Towards a Cenozoic History of Atmospheric CO₂

- 1
- 2

The Cenozoic CO₂ Proxy Integration Project (CenCO₂PIP) Consortium

3

4 Abstract: The geological record encodes the relationship between climate and atmospheric carbon dioxide (CO₂) over long and short timescales, as well as potential drivers of evolutionary 5 6 transitions. However, reconstructing CO₂ beyond direct measurements requires the use of paleo-7 proxies and herein lies the challenge, as proxies differ in their assumptions, degree of 8 understanding, and even reconstructed values. Here we critically evaluate, categorize, and integrate available proxies to create a high-fidelity and transparently constructed atmospheric 9 10 CO₂ record spanning the past 66 million years. This provides clearer evidence for higher Earth System Sensitivity in the past and for the role of CO₂ thresholds in biological and cryosphere 11 12 evolution.

14 The contribution of atmospheric CO_2 to Earth's greenhouse effect and the potential for variations 15 in the global carbon cycle to cause climate change has been known for more than a century (1), 16 but it was only in 1958 that direct measurements of the concentration of CO₂ in the atmosphere 17 (or molar mixing ratio - the mole fraction of a gas in one mole of air) were systematically 18 collected. Alongside reconstructions of the historical rise in Earth's surface temperature (2), this 19 record has become one of the most influential and scientifically valuable environmental time-20 series, documenting the continuous rise in annual mean CO_2 from 315 parts per million (ppm) in 21 1958 to 419 ppm in 2022 (3). Projecting beyond these records to estimate how Earth's climate 22 will respond to further increases in CO_2 requires global climate models (4). However, while 23 successful in explaining observed historical climate change (2), models leave doubt as to whether 24 global mean temperature will rise linearly as a function of future doubling of CO₂ (i.e., an invariant 25 'climate sensitivity') or whether climate feedbacks will lead to an increasing (or 'state-26 dependent') sensitivity of climate to CO_2 in the future (5, 6).

27 We can turn to the geological record to help constrain models and improve our 28 understanding of non-linearities in the climate system (e.g., 7), as it documents a variety of global 29 climate changes and critically, climate states warmer than today. Leveraging this record, 30 however, requires the paired quantification of both past atmospheric CO_2 and temperature. In 31 parallel with recent efforts to compile and vet paleo-temperature estimates (8), here we focus 32 on paleo-CO₂ estimates. Samples of ancient air can be extracted and analyzed from bubbles 33 preserved in ancient polar ice (9, 10), but continuous ice core records currently only extend our 34 knowledge of CO₂ back about 800 thousand years (kyr) (for a compilation, see 11), with isolated 35 time slices extending to ~2 Ma (million years ago) (12, 13). Importantly, at no point during the 36 Pleistocene (2.58 Ma to 11,700 years ago) did CO_2 come close to present-day values (419 ppm, year 2022), with 300 ppm being the highest value measured to date (14). In contrast, depending 37 38 on the extent of future human emissions, atmospheric CO₂ could reach 600–1000 ppm by the 39 year 2100 (2). Feedbacks between changing climate and the carbon cycle may also amplify or 40 diminish emissions from surficial carbon reservoirs (e.g., thawing permafrost, adjustments in size 41 and composition of the terrestrial biosphere and marine carbon pool), creating additional 42 uncertainty in future CO₂ projections (15, 16). Past changes in CO₂ inherently include the role of 43 these feedbacks, and their study could help reduce uncertainty in Earth system models (17).

44 A solid understanding of atmospheric CO_2 variation through geological time is also 45 essential to deciphering and learning from other features of Earth's history. Changes in 46 atmospheric CO₂ and climate are suspected to have caused mass extinctions (e.g., 18, 19) as well 47 as evolutionary innovations (20, 21). During the Cenozoic, long-term declines in CO_2 and 48 associated climate cooling have been proposed as the drivers of changing plant physiology (e.g., 49 carbon-concentrating mechanisms), species competition and dominance, and associated with 50 this, mammalian evolution. A more refined understanding of past trends in CO₂ is therefore 51 central to understanding how modern species and ecosystems arose and may fare in the future.

Extending the CO_2 record beyond the temporally restricted availability of polar ice requires the use of 'proxies'. In essence, a CO_2 proxy could be any biological and/or geochemical property of a fossil or mineral that responds to the concentration of ambient CO_2 when it is formed. Unfortunately, unlike in the case of bubbles of ancient air trapped in polar ice, this response is invariably indirect. The connection between a proxy signal and atmospheric CO_2 is 57 often strongly mediated via biological 'vital effects' (e.g., concentration of or discrimination 58 against certain molecules, elements or isotopes due to physiological processes such as 59 biomineralization, photosynthesis, respiration), may be indirectly connected to the atmosphere 60 via dissolution of carbon in seawater or lakes, may involve isotopic or other chemical fractionation steps, or a combination of these. When preserved in terrestrial or marine 61 62 sediments, proxy substrates can also be impacted by post-depositional ('diagenetic') processes 63 that must be accounted for. Relationships between proxies and CO_2 are typically calibrated using 64 observations or laboratory experiments; in biological systems, these calibrations are often 65 limited to modern systems (e.g., modern organisms or soils), and applications to the distant past focus on physiologically or physically similar systems preserved in the sediment and rock record 66 67 (e.g., similar fossil organisms or fossil soils). Most CO₂ proxies also require estimation of one or 68 more additional environmental parameters and hence depend on additional proxy records. The 69 complexity of proxy-enabled paleoclimate reconstructions thus presents a major challenge for 70 creating a self-consistent estimate of atmospheric CO₂ through geological time and requires 71 careful validation.

