depth-first approach, where the algorithm will recursively crawl down the
hierarchy until it finds a leaf node, or simple task, and creates it. The steps below outline the
algorithm:

1. Create the state chart structure based on the root task node in the hierarchical task defi-
nition.

2. Assign the name and other properties of the task to the state chart object.

3. For each child task of the root task, create a new state for that task.

4. Check if the given task has children, if it does, create a hierarchical state to represent the
task; if it does not have children skip to step 6.

5. For each child of the task, go to step 4 with that given task.

6. Create a simple state object.
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Figure 3.3: The architecture after inverting the dependency.

7. Assign the properties to the state and add it to the parent hierarchical state.

The following C-Sharp code snippet is from the build method in the UmlStateChartBuilder
class:
public IStateChartEngine Build(Scenario scenario)
{
string name = scenario.Task.Value.Name;

StateChart stateChart = new StateChart(name);

List <TreeNode <Task >> childrenNodes = scenario.Task.children;

// Add each child state.
foreach (TreeNode <Task > taskNode in childrenNodes)
AddState(taskNode , stateChart);

// Add start state node and history node to state chart.
PseudoState startState = new PseudoState(string.Format("{0} Start", stateChart), stateChart ,

PseudoStateType.Start);
string startTaskName = childrenNodes.First().Value.Name;
Transition historyTransition = new Transition(startState , states[startTaskName ]);

states.Add(scenario.Task.Value.Name , stateChart);

// Add all the transitions to the statechart.
foreach (TaskTransition transition in scenario.TaskTransitions)
new Transition(states[transition.Source],
states[transition.Destination], new StateChartEvent(transition.EventId));

// Add complications to the state chart.
AddComplications(scenario.Complications);
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Figure 3.4: A class diagram of the state chart interface.

return new UmlStateChartEngine(stateChart);
}

The next method is the add state method, which will recursively add the tasks as states in
the state chart:
private void AddState(TreeNode <Task > taskNode , Context parent)
{
string name = taskNode.Value.Name;

// If it is a final task , add it as a final state.
if (taskNode.Value.Final)
{
FinalState state = new FinalState(name , parent);
states.Add(name , state);
return;
}
List <TreeNode <Task >> childNodes = taskNode.children;

// Check if there are children.
if (childNodes.Count > 0)
{
// Create a hierarchical state , since this task has children.
HierarchicalState state = new HierarchicalState(name , parent , null , null);

// Recursively add the child tasks.
foreach (TreeNode <Task > childNode in childNodes)
AddState(childNode , state);

// Add the history and start state nodes for the hierarchical task.
PseudoState historyState = new PseudoState(state.Name + " History", state ,

PseudoStateType.History);
PseudoState startState = new PseudoState(state + " Start", state , PseudoStateType.Start);
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Figure 3.5: The UML state chart wrapper module.

string startTaskName = childNodes.First <TreeNode <Task >>().Value.Name;
Transition startTransition = new Transition(startState , historyState);
Transition historyTransition = new Transition(historyState , states[startTaskName ]);
states.Add(name , state);
AddActions(state);
}
else
{
// Add a simple state , since this task did not have children.
State state = new State(name , parent , null , null);
states.Add(name , state);
AddActions(state);
}
}

Lastly, to add the complications to the state chart, the EnactComplicationAction, which
derives from the UmlStateChartAction is added to the entry or exit action of the desired state/-
task. How complications are sent back to the client application is discussed in greater detail in
section 3.9. The following code illustrates the addition of the enact complication action to the
state chart:
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private void AddComplications(IEnumerable <Complication > collection)
{
foreach(Complication complication in collection)
AddComplicationActions(complication);
}

protected virtual void AddComplicationActions(Complication complication)
{
if (!( complication is TaskDependantComplication))
return;

TaskDependantComplication c = (TaskDependantComplication) complication;
if (c.Entry)
states[c.TaskName ]. EntryAction = new EnactComplicationAction(repo , c.Id);
else
states[c.TaskName ]. ExitAction = new EnactComplicationAction(repo , c.Id);
}

3.3 Simulator Module Interface
The scenario simulator and data acquisition module contains a single boundary interface to
client applications, IScenarioSimulator. This interface is responsible for providing a means
for client applications to interact with the simulation module. The main functionality that the
interface provides is the following:

• Adding a simulator component to customize the moduleâĂŹs behavior.

• Adding an enactor to provide custom feedback for complication events.

• Starting the simulation.

• Submitting a scenario event to the module.

Please refer to figure 3.6 for the definition of the IScenarioSimulator interface. The decision
to place all of the functionality of the module into a single interface was made to provide
the developers of the third party application with one single and easy-to-use interface. This
will result in a developer only needing to become familiar with one main interface, instead of
having to learn many interfaces. The interface at this point is still rather slim, so it does not
violate the interface segregation principle, the ’I’ in the SOLID software design principles.[28]
As the interface continues to grow, it would be in the best interest to find related functionalities
to break into separate interfaces.

3.4 Scenario Events
A scenario event is an event received from the client application, such as the Ellipsoid Matching
client described in chapter 5. The event will mark any event that pertains to the scenario. An
example of this would be if a tool was translated, a tool was rotated or even a button was
pressed. The scenario events are sent to the boundary interface from client, which in turn will
submit the event to the state chart component and subsequently all simulator components. The
scenario event consists of several data fields used to keep track of data:
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Figure 3.6: The IScenarioSimulator interface.

• Timestamp: When the event occurred.

• Name: The name of the event.

• Id: the unique identifier of the event.

• Description: A more detailed description of the event.

• Parameters: A collection of parameters (their name and value) that represent the data of
the event. These would be similar to event arguments.

When the scenario event comes through the boundary interface to the simulator object,
it is sent to the state chart component for processing. The event is then sent to all of the
simulator components that are registered in the module; these components are mentioned later
in section 3.6. These events act as a road map of the scenario. If one would go through each
event that is submitted to the module, they would know exactly what the user did each step of
the way.

3.5 Scenario Simulator
The ScenarioSimulator is the class that implements the IScenarioSimulator interface; it is the
component that orchestrates the logic of the simulator module. It acts as a container for the sim-
ulator components, which are described in detail in section 3.6. The scenario simulator class
began as a class contained many responsibilities and only delegated a select few to other com-
ponents; it handled much of the functionality of the module. Such responsibilities included:

• Orchestrating all of the module’s logic.

• Directly calling the logging of the events.

• Directly calling collection of scenario events.

• Directly calling the serialization and saving of the scenario events.
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Figure 3.7: The IScenarioSimulator interface.

• Compilation and writing of result files.

The scenario simulator class was refactored over time based on the single responsibility
principle [28] to reduce the number of reasons the class had to change. Now delegates all of
the previous functionality to simulator components that implement the ISimulationComponent
interface. This refactoring was successful by incorporating the strategy design pattern [28, 17].
These components will handle all custom behavior of the simulator such as:

• Collection and saving of scenario events submitted to the simulator.

• Tracking the time spent in each task.

• Logging of scenario events to a log file.

The scenario simulator contains a reference to a simulator component repository that is re-
sponsible for managing the storage of components. Now with all of the functionality delegated
to simulator component concrete implementations through a layer of abstraction, the scenario
simulator object is oblivious to the implementation details of itself. To include the function-
ality, the simulator simply has to forward a submitted event to all of its components as shown
below.
public virtual void SubmitSimulatorEvent(ScenarioEvent e)
{
if (! IsActive)
throw new Exception("Simulator has not been started. Please call Start() before submitting

events.");
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stateChart.Dispatch(TransformSimulatorEvent(e));

foreach (ISimulationComponent c in componentRepository.GetAllComponents ())
c.SubmitEvent(e);

if (! IsActive)
Complete ();
}

3.6 Simulation Components
The simulation components implement concrete behavior for the scenario simulator class,
without the simulator class knowing about the implementation details. As discussed in section
3.5, the simulator components follow the strategy pattern and they are required to implement
the ISimulatorComponent interface. The interface has three methods that can be used by the
component to perform certain behaviors at different times of the scenario simulation. The three
are as follows:

• The start method will be called when the scenario simulator recieves its start call from
the client application.

• The submit event method will be called when the scenario simulator recieves a submit
event call from the client application.

• The complete method will be called when the scenario simulation has completed and the
end goal of the scenario has been achieved.

These three methods allow the component to perform initialization during the start method,
before the simulation has begun behavior during the simulation whenever an event is received
and to perform any clean up or process intensive functionality at the end when the simulation
has completed. The ISimulatorComponent interface is shown in figure 3.8.

Figure 3.8: The ISimulationComponent interface.

3.6.1 Time Keeper Component
The time keeper component was designed to keep track of the time spent in each task during
the simulation of the scenario. The behavior of this component was originally located in a
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time keeper class that was directly referenced to by the ScenarioSimulator class, but after
the simulation component pattern was adopted, the functionality was moved into a concrete
simulation component class. The following is the submit event method implementation of the
time keeper component class:
public void SubmitEvent(ScenarioEvent e)
{
long currentTime = e.Timestamp.Ticks;
long deltaTime = currentTime - previousTime;

foreach(string task in previousTasks)
times[task] += deltaTime;

previousTasks = simulator.ActiveTasks ();
previousTime = currentTime;
}

The method takes the time stamp of the event as the current time and calculates the time
since the previous event was received; this produces the delta time value. The delta time value is
appended to all tasks that were active in the previous time, since there is no way that they ended
between events. (Tasks can only end on event submission) After the times are updated on the
previously active tasks, the previous time and previous tasks are updated to the current to aid in
the method call on the next event submission. The start method initializes the component and
sets the initial starting time and starting tasks for the first submit event method call to use. The
complete method simply updates any active times that were active just before the simulation
completed.

3.6.2 Parameter Tracking Component
The parameter tracking component is designed to keep track of parameters that are sent with
scenario events over the time of the scenario simulation. This allows data to be recorded in
relation to time over the course of the simulation, for example the orientation of a surgical tool
over the time of a surgical simulation client or the position of the user’s cursor in an interactive
web-based learning tool client. The parameter tracking component is built three main concepts:

• The tracking registry and tracking parameter registration. The component needs to be
aware of what parameters to track and this information is contained in a data structure.
When a desired parameter is to be tracked, a tracked event parameter object will be added
or registered to the structure so the component knows to track the desired parameter.

• The tracking process. First, the component accepts the incoming event and iterates
through each parameter. If the event and parameter pair is in the registry structure, then
it is added to the parameter holding structure with the time stamp of the event.

• The result output process. The result output process simply serializes a list of the tracked
event parameter objects which contain the parameter and the timestamp of when the
parameter was received. This serialized list can then be placed into a result structure that
will be loaded at another time.

