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Abstract 

Counts of migrating animals are used to monitor populations, particularly for species that are 

not well sampled by breeding and wintering surveys.  The use of migration counts for 

population monitoring relies on the assumptions that new individuals are detected each day, 

and that probability of detecting those individuals remains constant over time.  The impact of 

violating these assumptions on our ability to estimate reliable population trends is not well 

understood. Further, on a broad spatial scale, our ability to combine data across sites to 

estimate regional or national trends has been limited by the possibility that trends vary 

regionally in an unknown way. Using simulated migration count data with known trend, I 

tested whether sampling effort (daily vs. non-daily sampling) and a temporal change in 

stopover duration (and thus detection probability) influenced our ability to estimate the 

known trend.  I also tested whether analyzing data as hourly, daily or annual counts, or 

accounting for random error using analytical techniques, could improve accuracy and 

precision of estimated trends by reducing or better modeling variation in counts, respectively.  

Further, using model selection analytical techniques, I tested whether we could detect when 

trends vary regionally using current or increased number of sampling sites in a region.  My 

findings show that trends can be improved for species with highly variable daily counts by 

sampling less frequently than daily or by aggregating hourly counts to annual totals.  

Commonly and rarely detected species were better analyzed as daily counts, collected daily 

throughout the migration. A linear increase in stopover duration over time biased trends and 

lead to a high probability of detecting an incorrect trend, which is only improved by both 

reducing sampling effort and including a covariate for stopover duration in regression 

analyses.  Regional variation in trends can be detected, and increasing the length of the time 

series was more efficient for improving accuracy and precision of regional trends than 

increasing the number of sites sampled.  Continued advancement of our knowledge of 

breeding origins and stopover duration of migrants are priorities for the further refinement of 

trends estimated using migration counts.      
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Chapter 1 - Introduction 

1 General Introduction 

1.1 Monitoring wildlife populations 

Wildlife population monitoring provides a foundation to assess population status and the 

success of management efforts by quantifying temporal and spatial variation in species 

richness (Studeny et al. 2013), abundance (Bildstein et al. 2008, Crewe et al. 2008, Kéry 

et al. 2010) and demographics (Pleasants and Oberhauser 2013), and how patterns of 

change relate to environmental processes including landscape and climate change 

(Parmesan 2007, Paprocki et al. 2014). Sampling protocols, including the location and 

spatial extent of sampling, are often chosen to balance data quantity and quality with 

logistical constraints, including site accessibility, detectability of the target organism(s), 

availability of observers to collect data, and financial constraints.  In order to collect data 

at the broad spatial scales required to assess range-wide population variability, citizen 

scientists are often engaged in the collection of monitoring data (Greenwood 2007).  

Engaging citizens in science has many advantages beyond expanding the geographic 

scope of data collection, including educating the public on our role in ecosystems, 

engaging the public in ecosystem planning and management efforts, and promoting 

public involvement in policy development (Conrad and Hilchey 2011).   

Population trends of wildlife are most commonly estimated using counts collected on 

breeding or wintering grounds (Kéry and Royle 2010, Sauer and Link 2011, Bled et al. 

2013).  However, because geographic coverage of broad-scale breeding and wintering 

surveys is typically restricted to accessible and human populated regions (Bart et al. 

1995) where volunteer engagement is more likely, these surveys may not provide a 

representative sample for taxa that breed in remote or inaccessible locations.  Population 

trends for northern and boreal breeding birds, for example, are often derived from 

breeding bird survey (BBS) data collected in the southern portion of their breeding range, 

where breeding densities are often low and may not be characteristic of change occurring 

in the northern forests, where the bulk of the populations breed (e.g., northern 
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waterthrush; Bird Studies Canada et al. 2006).  Further, raptors tend to be secretive 

breeders and are not well captured by breeding bird surveys.  Counts of individuals 

migrating to or from their breeding grounds (hereafter 'migration counts') are used as an 

alternative source of data to estimate trends for these and other migrant taxa (Francis and 

Hussell 1998, Gibbs et al. 2006, Farmer et al. 2007, Bildstein et al. 2008, Crewe et al. 

2008, Findlay et al. 2011).  Trends derived from songbird migration counts have shown 

correspondence with breeding surveys (Francis and Hussell 1998).  

Currently in North America, over 200 sites collect raptor migration counts (Hawk 

Migration Association of North America 2015), over 20 sites collect migration counts for 

nocturnally migrating songbirds (Canadian Migration Monitoring Network, CMMN; 

Crewe et al. 2008) and at least four sites collect counts of migrating monarch butterflies 

each year.   The majority of CMMN sites are located in populated regions along the 

southern border of Canada.  The placement of count sites south, or in the southern 

portion, of a species' breeding range allows a single site to capture individuals from a 

broad geographic range (Dunn et al. 2006).  The entire breeding range can therefore be 

sampled with relatively few sites (Dunn et al. 2006), providing financial and logistical 

benefits over conducting labour- and financially-intensive surveys in unpopulated, 

roadless regions.  Raptor and monarch butterfly count sites are also typically located in 

human populated regions and along known migration corridors, where the ability to 

recruit and maintain volunteers and the probability of detecting migrants are maximized.  

Migration counts are typically collected as hourly (e.g., raptors; Bildstein et al. 2008) or 

daily (e.g., songbirds: Crewe et al. 2008; monarch butterflies: Gibbs et al. 2006; 

shorebirds: Drever et al. 2014; whales: Findlay et al. 2011) counts of the number of 

individuals detected actively migrating past a count site (Bildstein et al. 2008, Findlay et 

al. 2011) or as of the number of individuals captured or detected at a count site while on 

migratory stopover (Gibbs et al. 2006, Crewe et al. 2008, Robinson 2012).  The number 

of individuals detected on each sampling occasion is assumed independent and 

proportional to the size of the hourly or daily migratory population, and the sum of 

individuals observed over an entire migration is assumed representative of the size of the 

monitored population each year (Dunn 2005).  In other words, migration counts provide 
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an index of population abundance, where any fluctuation or trend in annual indices over 

time is assumed to be proportional and representative of any fluctuation or trend in the 

size of the monitored population.  The effect that violation of the assumptions of 

independence and proportionality could have on precision and accuracy of population 

trends derived from migration count data is not well understood. 

Further, the breeding origin of migrants detected at each count site is not known or 

known only broadly.   Analysis of stable hydrogen isotopes in feathers of several 

songbird species detected across the CMMN network suggests that breeding origin can 

vary among sites and among species at a site (Dunn et al. 2006).  Therefore, factors that 

influence breeding success, overwinter survival, and detection of monitored populations 

can also vary regionally among sub-populations, which could result in region-specific 

rates of population trend.   Because specific breeding origin and the potential for 

variation in trends among sub-populations and sites is unknown, migration count data 

have not been combined across sites to estimate regional or national rates of population 

trend, which limits their use for broad-scale population monitoring.  The ability to model 

regional variation in trends has not been tested, and would provide a first assessment of 

the use of migration counts to estimate regional and national trends. 

1.2 Factors influencing the relationship between counts and 
population size 

Only in rare circumstances and at small spatial scales can true abundance of animals, N, 

be quantified.  Rather, monitoring programs derive estimates of N from counts, C, of the 

number of target organisms detected, where probability of detection = p (Nichols et al. 

2009).  For migration counts, then, the sum of counts across n days in a migration 

provides an index of annual abundance that relies on the assumption that the relationship 

between C and N does not change over time, i.e., ∑ � � � � ���	��
 .  Because counts are 

conditional on detection, long-term trends in population counts are proportional to trends 

in population size only if probability of detection remains consistent over time 

(assumption of proportionality).     
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In most circumstances, however, the relationship between counts and population size is 

not well understood, nor is the potential for variation in probability of detection to 

introduce bias and error to the relationship (Dickinson et al. 2010).  Probability of 

detection can be broken down into several components, including the probability that 

individuals are present at the count site during sampling (pp); given presence, the 

probability that individuals are 'available' to be detected during sampling (pa), i.e. 

vocalizing or otherwise visible to the observer; and given presence and availability, the 

probability that an individual will be detected by an observer (pd), where � � �� � �� �
�
 (Nichols et al. 2009). Neglecting to account for sources of temporal change in any 

component of detection probability during analysis can lead to poor inference from 

results (Hochachka and Fiedler 2008, Kéry et al. 2009, Nichols et al. 2009). 

Migration counts tend to be highly variable among days and years.  The probability that 

individuals will migrate past a count site can vary annually with individual variation in 

migration route (Vardanis et al. 2011).  Further, weather fronts can result in large 

migratory movements, when a higher than average proportion of the migratory 

population is detected at a site (Allen et al. 1996).  For species counted on stopover, the 

probability of stopping and duration of stopover can also vary among days and years with 

weather (Meitner et al. 2004, Schaub et al. 2004, Calvert et al. 2009), physiological 

condition (Schaub et al. 2008) or with habitat structure and quality.  Migratory stopovers 

regularly extend greater than 24 hours (Schaub et al. 2001), violating the assumption of 

independence.  Because stopovers typically occur at a much larger scale than the count 

area (Buler et al. 2007, Taylor et al. 2011), probability of presence and thus counts will 

also vary as a result of temporary emigration from the count site.     

Given presence at a site, frequency of bird vocalization (availability) and detection of 

migrants by an observer will vary with weather conditions, distance and orientation from 

the observer, as well as with habitat structure (Schieck 1997, Lengagne and Slater 2002).  

Variation in observer experience, age, hearing ability or sight can also increase variability 

in counts (Link and Sauer 2002, Dickinson et al. 2010).  Further, a reliance on citizen 

scientists for data collection has the potential for inconsistent use of sampling protocols, 

inconsistent or sporadic sampling effort and high rates of volunteer turnover (Dickinson 
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et al. 2010), all of which can increase variability in probability of detection, and therefore 

in the relationship between counts and population size.   

Variability in migration counts will result in less precise trends and lower statistical 

power, but it is often assumed that variation in probability of detection alone will not bias 

trends if detection probability varies randomly and not systematically over time (Farmer 

et al. 2007).  However, systematic variation in detection probability can be introduced in 

many ways.  Climate or landscape change and its influence on breeding distribution 

(Parmesan 2007, Paprocki et al. 2014), for example, can result in a directional change in 

the proportion of the migratory population that migrates past a site, which at the scale of 

a single site, could be misinterpreted as a change in population size.  Long-term trends in 

daily survival probability, trapability and stop-over duration of migrating songbirds and 

shorebirds have also been reported (Ydenberg et al. 2004, Hochachka and Fiedler 2008, 

Calvert et al. 2009), which if left unaccounted for can bias trends (Hochachka and Fiedler 

2008).  Because recaptures cannot be excluded from counts of unmarked migrants, a 

change in stopover duration can result in a corresponding change in the proportion of the 

migratory population detected by counts, as well as in the proportion recounted on one or 

more subsequent sampling occasions.  The effect of a systematic change in stopover 

duration on the precision and accuracy of trends in counts of unmarked migrants has not 

been explored. 

1.3 Methods to reduce or model variability in counts 

Many of the sources of variability in counts that are commonly attributed to the collection 

of data by citizen scientists, including variable effort and skill, can be minimized with 

appropriate sampling design, and by standardizing sampling protocols and observer 

training (Dickinson et al. 2010).  For taxa counted on migratory stopover, sampling 

migrants at exposed coastal sites with poor stopover habitat quality can minimize 

violation of the assumption of independence by lowering the probability that individuals 

will remain on site for more than 24 hours (Hussell and Ralph 1998, 2005).  Placing 

count sites at exposed coastal sites with relatively stable habitat structure will also 

minimize the probability that habitat succession will alter stopover behaviour and bias 

trends.  Habitat management is encouraged at sites experiencing habitat succession 
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(Hussell and Ralph 1998, 2005), however this is rarely achieved in practice, in part 

because the scale at which stopover decisions are made is unknown, will vary among 

sites and species, and is likely much larger than a given sampling area (Taylor et al. 

2011). 

Filtering data prior to analysis can also reduce variability in counts and improve the 

precision and accuracy of estimated trends.  Data can be filtered to remove or flag for 

verification any inconsistent data or individuals that regularly submit unusual or unlikely 

observations (Dickinson et al. 2010).  In order to better meet the assumptions of linear 

regression (normality, heteroscedascity), previous analyses of landbird migration counts 

also excluded rare species and dropped observation days for remaining species that were 

predicted to have fewer than zero birds (Francis and Hussell 1998, Farmer et al. 2007).  

Further, these previous analyses excluded species that were not sampled during 75 % or 

more of their migration (Francis and Hussell 1998, Farmer et al. 2007).  Despite efforts to 

standardize sampling protocols, it is often the case that the entire migration is not 

sampled for every species detected at a site.  The effect of sampling less than 75 % of the 

migration or less frequently than daily on accuracy and precision of trends has not been 

formally examined using migration counts with known rate of change. 

Hourly and daily counts of unmarked migrants do not meet the assumptions of statistical 

models that allow the direct estimation of detection probability from the data (e.g., mark-

recapture: Hochachka and Fiedler 2008; N-mixture models: Royle et al. 2004).  Double 

observer approaches have been used to estimate and account for probability of observer 

detection (�
) in trend analyses (Berthiaume et al. 2009), but in practice, a double-

observer approach is unlikely to be maintained over the long term at most migration 

count sites that rely on volunteers for data collection. As an alternative to explicitly 

estimating probability of detection, relevant correlates of detection, including local 

weather, climate, effort and observer skill, can be collected and used as covariates in the 

estimation of trends using migration counts (Francis and Hussell 1998), though the effect 

of covariates on abundance and detection probability is confounded, and could be acting 

on N, p, or both.     
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Choice of analytical technique can also influence precision and accuracy of trends.  The 

development of new methods to model and evaluate the use of large monitoring datasets 

for population monitoring has been an increasingly published topic in recent years (e.g., 

Sauer and Link 2011, Dennis et al. 2013), and is an important aspect for improving the 

utility of monitoring data (Dickinson et al. 2010).  Previous analyses of songbird, raptor 

and monarch butterfly migration counts in North America have used linear regression to 

estimate annual indices, and either linear regression or re-parameterized polynomial 

regression to estimate trends (Francis and Hussell 1998, Farmer et al. 2007, Davis 2012).  

Generalized linear or additive models are now standard in the analysis of count data 

because some of the assumptions of linear models (normality, heterogeneity) are relaxed 

(O’Hara and Kotze 2010).  Hierarchical models can extend generalized linear or additive 

models by allowing variation in annual counts, for example, to be partitioned between 

trend and random error, which can improve precision and inference drawn from 

monitoring data (Kéry 2010).  A recent comparison of hierarchical models with 

generalized linear and additive models using simulated BBS data with known trend 

showed that hierarchical models resulted in more accurate and precise estimates of trend 

(Amano et al. 2012).  Further, temporal auto-correlation of counts among days and years 

can be accommodated using hierarchical models, which should result in more 

conservative (and realistic) estimates of precision (Ross et al. 2012).  For species that 

vary widely in abundance among days and years, aggregating hourly counts to annual 

totals has also been shown to improve precision of trend (Miller et al. 2002).  A 

comparison of various modeling techniques in terms of their ability to recover accurate 

and precise trends has not been completed. 

1.4 Goals and objectives 

The overall goal of my thesis was to assess the use of migration counts for broad-scale 

population monitoring.  I used simulated migration count data with known underlying 

rate of change and realistic levels of random variation (error) in counts, to assess how 

well trends could be recovered under ideal conditions, and when the assumptions of 

proportionality and count independence were violated.  I also examined how precision 

and accuracy of trends varied with analytical technique, sampling frequency (e.g., 
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number of days per year), number of sites in a region, and length of the time series, in 

order to make recommendations to optimize both the recovery of trends and sampling 

effort.  My intention is that results from this work will provide a better understanding of 

how sampling protocols and analytical techniques can be used to optimize the use of 

migration counts for broad-scale population monitoring, and lead to the development of 

further refinements. 

1.4.1 Effect of modeling random effects on estimated trends 

In the Chapter 2, I simulated 10- and 20-year datasets of hourly raptor migration counts 

with realistic levels of low and high variation in annual, daily and hourly counts, to 

compare the precision and accuracy of population trends estimated using generalized 

linear models and generalized linear mixed (hierarchical) models that assumed counts 

were distributed with variance equal to the mean or greater than the mean (over-

dispersed).  Models were compared for three species that represented a commonly 

detected species, a rarely detected species with zero-inflated counts, and a super-flocking 

species with highly over-dispersed counts.  Results from this study clearly show that 

partitioning variation among fixed and random effects improved power and resulted in a 

lower probability of detecting a false trend than did generalized linear models. 

1.4.2 Effect of incomplete sampling of a migration on estimated 
trends 

Even when data collection protocols are standardized, it is often the case that insufficient 

volunteer capacity can result in incomplete coverage of the migration window, or 

infrequent or sporadic sampling of days within a migration.  In Chapter 3, I tested how 

the timing and frequency of sampling during a migration can influence our ability to 

recover population trend by sub-setting the hourly count datasets simulated in Chapter 2 

in multiple ways: weekends only, first 25 %, 50 % and 75 % of the migration window, 

and by randomly sampling 40 %, 60 % or 80 % of observation days throughout the 

migration.  My results show that while power typically declines with a decline in 

sampling coverage, probability of detecting a false trend does not increase.  Further, for 
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highly over-dispersed species, our ability to recover a precise and accurate trend can 

improve by randomly sub-sampling data. 

1.4.3 Effect of aggregating counts on estimated trends 

Some evidence has shown that aggregating migration counts of highly over-dispersed 

species can improve precision of estimated trends (Miller et al. 2002).  However, 

aggregating counts also results in a loss of information about the daily and seasonal 

distribution of counts, which may improve estimates for some species (Dennis et al. 

2013).  In Chapter 4, I use simulated hourly raptor migration counts for a common, rare 

and over-dispersed species to test whether aggregating hourly counts to daily or annual 

totals influenced the accuracy and precision of trends.  In this chapter, I also assess 

whether estimating a zero-inflation parameter using hierarchical models improved the 

accuracy and precision of trends for data with a high proportion of zero-observation 

counts.  My findings suggest there is little benefit of analyzing hourly as opposed to daily 

counts for common and rare species, and support previous work that suggests power 

could be improved for highly over-dispersed species by aggregating counts to annual 

totals.  Modeling a zero-inflation parameter did not improve the precision or accuracy of 

estimated trends for these data. 

1.4.4 Effect of a systematic change in probability of detection on 
estimated trends 

A change in the stopover duration of migrants will be more likely to occur in response to 

climate and habitat change.  In Chapter 5, I use simulated white-throated sparrow 

(Zonotrichia albicollis) daily migration count data to test how variation in stopover 

duration influenced the precision and accuracy of estimated trends.  I simulated data with 

constant stopover duration, and compared trend estimates with data where stopover 

duration was allowed to vary randomly, cyclically (e.g., in response to climatic cycles) or 

linearly over time.  Results from this study clearly show that a linear change in stopover 

duration will bias trends and lead to a high probability of misinterpreting trends as 

population change.  Importantly, this analysis also shows that collecting additional data 

on stopover duration is imperative to test whether a change in stopover duration has 
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occurred, and if so, that sampling modifications to reduce the incidence of recounting 

individuals on subsequent days must be made in addition to modeling the underlying 

change in stopover duration when estimating trends. 

1.4.5 Use of model selection to model regional variation in trends 

Combining migration count data across sites represents an important step toward their use 

in regional and national population assessments.  As a first step toward this goal, in 

Chapter 6 I used simulated migration counts for a commonly and rarely detected songbird 

to test whether model selection could be used to model regional variation in trends with 

current (based on CMMN network) or increased number of sites, when underlying 

pattern of change among regions is not known.  My results show that model selection 

shows promise for modeling regional variation in trends.  Even when a model that 

assumes regional differences in trend was selected for datasets with no underlying 

variation in trend, results show that there is little impact on bias or on probability of 

drawing false inference from the data, particularly using longer (40 year) time series.  

Results also suggest that investing in the current selection of CMMN sites over the long 

term would be more efficient at improving trend estimates than investing in the collection 

at more sites for fewer years.  In fact, increasing the number of sites can result in overly 

precise trends and higher probability of error than when fewer sites are analyzed in each 

region. 

1.4.6 Application to real data: Monarch butterfly trends 

In Chapter 7, I apply hierarchical models and model selection to real migration counts 

collected for monarch butterflies at two sites at Long Point, Ontario, Canada over the past 

20 years.  Both sites vary in habitat structure, which may influence stopover probability 

and duration of monarchs, but are assumed to be detecting the same migratory 

population, and should therefore show similar rates of change if site-specific changes in 

detection probability (e.g., in response to change in stopover duration) are not occurring.  

I used model selection to test whether a difference in trend between sites was supported.  

Results show that a difference in trend among sites was not supported, and suggest that 



11 

 

monarch counts have declined by approximately 5 %year-1, a trend that is supported 

primarily by declines in the last several years. 
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Chapter 2  

2 Hierarchical models lower the probability of drawing 
false inference about trends in the number of animals 
counted on migration 

2.1 Introduction 

Conservation efforts rely on precise and accurate estimates of population trends to assess 

species status and inform management efforts (COSEWIC 2012).  Choice of analysis 

method can influence precision and accuracy, and therefore inference drawn about long-

term trends derived from population counts (Amano et al. 2012).  The development of 

new modeling techniques to maximize the utility of data collected by large-scale 

monitoring programs is therefore an active field of study (Thomas 1996, Sauer and Link 

2011, Amano et al. 2012, Bled et al. 2013).   

Hourly counts of raptors actively migrating overhead during migration are currently 

collected at over 200 raptor watch sites across Central and North America (Hawk 

Migration Association of North America 2015), and are often used to assess raptor 

population trends (Farmer et al. 2007, Bildstein et al. 2008).  Previous published analyses 

estimated trends using log-transformed linear regression (Farmer et al. 2007, Bildstein et 

al. 2008).  However, generalized linear and additive models (GLMs/GAMs) are currently 

standard in the analysis of count data (Fewster et al. 2000, O’Hara and Kotze 2010, Fedy 

and Aldridge 2011, Dennis et al. 2013) because the assumptions of the linear model (e.g., 

heterogeneity) are relaxed and a non-normal distribution of errors can be specified 

(O’Hara & Kotze 2010).  Thus, it should no longer be necessary to filter migration count 

data to better meet the assumptions of linear regression, for example by excluding rare 

species with many zero-observation counts or by dropping days predicted to have fewer 

than zero birds (Francis and Hussell 1998, Farmer et al. 2007, Bildstein et al. 2008).  

Further, hierarchical models, including generalized linear mixed models (GLMMs) and 

generalized additive mixed models (GAMMs) extend GLMs/GAMs to allow variation in 

counts to be partitioned among fixed and random effects (Gelman et al. 2014), where the 
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population means of random effects are assumed to be drawn from a specified 

distribution, and are thus no longer assumed independent as are fixed effects (Kéry and 

Schaub 2011).   Because the dependency among sample means is acknowledged by the 

specification of a random effect, random effects can result in more realistic estimates of 

precision around population estimates (Kéry and Schaub 2011), and therefore lower 

probability of drawing false inference from the data (i.e., detecting a false positive result).  

Using simulated Breeding Bird Survey data, hierarchical models also resulted in more 

accurate estimates of population trend than did GLMs and GAMs (Amano et al. 2012).   

Most common breeding or wintering bird surveys estimate annual indices of abundance 

and long-term trends using a single observation count per site per year, where the count 

might represent the total abundance across assumed independent stops along a route 

(Link et al. 2008) or the maximum abundance across repeated visits of an assumed closed 

population (Fedy and Aldridge 2011).  Because migration counts are typically analyzed 

as hourly or daily counts of the number of individuals migrating past a given geographic 

location during the annual spring or fall migration(s) (Farmer et al. 2007, Bildstein et al. 

2008, Crewe et al. 2013), we assume that a new cohort of migrants is detected during 

each sampling occasion. Across days in a migration, the total number of individuals 

counted is assumed proportional to the size of the monitored population (Dunn 2005).  

Migration counts tend to be highly variable, due in part to the influence of climate and 

local weather conditions on variation in annual migration route (Vardanis et al. 2011), 

probability of migrating on a given day (Allen et al. 1996, Miller et al. 2002), and 

probability of observer detection (Berthiaume et al. 2009).  Thus, a large number of often 

highly variable observation counts are used to estimate a long-term trend.  The 

specification of random effects in the analysis of migration counts can account for the 

dependence among annual, daily and hourly counts, and partition variation in counts 

among fixed (e.g., trend) and random (e.g., random error around underlying trend)  

effects, which should result in more appropriate estimates of trend precision.   

The goal of this chapter was to use simulated hourly migration counts with a known long-

term trend to provide a first formal comparison of GLMs and GLMMs in terms of the 

accuracy and precision with which the simulated trend was recovered.  Because the 
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simulated trend was linear on a log scale, I did not compare additive models.  Count data 

typically follow a Poisson distribution, or, when variance is greater than the mean (over-

dispersion), a negative binomial distribution (Kéry 2010).  I therefore compared the 

precision, accuracy, power and probability of error (false positive) for trends estimated 

using a GLM with Poisson or negative binomial distribution of errors, with a GLMM 

with Poisson or log-normal Poisson distribution of errors.  A log-normal Poisson 

distribution models over-dispersed count data similar to the negative binomial, by fitting 

an observation-level random effect (Elston et al. 2001); over-dispersed Poisson models 

have been used previously to estimate bird population trends using BBS data (Link and 

Sauer 2002; Sauer and Link 2011; Bled et al. 2013; Sauer and Link 2002).  Counts were 

simulated to represent species with three types of count distributions, to test whether 

zero-inflation and over-dispersion of counts influenced the performance of each model: 

sharp-shinned hawk (Accipiter striatus) is a commonly detected species with relatively 

low dispersion of counts; broad-winged hawk (Buteo platypterus) is a super-flocking 

species with highly over-dispersed counts; and merlin (Falco columbarius) is typically 

detected in low numbers, with a high proportion of 0-observation counts, i.e., counts are 

highly zero-inflated.  Further, to test how length of the time series and magnitude of 

random error influenced trend recovery under the different model structures, I simulated 

10- and 20-year time series with realistic low and high levels of annual and daily random 

error in counts for each species. 

2.2 Methods 

2.2.1 Real Data Summary 

I accessed raptor migration counts online through the Hawk Migration Association of 

North America (Hawk Migration Association of North America 2015) for sharp-shinned 

hawk, broad-winged hawk and merlin collected at eight eastern North American hawk 

watch sites: 1) Beamer conservation area (Ontario, Canada: 1995-2009); 2) Cape May 

(New Jersey, USA: 1974-2004); 3) Hawk Mountain (Pennsylvania, USA: 1966-2009); 4) 

Hawk Ridge (Minnesota, USA: 1974-2009); 5) Holiday Beach (Ontario, Canada: 1979-

2009); 6) Militia Hill (Pennsylvania, USA: 1992-2009); 7) Montclair (New Jersey, USA: 

1977-2009); and 8) Waggoner’s Gap (Pennsylvania, USA: 1987-2009).  These sites 
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collect hourly counts of the number of individuals of each species actively migrating 

overhead during daylight hours throughout spring and/or fall migration.  Detailed count 

methodology for each site is described elsewhere (Hawk Migration Association of North 

America 2015).  For each species and site, I filtered data to exclude days of the year at 

the tail ends of the migration window that were not included in the middle 95 %ile of 

observations.  I then estimated the mean and coefficient of variation (CV) in hourly, daily 

and annual counts, and in the proportion of 0-observation hours and days, and used those 

values as a guide to simulate data with realistic low and high levels of variation in counts 

for each species (Table B1).  I used data from eight separate sites to estimate a realistic 

range in expected counts for each species because counts can vary among sites due, for 

example, to variation in the size of the source population among sites, variation in the 

proportion of the source population that migrates past a given site, and variation in the 

probability that individuals migrating past a site will be detected (Dunn 2005).   

2.2.2 Migration Count Simulation 

Hourly raptor migration counts were simulated in R (R version 2.14.2, R Core Team 

2013; see Appendix A for simulation code and parameterization).  The simulation model 

assumed that the count population at a migration monitoring site was a consistent and 

representative sample of the size of the monitored population.  Total simulated number of 

birds (n) migrating in the first year, ���
, was defined by the simulation, and chosen to 

approximate the observed mean total count (across years and sites) observed with real 

migration count data (Table B1).  Total number of birds available to be counted in all 

subsequent years, ���
, was then a function of starting population size, a defined constant 

rate of population change, β, random normal error on the log scale (i.e., stochastic 

variation in annual counts), and Poisson error on the response scale (i.e., process 

variation in annual counts): 

�� �  ������� � � ���� �����
 � �1 �  ��� �   �� , ��  ~ ��0, $%�, 

where random error in the size of the annual count population was assumed to 

incorporate annual variation in migratory behaviour, including variation in migration 

route (Alerstam et al. 2006, Vardanis et al. 2011), and variation in detection probability 
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due to extrinsic factors including habitat and climate (e.g., ENSO cycles; Calvert et al. 

2009).  

I then distributed the annual count population across days in a migration season, where 

length of the migration season varied among years with normal error.   The daily 

migratory population in year i on day j, ��&, was a function of the size of the annual count 

population, ��, and a seasonal probability that birds migrated on a given day, ��&, where 

the seasonal probability assumed a normal density to allow peak migration to occur mid-

season (Miller et al. 2002), and with added random error on the log scale and negative 

binomial error on the response scale to simulate stochastic and process variability in the 

seasonal distribution of counts: 

��& �  �'()�����& , *. ,-.� � �'()������ � ��& �  ���, *. ,-.�, 
where k.day was the size of the negative binomial observations (clumping parameter) and 

was defined by the simulation (Appendix A), �� ~ ��0, $%� and ��&~ ��/�, $�%�, and 

where /� and $� varied with year to simulate annual variation in the seasonal distribution 

of the annual count population. Birds then had a binomial probability of being recruited 

to, or arriving at, the count site each day:    

�0'102�3�& ~ 4���5���&, �0�&), 

where probability of recruitment, �0�&, was generated as a uniformly distributed random 

variable between 0 and 1 to simulate random variation in the recruitment process due to 

weather, habitat, or any combination of factors, with added Poisson variability to 

simulate the temporal autocorrelation among days in a season that can result from 

weather fronts, for example, where adjacent days have more similar weather conditions, 

and therefore more similar probabilities of recruitment, than days further apart.  Below a 

specified threshold, �0�& � 0 and no birds were recruited from the available migratory 

population.  All birds that were not recruited from the migratory population on day j were 

carried forward to the following day’s migratory population, ��,&6
, which allowed the 
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number of available birds to build up and add the extra variability typically observed with 

migration counts.   

Each day, the number of birds recruited in hour k, �0'102�3�&7, was a function of the 

number recruited each day, �0'102�3�&, and a daily probability that birds migrated on a 

given hour, ��&7, where the daily probability assumed a normal density distribution to 

allow peak migration to occur mid-day, with added random error on the log scale and 

negative binomial error on the response scale to simulate stochastic and process 

variability in the daily distribution of counts: 

�0'102�3�&7 �  �'()�����&7, *. 80� � �'()�����0'102�3�& � ��&7 �  ��&�, *. 80� 

where k.hr was defined by the simulation (Appendix A), ��& ~ ��0, $%� and 

��&7~ ��/�&, $�&% �, and where /�& and $�& varied among days to simulate variation in the 

hourly distribution of the daily migratory population.  The simulation model assumed that 

all birds departed the count site prior to the following count, i.e. hourly and daily counts 

were independent observations.  Because probability of detection was confounded with 

probability of recruitment and population size, these could not be estimated 

independently. 

Simulation parameter values (Table A1) were chosen to maximize the concordance of 

real and simulated counts in terms of mean and coefficient of variation of hourly, daily 

and annual counts, and of the proportion of 0-observation hours (Tables B1-B4).  I 

ensured the distribution of real and simulated counts represented similar distributions of 

counts using quantile-quantile plots (qqplot, stats package, R version 2.14.2).   

2.2.3 Simulated Factor Levels 

I simulated data for three representative species: 1) broad-winged hawk, which migrates 

in large flocks, and typically shows high over-dispersion in counts among days and years 

(hereafter ‘over-dispersed’; 2) sharp-shinned hawk, which is a commonly detected 

species that does not vary as widely in abundance from day to day (hereafter ‘common’); 

and 3) merlin, which is detected less frequently and in low numbers, i.e. is considered a 
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rarely detected species with a high proportion of 0-observation counts (hereafter ‘zero-

inflated’).  I simulated 10- and 20-year datasets, with an annual rate of population change 

of -3.9 %year-1, which is approximately a 30 % decline in 10 years or 50 % decline in 20 

years.  A decline of 30 % in 10 years is often used as an assessment criterion for species 

at risk (COSEWIC 2012).   

For each species and time series length, I simulated 1000 datasets under each of four 

variance scenarios: 1) low annual and low ‘daily and hourly’ variation in counts 

(hereafter ‘daily’ variation), 2) low annual and high daily variation, 3) high annual and 

low daily variation, and 4) high annual and high daily variation.  Thus, in total 8000 

datasets were simulated for each species (2 time periods × 1 trend × 4 variance 

scenarios). 