72 One of the first paleo-CO₂ proxies to be devised was based on the observation that 73 vascular plants typically optimize the density, size, and opening/closing behavior of stomatal 74 pores on their leaf surfaces to ensure sufficient CO_2 uptake while minimizing water loss (e.g., 22). 75 A count of stomatal frequencies then provides a simple proxy for the CO₂ concentration 76 experienced by the plant (23). Changes in ambient CO₂ can also drive a cascade of interrelated 77 effects on photosynthesis, the flux of CO₂ into the leaf (largely determined by stomatal size and 78 density), and the carbon isotopic fractionation during photosynthesis (Δ^{13} C, 22, 23, 24). While 79 lacking functional stomata, non-vascular plants like liverworts also exhibit isotopic fractionation 80 during photosynthesis, and their δ^{13} C values are thus similarly controlled by ambient CO₂. The list 81 of terrestrial paleo-CO₂ proxies also includes inorganic carbonate nodules precipitated in ancient 82 soils (i.e., paleosols) as well as sodium carbonate minerals precipitated in continental lacustrine 83 evaporites. While the paleosol proxy uses the carbon isotope composition of carbonate nodules 84 and deconvolves the mixture of atmospheric and soil-respired CO_2 in soil porewaters using models of soil CO₂ (25, 26), the nahcolite proxy is based on the CO₂ dependence of sodium 85 carbonate mineral equilibria (27, 28). Analogous to non-vascular plants on land, phytoplankton 86 87 fractionate carbon isotopes during photosynthesis in response to the concentration of dissolved 88 CO_2 in seawater, creating an isotopic signal stored in organic biomolecules that can be retrieved 89 from ocean sediments (29). Boron proxies recorded in fossil shells of marine calcifying organisms 90 are related to seawater pH, which in turn can be related back to atmospheric CO_2 (30, 31). A 91 detailed discussion of the analytical details, entrained assumptions, and inherent uncertainties 92 of currently available CO₂ proxies, plus summaries of recent advances and opportunities for 93 further validation, is presented in the Supplemental Material and in Table S1.

Although each of these proxies has been validated extensively, comparing reconstructions from different proxies often reveals discrepancies. Prior compilations of paleo-CO₂ and explorations of the CO₂-climate linkage already exist (*32-34*), however, those studies applied limited proxy vetting, include CO₂ estimates that predate major innovations in some methods, and use rather basic data interpolation to assess broad CO₂ trends. Earlier CO₂ reconstructions are also often insufficiently constrained by ancillary data (e.g., concomitant temperature, isotopic composition of seawater or atmosphere) to be consistent with modern
 proxy theory, have incomplete or missing uncertainty estimates for CO₂ and/or sample age, and
 may exhibit fundamental disagreement with other proxies, leaving our current understanding of
 past CO₂ incomplete.

104 In this study we present the results of a 7-year endeavor by an international consortium 105 of researchers whose collective expertise spans the reconstruction of paleo-CO₂ from all available 106 terrestrial and marine archives. We have jointly created a detailed, open-source database of 107 published paleo-CO₂ estimates including all raw and ancillary data together with associated 108 analytical and computational methods. Each record was vetted and categorized in view of the 109 most recent proxy understanding, with calculations adopting a common methodology including 110 full propagation of uncertainties. We focus our efforts here on the Cenozoic, when the spatial 111 distribution of continents and ocean basins, as well as the structure of marine and terrestrial 112 ecosystems, was similar to the modern, yet profound changes in CO₂ and climate occurred. 113 Identifying the most reliable Cenozoic CO₂ estimates published to date allows us to quantify 114 important physical (e.g., temperature, ice volume) and biological (i.e., physiological, ecosystem) 115 thresholds and tipping points.

116 We structure this investigation as follows: First we summarize the methodology by which we assessed the CO₂ proxies and associated estimates. We then apply these methods to derive 117 118 a series of paleo CO₂ compilations comprised of data with different levels of quality or 119 confidence, and statistically integrate the 'top-tier' data to create a realization of the Cenozoic 120 variability in atmospheric CO₂. This is followed by a discussion of the climatic implications 121 (including climate sensitivity) of the paleo- CO_2 curve, and a presentation of an evolutionary 122 perspective. We finish with a roadmap for further advances in understanding past changes in 123 atmospheric CO₂.

124

125 Critical assessment of atmospheric CO₂ proxies

The basis of our synthesis is a set of comprehensive data templates documenting all types of proxy data and their corresponding CO₂ estimates (a total of 6,247 data points). The completed data sheets for each study can be accessed as the <u>paleo-CO₂ 'Archive'</u> in NOAA's National Climatic Data Center (NCDC). These 'Archive' sheets report all underlying data at face value from the original publications, but their unprecedented level of detail is designed to facilitate critical evaluation and recalculation of each CO₂ estimate.

132 From the 'Archive', published CO₂ estimates were evaluated by teams of experts who are 133 active in validating and applying these proxies, and often included the original authors of the 134 respective data. No new proxy data were collected as part of this effort, but estimates were recalculated where needed and possible, and age models were revised where new evidence was 135 136 readily accessible. Additionally, CO₂ and age uncertainties were updated, as necessary, to consistently reflect propagated 95% confidence intervals. The vetting criteria are summarized in 137 138 Supplementary Table S1 and detailed in paleo-CO₂ 'Product' sheets. These CO₂ estimates are 139 categorized as follows: 'Category 1' estimates (Fig. 1a, 1,673 data points or ~27% of the original 140 total) are based on data whose uncertainty is fully documented and quantifiable in view of 141 current proxy understanding. 'Category 2' estimates (Fig. 1b, 1,813 data points) contain sources 142 of uncertainty that are not yet fully constrained. These uncertainties vary between proxies and 143 datasets, and include, e.g., insufficient replication, poorly constrained proxy sensitivity to 144 parameters other than CO_2 , or extrapolation of calibration curves. 'Category 3' estimates (the 145 residual 2,761 data points or ~44% of the Cenozoic paleo-CO₂ estimates published to date) are 146 either superseded by newer, independently published evaluations from the same raw data, are 147 considered unreliable due to factors such as incomplete supporting datasets that prevent full 148 quantification of uncertainties, or outdated sample preparation methods.