The following code shows the submit event method, which is responsible for checking if
there are any tracked parameters in the submitted event and will save them with the correct
time if there are any that are found.
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public void SubmitEvent(ScenarioEvent e)
{
foreach (EventParameter p in e.Parameters)
if (IsTracked(p, e.Id))
trackedEventParameters.Add(new TrackedEventParameter ()
{
Parameter = p,
Timestamp = e.Timestamp
});
}

private bool IsTracked(EventParameter parameter , int eventId)
{
return (from EventParameterPair p in trackedParametersRegistry
where p.ParameterName == parameter.Name && p.EventId == eventId
select p).Any();
}

3.6.3 Logging Components
The logging components are a group of components used to log the scenario events sent by the
client application to the scenario simulator module. Currently there are two logging compo-
nents that write to text log files, one is designed to write in basic human-readable text, Text-
LoggingComponent and the other is designed to write in a comma-separated format, CsvLog-
gingComponent.

Originally, these two classes were separate and contained redundant code, since both used
the StreamWriter class provided in the .NET framework, which is used to write text to a stream.
Folliowing the DRY principle, the classes’ similar functionality was extracted to an abstract
base class, LoggingComponent and the resulting structure, shown in figure 3.9, follows the
template design pattern. The LoggingComponent class will handle all of the writing logic and
contains a generate log entry method, which derived logging classes will implement with their
own custom log entry strings; this structure allows for client application developers to easily
implement their own custom formatting for log files by simply implementing one method that
returns the string.
public void SubmitEvent(ScenarioEvent e)
{
writer.WriteLine(GenerateLogEntry(e));
}

protected abstract string GenerateLogEntry(ScenarioEvent e);

To implement custom event logging functionality, simply derive a class that inherits the
LoggingComponent class and implements the generate log entry method. Below are two ex-
amples, the first is a basic human readable text entry and the second is a comma-separated text
entry for csv files.
protected override string GenerateLogEntry(ScenarioEvent e)
{
return string.Format("{0} recieved at {1}.", e.Name , e.Timestamp);
}

protected override string GenerateLogEntry(ScenarioEvent e)
{
return string.Format("{0} ,{1} ,{2}",
e.Timestamp , e.Id, e.Name);
}
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Figure 3.9: The Logging component structure

3.6.4 Scenario Event Collection Component
The scenario event collection component is responsible for storing all events that are submitted
to the scenario simulator module and serializing them for later use. The purpose of this compo-
nent is collect the events, so they are serialized at the end of the simulation and may be used in
other modules and applications; the use of the events is described in greater detail in chapter 4.
As the events are submitted to the scenario simulator and thus submitted to the scenario event
collection component, the events are saved in list structure. In the completion of the simulator
and thus the component, the scenario event list is serialized to the given file.

The component uses the IFileSerializer interface to serialize the list of the scenario events
to a file; this interface currently has two implementations; the XmlFileSerializer and the Json-
FileSerializer, which will serialize the given object to or from xml and json file formats re-
spectively. The file serializer structure is shown in figure 3.10. As a result of the serialization
abstraction, the component is oblivious to how the scenario event collection is serialized; this
ignorance is maintained because of the dependency injection [28], where the serializer is passed
to the component and the component only knows about the abstraction. The complete method
of the component is shown below to illustrate the serialization ignorance:

public void Complete ()
{
serializer.Serialize(filePath , eventCollection);
}

Any serializer implementation that implements the IFileSerializer interface can easily be
passed to the component, allowing once again, for customization to the framework behaviour.
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Figure 3.10: The file serializer structure

3.7 The Entity Placement
The entity placer is abstraction that is responsible for initializing the scene of the scenario.
Since the framework supports any type client and does not care about the presentation to the
user, the initialization of the scene must occur behind an abstraction. The IEntityPlacer is an
interface that contains one method, Place(Entity); the method is designed such that concrete
implementations of the entity placer shall take the given entity and thus its transform and
create the correct entity in the client application with the given data from the transform. Refer
to figure 3.11 for a class diagram of the entity placer interface. The entity placer abstraction
is contained within the ScenarioSimulator class and the place method is called for every entity
that is contained in the scenario:
foreach (Entity entity in scenario.Entities)
placer.Place(entity);

3.8 The Enactor Pattern
To achieve all of the complication functionality in the simulator module, there needs to be
complication behaviour specific to the client application that is triggered from the simulation
of the scenario. Not only do we need specific behaviour, but we need it to be specific to the
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Figure 3.11: The entity placer interface.

type of complication. An important constraint is that we know nothing of the implementation
of the complication’s presentation in the client application.

Problem Need to present client specific behaviour for specific framework objects without
knowing anything about the implementation of the behaviour.

Discussion The enactor pattern builds upon two patterns; the command pattern to abstract
the implementation of an action from the framework and the presenter from the model-view-
presenter pattern. The enactor is built around an abstraction that holds an Enact method. The
enactor abstraction will exist in the framework, but will be implemented in the client applica-
tion, since the client application is the only piece of the system that is aware of its behaviour.
The enactor abstraction will also contain an attribute defining the specific object that it repre-
sents. The enact method will take in the specific details of the object that it is acting behaviour
for.

Structure The structure of the enactor pattern contains the following elements:

• The enactor abstraction.

• The object type being enacted.

• The invoker of the enactor.

• The concrete enactor.

• The client application that creates the concrete enactor.

Example The following is a simple example code in C-Sharp that will have two types of
enactors for the enacted object. The enacted object will be a new day event object, which will
be triggered on each new day. Refer to figure fig:EnactorPattern for class diagram illustrating
the structure.

Firstly, there is the object being enacted, in this case it is an event that will be sent when a
new day begins. The event will contain a field that indicates what day it is.
class NewDayEvent
{
public DayOfWeek Day { get; set; }
}
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Figure 3.12: The enactor pattern.

Next is the enactor abstraction itself, it will contain the enact method, which will be imple-
mented by implemented by concrete enactors and a property to indicate which event (based on
the day) that the enactor will enact for.
interface INewDayEnactor
{
void Enact(NewDayEvent o);
DayOfWeek Day { get; }
}

Next there are the concrete enactors that will implement the enact behaviour and the prop-
erty of the enactor abstraction.
class FridayEnactor : INewDayEnactor
{
public void Enact(NewDayEvent o)
{
Console.WriteLine("TGIF!");
}

public DayOfWeek Day
{
get { return DayOfWeek.Friday; }
}
}

class MondayEnactor : INewDayEnactor
{
public void Enact(NewDayEvent o)
{
Console.WriteLine("Oh no it's Monday!");
}
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public DayOfWeek Day
{
get { return DayOfWeek.Monday; }
}
}

Next there is the invoker of the enactor abstraction. This object will hold the enactors and
when it receives the new day event, it will call the enact method on the correct enactor. It is
completely oblivious to the implementation details of the concrete enactors themselves.
class NewDayInvoker
{
Dictionary <DayOfWeek , INewDayEnactor > enactors;

public NewDayInvoker ()
{
enactors = new Dictionary <DayOfWeek , INewDayEnactor >();
}

public void RegisterEnactor(INewDayEnactor enactor)
{
enactors.Add(enactor.Day , enactor);
}

public void NewDay(NewDayEvent e)
{
if(enactors.ContainsKey(e.Day))
enactors[e.Day].Enact(e);
}
}

Lastly, there is the client application, which will register its custom enactors into the sepa-
rate package and is oblivious to how they are called.
class CalendarClient
{
public CalendarClient(NewDayInvoker invoker)
{
invoker.RegisterEnactor(new MondayEnactor ());
invoker.RegisterEnactor(new FridayEnactor ());
}
}

Remarks

• The enactor is similar to the command, observer and chain of responsibility in that it
decouples the sender from the receiver.

• The enactor decouples a behavior of an object from the implementation of the object.

• Chain of responsibility and enactor can be used to link multiple enactors together.

• Similar to the command, undo can be implemented with the enactor pattern, by adding a
second method to the Enactor interface to perform the undo.

• Using a dictionary with an identifier and enactor key-value pair can be used to store
enactors to be used for later.
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3.9 Complications
Recall that the setup of complications in the state chart was discussed in section 3.2 and that
there were state chart actions, EnactComplicationAction, linked to either the entry or exit ac-
tions of a state, depending on the definition of the complication. The actual implementation of
the complications will be discussed in detail in this section. The complication implementation
is based off of the enactor pattern that was proposed and discussed in great detail in section 3.8,
where the complication has an enactor abstraction, IComplicationEnactor, the EnactComplica-
tionAction is the enactor invoker, the enacted object is the Complication class and the concrete
enactors are completely unknown within the scenario simulator module. The EnactComplica-
tionAction implements the execute action method of the UmlStateChartAction abstract class;
this method implementation is as follows:

protected override void ExecuteAction(StateDataContainer container)
{
if (! enactorRepository.Contains(complicationId))
return;
IComplicationEnactor enactor = enactorRepository.GetEnactor(complicationId);
enactor.Enact();
}

Where the identification number of the complication and the enactor repository is passed
through the constructor of the action. Refer to figure 3.13 for an illustration of the structure of
the complication enactor component.

Figure 3.13: The complication enactor component structure.

3.10 Module Performance
Table 3.1 contains the performance (speed) of the submit event method for each data collection
component. There was a sample size of 100,000 tests performed for each component and the
mean speed, variance and standard deviation were reported. The tests were performed on a
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Component Mean Speed (µs) Variance Standard Deviation
Simulator 0.0489 0.0339 0.184
Parameter Tracking 0.0724 0.414 0.643
CSV Logging 4.70 77.7 8.82
Text Logging 3.81 54.2 7.36
Time Keeper 0.0446 0.143 0.378
Event Collection 0.289 0.173 0.416
State Chart 0.755 68.0 8.24

Table 3.1: Scenario Simulator Performance

Class Cyclometric Complexity Depth of Inheritance Class Coupling Lines of Code
ScenarioSimulator 28 1 18 39
TimeKeeperComponent 9 1 12 18
ParameterTrackingComponent 11 1 13 13
LoggingComponent 5 1 5 5
TextLoggingComponent 2 2 3 3
CsvLoggingComponent 2 2 3 3
ScenarioEventCollectionComponent 5 1 6 7

Table 3.2: Scenario Simulator Code Metrics

late 2011 Macbook Pro with 64 bit Windows 7 OS installed, 4 GB RAM and an Intel Core i5
2.4 GHz Dual Core processor. It is observed that the components that logged to files on the
disk are the slowest. (4.70 µs for CSV logging and 3.81 µs for plain test logging) The non-I/O
data collection components required much less CPU time, where the highest is the state chart
component. (0.755 µs) For comparison sake, for a 60 frames per second system, one frame
or loop can take up to approximately 16,667 µs to complete, thus even the I/O data collection
components as-is, 4.70 and 3.81 µs, take up only 0.0282 % and 0.0228 % of the simulation
loop respectively.