2.2.4 Data Analysis 

I analyzed all simulated datasets in R  (v. 2.14.2, R Core Team 2013) using 1) GLM with 

Poisson distribution (‘GLM Pois’; MASS Package: Venables and Ripley 2002), 2) GLM 

with negative binomial distribution (‘GLM NB’; MASS Package), 3) GLMM with 

Poisson distribution (‘GLMM Pois’; lme4 Package, Bates et al. 2013), and 4) GLMM 

with log-normal Poisson distribution (‘GLMM LnPois’; lme4 Package) using a high 

performance computing network (Shared Hierarchical Academic Research Computing 

Network 2015).  A continuous year effect was fit to estimate log-linear trend in counts 

over time.  I fit first and second-order polynomials for day and hour to model the 

seasonal and daily distribution of counts.  For all mixed models, I also estimated random 

effects for year, day nested within year, and hour, and for the log-normal Poisson 

GLMM, I included an additional random observation level effect to account for over-

dispersion of counts (Elston et al. 2001). The random day effect was nested within year to 

allow random error in the seasonal movement of birds to vary among years.  For each 

simulated dataset, I extracted the estimate, standard error, 95 % confidence limits (CL) 

and p-value of the fixed year coefficient, and year coefficients were transformed into a 

rate (%year-1) using ( )( )100 exp 1yearcoefficient× − .    
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For each species, I tested whether bias (estimated – simulated trend) or standard error of 

estimated trends (n = 1000 simulated datasets × 4 model structures × 4 variation levels × 

2 time series lengths = 32,000 bias or standard error estimates) varied among model 

structures, with level of annual and daily variation, and with length of time series using a 

generalized linear model with Gaussian distribution  (identity link; MASS package, R 

version 2.14.2; Venables and Ripley 2002), where bias or standard error was the response 

variable, and model structure, variation level, length of time series and the interaction 

between model structure and variation level were explanatory factors.  I log-transformed 

standard errors to better meet the assumption of normality. I used backward model 

selection using stepAIC in R (MASS Package, R version 2.14.2; Venables and Ripley 

2002) to determine the model parameters with greatest support.   

I also examined how bias and precision of the estimated trend influenced the probability 

of drawing false inference from the data by plotting 1) coverage, i.e. the proportion of 

simulated datasets where the simulated trend fell within the CL of the estimated trend, 2) 

power, i.e. the proportion of simulated datasets with good coverage and a significant year 

effect (p <0.1), and 3) rate of error, i.e. the proportion of simulated datasets with a 

significant trend despite poor coverage of CL.  A α-value of 0.1 was used because it 

better balances the probabilities of detecting false positive (type I error) and false 

negative (type II error) trends using bird monitoring data (Bart et al. 2004). 

2.3 Results 

For over-dispersed counts with low annual and high daily variation, and zero-inflated 

counts with high annual and high daily variation, log-normal Poisson GLMMs often 

resulted in singular or false convergence (over-dispersed: 5.5 % and 4.8 % of simulations 

did not converge for 10 and 20 year datasets, respectively; zero-inflated: 4.3 % did not 

converge for 10 and 20 year datasets), signs that the model specification was too complex 

for the data.  Datasets with convergence errors were dropped from all comparisons. 

Using backward model selection on data for the commonly detected species, effects of 

model structure, variance type and years on bias of population trends, and effects of  

model structure, variance type, years and an interaction between model and variance type 
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on standard error of trend estimates were supported by the data (Table 2-1). Trends were 

more positively biased and less precise (larger standard errors) for GLMMs than for 

GLMs (Figure 2-1, Table 2-2).  Trends were most biased when annual and daily variation 

in counts were high, and standard errors were largest when daily variation was high 

(Table 2-).  Mean bias and standard error of trend estimates were also smaller using 20- 

than 10-year datasets.  Using 20-year simulated datasets, bias was below the 

recommended maximum allowable bias for landbird monitoring of ±0.5 %year-1 (Bart et 

al. 2004) for all model structures.  

For over-dispersed counts, a difference in bias among model structures or among 

variation levels was not supported, with the exception that trends estimated for datasets 

with low annual and high daily variation using GLMM LnPois were on average strongly 

negatively biased using 10-year datasets, and strongly positively biased using 20-year 

datasets (Table 2-22, Figure 2-2).  Standard errors of trends estimated using GLMM 

LnPois for over-dispersed counts with high variation in daily counts were particularly 

large, and trends were in general more precise for GLMs than GLMMs (Table 2-, Figure 

2-2).  Trends were less biased and more precise using longer time series. 

With the exception of datasets with high variation in daily counts, trends estimated for 

zero-inflated data were less biased using GLMMs than for GLMs for 10-year datasets, 

but more negatively biased using GLMMs than GLMs for 20-year datasets (Table 2-2, 

Figure 2-3).  However, when variation among daily counts was high, trends estimated 

using GLMM LnPois were strongly positively biased with large standard deviation 

(Table 2-, Figure 2-3).  As with the other two species, trends were more precise using 

longer time series and for GLMs compared to GLMMs. 

The higher precision of trends estimated using GLMs, and particularly GLM Pois, 

resulted in an overall lower probability that confidence limits included the simulated 

trend, and a higher rate of error, compared with trends estimated using GLMMs (Figure 

2-4).  For over-dispersed or zero-inflated datasets with low variation among annual 

counts and high variation among daily counts, coverage and error rates for the negative 

binomial GLM showed little variation from rates observed  using the Pois GLMM, and 
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also had increased power to correctly detect a significant trend.  This was not observed 

for the other levels of annual and daily variation examined, nor for the commonly 

detected sharp-shinned hawk.  When annual variation among counts was high and counts 

were over-dispersed or zero-inflated, power was essentially 0 for the log-normal Poisson 

model, due to the strong positive bias in trends which resulted in few (over-dispersed 

broad-winged hawk) to no (zero-inflated merlin) confidence limits that included the 

simulated trend. 
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Table 2- 1. Map of backward model selection using AIC for models that tested the effect of model structure ('Model'; 

generalized linear model with Poisson or negative binomial distribution, or generalized linear mixed model with Poisson or 

log-Normal Poisson distribution), variation level ('Var'; high or low annual and daily variation in counts) and length of the 

time series ('years'; 10 or 20) on mean bias or (log) standard error of the estimated trend in migration for a commonly 

detected species (Sharp-shinned Hawk; SSHA), a super-flocking. species with highly overdispersed counts (Broad-winged 

Hawk; BWHA), and a more rarely detected species (Merlin; MERL). 
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Dependent 
Variable 

Species Step Initial Model - Param 
 

-DF Deviance AIC  Resid. 
DF 

Bias SSHA 1 Model + Var + Years + Model:Var Model:Var 9 48.7 -116235 *  
      48.6 -116222  31869 
    Years 1 48.7 -116208   
  2 Model + Variation + Years     48.7 -116235 * 31860 
    Type 3 48.7 -116222   
    Years 1 48.7 -116222   
    Model 4 48.8 -116169   
 BWHA 1 Model + Var + Years + Model:Var   253.1 -58782 * 30221 
    Model:Var 9 253.3 -58779   
    Years 1 253.2 -58776   
 MERL 1 Model + Var + Years + Model:Var   88.4 -93425 * 30929 
    Years 1 88.5 -93406   
    Model:Var 9 88.9 -93271   

Std Error BWHA 1 Model + Var + Years + Model:Var   1038.9 -16082 * 30221 
    Model:Var 9 1974.9 3322   
    Years 1 8574.1 47735   
 SSHA 1 Model + Var + Years + Model:Var   769.3 -28214 * 31860 
    Model:Var 9 1704.4 -2877   
    Years 1 9599.1 52238   
 MERL 1 Model + Var + Years + Model:Var   681 -30246 * 30929 
    Model:Var 9 2537.4 10440   
    Years 1 8403.1 47512   

* Depicts model selected using backwards model selection using AIC 
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Figure 2-1. Mean bias (simulated – estimated trend; ± standard deviation) and 

standard error (± standard deviation) of trend in migration counts estimated across 

1000 10- or 20-year datasets simulated to represent a commonly detected species 

(sharp-shinned hawk). Data were simulated to have low (triangles) or high (squares) 

variation in annual counts, and low (no fill) or high (black) variation in daily counts 

(‘annual/daily’), and were analyzed using generalized linear models (GLMs) with 

Poisson or negative binomial (NB) distribution, or generalized linear mixed models 

(GLMM) with Poisson or log-normal Poisson distribution. 
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Table 2-2. Coefficients for the terms explaining variation in bias among trends in migration counts estimated using datasets 

simulated to represent a commonly detected species (sharp-shinned hawk), an over-dispersed species (broad-winged hawk) 

and a rarely detected species with zero-inflated counts (merlin), after backward model selection using AIC was applied to a 

model that included model structure, variation level, number of years, and an interaction between model and variation level as 

explanatory factors. 

 

 Sharp-shinned Hawk Broad-winged Hawk Merlin   

Parameter Coeff SE P Coeff SE P Coeff SE P 
GLM Pois 0.0018 0.0006 0.004 0.0020 0.0021 0.343 0.0021 0.0012 0.095 
GLM NB 0.0016 0.0006 0.010 0.0021 0.0021 0.310 0.0021 0.0012 0.091 
GLMM Pois 0.0043 0.0006 <0.001 0.0032 0.0021 0.135 0.0001 0.0012 0.954 
GLMM LnPois 0.0043 0.0006 <0.001 0.0028 0.0021 0.181 0.0002 0.0012 0.842 
Low/High -0.0012 0.0006 0.062 -0.0010 0.0030 0.728 0.0004 0.0017 0.803 
High/Low -0.0006 0.0006 0.364 0.0018 0.0029 0.530 0.0022 0.0017 0.187 
High/High 0.0014 0.0006 0.020 0.0022 0.0030 0.469 0.0025 0.0017 0.145 
20-Year -0.0017 0.0004 <0.001 -0.0028 0.0011 0.007 -0.0028 0.0006 <0.001 
GLM NB: Low/High    0.0003 0.0041 0.939 0.0005 0.0024 0.828 
GLMM Pois:Low/High    0.0047 0.0042 0.263 0.0017 0.0024 0.466 
GLMM LnPois:Low/High    0.0180 0.0047 0.000 0.0198 0.0024 <0.001 
GLM NB: High/Low    0.0004 0.0041 0.924 -0.0002 0.0024 0.940 
GLMM Pois:High/Low    0.0018 0.0041 0.661 -0.0016 0.0024 0.495 
GLMM LnPois:High/Low    0.0018 0.0041 0.664 -0.0019 0.0024 0.420 
GLM NB:High/High    0.0001 0.0042 0.973 -0.0002 0.0024 0.940 
GLMM Pois:High/High    0.0025 0.0042 0.549 -0.0010 0.0024 0.667 
GLMM LnPois:High/High    0.0039 0.0042 0.346 0.0171 0.0026 <0.001 
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Table 2-3. Coefficients for the terms explaining variation in standard error among trends in migration counts estimated using 

datasets simulated to represent a commonly detected species (sharp-shinned hawk), an over-dispersed species (broad-winged 

hawk) and a rarely detected and zero-inflated species (merlin), after backward model selection using AIC was applied to a 

model that included model structure, variation level, number of years, and an interaction between model and variation level as 

explanatory factors. 

 Sharp-shinned Hawk Broad-winged Hawk Merlin 
Parameter Coef SE P Coef SE P Coef SE P 
GLM Pois -6.60 0.004 <0.001 -7.00 0.004 <0.001 -4.82 0.003 <0.001 
GLM NB -5.06 0.004 <0.001 -4.23 0.004 <0.001 -4.11 0.003 <0.001 
GLMM Pois -3.55 0.004 <0.001 -2.67 0.004 <0.001 -3.37 0.003 <0.001 
GLMM LnPois -3.57 0.004 <0.001 -2.86 0.004 <0.001 -3.45 0.003 <0.001 
Low/High 0.00 0.005 0.572 0.01 0.006 0.099 -0.01 0.005 0.226 
High/Low -0.06 0.005 <0.001 -0.16 0.006 <0.001 -0.11 0.005 <0.001 
High/High -0.05 0.005 <0.001 -0.15 0.006 <0.001 -0.12 0.005 <0.001 
20-Year -1.05 0.002 <0.001 -1.00 0.002 <0.001 -1.00 0.002 <0.001 
GLM NB:Low/High 0.38 0.007 <0.001 0.88 0.008 <0.001 0.64 0.007 <0.001 
GLMM Pois:Low/High 0.15 0.007 <0.001 0.31 0.008 <0.001 0.46 0.007 <0.001 
GLMM LnPois:Low/High 0.02 0.007 0.008 0.87 0.009 <0.001 1.24 0.007 <0.001 
GLM NB:High/Low 0.12 0.007 <0.001 0.05 0.008 <0.001 -0.01 0.007 0.290 
GLMM Pois:High/Low 0.69 0.007 <0.001 0.45 0.008 <0.001 0.94 0.007 <0.001 
GLMM LnPois:High/Low 0.70 0.007 <0.001 0.50 0.008 <0.001 0.80 0.007 <0.001 
GLM NB:High/High 0.51 0.007 <0.001 0.61 0.008 <0.001 0.73 0.007 <0.001 
GLMM Pois:High/High 0.77 0.007 <0.001 0.54 0.008 <0.001 0.92 0.007 <0.001 
GLMM LnPois:High/High 0.66 0.007 <0.001 0.51 0.008 <0.001 1.35 0.007 <0.001 
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Figure 2-2. Mean bias (simulated – estimated trend; ± standard deviation) and 

standard error (± standard deviation) of trend in migration counts, estimated across 

1000 10- and 20-year datasets simulated to represent a species (broad-winged hawk) 

with highly over-dispersed counts. Data were simulated to have low (triangles) or 

high (squares) variation in annual counts, and low (no fill) or high (black) variation 

in daily counts (‘annual/daily’), and were analyzed using generalized linear models 

(GLMs) with Poisson or negative binomial (NB) distribution, or generalized linear 

mixed models (GLMM) with Poisson or log-normal Poisson distribution. 
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Figure 2-3. Mean bias (simulated – estimated trend; ± standard deviation) and 

standard error (± standard deviation) of trend in migration counts estimated across 

1000 10- and 20-year datasets simulated to represent a rarely detected species 

(merlin) with zero-inflated counts. Data were simulated to have low (triangles) or 

high (squares) variation in annual counts, and low (no fill) or high (black) variation 

in daily counts (‘annual/daily’), and were analyzed using generalized linear models 

(GLMs) with Poisson or negative binomial (NB) distribution, or generalized linear 

mixed models (GLMM) with Poisson or log-normal Poisson distribution. 
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Figure 2-4. Proportion of 1000 20-year simulated datasets where the estimated trend 

in counts had 1) good coverage of confidence limits, 2) good coverage and statistical 

significance (p≤0.1; ‘Power’), and 3) poor coverage and statistical significance 

(‘Error’).  Results are shown for three species simulated to represent 1) a commonly 

detected species (sharp-shinned hawk), 2) a species with highly over-dispersed 

counts (broad-winged hawk) and 3) a rarely detected species with zero-inflated 

counts (merlin), analyzed using generalized linear models (GLM) with Poisson 

(Pois) or negative binomial (NB) distribution, or generalized linear mixed models 

(GLMM) with Poisson or log-normal Poisson (LnPois) distribution.  Data were 

simulated to have low (triangles) or high (squares) variation in annual counts, and 

low (no fill) or high (black) variation in daily counts (‘annual/daily’). 
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2.4 Discussion 

Although trends estimated using GLMMs tended to be more biased than GLMs, the lack 

of appropriate accounting of the hierarchical structure of errors among years, days and 

hours using GLMs resulted in overly precise trend estimates, and as a result, lower 

coverage of confidence limits, lower power to detect a significant trend, and higher 

probability of drawing false inference from the data.   Using simulated annual Breeding 

Bird Survey counts at many sites, and assuming a Poisson distribution of errors, Amano 

et al. (2012) also found hierarchical models resulted in lower rates of error in estimated 

trend compared to GLMs and GAMs.   

For over-dispersed and zero-inflated counts with high daily variation, the GLMM LnPois 

model often resulted in strongly biased trends with low power. Combined with the poor 

model fit (false or singular convergence) of a small proportion of over-dispersed and 

zero-inflated datasets using the over-dispersed model, results suggests that an 

observation-level random effect to account for over-dispersion and zero-inflation was too 

complex for the data.  Hierarchical models that explicitly account for both zero-inflation 

and over-dispersion (e.g., zero-inflated negative binomial; Ross et al. 2012) might be 

more appropriate for these data, but were not explored here (but see Chapter 4).   

Further, although in most cases the GLMM Poisson model outperformed the GLMs, 

specifying a GLM that assumed a negative binomial distribution of counts for over-

dispersed or zero-inflated counts with low annual and high daily variation did not affect  

coverage and error rates, and resulted in slightly higher power to detect a significant trend 

than did the Poisson GLMM.  When annual variation is low and data are collected at a 

single site, there is limited information available to partition variation among fixed and 

random year effects.  Analyzing data from several sites that monitor the same population 

should improve estimates by allowing site-specific random error to be estimated 

independently from random error in annual counts.  In addition, smoothed hierarchical 

models (Amano et al. 2012, Ross et al. 2012) that account for correlation of counts 

among days and years should be explored, particularly for real migration count data 

which are unlikely to be linear over the long term.  Smoothed hierarchical models are less 

sensitive to large outlying observation counts than non-smoothed hierarchical models 
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(Amano et al. 2012), and may provide some benefit over the Poisson GLMM in the 

analysis of highly over-dispersed species.   

Using simple linear regression on annual means, Lewis and Gould (2000) found that for 

20-year raptor migration counts and alpha of 0.1, a decline of 3 % could be detected with 

80 % power when the coefficient of variation of annual counts was less than 0.22.  While 

not directly comparable, when annual coefficient of variation was 0.3 or less (low 

annual/high daily variation; Table B2), a decline of 3.9 %year-1 was detected with a 

minimum 89 % power using hierarchical models fit to 20-year simulated datasets of a 

commonly detected species.   For 20-year datasets for the rare species, 85 % power was 

achieved when annual and daily coefficients of variation were both low (0.4 and 1.6, 

respectively; Table B4).  Typically, statistical power describes the probability of 

detecting a trend that differs significantly from zero (Lewis and Gould 2000).  In this 

study, power is defined as the probability of detecting a significant trend that also 

includes the known simulated trend within the confidence limits of the estimated trend. 

Thus, power is not only greater using the analytical methods described here, but the 

definition of power used in this is a more conservative estimate of power because it 

excludes significant trends that do not include the real trend within the confidence limits 

of the estimated trend.  These results suggest that using hierarchical models to model 

hourly counts resulted in similar or potentially improved power to detect a significant 

trend compared with linear regression on annual means.  For over-dispersed species like 

the broad-winged hawk, aggregating data from hourly to daily or annual totals could 

improve precision and power of population trend analyses (Miller et al. 2002, Chapter 4) 

Because hierarchical models resulted in a lower probability of error overall compared 

with GLMs, and bias for all models tended to be within the suggested allowable limit of 

0.5 %year-1 for landbird monitoring programs (Bart et al. 2004),  hierarchical models 

should be preferred over GLMs when estimating trends in migration counts.  An 

observation-level random effect is not recommended for zero-inflated and highly over-

dispersed species.  However, the effect of aggregating counts to daily or annual totals, as 

well as alternative analysis methods to account for over-dispersion, zero-inflation, and 
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correlation of counts among days and years (Amano et al. 2012, Ross et al. 2012) should 

be explored (see also Chapter 4). 
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Chapter 3  

3 Effect of incomplete sampling of migration on estimates 
of long-term trend in migration counts 

3.1 Introduction 

Accurate and precise estimates of long-term population trends are imperative for 

providing reliable assessments of population status, particularly for the assessment of 

species at risk (COSEWIC 2012).  For bird populations, the Breeding Bird Survey (BBS) 

is the most commonly used large-scale monitoring program to assess bird population 

trends in North America (Blancher et al. 2009, Sauer and Link 2011).  However, due to 

insufficient BBS coverage in northern Canada and the secretive nature of many raptor 

species, many species of raptors and northern-breeding songbirds are not well monitored 

by BBS or other large-scale bird surveys (Dunn 2005).  Counts of birds migrating 

between wintering and breeding grounds can be used as an additional source of 

information on population trend for these species (Downes et al. 2000, Bildstein et al. 

2008, Blancher et al. 2009), and have shown general correspondence with BBS (Francis 

and Hussell 1998, Farmer et al. 2007) 

At present, counts of migrating birds are collected daily at over 200 sites across North 

America during spring and/or fall migration by sites associated with the Hawk Migration 

Association of North America (2015) and the Canadian Migration Monitoring Network 

(CMMN, Crewe et al. 2008).  Many of these sites rely on volunteer observers for data 

collection.  Data collection protocols are typically standardized at each site to minimize 

the impact of volunteer turnover and random environmental variation on counts (Hussell 

and Ralph 1998).  However, a reliance on unpaid staff can sometimes result in sporadic 

or incomplete sampling coverage both within and among years.  Further, if the full 

migration season is not sampled at a site, the tail ends of the migration of early or late 

migrating species might be missed.   

Previous analyses of trends in migration counts typically dropped species that were not 

sampled during an arbitrary portion of their migration window, i.e. days of the year when 
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a species typically passed through a site (Francis and Hussell 1998, Farmer et al. 2007).  

The effect of incomplete sampling coverage during peak migration on power to detect 

trends in annual counts of migrating raptors was previously explored (Lewis and Gould 

2000). However, the impact of sampling a smaller portion of the migration window and 

missing part or all of peak migration on our ability to detect trends in migration counts 

has not been previously examined. 

Further, variation in observer skill (Link and Sauer 2002) and the effect of environmental 

variation on the number of birds migrating, migratory behaviour (Schaub et al. 2004, 

Calvert et al. 2009), migratory route (Hall et al. 1992, Allen et al. 1996, Leshem and 

Yom-Tov 1998, Vardanis et al. 2011), and on observer detection (Berthiaume et al. 2009) 

can contribute an unknown magnitude of random error to migration counts.  Combined 

with migration strategy (e.g., super-flocking vs. individual migration) and abundance 

(common vs. rare), the result is often over-dispersed and/or zero-inflated count data 

where a large proportion of variation in counts is unrelated to underlying changes in 

population size.   The influence of count distribution and magnitude of random error on 

our ability to detect trends in migration counts with sufficient accuracy and precision to 

confidently inform conservation efforts has not been rigorously examined. 

In this chapter, I used simulated hourly raptor migration counts with known constant rate 

of change to test whether sampling frequency influenced our ability to recover known 

trend in counts.  Data were subset in several ways: weekends only, or by taking a random 

sample of 40, 60 or 80 % of observation counts across the entire migration season, or by 

sampling the first 25 %, 50 % or 75 % of the migration window.  The later was used to 

test whether excluding a complete section of the migration window and part or all of peak 

migration influenced our ability to recover simulated trend.  I simulated hourly migration 

counts for a commonly detected species (sharp-shinned hawk, Accipiter striatus; 

hereafter ‘common’), a super-flocking species with over-dispersed counts (broad-winged 

hawk, Buteo platypterus; hereafter ‘over-dispersed’) and a less commonly detected 

species with zero-inflated counts (merlin, Falco columbarius; hereafter ‘zero-inflated’), 

each with high and low levels of random error in annual and daily counts, to test whether 

count distribution and extent of random error influenced accuracy and precision of 
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estimated trend under the various levels of sampling frequency tested.  Results are 

discussed in terms of how sampling protocols might be used to optimize volunteer effort 

without compromising inference drawn about trends.   

3.2 Methods 

3.2.1 Migration Count Simulation 

Data were simulated to represent counts of a common, over-dispersed or zero-inflated 

species, as described in sections 2.2.1-2.2.3 (see Appendix A for simulation code, R Core 

Team 2013), with two time periods (10 or 20 years) and four levels of annual and daily 

variation (Low/Low, Low/High, High/Low, High/High).  For each species and factor 

level, 1000 datasets were simulated, resulting in a total of 8000 simulated datasets for 

each species, and each of those datasets was then subset in seven ways (n = 8000 × 7 = 

56,000 subset datasets for each species) to test whether and how accuracy and precision 

of trends varied with sampling effort: including only the first 25 %, 50 % or 75 % of the 

migration window; including only data collected on weekends (2 consecutive days out of 

every 7); and including a random sample of 40 %, 60 %, or 80 % of observation days 

within the migration window of each species.  Simulated counts were assumed to be 

proportional to underlying population size.     

3.2.2 Data Analysis 

Trend in migration counts was estimated for each simulated dataset using a generalized 

linear mixed model (GLMM) which assumed a Poisson distribution of counts, and where 

a continuous year effect was used to estimate log-linear rate of change (trend) in counts 

and second-order polynomials for day and hour were included to model the seasonal and 

daily movement of birds (lme4 package, R version 2.14.2; Bates et al. 2013).  

Hierarchical terms to account for random variation among years, among days nested 

within year, and among hours were also included.  A previous comparison of generalized 

linear models (Poisson and negative binomial distribution) with GLMMs (Poisson and 

log-normal Poisson distribution for over-dispersed data) suggested that this model 

structure provided the best fit among those tested for hourly migration counts (see 

Chapter 2).  For each simulated dataset, I extracted the estimate, standard error, 95 % 
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confidence limits (CL) and p-value of the fixed year coefficient.  Year coefficients were 

transformed into a rate (%year-1) of change using ( )( )100 exp 1yearcoefficient× − .    

For each species, I tested whether bias (estimated – simulated trend) of estimated trend (n 

= 1000 simulated datasets × 4 variation levels × 2 time series × 8 sampling efforts 

[including full dataset] = 64,000 bias estimates) varied among levels of annual and daily 

variation, with length of dataset and with sampling frequency using a generalized linear 

model with Gaussian distribution  (identity link; MASS package, R version 2.14.2; 

Venables and Ripley 2002), where bias was the response variable, and length of dataset 

(10/20 years), variation level (high or low annual/daily variation), subset type (weekends 

only, etc.), and interactions between subset type and year and subset type and variation 

level were explanatory factors.  I used backward model selection using stepAIC in R 

(MASS Package, R version 2.14.2; Venables and Ripley 2002) to determine the model 

parameters with greatest support.  I used a similar regression to test whether precision 

(standard error) of the trend estimate varied with dataset length, variation level and subset 

type, and again used backward model selection to determine the model with lowest AIC 

score, and therefore model parameters with greatest support.  I log-transformed standard 

errors to better meet the assumption of normality.   

I also examined how bias and precision of estimated trend influenced the probability of 

drawing false inference from the data by plotting 1) coverage, i.e. the proportion of 

simulated datasets where the simulated trend fell within the CL of the estimated trend, 2) 

power, i.e. the proportion of simulated datasets with good coverage and a significant year 

effect (p <0.1), and 3) rate of error, i.e. the proportion of simulated datasets with a 

significant trend despite poor coverage of CL.  A p-value of 0.1 was used because it 

better balances the occurrence of type I and II errors in the estimation of bird population 

trends (Bart et al. 2004). 

3.3 Results 

Using backward model selection, a difference in bias among sampling frequencies was 

not supported for the common and zero-inflated species (Table 3- 1;  

Species Step Initial Model - Param - DF Dev AIC  Resid 
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DF 
Bias         
BWHA 1 Subset+Var+Years   1344.9 -61785 * 62114 

   Var 3 1345.9 -61746   
   Subset 7 1347.3 -61692   
   Years 1 1347.8 -61654   

SSHA 1 Subset+Var+Years Subset 7 137.7 -207988 *  
     137.7 -207976  63193 
   Var 3 137.8 -207949   
   Years 1 137.9 -207921   
 2 Type+Years   137.7 -207988 * 63200 
   Var 3 137.8 -207961   
   Years 1 137.9 -207933   

MERL 1 Subset+Var+Years Subset 7 319.3 -156294 *  
     319.3 -156284  63612 
   Var 3 319.4 -156272   
   Years 1 319.6 -156233   
 2 Type+Years   319.3 -156294 * 63619 
   Var 3 319.4 -156283   
   Years 1 319.6 -156244   
         

Standard Error       
BWHA 1 Subset+Var+Years   4833.9 17692 * 62114 

   Var 3 7731.4 46863   
   Subset 7 8740.2 54474   
   Years 1 20453.1 107306   

SSHA 1 Subset+Var+Years    2807.0 -17443 * 63193 
   Subset 7 4139.4 7093   
   Var 3 6054.8 31139   
   Years 1 21595.2 111515   

MERL 1 Subset+Var+Years    3153.2 -10581 * 63612 
   Subset 7 5136.8 20456   
   Var 3 7093.6 40999   
   Years 1 19029.1 103786   

* Model selected using backwards model selection using Akaike's Information Criterion  
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Table 3-).  In other words, bias in estimated trend did not vary regardless of whether the 

entire migration was sampled, or collected as infrequently as weekends (Figure 3-1, 

Figure 3-2).  This was also true for over-dispersed migration counts, with the exception 

that when daily variation in counts was high and data were subset to  the first 25 % of the 

migration window, trends were strongly positively biased ( 

Species Step Initial Model - Param - DF Dev AIC  Resid 
DF 

Bias         
BWHA 1 Subset+Var+Years   1344.9 -61785 * 62114 

   Var 3 1345.9 -61746   
   Subset 7 1347.3 -61692   
   Years 1 1347.8 -61654   

SSHA 1 Subset+Var+Years Subset 7 137.7 -207988 *  
     137.7 -207976  63193 
   Var 3 137.8 -207949   
   Years 1 137.9 -207921   
 2 Type+Years   137.7 -207988 * 63200 
   Var 3 137.8 -207961   
   Years 1 137.9 -207933   

MERL 1 Subset+Var+Years Subset 7 319.3 -156294 *  
     319.3 -156284  63612 
   Var 3 319.4 -156272   
   Years 1 319.6 -156233   
 2 Type+Years   319.3 -156294 * 63619 
   Var 3 319.4 -156283   
   Years 1 319.6 -156244   
         

Standard Error       
BWHA 1 Subset+Var+Years   4833.9 17692 * 62114 

   Var 3 7731.4 46863   
   Subset 7 8740.2 54474   
   Years 1 20453.1 107306   

SSHA 1 Subset+Var+Years    2807.0 -17443 * 63193 
   Subset 7 4139.4 7093   
   Var 3 6054.8 31139   
   Years 1 21595.2 111515   

MERL 1 Subset+Var+Years    3153.2 -10581 * 63612 
   Subset 7 5136.8 20456   
   Var 3 7093.6 40999   
   Years 1 19029.1 103786   

* Model selected using backwards model selection using Akaike's Information Criterion  
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Table 3-), with mean bias exceeding 6 %year-1 using 10-year datasets and exceeding 1 % 

year-1 using 20-year datasets (Figure 3-3).  Sub-setting data to weekends or by drawing a 

random sample of observation days from across the migration season did not have the 

same biasing effect on trends estimated using over-dispersed counts.   

Population trends estimated for a commonly detected species were less biased when 

annual variation was low and daily variation high, or vice versa (annual high, daily low). 

Zero-inflated datasets with low annual and high daily variation in counts resulted in a 

higher positive bias than the other levels of variation in counts using 10-year datasets, but 

less biased trends overall using 20-year datasets.   In general, increasing the length of the 

time series resulted in less-biased trends for the common and over-dispersed species, and 

in more negatively biased trends when counts were zero-inflated, i.e. for rarely detected 

species, the simulated declining trend was estimated to be more extreme than reality as 

the time series increased from 10 to 20 years.    

Effects of subset type, variation level and length of time series on standard error of trend 

estimates were supported by the data for each species (Table 3- 1). Precision of trend 

estimates also increased, and standard errors became smaller, with length of the time 

series and with sampling frequency (Table 3-; bottom panels Figure 3-1 - Figure 3-3), as 

is expected as the number of observations in a dataset increases.  For the common and 

zero-inflated species, precision was higher for simulated datasets with low annual 

variation in counts, and standard errors did not vary among similar sized data subsets, 

regardless of whether data were a random sample or a continuous period of time (e.g., 80 

% random sample vs. 75 % of the migration window; Table 3-).  For the over-dispersed 

and highly variable broad-winged hawk, trend estimates were more precise when daily 

variation in counts was low, and when data were collected as a random sample of 

observation days, as opposed to a continuous but incomplete sample of the migration 

window (Table 3-, Figure 3-3). 

Confidence limits of the estimated trend were more likely to include the simulated trend, 

and rate of error was therefore less, for low compared with high annual variation in 

counts for the common and zero-inflated species, and for low compared with high daily 
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variation in counts for the over-dispersed species (Figure 3-4).  For over-dispersed counts 

with high daily variation, coverage of confidence limits declined and error increased with 

an increase in sampling frequency.  This is likely the result of smaller standard errors 

with increased sampling frequency, despite similar levels of bias across sampling 

frequencies.  Thus, as sampling frequency increased, confidence limits became tighter 

and were less likely to include the simulated trend.   

Power to detect a significant trend increased with the number of years in the dataset (not 

shown) and with an increase in sampling frequency (Figure 3-4).  For the common and 

zero-inflated species, the increase in power with sampling frequency was more extreme 

when annual variation in counts was low.  Overall, however, power to detect a significant 

trend only exceeded 80 % for 20-year datasets for a commonly detected species with low 

annual variation in counts.  Power to detect a significant trend was particularly low when 

counts were highly over-dispersed, and did not reach 50 % regardless of length of time 

series and sampling intensity. 
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Table 3- 1. Map of backward model selection using AIC for models that tested the 

effect of subset type, variation level ('Var'; high or low annual and daily variation in 

counts) and length of the time series ('years'; 10 or 20) on mean bias or (log) 

standard error of the estimated trend in migration for a commonly detected species 

(Sharp-shinned Hawk; SSHA), a super-flocking. species with highly overdispersed 

counts (Broad-winged Hawk; BWHA), and a more rarely detected species (Merlin; 

MERL). 