149 Although objective criteria are applied throughout, the vetting process was particularly 150 challenging for the paleosol- and phytoplankton-based proxies because multiple approaches are 151 currently in use for interpreting these proxy data (35-41). Given the lack of a universally agreed-152 upon method, we compare multiple approaches for treating the data of these two proxies 153 whenever possible. For the paleosol proxy, the greatest source of uncertainty is in the estimation 154 of paleo-soil CO_2 concentration derived from respiration. Two different approaches are 155 commonly used to do this. The first method is based on proxy-estimated mean annual rainfall, 156 while the second is based on soil order (i.e., the most general hierarchical level in soil taxonomy, 157 comparable to kingdom in the classification of biological organisms). However, few records in the 158 database allow for a direct comparison between the two approaches. An opportunity for 159 comparison exists with two Eocene records (37, 42), where re-calculation using each of the two 160 different methods leads to CO₂ estimates that do not overlap within 95% confidence intervals for 161 most stratigraphic levels (Fig. S6). This implies that the uncertainty in estimating paleo-soil CO₂ 162 concentration derived from respiration cannot be fully quantified with either of these 163 approaches. Thus, most paleosol-based CO₂ estimates were designated as Category 2. For the 164 phytoplankton proxy, routinely applied methods differ in how algal cell size and growth rate are accounted for, as well as the assumed sensitivity of algal δ^{13} C values to aqueous CO₂ 165 concentration (see Supplementary Materials for details). Where data are available, we compare 166 both newer and traditional methods, finding that although there are deviations between the 167 resulting CO₂ estimates, they do agree within 95% confidence intervals. We hence assign many 168 169 phytoplankton CO₂ estimates to Category 1 and present mean CO₂ and uncertainty values that 170 reflect the range of results from the different methods.

171

172 Towards a Cenozoic history of atmospheric CO₂

173 Our composite Category 1 and 2 realizations of Cenozoic CO₂ (Figs. 1a and b) display much 174 better agreement among proxies than does the 'raw', un-curated collection ('Archive', Fig. 1c). 175 Encouragingly, objective criteria applied to the original data products automatically placed the 176 earlier-reported estimates of 'negative' CO_2 as well as some unusually high values, into Category 177 3, and without subjective intervention to otherwise filter them. We note that the Category 1 178 composite is now largely dominated by marine proxy estimates, with some intervals (e.g., the 179 middle Paleocene, ~63-57 Ma) very sparsely sampled. Furthermore, some intervals (e.g., 180 Oligocene, Miocene) still exhibit significant differences between proxies; for instance, marine-181 based CO₂ estimates start high and decline during the Oligocene (~34-23 Ma), whereas plant-182 based estimates suggest overall lower and constant CO₂ (Fig. 1a). Estimates of global 183 temperature (Fig. 2b) during this time interval are largely invariant, which leaves us with the 184 questions of whether CO_2 and climate were decoupled during this interval, or whether there is a 185 systematic bias in the marine or plant-based CO_2 proxies and/or in the temperature proxies. All 186 proxies become more uncertain further back in time as our knowledge of vital effects in biological 187 proxy carriers, secular changes in the elemental and isotopic composition of ocean and 188 atmosphere, as well as proxy sensitivity to environmental parameters that change along with CO₂ (e.g., temperature, rainfall, see Supplementary Materials for details) becomes less certain. In 189 some cases, ancillary constraints and uncertainties are shared across multiple proxies (e.g., 190 assumed atmospheric δ^{13} C is common to proxies based on land plant δ^{13} C, leaf gas exchange, 191 and paleosols), creating interdependence of estimates from seemingly independent proxies. 192 193 More robust paleo-CO₂ reconstruction thus requires not only continued application of all proxies 194 but also replication from different locations.

195 Although some uncertainties and proxy disagreements remain, the much-improved 196 agreement within the vetted paleo-CO₂ compilation gives us confidence that a quantitative reconstruction of Cenozoic CO₂ based on the combined Category 1 data is possible. To do so, we 197 198 statistically model mean CO₂ values at half-million-year intervals, together with uncertainties in 199 age and proxy CO_2 estimates (Fig. 2a, see Supplementary Materials for details). Our choice of a 200 500-kyr resolution interval reflects a compromise driven by the proxy data compilation. Although 201 parts of the Cenozoic, particularly the Plio-Pleistocene, are sampled at higher temporal 202 resolution, the density of records remains relatively sparse throughout much of the Paleogene (1 203 datum per 190 kyr on average). As a result, the data (and in some cases the underlying age 204 models) are not suited to interpreting higher-frequency (e.g., Milankovitch-scale) variations in 205 atmospheric composition, and we focus here on low-frequency (e.g., multi-million year) trends 206 and transitions. Proxy sampling within some intervals may be biased toward conditions that 207 deviate from the 500-kyr mean (most notably here, the Paleocene-Eocene Thermal Maximum, 208 PETM). We do not attempt to remove this bias but recommend caution in interpreting any 209 features expressed at sub-million-year timescales.