3.11 Code Analysis
The following table reports the code metrics of the scenario simulator module described in this
chapter. For each class in the module, the cyclometric complexity, the depth of inheritance,
the class coupling and lines of code metrics were analyzed and reported in the table 3.2 A
key goal in the implementation of the framework was to pay attention to one main metric, the
lines of code. It is observed that the breakup of the functionality into the several different data
collection components allowed the lines of code of each functionality to be reduced, where the
average lines of code for the components is 8.17. A smaller lines of code reduces the amount
of bugs and defects that can possibly be present in a component and the metric is carried with
great weight when determining the quality of the code.



Chapter 4

Performance Evaluation: The Playback
Module and Evaluation Components

A vital aspect to evaluating user performance in a training regime or experimental scenario is
the evaluation process. There are a few different stakeholders in the evaluation process, one
could be the original user that performed the scenario and another could be an evaluator of
the performance; this could be a teacher of a course or curriculum. Both of these roles have
different purposes for evaluating the performance, the former would be for learning purposes,
so that the user can perform better next time. The latter could be evaluating the user, who could
be a student, for their grade in a course. Another type of evaluator could be an individual that
is evaluating user performance for a research study.

A trainee who performed the scenario would look to improve their performance for the next
time they perform the scenario. They would review how they performed for each task and see
which tasks they need to practice or focus more on. An external evaluator of the performance
would look to evaluate the performance for testing or accreditation purposes. They need to not
only look at the empirical results, but also the abstract results of the performance.

The playback module offers the ability to users and evaluators alike to view a playback of
a previous performance by a user. Typically when reviewing performance, an evaluator will
review the data of the performance, this could be some sort of scoring mechanism or concrete
data value. Another reviewing mechanism is the reviewing of a video of the performance. This
offers the evaluator the visual perspective of the performance by the user. The visual perspec-
tive is very helpful to evaluating performance, because it gives information on the performance
that simple data would not give. Even though the data acquisition module gives a very detailed
breakdown of the data from the scenario performance, a visual perspective on the performance
can give evaluators and user many helpful benefits.

4.1 Objective
The objective of the playback module is to provide an application program interface to allow
client applications to provide the ability to playback previous scenario performances to evalu-
ators of the performance. The module will offer the following features:

• A visual playback of the scenario performance.

45
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• Data pertaining to the performance available during the visual playback:

• Task(s) currently being performed.

• Time spent in the current task.

• Current value of all metrics of current tasks being performed.

• Ideal values of all metrics of current tasks being performed.

4.2 Module Design
The module is designed off of an event-driven approach, which takes the events from the per-
formance and replays them to the evaluator. The event-driven replay is based off of the same
idea that revision control systems use to track changes. A revision control system starts with a
file or a set of files and then the changes to those files are tracked, which allows a user to select
any version of the file and then system can construct it by taking the original file and sequen-
tially applying all of the changes that pertain to that file, until it is to the requested version. The
same approach is used in the design of the scenario performance replay. First we start with
an initial scenario state and scenario context; exactly the same to that of when the scenario is
performed by the user. As the original scenario is performed by the user, they input a various
number of commands to the client application and in turn, those commands are sent as events
to the framework. These events are similar to the revision changes in a revision control system.
Every event has an effect on the state of the scenario performance.

The simulation and data acquisition module collects the sequence of events from the user
and this provides the set of state changes that are needed to recreate the scenario performance.
To simulate the performance in automated matter, we can submit these events to the scenario
simulator in a similar manner that the user submitted the events to the simulator. Recall, the
simulator interface accepts a scenario event and handles all of the logic behind the scene. The
playback module will provide a way to automate the event submission process by submitting
them to the simulator itself.

4.3 Scenario Playback Interface
The playback module, like the simulator module provides a simple and intuitive interface to
client applications that allow the playback of a performance. The interface provides the fol-
lowing functionality:

• Play the real time playback of the performance.

• Pause the real time playback of the performance.

• Stop the real time playback of the performance.

• Restart the real time playback of the performance from the beginning.
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• Register an enactor for the playback.

• Provides a list of the tasks that the user was actively performing at that moment.

• Provides a list of the current metrics that pertain to the current active tasks.

• Step to the next event that was submitted.

• Jump back to the previous event that was submitted.

Please refer to figure 4.1 for the class diagram of the IScenarioPlayback interface.

Figure 4.1: The IScenarioPlayback interface

4.4 Scenario Playback
The playback implementation uses the method mention above: the event driven playback. Once
we have the events, we can simply submit them as if it was the user submitting them to the
client. During the scenario performance, the client application will create a new simulator,
start it and then proceed to submit events to the simulator based on user input to the client
application; figure 4.2 illustrates this activity.

During the playback though, the playback component is responsible for submitting the
event, thus eliminating the userâĂŹs involvement in the scenario performance. During the
playback, the client application creates a new playback object and the playback component
is responsible for starting the simulator and submitting the events to simulator. The playback
component has an internal timer, which when the interval elapses, will submit the appropriate
events to the simulator and enact those events on the client; figure 4.3 illustrates this activity.

As mentioned earlier, the real time playback is based off of the scenario events of a previous
performance. A performance has a set of events that a user performed and each of one of the
events has a timestamp. The timestamps are a type of DateTime, which keeps track of both
the date and the time. To be able to playback the events, the timestamps must be converted
to a time span that is referenced to the beginning of the scenario performance; this is done
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Figure 4.2: The scenario simulator sequence diagram.

by subtracting the timestamp of the very first event off of all of the events. The result is that
the first event will have a time of zero, since it marks the beginning of the performance and all
subsequent events will be the time spans since the beginning of the performance. The following
code demonstrates this initialization:
private void ShiftEventTimes(ScenarioEventCollection collection)

{
events = new List <KeyValuePair <long , ScenarioEvent >>();
long startTime = collection [0]. Timestamp.Ticks;

foreach (ScenarioEvent e in collection)
events.Add(new KeyValuePair <long , ScenarioEvent >(e.Timestamp.Ticks -

startTime , e));
}

The next step is to play through the events as if they are happening again. To achieve this,
the start time of the playback is recorded and a timer is set up to elapse every 60th of a second.
During each timer elapse event, the delta time is calculated by taking the current time and
subtracting the start time of the playback. The delta time value is compared against the delta
times that were calculated in the initialization phase. If the next event’s delta time is less than
the playback delta time, the event is enacted. The main loop of the real time playback is shown
in the following code:
private void timer_Elapsed(object source , ElapsedEventArgs e)

{
long deltaTime = e.SignalTime.Ticks - startTime.Ticks;

lock (events)
{

while (nextEventIndex < collection.Count &&
events[nextEventIndex ].Key < deltaTime)

{
ScenarioEvent se = events[nextEventIndex ].Value;
simulator.SubmitSimulatorEvent(se);
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Figure 4.3: The scenario playback sequence diagram.

if (enactors.ContainsKey(se.Id))
enactors[se.Id].Enact(se);

nextEventIndex ++;
}

}
}

The result is a smooth playback that will enact the events in the same sequence and time
frame that they were originally submitted.

4.5 Event Enactor

Recall from section 3.8 the enactor pattern was described in great detail. In order to achieve
the ability to replay events that a user performed in the original scenario performance, the play
back module must be able to replicate the client application-specific behaviour. Complications
also had client application-specific behaviour and relied on the enactor pattern to achieve this
functionality, so it is natural to re-use the same pattern again to achieve the ability to play back
events in a client application. The enactor pattern was applied to events and the event enactor
abstraction is shown in figure ??.

The overall structure of the playback module is illustrated in figure 4.5
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Figure 4.4: The event enactor abstraction.

Class Cyclometric Complexity Depth of Inheritance Class Coupling Lines of Code
ScenarioPlayback 24 1 23 59

Table 4.1: Scenario Playback Code Metrics

4.6 Code Analysis
The following table reports the code metrics of the scenario playback module described in this
chapter. For each class in the module, the cyclometric complexity, the depth of inheritance,
the class coupling and lines of code metrics were analyzed and reported in the table 4.1 It is
observed that there is only one class in the playback module and it is 59 lines of code. As
mentioned in the code analysis of the simulator module, it is desired to breakup classes into
smaller classes to reduce the lines of code of all classes. It is recommended and a future task
to break up the scenario playback class into smaller pieces, as there are several responsibilities
of this class that can be broken up into smaller classes.
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Figure 4.5: The scenario playback module.



Chapter 5

The Ellipsoid Orientation Matching Task:
Performance Evaluation

5.1 Motivation
A brain tumor is a disease in which abnormal cells form in the tissues of the brain; there are two
types of brain tumors: malignant, which are cancerous and can spread to other tissues in the
body and benign, which are not cancerous.[1] In the United States, there is an estimated 68,470
new cases of primary and non-malignant brain and CNS tumors expected to be diagnosed in
2015. [31] The incidence rate of all primary malignant and non-malignant brain and CNS
tumors is 21.42 cases per 100,000. (7.25 per 100,000 for malignant and 14.17 per 100,000 for
non-malignant) [31]

One of the available treatments for tumors is the resectioning of or the removal of the tumor
itself from the patient. The removal of the tumor requires a surgeon to create an opening in the
head of the patient, move the brain tissue in between the skull and the tumor and then remove
the tumor. One of the tasks in the tumor resectioning procedure is the orientation task, where
the surgeon must orient themselves in the most efficient manner to remove the tumor. This
requires the surgeon to align themselves with the major or longest axis of the tumor; this will
allow the surgeon to reduce the amount of manipulation of the normal brain tissue around the
tumor and to avoid creating any neurological deficits. The shortest distance is usually desired
in order to avoid transecting a larger layer of normal brain, but also a trajectory is the direction
of the longest axis of the tumor to decrease the amount of retraction necessary on adjacent
brain in order to see the whole tumor when debulking it. Alignment with the longest axis of
the tumor also provides the minimal amount of movement required of the surgeon’s tools.

5.2 Overview
The ellipsoid orientation matching task simulator is a multi-faceted application built using the
software framework described in chapters 3 and 4 and the Unity game engine. It involves a
targeting task that the trainee is to perform and attempt to achieve the lowest possible error
values. The task will require the trainee to orientate a tool to intersect through the longest axis
of an ellipsoid that will be situated inside of a translucent head. The purpose to this application
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was to build an application that utilizes the proposed framework, as this would help develop
and refine the framework at the same time. The framework is built to help collect data from
scenario performances and review those performances for training and evaluation purposes and
this was a perfect environment for it.