Species Step Initial Model - Param - DF Dev AIC  Resid 
DF 

Bias         
BWHA 1 Subset+Var+Years   1344.9 -61785 * 62114 

   Var 3 1345.9 -61746   
   Subset 7 1347.3 -61692   
   Years 1 1347.8 -61654   

SSHA 1 Subset+Var+Years Subset 7 137.7 -207988 *  
     137.7 -207976  63193 
   Var 3 137.8 -207949   
   Years 1 137.9 -207921   
 2 Type+Years   137.7 -207988 * 63200 
   Var 3 137.8 -207961   
   Years 1 137.9 -207933   

MERL 1 Subset+Var+Years Subset 7 319.3 -156294 *  
     319.3 -156284  63612 
   Var 3 319.4 -156272   
   Years 1 319.6 -156233   
 2 Type+Years   319.3 -156294 * 63619 
   Var 3 319.4 -156283   
   Years 1 319.6 -156244   
         

Standard Error       
BWHA 1 Subset+Var+Years   4833.9 17692 * 62114 

   Var 3 7731.4 46863   
   Subset 7 8740.2 54474   
   Years 1 20453.1 107306   

SSHA 1 Subset+Var+Years    2807.0 -17443 * 63193 
   Subset 7 4139.4 7093   
   Var 3 6054.8 31139   
   Years 1 21595.2 111515   

MERL 1 Subset+Var+Years    3153.2 -10581 * 63612 
   Subset 7 5136.8 20456   
   Var 3 7093.6 40999   
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   Years 1 19029.1 103786   
* Model selected using backwards model selection using Akaike's Information Criterion  
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Table 3-2. Coefficients for the terms explaining variation in bias of estimated trend in hourly migration counts for datasets 

simulated to represent a commonly detected species (sharp-shinned hawk), a super-flocking species with highly over-dispersed 

counts (broad-winged hawk) and a less commonly detected species with zero-inflated counts (merlin), after backward model 

selection using AIC was applied to a model that included sampling frequency, variation level, number of years, and 

interactions between sampling frequency and variation level and sampling frequency and years as explanatory factors. 

 Sharp-shinned hawk Broad-winged hawk Merlin 
Parameter Coeff SE P Coeff SE P Coeff SE P 
Intercept 0.0061 0.0005 <0.001 0.0038 0.0035 0.280 0.0011 0.0006 0.079 
Weekend    0.0011 0.0047 0.814    
Random 0.4    0.0013 0.0047 0.777    
Random 0.6    0.0002 0.0047 0.958    
Random 0.8    -0.0003 0.0047 0.945    
Window 25    0.0040 0.0047 0.393    
Window 50    0.0013 0.0047 0.786    
Window 75    0.0007 0.0047 0.881    
Low/High -0.0028 0.0007 <0.001 0.0113 0.0050 0.023 0.0030 0.0008 <0.001 
High/Low -0.0028 0.0007 <0.001 0.0061 0.0049 0.216 0.0003 0.0008 0.716 
High/High 0.0019 0.0008 0.011 0.0138 0.0050 0.006 0.0011 0.0008 0.156 
20-Year -0.0033 0.0007 <0.001 -0.0041 0.0023 0.082 -0.0041 0.0006 <0.001 
Weekend:Low/High    0.0045 0.0066 0.498    
Random 0.4:Low/High    0.0033 0.0067 0.615    
Random 0.6:Low/High    -0.0001 0.0066 0.988    
Random 0.8:Low/High    -0.0002 0.0066 0.972    
Window 25:Low/High    0.0268 0.0068 <0.001    
Window 50:Low/High    0.0113 0.0067 0.090    
Window 75:Low/High    -0.0016 0.0066 0.812    
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Weekend:High/Low    0.0029 0.0066 0.663    
Random 0.4:High/Low    -0.0002 0.0066 0.977    
Random 0.6:High/Low    -0.0006 0.0066 0.930    
Random 0.8:High/Low    0.0012 0.0066 0.853    
Window 25:High/Low    0.0009 0.0067 0.895    
Window 50:High/Low    -0.0008 0.0066 0.902    
Window 75:High/Low    0.0000 0.0066 0.996    
Weekend:High/High    -0.0021 0.0066 0.748    
Random 0.4:High/High    -0.0021 0.0066 0.749    
Random 0.6:High/High    0.0014 0.0066 0.834    
Random 0.8:High/High    -0.0005 0.0066 0.939    
Window 25:High/High    0.0360 0.0068 <0.001    
Window 50:High/High    0.0091 0.0067 0.173    
Window 75:High/High    0.0027 0.0066 0.679    
Low/High:20-Year 0.0017 0.0010 0.113 -0.0155 0.0033 <0.001    
High/Low:20-Year 0.0027 0.0010 0.009 -0.0050 0.0033 0.131    
High/High:20-Year -0.0024 0.0011 0.023 -0.0183 0.0033 <0.001    
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Figure 3-1. Mean bias (simulated – estimated trend; ± standard deviation) and standard 

error (± standard deviation) of estimated trend in hourly migration counts, across 1000 10- 

or 20-year datasets simulated to represent a commonly detected species (sharp-shinned 

hawk). Counts were simulated to have low (triangles) or high (squares) annual variation, 

and low (no fill) or high (black) daily variation (‘annual/daily’), and were subset by 

sampling weekends, sampling a random sample of 40 %, 60 %, or 80 % of the migration, 

or by sampling the first 25 %, 50 %, or 75 % of the migration. 
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Figure 3-2. Mean bias (simulated – estimated trend; ± standard deviation) and standard 

error (± standard deviation; n = 1000) of estimated trend in hourly migration counts, 

across 10- or 20-year datasets simulated to represent a rarely detected species with zero-

inflated counts (merlin). Counts were simulated to have low (triangles) or high (squares) 

annual variation, and low (no fill) or high (black) daily variation (‘annual/daily’), and were 

subset by sampling weekends, sampling a random sample of 40 %, 60 %, or 80 % of the 

migration, or by sampling the first 25 %, 50 %, or 75 % of the migration. 
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Figure 3-3. Mean bias (simulated – estimated trend; ± standard deviation) and standard 

error (± standard deviation; n = 1000) of estimated trend in hourly migration counts, 

across 10- or 20-year datasets simulated to represent a super-flocking species with highly 

over-dispersed counts (broad-winged hawk). Counts were simulated to have low (triangles) 

or high (squares) annual variation, and low (no fill) or high (black) daily variation 

(‘annual/daily’), and were subset by sampling weekends, sampling a random sample of 40 

%, 60 %, or 80 % of the migration, or by sampling the first 25 %, 50 %, or 75 % of the 

migration. 
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Table 3-3. Coefficients for the terms explaining variation in standard errors of trends in 

hourly migration counts, estimated using data simulated to represent a commonly detected 

species (sharp-shinned hawk), a super-flocking species with highly over-dispersed counts 

(broad-winged hawk) and a rarely detected species with zero-inflated counts (merlin), after 

backward model selection using AIC was applied to a model that included sampling 

frequency, variation level, number of years, and interactions between sampling frequency 

and variation level and sampling frequency and years as explanatory factors. 

 Sharp-shinned hawk Broad-winged hawk Merlin 
Parameter Coef SE P Coef SE P Coef SE P 
Intercept -3.44 0.003 <0.001 -2.70 0.004 <0.001 -3.27 0.003 <0.001 
Weekend 0.40 0.003 <0.001 0.42 0.004 <0.001 0.42 0.004 <0.001 
Random 0.4 0.26 0.003 <0.001 0.29 0.004 <0.001 0.29 0.004 <0.001 
Random 0.6 0.13 0.003 <0.001 0.15 0.004 <0.001 0.16 0.004 <0.001 
Random 0.8 0.05 0.003 <0.001 0.06 0.004 <0.001 0.07 0.004 <0.001 
Window 25 0.42 0.003 <0.001 0.84 0.005 <0.001 0.55 0.004 <0.001 
Window 50 0.22 0.003 <0.001 0.41 0.004 <0.001 0.23 0.004 <0.001 
Window 75 0.09 0.003 <0.001 0.12 0.004 <0.001 0.07 0.004 <0.001 
Low/High 0.12 0.002 <0.001 0.50 0.003 <0.001 0.49 0.002 <0.001 
High/Low 0.45 0.002 <0.001 0.17 0.003 <0.001 0.56 0.002 <0.001 
High/High 0.55 0.002 <0.001 0.50 0.003 <0.001 0.63 0.002 <0.001 
20-Year -1.09 0.002 <0.001 -1.00 0.002 <0.001 -1.00 0.002 <0.001 
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Figure 3-4. Proportion of 1000 simulated datasets where the estimated trend in hourly 

migration counts had 1) good coverage of confidence limits, 2) good coverage and statistical 

significance (p≤0.1; ‘Power’), and 3) poor coverage and statistical significance (‘Error’) for 

20-year datasets simulated to represent a commonly detected species (sharp-shinned 

hawk), a super-flocking species with highly over-dispersed counts (broad-winged hawk) 

and a rarely detected species with zero-inflated counts (merlin).  Counts were simulated to 

have low (triangles) or high (squares) annual variation, and low (no fill) or high (black) 

daily variation (‘annual/daily’), and were subset by sampling weekends, sampling a 

random sample of 40 %, 60 %, or 80 % of the migration, or by sampling the first 25 %, 50 

%, or 75 % of the migration. 
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3.4 Discussion 

With few exceptions, mean bias in the estimated trend was  within the suggested acceptable limit 

of 0.5 %year-1 suggested for landbird population monitoring (Bart et al. 2004).  Further, bias, 

coverage of confidence limits and rate of error did not vary greatly among sampling frequencies.  

Together, this suggests that, with the exception of super-flocking species with highly over-

dispersed daily counts, sampling as infrequently as weekends or missing peak migration will not 

result in a higher probability of drawing false inference from the data than would sampling the 

entire migration.  In contrast, coverage of confidence limits declined and probability of error 

increased with sampling frequency when counts were over-dispersed with high daily variation.  

For species with over-dispersed daily counts, randomly sampling 40 % of the migration can 

minimize bias and the probability of drawing false inference from the data compared with 

sampling the entire migration, but at the expense of a 22-25 % decline in power using 20-year 

datasets.  

Power to detect a significant trend was in general poor.  Power to detect a 3.9 %year-1 decline 

over 20 years was 82-93 % for a commonly detected species with an annual coefficient of 

variation ≤0.3 and when a minimum of 60 % of the entire migration or 50 % of the migration 

window were sampled.  For a rarely detected and zero-inflated species, power of 81-85 % was 

detected for 20-year datasets with an annual coefficient of variation of 0.4 when at least 80 % of 

the entire migration or 75 % of the migration window were sampled.  These results suggest that 

probability of detecting a significant trend was similar or higher than the 80 % power to detect a 

3 % decline previously reported using annual raptor counts with coefficient of less than 0.22 

(Lewis and Gould 2000).  Power would be higher for more extreme rates of change and for 

longer time series, and in this study power improved with sampling frequency, particularly for 

the commonly and rarely detected species when annual variation in counts was low.  

Given the high variability in hourly and daily migration counts observed when counts were over-

dispersed, and the high proportion of 0-observation counts for rarely detected species, 

aggregating hourly counts into daily or annual totals could improve model fit, and thus improve 

power and reduce the probability of drawing false inference from the data (Miller et al. 2002, 

Chapter 4). Incorporating weather or habitat covariates into data analysis can also improve the 
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precision of annual population indices (Francis and Hussell 1998, Farmer et al. 2007), and in the 

case that a systematic change in environmental covariates has occurred, their inclusion could 

model any associated bias in trend. Further, the precision of trends might be more heavily 

influenced by weather and other environmental covariates when estimated using hourly as 

opposed to daily counts, particularly when sampling frequency is low (Farmer et al. 2007).  The 

influence of weather covariates on bias and precision of trends should be examined for both 

hourly and daily migration count data. 

Migration counts are assumed to be proportional to the size of the monitored population.  

However, the specific breeding origin of migrants detected at a site is currently known only 

broadly.  For several songbird species detected across CMMN sites, broad catchment areas were 

defined using stable hydrogen isotopes in feather samples (Dunn et al. 2006).  As data from 

weather radar (migration volume and direction; Laughlin et al. 2013) and large-scale telemetry 

studies (stop-over behaviour, migration orientation; Taylor et al. 2011) become more readily 

available, the breeding origin of migrants can be refined, and trends could then be correlated 

with underlying changes in habitat or land-use on the breeding grounds.  Further, estimation of 

daily and annual variation in migration route and/or migration volume through a site might be 

possible, and could be used as covariates to improve precision of trend analyses.  Enhancing 

spatial coverage of the migration corridor by combining data from multiple sites that sample the 

same larger population could also improve the accuracy and precision of estimated trends by 

allowing site-specific variation in counts to be estimated independently of underlying change in 

the count population (Amano et al. 2012, see also Chapters 6,7).   

Overall, my results suggest that while sampling the complete migration of a species is preferred 

to maximize power to detect a trend, probability of false inference is not compromised by 

sampling less frequently.  For species with highly over-dispersed daily counts, the probability of 

drawing false inference can be minimized by sampling a smaller proportion of the migration 

window, with little influence on bias if counts are collected randomly throughout the migration.  

Thus, sites that do not have the volunteer capacity to sample daily throughout the entire 

migration of each monitored species should not be excluded from trend analyses on this basis 

alone.  Rather, standardization of the timing of sampling within and among migration seasons 

should be the primary factor influencing whether data are used to estimate trends at each site. 
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Chapter 4  

4 Temporal aggregation of hourly or daily migration counts can 
improve accuracy and precision of trends 

4.1 Introduction 

Population monitoring programs often use temporally or spatially repeated counts of animals to 

estimate long-term population trends (Link and Sauer 2002, Farmer et al. 2007, Kéry et al. 2009, 

Fedy and Aldridge 2011).  During analysis, counts are often aggregated, for example, by taking 

the maximum abundance across repeated visits of an assumed closed population (Fedy and 

Aldridge 2011), or total abundance across assumed independent stops along a survey route (Link 

et al. 2008).   Similarly, hourly or daily counts of the number of individuals migrating past or 

stopped at a specific geographic location (migration counts), which are assumed to detect a new 

cohort of migrants during each sampling occasion (Dunn 2005), are also often aggregated to 

daily or annual total counts in the estimation of long-term trends (Francis and Hussell 1998, 

Farmer et al. 2007, Knudsen et al. 2007).  The temporal aggregation of counts represents a loss 

of potentially useful information which may impact the accuracy and precision of estimated 

trends.   

Analytical methods to estimate population trends from count data are in a constant state of 

development (Hochachka and Fiedler 2008, Kéry and Royle 2010, Dail and Madsen 2011, Ross 

et al. 2012).  Methods are now available that can garner information from non-aggregated count 

data that were lost using previous analysis techniques, including detection probability from 

repeated counts (Kéry et al. 2009, Kéry and Royle 2010) and home range centers from spatial 

mark-recapture data (Royle et al. 2013).  In the case of hourly or daily migration counts, 

detection and abundance are confounded and cannot be estimated independently.  Thus, the 

primary information lost by aggregating hourly or daily migration counts to a higher level is 

information about the hourly and seasonal patterns of migration.  Previous work has shown that 

modeling the seasonal distribution of counts can account for missing observations and improve 

the precision of long-term trends (Dennis et al. 2013).  However, hourly migration counts can 

result in poor model convergence for rare species with zero-inflated counts, and for super-

flocking species, which typically have highly variable and over-dispersed counts (see Chapter 
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17).   Aggregating counts to a higher level (hourly to daily or annual) can reduce zero-inflation 

and count variability, and allows one to ignore or ‘assume away’ temporal auto-correlation (non-

independence) of hourly and/or daily counts.  Indeed, annual broad-winged hawk counts resulted 

in more precise (and statistically significant) estimates of trend compared to when data were 

analyzed as daily counts (Miller et al. 2002). 

In the past decade, however, regression techniques that accommodate over-dispersed, zero-

inflated and auto-correlated data have become more common and accessible (e.g., Ross et al. 

2012).  A negative binomial distribution of counts is often assumed when variance is larger than 

the mean and a zero-inflation parameter can model excess 0-observation counts which arise from 

true absence or non-detection given presence (Zipkin et al. 2010, Ross et al. 2012).  Further, the 

ability to account for the hierarchical structure of errors among hourly, daily and annual counts 

and to acknowledge and model temporal autocorrelation of counts can result in more realistic 

estimates of precision which better reflect the true variability in the data (Ross et al. 2012), 

benefits which may be lost when counts are aggregated.  The effect of aggregating hourly 

migration counts to daily or annual totals on the precision and accuracy of estimated trends, and 

whether aggregation is necessary given the more recent development of analytical tools that 

accommodate over-dispersion and zero-inflation, have not been validated using data with known 

underlying trend.     

In this chapter, I use simulated hourly raptor migration counts with known constant rate of 

change to test whether and how aggregating hourly counts to daily or annual totals for analysis 

influenced bias and precision of estimated trends and inference drawn from results.  I simulated 

data for three species, to test whether the effect of aggregating data varied with count 

distribution:  northern harrier (Circus cyaneus) was representative of a commonly detected 

species (hereafter 'common'), broad-winged hawk (Buteo platypterus) was representative of a 

super-flocking species with highly over-dispersed counts (hereafter 'over-dispersed'), and 

peregrine falcon (Falco peregrines) was representative of a rarely detected species with highly 

zero-inflated counts (hereafter 'zero-inflated').  I assumed a negative binomial distribution of 

counts, included hierarchical terms to model the temporal autocorrelation of hourly and daily 

counts, and compared the recovery of simulated trend between models with and without a zero-

inflation parameter.   
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Analyses of raptor population trends for over 50 raptor watch sites by the Raptor Population 

Index (2015) currently restricts trend analyses to sites that submit hourly migration counts. A 

large number of sites that historically submitted only daily totals are therefore excluded from 

trend updates.  Results from this Chapter will help inform whether aggregation of migration 

counts is necessary or recommended to estimate raptor trends given the tools currently available 

to data analysts, and whether the current restriction of sites based on submission of hourly data is 

warranted.   

4.2 Methods 

4.2.1 Real Data 

I acquired hourly migration count data online through Nature Counts (2015) for three species 

detected at Hawk Mountain Sanctuary, Pennsylvania (1966-2010), which represented 1) a 

commonly detected species with low variation in counts among hours, days and years (northern 

harrier), 2) a rarely detected species with low magnitude of counts, but intermediate levels of 

variation in counts among hours and days (peregrine falcon), and 3) a commonly detected, super-

flocking species with high over-dispersion of hourly and daily counts (i.e., counts vary widely in 

magnitude among hours and days; broad-winged hawk).  Raptor migration counts were collected 

as the total number of individuals of each species detected flying overhead on an hourly basis 

during daylight hours (Barber et al. 2001).  I included only the inner 95 %ile of observation days 

for each species, to exclude outlying observations at the tail-ends of the migration window, 

where the migration window represents the days of the year when a species typically moves 

through a site.  I then summarized counts to calculate the mean, median and coefficient of 

variation (CV) of annual, daily and hourly counts, and of the proportion of 0-observation hours 

and days (Table C 1).   

4.2.2 Migration Count Simulation 

I simulated 1000 20-year migration count datasets for each of the three species described above  

in R (R Core Team 2013) using the simulation model described in section 2.2.2 (see Appendix A 

for simulation code), and chose simulation parameter values (Table A 4) such that simulated data 

approximated the distribution of real migration count data.  All simulated datasets had complete 

hourly and daily coverage at a site across days and years.   However, because sampling coverage 
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is never complete, particularly at sites dependent on the availability of volunteers for data 

collection, I dropped a random selection of days and a random selection of hours from the start 

or end of remaining observation days.  I included counts collected on day i and year j ���&� with 

binomial probability 0.8 (��& � 4���5�1, 0.8)), which resulted in approximately 20 % of 

observation days being excluded from each simulated dataset.   For the remaining days, I 

dropped zero to six hours from the beginning or end of each day according to a Poisson 

distribution (�:�20�;0���',�& � �������& � 1)), which allowed a higher proportion of days 

having no hours dropped, and a decreasing proportion of days having one to six hours dropped 

from a given day.  Hours were dropped from the beginning of the day with binomial probability 

0.5, which allowed an approximately equal distribution of days with hours being dropped from 

the beginning or end of the day.  I did not drop hours mid-day, because it is more likely that 

surveys would either start late or end early on a given day depending on observer availability.  I 

ensured simulated counts approximated the distribution of real counts using quantile-quantile 

plots (qqplot function, R version 3.0.3). 

For each of the 1000 simulated hourly migration count datasets for each species, I aggregated the 

simulated hourly migration counts into daily and annual totals by summing all counts across days 

and years, respectively.  I corrected daily and annual counts for sampling effort by multiplying 

the total daily or annual count by the ratio of standardized count hours to observed count hours 

(Farmer et al. 2007, Bildstein et al. 2008).  Thus, the corrected count for year i, day j (��&� was a 

product of the observed count, ��&, and the ratio of standardized hours (in this case 8 hours) to 

the number of hours sampled on a given day (�8�20��&): 

��& � 0�2�,���& � 8
�8�20��&� 

For annual counts, the corrected count (���, was the product of the observed count, ��, and the 

ratio of the total number of standardized hours each year (8 hours�number of days sampled in 

year i, �,-.��) to the total number of observation hours each year (�8�20��): 

�� � 0�2�,��� � 8 � �,-.���8�20�� � 
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4.2.3 Data Analysis 

I analyzed all simulated datasets in a Bayesian framework using Integrated Nested Laplace 

Approximation (R-INLA; Rue et al. 2014).  Models that assumed a negative binomial count 

distribution (.�&<~�'()���5�/&< , =�), were compared to models that assumed a zero-inflated 

negative binomial distribution, where  

.�&<~ >?@AB�	CD�EFG,H�,I�<J �KCL�L�M�<N �
�O�P,                                             I�<J �KCL�L�M�<N O Q 

I assumed a negative binomial distribution because migration counts typically have larger 

variance than the mean, though the negative binomial approximates a Poisson distribution as the 

variance approaches the mean (Bolker 2008).  I fit both data models using log-linear regression, 

with a fixed year effect to estimate the overall linear trend in counts (Ross et al. 2012).  For 

analyses of hourly and daily counts, the seasonal distribution of counts was also modelled using 

fixed first and second-order polynomial day and hour terms.  Finally, hierarchical terms were 

included to account for random variation in counts among years, and to account for temporal 

auto-correlation structure (1st-order auto-regressive, or AR1; Havard et al., 2014) in counts 

across days nested within years (hourly and daily counts) and across hours in a day (hourly 

counts).   I did not include an AR1 structure on the random year effect because estimated 

correlation (Rho) of the AR1 effect on year was 1 % or less across all simulated datasets for each 

species. I back-transformed the year coefficient estimate into a rate of change using 100 �
�exp�.'-0 1�'UU�1�'�3� V 1�.  

For each species, I tested whether bias (estimated – simulated trend) of the trend estimate varied 

with count type (hourly, daily or annual) and model structure (negative binomial or zero-inflated 

negative binomial) using a linear model (lm function; R version 3.0.3) where bias was the 

response variable (n = 1000 datasets × 3 count types × 2 model structures = 6000 bias estimates), 

and data type (hourly, daily, annual), model structure (zero-inflated or not) and their interaction 

were explanatory factors.  To determine whether data type and model structure influenced 

inference drawn from estimated trends, I also assessed for each species, data type and model 

structure 1) coverage of credible intervals (hereafter ‘coverage’), or proportion of simulated 
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datasets where 95 % credible intervals (CI) included the simulated trend, 2) power, or proportion 

of simulated datasets with good coverage and CI that did not include zero (i.e. considered 

‘significantly’ different from zero), and 3) type I error rate (hereafter ‘error’), or proportion of 

simulated datasets with poor coverage and CI that did not overlap zero, i.e., probability of a false 

positive result.   

Finally, I used Bayes factor (B = exp(marginal loglikelihood(model 1) – marginal 

loglikelihood(model 2))) to compare the negative binomial and zero-inflated negative binomial 

data models and test which was better supported by the data for each species, and whether model 

selection varied depending on whether data were analyzed as hourly, daily, or annual counts.  A 

Bayes factor greater than three suggests substantial to strong support for the first model in the 

set, while a value < 1/3 suggests substantial or strong support for the second model in the set.  

Values between 1 and 3 suggest weak support for the first model, and values between 1/3 and 1 

suggest weak support for the second model (Raftery 1996). 

4.3 Results 

Trends estimated for the common and zero-inflated simulated datasets were least biased using 

daily counts, with the exception that trends  for the common northern harrier estimated using a 

zero-inflated model on daily counts were positively biased (Table 4-1, Figure 4-1).  Hourly 

counts for the over-dispersed simulated datasets resulted in negatively biased trend estimates 

(Table 4-1, Figure 4-1).  While mean bias of trends did not vary significantly between daily and 

hourly counts using over-dispersed simulated datasets (Table 4-1), the range in bias values, and 

therefore the probability of detecting a biased trend, was less using annual counts (Figure 4-1). 

For all species and count types, coverage of credible intervals was 89 % or more using the zero-

inflated negative binomial model, and 94 % or more using the negative binomial model (Figure 

4-2).  Error rate was less than 10 % using the zero-inflated negative binomial model, and less 

than 6 % using the negative binomial model.  Across all species, power exceeded 85 % only 

when datasets of the commonly detected northern harrier were analyzed using hourly or daily 

counts.  Power was also greatest when data for the rare species were analyzed as hourly (50-51 

% for the zero-inflated and non-zero-inflated models, respectively) or daily counts (54-55 % for 

the zero-inflated and non-zero-inflated models, respectively).  Compared to daily counts, 
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analysis of annual counts resulted in a 99 % and 71 % reduction in power to detect a significant 

trend for common and zero-inflated counts analyzed using a negative binomial model, 

respectively (Figure 4-2).  On the other hand, when over-dispersed counts were fit with a 

negative binomial model, power increased to 34% when counts were aggregated to annual totals, 

compared with 25% observed using daily totals.   

 

Table 4-1. Coefficients for the terms explaining variation in bias among estimated trends 

for datasets simulated to represent a commonly detected species (northern harrier), a 

rarely detected species with zero-inflated counts (peregrine falcon) and a super-flocking 

species with highly over-dispersed counts (broad-winged hawk).  Trends were estimated 

using a model that assumed bias varied as a function of count type (hourly, daily or 

annual), model structure (zero-inflated or not) and their interaction (n = 6000). 

 Common (northern harrier) Rare (peregrine falcon) Over-dispersed (broad-
winged hawk) 

 Est SE P Est SE P Est SE P 

Hourly -0.0023 0.0003 <0.001 -0.0036 0.0011 0.001 0.0026 0.0011 0.022 

Daily 0.0000 0.0003 0.965 -0.0013 0.0011 0.215 0.0009 0.0011 0.430 

Annual 0.0003 0.0003 0.324 -0.0589 0.0011 <0.001 -0.0006 0.0011 0.576 

ZINB 0.0002 0.0004 0.598 0.0002 0.0015 0.882 0.0007 0.0016 0.643 

Daily:ZINB 0.0027 0.0006 <0.001 0.0024 0.0022 0.262 0.0006 0.0022 0.783 

Annual:ZINB -0.0002 0.0006 0.708 0.0036 0.0022 0.099 -0.0007 0.0022 0.743 
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Figure 4-1. Box and whisker plots (n = 1000 each) of bias of estimated trend across datasets 

simulated to represent a commonly detected species (northern harrier), a rarely detected 

species with zero-inflated counts (peregrine falcon) and a super-flocking and highly over-

dispersed (OD) species (broad-winged hawk), when hourly migration counts were analyzed 

using raw counts, or aggregated to daily or annual totals.  Models that assumed a negative 

binomial distribution (NB) of counts were compared to models that assumed a zero-inflated 

negative binomial (ZINB) distribution. 
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Figure 4-2. Proportion of 1000 simulated datasets where 1) simulated trend fell within the 

95 % confidence intervals (CI) of the estimated trend (Coverage); 2) simulated trend fell 

within the CI of the estimated trend and CI did not include zero (Power); 3) simulated 

trend fell outside the CI, and CI did not include zero (Error).  Results are shown for data 

simulated to represent a commonly detected species (northern harrier), a rarely detected 

species with zero-inflated counts (peregrine falcon), and a super-flocking species with 

highly over-dispersed (OD) counts (broad-winged hawk), analyzed as hourly, daily and 

annual counts, fit with either a negative binomial (NB) or zero-inflated negative binomial 

(ZINB) model. 

Using Bayes factor as a model selection tool, the zero-inflated negative binomial model had 

better support than the negative binomial model only when datasets for the commonly detected 

northern harrier and rare peregrine falcon with zero-inflated counts were analyzed as daily totals 

(Figure 4-3).  However, compared to the negative binomial model, population trends estimated 

using the zero-inflated model were more positively biased for the commonly detected species 

when data were analyzed as daily totals, and also had lower coverage of credible intervals and a 

higher rate of error, which suggests some discrepancy between model selection and model 

inference.   
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Figure 4-3. Number of simulations where the Bayes factor suggested strong or weak 

support for the negative binomial and zero-inflated negative binomial models as the best 

model for analyses of hourly, daily or annual migration counts for Northern Harrier, 

Peregrine Falcon and Broad-winged Hawk simulations. 

4.4 Discussion 

Overall, there appears to be little benefit of estimating trends in migration counts using raw 

hourly totals as opposed to daily totals corrected for effort.  While analysis of hourly counts 

resulted in slightly better coverage of credible intervals and lower rates of error compared to 

daily counts for the commonly detected northern harrier, differences between hourly and daily 

counts were minimal.  Additionally, probability that the estimated trend will be biased was less 

when counts for the common and rare (zero-inflated) species were aggregated to daily totals, and 

when over-dispersed counts were aggregated to annual totals.   
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Miller et al (2002) found that population trend was more precise when broad-winged hawk data 

were analyzed as annual as opposed to daily totals, and suggested that large over-dispersion of 

counts among days was a likely factor.  My results support this suggestion, and further support 

that bias, power and inference drawn from population trend estimates can also be improved by 

aggregating data to annual totals when counts vary widely in magnitude from day to day.  

Aggregating counts to annual totals did not have the same benefit for the zero-inflated and 

commonly-detected species I examined.  Peregrine falcon and northern harrier counts did not 

vary as widely in magnitude and were much less over-dispersed than broad-winged hawk counts.  

For such common and rare species, including information on the seasonal distribution of counts 

resulted in higher power and lower probability of drawing false inference from the data than did 

annual totals.   

 Power to detect a significant decline of -3.6 %year-1 (a 50 % decline in 20 years) was greater 

than 80 % only for the commonly detected species when data were analyzed as hourly counts or 

daily totals.  The rate of decline simulated was fairly extreme, and is a rate often used to assess 

population status for species at risk (COSEWIC 2012).  Because rare species are typically the 

ones being assessed for conservation status, these results suggest that raptor migration counts 

collected over a 20-year period would detect this magnitude of decline only about 50 % of the 

time for rare species with a mean annual abundance of less than 30 individuals per year (Table 

C1).  Power to detect a significant trend was even less for the highly-over-dispersed broad-

winged hawk, despite being counted in large numbers.  Despite a low probability to detect a 

significant trend, rate of error and therefore the probability of drawing false inference from the 

data was low for all three count distributions. 

Power to detect a significant trend would be better for longer time-series and for more extreme 

rates of population change.  Precision of population trends, and therefore power, can also be 

improved by incorporating environmental or other relevant covariates to account for some of the 

observed variation in counts (Francis and Hussell 1998).  For example, large movements of 

raptors are often associated with the passage of cold fronts (Hall et al. 1992, Allen et al. 1996), 

and probability of detecting  raptors migrating overhead can also vary with weather conditions 

(Berthiaume et al. 2009).  The effect of including covariates on model fit using hourly or daily 

counts should be explored, particularly for over-dispersed species like broad-winged hawk, 
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which may then benefit from being analyzed as daily totals.  Combining data across sites 

assumed to monitor the same source population can also improve power to detect a significant 

change (Chapter 6).   

The use of migration counts to estimate population trends relies on the assumption that the 

relationship between migration counts and the population they are monitoring has not changed 

directionally over time.  In other words, we assume factors that influence the proportion of the 

monitored population that is detected each year vary randomly and not systematically over time 

(see Chapter 5). Annual variability in migration route (Vardanis et al. 2011) or breeding and 

wintering distribution (Paprocki et al. 2014) in response to climate change or other factors have 

the potential to bias population trends and can lead to poor inference from results.  The analysis 

of real migration count data needs to take potential sources of bias into consideration, either 

through the collection of ancillary data (e.g., weather, effort, habitat) to be included as 

covariates, or, at a minimum, by explicitly stating how potential sources of bias might impact the 

results reported.  Combining various sources of data, including data on the breeding or wintering 

distribution or abundance, into an integrated population model (Link et al. 2008, Paprocki et al. 

2014) also has the potential to improve inference drawn about population trends using migration 

counts.   