210 This curve (Fig. 2a) allows us to constrain Cenozoic paleo-CO₂ and its uncertainty with 211 greater confidence than earlier efforts. The highest CO_2 values of the past 66 Myr appear during 212 the Early Eocene Climatic Optimum (EECO, ~53-51 Ma), while the lowest values occur during the 213 Pleistocene. In contrast to earlier compilations, which suggested early Cenozoic CO₂ 214 concentrations <400 ppm (e.g., 33), rigorous data vetting and newly published records place early 215 Paleocene mean CO₂ in our reconstruction between 650 and 850 ppm. However, the Paleocene 216 remains data poor, and uncertainty in the curve remains large. Although the Paleocene record is 217 predominantly based on the boron isotope proxy (Fig. 1a), inclusion of other (non-marine) proxy 218 data does influence and refine the reconstruction through this epoch, supporting the value of 219 the multi-proxy approach (Fig. S10). Following the rapid CO_2 rise and fall associated with the 220 PETM at 56 Ma, mean CO₂ steadily rose to peak values of \sim 1600 ppm around 51 Ma during the 221 EECO. The middle and late Eocene recorded slightly lower values (800-1100 ppm). Mean CO_2 dropped to <600 ppm across the Eocene-Oligocene transition (EOT, 33.9 Ma) and reached values 222 223 that generally fall between ~400 and 200 ppm during the Miocene through Pleistocene, except 224 for a notable increase during the Middle Miocene (~17-15 Ma) to a mean of ~500 ppm. 225 Uncertainty in the mean CO₂ values drops substantially in the Plio-Pleistocene (see also Fig. S11),

as expected given a dramatic increase in data density. Our analysis suggests that ~14.5-14 Ma

was the last time 500-kyr-mean CO_2 value was as high as the present (Fig. S11), and that all Plio-

228 Pleistocene peak interglacial CO₂ concentrations were exceptionally likely less than those of the

- 229 modern atmosphere (Fig. S12). In contrast, prior to the Miocene, there is very little support 230 (<2.5% probability) for Cenozoic 500-kyr-mean CO₂ values reaching or falling below pre-industrial
- 230 (<2.5% probability) for centratic 500-kyr-mean CO₂ values reaching of railing below pre-industrial
- 232

233 Climatic implications of the revised CO₂ curve

234 Relationship with global temperature change and climate sensitivity

235 Our reconstructed Cenozoic CO₂ trends are broadly coherent with those for global 236 temperature as inferred, e.g., from the oxygen isotopic composition (δ^{18} O) of fossil benthic 237 foraminifera shells (43, 44) and compilations of global surface temperature (45) (Fig. 2b). The 238 Paleocene and Eocene epochs display overall higher temperatures and atmospheric CO₂ 239 concentrations as compared to the later Oligocene, Miocene, and Pliocene - consistent with a 240 predominantly greenhouse-gas regulated global energy budget. More specifically, the slow rise 241 and subsequent fall of CO₂ over the course of the Paleocene and Eocene are mirrored by global 242 temperatures, just as a transient Miocene CO₂ rise coincides with a period of warming at the 243 Miocene Climatic Optimum (MCO). The EOT is identifiable in both the CO₂ and temperature 244 records, despite the smoothing introduced by the curve fitting and 500-kyr binning interval.

245 Despite this overall agreement, rates and timing of CO_2 vs. temperature changes in the 246 two records are not always synchronized (Fig. 2a,b). For example, CO_2 appears broadly static or 247 even rising during the late Eocene (37-34 Ma) and late Miocene (11-5 Ma) despite global cooling 248 (see also 46) at these times. Conversely, decreasing CO₂ during the early Oligocene corresponds 249 with relatively stable global temperatures (Fig. 2b, but see also 47, 48) and ice volume (Fig. 2c) at 250 that time. We note that the reconstructed Oligocene CO₂ decrease is driven by the contribution 251 of marine proxies to the composite curve, whereas estimates from leaf gas exchange proxies are 252 low and broadly static (Fig. 1c), a discrepancy that cannot be resolved without further 253 experimentation and data collection. We caution that, even at the 500-kyr resolution of our 254 study, the relative timing of CO₂ and temperature change might be unresolved in poorly sampled 255 intervals (i.e., middle Paleocene), but should be well resolved during more recent, well sampled 256 intervals (i.e., late Miocene through present, Fig. S8). Is the occasional divergence of temperature 257 and CO_2 change evidence for occasional disconnects between CO_2 forcing and climate response? 258 Although one might posit bias in the CO₂ reconstruction, the strength of our multiproxy approach 259 is the reduced likelihood that multiple proxies exhibit common bias during particular periods of 260 the Cenozoic. We suggest that some cases of divergence between temperature and CO_2 could 261 reflect non-CO₂ effects on climate (e.g., changes in paleogeography affecting ocean circulation, 262 albedo and heat transport, 49), or the temperature reconstructions used herein could be biased 263 by non-thermal influences (e.g., uncertain elemental and isotopic composition of paleo-264 seawater, physiological or pH effects on proxies, 48, 50).