5.3 Designing the Scenario

5.3.1 Hierarchical Task Analysis
The first step is to develop a task hierarchy of the ellipsoid matching task. When a trainee is
attempting to position a tool such that it will intersect through the longest axis of an ellipsoid,
one of the sub-tasks is the positioning of the tool. Depending on the position and orientation
of the target ellipsoid and the trainee’s view of the scene, performing the task may be very
difficult or impossible. It would be of great benefit to allow the trainee to change their view of
the scene; this will allow the trainee to obtain better performance. The "change of view" task
will be another sub-task of the overarching task and this will now result in two sub-tasks: the
change of view task and the position tool task. The current task hierarchy takes into account
the trainee’s tasks to optimize their view and to position the tool, but what about the selection
task? The trainee must let an evaluator or simulator know that they finalize their decision and
submit their selection as their final answer so to speak; without this, it is not possible to know
when the trainee is finished and has made a decision. Accounting for the selection task, this
results in a task hierarchy illustrated in figure 5.1.

Figure 5.1: A preliminary task hierarchy for the ellipsoid orientation matching task.

Since the tool starts at a position away from the head, the trainee is required to move the
tool in all three axes x, y and z to reach the ideal position. The current task hierarchy is a great
start, but there is one glaring issue at the moment; the trainee requires three degrees of freedom
(x, y and z position), but there are only two degrees of freedom available through a mouse or
joystick. (x and y axes)

To solve this problem, a two-input approach where the mouse x and y axes will control
the translation of the tool in an orbiting-type function around the head and a third axis, s, will
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control the translation of the tool inwards to and outwards from the head. The third axis, s will
be mapped to the scroll wheel of the mouse for ease-of-use and minimal hand movement on the
part of the trainee. To illustrate this approach, it is more intuitive to think of it in terms of the
spherical coordinate system; figure 5.2 illustrates a spherical coordinate system representation.

Figure 5.2: A spherical coordinate system representation. [source: Wikipedia Commons]

The movement of the tool in the azimuthal direction (ϕ) will be a function of the x axis
input of the mouse:

ϕ = f (x) = Ax (5.1)

Where x is the x axis input of the mouse and A is a scaling constant. The same can be
applied to the polar angle (θ):

θ = f (y) = By (5.2)

Where y is the y axis input of the mouse and B is a scaling constant. Lastly the radius (r) is
defined:

r = f (s) = Cs (5.3)

Where s is the scroll axis of the mouse and C is a scaling constant. There are two separate
inputs using this approach: the mouse translation, which affects the x and y axis, and the
scrolling wheel, which affects the s axis. The same position solution for the tool can be used
for the camera as wel in the change of view task.

Recall that there are two measurements to take into account, the position of the tool and
the direction of the tool after the trainee’s selection. The performance of the position can be
fully influenced by the translation solution that was proposed, but the direction of the tool will
always be pointed at the center of the head. What if the longest axis doesn’t go through the
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center of the head? The trainee will never have the opportunity to achieve a perfect direction
alignment. The next component of the task is that which involves fine-tuning the trajectory of
the tool.

After the trainee has translated the tool such that it intersects with the head, the position
of the tool has essentially been selected. The trainee will now have the chance to rotate the
tool around the intersection of the tool with the head, to improve the direction of the tool. This
two-step process will decompose the position tool task into two sub-tasks: the translate tool
(orbiting of tool and moving tool inwards/outwards) and the rotate tool tasks. This concludes
the task hierarchy for the task defined in the requirements; the final task hierarchy is shown in
figure 5.3

Figure 5.3: The task hierarchy after decomposing the position tool task.

5.3.2 Hierarchical Task Paths
Next, the path of the task will be defined; this is essentially how the tasks interact with each
other and how the state of the task flows from one state to another One way to think of how
paths work is by representing a task with a flow chart comprised of its sub-tasks. The transitions
from one node to another will be a path or transition from one task to another. To begin with
the overarching task: the "Ellipsoid Orientation Matching Task"; this task is composed of
three sub-tasks: change of view, positioning the tool and selection. The task will begin with
positioning the tool; from there the trainee will decide whether the view is optimal, if the view
is not optimal the trainee may change the view. The trainee will make their selection when
they decide that the tool’s position is optimal. This leads to a few paths: firstly the trainee can
switch between changing the view and positioning the tool, secondly the trainee can make a
selection at any time.
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The next complex task in the hierarchy is the positioning tool task. The positioning tool task
is composed of two sub-tasks: the translate tool and rotate tool tasks. The trainee will begin
performing the translate tool task and after the tool has collided with the head, the trainee will
then perform the rotating tool task to fine-tune the tool’s orientation.

5.4 Generating a Scenario Set
The placement of the target will be described in the following parameters:

1. The position, which will be represented in x,y,z coordinates.

2. The polar(pitch) and azimuth (yaw) angles.

3. The eccentricity and radius of the ellipsoid.

Unity manages the transformations of objects by utilizing two 3-dimension vectors; one for
position, one for scaling and a quaternion for the rotation, which can also be represented by the
Euler angles. (3-dimensional vector) Thus, the transformation of an object can be represented
by three 3-dimensional vectors. The first step is to devise a transformation from the set of
parameters outlined above to the structure that Unity utilizes. The position of the ellipsoid is
fairly straightforward, because both Unity and the parameter set use a 3-dimensional vector for
position.

~p = ~p0 = [ x0 y0 z0 ] (5.4)

Where p0 is the position vector from input parameters. The next parameters represent the
orientation of the target and those are the pitch and yaw. With the assumption that the local
x axis of the target will always be the longest axis, the orientation parameters are straight
forward, if we use the Euler angles:

~r = [ 0 yaw pitch ] (5.5)

Where ~r is the vector of Euler angles; yaw and pitch are directly from the input parameters.
Lastly to properly scale the target, the input parameters of eccentricity and radius must be

transformed to a 3-dimensional scaling vector. Firstly the longest axis of the ellipsoid is equal
to the radius parameter, therefore the x component of the scaling vector will be the radius from
the parameters.

~s = [ r b b ] (5.6)

Next, to find the radius of the minor axes of the ellipsoid (y and z), it is required to determine
the length from the focus point to the center:

c = εr (5.7)

Where c is the length from the focus point to the center of the ellipsoid, ε is the eccentricity
and r is the radius. Next determine the radius of the minor axis:
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b =
√

r2 − c2 (5.8)

Where b is the radius of the minor axis, r is the radius and c is the length from the focus
point to the center of the ellipsoid. With that final 3-dimensional scaling vector transformed,
the transformations are complete.

To generate a set of scenarios based off of input parameters, a scenario generator class was
created to take a template scenario, a set of expected parameter values and a set of parameter
variances. The generator will copy the template scenario and then randomly generate a trans-
form for the target inside the head, based on randomly generated parameters. The reading and
copying of a scenario template is implemented by the following code:
Scenario template = serializer.Deserialize(templateFile);

Scenario result = new Scenario ();
result.Name = string.Format("{0} {1}", template.Name , current);

result.Task = template.Task;
result.Entities = template.Entities;
result.Complications = template.Complications;
result.TaskTransitions = template.TaskTransitions;

The parameters are generated by taking an expected value and a variance value and gener-
ating a random value from within the variance value from the expected value. For example, to
generate a random radius:
float actualRadius = Random.Range(expectedRadius - radiusVariance ,

expectedRadius + radiusVariance);

Using the range method in the Random class with all parameters mentioned above will
produce a set of random parameter values. The next step is to take these generated parameter
values and to assign them to the Unity transform 3-dimensional vectors for position and scale
and the quaternion for the rotation:

Vector3 position = new Vector3(actualX , actualY , actualZ);
Quaternion rotation = GenerateRotation(actualPitch , actualYaw);
Vector3 scaling = GenerateScale(actualRadius , actualEccentricity);

Quaternion GenerateRotation(float pitch , float yaw)
{

Quaternion result = new Quaternion ();
result.eulerAngles = new Vector3(0, yaw , pitch);
return result;

}

Vector3 GenerateScale(float radius , float eccentricity)
{

Vector3 result = new Vector3 ();

float c = radius * eccentricity;

float b = Mathf.Sqrt(radius * radius - c * c);

result.x = radius;
result.y = b;
result.z = b;

return result;
}

After generating random parameter values for the scenario and assigning them to the target
ellipsoid’s transformation, there is one and crucial step left to perform and that is to determine
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the perfect or ideal tool position and direction for the task. Since evaluation of the performance
is required, the ideal or perfect values must be found for each randomly generated scenario. To
determine the ideal direction of the tool such that it intersects with the longest or major axis
of the ellipsoid would simply mean that the direction vector of the tool must be the same as
the direction vector that passes through the major axis of the target. To determine the direction
vector that runs through the major axis, two game objects were positioned at each end of the
major axis of the ellipsoid, refer to figure 5.4 for an illustration. The direction vector could
easily found by taking the resulting vector of the negative game object’s position subtract the
positive game objects position.
Vector3 direction = axis.AxisDirection;
Vector3 reverse = -direction;
IdealValue = Vector3ToVector3f(reverse);

public Vector3 AxisDirection
{

get { return (PositiveEdge.position - NegativeEdge.position).normalized; }
}

Figure 5.4: The ellipsoid’s longest axis.

With the ideal direction vector found, now it is time to determine the ideal position where
the tool’s tip should touch the head. Finding this ideal position is more difficult than it is to find
the ideal direction; as it requires to find the intersection of the ideal direction vector from the
target’s position with the head. To determine the ideal position the initial approach was to take
the ideal direction and the position of the target and to construct a ray and to determine where
that ray intersected with the head mesh. Refer to figure 5.5 for an illustration of the approach.
Unity provides a RaycastAll method which will cast a ray from a given position in the given
direction and return an array of RaycastHit objects which contain collision information:
Vector3 direction = axis.AxisDirection;
RaycastHit [] hits = Physics.RaycastAll(axis.PositiveEdge.position , direction);

Unfortunately, this approach did not work, because the built in functionality of the Ray-
castAll method will not return collisions where the ray cast originates from inside a collider.
Since the ray was being casted from the target’s position inside of the head, it would not return
the collision with the head’s collider. The next idea was to cast a ray from outside the head
back onto the head. This was accomplished by casting a ray from the target along its major
axis direction vector and taking a point that was outside the head along that ray. Next, cast a
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Figure 5.5: The first attempt at finding ideal position.

ray from the new determined position in the negative direction of the major axis, thus targeting
the target from outside the skull just as the tool would. Finally, collect the collision hit from
the new ray cast on the head; the intersection would be the perfect or ideal position. Refer to
figure 5.6 for an illustration of the approach.
Ray ray = new Ray(axis.PositiveEdge.position , direction);

Vector3 newPosition = ray.GetPoint (100);
Vector3 reverse = -direction;

RaycastHit [] hits = Physics.RaycastAll(newPosition , reverse);

Vector3 idealPosition = (from RaycastHit hit in hits
where hit.collider == collider
select hit.point).First <Vector3 >();

Now that the ideal position and direction for a given scenario can be found, the ideal values
are assigned in the PositionAccuracyMetric and DirectionAccuracyMetric classes respectively:
AccuracyMetric directionMetric = new DirectionAccuracyMetric ()

{
ValueName = "Tool Direction",
IdealValue = Vector3ToVector3f(reverse),
ActualValue = new ActualValueLocation (1, "Tool Direction")

};
AccuracyMetric positionMetric = new PositionAccuracyMetric ()
{
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Figure 5.6: The second attempt at finding ideal position.