There was some discrepancy between results of model selection using the Bayes factor and 

inference drawn about population trends in terms of bias, rate of error, and power to detect a 

significant trend.   Trends estimated for a commonly detected species using daily totals were 

positively biased using the zero-inflated model, despite the zero-inflated model having greater 

support according to the Bayes factor.  The zero-inflated negative binomial model resulted in 

large estimated of precision for the random year effect for these data, which suggests issues with 

model fit.  Accounting for zero-inflation in addition to assuming over-dispersed counts by 

assuming a negative binomial distribution was likely over-parameterized for the analysis of daily 

totals for commonly detected species.  Indeed, using the simulated datasets for the commonly 

detected species used here, unpublished data suggests that a Poisson model would result in less 

biased population trends, a 3 % increase in coverage of CI to 97 %, a 2 % increase in power to 

92 %, and a 67 % reduction in the rate of error to 2 % when compared with the negative 

binomial model fit to daily totals (Crewe, unpubl. data).  A Poisson model might also provide a 
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better fit than the negative binomial when counts are aggregated to annual totals, particularly for 

commonly detected species that do not vary widely in abundance from year to year.  These 

results highlight the importance of taking model fit characteristics into consideration when 

interpreting model selection results.   

The RPI currently estimates population trends using hourly migration counts, and therefore 

restricts analysis to sites that submit hourly counts (Crewe et al. 2013).  Results, here, suggest 

that while submission of hourly counts might be preferred and recommended in order to keep 

track of hourly effort and the specific hours sampled each day, bias, power and error rates can be 

improved for the majority of species by analyzing daily totals corrected for effort.  The inclusion 

of sites that submit daily totals has the potential to greatly expand the geographic coverage of 

RPI analyses.  However, this suggestion relies on the assumption that daily effort is provided, 

and that the count period, including the number of hours and which hours were sampled each 

day, were standardized and did not changed systematically over time.  Therefore, while daily 

totals can be analyzed without consequence to the precision and accuracy of population trends, it 

is recommended that raptor watch sites continue to submit migration counts in an hourly format 

to ensure effort can be properly accounted for during analysis. 
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Chapter 5  

5 Modeling bias in detection probability due to systematic 
change in stopover duration does not improve trend 
estimates from migration counts 

5.1 Introduction 

Daily counts of unmarked animals migrating past or stopped at a specific geographic location 

(migration counts) have been used as an index of abundance to monitor long term population 

change, particularly for taxa that breed or winter in inaccessible, unpopulated, or otherwise 

unmonitored geographic regions (e.g., whales: Findlay et al. 2011; songbirds: Crewe et al. 2008, 

Blancher et al. 2009; raptors: Bildstein et al. 2008; shorebirds: Drever et al. 2014; insects: Gibbs 

et al. 2006).   The use of daily migration counts to estimate long-term population trends relies on 

several assumptions, including that a new cohort of individuals is detected each day, and that the 

proportion of the monitored population detected  remains consistent over time (assumptions of 

count independence and proportionality, respectively; Dunn 2005, Findlay et al. 2011).  The 

assumption of count independence is likely reasonable for populations counted while actively 

migrating past a count site, but is more likely to be violated for populations that are counted 

while on migratory stopover, which for songbirds and shorebirds, can last several days or even 

weeks (Schaub et al. 2001, Ydenberg et al. 2004, Calvert et al. 2009).  Regardless, violation of 

the assumptions of independence and proportionality are often ignored in analyses of population 

trends using migration counts (Francis and Hussell 1998, Farmer et al. 2007), because, it is 

argued, if stopover duration and its influence on probability of detection remains consistent over 

time, annual indices of population size should provide an unbiased index of population trend. 

Many factors contribute variability to the proportion of a population detected by migration 

counts each day and year.  Annual variation in migration route (Alerstam et al. 2006, Vardanis et 

al. 2011) will influence the proportion of the monitored population present to be detected at a site 

each year.  Stopover behaviour, including daily probabilities of arrival (immigration) and 

departure (emigration; 1-probability that an individual will 'survive' or remain on site), and 

therefore stopover duration (Schaub et al. 2001, 2004), can also vary with climate (Calvert et al. 

2009), weather (Schaub et al. 2004, Brattström et al. 2008), physiological condition (Schaub et 
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al. 2008), and presence of predators (Ydenberg et al. 2004).  Further, individuals present at a site 

might be unavailable to be perceived by an observer if they are not visible or vocalizing during 

the sampling period (Kéry and Schmidt 2008, Kéry et al. 2009, Nichols et al. 2009).  In his 

review of the factors influencing the availability and perceptibility of birds, Johnson (Johnson 

2008) suggests season, weather, observer skill, sampling effort and habitat structure are 

potentially confounding variables.   

Unexplained variability in the various components of detection probability can reduce precision 

of monitoring programs (Nichols et al. 2009), and a systematic bias in probability of detection 

can violate the assumption of proportionality and lead to false inference of population trends 

(Ydenberg et al. 2004, Hochachka and Fiedler 2008, Kéry et al. 2009).  Counts of unmarked 

migrants reflect the proportion of the population detected by the sampling protocol (Dunn 2005), 

and detection probability is not directly estimable from the data.  As a result, derivatives of 

detection probability, including observer skill (Link and Sauer 2002), date or local weather 

conditions (Francis and Hussell 1998), are often used as covariates in trend analyses to account 

for their potential influence on the proportion of the migrating population detected during a 

count.  Importantly, a temporal change in stopover duration (Ydenberg et al. 2004, Hochachka 

and Fiedler 2008, Calvert et al. 2009) in particular has the potential to influence the proportion of 

migrants that are detected not only once, but also the proportion of migrants that are detected on 

more than one count occasion, thus violating both the assumptions of proportionality and count 

independence.  Western sandpipers (Calidris mauri) stopping over at Sydney Island, British 

Columbia, Canada, for example, experienced a decline in stopover duration from 8.4 days in 

1992 to 2.7 days in 2001 in response to increasing predation risk (Ydenberg et al. 2004).  Early 

migrating warblers captured at a migration monitoring site in Nova Scotia, Canada, also 

experienced an increase in departure probability from a minimum of less than 0.2 in 1996/1997, 

to a maximum of approximately 0.8 in 2007 (Calvert et al. 2009), which resulted in a 

corresponding decline in stopover duration.  The effectiveness of using a covariate for 

probability of detection to improve inference drawn from trends in counts of unmarked migrants 

when a temporal bias in stopover duration has occurred has not been fully explored.    

Using simulated migration count data with known constant rate of change in count population 

size, I tested whether systematic variation in stopover duration influenced the accuracy and 
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precision of the estimated trend.  I simulated data with previously observed low to high daily 

probabilities of departure (Calvert et al. 2009) that either remained constant or varied randomly 

over a 20 year period. I compared results across simulated datasets with a cyclic (e.g. in response 

to climatic cycles like NOA and ENSO; Calvert et al. 2009) or linear change in departure 

probability over the same time period.  Further, I tested whether any bias in population trend that 

resulted from a linear change in departure could be modelled by incorporating a covariate for 

annual departure probability (assuming an independent estimate was available) or by sampling 

less frequently to reduce the probability of counting the same individual on more than one 

sampling occasion.   

Conservation efforts often rely on broad-scale monitoring programs to provide assessments of 

population status and trend to guide management efforts (e.g., Rich et al. 2004).  In order to use 

counts of unmarked migrants as a reliable index of population trend, it is important to understand 

how systematic changes in probability of detection, and in this case stopover duration, influence 

trend estimates, so that appropriate measures can be taken to model, or provide caution about, 

these sources of error. Although my simulation is modelled on the biology of a nocturnally 

migrating songbird, the results are applicable to any species counted on migratory stopover, 

where counts represent the total number of individuals detected at a count site each day during a 

migration season over multiple years, and where individuals are unmarked and not individually 

identifiable (e.g. monarch butterflies: Gibbs et al. 2006; shorebirds: Drever et al. 2014). 

5.2 Methods 

5.2.1 Migration Count Simulation 

Counts of migrating individuals are typically collected daily during a migration. Sampling 

methods include visual counts of individuals actively migrating past a count site (e.g., raptors: 

Farmer et al. 2007; whales: Findlay et al. 2011), census or transect counts of individuals on 

migratory stopover (e.g., monarchs: Gibbs et al. 2006; bees: Robinson 2012; shorebirds: Drever 

et al. 2014), or as an ‘estimated total’ derived from a combination of census, visual counts, and 

daily banding totals from mist-netting, also on migratory stopover (e.g., songbirds; Francis and 

Hussell 1998, Hussell and Ralph 2005, Crewe et al. 2008).   I simulated data for white-throated 

sparrows (Zonotrichia albicollis) counted on migratory stopover using program R (R Core Team 
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2013; see Appendix D for simulation and parameterization).  The total number of individuals 

migrating and available to be counted in the first year, 1=in , was defined such that simulated data 

approximated the observed mean total count (across years) observed for the species in spring at 

the tip station of the Long Point Bird Observatory (LPBO), Ontario, Canada, between 1961-2011 

(Table E1).  Daily estimated total data from LPBO were accessed online (Long Point Bird 

Observatory 2011), and were collected at that site with the permission of the Ontario Ministry of 

Natural Resources and Forestry (OMNRF), Bird Studies Canada, and Long Point Bird 

Observatory, with additional permitting provided by Environment Canada - Canadian Wildlife 

Service (Permit Number: 10169).  All of LPBO field and sampling procedures were approved by 

the OMNRF Animal Care and Use Committee (Protocol Number: 07-36).   

Given the defined size of the count population in the first year, the total number of birds 

available to be counted in all subsequent years, 1i
n > , was then a function of 1i

n = , a defined 

constant rate of change (trend), β , random normal error on the log scale (i.e., stochastic variation 

in annual counts), and Poisson error on the response scale (i.e., process variation in annual 

counts): 

�� � �������� � ���� �����
 � �1 � ��� � �� , ��~��0, $%�. 
Each year, 

i
n was distributed across days in a migration season using a Jolly-Seber (JS) 

simulation model, which required specification of annual population size (
i

n ), daily probability 

of arrival into the count site ( ij
b ), daily probability of survival ( ij

phi ) and daily probability of 

capture ( ij
p ; details of JS simulation in Kéry and Schaub 2011).   Daily probability of arrival at 

the count site was assumed to be highest mid-season during peak migration, and was modelled 

using a normal density distribution ( s ) with temporal autocorrelation among days, and Poisson 

and random error to simulate added variability due to the influence of factors such as local 

weather conditions on migratory behaviour (Schaub et al. 2004) and arrival probability.  The 

outcome was a Poisson mean ‘count’, which was transformed into a daily probability of arrival,

ij
b , by scaling values to add to one.  Specifically, the Poisson mean ‘count’ used to derive ij

b was 
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the product of annual population size (
i

n ) and a seasonal probability of movement, s , with 

temporal autocorrelation among days: 

��&~�������&�~���� W�� � ��& � 'X� �1 � �X�& V &�

	
�NYZ�
 � ��0',��&�	
�NYZ� [, 

where c  was a constant, ndays was the number of days in the migration season in year i ,  and 

npred  was a function of an autocorrelation coefficient, a  , and the previous day’s count, i.e.,  

��0',��&6
� � - � X�&; 

ij
x  was derived from the addition of random normal error on npred, i.e., 

X�&~����0',�&, $%�, 

and ij
s  was the product of a normal density distribution and binomial probability of moving: 

��&~4���5��,-.��, �5� � W�2 � �� � ��(5-��P.] � 'X� ^V0.5 � �` V /� a
bZcdef[, 

where Pm  was the probability of migrating on a given day, which remained constant at 0.85.   

Daily probability of survival represented the binomial probability that birds ‘survived’ and 

remained at the count site until the following day, and is therefore directly related to probability 

of departure (1 phi− ), and to stopover duration (Schaub et al. 2001). Survival was simulated to 

remain constant (0, 0.2, 0.5, 0.7), or to vary 1) randomly, 2) cyclically (5 year cycle), or 3) 

linearly among years between 0.4-0.5, 0.35-0.55, 0.3-0.6, 0.25-0.65 and 0.2-0.7 (Figure 5-1), but 

was assumed constant across days in a year.  A range in probability of survival between 0.2-0.7 

corresponds to the approximate range in mean probability of departure observed for warblers at a 

migratory stopover site in Atlantic Canada (Calvert et al. 2009), and a linear increase in survival 

probability from 0.2 to 0.7 over a 20 year period resulted in a range of mean stopover duration 

from 1.2 to 3.4 days in my simulated datasets (Figure 5-2).  A constant survival probability of 

zero was used as a control to simulate all birds departing after the current day’s count, which 
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ensured independence of daily counts and no detection bias.  Daily probability of observer 

detection, ij
p , was assumed constant at 0.30 across days and years.    

 

Figure 5-1. Simulated levels and pattern of change in daily probability of survival (phi), where phi 

was simulated to remain constant or vary randomly, systematically (linearly) or cyclically over 

time, but remained constant within a year.  Values shown for random variation in phi depict one 

draw from a random uniform distribution.  For random, systematic and cyclic variation, phi varied 

between 0.2–0.7, 0.25–0.65, 0.3–0.6, 0.35–0.55, and 0.4–0.5. 
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Figure 5-2. Simulated increase in daily survival, and associated increase in mean (SD) 

stopover duration and number of sampling occasions during which an individual was 

detected, across 100 datasets simulated to have a linear increase in survival probability 

from 0.2 to 0.7 over a 20-year period, a constant probability of observer detection (p = 0.3), 

and no underlying trend in population size (0 %year
-1

).   

The realized count on a given year and day ( ij
Y ) was derived using the JS simulation model 

(Kéry and Schaub 2011), using 
i

n , ij
b , ij

phi , and ij
p as input, and was the product of the sum of 

newly arriving individuals and individuals that survived and remained on site following the 

previous day’s count, and the binomial probability of observer detection, given presence.  For 

each level of survival probability examined (4 constant and 5 levels each of random, cyclic or 

linear change), I simulated 100 datasets for each of three rates of population change: a decline of 

20 % in 20 years (-1.2 %year-1), no change (0 %year-1), and an increase of 20 % in 20 years 

(+0.96 %year-1).  Thus, in total, 5,700 white-throated sparrow datasets were simulated and 

analyzed to estimate population trend. 

Simulation parameter values (Table D1) were chosen such that simulated datasets approximated 

the distribution of real migration count data collected for white-throated sparrow at the tip station 

of LPBO, Ontario, Canada (1961-2011), in terms of mean and coefficient of variation (CV) of 
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annual and daily counts, proportion of 0-observation days, and length of the migration season 

(Tables E2-E7). The distribution of real and simulated count data were compared using quantile-

quantile (Q-Q) plots.  Correspondence of simulated and real datasets was assessed by visual 

inspection of Q-Q plots and by testing the Pearson correlation of Q-Q scores.  A correlation 

coefficient near one suggests quantiles of the two datasets originate from a similar distribution of 

counts, even if one dataset has a higher mean count than the other (Table E8). 

5.2.2 Statistical Analysis 

Trend in migration counts was estimated for each simulated dataset in a Bayesian framework 

using integrated nested Laplace approximation using the R package R-INLA (Rue et al. 2014).  

Counts on day i, year j ( ij
Y ) were assumed to result from a negative binomial distribution, and 

were fit using a log-linear regression model with a fixed year effect to estimate population trend, 

and first and second order polynomial terms for day to account for the seasonal pattern of 

migration.  I included hierarchical terms to account for 1) 1st order autoregressive correlation 

(AR1) of errors among days in a season, and 2) random year effects.    An AR1 model for the 

random year effect resulted in low autocorrelation (rho) estimates, and was deemed unnecessary 

for these simulations.  The estimated year coefficient was back-transformed into a trend or rate 

of change (%year-1) using 100�(exp (year coefficient) – 1).  Bias in the estimated trend was then 

the difference between estimated and simulated trends.  For simulations with constant probability 

of survival, I tested whether bias in estimated trend varied among simulated factor levels by 

fitting a linear regression model that assumed bias (n = 1200) was a function of direction of 

simulated trend (declining: -1.2 % year-1; no change: 0 % year-1, or increasing: 0.96 % year-1) 

and survival probability ( phi =  0, 0.2, 0.5, 0.7).  For simulations where survival was allowed to 

vary, I fit a linear regression model which assumed bias (n = 4500) was a function of the 

direction of simulated trend, and an interaction between pattern of change in survival (random, 

cyclic, or linear) and magnitude of change in survival ( phi =  0.4–0.5, ..., 0.2–0.7).  All linear 

regression models were fit using the lm function in R (R Core Team 2013). 

I tested whether bias in estimated trend could be modeled using a covariate for probability of 

detection by running the above described log-linear regression model with simulated survival 

probability as an annual covariate.  Regressions were run on datasets simulated to have a linear 
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increase in survival probability and a declining trend in counts (- 1.2 %year-1) over the 20-year 

period.  Because any bias in estimated trend would result at least partially from an increased 

probability of counting the same individuals on successive days, I ran the regression on the full 

simulated dataset (n = 500), as well as on those same datasets subset to every third or fifth 

observation day, to test whether sub-sampling can reduce bias in trend by lowering the 

probability that an individual will be detected on more than one count occasion.  Using the 

estimated trends, I then tested whether the addition of a covariate and/or sub-sampling influenced 

bias in trend by fitting a linear regression model which assumed that bias (n = 1500) was a 

function of a three-way interaction between magnitude of change in survival (0.4–0.5, ..., 0.2–

0.7), whether a covariate for detection probability was included or not, and whether data were 

subset (no subset, every three days, or every five days). 

In addition to bias, I also examined how simulated variation in survival, simulated rate of 

population change, the use of a covariate for probability of detection, and sub-sampling 

influenced precision of trend estimates by examining 1) ‘coverage’ of credible intervals, or the 

proportion of simulations where the simulated trend fell within the 95 % credible interval of the 

estimated trend, 2) ‘power’ to detect a ‘significant’ trend, or the proportion of simulations with 

good coverage and credible intervals that did not include zero, and 3) rate of ‘error’, or the 

proportion of simulations with poor coverage (simulated trend fell outside the credible interval of 

the estimated trend) and credible intervals that did not include zero.   Rate of error describes the 

probability that false inference will be drawn from the data. 

5.3 Results 

When survival was constant, mean bias in estimated trend did not differ among simulated rates 
of trend or among simulated survival probabilities (Figure 5-3a,   
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Table 5-1).  Coverage of confidence limits was greater than 86 %, rate of error was less than 12 

%, but power to detect a significant trend was also low, at less than 6 % (Figure 5-4a).   

 

Figure 5-3. Box and whisker plots (n = 100 each) of bias (%year
-1

) in estimated trend 

(estimated – simulated trend) in migration counts, when trend was estimated using datasets 

simulated to have either an increasing trend (0.96 %year
-1

), no long term trend (0 %year
-1

) 

or a declining trend (-1.2 %year
-1

) in the count population, and where daily probability of 

survival a) remained constant across years at 0, 0.20, 0.50, or 0.70, or b) varied randomly, 

cyclically or increased linearly over time between 0.40–0.50, 0.35–0.55, 0.30–0.60, 0.25–0.65 

or 0.20–0.70.  Lines of the boxplots represent the 25
th

 percentile, median and 75
th

 percentile 

of bias estimates across 100 simulated datasets.  The horizontal dashed line depicts no bias 

in trend. 
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Table 5-1. Parameter estimates for a linear model that examined the influence of direction 

of simulated trend and survival probability on bias of estimated trend, when bias was 

simulated to remain constant over time. 

Parameter Coeff SE t-value P 

Trend: -1.2 %year-1 0.00004 0.0011 0.04 0.97 

Trend: 0 %year-1 0.00065 0.0011 0.58 0.56 

Trend: .96 %year-1 0.00059 0.0011 0.53 0.60 

phi: 0.20 0.00012 0.0013 0.10 0.92 

phi: 0.50 0.00110 0.0013 0.83 0.41 

phi: 0.70 0.00169 0.0013 1.32 0.19 

 

 

Figure 5-4. Proportion of 100 simulated datasets with good coverage of credible intervals 

(simulated trend fell within credible intervals of estimated trend), power to correctly detect 

a ‘significant’ trend (good coverage; credible intervals did not include zero), and rate of 

error, or rate of falsely detecting a trend (poor coverage; credible intervals did not include 

zero).  Results are shown for datasets simulated to have a declining trend (-1.2 %year
-1

), no 

trend (0 %year
-1

), or increasing trend (0.96 %year
-1

) in the count population, and a) a 

constant survival probability of 0, 0.20, 0.50 or 0.70, or b) random, cyclical or linear 

variation in survival among years between 0.40–0.50 and up to 0.20–0.70. 
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When survival was simulated to vary randomly, cyclically or linearly, mean bias in estimated 
trend also did not differ among simulated rates of trend (Figure 5-3b, Table 5-2).  However, 
compared to when survival varied randomly, trends became increasingly positively biased as the 
linear bias in survival probability became more extreme, and to a lesser extent, increasingly 
negatively biased as the amplitude of cyclical change in survival increased (Figure 5-3b,  
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Table 5-2), due in part to the simulated cycle ending at a lower probability of survival than it 

began (Figure 5-2).  Credible intervals of estimated trends had greater than 85 % coverage and 

probability of error was less than 10 % when survival varied randomly or cyclically, and when 

the linear bias in survival probability was low (Figure 5-4b).  However, coverage declined to less 

than 40 % and error increased to over 60 % as the linear bias in survival increased in magnitude 

(Figure 5-4b) and estimated trends became more positively biased (Figure 5-3b).  Power to 

detect a significant trend was typically less than 5 %, but for datasets simulated to have an 

increasing population trend, a positive linear bias is survival probability resulted in an increase in 

power to almost 10 % (Figure 5-4b) due to fewer credible intervals that included zero as 

estimated trends became increasingly positively biased.  

Compared to datasets analyzed without a covariate or sub-sampling, bias in estimated trend was 
not influenced by sub-sampling data to every third or fifth observation day (Figure 5-5,  
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Table 5-3).  Trends became less biased with the inclusion of a covariate for probability of 

detection (Figure 5-5), and with both sub-sampling and a covariate.  The observed reduction in 

bias was greater as the positive linear bias in survival increased, most notably when data were 

subset, and particularly when data were subset to every fifth observation day.  Including both a 

covariate and sub-sampling in the estimation of trends largely compensated for the effect that a 

positive linear bias in survival probability had on coverage of credible intervals, power and error 

(Figure 5-6).  For all levels of bias in survival probability, coverage was over 85 %, probability 

of error was less than 20 %, but power to detect a significant trend remained below 5 %.    

 

  



94 

 

Table 5-2. Parameter estimates for a linear model that examined the influence of simulated 

direction of trend, type of variation in survival (random, linear or cyclic) and range in 

survival probability on bias of estimated trend in migration counts (n = 4500). 

Parameter Coeff SE t value P 

Trend: -1.2 %year-1 0.0005 0.0011 0.41 0.68 

Trend: 0 %year-1 0.0007 0.0011 0.60 0.55 

Trend: 0.96 %year-1 0.0012 0.0011 1.08 0.28 

Cyclic Survival -0.0041 0.0015 -2.83 0.005 

Linear Survival 0.0161 0.0015 11.03 <0.001 

Phi: 0.35-0.55 0.0016 0.0015 1.11 0.27 

Phi: 0.30-0.60 0.0018 0.0015 1.21 0.23 

Phi: 0.25-0.65 -0.0006 0.0015 -0.43 0.67 

Phi: 0.20-0.70 -0.0019 0.0015 -1.31 0.19 

Cyclic Survival: 0.35-0.55 -0.0038 0.0021 -1.84 0.07 

Linear Survival: 0.35-0.55 0.0147 0.0021 7.12 <0.001 

Cyclic Survival: 0.30-0.60 -0.0054 0.0021 -2.57 0.01 

Linear Survival: 0.30-0.60 0.0298 0.0021 14.43 <0.001 

Cyclic Survival: 0.25-0.65 -0.0070 0.0021 -3.37 <0.001 

Linear Survival: 0.25-0.65 0.0506 0.0021 24.48 <0.001 

Cyclic Survival: 0.20-0.70 -0.0082 0.0021 -3.97 <0.001 

Linear Survival: 0.20-0.70 0.0737 0.0021 35.54 <0.001 
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Figure 5-5. Bias (%year
-1

) in estimated trend (estimated – simulated trend) in migration 

counts, when trend was estimated with and without a covariate for detection probability, 

and with and without sub-sampling to every third or fifth observation day.  All datasets 

were simulated to have a declining population trend of 1.2 %year
-1 

and a linear increase in 

probability of survival between 0.40–0.50, 0.35–0.55, 0.30–0.60, 0.25–0.65 or 0.20–0.70 over 

a 20-year time series.  Lines of the box-plots represent the 25
th

 percentile, median and 75
th

 

percentile of bias estimates across 100 simulated datasets.  The horizontal dashed line 

depicts no bias in estimated trend. 
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Table 5-3. Parameter estimates for a linear model that examined the influence of 1) 

including a covariate for bias in survival, 2) sub-sampling to every third or fifth 

observation day, 3) magnitude of change in survival, and 4) their interactions on bias of 

estimated trend for 20-year white-throated sparrow datasets with a simulated decline in the 

count population of 1.2 %year
-1 

(n = 1500). 

Parameter Coeff SE t value P 
0.40-0.50 0.0188 0.0018 10.565 <0.001 
0.35-0.55 0.0310 0.0018 16.997 <0.001 
0.30-0.60 0.0477 0.0018 26.772 <0.001 
0.25-0.65 0.0648 0.0018 36.377 <0.001 
0.20-0.70 0.0906 0.0018 49.852 <0.001 
Every 3 Days -2.2E-05 0.0025 -0.009 0.99 
Every 5 Days 0.0012 0.0025 0.493 0.62 
Covariate -0.0033 0.0025 -1.308 0.19 
0.35-0.55:Every 3 Days 0.0007 0.0036 0.207 0.84 
0.30-0.60:Every 3 Days 0.0006 0.0036 0.166 0.87 
0.25-0.65:Every 3 Days 0.0009 0.0036 0.247 0.80 
0.20-0.70:Every 3 Days 0.0013 0.0036 0.357 0.72 
0.35-0.55:Every 5 Days 0.0006 0.0036 0.156 0.88 
0.30-0.60:Every 5 Days 0.0012 0.0036 0.326 0.74 
0.25-0.65:Every 5 Days 0.0024 0.0036 0.665 0.51 
0.20-0.70:Every 5 Days 0.0061 0.0036 1.711 0.09 
0.35-0.55:Covariate -0.0034 0.0036 -0.95 0.34 
0.30-0.60:Covariate -0.0076 0.0036 -2.131 0.03 
0.25-0.65:Covariate -0.0108 0.0036 -3.039 0.002 
0.20-0.70:Covariate -0.0138 0.0036 -3.851 <0.001 
Every 3 Days:Covariate -0.0057 0.0036 -1.609 0.11 
Every 5 Days:Covariate -0.0124 0.0036 -3.474 <0.001 
0.35-0.55:Every 3 Days:Covariate -0.0059 0.0051 -1.175 0.24 
0.30-0.60:Every 3 Days:Covariate -0.0121 0.0050 -2.401 0.02 
0.25-0.65:Every 3 Days:Covariate -0.0184 0.0050 -3.645 <0.001 
0.20-0.70:Every 3 Days:Covariate -0.0256 0.0050 -5.081 <0.001 
0.35-0.55:Every 5 Days:Covariate -0.0102 0.0051 -2.013 0.04 
0.30-0.60:Every 5 Days:Covariate -0.0237 0.0050 -4.704 <0.001 
0.25-0.65:Every 5 Days:Covariate -0.0346 0.0050 -6.881 <0.001 
0.20-0.70:Every 5 Days:Covariate -0.0489 0.0050 -9.681 <0.001 
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Figure 5-6. Proportion of 100 simulated 20-year white-throated sparrow datasets with 1) good 

coverage of credible intervals (simulated trend fell within credible intervals of estimated trend), 2) 

power to correctly detect a ‘significant’ trend (good coverage; credible intervals do not include 

zero), and 3) error, or false detection of a trend (poor coverage; credible intervals do not include 

zero).  Results are shown for datasets that were not sub-sampled or sub-sampled to every third or 

fifth observation day, and when a covariate for probability of detection was or was not included in 

analysis.   Datasets were simulated to have a declining trend in the count population of 1.2 %year
-1 

and a linear increase in daily probability of survival from 0.40–0.50, 0.35–0.55, 0.30–0.60, 0.25–0.65 

or 0.20–0.70. 

5.4 Discussion 

Conservation efforts rely on monitoring programs to guide management priorities through 

accurate and precise assessments of population status and long-term trend (Rich et al. 2004).  

However, ecological systems are inherently complex and variable, and in the analysis of time 

series data, the potential exists for any number of factors to generate a bias in the proportion of a 

population detected (Kéry and Schmidt 2008, Kéry et al. 2009).  If left unaccounted for, a bias in 

probability of detection can lead to the estimation of false population trends (Hochachka and 

Fiedler 2008, Kéry and Schmidt 2008, Kéry et al. 2009).  My results support the assertion that a 

violation of the assumption of proportionality through a linear bias in probability of detection, 

and specifically in daily probability of survival and stopover duration, will bias trends and lead to 
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a higher probability of drawing false inference from migration count data.  As survival 

probability increased linearly from 0.25 to 0.65 or from 0.20 to 0.70 in 20 years, probability of 

error, and therefore probability of drawing false inference from the data, exceeded 60 %.  

Compared to previously observed rates of change in departure probability for early migrating 

warblers (0.2-0.8 in 11 years; Calvert et al. 2009) and in stopover duration for shorebirds (8.4-2.7 

days in 10 years; Ydenberg et al. 2004), the probability of falsely detecting a trend observed here 

should be considered conservative.  To a lesser extent, cyclical variation in survival probability 

also has the potential to bias estimated trends when the amplitude of fluctuations is large and 

cycles are not completed during the time span analyzed, which in real situations cannot be 

known.  Random variation in survival did not bias trends, but as expected, the resulting 

unexplained variation in migration counts did result in lower power compared to when survival 

remained constant. 

In order to improve inference of population trends derived from counts of unmarked animals,  

monitoring programs often use data on derivatives of detection probability, including weather 

(Francis and Hussell 1998) and observer (Link and Sauer 2002), as covariates in population trend 

analyses.   However, when the assumption of count independence is violated by a systematic 

linear change in the length of migratory stopover, my results suggest that a reliance on covariates 

to model detection probability is not sufficient to improve inference of population trends 

estimated using daily counts of unmarked migrants.  This is true even though the covariate I 

tested represented the known bias in detection probability without estimation error.  As survival 

probability increased linearly over time, individuals became more likely to stay on site and be 

detected on an increasing number of sampling occasions.  Lacking the ability to exclude 

recaptures, the resulting inflation or compounding effect on daily counts was not accounted for 

by a covariate for probability of detection alone.  Rather, my results suggest that in order to 

minimize the probability of drawing false inference from counts of unmarked migrants, analyses 

of population trends must model the underlying bias in probability of detection, as well as 

incorporate modifications to the sampling protocol to either exclude ‘recaptures’ (e.g. only count 

birds newly arriving at a site) or minimize the probability that individuals will be counted on 

more than one sampling occasion. 
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Ideally, monitoring programs would be designed to allow for the direct estimation of probability 

of detection and recapture.  Temporally or spatially replicated counts of territorial animals 

collected annually, for example, can be used to estimate population trend while explicitly 

modeling components of detection probability (Kéry and Schmidt 2008, Kéry et al. 2009, 

Schmidt et al. 2013).   This would likely be considered the ideal sampling protocol to monitor 

population abundance and distribution of commonly detected species with accessible breeding 

grounds (Kéry and Schmid 2004, Schmidt et al. 2013).  However, migration monitoring typically 

targets species that are either secretive breeders not commonly detected by breeding surveys 

(e.g., raptors; Farmer et al. 2007), or species that breed in inaccessible, remote locations, where 

breeding surveys can be logistically or financially unrealistic (Francis and Hussell 1998, Findlay 

et al. 2011).  This is the case for many long-distance landbird migrants that breed in the northern 

and boreal forests of Canada.  A large proportion of the breeding population of many of these 

species lies north of human populated regions (Bird Studies Canada et al. 2006), and therefore 

beyond the range of other large-scale monitoring programs (e.g., Breeding Bird Survey; 

Environment Canada 2014).  Migration monitoring has been identified as an important source of 

data for these northern-breeding populations (Rich et al. 2004). 

The use of daily capture-recapture sampling protocols to monitor migrating populations would 

allow recaptures to be excluded and variability in stopover parameters that influence probability 

of detection (e.g., trapability, survival) to be modeled and accounted for when estimating 

population trends (Hochachka and Fiedler 2008).  Currently, a majority of member sites of the 

Canadian Migration Monitoring Network (CMMN), which focuses primarily on monitoring  

populations of long-distance landbird migrants, do collect banding data in addition to daily 

estimated totals (Crewe et al. 2008).  For species that are detected in sufficient numbers, the use 

of banding data to estimate population trends using mark-recapture analyses that account for 

probability of detection (Hochachka and Fiedler 2008) should be considered a preferred 

alternative to estimating trends using counts of unmarked animals.  However, a majority of 

species that pass through migration count sites are not captured in sufficient numbers to be 

analyzed in a mark-recapture framework (Hochachka and Fiedler 2008, Calvert et al. 2009).  

Indeed, this is a primary reason why Hussell and Ralph (1998, 2005) recommend combining 

multiple count methods into a daily estimated total for migratory landbird monitoring.  The use 

of two or more count methods to derive a daily estimated total allows a greater number of 
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species to be detected in numbers sufficient for analysis, and allows counts to be estimated 

during poor weather conditions when nets used for banding are typically closed (Hussell and 

Ralph 1998, 2005).   