265 Our updated CO₂ curve, in conjunction with existing global temperature reconstructions, 266 gives us the opportunity to reassess how climate sensitivity might have evolved through the 267 Cenozoic. The most commonly reported form of climate sensitivity is equilibrium climate 268 sensitivity (ECS), which focuses on fast feedback processes (e.g., clouds, lapse rate, snow, sea ice) 269 and is therefore best suited for predicting present-day warming (~3°C for a doubling of CO₂ above 270 the pre-industrial condition, 2). Because the average temporal resolution of our CO_2 database is 271 coarser than 1000 years, we cannot estimate ECS directly. Instead, our data are most appropriate 272 for interpreting an Earth System Sensitivity ($ESS_{[CO2]}$, following the taxonomy of 51) – the combination of short-term climate responses to doubling CO₂ plus the effects of slower, 273 274 geological feedback loops such as the growth and decay of continental ice sheets. We compare 275 our reconstructed 500-kyr-mean CO_2 values with two different estimates of global surface 276 temperature. We apply the same Bayesian inversion model used in the CO₂ reconstruction to 277 derive 500-kyr-mean surface temperatures from the benthic foraminiferal δ^{18} O compilation of 278 Ref. (43), which we convert to temperatures using the methodology of Ref. (44) (Fig. 2b). In 279 addition, we pair a set of multiproxy global surface temperature estimates for eight Cenozoic 280 time intervals (Fig. 2b, 45) with posterior CO_2 estimates from time bins corresponding to each 281 interval. The two temperature reconstructions are broadly similar, although the benthic record 282 suggests relatively higher temperatures during the hothouse climate of the Paleocene and 283 Eocene, whereas the multiproxy reconstruction is elevated relative to the benthic record during 284 the Oligocene and Neogene.

285 The co-evolution of atmospheric CO₂ and global mean surface temperature (GMST) over 286 the Cenozoic is shown in Fig. 3. Because CO₂ is on a log scale, the slopes of lines connecting two 287 adjacent points in time reflect the average intervening $ESS_{[CO2]}$. Benthic δ^{18} O-derived temperatures suggest early Paleocene warming occurs with a very high ESS_[CO2] (>8°C per CO₂ 288 289 doubling), although CO₂ uncertainties are large during this time interval. ESS_{ICO2} steadily declines 290 towards the peak of Cenozoic warmth ~50 Ma, then steepens again to ~8°C per CO₂ doubling for 291 much of the cooling through to the EOT at ~34 Ma. In contrast, the multiproxy global temperature 292 record suggests a lower ESS_[CO2] of ~5°C between the early Eocene and earliest Oligocene. During 293 the Oligocene and early part of the Miocene, both temperature records imply a near-zero 294 ESS_{ICO21} , i.e., CO₂ values appear to decline with no appreciable global cooling. ESS_{ICO21} implied by 295 both temperature reconstructions steepens again from the middle Miocene (16 Ma) to present, 296 averaging 8°C per CO₂ doubling over the past 10 Myr.

297 An alternative perspective on early Cenozoic climate forcing was introduced by Ref. (44), 298 who hypothesized that all pre-Oligocene climate change was the response of direct and indirect 299 CO2 radiative forcing plus long-term change in solar output (i.e., constant albedo). Given this, they converted Paleocene and Eocene benthic δ^{18} O-derived GMST to estimates of CO₂ change 300 301 required to explain the temperature record. Our reconstruction offers a direct test of this hypothesis, and although it compares well with the δ^{18} O approach of Ref. (44) throughout much 302 of the early Cenozoic, our curve suggests that the late Eocene decline in CO₂ was less severe than 303 304 expected under the constant albedo assumption (Fig. S13). This result is consistent with a 305 growing contribution of glacier and sea ice albedo effects (e.g., 52, 53) and the opening of 306 Southern Ocean gateways (e.g., 54) to climate cooling preceding the Eocene-Oligocene 307 boundary.

308 In summary, the Cenozoic compilation confirms a strong link between CO₂ and GMST 309 across timescales from 500 kyr to tens of Myr, with ESS_[CO2] generally within the range of 5-8°C – 310 patterns consistent with most prior work (32-34, 45, 51, 55-60), and considerably higher than the 311 present-day ECS of ~3°C. Both temperature reconstructions imply relatively high ESS_{ICO21} values 312 during the last 10 Myr of the Cenozoic, when global ice volumes were highest. This agrees with 313 expectations of an amplified ESS_[CO2] due to the ice-albedo feedback (61). However, even during 314 times with little-to-no ice (Paleocene to early Eocene), we find elevated values of ESS_[CO2] 315 (approaching or exceeding 5° C per CO₂ doubling). This implies that fast, non-ice feedbacks, such 316 as clouds or non-CO₂ greenhouse gases (60, 62-65) were probably stronger in the early Paleogene 317 than they are in the present-day climate system (see also 5). The Oligocene to early Miocene is 318 the most enigmatic interval, with an apparent decrease in CO₂ despite relatively stable 319 temperature, implying near zero ESS_[CO2]. It should be noted that this is one interval where different CO₂ proxies disagree on CO₂ change (Fig. 1a), with relatively stable values from plants 320 321 but a decline in values from alkenones. More work is needed to confirm these CO₂ and 322 temperature findings, but if these estimates are correct, this could partly reflect transition from 323 a climate state too cold to support the strong fast feedbacks (e.g., clouds) of the early Eocene (5), 324 but not cold enough to generate strong ice-albedo feedback. Tectonic changes in the 325 arrangement of continents and the opening of critical ocean gateways may also be confounding 326 derivation of ESS_[CO2] at that time (e.g., 49, 54).