ValueName = "Tool Position",
IdealValue = Vector3ToVector3f(idealPosition),
ActualValue = new ActualValueLocation (1, "Tip Position")

};

result.Task.Value.AccuracyMetrics.Add(directionMetric);
result.Task.Value.AccuracyMetrics.Add(positionMetric);

5.4.1 Data Collection

For this set of scenarios, there is a wide range of data that will be collected by the scenario sim-
ulator module. Firstly, the time spent on each phase of the task will be measured; fortunately,
the TimeKeeperComponent discussed in section 3.6.1 can track the time spent on each task
during the scenario performance. The parameter values of the target in the task will need to be
recorded to compare performance versus the input parameters; these parameter values will be
directly taken from the input parameters file that is generated during the scenario generation
process. The position of the tip of the tool and the direction of the tool will be tracked over
the time of the experiment; this can be accomplished by passing the position and direction as
parameters in various events and using the TrackedParameterComponent that was discussed in
section 3.6.2. To track the parameters, register them with the parameter tracker:
(simulator as LoggingScenarioSimulator).AddTrackedParameter(new EventParameterPair ()

{
EventId = 3,
ParameterName = "Tip Position"

});
(simulator as LoggingScenarioSimulator).AddTrackedParameter(new EventParameterPair ()
{

EventId = 3,
ParameterName = "Tool Direction"

});
(simulator as LoggingScenarioSimulator).AddTrackedParameter(new EventParameterPair ()
{

EventId = 9,
ParameterName = "Tool Direction"
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});
(simulator as LoggingScenarioSimulator).AddTrackedParameter(new EventParameterPair ()
{

EventId = 9,
ParameterName = "Tip Position"

});
(simulator as LoggingScenarioSimulator).AddTrackedParameter(new EventParameterPair ()
{

EventId = 4,
ParameterName = "Tip Position"

});
(simulator as LoggingScenarioSimulator).AddTrackedParameter(new EventParameterPair ()
{

EventId = 4,
ParameterName = "Tool Direction"

});

The position error and direction error of the tool will also be tracked over time to analyze
the trainee’s error versus time in the scenario. To calculate the position error, the Euclidean
distance between two vectors will be used. Recall that the ideal position was determined during
scenario generation and the actual position will be determined during the scenario performance
by the trainee. The following is the formula for calculating the error between the ideal and
actual position:

PE = ‖PI − P‖ (5.9)

Where PE is the position error, PI is the ideal position and P is the actual position selected
by the trainee. Since the error is being tracked over the time of the experiment, it is possible to
express the position error as dependent on time:

PE(t) = ‖PI − P(t)‖ (5.10)

The direction error will be calculated by determining the angle between two vectors; this
can be done by utilizing the dot product:

DE = cos−1(
DI · D
|DI ||D|

) (5.11)

Where the DErr is the direction error, DI is the ideal direction and D is the direction of the
tool selected by the trainee. Similar to the position error, the direction error can be represented
as a function of time:

DE(t) = cos−1(
DI · D(t)
|DI ||D(t)|

) (5.12)

The two calculations, with time will produce a plot of the error over time. This plot in an
ideal case, will have a negative slope, because the trainee will produce less error as the perfor-
mance continues and the actual value becomes closer to the ideal value. Refer to figures 5.7
and 5.8 for example error versus time plots.

While these two plots give valuable information, there is one issue, they cannot be placed
on the same plot effectively, because they use two different units. Position error is measured
in distance (For example, meters) and direction error is measured in degrees. A new error
calculation is proposed such that both position and direction error can be placed on the same
plot: normalized error. Normalized error is aimed to remove the units from the error calculation
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Figure 5.7: An example position error graph that is produced.

Figure 5.8: An example direction error graph that is produced.

and provide a standard scale to show the error over time. When actual value is equal to ideal
value, the error calculation should result in 0, as there is no error; it is the perfect score. When
the actual value is not equal to the ideal value, the error calculation should result in some value
greater than 0, but to what max value? Direction error in degrees has a fixed range, being
0-180. The question becomes what should the opposite end of the scale be? In the case of
position error, there is no opposite end of the scale, because the trial operates in an infinite
space. A possibility could be to add a fixed range of the tool to have a fixed scale. Another
possibility and the proposal is to provide an upper limit and that the beginning position and
direction of the tool versus the ideal position and direction of the tool will produce an initial
error. The normalized error at this initial error will be the upper limit. Thus, if an upper limit of
100 is used, the normalized error for both position and direction will be 0 when the toolâĂŹs
position/direction will be equal to that of the idea position/direction. The normalized error will
be 100, when position/direction will be equal to the starting position/direction. The following
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equation is the generic version of the normalized error:

NE(t) = L(1 −
Err(0) − Err(t)

Err(0)
) (5.13)

Where L is the upper limit value, Err(t) is the error at time t and Err(0) is the initial error.
The following is the normalized error calculation for position:

PNE(t) = 100(1 −
PE(0) − PE(t)

PE(0)
) (5.14)

The following is the normalized error calculation for direction:

DNE(t) = 100(1 −
DE(0) − DE(t)

DE(0)
) (5.15)

The normalized error calculation allows for the plotting of the normalized error over time,
where both the direction and position will have the same initial normalized error (100) and
the same goal normalized error (0). A value of over 100, signifies that the user performed
movements that actually made the error worse than the initial error. Both direction and position
will share the same units, since the units are canceled in the calculation. Both direction and
position can be plotted on the same graph to illustrate the error over time in the same context.
The following plot is an example of the direction and position normalized error over time:

Figure 5.9: An example normalized error graph that is produced.

5.4.2 Error Tracking Components
To perform the tracking of the position error, direction error and their normalized counter
parts, the component extension structure of the scenario simulator shall be utilized. Recall in
section 3.6, that the scenario simulator offers the ability to add custom behaviour through simu-
lation components. The structure of the error tracking components follows the template design
pattern; the base template class is the ErrorTrackingComponent component, which implements
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the ISimulationComponent interface. The decision to follow the template pattern was made be-
cause of the common functionality between the tracking of position and direction parameters.
Figure 5.10 illustrates the error tracking component structure. The base ErrorTrackingCompo-
nent component class is responsible for managing the error values over time and this is handled
in the Submit method:
public void SubmitEvent(ScenarioEvent e)

{
var parameter = from EventParameter p in e.Parameters

where p.Name == parameterName
select p;

if (parameter.Count() == 0)
return;

errors.Add(new ErrorMetricEntry ()
{

Timestamp = e.Timestamp ,
Error = Calculate (( Vector3f)parameter.First().Value , idealValue)

});
}

protected abstract float Calculate(Vector3f actual , Vector3f idealValue);

This simply finds the correct parameter, calculates its error value and adds it to the collec-
tion with the timestamp. The calculate method is an abstract method that will be implemented
by the position and direction error tracking components respectively:
protected override float Calculate(Vector3f actual , Vector3f idealValue)

{
return Vector3f.DistanceBetween(idealValue , actual);

}

protected override float Calculate(Vector3f actual , Vector3f idealValue)
{

return Vector3f.AngleBetween(idealValue , actual);
}

For the normalized error tracking components, they simply inherit their base error tracking
component and override the Calculate method like so:
protected override float Calculate(Vector3f actual , Vector3f idealValue)

{
if (errors.Count == 0)

return scalingFactor;

return scalingFactor * (1 - (errors [0]. Error - base.Calculate(actual ,
idealValue)) / errors [0]. Error);

}

With these component classes, it is now possible to calculate the position and direction over
time, as well as the normalized counterparts.

5.5 Scene Design

5.5.1 Trial Scene

The trial scene is the scene in the application where the trainee will perform a number of
scenarios in a row, while the application will collect the data from the performance in the
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Figure 5.10: The error tracking components structure.

background. The scene starts with the head and tool in place and a countdown timer alerting
the trainee to when the first scenario will begin, refer to figure 5.11 for some screen shots.

As the scenario begins, the target is placed in the head based off of the input parameters
discussed in section 5.4.

The trainee is now able to move the tool around and perform the scenario. Figure 5.13
shows a few screen shots of the scenario being performed.

As per our scenario, the trainee is able to switch control modes and change the view of the
camera in the same fashion as moving the tool. Figure 5.14 shows the view of the scenario
changed.

Recall that after the tool would collide with the head, the tool would be fixed in that position
and the trainee will be able to fine-tune their selection by rotating the tool. Figure 5.15 shows
the tool being rotate in the final part of the positioning tool task.

Finally, when the trainee has made their selection, the scenario completes and a countdown
timer begins to alert the user of when the next scenario will begin.

5.5.2 Playback Scene

The playback scene allows for the viewer (trainee or evaluator) to select a previous performance
result and replay it back to them. The scene begins with a file browser prompt for the viewer
to select a result file they wish to playback. Once the file is selected, the performance is played
back to the viewer on the screen. There are additional feedback mechanisms given to the viewer
in the form of displaying which task is currently being performed, as well as display the ideal
result to the viewer. The viewer will be able to see how the trainee positioned the tool and
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Figure 5.11: The initial screen.

Figure 5.12: The generated target.

changed the view of the camera, while seeing the ideal result all at the same time. Figure 5.16
shows the playback scene that the viewer would see.

5.5.3 Ghosting Scene
An interesting possibility with the playback module is the ability to not only playback a pre-
vious performance for viewing, but also to playback a previous performance while the trainee
is performing a scenario. A second tool can be placed in the scene and it will be controlled
by the playback module, all while the trainee is performing the scenario with their own tool
and control of the camera. This feature is referred to as ghosting, where the trainee will have
a second "ghost" tool that will be performing the scenario with them while they perform the
scenario. Ghosting offers the ability to act as a teaching tool, potentially providing an expert’s
performance as the ghosted playback while the trainee watches and performs the scenario at
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Figure 5.13: The trainee moving the tool.

Figure 5.14: The trainee changing the view.

the same time. Refer to figure 5.17 for screenshots of the ghosting scene.

5.5.4 Operating Room Scene
The underlying goal of the framework was to provide the ability to robustly collect data and
analyze performance for surgical simulator and more specifically the ETV procedure. The trial
scenario scene offers a simple targeting task, which relates to the insertion of the trocar task
of the ETV procedure, but a floating head in the air is not very realistic. The operating room
scene provides a more realistic environment to the user, while using the same mechanics and
scenarios from the basic targeting scene. Since the operating room is built using the exact same
logic, it supports the playback and ghosting features as well. Figure 5.18 shows screen shots
of the operating room scene.
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Figure 5.15: The trainee rotating the tool.