In order to improve estimates of population trend using counts of unmarked migrants, I 

recommend the collection of independent data on all of the components of probability of 

detection to be included either as covariates in population trend analyses, or as components of 

the underlying models themselves.  For example, incorporating radar and acoustic monitoring 

data into estimates of daily migration volume (Buler and Dawson 2014, Sanders and Mennill 

2014) could be profitable.  In addition, stopover parameters (e.g. stopover duration) could also be 

estimated for a given species or species group using local band recoveries (Hochachka and 

Fiedler 2008, Calvert et al. 2009), large-scale automated telemetry arrays (Taylor et al. 2011), or 

other mark-recapture techniques.  Finally, the probability of observer detection given presence at 

a count site could be modeled either through the collection of independent data on sampling 

effort or observer skill (Link and Sauer 2002), or through the use of double observer or other 

repeated sampling approaches (Johnson 2008, Berthiaume et al. 2009, Drever et al. 2014).  

Where independent data on probability of detection are not available, correlates (e.g., weather) 

should be used as covariates in trend analyses (Francis and Hussell 1998). 

When individuals are known to stop at a count site for extended periods of time and recaptures 

cannot be excluded from daily counts, the incidence of multiple-counting should be addressed 

through sub-sampling or other modifications to the sampling protocol.  Hussell and Ralph (1998, 

2005) suggest recording and subtracting the number of probable or known stopovers from daily 

counts of migrating landbirds, which can be calculated directly from band recoveries (where 

available) or estimated based on observer knowledge of the count site and individuals present.  

At sites where stopover duration is typically short and independent data on stopover parameters 

are collected, the omission of days with a low estimated probability of departure should also be 

tested for its effectiveness in reducing both the incidence of multiple counting and bias of 

estimated population trends.  Compared to sub-sampling, the latter method has the potential to 

minimize a reduction in sample size and therefore power.  Count sites should also be placed in 

locations with a high turnover of migrants, such as exposed coastal sites that funnel migrants but 

are considered poor quality stopover habitat, to reduce the probability that extended migratory 
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stopovers will occur (Hussell and Ralph 1998, 2005).  Alternatively, modifications to analytical 

methods can also address a bias in stopover duration.  Population trends for migrating shorebirds, 

for example, are often calculated using an estimate of annual abundance derived from the total 

number of individuals observed (or estimated) from daily counts, corrected by average length of 

stay (Bishop et al. 2000, Drever et al. 2014).  This method assumes an annual estimate of 

stopover duration is available, and that all individuals present are observed (Bishop et al. 2000).  

Thus, as opposed to an index of abundance, this method provides an estimate of the total number 

of individuals using a site each year, and is highly sensitive to estimated length of stay (Bishop et 

al. 2000). 

Overall, statistical power of my analyses was low, at approximately 10 % or less to detect a 20 % 

change in 20 years. Typical of migration counts, white-throated sparrow counts collected at Long 

Point, and simulated here, were highly variable both within and among years (Tables E1-E4).  A 

similar analysis of population trends using counts of western sandpipers on migratory stopover in 

British Columbia, Canada, resulted in power to detect a minimum rate of change of 3.2 %year-1, 

or approximately 55 % in 20 years (Drever et al. 2014), which is over double the rate of 

population change in my simulated data.  A power of 80 % to detect a 50 % decline in 20 years 

with a significance of 0.1 was suggested as a goal for landbird population monitoring (Bart et al. 

2004).  The low rate of population change simulated here highlights the impact that a bias in 

probability of detection can have on the interpretation of time series data when populations are 

stable or changing at a low rate relative to the bias in detection probability.  The relative impact 

of a given bias in probability of detection on inference drawn about population trends will 

decline as rate of population change increases.  Future work should assess the minimum rate of 

population change required to achieve a pre-determined level of power given the magnitude of 

detection bias and count variability simulated here or observed elsewhere (Hochachka and 

Fiedler 2008, Calvert et al. 2009).  Further, the sensitivity of various rates of population change 

to the different magnitudes of detection bias should also be explored.  In general, power can be 

improved and probability of error will decline with the use of covariates, by increasing the length 

of the time series, and by combining data across migration count sites that are assumed to 

monitor the same population.  The latter would allow site-specific variation in counts, including 

variation in probability of detection, to be estimated independently from underlying population 

change.  Because different sampling protocols will be subject to different sources of detection 
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bias (Johnson 2008), the use of standardized sampling protocols across sites is recommended. In 

addition, the assumption of proportionality is more likely to be violated as the length of a time 

series increases, which further emphasizes the importance of accounting for annual and daily 

variability in probability of detection through the use of covariates or other method.   

All sampling methods are susceptible to various potentially interacting sources of detection bias 

(Hochachka and Fiedler 2008, Johnson 2008).  While standardization of sampling protocols is 

important to minimize the probability that a bias in probability of detection will occur, not all 

sources of variability in probability of detection can be controlled or effectively measured.  The 

recommendation for stable habitat structure at a migration count site (Hussell and Ralph 2005), 

for example, is rarely achieved, and can have important implications on bird behaviour and 

detection probability (Harrison et al. 2000).  Mark-recapture sampling protocols provide an ideal 

means to monitor migrating populations while accounting for variation in detection probability 

(Hochachka and Fiedler 2008), but unless analyzed in a guild context, sample-size requirements 

exclude rare species that are often the primary focus of conservation efforts.  Further, even 

though migration counts provide only an index of population abundance that is confounded by 

detection probability, correspondence between bird population trends derived from migration 

counts and the North American Breeding Bird Survey supports their use (Francis and Hussell 

1998, Farmer et al. 2007).  Thus, while I recommend the collection of additional data to model 

detection probability, the absence of relevant covariates for probability of detection should not 

preclude the use of migration counts for population trend analyses.  Rather, in the absence of 

additional information on detection probability, population trends estimated using migration 

counts should simply state clearly and openly whether and how variation in factors known to 

influence stopover behaviour and detection might influence inference drawn about long-term 

population change. 
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Chapter 6  

6 Application of model selection to quantify regional population 
trends using migration counts 

6.1 Introduction 

Broad-scale population monitoring provides information on whether and how populations are 

changing over time (Bildstein et al. 2008, Bled et al. 2013).  For government and other 

organizations that are mandated or otherwise engaged in the conservation of biodiversity or 

species at risk, population monitoring plays an integral role in determining whether management 

decisions and species recovery efforts are having their anticipated effect (Conrad and Hilchey 

2011).  However, for many broad-scale monitoring programs, data collection is biased towards 

accessible and human-populated regions (Dunn and van Strien 1995, Bled et al. 2013). An 

example is the more northern regions of Canada’s boreal forests, which are not well sampled by 

the North American Breeding Bird Survey (BBS) and other broad-scale bird monitoring 

programs (Peterjohn et al. 1995, Dunn 2005).  A large proportion of the breeding population of 

many migratory bird species inhabits these unmonitored regions of the boreal forest  (Blancher 

and Wells 2005), and at least 40 species are considered inadequately sampled by the BBS (Rich 

et al. 2004).  Northern waterthrush, for example, was detected with highest probability in the 

northern boreal forests of Ontario (Bird Studies Canada et al. 2006), but long-term BBS trends 

for Ontario were derived from the southern portion of their breeding range (Environment Canada 

2014), where probability of detection was low, and potentially not representative of the entire 

breeding range. 

An alternative approach to the more costly prospect of conducting breeding bird surveys in those 

largely unpopulated and remote regions, migration monitoring typically comprises a 

standardized daily count of individuals migrating past or stopping over at a particular geographic 

location while individuals move to or from their breeding grounds (Francis and Hussell 1998, 

Farmer et al. 2007, Drever et al. 2014).  The Canadian Migration Monitoring Network (CMMN; 

Crewe et al 2008) is a network of approximately 25 independent sites situated primarily across 

southern Canada that collect counts of migrating landbirds.  Feather isotope analysis and band 

recoveries suggest that the current composition of sites is sufficient to sample the entire 
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Canadian breeding range of many species (Dunn et al. 2006), and at site-specific scales, 

correspondence of songbird and raptor population trends with BBS (Francis and Hussell 1998, 

Farmer et al. 2007, Crewe et al. 2008) supports their use for population monitoring.   

However, migration counts can be highly variable within and among sites due to the influence of 

extrinsic factors such as local weather, climate and habitat quality on annual migration route 

(Vardanis et al. 2011), stopover behaviour (Schaub et al. 2004, Calvert et al. 2009), and 

probability of detection (Berthiaume et al. 2009). Further, because the exact geographic breeding 

and wintering origin of migrants is unknown and varies among sites and among species at each 

site (Dunn et al. 2006), extrinsic factors influencing sub-populations, and thus underlying rates 

of sub-population change, are also likely to vary among regions, resulting in the potential for 

species- and region-specific patterns of population change.  Partially as a result of these 

uncertainties, population trends estimated using migration counts in North America have been 

site-specific to date (Bildstein et al. 2008, Crewe et al. 2008).  

In this paper, I assess whether, in the absence of prior information on whether and how 

population trends vary among regions, model selection using Akaike’s Information Criterion 

(AIC; Burnham and Anderson 2002) can be used to select among a set of competing models, the 

model that best describes underlying regional patterns of population trend when data are pooled 

across a network of migration monitoring sites such as the CMMN.  Specifically, I used 

simulated migration count data with known constant rate(s) of population trend, which may or 

may not vary among regional sub-populations, to determine whether I can rely on model 

selection procedures to select the correct model structure for the data, given current or increased 

numbers of stations in each geographic region or given current or increased number of years 

surveyed.  I also examine whether and how increasing the number of sites in a region and 

number of years surveyed influences precision and accuracy of population trends, power to 

detect a significant trend, and rate of error (probability of detecting a significant but incorrect 

trend) when:  1) model assumptions match simulated data, and 2) model assumptions do not 

match simulated data (e.g., population trend does not vary regionally, but the model assumes it 

does).  I simulate data for both a rare and a more abundant and commonly detected species to test 

whether results vary with count size and proportion of 0-observation counts in the data. 



110 

 

6.2 Methods 

6.2.1 Migration Count Simulation 

I simulated migration count data using a probability-based simulation (R version 3.0.2, R Core 

Team 2013); see Appendix F for simulation code and parameterization).  The simulation model 

assumed that migration counting sites within a region monitored the same sub-population, and 

that the count population at a migration monitoring site was a consistent and representative 

sample of regional population size. I either fixed the properties of sub-populations (population 

size and trend) to be the same, or to vary among sub-populations/regions. 

The total simulated number of birds (n) available to be counted in each region (j) in the first year 

(i), ���
,&�
...	K@A�C	Y, was defined by the simulation function.  Because I assumed that regions 

sampled discrete sub-populations, regional abundance in all subsequent years, ���
,&, was a 

function of starting regional population size and a region-specific constant rate of population 

change, �&: 

���%…	N@�KY,& �  ���
,& � �1 � �&� 

Site specific annual population size was then a function of a multinomial distribution with size 

equal to regional abundance each year, ��&, and with probability ��&7 that birds would move 

through site k in region j in year i.  Site-specific random normal error was added on the log scale 

(i.e., site-specific stochastic variation in counts): 

log��k�&7� � log�52l3���5���& , ��&7�  � ��&7� ,  ��&~ ��0, $%�. 
Annual variability in site-specific population size can result from annual variation in migration 

route, stopover probability, probability of detection, or other factor (Alerstam et al. 2006, 

Hochachka and Fiedler 2008, Calvert et al. 2009, Vardanis et al. 2011), for example in response 

to climatic cycles (e.g., ENSO cycles; Calvert et al. 2009).  

Because migration counts are collected daily across a migration season, I simulated site-specific 

daily migration counts, ��&7M, to be a function of �k�&7 and a probability that birds were available 

to migrate through a site on a given day, ��&7M, where ��&7M  assumed a normal density distribution 
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to allow peak migration to occur mid-season.  Of those individuals available to migrate each day, 

the number that actually migrated depended on a binomial probability of migrating (given 

available), �5�&7M, which was generated as a uniformly distributed random variable with added 

Poisson variability to simulate the temporal autocorrelation among days in a season which often 

results from weather fronts: 

��&7M  ~ 4���5 ���k�&7 � ��&7M�, �5�&7M ,    ��&7M~ ��/�&7, $�&7% �, 
where /�&7 and $�&7 varied with site, region and year to simulate site-specific annual variation in 

the timing and distribution of available birds across days in a migration season. Below a given 

‘bad migratory weather’ threshold, I forced �5�&7M � 0, and no birds migrated.  All birds 

available to migrate were then carried forward to the following day’s total number of birds 

available to migrate, which allowed the number of available birds to build up and add the extra 

variability typically observed with migration counts. 

Finally, the expected daily count at a site each year was a function of ��&7M, random normal error 

(stochastic variation) on the log scale, and Poisson error (process variation) on the response 

scale: 

�k�&7M �  �������&7M� � �������&7M � ��&7M�, ��&7M ~��0, $%� 

Random error in daily migration counts represented variability in the observed count due to 

factors such as local weather conditions, which can influence both daily stopover behaviour 

(Schaub et al. 2004, Calvert et al. 2009)  and daily probability of observer detection 

((Berthiaume et al. 2009).  Because stopover and detection probabilities are confounded, they 

cannot be estimated independently. 

The simulation model also assumed the following: 1) daily counts were an independent sample 

of the migrating population, or in other words, all birds departed the count site within 24 hours; 

2) birds moved through all sites at the same time each year, with site- and year-specific random 

error around mean start date; and 3) all sites had consistent and complete seasonal coverage of a 

species’ migration window, i.e., the time of year when a species typically migrates through a site.  

While in practice these assumptions may not be met (particularly that daily counts are 



112 

 

independent), in the absence of systematic change, violation of these assumptions will not bias 

long-term population trends (Chapter 5). 

6.2.2 Simulated Factor Levels 

I simulated migration count data for two boreal-breeding songbirds: Canada warbler (Cardellina 

Canadensis) and white-throated sparrow (Zonotrichia albicollis).  White-throated sparrow is 

commonly detected in large numbers across most of the CMMN network (Table 6-1), whereas 

Canada warbler was chosen as representative of a rare species, detected in low numbers across 

most of the network (Table 6-2).  For each of the two species, I simulated data from four regions 

(sub-populations), and varied the ‘true trends’ for each region under the following three trend-

scenarios: 1) ‘1-trend’, sub-population trends did not vary among regions (-1.2 %year-1, or 20 % 

decline in 20 years in all regions); 2) ‘2-trends’, sub-populations in two regions declined by 1.2 

%year-1, and in the other two regions sub-populations increased by 0.96 %year-1 (or 20 % 

increase in 20 years); or 3) ‘4-trends’, sub-population trends varied among all regions (-3.6 

%year-1, or 50 % decline in 20 years in region 1; -1.2 %year-1 in region 2; +0.96 %year-1 in 

region 3; and +2.1 %year-1, or 50 % increase in 20 years, in region 4).  Under each trend-

scenario, I varied the number of sites per region (3, 5, or 10 sites) to test the sensitivity of model 

selection and trend precision and accuracy to the number of sites sampled in a region.  Finally, 

for each of the nine combinations of trend-scenarios and numbers of sites per region, I also 

varied the distribution of the starting population among regions and sites by modifying the 

starting regional population size ���
,&, and the multinomial probability ��&7 that birds in region j 

moved through site k. The starting population size in the first year was distributed in one of two 

ways: 1) equal distribution, i.e., equally among regions and equally within regions, among sites, 

or 2) unequal distribution, i.e., unequally among regions and unequally within regions, among 

sites.  For simulated datasets with unequal abundance, I distributed abundance among regions 

and sites such that simulated data approximated mean regional and site abundance observed 

using real CMMN data (Table 6-1Table 6-2). Abundance varied widely among sites, particularly 

for white-throated sparrow, with an average annual abundance of less than 50 individuals in the 

western region, and over 6000 individuals in the central region (Table G2).  Such high variability 

in counts among sites might reflect variation in the proportion of the overall population moving 

through a site and/or variation in the proportion of the population that is detected at each site, 
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including the probability that birds will migrate over and stop at a site, and given presence at a 

site, the probability that birds are available and perceived by an observer during the sampling 

period (Kéry and Schmidt 2008, Nichols et al. 2009).  Because abundance and probability of 

detection are confounded using daily migration counts, I assumed that probability of detection 

was constant among sites and over time.  For each of the 36 combinations of factors (3 trend 

types � 3 levels of sites per region � 2 abundance distributions � 2 species = 36 factor levels), I 

simulated 100 iterations of a 40-year time-series (i.e., I simulated 3600 40-year datasets), which I 

analyzed using the first 20 or all 40 years, in order to test how well model selection procedures 

could detect the appropriate model structure under these two time frames. 
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Table 6-1. Mean (coefficient of variation) of annual regional population size, annual site-specific population size, daily count, 

proportion of 0-observation counts, length of migration window, and estimated standard deviation of random year and day 

nested within year effects for White-throated Sparrow data collected at member sites of the Canadian Migration Monitoring 

Network.  Regional summaries were calculated using data collected during fall migration from 2008-2010, and site-specific 

summaries were calculated using the last 6 years of data collected at each site.  Site Codes are defined in Table 10. 

Region Site 

Annual 
Population 
Size 
(Region) 

Annual 
Population 
Size (Site) 

Mean Daily 
Count (Site) 

Proportion  
0-Obs Days 

Ndays/
year 

SD 
Random 
Year 
Effect 

SD. 
Random 
Day/Year 
Effect 

Eastern ATBP 2234 (0.36) 265 (0.72) 3.84 (2.84) 0.58 (0.11) 74 0.18 3.10 
Eastern ATSI  174 (1.12) 3.93 (2.35) 0.56 (0.4) 59 1.00 2.40 
Eastern MGBO  1753 (0.39) 19.25 (1.2) 0.16 (0.53) 90 0.13 0.75 
Eastern OOT  109 (0.53) 1.44 (1.9) 0.48 (0.4) 86 0.22 1.10 
Central BPBO 6461 (0.55) 496 (0.7) 7.45 (2.09) 0.44 (0.39) 67 0.65 1.90 
Central LPBO-1  1401 (0.27) 21.81 (1.83) 0.22 (0.49) 66 0.26 2.30 
Central PEPBO  656 (0.17) 11.19 (1.37) 0.28 (0.27) 60 0.02 1.40 
Central PIBO  756 (0.46) 11.23 (1.53) 0.25 (0.4) 67 0.27 1.10 
Central TTPBRS  2160 (1.07) 25.23 (1.42) 0.39 (0.81) 69 6.40 1.30 
Prairies BBO 909 (0.31) 45 (0.81) 1.46 (2.42) 0.67 (0.3) 37 0.66 1.80 
Prairies DMBO  832 (0.58) 15.03 (2.15) 0.52 (0.22) 58 0.60 2.00 
Prairies LMBO  120 (0.62) 2.28 (2.25) 0.6 (0.22) 52 0.25 1.50 
Prairies LSLBO  208 (0.31) 2.72 (1.04) 0.25 (0.37) 80 0.07 0.49 
Prairies TCBO  207 (0.79) 3.51 (1.18) 0.34 (0.61) 61 0.51 0.81 
Western MNO 32 (0.23) 57 (0.76) 1.5 (1.48) 0.46 (0.42) 37 0.19 0.84 
Western RPBO  7 (0.54) 0.25 (2.32) 0.79 (0.13) 37 0.00 0.00 
Western VLMMS  4 (1.49) 0.12 (3.47) 0.92 (0.12) 34 0.00 0.00 
 Mean 2409 (0.36) 544 (0.67) 7.78 (1.91) 0.47 (0.37) 61 0.67 1.34 
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Table 6-2. Mean (coefficient of variation) of annual regional population size, annual site-specific population size, daily count, 

proportion of 0-observation counts, length of migration window, and estimated standard deviation of random year and day 

nested within year effects for Canada Warbler data collected at member sites of the Canadian Migration Monitoring Network.  

Regional summaries were calculated using data collected during fall migration from 2008-2010, and site-specific summaries 

were calculated using the last 6 years of data collected at each site.  Site Codes are defined in Table 10. 

Region Site 

Annual 
Count 
Population 
(Region) 

Annual 
Count 
Population 
(Site) 

Mean Daily 
Count (Site) 

Proportion  
0-Obs Days 

Migration 
Window  
(n days) 

Std. 
Dev. 
Random 
Year 
Effect 

Std. 
Dev. 
Random 
Day/Yea
r Effect 

Eastern ATBP 34 (0.45) 7 (0.56) 0.16 (3.25) 0.89 (0.06) 45 0.12 0.00 
Eastern MGBO  28 (0.5) 0.41 (2.58) 0.79 (0.13) 68 0.00 0.79 
Central BPBO 145 (0.23) 4 (0.35) 0.12 (3.06) 0.89 (0.03) 34 0.00 0.00 
Central LPBO-1  49 (0.34) 0.96 (1.98) 0.65 (0.09) 58 0.19 1.60 
Central PEPBO  37 (0.62) 1.14 (1.65) 0.54 (0.18) 32 0.00 1.00 
Central PIBO  34 (0.22) 0.63 (2.03) 0.69 (0.11) 53 0.00 0.63 
Central TTPBRS  25 (0.95) 0.77 (1.78) 0.76 (0.29) 32 0.57 2.00 
Prairies BBO 263 (0.11) 2 (0.72) 0.08 (4.05) 0.92 (0.06) 27 0.68 0.00 
Prairies DMBO  28 (0.4) 0.72 (1.77) 0.65 (0.1) 40 0.13 1.80 
Prairies LMBO  38 (0.56) 1.11 (2.02) 0.64 (0.14) 33 0.07 1.00 
Prairies LSLBO  173 (0.2) 3.19 (1.25) 0.32 (0.21) 54 0.06 0.56 
Prairies TCBO  78 (0.49) 1.58 (2.15) 0.61 (0.08) 49 0.21 1.20 
 Mean 148 (0.26) 42 (0.49) 0.91 (2.3) 0.69 (0.12) 44 0.17 0.88 
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6.2.3 Real Data Summary 

I accessed daily estimated total counts for Canada warbler and white-throated sparrow collected 

at 17 member sites of the CMMN online through Nature Counts, a node of the Avian Knowledge 

Network (Nature Counts 2015; Table 6-3).  Details of data collection methods at each site are 

described elsewhere (Canadian Migration Monitoring Network 2014).  I restricted data to site-

specific 95 % migration windows, which limited data to those days of the year that contained the 

inner 95th percentile of observation counts across all years, with the purpose to omit excess 0-

observation counts at the tail-ends of the migration window.  I also restricted data to fall 

migration in order to maximize the number of sites included in my analyses, and because fall 

migration counts have been shown elsewhere to be a more reliable index of annual population 

size (Knape et al. 2011). 
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Table 6-3. Number (n) and span of years that migration counts were collected during spring and fall migration by member 

sites of the Canadian Migration Monitoring Network.  Only sites that submit Daily Estimated Totals in one or both seasons 

are shown. 

Site Name Site 
Code 

Province Region Spring Fall 
n Min Max n Min Max 

Atlantic Bird Observatory - Bon Portage ATBP Nova Scotia Eastern 11 1997 2007 11 1997 2007 
Atlantic Bird Observatory - Seal Island ATSI Nova Scotia Eastern 5 1997 2001 11 1997 2007 
McGill Bird Observatory MGBO Quebec Eastern 6 2006 2011 6 2006 2011 
Observatoire d'Oiseaux Tadoussac OOT Quebec Eastern    17 1996 2012 
Bruce Peninsula Bird Observatory BPBO Ontario Central 13 2000 2012 13 2000 2012 
Innis Point Bird Observatory IPBO Ontario Central 15 1997 2011    
Long Point Bird Observatory - Tip LPBO1 Ontario Central 50 1961 2012 52 1961 2012 
Long Point Bird Observatory - 
Breakwater 

LPBO2 Ontario Central 49 1961 2012 50 1961 2012 

Long Point Bird Observatory - Old Cut LPBO3 Ontario Central 32 1980 2012 33 1980 2012 
Prince Edward Point Bird Observatory PEPBO Ontario Central 17 1995 2011 11 2001 2011 
Pelee Island Bird Observatory PIBO Ontario Central 9 2003 2011 9 2003 2011 
Tommy Thompson Park Bird Research 
Station 

TTPBRS Ontario Central 9 2004 2012 9 2004 2012 

Beaverhill Bird Observatory BBO Alberta Prairies 20 1992 2011 20 1992 2011 
Delta Marsh Bird Observatory DMBO Manitoba Prairies 5 2006 2010 18 1993 2010 
Last Mountain Bird Observatory LMBO Saskatchewan Prairies 19 1994 2012 20 1993 2012 
Lesser Slave Lake Bird Observatory LSLBO Alberta Prairies 18 1994 2011 18 1994 2011 
Thunder Cape Bird Observatory TCBO Ontario Prairies 18 1995 2012 18 1995 2012 
Mackenzie Nature Observatory MNO BC Western    17 1996 2012 
Rocky Point Bird Observatory RPBO BC Western    14 1998 2012 
Vaseux Lake Migration Monitoring Site VLMMS BC Western    12 2001 2012 
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I categorized CMMN sites into four geographic regions, which were meant to represent groups 

of sites monitoring the same sub-population of each species: western, prairies, central, or eastern 

(Table 6-3).  Because the exact breeding or catchment area of species migrating through each 

CMMN site is at present known only broadly through the use of feather-isotope analyses (Dunn 

et al. 2006), I recognize that classification of sites into regions was somewhat coarse.  I estimated 

mean and coefficient of variation (CV) of region-specific total counts using a limited number of 

years (2008-2010) when a maximum number of sites (11, Table 6-1, Table 6-3) collected data.   I 

estimated mean and CV of site-specific daily counts using the last six years of data collected at 

each site (Table 6-1, Table 6-2).  In order to estimate realistic levels of standard deviation of 

random year and day effects, I used the complete fall dataset at each site to fit a log-linear 

regression model (INLA, R-package version 0.0-1399439934, Rue et al. 2014) for each species, 

which assumed a log-normal Poisson distribution of counts (Elston et al. 2001), constant rate of 

change, and which included hierarchical terms to account for stochastic year and day by year 

effects.  I also included fixed first and second-order day effects to model the seasonal movement 

of birds. I used the resulting estimates of standard error for the random annual and day effects as 

approximate inputs for the standard error of the normal distributions of simulated random year 

and day effects.  I chose all other simulation parameters (Table F1) to maximize the concordance 

of real and simulated count distributions using quantile-quantile plots (qqnorm, stats package, R 

version 3.0.2), and the similarity between real and simulated data of: mean and CV of daily 

counts, mean and CV of 0-observation days, and length of the migration window. 

6.2.4 Statistical Analysis 

I estimated a population trend for each simulated dataset using log-linear regression models 

(lme4, R package version 1.1-6, Bates et al. 2013) that assumed counts on day i, year j, at site k 

in region l (m�&7M) resulted from an overdispersed or log-normal Poisson distribution by including 

a hierarchical term to account for over-dispersion at the observation level (Elston et al. 2001).  I 

also included a hierarchical term to account for stochastic variation in annual counts nested 

within site, and fixed first and second order polynomial terms for day to account for the seasonal 

pattern of migration.  For each dataset (n = 2 species × 3 trend scenarios × 3 site levels × 2 

abundance distributions × 2 year lengths × 100 simulated replicates = 7200 datasets), I used AIC 

(lme4, R package version 1.1-6) to compare three models with increasing complexity: 1) a model 
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with a national population trend, that assumed abundance did not vary among regions, i.e., a 

single slope and intercept (‘national - 1 int’ model); 2) a model with a national population trend 

that allowed abundance to vary with region, i.e., region-specific intercepts and a single slope 

(‘national - 4 int.’ model); and 3) a model that assumed region-specific abundance and 

population trend, i.e., region-specific intercepts and slopes (‘regional’ model; Table 6-4).  

Neither of the above models matched the assumptions of 2-Trend simulated datasets exactly 

(Table 6-4), but the regional model was considered most appropriate because it allowed 

population trend to vary among the four regions.  Including ‘2-trend’ datasets allowed us to test 

how inference drawn about population trends was influenced when the ideal model was not 

included in the set of competing models. 

 

Table 6-4. Structure (intercept and slope) of ‘correct’ model structure for each trends type 

(1, 2, or 4) and abundance distribution (equal, unequal) simulated.  Note that datasets with 

two simulated rates of population change (‘2 Trend’) were nevertheless simulated to have 

four regions, and so were best fit by the varying slope and intercept model. 

Trend  Model Name 
Abundance 

Distribution 

Linear model for 

Year and Region 

# Regions 

(Intercepts) 

Assumed 

# Trends 

(Slopes) 

Assumed 

1 Trend  National – 1 Int Equal Year 1 1 

  National – 4 Int Unequal Year + Region 4 1 

2 Trend  Regional – 4 Int Equal Year*Region 4 4 

   Unequal Year*Region 4 4 

4 Trend   Equal Year*Region 4 4 

   Unequal Year*Region 4 4 

 

I assessed the use of model selection to detect the underlying pattern of regional population 

change by calculating the proportion of simulated datasets where the correct model was ranked 

as the top or a competing model (∆AIC ≤2; Burnham & Anderson 2002) for each species and 

factor level.  I then fit a separate generalized linear model for each species to test whether the 

binomial probability that the correct model was ranked as either the top or a competing model  

varied as a result of number of sites in a region (3, 5, or 10), number of years (20 or 40), trend 

type (1-, 2-, or 4-Trends), abundance distribution (equal or unequal), species, and the interaction 
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between trend type and number of sites, and number of years and number of sites (n = 7200 

simulations × 3 model structures = 21,600; glm, stats package, R version 3.0.2). 

Using trends estimated for 1-, 2-, and 4-trend simulated datasets using the model that best 

matched the assumptions of the data, I tested the effect of increasing the number of sites and 

years surveyed on accuracy and precision of population trends by fitting linear regression models 

(lm, stats package, R version 3.0.2) which assumed a Gaussian distribution, with either bias 

(estimated – simulated trend) or the log of standard error of the trend estimate as a response 

variable (n = 7200 each), and where number of years, number of sites, abundance distribution, 

trend type, species and the interaction between number of years and sites were predictor 

variables.  Standard errors were log-transformed to better approach normality.  I also fit linear 

regression models (Gaussian distribution) to estimated bias and the log standard errors of 1-trend 

simulated datasets estimated using the correct and incorrect model structures, to test whether bias 

and precision of population trends (n = 7200) varied depending on whether data were fit with the 

correct model (correct national, incorrect national, or incorrect regional model), and with number 

of sites in a region, number of years surveyed, abundance distribution and interactions between 

whether model was correct and abundance distribution, and between number of years and sites.   

Finally, for the above two scenarios (1-, 2- and 4-trend datasets fit with the correct model, and 1-

trend datasets fit with the correct and incorrect models), I calculated and compared among 

simulated factor levels a) power, i.e., proportion of 100 simulated datasets where the simulated 

trend fell within the confidence limits of the estimated trend, and was statistically significant at p 

< 0.1, and b) type I error rate, i.e., proportion of 100 simulated datasets where the simulated 

trend fell outside the confidence limits of the estimated trend, when the estimated trend was 

statistically significant at p < 0.1.  I used p < 0.1 following the recommendation of Bart et al. 

(2004) for estimating trends in landbird abundance. 

6.3 Results 

6.3.1 Model Selection 

The probability that the correct model was ranked as a top or competing model did not vary with 

number of sites in a region or with length of the time series (Figure 6-1a,b,  
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Table 6-5), with the exception of 2-trend datasets, where the probability that the correct and 

more highly parameterized regional model was ranked as a top or competing model increased 

with the number of sites in a region, particularly for 20-year white-throated sparrow simulated 

datasets (Figure 6-1b).  This effect was apparent for 20-year but not 40-year 2-trend simulated 

datasets.  The correct (regional) model was ranked as a top or competing model 100 % of the 

time for 40-year 2-trend datasets and 100 % of the time for 20-year (unequal abundance) and 40-

year (equal and unequal abundance) 4-trend datasets, regardless of the number of sites in a 

region (Figure 6-1a,b).   

 

Figure 6-1. Proportion of 100 a) Canada warbler and b) white-throated sparrow simulated 

datasets where the model that most closely matched the assumptions of simulated data was 

ranked as the top (black) or a competing (grey) model using Akaike’s Information 

Criterion (AIC).  Models were considered competing if ∆AIC ≤2.  Plots compare 20- and 

40-year simulated datasets with either a similar rate of population change across all regions 

(‘1-trend’), two regions experiencing the same rate of decline, and two regions experiencing 

the same rate of increase (‘2-trends’), or all regions experiencing a different simulated rate 

of population change (‘4-trends’).  Abundance was distributed equally or unequally among 

regions and sites. 
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Table 6-5. Coefficient estimates for a model that tested whether the binomial probability 

that the correct model was ranked as a top or competing model (∆AIC ≤2) by AIC varied 

with  species, number of trends simulated (1, 2, or 4), number of sites in a region, length of 

time series, and with interactions between number of sites and number of trends and 

number of sites and length of time series (n = 21,600). 