327 Relationship with the evolution of the cryosphere

328 Our composite CO₂ record also enables reexamination of the evolution of Earth's 329 cryosphere (Fig. 2c) in relation to CO_2 radiative forcing. We use the sea level estimation of Ref. 330 (66) for this comparison because it covers the entire Cenozoic and is somewhat independent of the benthic δ^{18} O stack (43) used for the GMST derivation in Fig. 2b and also of the more recent 331 332 sea level reconstruction of Ref. (67). Although there are significant differences between the two 333 sea level estimates, the main features discussed herein are broadly consistent between them. 334 The establishment of a permanent, continent-wide Antarctic ice shield at the EOT (~34 Ma) 335 comes at the end of a ~10-Myr period of generally slowly decreasing CO₂. There is evidence for 336 isolated, unstable Antarctic glaciers at various points over the 10-Myr interval prior to the EOT 337 (50, 53, 66, 68), which is consistent with the increasing paleogeographic isolation of Antarctica 338 and Southern Ocean cooling (54), and CO₂ may have been sufficiently low to enable the repeated 339 crossing of a glaciation threshold by periodic orbital forcing. Tectonic cooling of Antarctica would 340 have progressively raised the CO₂ glaciation threshold, which has been modeled to be within 560-920 ppm (69, 70). Our composite CO₂ record allows us to further assess this glaciation threshold 341 342 but requires determining the point during glacial inception when strong positive feedbacks (e.g., 343 ice-albedo and ice sheet elevation) commenced and ice sheet growth accelerated (71). Using the sea level curve of Ref. (66), we determine this point as 33.75 ± 0.25 Ma, where our composite CO₂ 344 record suggests 719 $\frac{+180}{-152}$ ppm (95% CIs). Once established, the land-based Antarctic ice sheet 345 likely persisted for the remainder of the Cenozoic, although significant retreat of land-based ice 346 has been modeled (30-36 m sea level equivalent, 72) and estimated from proxies (Fig. 2c) for the 347 348 Miocene Climatic Optimum (MCO). 500-kyr-mean CO₂ values increased to ~500 ppm during the MCO (Figs. 2a, S10), and benthic foraminiferal δ^{18} O (Fig. 2b, 43) and clumped isotopes (50) 349

350 indicate warming. While the stability of the land-based Antarctic ice sheet depends on many 351 factors in addition to CO_2 -induced global warming (e.g., hysteresis (73), bed topography (74)), 352 our composite record indicates that significant retreat of land-based ice did not occur below 441-353 480 ppm (2.5-50 percentiles), and some land-based ice may have persisted up to 563 ppm (97.5 354 percentile) during the MCO. Excepting the MCO, atmospheric CO₂ has remained below our 355 current value of 419 ppm since the late Oligocene (Figs. 2a, S10), with relatively small sea-level 356 variations (up to ~20m, Fig. 2c and 67) being driven by orbitally-forced melting of the marine-357 based ice sheet (e.g., 72, 75). Finally, at ~2.7 Ma, the transition to intensified northern 358 hemisphere glaciation and orbitally-driven glacial cycles coincided with CO₂ values that began 359 decreasing after a relative high during the Pliocene (Fig. 2a).

360

361 Evolutionary implications of the revised CO₂ curve

362 While geologic trends in terrestrial floral and faunal habitat ranges (e.g., 76, 77) and diversity (e.g., 78, 79, 80) are largely thought to be controlled by temperature and associated climate 363 364 patterns, atmospheric CO₂ has been hypothesized to drive the evolution of biological carbon 365 concentrating mechanisms and their subsequent diversification in terrestrial plants (CCMs, Fig. 366 2d, 81, 82). Our realization of how atmospheric CO_2 has varied through the Cenozoic allows us to 367 re-examine this hypothesis. The two primary CCMs in terrestrial plants are the crassulacean acid metabolism (CAM) and C₄ photosynthetic syndromes. CCMs in terrestrial C₄ and CAM plants 368 369 confer competitive advantages over the ancestral C₃ pathway under higher growing season 370 temperatures, low rainfall, and lower atmospheric CO₂. As a result, C₄ photosynthesis contributes 371 about 23% of today's global terrestrial gross primary production (GPP, 83).

372 Plant clades with the C₄ pathway first emerged in the early Oligocene (84, 85), yet did not 373 expand to ecological significance until the late Miocene (i.e., <5% GPP before ~10 Ma, Fig. 2d, 86, 374 87, 88). CAM plants (e.g., cacti, ice plants, agaves, and some orchids) underwent significant 375 diversification events around the late Oligocene and late Miocene (89-91). Taken together, two 376 general biological thresholds emerge based on our CO_2 record: (1) All known origins of C_4 plants 377 occurred when atmospheric CO₂ was lower than ~550 ppm (i.e., after 32 Ma, Fig. 2a,d, 84), which 378 is in agreement with theoretical predictions (92, 93). (2) All major Cenozoic CAM diversification 379 events coincided with intervals when CO_2 was lower than ~430 ppm (i.e., after 27 Ma, 89, 90). 380 Our record is thus consistent with decreasing atmospheric CO_2 (< 550 ppm) being a critical 381 threshold for the Cenozoic origin, diversification, and expansion of C₄ and CAM plants within grasslands, arid habitats (such as deserts), and habits (such as epiphytes), and provides strong 382 383 data support for previous hypotheses (20, 84, 86, 88, 89, 92, 94, 95). Importantly, following their 384 origin in the early Oligocene, C_4 plants did not immediately proliferate. By ~24 to ~18 Ma, open 385 habitat grasslands are evident on most continents (96), yet widespread dispersal of C_4 plants was 386 delayed until the late Miocene, and without any apparent decline in CO₂ (Fig. 2d). Therefore, the 387 rise of C₄ plants to their dominance in many tropical and subtropical ecosystems was likely driven 388 (and maintained today) by other factors such as fire, seasonality of rainfall, and herbivory (i.e., 389 grazing that keeps landscapes open) (97, 98). The temporal evolution of these factors warrants 390 further study as we move towards a future where CO_2 may rise above the 550-ppm threshold 391 that was key to the origin, taxonomic diversification, and spread of C₄ plants.