Figure 5.16: The playback screen.
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Figure 5.17: The ghosting screen.

Figure 5.18: The operating room scene.



Chapter 6

The Ellipsoid Orientation Matching Task:
Implementation in Unity3D

6.1 The Trial Manager

To organize and conduct a series of scenarios in sequence, there must be some sort of flow
control from one scenario to another. The trial manager is the component that acts as the
overall controller of the application. The trial manager is responsible for reading in a number
of scenario files and constructing a collection of scenarios that will be performed by the trainee.
DirectoryInfo info = new DirectoryInfo(scenarioFolderPath);

FileInfo [] files = info.GetFiles("*. scenario");

foreach (FileInfo f in files)
scenarioCollection.Add(f.FullName);

Given a folder path, the trial manager will retrieve the file path of all scenario files in the
given directory.

Once the trials have reached the starting point, the trial manager will communicate with the
scenario manager to start the given scenario.
manager.StartScenario(User , scenarioCollection[currentScenario], resultFolderPath);

Once a trainee has completed the current scenario, the trial manager will save all necessary
results into a folder, zip the folder and upload through FTP to a remote location where an eval-
uator can evaluate the results. Using the Ionic Zip library (https://dotnetzip.codeplex.com/),
zipping a folder programmatically is fairly straight forward:
void UploadFolder(string folder)

{
string zipFile = string.Format("{0}\\{1}. zip", outputFolder , resultFolder);
using (ZipFile file = new ZipFile ())
{

file.AddDirectory(folder);
file.Save(zipFile);

}

UploadFile(zipFile);
}

70
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6.2 The Scenario Manager
The scenario manager component is responsible for communicating with the scenario simulator
interface provided by the framework. The relationship between the scenario manager and
the scenario simulator framework is illustrated in figure 6.1. The scenario manager primarily
provides methods to other components that mirror those of the scenario simulator interface
to allow other components indirect access to the scenario simulator. The design decision for
this set up was to keep all references to the scenario simulator interface nestled away into
only one component; this way if the interface for the scenario simulator ever changes, then
only one component of the client application would need to change. Another responsibility of
the scenario manager is that it will handle the creation and starting of the scenario simulator
module; this includes:

• Creating a new scenario simulator object.

• Registering the complication enactors.

• Registering the tracked parameters.

• Starting the scenario simulator object.

Figure 6.1: The scenario manage relationship with the framework.

[Code example here]

6.3 The Playback Manager
To provide the playback functionality to the user in the simulator, the playback module of the
scenario simulator module will be incorporated. The scenario playback provides a single and
easy-to-use interface to client applications and to communicate with this interface, the playback
manager component was created. The responsibility of the playback manager is to interface
with the scenario playback module on behalf of the rest of the simulator. Figure 6.3 illustrates
this relationship.
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Figure 6.2: The scenario manage class.

Figure 6.3: The playback manager relationship.

6.4 The Input Manager
The input manager is a component that is responsible for taking the user input and execut-
ing the proper command based off of that input. Since the input manager derives the Unity
MonoBehaviour class, it’s update method will be called every frame. The update method is
key to the input manager’s functionality; every update frame, the input manager scans all of
the potential inputs such as the mouse and keyboard keys for activation. If an activation is
found, the input manager will then create a command and execute that command to perform
the proper functionality. The command that the input manager creates is a derivation of the
submit event command, which will be discussed in section /refsec:submitEventCommand.

In Unity, the Input class provides a set of static methods to easily access any input queries.
The get axis method is used for retrieving the intensity value of a given axis, where an axis is
defined by some input devices that has an analog state, such as a mouse or joystick. A button
is a discrete state, because it is either down or not. To retrieve the axis intensity value, simply
call the GetAxis method and pass the axis name as a string, for example: "Mouse X" to get the
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intensity change in the mouse in the x-direction or "Mouse Y" to get the intensity change in
the mouse in the y-direction. The following code will retrieve the x-axis intensity of the mouse
at the given moment:
float xAxis = Input.GetAxis("Mouse X");

Retrieving the state of buttons is also done through the Input class, through the GetBut-
tonDown method. The following code will retrieve the button down state of a button named
"Switch Control":
bool buttonDown = Input.GetButtonUp("Switch Control");

Using these tools offered by the Input class, the InputManager component will determine
what the user input is at the given frame. Essentially, the input manager will check the range
of inputs such as the mouse axis, the mouse scroll wheel access, the switch mode key and the
selection key. If a condition returns true for a key down request or returns a non-zero value
for an axis value, the input manager will create the appropriate command and execute it. For
example, if the scenario is currently in the position tool phase and the user has moved the
mouse in the x-axis and/or y-axis, the input manager will create a submit translate tool event
command to be executed. If instead the scroll axis is a non-zero value, a submit move tool in
command will be created. The following code illustrates this creation of the submit translate
tool event command:
if (scenarioManager.IsTaskActive("Translate Tool"))

{
if (xAxis != 0 || yAxis != 0)

command = new SubmitTranslateToolEventCommand(scenarioManager ,
DateTime.Now , xAxis , yAxis , Stylus , Head);

else if (scrollAxis != 0)
command = new SubmitMoveToolInEventCommand(scenarioManager , DateTime.Now ,

scrollAxis , Stylus , scalingFactor);
}

Lastly, at the end of update method, the command is executed:
if (command != null)

command.Execute ();

6.5 The Entity Placer
The entity placer is a class that implements the IEntityPlacer interface in the scenario simulator
module that was discussed in section 3.7. Recall, that the purpose of the entity placer was to
initialize the scenario by positioning all of the entities in the scenario in the proper locations
in the environment. The entity placer class in Unity is a concrete implementation of the entity
placer abstraction that scenario simulator module depends on.

The implementation of the entity placer is fairly straightforward, but extremely important.
The IEntityPlacer abstraction has one method that needs to be implemented and that is the
place method, which has an Entity object as a parameter. The duty of the entity placer is to take
that entity and place it in the correct position. The UnityEntityPlacer implementation contains
a dictionary that contain the game objects as values to be placed and their corresponding entity
names as keys; for example the tool’s game object will be paired with the name "Tool", which
is the name of the tool entity in the scenario. When the placer receives the place method call
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Figure 6.4: The unity entity placer.

with the tool entity, it will search the dictionary for the object with the key "Tool" and set
the position, rotation and scaling of the corresponding game object to that of the entity in the
scenario. The following code illustrates this process:
public void Place(Entity entity)

{
objects[entity.Name]. transform.position =

Vector3fToVector3(entity.transform.Position);
objects[entity.Name]. transform.rotation =

Vector3fToQuaternion(entity.transform.Rotation);
objects[entity.Name]. transform.localScale = Vector3fToVector3(entity.transform.Scale);

}

Where objects is the dictionary of name-game object pairs, Vector3fToVector3 is a helper
function to translate from the scenario vector implementation (Vector3f ) to the Unity vector im-
plementation (Vector3f ) and Vector3fToQuaternion is a helper function to transform the Euler
angles in the entity rotation definition to a Unity quaternion definition for rotation. The objects
dictionary is initialized from the Unity editor inspector, where the designer of the Unity appli-
cation can simply drag the desired game objects to be placed into the placer component and
assign the entity name to pair with the game object.

6.6 Event Commands
The event commands are classes that execute the functionality of events in the simulator. The
commands follow the command design pattern [28, 17], which features a command abstraction
with an execute method that will execute all of the functionality of that command. One of the
great advantages of using the command pattern is that it allows the separation of the invoker
of the command from the receiver of the command. Since the simulator will be used as a plat-
form for both the performance playback and the scenario simulation itself, it is necessary to
separate the invoker from the receiver. The invoker for the playback will be an enactor object
that implements the IEventEnactor interface from the playback module, where the invoker in
the simulator will be the input manager, which is responsible for taking user inputs. Figure ??
illustrates the high level structure of the process to execute a command while the user is per-
forming the scenario. Figure ?? illustrates the high level structure of the process to execute a
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command while the playback module is replaying the performance. The ICommand interface
is illustrated below in figure 6.7

Figure 6.5: The command invokaton from the user input.

Figure 6.6: Command invocation from the play back.

6.6.1 Rotate Object Command
The rotate object command is used to translate the too or cameral based on the input from the
invoker. The command constructor accepts an x-axis intensity, the object to rotate, the object
to rotate around and a y-axis intensity. The object to rotate and the object to rotate around are
game objects from the unity scene and the x-axis and y-axis intensity are values that can be
passed from the user input script or from the scenario playback via the event enactor invoker
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Figure 6.7: The ICommand interface.

script. The surgical tool and game camera are examples of objects that are rotated around.
The patient’s head and the tip of the tool (where it makes contact with the patient’s head) are
examples of game objects that are being rotated around. The x-intensity value and y-intensity
value will control how much the object is being rotated. Since the RotateObjectCommand class
conforms to the command design pattern, all of the functionality lies in the Execute() method.
The following is the execute method of the translate tool command:
public void Execute ()

{
rotatedObject.transform.RotateAround(referenceObject.transform.position , new

Vector3(0, 1, 0), xIntensity * -1);
rotatedObject.transform.RotateAround(referenceObject.transform.position , new

Vector3(1, 0, 0), yIntensity);
}

The method will take the rotated game object and rotate it around the reference game object,
around the y axis by an angle based on the x-intensity value multiplied by negative one. It will
also perform the same rotation, but around the x-axis and using the y-intensity. This will give
two degrees of freedom to the user, when invoked through the simulation, to allow them to use
the mouse to rotate based on the x and y translation of the mouse. This command will give the
functionality to rotate the rotated object in an orbital fashion around the reference object.

6.6.2 Move Object In Command
The move object in command is used to move an object along a given axis, a certain amount.
When looking at the simulator, this command would be used to move the surgical tool or the
in-game camera inwards to or outwards from the skull. The command constructor accepts a
game object to be translated, a scaling factor, an intensity and an axis to move along. The
formula for translating the object is shown in equation 6.1

~p = ~p0 + scalingFactor ∗ intensity ∗ ~axis (6.1)

The following is the execute method of the move object in command:
public void Execute ()

{
movingObject.transform.Translate(scrollIntensity * scalingFactor * axis , Space.World);

}

The code will simply call the translate method of the moving object to move it along the
given axis, scaling it by the intensity and a scaling factor, which will control how much move-
ment is caused. The scaling factor is mainly to handle the different scaling of scenarios. The
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basic targeting task context for instance has a much larger scale than the operating room con-
text, so the operating room context will receive a much lower scaling factor to eliminate tools
and cameras moving in and out too quickly. The second parameter, "Space.World", will tell
unity to perform the transform in world space instead of local space.