Parameter Est SE z value P 
1 Trend 4.18 0.30 14.15 <0.001 
2 Trend 7.19 0.75 9.59 <0.001 
4 Trend 21.71 607.40 0.04 0.971 
N Sites = 3 -0.15 0.32 -0.47 0.636 
N Sites = 5 -0.19 0.31 -0.60 0.547 
Abundance: equal -0.20 0.15 -1.31 0.190 
White-throated sparrow -1.61 0.19 -8.27 <0.001 
N Years = 40 0.00 0.33 0.00 1.000 
2 Trend:N Sites = 3 -4.13 0.77 -5.37 <0.001 
4 Trend:N Sites = 3 -15.34 607.40 -0.03 0.980 
2 Trend:N Sites = 5 -2.60 0.78 -3.32 0.001 
4 Trend:N Sites = 5 -0.23 852.70 0.00 1.000 
N Sites = 3:N Years = 40 2.00 0.45 4.46 <0.001 
N Sites = 5:N Years = 40 1.05 0.46 2.29 0.022 

 

 

The correct model was more likely to be ranked as the top or a competing model for 4-trend 

datasets than for 1- and 2-trend datasets. For 1-trend datasets, the correct national model was 

ranked as the top model 87-97 % of the time for Canada warbler and 81-89 % of the time for 

white-throated sparrow, regardless of the length of time series, number of sites in a region, or 

distribution of abundance (Figure 6-1).  Thus, for 1-trend datasets, the more highly 

parameterized and incorrect regional model was consistently ranked as the top model a small 

proportion of the time for both species, regardless of the number of sites in a region or length of 
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the time series (Figure 6-1).   The probability that the correct model was ranked as a top or 

competing model did not vary with abundance distribution. 

6.3.2 Model Assumptions Match Simulated Data 

Using the model that best matched the assumptions of the simulated data (Table 6-4), mean bias 

in population trends was significantly less for longer time series, when abundance was 

distributed equally as opposed to unequally, for 2-Trend compared with 1- and 4-Trend datasets, 

and for white-throated sparrow compared to the rare Canada warbler (Figure 6-2, Table 6-6), 

though effect sizes were all less than ±0.1 %/year.   Mean bias did not vary with the number of 

sites in a region.  Despite little difference in mean bias among simulated factor levels, the tighter 

distribution of bias estimates using 40-year datasets, and to a lesser extent with an increase in the 

number of sites in a regions (Figure 6-2), suggests that the probability of estimating a strongly 

biased trend was lower using longer time series and when more sites were sampled in each 

region.   

Standard errors of the trend coefficients were significantly less, and precision of the trend 

estimates greater, for longer time series, when a greater number of sites were sampled in each 

region, when abundance was distributed equally as opposed to unequally among regions and 

sites, for Canada warbler compared with white-throated sparrow and for 1-trend compared to 2- 

and 4-trend datasets (Figure 6-3, Table 6-7).  The higher precision of 1-trend datasets is owed at 

least partly to the greater degrees of freedom available to estimate a single trend versus four 

regional trends using a similar sized dataset.   

For 1-trend 20- and 40-year Canada warbler simulated datasets, a slight positive bias in 

population trends combined with an increase in precision of trends with number of sites sampled, 

resulted in a corresponding decline in power and increase in error rate with number of sites 

sampled in each region (Figure 6-4).  Otherwise, power tended to increase with the number of 

sites sampled in a region for 20-year datasets of both species.  Increasing the time series to 40 

years was more effective at achieving >80 % power for both species than was increasing the 

number of sites in each region.  Error rates were typically less than 10 %, with the exception of 

20-year 1-trend Canada warbler simulations, where error increased with the number of sites in a 

region to >25 % when 10 sites were simulated in each region (Figure 6-4). 
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Figure 6-2. Box and whisker plots (n = 100 each) showing bias (estimated – simulated 

trend) of population trends for 20- and 40-year a) Canada warbler and b) white-throated 

sparrow simulated datasets, when data were fit with a model that most closely matched the 

assumptions of simulated data.  Plots compare datasets simulated to have a similar rate of 

population change across all regions (‘1-trend’); two regions experiencing the same rate of 

decline, and two regions experiencing the same rate of increase (‘2-trends’); and all regions 

experiencing a different simulated rate of population change (‘4-trends’).  Abundance was 

distributed equally or unequally among regions and sites. 
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Table 6-6. Coefficient estimates for a model that tested whether bias in population trend 

varied with  length of time series, number of sites in a region, species, abundance 

distribution, number of trends simulated, and an interaction between number of years and 

number of sites, for simulated datasets that were fit with the model that best matched the 

assumptions of the data (n = 7200). 

Parameter Est SE t value P 
Intercept 0.0013 0.0001 10.00 <0.001 
N Years = 40 Years -0.0008 0.0001 -7.16 <0.001 
N Sites = 5 0.0001 0.0001 1.22 0.22 
N Sites = 10 0.0000 0.0001 0.10 0.93 
White-throated sparrow -0.0002 0.0001 -2.82 0.005 
Unequal N 0.0002 0.0001 3.52 <0.001 
2 Trends -0.0003 0.0001 -2.80 0.005 
4 Trends 0.0000 0.0001 -0.25 0.78 
N Years = 40 Years:N Sites = 5 -0.0002 0.0002 -1.05 0.29 
N Years = 40 Years:N Sites = 10 0.0000 0.0002 0.23 0.82 
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Figure 6-3. Box and whisker plots (n = 100 each) showing variation in standard error of 

population trends estimated for 20- and 40-year a) Canada warbler and b) white-throated 

sparrow simulated datasets, when data were fit with a model that most closely matched the 

assumptions of simulated data.  Plots compare datasets simulated to have a similar rate of 

population change across all regions (‘1-trend’); two regions experiencing the same rate of 

decline, and two regions experiencing the same rate of increase (‘2-trends’); and all regions 

experiencing a different simulated rate of population change (‘4-trends’).  Abundance was 

distributed equally or unequally among regions and sites. 
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Table 6-7. Coefficient estimates for a model that tested whether standard error in 

population trend varied with  length of time series, number of sites in a region, species, 

abundance distribution, number of trends simulated, and an interaction between number 

of years and number of sites, for simulated datasets that were fit with the model that best 

matched the assumptions of the data (n = 7200). 

Parameter Est SE t value P 
Intercept -5.74 0.004 -1333.94 <0.001 
40 Years -1.03 0.004 -276.74 <0.001 
5 Sites -0.23 0.004 -62.19 <0.001 
10 Sites -0.60 0.004 -159.74 <0.001 
White-throated Sparrow 0.39 0.002 182.63 <0.001 
Unequal N 0.04 0.002 16.74 <0.001 
2 Trends 0.68 0.004 189.13 <0.001 
4 Trends 0.68 0.004 189.52 <0.001 
40 Years :5 Sites 0.005 0.005 -0.87 0.38 
40 Years:5 Sites -0.01 0.005 -1.10 0.27 
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Figure 6-4. Proportion of 100 a) Canada warbler and b) white-throated sparrow datasets, 

fit with a model that most closely matched the assumptions of the data, where 1) simulated 

population trend fell within the 95 % confidence limits of the simulated trend (P < 0.1; 

‘Power’), and 2) estimated population trend was significant (P < 0.1), but confidence limits 

did not include the simulated trend (‘Error’). Plots compare datasets simulated to have a 

similar rate of population change across all regions (‘1-trend’); two regions experiencing 

the same rate of decline, and two regions experiencing the same rate of increase (‘2-

trends’); and all regions experiencing a different simulated rate of population change (‘4-

trends’).  Abundance was distributed equally or unequally among regions and sites. 
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6.3.3 Model Assumptions do not Match Simulated Data 

Mean bias and precision of population trends did not differ among 1-trend datasets analyzed 

using the correct or incorrect national model structure, for example, 1-trend datasets with equal 

abundance analyzed using the ‘national - 4 int’ model instead of the correct ‘national - 1 int’ 

model (Tables 6-8, 6-9, Figures 6-5, 6-6).  Mean bias of population trends estimated for 1-trend 

datasets using the incorrect and more highly parameterized regional model also did not differ 

from mean bias estimated using the two national model structures.  However, both the 

probability of estimating a biased trend (broader range in estimated bias values [Figure 6-5]), and 

the standard error of trend estimates (Figure 6-6), were both greater when data were analyzed 

using the more highly parameterized model structure.  

Bias in population trends also tended to decline with an increase in the length of the time series   

but effect sizes for the effect of number of years, number of sites, abundance distribution and 

species on bias were small (<±0.1 %year-1).  However, the probability of estimating a biased 

trend was greater for shorter time series and, to a lesser extent, with fewer sites in a region 

(Figure 6-5).  Further, trend estimates were more precise for longer time series, with more sites 

in a region, for datasets with equal as opposed to unequal distribution of abundance, and for 

Canada warbler compared with white-throated sparrow simulated datasets (Table 6-9; Figure 6-

6). 

The lower precision and higher probability of estimating a biased population trend using the 

incorrect regional model structure resulted in lower power to detect a significant trend for 20-

year datasets of both species, and a lower rate of error for 20-year Canada warbler simulated 

datasets (Figure 6-7).  However, using 40-year datasets, differences in power and error between 

the incorrect regional model and the correct and incorrect national models were negligible, and 

particularly when only 3 sites were sampled in each region, power was higher and error rate 

lower when data were fit with the incorrect regional model (Figure 6-7). 
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Table 6-8. Coefficient estimates for a model that tested whether bias in population trend 

varied depending on whether 1-trend simulated datasets were fit with the model that best 

matched the assumptions of the data or not, and with abundance distribution 

(equal/unequal), length of time series, number of sites in a region, species.  Interactions 

between model and abundance distribution and number of years and sites were also tested 

(n = 7200).  

Parameter Est SE t value P 
Intercept 0.00169 0.00016 10.81 <0.001 
Incorrect-Nat Model 0.000003 0.00018 -0.02 0.986 
Incorrect-Reg Model 0.000004 0.00014 0.03 0.978 
Unequal N -0.00016 0.00018 -0.87 0.387 
40 Years -0.00093 0.00013 -7.31 <0.001 
5 Sites 0.00021 0.00013 1.65 0.100 
10 Sites -0.00008 0.00013 -0.60 0.549 
WTSP -0.00052 0.00007 -7.01 <0.001 
Incorrect-Nat Model:Unequal N 0.000002 0.00026 0.01 0.994 
Incorrect-Reg Model:Unequal N -0.00023 0.00020 -1.15 0.250 
40 Years:5 Sites -0.00003 0.00018 -0.15 0.879 
40 Years:10 Sites 0.00027 0.00018 1.49 0.136 
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Table 6-9. Coefficient estimates for a model that tested whether standard error of 

population trend estimates varied depending on whether 1-trend simulated datasets were 

fit with the model that best matched the assumptions of the data or not, and with 

abundance distribution (equal/unequal), length of time series, number of sites in a region, 

species.  Interactions between model and abundance distribution and number of years and 

sites were also tested (n = 7200). 

Parameter Est SE t value P 
Intercept -5.758 0.005 -1216.59 <0.001 
Incorrect-Nat Model -0.002 0.005 -0.29 0.78 
Incorrect-Reg Model 0.690 0.004 159.68 <0.001 
Unequal N 0.050 0.005 9.21 <0.001 
40 Years -1.034 0.004 -267.49 <0.001 
5 Sites -0.230 0.004 -59.44 <0.001 
10 Sites -0.600 0.004 -155.19 <0.001 
White-throated Sparrow 0.418 0.002 187.29 <0.001 
Incorrect-Nat Model:Unequal N 0.0005 0.008 0.06 0.95 
Incorrect-Reg Model:Unequal N 0.024 0.006 3.97 <0.001 
40 Years:5 Sites -0.001 0.005 -0.20 0.84 
40 Years:10 Sites -0.0004 0.005 -0.08 0.94 
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Figure 6-5. Box and whisker plots (n = 100 each) showing variation in bias (estimated – 

simulated trend) of population trends for 20- and 40-year a) Canada warbler and b) white-

throated sparrow simulated datasets, for 1-trend datasets (similar rate of population 

change across all regions) fit with either the correct national model (1 intercept for equal 

abundance; 4 intercepts for unequal abundance) or the incorrect regional model 

(regionally varying slope and intercept). 
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Figure 6-6. Box and whisker plots (n = 100 each) showing variation in standard error of 

estimated population trends for 20- and 40-year a) Canada warbler and b) white-throated 

sparrow simulated datasets, for 1-trend datasets (similar rate of population change across 

all regions) fit with either the correct national model (1 intercept for equal abundance; 4 

intercepts for unequal abundance) or the incorrect regional model (regionally varying 

slope and intercept).   
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Figure 6-7. Proportion of 100 a) Canada warbler and b) white-throated sparrow 1-trend 

datasets (all regions simulated to have the same rate of population change), fit with either 

the correct national model (1 intercept for equal abundance; 4 intercepts for unequal 

abundance) or the incorrect regional model (regionally varying slope and intercept), where 

1) simulated population trend fell within the 95 % confidence limits of the simulated trend 

(P < 0.1; ‘Power’), and 2) estimated population trend was significant (P < 0.1), but 

confidence limits did not include the simulated trend (‘Error’). 
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6.4 Discussion  

With sufficient time and effort, AIC model selection has the potential to model unknown 

regional variation in population trends using migration count data for both rare and commonly 

detected species. Using 40-year datasets, the appropriate model was ranked as the top or a 

competing model over 80 % of the time for 1-trend simulated datasets, and 100 % of the time for 

2- and 4-trend datasets.  The consistent ranking of the incorrect and more highly parameterized 

regional model as that best model for 1-trend datasets a small proportion of the time is consistent 

with previous results that suggest AIC does not sufficiently penalize additional parameters (see 

Kass and Raftery 1995).  

However, my results suggest that with a sufficiently long time series (in this case 40 years), 

fitting the incorrect fully parameterized regional model to data with a single rate of national 

population change did not influence mean bias of estimated population trends and actually 

improved power and error rates, possibly negating the need for model selection. As the number 

of years or sites in a region increased, the larger degrees of freedom available to estimate a single 

rate of population change using the national models resulted in highly precise estimates of 

population trend, which combined with a small bias in population trend, resulted in a higher 

probability of drawing false inference from the data.  This effect was most obvious for Canada 

warbler datasets, which tended to result in more positively biased population trends than did 

white-throated sparrow datasets.    

In my simulated datasets, false negatives were imposed on the data by forcing the probability of 

migrating to zero on days with simulated poor weather conditions.   Not accounting for 

detectability, and therefore for the presence of ‘false’ negatives in the dataset (i.e., non-detection, 

or 0-observation counts when an individual is present), can result in underestimated or 

undetected population trends compared to analyses that account for detection error (Tyre et al. 

2003, Kéry et al. 2009).  A zero-inflated distribution can account for excess ‘false’ zeros in the 

dataset that arise from observation error (Tyre et al. 2003, Ross et al. 2012), and its effect on 

trend bias,  precision and error rate should be assessed for trend analyses using migration count 

data.  Accounting for temporal auto-correlation of year effects in a non-linear time series can 

also lead to more appropriate estimates of precision around trend estimates (Amano et al. 2012, 

Ross et al. 2012).  Although I simulated a constant rate of change, population change in real 
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populations is rarely constant, and accounting for temporally correlated errors in daily and 

annual counts should be tested for their effect on trend accuracy, precision and error rate, 

particularly in the analysis of real migration count data. 

In my simulation model, sites were assigned to discrete regions, and sites therefore detected 

individuals from a single sub-population.  In reality, the catchment area of migration count sites 

is not known, or known only very broadly (Wassenaar and Hobson 2001, Dunn et al. 2006), and 

some sites are likely to detect individuals from more than one sub-population, particularly sites 

situated further south in the breeding range, or along geographic ‘funnels’.  The Long Point Bird 

Observatory in the Great Lakes region, for example, detects birds from both northeastern and 

northwestern Canada in fall (Dunn et al. 2006). While my simulated datasets are a simplification 

of the real system, they provided a means to determine whether, under ideal scenarios, regional 

and national population trends could be detected with sufficient accuracy and precision to inform 

conservation efforts, given the amount of variation observed in real migration count data.  A next 

step in this assessment might incorporate simulations where birds counted can originate from 

more than one sub-population, and allow the contribution from each sub-population to vary 

randomly over time.   

The use of migration counts to monitor long-term population change also assumes that any 

change in the number of birds counted at a site reflects fluctuations in the monitored population.  

In other words, I assume there are no systematic changes in effort, habitat cover, or other factors 

that might influence the relationship between the numbers of birds counted at a site and the 

population they are meant to index.  While detection probability might be modelled with the 

inclusion of covariates for sampling effort and weather (Berthiaume et al. 2009), estimating and 

accounting for habitat change at a site would be more difficult, particularly without information 

on the scale at which birds are making stopover decisions at each site (Taylor et al. 2011).  

Currently, it is recommended that migration monitoring sites are situated in areas where the 

potential for successional habitat changes are minimized (Hussell and Ralph 2005), and that any 

habitat change that does occur is quantified. However in practice, such recommendations can 

rarely, if ever, be achieved.  The sensitivity of regional and national population trends to various 

rates or patterns (e.g., linear vs. cyclical) of systematic change in effort, habitat, weather, or other 

variables of interest at one or more sites should be assessed for migration counts. 
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The relationship between population counts at a site and regional population size might also vary 

among sites, due to among-site variation in the proportion of the regional population migrating 

over a site, and in the probability that individuals migrating overhead will stop and be detected.  

When abundance was distributed unequally among sites, estimating a model with a single slope 

(national models), assumed that all sites were detecting a similar proportion of the monitored 

population.  Weighting a national population trend by mean abundance at a site might be 

misleading if higher weight is assigned to a region with high counts due to high detection 

probability, than a region with similar population size but lower counts due to lower detection 

probability.  Population trend analyses should therefore incorporate information on overall 

migration volume and/or probability of detection at a site into estimates of regional or national 

population change when data are pooled across multiple sites. Within a Bayesian analytical 

framework, this type of information (both the estimates and the uncertainty around the estimates) 

could be included in the form of informative priors (e.g., pg 480,Gelman et al. 2014). 

With the exception of Long Point Bird Observatory, which has been collecting data since 1963, 

most CMMN sites have been in operation for 20 or fewer years, and with the exception of 

Ontario, data are currently collected at three or fewer sites in most provinces (Table 10).  My 

results suggest that over the long term, continuing to invest in the current suite of migration 

monitoring sites for a longer period of time would be more effective to minimize the probability 

of drawing false inference from population trends than would investing in the expansion of the 

network to include more sites. While many analytical challenges remain, recent technological 

advances in the use of weather radar, feather isotope analysis, geolocators and broad-scale 

telemetry (Dunn et al. 2006, Taylor et al. 2011, Laughlin et al. 2013) have the potential to 

improve our understanding of the relationship between regional population size and site-specific 

counts, and of the breeding origin(s) of the count population at a site.  As our knowledge is 

improved, I will be better able to assign sites to regions and better account for variation in counts 

at and among sites. 
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Chapter 7  

7 Application: Long-term trends in the number of monarch 
butterflies (Lepidoptera:Nymphalidae) counted on fall 
migration at Long Point, Ontario, Canada (1995-2014) 

7.1 Introduction 

Each spring, monarch butterflies, Danaus plexippus (Linnaeus) depart their overwintering 

grounds in the high-altitude oyamel fir (Abies religiosa) forests of central Mexico and begin a 

multi-generational migration north to breed throughout eastern North America.  In fall, the final 

generation of the year ceases reproduction and begins an approximately 4000-km (2485-mile) 

migration southward  back to Mexico, where they over-winter in large congregations until the 

following spring (Brower 1995).  Survival of the monarch butterfly in the small 800-km2 (309-

miles2) over-wintering habitat in Mexico is considered by many to be the key limiting factor for 

monarch survival (Brower 1995, Crolla and Lafontaine 1996, Brower et al. 2012).  Threats on 

the wintering grounds were the primary reason behind its listing as a species of Special Concern 

under Canada’s Species at Risk Act (COSEWIC 2010), and contributed to the filing of a petition 

in 2014 to seek legal protection for the monarch under the United States Endangered Species 

Act.   

Broad-scale population monitoring programs provide an important contribution towards 

assessing species conservation status (Rich et al. 2004, Commission for Environmental 

Cooperation 2008).  Counts of migrating individuals are one method to assess broad-scale 

population trends for migratory animals (Francis and Hussell 1998, Walton et al. 2005, Dunn et 

al. 2006, Gibbs et al. 2006, Farmer et al. 2007, Findlay et al. 2011, Davis 2012).  Standardized 

daily counts of migrating monarchs collected since 1995 at two sites at Long Point, Ontario 

provide the only long-term dataset available to assess monarch status in Canada.  In late August 

to mid-October each year, tens of thousands of monarchs funnel through Long Point as they 

migrate south.  The number of individuals detected each year by migration counts are assumed to 

be a reflection of fluctuations in the underlying catchment population (i.e., of the breeding 

population for the geographic region from which detected individuals originated).   
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In Ontario, the distribution and successful breeding of monarchs is determined largely by the 

distribution of the various species of its larval host plant, milkweed (Asclepia sp.; Schappert 

1996).  Although the historical amount of milkweed, and therefore the distribution of monarchs, 

increased across Ontario with the development of the road network and an increase in abandoned 

agricultural fields, the current amount of monarch host and nectaring plants has the potential to 

be reduced or lost through continued urban development, the regeneration of trees and shrubs in 

abandoned fields (Crolla and Lafontaine 1996), as well as by the use of herbicides and (at least 

until 2014) the control of milkweed as a noxious weed under Ontario’s Weed Control Act.  On a 

broader spatial scale, low numbers of migrating monarchs are thought to be the result of high 

storm-caused mortality at the over-wintering sites in Mexico, wet and cold weather during the 

spring and summer breeding seasons in the United States and Canada, and the loss of milkweed 

host plants in intensive agricultural systems (Brower 1995, Brower et al. 2012, Pleasants and 

Oberhauser 2013).   

Migration counts provide an index of annual abundance, and therefore rely on the assumption 

that probability of detection remains consistent over time (Dunn 2005, Crewe et al. 2015).  A 

systematic change in any factor that influences probability of detection has the potential to bias 

population trends (Hochachka and Fiedler 2008, Kéry et al. 2009, Crewe et al. 2015).  At the 

scale of a migration count site, directional changes in sampling effort, observer skill, habitat, or 

local weather conditions, and the influence of weather and habitat on stopover behaviour of 

migrating animals (Link and Sauer 2002, Meitner et al. 2004, Schaub et al. 2004, Calvert et al. 

2009), can lead to a bias in detection probability and false inference from population trends 

(Crewe et al. 2015).   

Because of their geographic proximity, both study sites at Long Point are assumed to monitor the 

same population of migrating monarch butterflies, and should therefore detect similar rates of 

long-term population change.  However, differences in habitat and geographic orientation 

between the two monitoring sites results in higher counts and a higher stopover probability at the 

Tip site compared to Breakwater.  A site-specific temporal bias in probability of detection, for 

example due to a systematic change in stopover duration (Hochachka and Fiedler 2008, Calvert 

et al. 2009) at the Tip site, could lead to between-site differences in detected rate of population 

change.  Correspondence of population trends from nearby sites that monitor the same breeding 
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population can provide support that such site-specific biases in detection probability are not 

confounding estimates of the long-term population trend.   

In this paper, I use 20 consecutive years (1995-2014) of standardized daily migration counts 

collected at the two sites on Long Point, Ontario, to estimate trends in the number of migrating 

monarch butterflies across three time periods: an over-all 20-year trend, the first 10 years, and 

the most recent 10 years.  Further, I use model selection to determine whether a difference in the 

detected population trend between sites is supported.  This analysis provides the first published 

analysis of monarch population trends for Canada. 

7.2 Methods 

7.2.1 Study Sites 

Long Point, Ontario is a narrow sand peninsula that extends 32 km (20 miles) eastward from the 

Canadian north shore of Lake Erie (42°35'N, 80°25'W).  Including wetlands, Long Point is 

approximately 16,000 ha (39,500 acres) and is composed of sandy beaches, dunes, expansive 

wetlands, meadows, savannahs, and forests (Gartshore et al. 1987).  Because of the large 

numbers of monarchs passing through the area each year, Long Point was designated an 

International Monarch Butterfly Reserve by the Canadian government in 1995 (Anon 1995).  

The area is also recognized as a World Biosphere Reserve, a Ramsar wetlands site of 

international significance, and an Important Bird Area of global significance.   

Fall migration of monarch butterflies was monitored at two sites on Long Point from 1995-2014: 

the Tip, at the eastern end of Long Point, and Breakwater, about 15 km west of the Tip and 

closer to the base of the peninsula.  The habitat at both sites has remained relatively stable over 

the past half-century. However, the two sites differ in habitat structure.  The Tip site is 

dominated by early-successional, dry, open eastern cottonwood-red cedar savannahs, separated 

by wet interdunal swales, meadows, and dry (sparsely vegetated) sand dunes. Important monarch 

butterfly food plants, such as milkweed and cylindrical blazing star (Liatris cylindracea), are 

common in the meadows at this site. Conversely, the Breakwater study site is dominated by a 

mid-successional, open, oak-maple savannah that has a well-developed ground cover dominated 

by various grasses. Important nectaring plants are less abundant at this site, and blazing star is 

absent (Table 7- 1) .  
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Table 7- 1. Mean number of flowering plant stems detected at the Breakwater and Tip sites 

on the Long Point peninsula, Ontario, Canada.  Stems were counted once per week over a 

five week period between August 25 and September 24, 2009, at 76 and 80 1-m
2
 quadrats at 

the Breakwater and Tip sites, respectively.  Mean number of stems was calculated as the 

mean across quadrats of the maximum number of stems detected across visits. 

Common Name Scientific Name Breakwater Tip 

Blazing star Liatris spicata 0 15.5 

Goldenrod sp. Solidago sp. 7.8 6.7 

St. John's wort Hypericum perforatum L. 0 1.2 

White aster Symphyotrichum sp.  0 6.8 

Milkweed Asclepias sp. 0.07 0.05 

Other  7.1 8.8 

 

7.2.2 Data Collection and Statistical Analysis 

Every fall since 1995, a standardized daily count (census) of migrating monarchs has been 

carried out at the Tip and Breakwater sites by volunteer surveyors.  Standardized counts 

consisted of a 1-hour afternoon walking census conducted between 1300-1700 hrs along a 

delineated path, during which the surveyor counted the number of monarchs seen foraging or 

passing through the count area.  The census was not carried out during rain or extreme weather 

(storm) events.  Surveys began at the beginning of August and continued until the end of 

September at Breakwater and until late October at the Tip. Access to Breakwater beyond about 

22 September each year was restricted, and as a result, the entire fall migration was not 

monitored at that site.  Weather variables, including estimated percent cloud cover (0-100 % in 

10 % intervals), wind direction (16-point scale), wind speed (Beaufort scale) and temperature 

(ºC), were also collected daily at each site.  
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I restricted my analyses to data collected during August and September, to ensure both sites had 

the same seasonal coverage.  Long-term, constant rate of population trend was estimated in a 

Bayesian framework using integrated nested Laplace approximation (R-INLA, Rue et al. 2014, 

Crewe et al. 2015).  Counts on day i, year j ( ij
Y ) were assumed to result from a negative binomial 

distribution, and were fit using a log-linear regression model with a fixed year effect to estimate 

a constant rate of population change (trend), and first and second order polynomial day terms to 

model the seasonal pattern of migration.  I included hierarchical terms to account for 1) 1st order 

autoregressive (AR1) correlation of errors among days in a season, nested within year and site, 

and 2) an AR1 random year effect, nested within site.  Fixed effects for cloud cover class (0-20 

%, 30-50 %, 60-80 %, and 90-100 %), temperature (1st and 2nd order effects), and wind direction 

and speed were also included in the regressions to model variation in the number of monarchs 

migrating and counted due to local weather conditions (Gibo and Pallett 1979, Brower 1995, 

Davis and Garland 2002, Meitner et al. 2004).  For these analyses, I combined wind speed and 

wind direction into east and south wind vectors (EV/SV) by first transforming wind speed into 

km/hr using the midpoint along the range of values for each Beaufort wind score.  Wind speed 

was then combined with wind direction to create the EV and SV such that wind speed increased 

from 0 along each vector in two directions, with negative values representing wind speed in one 

direction (e.g., east on the EV vector), and positive values representing wind speed in the 

opposite direction (e.g., west on the EV vector).  For wind directions that did not fall directly on 

either vector (e.g., ENE), I used vector addition to assign a wind speed to both the EV and SV. 

For the purposes of this analysis, east and north winds received a negative vector value, while 

west and south winds received a positive vector value.  In order to estimate annual indices of 

population for both sites combined (Fig. 1), I fit the above model with year as a categorical 

variable. 

I used the Deviance Information Criterion (DIC; Rue et al. 2009) to compare the fit of two 

regression models: 1) a model with a single slope to estimate an overall population trend across 

sites, and 2) a model which allowed slope to vary with site, to test whether the detected trend in 

population size varied between the Tip and Breakwater sites.  Using the best supported model of 

the two, I also estimated 10-year population trends using the first and last 11-years of data 

collected, to test whether more recent population trends (2004-2014) vary from the entire time 
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series (1995-2014) and from the first 11 years of data collection (1995-2005).  Such 10-year 

population trends are often used to assess the conservation status of species (e.g., IUCN 

Standards and Petitions Subcommittee 2013).  In all cases, the year coefficient was transformed 

into a constant rate of population change using100 (exp( ) 1)yearcoefficient× − . 

7.3 Results 

Using DIC, the model that assumed a single population trend across sites (DIC = 11341.97) had 

comparable support to the model that assumed trend varied between sites (DIC = 11341.35), with 

a DIC difference of less than 1.  However, the 95 % credible interval (CI) for the interaction 

between site and population trend was not strongly supported (0.05, CI = -0.04, 0.05).  

Combined, these results suggest that a difference in population trend between the two sites was 

not strongly supported.   

Using the single-slope model, which assumed a single rate of population change for both sites 

combined, the estimated rate of population change was -5.12 %year-1 (CI = -9.81 %year-1, -0.06 

%year-1) over the 20-year sampling period, with a posterior probability of 0.98 that the trend was 

negative (Table 7-, Figure 7-1).  This model supported an increase in monarch counts with 

temperature, lower counts during high (>90 %) cloud cover, and lower counts during east 

compared to west winds (Table 7-).   

Table 7-2. Mean, standard deviation (SD) and lower (LCI) and upper (UCI) credible 

intervals of fixed and random effects for a model that assumed population trend did not 

vary between the Tip and Breakwater stations of the Long Point Bird Observatory.  Data 

were analyzed in a Bayesian framework and assumed random 1
st
 order autoregressive 

effects for year (nested within site) and day (nested within year and site).   

Effect 
Type 

Effect Mean SD LCI UCI 

Fixed Year -0.0526 0.0259 -0.1032 -0.0006 
 Area: Breakwater 3.54 0.51 2.53 4.55 
 Area: Tip 2.50 0.46 1.59 3.42 
 Day 1.44 0.94 -0.42 3.28 
 Day^2 -0.19 0.74 -1.65 1.27 
 Temp -0.45 0.21 -0.88 -0.04 
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 Temp^2 -0.28 0.22 -0.71 0.16 
 Cloud (30-50 %) 0.07 0.09 -0.10 0.24 
 Cloud (60-80 %) 0.05 0.10 -0.14 0.23 
 Cloud (>90 %) -0.28 0.08 -0.45 -0.12 
 EV -0.13 0.02 -0.16 -0.10 
 SV -0.02 0.02 -0.05 0.02 
 Area: Tip * Day -5.80 0.87 -7.52 -4.09 
 Area: Tip * Day^2 -3.36 0.71 -4.75 -1.98 
 EV*SV 0.01 0.01 0.00 0.02 
      
Random Size for NB 

Observations 
1.57 0.09 1.41 1.75 

 Year: Precision 1.55 0.48 0.81 2.67 
 Year: Rho -0.25 0.22 -0.65 0.20 
 Day: Precision 1.07 0.19 0.74 1.49 
 Day: Rho 0.87 0.03 0.81 0.92 

 

 

Figure 7-1. Estimated annual indices (± 95 % credible intervals) of the number of monarch 

butterflies detected on migration at two sites on the Long Point peninsula in Ontario, 
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Canada between 1995-2014.  A decline in annual indices of 5.12 %year
-1 

(CI = -9.81 %year
-

1
, -0.06 %year

-1
) was detected. 

Using the first 11 years of data (1995-2005), the initial 10-year trend was positive (2.02 %year-1), 

but not strongly supported (CI = -8.61 %year-1, 16.18 %year-1), and with a posterior probability 

of only 0.64 that the trend was indeed positive.  Using the last 11 years of data (2004-2014), the 

most recent 10-year trend was negative (-6.06 %year-1), but again was not strongly supported (CI 

= -12.37 %year-1, 0.78 %year-1).  Nevertheless, the posterior probability that this most recent 10-

year trend was negative was 0.96, suggesting that a real decline has occurred during this time 

period. 

7.4 Discussion 

In recent years, there has been an increasing amount of interest and concern surrounding the 

susceptibility of the eastern North American monarch butterfly population’s migratory 

phenomenon to the loss and degradation of the Mexican overwintering and North American 

breeding habitats.  Evidence to support a decline in the monarch population, however, has varied 

among datasets, with a reported decline in the number of monarchs overwintering in Mexico 

from 1994 through 2011 (Brower et al. 2012), but no significant change in the number of 

monarchs migrating through Cape May, New Jersey (1992-2010) or Peninsula Point, Michigan 

(1996-2010) during similar time periods (Davis 2012). Using counts of monarchs migrating 

through two sites on the Long Point peninsula in Ontario, Canada, my results suggest that the 

number of monarchs counted on migration has likely declined during the 20-year monitoring 

period ending in 2014.  

Typical of insect populations (e.g., Zipkin et al. 2012), the number of monarchs detected 

migrating through Long Point was highly variable over time.  Similar to the results of Davis 

(2012), monarch counts at Long Point varied substantially up to and including 2010, with 

troughs in the population trajectory (annual index below the long-term mean) being consistently 

followed by population peaks within one or two years (Figure 7-1). However since 2010, the 

annual index has remained below the long-term mean. Indeed, the below-average population 

indices during this most recent time period are driving the apparent long-term population decline.  