393 Terrestrial mammals evolved and adapted to the changing and more open floral 394 ecosystems of the late Cenozoic (99-101), and are thus indirectly linked to the 550-ppm atmospheric CO2 threshold discovered herein. In particular, dental wear patterns (such as the 395 396 shape of the chewing surface of a tooth, i.e., mesowear) and tooth morphology, such as crown 397 height, reflect an increasingly abrasive and tough diet (102, 103), and can be traced across many 398 herbivore lineages during this period. For instance, mesowear in North American Equidae (horses 399 and their ancestors, Fig. 2d) began to increase in the late Eocene, and steadily continued into the 400 Quaternary. Similarly, equids evolved high-crowned (hypsodont) teeth in the Miocene (103-105), 401 and their body size increased to accommodate higher intake of more abrasive, grassy vegetation 402 (Fig. 2d).

403 Evolutionary trends are a little less clear in the ocean, because marine algal CCMs are 404 ubiquitous and diverse in form (106) and are believed to have an ancient origin. Moreover, the 405 large spatial and seasonal variance of dissolved CO_2 in the surface ocean (as compared to the 406 relatively uniform seasonal and spatial concentration of CO₂ in the air) may somewhat decouple 407 their evolution from geologic trends in atmospheric CO₂. Evidence exists that marine algae, and 408 in particular the coccolithophores (i.e., the source of the alkenone biomarkers), express CCMs to 409 greater extent when CO₂ is lower (e.g., 107, 108, 109), with estimates of cellular carbon fluxes 410 suggesting enhanced CCM activity in coccolithophores began ~7-5 Ma (110). However, our 411 revised CO₂ curve displays mean atmospheric CO₂ broadly constant at 300-350 ppm since at least 412 ~14 Ma (Figs. 2a, S10), suggesting that increased CCM activity may reflect other proximal triggers, 413 perhaps involving changes in ocean circulation and nutrient supply.

414

415 **Perspectives and opportunities for further advances**

416 Our community-assessed composite CO₂ record and statistically modelled time-averaged 417 CO₂ curve exhibit greater clarity in the Cenozoic evolution of CO₂ and its relationship with climate 418 than was possible in previous compilations, and furthermore highlight the value of cross-419 disciplinary collaboration and community building. Generating a paleo-CO₂ record with even greater confidence requires targeted efforts using multiple proxies to fill in data gaps, higher 420 421 resolution and replication from multiple locations, and novel approaches to resolve remaining 422 differences between CO_2 proxy estimates. Specifically: although the number and diversity of 423 paleo-CO₂ proxy records continues to grow, data remain relatively sparse during several key parts 424 of the Cenozoic record (e.g., middle Paleocene, Oligocene). Moreover, records from the 425 Paleocene and Eocene are dominated by estimates from the boron isotope proxy, increasing 426 potential for bias. Targeted efforts are hence needed to expand the number and diversity of data 427 through these intervals and to refine multi-proxy reconstructions. Secondly, despite substantial 428 progress, there remains a lack of consensus regarding the identity and/or quantification of some 429 of the factors underlying each of the proxy systems analyzed here. New experimental and 430 calibration studies, particularly those that isolate and quantify specific mechanistic responses 431 and/or their interactions, need to be undertaken in order to reduce potential biases and 432 uncertainty for each method. For instance, the emerging fields of genomics, evolutionary and 433 developmental biology, and proteomics provide exciting new opportunities for improving and

434 understanding paleo-proxy systematics. Thirdly, and associated with improved experimental 435 quantification, refining our theoretical and mechanistic understanding of how proxies are 436 encoded will allow us to create explicit and self-consistent representations of the processes 437 involved. The development of proxy system forward models provides a promising leap in this 438 direction (e.g., 111). Bayesian statistical methods can then enable the full suite of models and 439 data to be integrated and constrain the range of environmental conditions, including 440 atmospheric CO_2 and other variables that are consistent with the multiproxy data (112, 113). 441 Finally, development of new proxies is also a realistic and desirable aim. For instance, while this 442 study focuses on more established proxies, new proxies such as coccolith calcite stable isotopes 443 (114) and mammalian bone and teeth oxygen-17 anomalies (115) show promising results for 444 reconstructing paleo-CO₂, but perhaps require further validation before they can be assessed 445 with confidence.

Proxies and proxy-based reconstructions of how atmospheric CO₂ has varied through deep time have improved immeasurably over the past few decades. While they will never allow us to reconstruct past CO₂ with the same fidelity as direct air measurement, our study shows how community-based consensus assessment, together with a critical reanalysis of proxy models and assumptions, can progressively move us towards a quantitative history of atmospheric CO₂ for geological time.