6.7 Submit Event Commands

The submit event commands are a collection of commands used by the simulator to submit
events to the scenario simulator module and invoke the event commands discussed in sec-
tion 6.6. The submit event commands follow the command design pattern and all implement
the same ICommand interface. There is currently a submit event command for each type of
event that can be submitted to the scenario simulator for the designed scenario explained in
section 5.3. All of the commands follow a similar structure; they each inherit the abstract base
class, SubmitEventCommand, which contains all of the common logic in submitting an event
to the scenario simulator module. The individual derived commands handle all of the spe-
cific behaviour to that command, which includes defining the parameters to be submitted with
that event, along with creating and executing the correct event command that was described in
section 6.6. Each command will be explained in more detail in the following subsections.

6.7.1 Submit Event Command

The submit event command is the base command class for all of the commands that deal with
submitting an event. The command contains the logic and implementation dealing with cre-
ating the scenario event with the proper data and submitting it to the scenario simulator to be
processed. The structure of these commands follows the template method pattern, where the
common behaviour is placed into a template class, which in this case is the SubmitEventCom-
mand and the specialized behaviour is placed into the derived classes. The following is the
execute method from the submit event command class:

public virtual void Execute ()
{

ScenarioEvent e = new ScenarioEvent ()
{

Id = id,
Name = name ,
Description = description ,
Timestamp = timestamp ,
Parameters = GetParameters ()

};

manager.SubmitEvent(e);
}

protected abstract EventParameterCollection GetParameters ();

The method above creates a scenario event from data that is injected into the command from
the constructor. The get parameters abstract method is implemented by the derived, specialized
submit event classes, because the parameters that each event submit is different. The submit
hierarchy class is illustrated in figure 6.8
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Figure 6.8: The submit event command.

6.7.2 The Derived Submit Event Classes

The derived and specialized submit event classes all follow the same implementation, since
they all conform to the SubmitEventCommand abstract base class. All of the derived classes
will implement the GetParameters method, which will return a collection of parameters based
on data that is injected into the command. These classes will also execute any event command
that was described in section 6.6. The following is a list of all of the submit event command
classes:

• SubmitChangeViewEventCommand : Will be executed when the user selects to change
to view mode from positioning tool mode.

• SubmitCollisionEventCommand : Will be executed when the tool collides with the pa-
tient’s head.

• SubmitMoveCameraInEventCommand : Will be executed when the user zooms in or out
the camera.

• SubmitMoveToolInEventCommand : Will be executed when the user moves the tool in-
wards to or outwards from the patient’s head.

• SubmitRotateToolEventCommand : Will be executed when the user is rotating the tool
around the collision point
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• SubmitPositionToolEventCommand : Will be executed when the user selects to change
to position tool mode from change view mode.

• SubmitSelectionEventCommand : Will be executed when the user has made their selec-
tion and the scenario will be complete.

• SubmitTranslateCameraEventCommand : Will be executed when the user elects to orbit
the camera around the patient’s head.

• SubmitTranslateToolEventCommand : Will be executed when the user elects to orbit the
tool around the patient’s head.

Since all of the commands perform the same functionality, just with the parameters differ-
ing, along with which event command to execute, only the SubmitTranslateToolEvent will be
discussed in detail.

6.7.3 Translate Tool Command
As mentioned in section 6.7.1, the translate tool command is created and executed when the
user has elected to orbit the tool around the patient’s head. The command has two responsi-
blities: to create the parameter collection that will be submitted by the base template class,
SubmitEventCommand and to create and execute the RotateObjectCommand, which was dis-
cussed in detail in section 6.6.1. The following is the execute method from the translate tool
command class:
public override void Execute ()

{
translateToolCommand.Execute ();
base.Execute ();

}

This implementation is very simple, all it does is execute the translate tool command, which
is an instance of the RotateObjectCommand class. Next, it will submit the event to the scenario
simulator, by calling the base (SubmitEventCommand) execute method. The following is the
get parameters method, which will supply the list of parameters for the base submit event
command to package with the scenario event to be submitted to the scenario simulator module.
protected override EventParameterCollection GetParameters ()

{
EventParameterCollection result = new EventParameterCollection ();
result.Add(new EventParameter ()
{

Name = "X-Axis Intensity",
Value = xIntensity

});

result.Add(new EventParameter ()
{

Name = "Y-Axis Intensity",
Value = yIntensity

});

result.Add(new EventParameter ()
{

Name = "Tip Position",
Value = tool.transform.FindChild("Tip").position.ToVector3f ()
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});

result.Add(new EventParameter ()
{

Name = "Tool Direction",
Value = (tool.GetComponent(typeof(LongestAxis)) as

LongestAxis).AxisDirection.ToVector3f ()
});

return result;
}

All of the derived command class perform this same behaviour, the main difference is the set
of parameters that the individual command will return in the GetParameters method. Another
small difference is the command that will be executed in the execute method; for instance,
in the above command, a RotateObjectCommand is executed, where in another command it
will be different. For example, the SubmitMoveToolInEventCommand will execute a MoveOb-
jectInCommand. The submit translate tool event command will submit four parameters to the
scenario simulator module:

• X-Axis Intensity: The intensity of the mouse movement in the x-axis direction. (Floating
Point Number)

• Y-Axis Intensity: The intensity of the mouse movement in the y-axis direction. (Floating
Point Number)

• Tip Position: The position of the tip of the tool. (3-Dimensional Vector)

• Tool Direction: The direction that the tool is pointing in. (3-Dimensional Vector)

There is motivation behind collecting all of these parameters, as they will be used during
scenario performance evaluation and analysis. The x and y axis intensity values are collected to
show user movement over the time of the scenario and are also used to replay the performance
in the playback module after they have been serialized with the event. The tip position and
tool direction are collected to once again demonstrate the position and trajectory of the tool
over time; this is used to chart the error and normalized error over time, which is described in
section 5.4.1. The benefit of using this parameter collection structure is that it allows for very
custom behaviour, if there are more parameters that are desired to be submitted, simply add
them to this method. As discussed in section 3.4, the parameter is composed of a name and a
value, where the value is an object, thus any type of value can be placed in that property.

Upon further inspection, it is possible to compile all of these commands into one class.
One of the differences between them is the command that they execute inside of their execute
method. Since all commands implement the ICommand interface, an ICommand object can be
injected into the individual submit event commands and they will execute the given command.

6.8 The Complication Enactors
In order for complications to be displayed on the screen to the trainee, the client application
must implement and register the enactors they wish to display on the screen. The client appli-
cation has one concrete enactor that it implements and registers with the scenario simulator and
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that is the BleedComplicationEnactor class; figure 6.9 illustrates this class. The bleed compli-
cation enactor will create a bleed particle system in the scene at position of the tool tip. The
enact method implementation is shown below:
public void Enact()

{
Quaternion q = new Quaternion ();
Vector3 rotation = new Vector3(0, 180, 0);
q.eulerAngles = rotation;
bleed = Instantiate(bleedParticle , tip.position , q);
bleedAudioObject = Instantiate(bleedAudio , tip.position , q);

}

This code simply creates a bleed particle at the positon of the tool’s tip and also plays a
sound.

Figure 6.9: The bleed complication enactor class.

6.9 Enacting Events for Playback
Recall from section 4.5, the playback module of the framework relies on the enactor pattern to
playback events to the use in the client application. It is the client application’s responsibility
to implement the concrete enactors that will playback the events to the user. This section will
describe the implementation of the enactors that provide the ability to playback the scenario
performance on the unity simulator platform. Firstly, the command invoker component, which
is responsible for invoking the event commands discussed in section 6.6, will be discussed.
Secondly, the event enactors themselves, will be discussed.

6.9.1 The Command Invoker
The command invoker is the class that is responsible for executing the event commands that are
sent by the event enactors through the playback module. The original design of the enacting of
events in the playback client did not contain a command invoker class, its creation was a result
of a multi-threading issue in unity. The enactors are called from a separate thread because
the playback uses a timer elapse event to enact the correct events at the correct time and this
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timer elapse event is fired from a new thread. Originally, the implemented enactor would create
the event command with the proper parameters and then execute it, but this would not work
because the unity’s restriction of access to certain elements from different threads, similar to
how .NET windows forms cannot be manipulated from another thread.

To counter this issue, the command invoker class was created. The invoker has two main
responsibilities:

• Collect and store a temporary buffer of commands.

• To execute and remove the commands from the buffer on every update call.

With the new design, the enactors will queue the desired command inside the command
invoker instead of executing the command. On every update call from Unity’s engine, the
command invoker will empty its queue and execute every command it dequeues. This approach
works because the new thread that is created from the timer elapse event inside of the scenario
playback module will not be manipulating any game objects; it will simply add the command
to a queue and forget about it. When the main thread is in its update cycle and comes to the
invoker class, it will pick up the command and execute it with no issue; figure 6.10 illustrates
this process. The following code is the update method in the command invoker class:
// Update is called once per frame

void Update ()
{

lock (commands)
{

while (commands.Count > 0)
{

ICommand command = commands.Dequeue ();
command.Execute ();

}
}

}

This is one of the greatest benefits of the command pattern, it allows for the encapsulation
of a request to be used at a later time.

Figure 6.10: The command invoker process.
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6.9.2 The Event Enactor
The event enactors are a set of enactors that assume the role of the concerete enactor in the
enactor pattern discussed in section 3.8. There is an abstract base enactor, the EventEnactor,
which implements the enact method. In its enact method, the base enactor simply retrieves the
proper command from its derived classes and enqueues this command in the command invoker.

The following source code demonstrates this functionality:
public void Enact(ScenarioEvent e)

{
invoker.EnqueueCommand(GetCommand(e));

}

protected abstract ICommand GetCommand(ScenarioEvent e);

Refer to figure 6.11 for the template pattern of the event enactor structure.
The derived enactor class will supply the specific command and inject the proper data to

those commands from the scenario event data. The following is an example of the GetCom-
mand implementation in the TranslateToolEnactor class:
protected override ICommand GetCommand(ScenarioEvent e)

{
return new TranslateToolCommand(

(float)e.Parameters.FindByName("X-Axis Intensity").Value ,
(float)e.Parameters.FindByName("Y-Axis Intensity").Value ,
tool , head);

}

Once this command is enqueued in the command invoker and the command invoker will
execute it, the tool will be translated around the head by itself, as if the user was performing
the task again.

There is one enactor for each type of event that needs to be visually enacted in a scenario;
these would include:

• MoveToolInEnactor : Will be created and enacted when a move tool in event is to be
perfromed.

• RotateToolEnactor : Will be created and enacted when a rotate tool event is to be per-
fromed.

• MoveCameraInEnactor : Will be created and enacted when a move camera in event is to
be perfromed.

• TranslateToolEnactor : Will be created and enacted when a translate tool event is to be
perfromed.

• TranslateCameraEnactor : Will be created and enacted when a translate camera event is
to be perfromed.