The estimated size of the overwintering population also declined to a 20-year low of 1.3 acres of 
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habitat occupied in 2013 compared to a 20-year high of 45 acres in 1996 (World Wildlife Fund 

2014).   

At Long Point, monarch butterfly counts were typically much larger at the Tip than at the 

Breakwater study site.  Because there is a greater concentration of host and nectaring plants at 

the Tip compared to Breakwater,  individuals counted at Breakwater were more likely to involve 

migrants actively moving through the site, whereas individuals counted at the Tip likely included 

a larger proportion of individuals stopping-over to feed for one or more days.  Nevertheless, 

support for the model that assumed a single rate of population change across the two study sites 

suggests that site-specific sources of bias in probability of detection due, for example, to site-

specific biases in stopover behaviour (Hochachka and Fiedler 2008, Crewe et al. 2015), were 

either not present or were negligible compared to the overall rate of population change detected 

across sites.   

My results cannot exclude the possibility that broad-scale temporal shifts in the breeding 

distribution or migration route are biasing my estimates of long-term population trend.  

Correlation of estimated annual indices from Long Point with alternative sources of monitoring 

data collected in Ontario and across the broader breeding range, such as the distribution or use of 

milkweed by monarchs collected by the Monarch Larva Monitoring Project (Pleasants and 

Oberhauser 2013), would lend further credibility to my results.  Correspondence of annual 

indices with other migration count sites in eastern North America (Davis 2012) would also help 

clarify whether the trend reported here is representative of regional or more broad-scale 

population dynamics.  Such comparisons could be improved with the use of isotope analysis  

(Flockhart et al. 2013) to determine the breeding origin of monarchs detected at each site. 

Additional years of data should also be collected to determine whether the apparent decline will 

continue, or whether the monarch population will recover from recent low levels. 

Local weather conditions also influenced the number of monarchs counted at Long Point, and 

support the results of Meitner et al. (2004) from a Great Lakes shoreline site in Michigan, which 

showed that wind directions from the west resulted in higher monarch counts than winds from 

the east during fall migration.  However, higher counts during west winds might partially reflect 

an increase in the number of monarchs blown off their overall southwesterly fall migratory 
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course to the Mexican overwintering sites (Gibo and Pallett 1979, Brower 1995), as opposed to a 

reflection of the number of monarchs actively migrating. During west winds, the west to east 

orientation of Long Point in Lake Erie could act as a funnel or bottleneck for individuals 

migrating or blown off-course, leading to large accumulations of monarchs during headwinds 

observed here and elsewhere (Davis and Garland 2002).  This bottleneck effect is supported by 

the larger counts at the Tip compared to the Breakwater study site at Long Point.   

The monarch butterfly population has the potential to expand exponentially through the 

production of several successive generations in a single breeding season under ideal conditions.  

As a result, monarchs are likely resilient to occasional declines in the overwintering or breeding 

populations, and this resilience could contribute to the lack of a detected decline in the size of 

fall migratory populations reported elsewhere (Davis 2012), despite a decline in the 

overwintering population (Brower et al. 2012).  In any case, the monarch’s resilience and ability 

to recover from population lows has the potential to be compromised by the combination of a 

sustained decline in the overwintering population, an increased likelihood of weather extremes 

with climate change (IPCC 2012), and the continued degradation and loss of breeding and 

overwintering habitats.  An integrated population analysis that combines data collected by 

monitoring programs during overwintering, breeding and migration would be a logical next step 

in the assessment of monarch population status, in order to link estimates of population change to 

demographic parameters, and determine where population limitation is likely occurring (Schaub 

and Abadi 2011). 
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Chapter 8  

8 General Discussion 

8.1 Monitoring wildlife populations using migration counts 

Migration monitoring fills an important gap in species coverage of monitoring programs by 

capturing species that are inaccessible or not well detected on their breeding and wintering 

grounds (Dunn 2005).  However, the reliability of migration counts for population monitoring is 

often questioned, in part because many potential sources of variability can lead to the violation of 

the assumptions of count independence and proportionality, and the effect of assumption 

violation on precision and accuracy of estimated trends is not well understood.  My work shows 

that when data are analyzed using hierarchical models and the assumption of proportionality is 

upheld, bias of population trends derived from migration counts largely remained within the 0.5 

%year-1 bias limit suggested for landbird population monitoring (Bart et al. 2004), regardless of 

count distribution, length of time series, sampling frequency, or whether the assumption of 

independence was violated or not.  Further, although statistical power to correctly detect a 

significant trend was typically low, particularly for rare and highly over-dispersed species, the 

rate of error was also low.  Since the probability of detecting a false trend is low, there does not 

appear to be a need to exclude species a priori from analysis based on low detection probability 

or incomplete sampling of the migration.  Rather, data for such species could still provide useful 

insights about underlying population change that could either be compared to other sources of 

information on trends, or lead to more concerted monitoring efforts for species that are of 

management concern.   

Violating the assumption of proportionality due to a systematic linear trend in stopover duration 

did bias estimated population trends and led to a high rate of error, particularly when both 

stopover duration and simulated trend changed in the same direction (in this case, both 

increasing).  A systematic change in stopover duration is arguably the most problematic source 

of bias for trends derived from counts of unmarked migrants, and is likely to occur at many sites 

in response to climate change (Calvert et al. 2009), habitat succession (Harrison et al. 2000) or 

with the degradation of stopover sites, for example in response to increased risk of predation 
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with the recovery of many raptor populations (Ydenberg et al. 2004).  In order to ensure that a 

bias in stopover duration is not occurring, or to account for a bias that is occurring, independent 

data on stopover duration must be collected.  At a minimum, stopover duration could be 

estimated using mark-recapture data from banding for species guilds or groups to improve 

sample size and model fit (Calvert et al. 2009).  Mark-recapture of butterflies on stopover can be 

conducted using individualized tags (Meitner et al. 2004).  Alternatively, stopover duration of 

shorebirds is often estimated using radio-marked birds (see Drever et al. 2014).  With recent 

technological advancements in automated radio-telemetry arrays (Motus Wildlife Tracking 

System 2015, Taylor et al. 2011) and tracking devices that allow smaller animals to be tracked 

for longer periods,  the opportunity exists to radio-tag songbirds captured at each migration count 

site, and gather information on stopover duration and timing of departure for species of interest 

(Taylor et al. 2011).  Also, because time of arrival relative to time of first capture is typically 

unknown, the spatial scale of the Motus Wildlife Tracking System, which includes an array in 

Ontario which extends across the south-western portion of the province, could allow 

measurement of true total stopover if birds stop at additional sites, other than the site of first 

capture, while within the array space.  Direction of departure could also be estimated for 

songbirds and raptors, and assuming birds depart in the direction of the breeding grounds, could 

be used to narrow down the catchment areas or breeding origin of species detected at each site 

(see below). 

Shifts in the breeding or wintering distribution of migrating populations in response to climate or 

habitat change (Parmesan et al. 1999, Paprocki et al. 2014) can also lead to false inference from 

population trends if the proportion of the migratory population that passes a count site also 

changes.  Population trends derived from migration counts should be interpreted in relation to 

alternative sources of data on breeding or wintering distribution when available (Paprocki et al. 

2014).  Combining data across sites to estimate regional population trends may lessen the 

probability that such a bias will occur if the entire distribution in captured by all sites combined.  

In this case, site-specific sources of annual variation in counts could be estimated independently 

from annual variation in the monitored population by the specification of random site-specific 

year effects (Chapters 6,7).  Integrated population models that combine demographic data (where 

available) and migration counts might also prove useful to improve precision and power of trend 

estimates, and determine when population limitation occurs during the annual life cycle (Schaub 
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and Abadi 2011).  Monarch butterflies would provide an ideal test of the integrated population 

model approach because data are collected during all stages of this species' annual life cycle, 

including estimates of larval density on breeding grounds (Pleasants and Oberhauser 2013), 

migration counts (Davis 2012, Chapter 7) and estimates of over-wintering population size 

(Brower et al. 2012). 

My research suggests that model selection techniques can be used to model variation in trend 

among regions, and that increasing the length of the time series would be more efficient at 

improving power and model selection than would increasing the number of sites in a region.  In 

Chapter 7, I applied the method to monarch migration counts that are assumed to monitor the 

same population, and so should detect the same rate of change.  However, there remains a large 

amount of uncertainty about the breeding origin of most species detected at migration count 

sites, which remains a major limitation in the use of migration counts for broad-scale population 

monitoring.  Stable hydrogen isotopes in feathers were recently used to derive broad estimates of 

breeding origin for several songbird species detected across the CMMN network, and showed 

that catchment areas can vary among sites and among early and late migrants at a site for a given 

species (Dunn et al. 2006).  The estimated catchment areas could be further refined using 

information on migration routes and orientation of birds departing each count site in fall.  Geo-

locators (Stutchbury et al. 2009) and broad-scale automated radio-telemetry arrays (Taylor et al. 

2011) could prove useful for this purpose.  Geo-locators would provide the added advantage of 

determining wintering grounds of migrants, and provide the opportunity to improve the 

interpretation of trends in migration counts by taking into consideration factors influencing 

populations during all stages of their annual life cycle.  Genetic sampling also has the potential to 

improve our understanding of which sites are detecting the same or different sub-populations of a 

species (Fedy et al. 2008), and combined with isotope signatures, will provide a more complete 

picture of how (sub-)populations detected at and among migration count sites are structured, and 

whether different sites, or early and late migrants at a single site, should be analyzed and 

interpreted independently.  In addition to improving our understanding of how sites should be 

combined to estimate regional trends, refinement of catchment areas estimated using stable 

hydrogen isotopes in feathers will allow, for the first time, the opportunity to test whether 

covariates collected on the inferred breeding grounds, including change in land use or structure, 

are correlated with annual indices of population size estimated using migration counts.   
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In my thesis, I simulated data with a constant rate of change, and used linear regression to 

estimate trend as the slope of a continuous year term.  Population trends are often estimated this 

way, even for non-linear data (Amano et al. 2012, Ross et al. 2012).  However, the assumption of 

constant rate of change is increasingly likely to be violated as the length of a time series 

increases.  Many analytical tools are now available to ecologists to account for non-linearity and 

auto-correlation among annual counts.  For example, hierarchical models that assume a constant 

rate of population change, as I did here, but that models the temporal autocorrelation of annual 

counts using a first-order auto-regressive parameter would be more appropriate for real migration 

counts  (Ross et al. 2012; Chapter 6).  Alternatively, additive models allow trend to be modeled 

as a smoothed non-linear function of time (Fewster et al. 2000, Fedy and Doherty 2011, Amano 

et al. 2012) and trend is then estimated as percentage change between any two annual indices 

(Fewster et al. 2000).  Using simulated Breeding Bird Survey data with known non-linear trend, 

annual indices estimated using smoothed hierarchical models led to more accurate and precise 

trends than did annual indices from non-smoothed hierarchical models (Amano et al. 2012).    

Additive models have the additional benefit of moderating large outlying counts, and may be 

particularly useful for estimating trends for super-flocking species with highly over-dispersed 

counts.  The above methods should be assessed for the analysis of migration counts using 

simulated data with known non-linear change. 

8.2 Concluding Remarks 

As with any wildlife monitoring program, managers and data analysts need to be aware of the 

limitations of their data (Johnson 2008).  In the case of migration counts, a primary limitation is 

a reliance on annual indices of abundance to provide a proportional representation of the 

monitored population, and therefore a reliance on the assumption that probability of detection 

remains consistent over time.  Further, because population abundance and probability of 

detection are confounded and cannot be estimated independently using annual indices of 

abundance, covariates for weather, habitat or other factor used to model variability in counts may 

be acting on abundance, probability of detection, or both.  All monitoring programs are subject to 

various sources of bias, even those that are able to estimate probability of detection explicitly 

from the data (Johnson 2008).  A primary concern should therefore be to minimize all 

controllable sources of variability in counts through the use of specific, detailed and standardized 
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sampling protocols, appropriate observer training, and appropriate placement of count sites 

(Hussell and Ralph 2005), for example in poor stopover habitat to reduce the probability of 

assumption violation, or along geographic funnels or migratory corridors to maximize the 

relevance of detections to a broader area.  Clear acknowledgement of the limitations of migration 

counts and the factors that may be influencing observed changes in annual indices will improve 

the interpretation of migration counts for population monitoring, and may lead to the 

development of novel innovations to overcome those limitations. 
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Appendices 

Appendix A – Hourly Migration Count Simulation and Parameterization 

Simulation Code 

Code to generate hourly raptor migration counts, using R (v. 2.14.2, R Development Core Team 

2011).  Note that R uses as a default the "Mersenne-Twister" random number generator, from 

Matsumoto and Nishimura (1998). A twisted GFSR with period 2^19937-1 and equidistribution 

in 623 consecutive dimensions (over the whole period).  The 'seed' is a 624-dimensional set of 

32-bit integers plus a current position in that set (see ?Random in R).  

Definition of simulation parameters (values are shown for parameters that did not differ with 

species or levels of annual and daily variation; see Tables A1-A3 for parameter values that 

varied among simulations): 

Y.1: starting population size (year = 1). 

nyears: number of years to simulate (10 or 20). 

sday: start day, determines number of days in season. 

sday.err: standard deviation of random normal error on start day. 

shr = -3; start hour, determines number of hours in day. 

shr.err = 0.5; standard deviation of normal random error on start hour. 

prob.move: binomial probability that birds move on a given day. 

trend = -0.03885; log-linear decline required to achieve approximately 30 % decline in 10 years. 

trend.err: standard deviation of random normal error added to trend on log scale. 

day.err/hr.err: standard deviation of random normal error added to daily and hourly counts on log 

scale. 
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m.spread = 0/m.spread.err = 0.8; mean and standard deviation of random normal error on the 

mean of the normal density curve describing distribution of daily counts. 

m.peak/m.peak.err:  mean and standard deviation of random normal error on the standard 

deviation of the normal density curve describing distribution of daily counts. 

k.day/k.hr = clumping parameter for negative binomial error added to daily and hourly counts. 

m.spread.hr = 0/m.spread.err.hr = 0.2; mean and standard deviation of random normal error on 

the mean of the normal density curve describing distribution of hourly counts. 

m.peak.hr/m.peak.err = mean and standard deviation of random normal error on the standard 

deviation of the normal density curve describing distribution of hourly counts. 

weath.pois = 1.2; lambda for Poisson error added to ‘weather’ vector. 

######## Beginning of R code 

# Packages required: 

  require(lattice) # Deepayan, S. 2008. Lattice: Multivariate Data 

Visualization with R. Springer, New York. ISBN 978-0-387-75968-5 

  require(reshape) # Wickham, H. 2007. Reshaping data with the reshape 

package. Journal of Statistical Software 21:12. 

#################################################################### 

# define the “sim.raptors” function to generate hourly raptor counts 

# values shown do not vary with simulation, see Table A1 for values of 

other parameters 

sim.raptors <- function(Y.1, trend = -0.03885, trend.err, nyears, 

sday, sday.err, m.spread = 0, m.spread.err = 0.8, m.peak, m.peak.err, 

day.err, weath.pois = 1.2, k.day, k.hr, prob.move, shr = -3, shr.err = 

0.5, m.spread.hr = 0, m.spread.err.hr = 0.2, m.peak.hr, m.peak.err.hr, 

hr.err) { 
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## First generate annual population size 

years <- 1:nyears 

## vector of N, on log (link) scale, of length nyears, changing by 

given trend 

Log.Y.i <- log(Y.1 * (1 + trend)^(0:(nyears - 1))) 

## Add random error to annual totals on log scale 

## i.e., generating extra residuals in addition to the implicit 

Poisson residuals 

Log.Y.i <- log.Y.i + rnorm(n = nyears, mean = trend, sd = trend.err) 

## Back-transform to response scale 

Y.i <- exp(log.Y.i) 

## Generate second level of noise: add Poisson noise around expected 

mean 

Y.i <- rpois(n = nyears, lambda = Y.i) 

##################################################################### 

## Distribute annual total (Y.i) through days in a year 

## set up null dataframe for years, and loop through 

hourly.data <- as.data.frame(matrix(nrow = 1, ncol = 6)) 

names(hourly.data) <- c("day", "hour", "count", "N.1", "doy", "year") 

## Loop through years 

for(i in 1:nyears) { 

## Determine number of days in season 
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## allow normal variation around start day (sday), so length of 

migration window varies among years 

s.day <- round(sday + rnorm(n = 1, mean = 0, sd = sday.err)) 

e.day <- abs(s.day)  # creates first and last day, centered on 0 

ndays <- e.day - s.day + 1  # number days in migration window 

days <- seq(from = s.day, to = e.day) # vector of days 

## Distribute birds across days in a year.  Assumes bell-shape 

(normal) distribution, with peak number birds moving through mid-

season 

## adding normal error to mean and sd of curve allows spread to vary 

among years 

spread <- dnorm(seq(from = s.day, to = e.day), mean = rnorm(n = 1, 

mean = m.spread, sd = m.spread.err), sd = rnorm(n = 1, mean = m.peak, 

sd = m.peak.err))  

spread <- spread/sum(spread)  # so values add to 1  

## Add first level of noise to daily counts: random error on log scale 

## Gives the number of birds available to migrate each day 

Y.ij_avail <- Y.i[i] * spread 

log.Y.ij_avail <- log(Y.ij_avail) 

log.Y.ij_avail <- log.Y.ij_avail + rnorm(n = length(log.Y.ij_avail), 

mean = 0, sd = day.err) 

Y.ij_avail <- exp(log.Y.ij_avail) # back-transform to response scale = 

number birds available to migrate 
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## Second level of noise on daily counts: add negative binomial error 

to number of birds that want to move each day.  Setting k to higher 

value (10 or so) approaches Poisson distribution 

Y.ij_avail <- rnbinom(n = ndays, size = k.day, mu = Y.ij_avail) 

## This following ensures the sum of daily counts adds up to annual 

counts. 

if(sum(Y.ij_avail) > 0) { 

 Y.ij_avail <- round(Y.ij_avail /sum(Y.ij_avail) * Y.i[i], digits 

= 0)} 

##  Set up a weather variable, based on uniform distribution 

 weather <- runif(n = ndays, min = 0, max = 1) 

## add Poisson variability to weather, so adjacent days have more 

similar weather conditions.  

weather.pois <- rpois(n = 20*ndays, lambda = weath.pois) 

## get rid of zeros in vector (need at least one day with certain 

weather condition) 

weather.pois <- subset(weather.pois, weather.pois > 0) 

## limit to two adjacent days with exact same weather, then subset 

vector to length of days in year 

weather.pois[which(weather.pois > 2)] <- 2 

weather.pois <- weather.pois[1:ndays] 

## repeat the weather value the number of times specified in 

weather.pois 

weather <- rep(weather, times = weather.pois) 
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## subset, so vector is same length as number of days in year 

weather <- weather[1:ndays] 

## Set up a probability that birds will move through a site on a given 

day, given they are available to move (= Y.ij_avail).  Base this 

probability of moving on weather conditions, so that probability of 

moving is 0 during bad weather, and linear relationship with weather 

above particular bad-weather threshold 

## linear relationship between prob moving and weather 

pm <- weather 

## adds threshold: below certain weather condition, no birds move 

pm[which(pm < (1 - prob.move))] <- 0 

## set up blank vector for number of birds that actually migrate 

Y.ij <- rep(0, times = length(Y.ij_avail))  

## Loop though days, calculate the number that move (nm) based on 

binomial distribution. Number actually want to move (nawm) needs to be 

the same as number want to move (nwm) in first time step 

Y.ij_wantmove <- Y.ij_avail 

ndays <- length(Y.ij_avail) 

## set up NULL hourly databases to append generated data 

hr.count <- NULL   

hrly.data <- NULL   

for(j in 1:ndays) { 

## each individual has a binomial probability of moving 
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Y.ij[j] <- rbinom(n = 1, size = Y.ij_wantmove[j], prob = round(pm[j], 

digits =3)) 

################## now generate hourly data within the day loop 

## probability distribution based on normal; 'spread' placed within 

the day loop, so spread can differ  among days in season 

## Determine number of hours in a day 

## allow normal variation around shr, so number hours birds move each 

day can vary among days 

s.hr <- round(shr + rnorm(n = 1, mean = 0, sd = shr.err)) 

e.hr <- abs(s.hr)  # creates first and last hour, centered on 0 

nhours <- e.hr - s.hr + 1 # number hours 

hours <- seq(from = s.hr, to = e.hr) # vector of hours 

spread.hr <- dnorm(seq(s.hr, e.hr), rnorm(1, m.spread.hr, 

m.spread.err.hr), sd = abs(rnorm(1, m.peak.hr, m.peak.err.hr))) 

spread.hr <- spread.hr/sum(spread.hr) # so values of spread add to 1 

## add first type of error to hourly counts – random normal error on 

log scale 

Y.ijk <- Y.ij[j] * spread.hr 

log.Y.ijk <- log(Y.ijk) 

log.Y.ijk <- log.Y.ijk + rnorm(n = length(log.Y.ijk), mean = 0, sd = 

hr.err) 

Y.ijk <- exp(log.Y.ijk) # backtransform to response scale 

## add second type of error: each individual has neg binomial 

probability of moving each hour 
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Y.ijk <- rnbinom(n = nhours, size = k.hr, mu = Y.ijk) 

## recalculates, so total number moving across hours in day adds up to 

that days' total, or close to it (some rounding error does occur) 

if(sum(Y.ijk) > 0) { 

 Y.ijk <- round(Y.ijk/sum(Y.ijk) * Y.ij[j], digits = 0) 

 } 

## end of hourly data manipulation, continue with daily data manip 

## update nm, so pushes birds that did not move to following day 

Y.ij[j] <- sum(Y.ijk) 

if(Y.ij[j] > Y.ij_wantmove[j]) {Y.ij[j] <- Y.ij_wantmove[j] } # 

otherwise can get neg count next step Y.ij_wantmove[j + 1] <- 

Y.ij_avail[k + 1] + Y.ij_wantmove[j] – Y.ij[j] 

## populate dataframe with hourly counts, and rbind to create 

dataframe with all days.  Daily counts are no longer of interest. 

out.df <- data.frame(day = j, hour = 1:nhours, count = Y.ijk) 

out.df$doy <- days[j] 

hr.count <- rbind(hr.count, out.df) 

} # end of day loop 

# Add starting population size and year to hourly database 

hr.count$Y.i <- Y.i[i] 

hr.count$year <- i 

# Append hourly counts from each day 

hourly.data <- rbind(hourly.data, hr.count) 
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}  # end of year loop 

return(hourly.data) 

} # end of sim.raptors function 
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Simulation Parameterization 

Table A 1. Parameter values used to simulate sharp-shinned hawk hourly migration count 

datasets used in Chapters 2-3. 

Parameter 10-Year Datasets 20-Year Datasets 

Annual CV Low Low High High Low Low High High 

Daily CV Low High Low High Low High Low High 

Y.1 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 

trend.err 0.2 0.2 0.6 0.6 0.1 0.1 0.5 0.5 

sday -60 -60 -60 -60 -60 -60 -60 -60 

sday.err 7 7 7 7 7 7 7 7 

m.peak 11 11 11 11 11 11 11 11 

m.peak.err 0.2 0.5 0.2 0.2 0.2 0.5 0.2 0.2 

day.err 0.1 1.4 0.1 1.4 0.1 1.4 0.1 1.4 

k.day 13 5 15 7 13 7 15 7 

prob.move 0.85 0.9 0.85 0.85 0.85 0.9 0.85 0.85 

m.peak.hr 9 9 11 11 9 11 11 11 

m.peak.err.hr 0.2 0.5 0.2 0.2 0.2 0.2 0.2 0.2 

hr.err 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 

k.hr 8 13 15 15 8 15 15 15 
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Table A 2. Parameter values used to simulate broad-winged hawk hourly migration count 

datasets used in Chapters 2-3.  Beginning population size (Y.1) is in thousands. 

Parameter 10-Year Datasets 20-Year Datasets 

Annual CV Low Low High High Low Low High High 

Daily CV Low High Low High Low High Low High 

Y.1 18 18 18 18 18 18 18 18 

trend.err 0.4 0.4 1 1 0.4 0.4 1 1 

sday -40 -40 -40 -40 -40 -40 -40 -40 

sday.err 7 7 7 7 7 7 7 7 

m.peak 8 9 10 10 8 9 10 9 

m.peak.err 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.3 

day.err 0.7 1.2 0.7 1.2 0.7 1.2 0.7 1.2 

k.day 0.09 0.02 0.2 0.02 0.09 0.02 0.3 0.02 

prob.move 0.9 0.9 0.75 0.9 0.9 0.9 0.8 0.9 

m.peak.hr 8 10 10 10 8 10 10 9 

m.peak.err.hr 0.4 0.4 0.5 0.5 0.4 0.4 0.5 0.3 

hr.err 0.5 0.5 0.5 1.2 0.5 0.5 0.5 1.2 

k.hr 0.9 0.09 0.9 0.5 0.9 0.09 1.2 1 

 
  



175 

 

Table A 3. Parameter values used to simulate merlin hourly migration count datasets used 

in Chapters 2-3.   

Parameter 10-Year Datasets 20-Year Datasets 

Annual CV Low Low High High Low Low High High 

Daily CV Low High Low High Low High Low High 

Y.1 250 250 250 250 250 250 250 250 

trend.err 0.3 0.3 0.8 0.8 0.3 0.3 0.8 0.8 

sday -50 -50 -50 -50 -50 -50 -50 -50 

sday.err 4 4 4 4 4 4 4 4 

m.peak 9 8 10 9 9 8 10 9 

m.peak.err 0.5 0.5 0.2 0.2 0.5 0.5 0.2 0.2 

day.err 0.2 1.2 0.2 1.2 0.2 1.2 0.2 1.2 

k.day 0.7 0.2 1 0.4 0.7 0.2 1 0.6 

prob.move 0.8 0.75 0.9 0.9 0.8 0.75 0.9 0.9 

m.peak.hr 7 8 10 6 7 8 10 7 

m.peak.err.hr 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 

hr.err 0.2 1.2 0.2 1.2 0.2 1.2 0.2 1.2 

k.hr 0.9 0.2 1.5 0.1 0.95 0.2 1.5 0.15 
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Table A 4. Parameter values used to simulate the hourly raptor migration count datasets 

used in Chapter 4, which represented a commonly detected species (northern harrier), a 

rarely detected species with zero-inflated counts (peregrine falcon), and a super-flocking 

species with highly over-dispersed counts (broad-winged hawk).   

 

Simulation Parameter Northern harrier Peregrine falcon Broad-winged hawk 

nyears 20 20 20 

Y.1 350 50 12500 

trend -0.036 -0.036 -0.036 

trend.err 0.2 0.2 0.5 

sday -65 -35 -35 

sday.err 10 8 7 

prob.move 0.95 0.9 0.95 

weath.pois 1.2 1.2 1.2 

m.peak 32 32 32 

m.peak.err 5 5 5 

m.spread 0 0 0 

m.spread.err 0.8 0.8 0.8 

day.err 0.05 0.1 0.3 

k.day 13 0.09 0.07 

shr -3 -3 -3 

shr.err 0.5 0.5 0.5 

m.peak.hr 8 8 11 

m.peak.err.hr 0.2 0.2 0.4 

m.spread.hr 0 0 0 

m.spread.err.hr 0.2 0.2 0.2 

hr.err 0.1 0.1 0.3 

k.hr 5 1 0.4 
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Appendix B. Comparison of Real and Simulated Hourly Migration Count Data (Chapters 

2-3) 

Table B 1. Mean and coefficient of variation (min-max; in parentheses) of annual, daily 

and hourly counts and proportion of 0-observation days and hours for Sharp-shinned 

Hawk (SSHA), Broad-winged Hawk (BWHA), and Merlin (MERL) data across eight sites 

in eastern North America: 1) Beamer conservation area (Ontario, Canada: 1995-2009), 2) 

Hawk Mountain (Pennsylvania, USA: 1966-2009), 3) Holiday Beach (Ontario, Canada: 

1979-2009), 4) Montclair (New Jersey, USA: 1977-2009), 5) Cape May (New Jersey, USA: 

1974-2004), 6) Militia Hill (Pennsylvania, USA: 1992-2009), 7) Waggoner’s Gap 

(Pennsylvania, USA: 1987-2009), and 8) Hawk Ridge (Minnesota, USA: 1974-2009). 

 Annual Daily Hourly 0-Obs Hours 0-Obs Days 

SSHA 8,717 (0.2-0.5) 113 (1.1-2.3) 14 (1.6-2.6) 0.34 (0.1-0.4) 0.12 (0.3-0.6) 

BWHA 14,104 (0.4-1.2) 291 (3.1-6.2) 37 (4.4-12.3) 0.64 (0.1-0.2) 0.33 (0.2-0.4) 

MERL 251 (0.3-0.8) 4 (1.8-2.5) 0 (2.4-6.3) 0.86 (0-0.2) 0.59 (0.1-0.4) 

 

Table B 2. Mean and coefficient of variation (in parentheses) of annual, daily and hourly 

counts, and proportion of 0-observation days and hours across 1000 simulated Sharp-

shinned Hawk datasets.  Data were simulated to have low or high variation in annual and 

daily counts, and to have 10- or 20-years of data. 

Annual/Daily 

Variation 

Years Annual Daily Hourly 0-Obs Hours 0-Obs Days 

Low/Low 10 7,391 (0.2) 124 (1.3) 18 (1.5) 0.15 (0.4) 0.2 (0.3) 

 20 6,078 (0.3) 104 (1.3) 15 (1.5) 0.21 (0.3) 0.16 (0.4) 

Low/High 10 7,333 (0.2) 125 (2.0) 18 (3.0) 0.12 (0.4) 0.27 (0.2) 

 20 6,053 (0.3) 105 (2.0) 15 (3.0) 0.28 (0.2) 0.13 (0.4) 

High/Low 10 8,716 (0.6) 144 (1.6) 21 (1.7) 0.16 (0.4) 0.21 (0.3) 

 20 6,847 (0.6) 116 (1.5) 17 (1.6) 0.22 (0.3) 0.16 (0.4) 

High/High 10 8,616 (0.6) 145 (2.3) 21 (3.4) 0.17 (0.4) 0.31 (0.3) 

 20 6,833 (0.6) 117 (2.3) 17 (3.4) 0.32 (0.3) 0.17 (0.4) 
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Table B 3. Mean and coefficient of variation (in parentheses) of annual, daily and hourly 

counts, and proportion of 0-observation days and hours across 1000 simulated Broad-

winged Hawk datasets.  Data were simulated to have low or high variation in annual and 

daily counts, and to have 10- or 20-years of data. 

Annual/Daily 

Variation 

Years Annual Daily Hourly 0-Obs 

Hours 

0-Obs 

Days 

Low/Low 10 15,702 (0.4) 337 (2.9) 48 (4.2) 0.22 (0.4) 0.4 (0.2) 

 20 13,130 (0.5) 284 (2.9) 41 (4.3) 0.42 (0.2) 0.23 (0.4) 

Low/High 10 15,550 (0.4) 292 (4.2) 42 (9.3) 0.51 (0.2) 0.83 (0.1) 

 20 12,878 (0.5) 241 (4.3) 34 (9.5) 0.84 (0.1) 0.53 (0.2) 

High/Low 10 23,983 (1.0) 424 (3.4) 61 (5.0) 0.3 (0.3) 0.43 (0.2) 

 20 20,020 (1.1) 358 (3.3) 51 (4.6) 0.36 (0.3) 0.24 (0.3) 

High/High 10 23,773 (1.0) 422 (5.5) 60 (9.6) 0.48 (0.3) 0.69 (0.2) 

 20 19,630 (1.1) 370 (5.7) 53 (9.3) 0.67 (0.2) 0.49 (0.3) 

 
 

Table B 4. Mean and coefficient of variation (in parentheses) of annual, daily and hourly 

counts, and proportion of 0-observation days and hours across 1000 simulated Merlin 

datasets.  Data were simulated to have low or high variation in annual and daily counts, 

and to have 10- or 20-years of data. 

Annual/Daily 

Variation 

Years Annual Daily Hourly 0-Obs Hours 0-Obs Days 

Low/Low 10 202 (0.3) 5 (1.6) 1 (2.6) 0.38 (0.2) 0.73 (0.1) 

 20 169 (0.4) 5 (1.6) 1 (2.7) 0.75 (0.1) 0.41 (0.2) 

Low/High 10 204 (0.3) 5 (2.5) 1 (5.5) 0.55 (0.2) 0.87 (0.0) 

 20 171 (0.4) 5 (2.6) 1 (5.6) 0.88 (0.0) 0.57 (0.2) 

High/Low 10 268 (0.8) 7 (1.8) 1 (2.6) 0.35 (0.4) 0.69 (0.2) 

 20 222 (0.9) 6 (1.9) 1 (2.7) 0.72 (0.2) 0.38 (0.4) 

High/High 10 269 (0.8) 6 (2.8) 1 (6.5) 0.52 (0.2) 0.89 (0.0) 

 20 229 (0.9) 6 (2.7) 1 (6.0) 0.87 (0.1) 0.49 (0.3) 
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Appendix C. Comparison of Real and Simulated Hourly Migration Count Data (Chapter 4) 

Table C 1. Mean, median, range and coefficient of variation (CV) for annual, daily and hourly counts, proportion of 0-

observation days and hours, and number of days between first and last detection for three raptor species detected at Hawk 

Mountain Sanctuary, Pennsylvania (1966-2010).  Mean, median and CV of those same variables are also presented for 

simulated data, where values are mean (of mean, median, cv) across 1000 simulated datasets for each species. 

  Real Data Simulated Data 
Variable Species Mean Median Range CV Mean Median CV 

Annual Count Northern harrier 236 244 (119-466) 0.33 239 230 0.30 
 Peregrine falcon 29 24 (6-67) 0.66 34 32 0.35 
 Broad-winged hawk 8382 7999 (1773-29515) 0.52 9405 8166 0.57 
Daily Count Northern harrier 3 2 (0-36) 1.24 2 1 1.33 
 Peregrine falcon 0 0 (0-31) 2.65 0.5 0 3.13 
 Broad-winged hawk 169 13 (0-10066) 3.11 128 11 3.15 
Hourly Count Northern harrier 0 0 (0-13) 2.30 0 0 2.60 
 Peregrine falcon 0 0 (0-9) 5.40 0 0 6.12 
 Broad-winged hawk 19 0 (0-4927) 5.50 16 0 5.76 
0-Obs Days Northern harrier 0.27 0.27 (0.09-0.49) 0.30 0.44 0.44 0.19 
 Peregrine falcon 0.77 0.76 (0.62-0.94) 0.12 0.83 0.83 0.06 
 Broad-winged hawk 0.17 0.17 (0.05-0.28) 0.35 0.30 0.31 0.37 
0-Obs Hours Northern harrier 0.78 0.77 (0.64-0.88) 0.08 0.83 0.83 0.05 
 Peregrine falcon 0.96 0.96 (0.92-0.99) 0.02 0.96 0.96 0.01 
 Broad-winged hawk 0.52 0.51 (0.29-0.67) 0.18 0.64 0.64 0.11 
N Days Detect Northern harrier 107 110 (78-123) 0.10 104 107 0.05 
 Peregrine falcon 50 42 (15-103) 0.47 51 52 0.24 
 Broad-winged hawk 61 59 (44-94) 0.16 64 67 0.15 

 



180 

 

Appendix D. Stopover Duration Simulation and Parameterization 

Simulation Code 

 

Function to simulate data using a modification of the Jolly-Seber capture-recapture simulation 

model described in Kery and Schaub (2011) – Bayesian Population Analysis using WinBUGS. 

 

Note that R uses as a default the "Mersenne-Twister" random number generator, from 

Matsumoto and Nishimura (1998). A twisted GFSR with period 2^19937-1 and equidistribution 

in 623 consecutive dimensions (over the whole period).  The 'seed' is a 624-dimensional set of 

32-bit integers plus a current position in that set (see ?Random in R). 

 

Definition of Model Parameters 

nyears = number of years of data to simulate 

Y1 = starting population size in year 1  

trend = log-linear change in population size 

trend.err = standard deviation of random normal error added to trend on log scale 

nb.annual.size = size of the negative binomial obs on annual counts 

ndays = number of capture occasions (days in season) 

mean.sigma2 = mean of variance of observation process 

sd.sigma2 = sd of variance of observation process 

a = autocorrelation parameter 

phi.in/phi.in.1/phi.in.2 = start and end values for survival; constant within a year, but can vary 

among years. 

p.in = probability of observer detection, assumed constant 

prob.move = binomial probability that birds move on a given day 

sim = number of datasets to simulate 

phi.type = random, cyclical, linear or constant 

out.dir = output directory 

 

## Beginning of R code 
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simul.js <- function(nyears, Y1, trend, trend.err, nb.annual.size, 

ndays, mean.sigma2, sd.sigma2, sd.mu, c, a, phi.in, phi.in.1, 

phi.in.2, p.in, prob.move, xpred.err, sim, phi.type, out.dir) { 

 

## set up NULL files for output 

  out.data <- NULL  

  years <- 1:nyears 

 

## Log-linear population change: 

  log.Yi <- log(Y1 * (1 + trend)^(0:(nyears - 1))) 

 

## Add random year effects on log scale 

  Yi <- exp(log.Yi + rnorm(nyears, trend, trend.err)) 

 

## add Negative Binomial noise around expected mean 

  Yi <- rnbinom(n = nyears, size = nb.annual.size, mu = Yi) 

 

## Define the parameter values for the daily distribution of counts 

  for(i in 1:nyears) { 

  n.occasions <- ndays 

  date <- c(1:n.occasions) 

  sigma2 <- rnorm(1, mean = mean.sigma2, sd = sd.sigma2) # allows 

variation to vary among years 

  mu <- rnorm(1, mean = n.occasions/2, sd = sd.mu) # allows mean of 

distribution to vary among years 

 

## NULL files for output 

  s <- rep(NA, times = n.occasions)  # probability of birds 

entering each day 

  xpred <- rep(0, times = n.occasions) 

  x <- rep(NA, times = n.occasions) 

  b <- rep(NA, times = n.occasions)   # number individuals entering 

each day 
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## daily probability of entering, b, based on normal distribution: 

  for(j in 1:n.occasions) { 

 s[j] <- (2 * 3.14 * sigma2)^-0.5 * exp(-0.5*(j - mu)^2/sigma2)  

 }     

 

## modify s, so that on bad weather days, no birds migrate 

  weather <- rbinom(n = n.occasions, size = 1, prob = prob.move) 

  s <- s*weather/sum(s) 

 

## daily number of birds entering, with autocorrelation 

 for(j in 1:n.occasions){ 

   x[j] <- rnorm(1, xpred[j], xpred.err) 

 xpred[j+1] <- a*x[j] 

 b[j] <- rpois(1, lambda = Yi[i]*s[j]*exp(c*(x[j]-(j-

1)/(n.occasions - 1) * xpred[n.occasions]))) 

 } 

  B <- round(b*Yi[i]/sum(b), digits = 0); plot(B) 

  Y <- sum(B)  # Annual total 

 

## The following is based on Kery and Schaub 2011 

  p <- rep(p.in, times = n.occasions) 

  phi <- rep(phi.in[i], times = n.occasions) # so that survival can 

vary among years 

  PHI <- matrix(rep(phi, (n.occasions-1)*Y), ncol = n.occasions-1, 

 nrow = Y, byrow = T) 

  P <- matrix(rep(p, n.occasions*Y), ncol=n.occasions, nrow = Y, byrow 

= T) 

 

## NULL files 

  CH.sur <- CH.p <- matrix(0, ncol = n.occasions, nrow = Y) 

  CH.dur <- NULL 

 

## define a vector with the occasion of entering the population 

  ent.occ <- numeric() 

  for(t in 1:n.occasions) { 
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 ent.occ <- c(ent.occ, rep(t, B[t])) 

 } 

 

## Simulate Arrival 

  for(j in 1:length(ent.occ)) { # 

  CH.sur[j, ent.occ[j]] <- 1 # write 1 when ind. enters the pop 

 if(ent.occ[j] == n.occasions) next 

 for(t in (ent.occ[j] + 1):n.occasions) { 

 # Bernoulli trial: has individual survived occasion? 

 sur <- rbinom(1, 1, PHI[j, t-1]) 

 ifelse(sur ==1, CH.sur[j, t] <- 1, break) 

  } # t 

  CH.dur[j] <- length(which(CH.sur[j,] == 1)) # number of days 

individual survived in reality (avail for capture) 

  } # j 

 

## Simulate capture 

  for(j in 1:Y) { 

 CH.p[j,] <- rbinom(n.occasions, 1, P[j,]) 

 } #i 

 

## Full capture-recapture matrix 

  CH <- CH.sur * CH.p 

## Remove individuals never captured 

  cap.sum <- rowSums(CH) 

  never <- which(cap.sum ==0) 

  CH <- CH[-never,] 

 

## Output "Actual" population size (new plus remaining individuals) 

  tmp <- as.data.frame(colSums(CH.sur)) 

  names(tmp) <- "N.Avail" 

  tmp$year <- i 

  tmp$doy <- row.names(tmp) 

 

## Output detected population size 
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  tmp2 <- as.data.frame(colSums(CH)) 

  names(tmp2) <- "count" 

  tmp2$year <- i 

  tmp2$doy <- row.names(tmp2) 

 

## merge actual and detected population size 

  tmp <- merge(tmp, tmp2, by = c("year", "doy"), all = TRUE) 

  tmp$sim <- sim 

  tmp$trend <- trend 

  tmp$phi.type <- phi.type 

  tmp$phi <- paste(phi.in.1, phi.in.2, sep = "") 

  out.data <- rbind(out.data, tmp) 

  } # end of year loop 

 

write.csv(out.data, file = paste(out.dir, "StopoverData.", trend.type, 

".", phi.type, ".", phi.in.1, phi.in.2, ".", sim, ".csv", sep = ""), 

row.names = FALSE) 

 

  } # end of simulation function 

 

##################################################### 

## Code required to RUN simulation function 

 

nsims <- 100 

phi.type <- “linear” # OR “constant”, “random”, “cyclic” 

phi.in.1 <- 0.2 # OR 0.25, 0.3, 0.35, 0.4 

phi.in.2 <- 0.7 # OR 0.65, 0.6, 0.55, 0.5 

 

## determine cycle.amp for cyclic sims (amplitude) to get desired 

range in phi 

 

cycle.amp <- NULL 

if(phi.in.1 == 0.2) {(cycle.amp  <- 0.25)} 

if(phi.in.1 == 0.25) {(cycle.amp  <- 0.2)} 

if(phi.in.1 == 0.3) {(cycle.amp  <- 0.15)} 
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if(phi.in.1 == 0.35) {(cycle.amp  <- 0.1)} 

if(phi.in.1 == 0.4) {(cycle.amp  <- 0.05)} 

  

X <- c(1:nyears) 

  trend.pd  = 0    

  cycle.1  = 5 

  d1   = 2/(cycle.1) # ensures full sin cycle completed 

 

for(i in 1:nsims) { 

  phi.in <- NULL 

  if(phi.type == "constant") { 

  phi.in <- rep(phi.in.1, times = nyears) } 

  if(phi.type == "random") { 

  phi.in <- runif(n = nyears, min = phi.in.1, max = phi.in.2) } 

  if(phi.type == "linear") { 

  phi.in <- seq(from = phi.in.1, to = phi.in.2, length = nyears) } 

  if(phi.type == "cyclic") { 

  phi.in <- 0.45 + trend.pd*X + cycle.amp*sin(d1*(X-1)*pi) } 

 

## RUN simulation function 

for(s in 1:nsims) { 

simul.js(nyears = nyears, Y1 = 1000, trend = trend, trend.err = 0.45, 

nb.annual.size = 5, ndays = 65, mean.sigma2 = 50, sd.sigma2 = 10, 

sd.mu = 2.25, c = 1.6, a = 0.2, phi.in = phi.in, phi.in.1 = phi.in.1, 

phi.in.2 = phi.in.2, p.in = 0.3, prob.move = 0.85, xpred.err = 1.25, 

sim = s, phi.type = phi.type, out.dir = out.dir) 

} # end of for loop 
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Simulation Parameterization 

Table D 1. Values of simulation model parameters that varied among simulated datasets, 

where: ‘trend’ specifies the rate of population trend simulated (log scale); ‘phi.type’ 

specifies whether daily probability of survival was simulated to be constant, vary randomly 

or cyclically, or to increase linearly over time; ‘phi.in’ specifies the rate or range in survival 

probability simulated; ‘phi.in.1’ and ‘phi.in.2’ are the minimum and maximum values of 

survival, respectively; and ‘cycle.amp’ specifies the amplitude of cyclical change required 

to simulate the desired range in survival.  

trend phi.type phi.in phi.in.1 phi.in.2 cycle.amp 
-0.012 / 0/ 0.0096 constant 0 0 0  
  0.2 0.2 0.2  
  0.5 0.5 0.5  
  0.7 0.7 0.7  
-0.012 / 0/ 0.0096 random 0.2–0.7 0.2 0.7  
  0.25–0.65 0.25 0.65  
  0.3–0.6 0.3 0.6  
  0.35–0.55 0.35 0.55  
  0.4–0.5 0.4 0.5  
-0.012 / 0/ 0.0096 linear 0.2–0.7 0.2 0.7  
  0.25–0.65 0.25 0.65  
  0.3–0.6 0.3 0.6  
  0.35–0.55 0.35 0.55  
  0.4–0.5 0.4 0.5  
-0.012 / 0/ 0.0096 cyclic 0.2–0.7 0.2 0.7 0.25 
  0.25–0.65 0.25 0.65 0.2 
  0.3–0.6 0.3 0.6 0.15 
  0.35–0.55 0.35 0.55 0.1 
  0.4–0.5 0.4 0.5 0.05 
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Appendix E. Real and Simulated Data Summaries, for Simulations with Variable Survival 

Probability and Stopover Duration. 

Table E 1. Mean, median, coefficient of variation (CV), minimum and maximum of 

migration counts for White-throated Sparrow (Zonotrichia albicollis) collected daily at the 

tip station of the Long Point Bird Observatory, Ontario, Canada, during spring migration 

from 1961–2011. 

Variable Mean Median CV Min Max 

Annual Count 571 471 0.51 100 1160 

Daily Count 15 4 1.88 0 141 

Proportion 0-Observation Days 0.19 0.19 0.44 0 0.35 

Observation Days/Season 44 43 0.18 31 70 
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Table E 2. Mean, median and coefficient of variation (CV) of annual population size among 100 simulated datasets for each set 

of factor levels.   Datasets were simulated to have either a declining population trend (-1.2 %year
-1

; “Decline”), no population 

change (0 %year
-1

; “NoChange”) or an increasing population trend (0.96 %year
-1

; “Increase”).  Survival probability 

remained constant or varied randomly, cyclically or increased linearly over time. 

Survival  phi 
Mean Median CV 

Decline NoChange Increase Decline NoChange Increase Decline NoChange Increase 
Constant 0 291 333 358 242 280 302 0.62 0.62 0.63 
 0.20 293 332 370 245 275 311 0.64 0.63 0.65 
 0.50 304 343 386 251 291 319 0.64 0.62 0.63 
 0.70 310 353 386 259 295 328 0.62 0.63 0.63 
Random 0.20–0.70 566 631 711 452 524 579 0.70 0.69 0.69 
 0.25–0.65 551 614 683 450 504 560 0.67 0.66 0.67 
 0.30–0.60 539 609 681 440 509 561 0.66 0.64 0.65 
 0.35–0.55 546 601 662 458 497 553 0.64 0.65 0.64 
 0.40–0.50 524 598 668 438 500 562 0.64 0.63 0.63 
Cyclic 0.20–0.70 590 661 743 457 514 586 0.74 0.74 0.72 
 0.25–0.65 569 638 705 458 512 572 0.68 0.69 0.69 
 0.30–0.60 553 620 688 458 510 572 0.66 0.67 0.66 
 0.35–0.55 538 599 660 444 506 560 0.65 0.64 0.64 
 0.40–0.50 526 607 649 438 505 543 0.63 0.65 0.63 
Linear 0.20–0.70 554 647 726 454 514 567 0.69 0.69 0.72 
 0.25–0.65 544 626 692 448 509 560 0.65 0.68 0.70 
 0.30–0.60 539 610 690 452 502 560 0.63 0.67 0.69 
 0.35–0.55 531 601 673 446 507 552 0.64 0.63 0.66 
 0.40–0.50 522 600 667 440 501 568 0.62 0.64 0.63 
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Table E 3. Mean, median and coefficient of variation (CV) of daily population size among 100 simulated datasets for each set 

of factor levels.   Datasets were simulated to have either a declining population trend (-1.2 %year
-1

; “Decline”), no population 

change (0 %year
-1

; “NoChange”) or an increasing population trend (0.96 %year
-1

; “Increase”). Survival probability remained 

constant or varied randomly, cyclically or increased linearly over time. 

Survival phi 
Mean Median CV 

Decline NoChange Increase Decline NoChange Increase Decline NoChange Increase 
Constant 0 6 7 8 0 1 1 3.12 3.13 3.14 
 20 6 7 8 1 1 1 3.09 3.07 3.09 
 50 7 7 8 1 1 1 3.00 2.96 2.99 
 70 7 8 8 1 1 1 2.92 2.95 2.95 
Random 0.20–0.70 11 13 14 3 3 4 2.11 2.11 2.12 
 0.25–0.65 11 12 14 3 3 4 2.08 2.11 2.12 
 0.30–0.60 11 12 14 3 3 3 2.10 2.10 2.10 
 0.35–0.55 11 12 13 3 3 3 2.08 2.09 2.09 
 0.40–0.50 11 12 13 3 3 3 2.08 2.11 2.09 
Cyclic 0.20–0.70 12 13 14 3 4 4 2.13 2.13 2.15 
 0.25–0.65 11 13 14 3 3 4 2.11 2.12 2.11 
 0.30–0.60 11 12 14 3 3 4 2.10 2.11 2.11 
 0.35–0.55 11 12 13 3 3 3 2.08 2.11 2.10 
 0.40–0.50 11 12 13 3 3 3 2.08 2.09 2.09 
Linear 0.20–0.70 11 13 14 3 3 4 2.11 2.11 2.13 
 0.25–0.65 11 13 14 3 3 4 2.11 2.09 2.11 
 0.30–0.60 11 12 14 3 3 4 2.10 2.09 2.12 
 0.35–0.55 11 12 14 3 3 3 2.08 2.10 2.10 
 0.40–0.50 11 12 13 3 3 3 2.08 2.09 2.11 

 



190 

 

Table E 4. Mean, median and coefficient of variation (CV) of the number of 0-observation days among 100 simulated datasets 

for each set of factor levels.   Datasets were simulated to have either a declining population trend (-1.2 %year
-1

; “Decline”), no 

population change (0 %year
-1

; “NoChange”) or an increasing population trend (0.96 %year
-1

; “Increase”).  Survival 

probability remained constant or varied randomly, cyclically or increased linearly over time. 

Survival phi 
Mean Median CV 

Decline NoChange Increase Decline NoChange Increase Decline NoChange Increase 
Constant 0 0.55 0.54 0.53 0.55 0.53 0.53 0.23 0.24 0.24 
 0.2 0.53 0.52 0.51 0.53 0.52 0.51 0.25 0.26 0.26 
 0.5 0.51 0.49 0.48 0.51 0.49 0.48 0.27 0.27 0.28 
 0.7 0.50 0.49 0.47 0.50 0.49 0.47 0.27 0.29 0.29 
Random 20–70 0.35 0.33 0.33 0.34 0.32 0.32 0.45 0.44 0.45 
 25–65 0.34 0.33 0.33 0.34 0.32 0.32 0.43 0.43 0.45 
 30–60 0.34 0.33 0.32 0.33 0.32 0.31 0.42 0.42 0.43 
 35–55 0.34 0.33 0.32 0.33 0.32 0.31 0.42 0.42 0.42 
 40–50 0.34 0.33 0.32 0.33 0.32 0.31 0.41 0.42 0.43 
Linear 20–70 0.35 0.34 0.33 0.34 0.33 0.33 0.44 0.45 0.45 
 25–65 0.34 0.33 0.33 0.33 0.33 0.32 0.43 0.44 0.44 
 30–60 0.34 0.33 0.33 0.33 0.32 0.32 0.42 0.43 0.43 
 35–55 0.34 0.33 0.32 0.33 0.32 0.31 0.41 0.42 0.43 
 40–50 0.34 0.33 0.32 0.33 0.32 0.31 0.40 0.42 0.42 
Cyclic 20–70 0.35 0.34 0.33 0.35 0.34 0.33 0.45 0.46 0.47 
 25–65 0.34 0.34 0.33 0.34 0.33 0.32 0.44 0.45 0.45 
 30–60 0.34 0.33 0.32 0.33 0.32 0.31 0.43 0.44 0.44 
 35–55 0.34 0.33 0.32 0.33 0.33 0.31 0.42 0.42 0.43 
 40–50 0.34 0.33 0.32 0.33 0.32 0.31 0.41 0.42 0.42 
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Table E 5. Mean, median and coefficient of variation (CV) of the number of observation days each season among 100 

simulated datasets for each set of factor levels.   Datasets were simulated to have either a declining population trend (-1.2 

%year
-1

; “Decline”), no population change (0 %year
-1

; “NoChange”) or an increasing population trend (0.96 %year
-1

; 

“Increase”).  Survival probability remained constant or varied randomly, cyclically or increased linearly over time. 

Survival phi 
Mean Median CV 

Decline NoChange Increase Decline NoChange Increase Decline NoChange Increase 
Constant 0 35 36 36 36 37 37 0.18 0.18 0.17 
 0.2 35 36 36 36 37 37 0.18 0.18 0.175 
 0.5 35 36 37 36 37 38 0.18 0.17 0.17 
 0.7 36 36 36 36 37 37 0.18 0.18 0.17 
Random 0.20–0.70 39 40 40 40 40 41 0.17 0.16 0.16 
 0.25–0.65 39 39 40 40 40 41 0.16 0.16 0.16 
 0.30–0.60 39 39 40 40 40 41 0.16 0.16 0.155 
 0.35–0.55 39 39 40 40 40 40 0.16 0.16 0.16 
 0.40–0.50 39 39 40 39 40 41 0.16 0.16 0.16 
Linear 0.20–0.70 39 40 40 40 41 41 0.17 0.16 0.17 
 0.25–0.65 39 40 40 40 41 41 0.16 0.16 0.16 
 0.30–0.60 39 39 40 40 40 40 0.16 0.16 0.16 
 0.35–0.55 39 39 40 40 40 41 0.16 0.16 0.16 
 0.40–0.50 38 39 40 39 40 41 0.16 0.16 0.15 
Cyclic 0.20–0.70 39 40 40 40 41 41 0.17 0.17 0.17 
 0.25–0.65 39 40 40 40 41 41 0.17 0.16 0.16 
 0.30–0.60 39 39 40 40 40 41 0.17 0.16 0.16 
 0.35–0.55 39 39 40 40 40 40 0.16 0.16 0.15 
 0.40–0.50 39 39 39 40 40 40 0.16 0.16 0.16 
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Table E 6. Mean (SD) of Pearson correlation coefficients of quantile-quantile (QQ) 

scores among 100 simulated migration count datasets with real white-throated 

sparrow (Zonotrichia albicollis) migration count data collected during spring 

migration at the tip station of the Long Point Bird Observatory in Ontario, Canada 

(1961–2011).   A correlation coefficient of one suggests quantiles of each dataset 

originate from a similar distribution of counts.  Survival was simulated to remain 

constant, or to vary randomly, linearly or cyclically over time.  A daily probability 

of survival of zero suggests all birds departed the count site within 24 hours (i.e., no 

stopover).   

 

  Population Trend Type 
Survival Survival 

Probability 
Decline No Change Increase 

Constant 0 0.92 (0.06) 0.92 (0.05) 0.93 (0.05) 
 0.20 0.93 (0.04) 0.93 (0.04) 0.93 (0.05) 
 0.50 0.93 (0.04) 0.93 (0.04) 0.94 (0.04) 
 0.70 0.94 (0.04) 0.93 (0.05) 0.93 (0.05) 
     
Random 0.20–0.70 0.98 (0.03) 0.97 (0.04) 0.97 (0.03) 
 0.25–0.65 0.97 (0.03) 0.98 (0.02) 0.98 (0.03) 
 0.30–0.60 0.98 (0.03) 0.97 (0.03) 0.98 (0.03) 
 0.35–0.55 0.98 (0.02) 0.97 (0.03) 0.98 (0.03) 
 0.40–0.50 0.98 (0.02) 0.98 (0.03) 0.97 (0.04) 
     
Linear 0.20–0.70 0.98 (0.03) 0.98 (0.02) 0.98 (0.02) 
 0.25–0.65 0.97 (0.03) 0.98 (0.03) 0.98 (0.03) 
 0.30–0.60 0.97 (0.03) 0.97 (0.03) 0.98 (0.03) 
 0.35–0.55 0.97 (0.03) 0.98 (0.03) 0.97 (0.04) 
 0.40–0.50 0.98 (0.02) 0.98 (0.03) 0.97 (0.03) 
     
Cyclic 0.20–0.70 0.98 (0.02) 0.98 (0.03) 0.98 (0.02) 
 0.25–0.65 0.97 (0.03) 0.97 (0.03) 0.98 (0.03) 
 0.30–0.60 0.98 (0.02) 0.98 (0.03) 0.97 (0.03) 
 0.35–0.55 0.98 (0.02) 0.97 (0.03) 0.97 (0.03) 
 0.40–0.50 0.98 (0.03) 0.97 (0.03) 0.97 (0.04) 
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Appendix F. Regional Trends Simulation and Parameterization. 

Simulation Code 

Note that R uses as a default the "Mersenne-Twister" random number generator, from 

Matsumoto and Nishimura (1998). A twisted GFSR with period 2^19937-1 and 

equidistribution in 623 consecutive dimensions (over the whole period).  The 'seed' is a 

624-dimensional set of 32-bit integers plus a current position in that set (see ?Random in 

R). 

# Definition of terms 

Y1.region: Annual population size in year 1 

abund.dist = “equal” or “unequal”; how is abundance distributed among regions/sites  

nregions = 4; number of regions to simulate  

nsites = 3, 5, or 10; number of sites in each region 

prob.site 

Species  

write.summ = TRUE; whether or not to write summary to output file  

SpeciesCode = CAWA or WTSP 

site.err =   

out.dir: specifies output directory  

trend =  1, 2, or 4; whether trend same across regions (1) or varies (2, 4) 

nyears = 40; number of years to simulate  

sday  

sday.err  

m.spread = 0  

m.spread.err 

m.peak  

m.peak.err  

day.err 

weath.pois = 1.2 

prob.move,  
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prob.move.err = 0.05 

max.similar.days = 2 

################################### 

## Beginning of R code 

## Required packages  

 

require(lattice) 

require(reshape2) 

require(reshape) # for rename() 

 

########################## 

## Define the function 

 

sim.daily <- function(Y1.region, abund.dist, nregions = 4, 

nsites, prob.site, Species, write.summ = TRUE, SpeciesCode, 

site.err, out.dir = "", trend, nyears = 40, sday, sday.err, 

m.spread = 0, m.spread.err, m.peak, m.peak.err, day.err, 

weath.pois = 1.2, prob.move, prob.move.err = 0.05, 

max.similar.days = 2)  { 

 

## Set up null dataframe for output 

 

daily.data<- as.data.frame(matrix(nrow = 1, ncol = 9)) 

names(daily.data) <- c("SpeciesCode", "region", "site", "year", 

"day", "doy", "count",  "Y1.site", “Y1.region") 

 

## FIRST LOOP = REGIONS 

 

for (r in 1:nregions) {   
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## generate vector of annual regional abundances, based on 

starting pop size in region and region-specific trend.   

 

log.Y.region<- log(Y1.region[r] * (1 + trend[r])^(0:(nyears - 

1))) 

Y.region<- exp(log.Y.region) 

 

## SECOND LOOP = YEARS 

## Distribute annual regional abundance among sites 

 

for(i in 1:nyears) {  

Y.site<- rmultinom(1, size = Y.region[i], prob = prob.site) 

 

## THIRD LOOP = SITES 

 

for(s in 1:nsites) {   

 

Yi <- Y.site[s] 

 

## Add RANDOM SITE-SPECIFIC YEAR EFFECT on log scale 

 

log.Yi<- log(Yi) + rnorm(1, 0, site.err[r,s]) 

 

## Back-transform to response scale 

 

  Yi <- exp(log.Yi) 

## Distribute annual total (Yi) through days in a year 

 

## Determine number of days in season.  Allow normal variation 

around sday, and determine eday accordingly 

s.day<- round(sday[r,s] + rnorm(1, 0, sday.err[r,s])) # site-

specific error 

e.day<- abs(s.day)  # creates first and last day, centered on 0 

ndays<- e.day - s.day + 1  # number days 

days<- seq(s.day, e.day) 
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## Set up distribution of birds across days in a year.  Assumes 

bell-shaped (normal) distribution, with peak number birds moving 

through mid-season 

 

spread<- dnorm(seq(s.day, e.day), rnorm(1, m.spread, 

m.spread.err[r,s]),  

 rnorm(1, m.peak, m.peak.err[r,s])) # allows spread to vary 

among years 

spread<- spread/sum(spread)  # so values of spread add to 1 

plot(spread) 

 

## Add first level of noise to daily counts: random site-specific 

error in daily counts on log scale 

 

Yij_avail<- Yi * spread 

log.Yij_avail<- log(Yij_avail) + rnorm(length(Yij_avail), 0, 

day.err[r,s]) 

Yij_avail<- exp(log.Yij_avail) 

 

## Second level of noise on daily counts: add Poisson  

 

Yij_avail<- rpois(ndays, Yij_avail)   

 

## The following ensures the sum of daily counts adds up to 

annual counts (or close to it).   

 

if(sum(Yij_avail) > 0) { 

 Yij_avail<- round(Yij_avail/sum(Yij_avail) * Yi, digits = 

0)} 

 

##  Set up a weather variable, based on uniform distribution with 

added Poisson variability, to allow adjacent days to have more 

similar weather conditions.  Limit to a given maximum number of 

days with similar weather conditions. 
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weather<- runif(ndays, 0, 1) 

weather.pois<- rpois(20*ndays, weath.pois) 

weather.pois<- subset(weather.pois, weather.pois> 0)  

weather.pois[which(weather.pois>max.similar.days)] <- 

max.similar.days 

weather.pois<- weather.pois[1:ndays] 

weather<- rep(weather, weather.pois) 

weather<- weather[1:ndays] ## subset, so vector is same length as 

number of days in year 

 

## Set up a probability that birds will move through/stop at a 

site on a given day, given they are available to move ( =nwm).   

 

## linear relationship between prob moving and weather 

pm<- weather  

 

## adds threshold: below certain weather condition, no birds move  

 

pm[which(pm < (1 - prob.move[i]))] <- 0  

 

## set up blank vector for number of birds that actually move 

 

Yij<- rep(0, length(Yij_avail))  

 

## Now loop though days, calculate the number that move (nm) 

based on binomial distribution. Number that actually want to move 

(nawm) needs to be the same as number want to move (nwm) in first 

time step. 

 

Yij_wantmove<- Yij_avail 

 

## LOOP THROUGH DAYS = FOURTH LOOP 

 

for(d in 1:ndays) { 
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 ## each individual has a binomial probability of moving 

 Yij[d] <- rbinom(1, Yij_wantmove[d], round(pm[d], digits 

=3))  

 ## add left-over individuals to next day's number that want 

to move 

if(d <= (ndays-1)) { Yij_wantmove[d + 1] <- Yij_avail[d + 1] + 

Yij_wantmove[d] - Yij[d]} 

  } # end of day loop 

 

tmp.df<- data.frame(SpeciesCode = SpeciesCode, region = r, site = 

s, year = i, day = c(1:length(Yij)), doy = days, count = Yij, 

Y1.site = Yi, Y1.region = Y.region[i] )# this is the regpopn size 

for year i, AFTER random and poisson error in trend 

 

daily.data<- rbind(daily.data, tmp.df) # daily counts for one 

year, merged with other years 

daily.data<- subset(daily.data, !is.na(day)) # ensure no NA 

counts/days 

 

  } # end of site loop 

  } # end of year loop 

  } # end of region loop 

 

return(daily.data) 

 

  } # end of simulation function 
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Simulation Parameterization 

Table F 1. Parameter values for the simulation function to approximate Canada Warbler and White-throated Sparrow data.   

For trend = 1 (national population change), -1.2 %year
-1

, or a 20 % decline in 20 years was simulated.  For trend = 2, 2 regions 

declined by -1.2 %year
-1

, and two regions increased by 0. 96 %year
-1

, or a 20 % increase in 20 years.  For trend = 4, each 

region was assigned a different trend: 1) -1.2 %year
-1

, 2) 0. 96 %year
-1

, 3) -3.6 %year
-1 

(50 % decline in 20 years), and 4) 2.2 

%year
-1 

(50 % increase in 20 years).  Starting abundance was distributed either equally or unequally among sites and regions. 

Parameter No. 
Sites 

Canada warbler White-throated sparrow 
Equal Unequal Equal Unequal 

Y1.region 3 225 c(260, 35, 145, 225) 600 c(2230, 6460, 1420, 30) 
 5 375 c(435, 60, 240, 375) 1000 c(3716, 10767, 2367, 50) 
 10 1500 c(1730, 230, 970, 1500) 2000 c(7430, 21530, 4730, 100) 
prob.site 3 1/nsites c(0.55, 0.30, 0.15) 1/nsites c(0.55, 0.30, 0.15) 
 5 1/nsites c(0.05, 0.10, 0.20, 0.25, 0.40) 1/nsites c(0.05, 0.10, 0.20, 0.25, 0.40) 
 10 1/nsites c(0.1, 0.04, 0.2, 0.13, 0.05, 

0.08, 0.11, 0.09, 0.17, 0.03) 
1/nsites c(0.1, 0.04, 0.2, 0.13, 0.05, 

0.08, 0.11, 0.09, 0.17, 0.03) 
site.err  0.1 N(0.16, 0.05) 0.51 N(0.30,  0.08) 
trend  1, 2 OR 4 1, 2 OR 4 1, 2 OR 4 1, 2 OR 4 
sday  -23 -23 -34 -34 
sday.err  1 1 2 2 
m.spread.err  3 3 0.2 0.2 
m.peak  6 6 12 12 
m.peak.err  1.5 1.5 0.8 0.8 
day.err  1 N(1, 0.3) 0.8 N(1.2, 0.15) 
prob.move  0.7 0.7 0.85 0.85 
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