The events that do not need a visual display, such as a selection event or a change of mode
event, don’t necessarily need an enactor, but can be given one. An example enactor would
be displaying a label on the screen alerting the evaluator that a change of mode was made
and this enactor would be very simple to implement. The developer would need to implement
a command class that would change a label’s text, derive a child class of EventEnactor that
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Figure 6.11: The command invoker structure.

would implement the GetCommand method to return newly created command. Finally, the
developer would simply need to register the enactor with the playback and that is it.

The entire playback process has been fully discussed throughout this chapter and chapter 4.
To recap, the following is the process for enacting a translate tool event:

1. The playback module timer elapses.

2. The playback checks if any events need to be played at the moment. There is a translate
tool event.

3. The playback checks its event enactor repository for an enactor that is registered for the
translate tool event. It finds one.

4. The playback retrieves the enactor and calls the enactor method.

5. Now on the Unity side, the concrete enactor will create a translate tool command with
the correct tool game object, head game object and the data from the event.

6. The translate tool command will be submitted to the command invoker.

7. On the main thread, when the command invoker is executing its update method, it will
dequeue the command and execute it.
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8. The command will perform the translation of the tool around the head based on the
parameters from the event.



Chapter 7

Closing Remarks

7.1 Discussion and Conclusion

Recall the research questions proposed in section 1.7:

• Can a simulation software framework that allows the custom data collection and evalua-
tion of the performance of a complex hierarchical task be implemented?

• Can the simulation software framework be proven to robustly collect data without leaving
a large performance footprint?

• Can the simulation software framework be integrated into a simple surgical simulation
scenario to collect meaningful and evaluate performance data for that scenario?

This thesis began with the problem of how to calculate performance of complex tasks such
as a surgical procedure. The literature provided answers to both human performance evaluation
and hierarchical task analysis. Hierarchical task analysis can be used to decompose a complex
task such as surgery into smaller simpler tasks that are simpler to evaluate. Fitts’ law and
its derivatives can be used to evaluate difficulty and performance of simple targeting tasks.
After utilizing hierarchical task analysis to break down the complex task into simple tasks
that can be evaluated using Fitts’ law, the performance of the complex task can be aggregated
and calculated. The performance of every task can be calculated, which allows for detailed
feedback to trainees for each task they perform in a surgical procedure. A Fitts’ law model can
be derived by varying the D and W parameters to define different index of difficulty values.
With the mean time to complete the tasks and the varying index of difficulty values, the a and
b parameters can be derived.

MT = a + bID = a + blog2
2D
W

(7.1)

It was shown that the mean time to complete a complex task can be represented by a
weighted sum of the index of difficulties of the descendant leaf nodes in the hierarchical task
tree:

86
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MTT =

N∑
i=1

ai + biIDi (7.2)

Using this approach, it is possible to predict the mean time to complete a complex task
based on the index of difficulty of the simple descendant tasks.

A number of simulator frameworks have been developed; these include SOFA, GiPSi and
SPRING. SOFA is the only framework of the three that offers any sort of out of data collection
or monitoring, but it is rather limited with no customizability built in without the need for ex-
tensive development. SOFA offers no hierarchical task representation of a simulation scenario,
so there is no data collection on a task-based level and therefore cannot be used to evaluate
performance on a task-based level. A software framework is developed with reusability and
extendibility in mind; it can be used with any type of client application that would like to
evaluate user performance in an abstract way, all while custom data collection schemes can be
easily added. The framework’s architecture allows for high maintainability and loose coupling
between different layers; the abstractions and the details are separated through the dependency
inversion principle and results in an onion architecture. Reducing the coupling between layers
in the architecture produces higher modularity and allows for implementations to be swapped
in and out, thus increasing the maintainability of the system.

A simple core domain module is developed to act at the center of the entire framework
without any external dependencies. The elements of hierarchical task analysis and perfor-
mance evaluation are realized in the core domain. A hierarchical task representation was used
to realize the ability to evaluate performance of sub-tasks in a broader complex task such as
a surgical procedure. It is believed that a breakdown of a surgical performance and empiri-
cal results of the sub-tasks provides a more objective measure of performance, rather than a
weighted or subjective-based scoring mechanism. It is also believed that determining perfor-
mance of sub-tasks allows a more useful and robust evaluation that provides both the evaluator
and the trainee better feedback for each sub-task and phase of a complex task. Evaluation of
each sub-tasks allows the trainee to focus on improving the exact parts of the overall task that
were given a weaker performance score rather than guessing what they can improve upon. Pro-
viding an automatic and numerical evaluation method for the performance of sub-tasks allows
for trainees to view performance results without the need of an expert to evaluate performance;
this allows a trainee to perform surgical simulation tasks at anytime and anywhere, depending
on the portability of the simulator. Producing data and evaluating performance on the sim-
ple task level is a concept that is new and will be researched further in the future and it is
ideal to design a realistic and full surgical procedure scenario, where trainees will perform the
procedure and the individual tasks’ performance in the procedure will be derived.

To perform the data collection in a customized way as mentioned in the research questions,
a component pattern is utilized to provide the simple injection of custom data collection func-
tionality. The scenario simulator module allows the ability to robustly collect performance data
of performed scenarios. The module offers the ability for custom components to be plugged in
and are based to allow for custom behaviour in the module. Initially, there was no component
structure implemented and all of the functionality for time collection, event collection, logging
and such were hard coded into the simulator module. The result of this initial implementation
was that the simulator module required modification whenever custom data collection func-
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tionality was required, which violates the open/closed principle. It was observed that all of the
data collection functionality that was implemented in the initial simulator module contained
behaviour at three separate points: the beginning, the end and when an event is submitted by
the trainee. From the three different points, an abstraction was generated and all data col-
lection components followed this abstraction, the ISimulationComponent. If a simulator de-
veloper wishes to incorporate their own custom functionality for the specific simulator, it can
be accomplished by implementing a component that implements the interface and adding an
instance of it to the simulator module instance. The module allows for custom events to be
fired and enacted in the client application, while utilizing the proposed enactor design pattern.
Two components that are implemented that can be used for evaluating performance are the
time keeping component, which is responsible for tracking the amount of time spent perform-
ing each task and the custom accuracy component, which is responsible for determining how
accurate a trainee was in performing a specific task. Utilizing the data collected from these
two components can be used in the future to determine the performance of a specific task by a
trainee The playback module provides a way to means for better evaluation of a performance;
it proposed a new way to replay performances based off of the events that are submitted to
the simulator during the performance. Playback provides a means to evaluate performance
through the eye test and allows experts, evaluators and trainees to review a task performance
while providing custom data visualization at the same time as the playback. The purpose of
providing custom data visualization playback is to provide additional evaluation and learning
cues all in one place to improve the evaluation and learning process. It is planned that in the
future, experiments be designed and executed to determine if the additional data visualization
can provide a benefit to the learning and/or evaluation process.

Recall that it was a research question and goal to investigate if the proposed simulator
data collection framework could operate while leaving a low overhead footprint. A series of
tests were performed to evaluate the performance hit produced by the various data collection
components. The results showed that the data collection components did not require much
CPU time and executed their functionality quickly and would leave little to no effect on the
simulation loop, where the graphics, input and physics were calculated. The components that
logged to files on the disk were the slowest, (4.70 µs for CSV logging and 3.81 µs for plain test
logging) but these components can be improved to access the disk only once at the end of the
simulation performance, instead of N times during the performance, where N is the number
of events performed by the trainee. Utilizing the second approach would require only saving
the logs in memory during the execution the task and writing the logs to disk at the end of the
performance. The non-I/O data collection components required much less CPU time, where
the highest was the state chart component. (0.755 µs) For comparison sake, for a 60 frames per
second system, one frame or loop can take up to approximately 16,667 µs to complete, thus
even the I/O data collection components as-is, 4.70 and 3.81 µs, take up only 0.0282 % and
0.0228 % of the simulation loop respectively.

A client application was developed to demonstrate the ability of the framework in the
Unity3D game engine. The application allowed users to perform a simple targeting task and
the performance data is collected while the user performs the task. The task was to align the
tool with the longest axis of the ellipsoid target; this task resembles the task for a surgeon
to orient themselves with the longest axis of a brain tumor during the brain removal surgical
procedure. Meaningful data was collected by utilizing the provided time keeping component
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in the framework and developing a custom accuracy evaluation component that was plugged
into the simulation data collection module. It was shown that accuracy (position and direction
error) could be tracked and reported over the time of the task, as well as the final position and
direction error of the selection made by the trainee. The error values and time values alone
could be used to evaluate the performance of a task as they provide an objective score of how
well the trainee performed. The client application allows for the generation of custom sce-
nario parameters for the task to vary the target’s position and thus varying the difficulty of the
task. The generation of custom scenario parameters will be utilized in the future when trials
will be used to develop a Fitts’ law model of the task. The client application allows for the
ability to playback previous performances with additional data overlaid on the screen utilizing
the playback module of framework. It can be investigated in the future to determine whether
the data overlay provides additional benefit to the learning and evaluation process. The client
application allows for the "ghosting" feature, which allows for an additional tool to be shown
that would be controlled by the playback while the user is also able to perform the task at the
same time. It is a possibility to design and execute an experiment in the future to investigate
the effect the ghosting feature may have on the learning process in the future.

This thesis had a few research questions that revolve around an idea that hasn’t been de-
veloped and implemented before and has shown that it is possible to develop a customizable
and yet general performance evaluation framework for simulators. It was shown that the per-
formance footprint left by the framework’s data collection components was small and did not
affect the performance of the simulator in question. A simple targeting task simulation was
implemented using the Unity3D game engine and utilized the developed framework to collect
meaningful data for performance evaluation and provided playback capability to evaluate per-
formance through the eye test. A lot of additional ideas are proposed in this thesis that are not
validated and if there was more time, it would have been great to be able to validate and test
these ideas. It is a goal in future work to develop tests to validate the various ideas proposed in
this thesis, such as the effect of the playback data visualization overlay as a learning and eval-
uation tool, the ghosting feature as a learning tool and the ability to predict time to complete
the task based on the index of difficulty of the simple descendant tasks in a task hierarchy to
name a few. This thesis provides the foundation of a new and expandable idea to the field of
simulation task performance evaluation and it is the goal of future work to expand this idea and
validate it to the point where it is a viable option to simulation developers to be able to collect,
analyze and evaluate task performance data.

7.2 Future Work
A desired feature of the framework would be able to work clients of any programming lan-
guage. Currently, the framework is developed in C# and .NET and it works with Unity3D
through the C# scripting engine. A plan to create a web API to host the C# simulator module
that would communicate over HTTP has been proposed, so any client language or framework
can be used with the scenario simulator module.

A web application to create and author the scenarios that will be simulated is greatly desired
and a C# Windows Forms prototype has been developed. Ideally the prototype will be moved
to a MVC5 web application to allow greater portability. Client simulator applications would
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be able to load scenario files from this web application.
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