- 452
- 453

454		References and Notes
455		
456	1.	S. Arrhenius <i>, Philosophical Magazine</i> 41 , 237 (1896).
457	2.	IPCC, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I
458		to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. V.
459		Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger <i>et al.,</i> Eds.,
460		(Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
461		2021).
462	3.	P. Tans, R. Keeling, NOAA/ESRL, Ed. (NOAA/ESRL, <u>www.esrl.noaa.gov/gmd/ccgg/trends/</u> ,
463		2023).
464	4.	K. E. Taylor, R. J. Stouffer, G. A. Meehl, Bulletin of the American Meteorological Society
465		93 , 485 (2012/04/01, 2011).
466	5.	R. Caballero, M. Huber, Proceedings of the National Academy of Sciences USA 110,
467		14162 (August 5, 2013, 2013).
468	6.	J. Zhu, C. J. Poulsen, Geophysical Research Letters 47 , e2020GL089143 (2020/09/28,
469		2020).
470	7.	J. Zhu, C. J. Poulsen, B. L. Otto-Bliesner, Nature Climate Change 10, 378 (2020/05/01,
471		2020).
472	8.	E. J. Judd, J. E. Tierney, B. T. Huber, S. L. Wing, D. J. Lunt, H. L. Ford et al., Scientific Data
473		9 , 753 (2022/12/06, 2022).
474	9.	R. J. Delmas, JM. Ascencio, M. Legrand, <i>Nature</i> 284, 155 (1980).
475	10.	A. Neftel, H. Oeschger, J. Schwander, B. Stauffer, R. Zumbrunn, Nature 295, 220 (1982).
476	11.	B. Bereiter, S. Eggleston, J. Schmitt, C. Nehrbass-Ahles, T. F. Stocker, H. Fischer et al.,
477		Geophysical Research Letters 42 , 542 (2015).
478	12.	Y. Yan, M. L. Bender, E. J. Brook, H. M. Clifford, P. C. Kemeny, A. V. Kurbatov <i>et al.</i> ,
479		Nature 574 , 663 (2019/10/01, 2019).
480	13.	J. A. Higgins, A. V. Kurbatov, N. E. Spaulding, E. Brook, D. S. Introne, L. M. Chimiak <i>et al.</i> ,
481		Proceedings of the National Academy of Sciences 112 , 6887 (June 2, 2015, 2015).
482	14.	C. Nehrbass-Ahles, J. Shin, J. Schmitt, B. Bereiter, F. Joos, A. Schilt et al., Science 369,
483		1000 (2020).
484	15.	C. Le Quéré, M. R. Raupach, J. G. Canadell, G. Marland, et al., <i>Nature Geosci 2</i> , 831
485		(2009).
486	16.	P. Friedlingstein, M. O'Sullivan, M. W. Jones, R. M. Andrew, L. Gregor, J. Hauck et al.,
487		Earth Syst. Sci. Data 14 , 4811 (2022).
488	17.	P. Valdes <i>, Nat. Geosci.</i> 4 , 414 (2011/07/01, 2011).
489	18.	W. Kiessling, M. Aberhan, L. Villier <i>, Nature Geosci</i> 1 , 527 (2008).
490	19.	J. L. Payne, A. M. Bush, N. A. Heim, M. L. Knope, D. J. McCauley, Science 353, 1284
491		(2016).
492	20.	E. J. Edwards, C. P. Osborne, C. A. Strömberg, S. A. Smith, W. J. Bond, P. A. Christin et al.,
493		<i>Science</i> 328 , 587 (Apr 30, 2010).
494	21.	F. A. McInerney, S. L. Wing, Annual Review of Earth and Planetary Sciences 39 , 489
495		(2011/05/30, 2011).
496	22.	W. Konrad, D. L. Royer, P. J. Franks, A. Roth-Nebelsick, Geological Journal, (2020/03/18,
497		2020).

498 23. J. C. McElwain, M. Steinthorsdottir, *Plant Physiology* **174**, 650 (2017). 499 24. B. A. Schubert, A. H. Jahren, Geochim. Cosmochim. Acta 96, 29 (2012). 500 25. T. E. Cerling, Am. J. Sci. 291, 377 (1991). 501 26. D. O. Breecker, Geochemistry, Geophysics, Geosystems 14, 3210 (2013/08/01, 2013). 502 E. A. Jagniecki, T. K. Lowenstein, D. M. Jenkins, R. V. Demicco, Geology 43, 1075 27. 503 (December 1, 2015, 2015). 504 28. T. K. Lowenstein, R. V. Demicco, Science 313, 1928 (2006). 505 M. Pagani, in Treatise on Geochemistry (Second Edition), H. D. Holland, K. K. Turekian, 29. 506 Eds. (Elsevier, Oxford, 2014), pp. 361-378. 507 B. Hönisch, S. M. Eggins, L. L. Haynes, K. A. Allen, K. Holland, K. Lorbacher, Boron proxies 30. 508 in Paleoceanography and Paleoclimatology. Analytical Methods in Earth and 509 Environmental Science (John Wiley & Sons, Ltd., 2019). 510 31. J. W. B. Rae, in Boron Isotopes: The Fifth Element, H. Marschall, G. Foster, Eds. (Springer 511 International Publishing, Cham, 2018), pp. 107-143. 512 32. D. J. Beerling, D. L. Royer, Nat. Geosci. 4, 418 (2011). 513 33. G. L. Foster, D. L. Royer, D. J. Lunt, Nature Communications 8, 14845 (04/04/online, 514 2017). 515 34. J. W. B. Rae, Y. G. Zhang, X. Liu, G. L. Foster, H. M. Stoll, R. D. M. Whiteford, Annual 516 Review of Earth and Planetary Sciences 49, 609 (2021). 517 35. S. Ji, J. Nie, A. Lechler, K. W. Huntington, E. O. Heitmann, D. O. Breecker, Earth and 518 *Planetary Science Letters* **499**, 134 (2018/10/01/, 2018). 519 J. Da, Y. G. Zhang, G. Li, X. Meng, J. Ji, Nature Communications 10, 4342 (2019/09/25, 36. 520 2019). 521 E. Hyland, N. D. Sheldon, M. Fan, GSA Bulletin 125, 1338 (2013). 37. 522 38. J. Henderiks, M. Pagani, *Paleoceanography* 22, (2007). 523 S. R. Phelps, G. M. M. Hennon, S. T. Dyhrman, M. D. Hernández Limón, O. M. 39. 524 Williamson, P. J. Polissar, Geochemistry, Geophysics, Geosystems 22, e2021GC009657 525 (2021/07/01, 2021). 526 40. H. M. Stoll, J. Guitian, I. Hernandez-Almeida, L. M. Mejia, S. Phelps, P. Polissar et al., Quaternary Science Reviews 208, 1 (2019/03/15/, 2019). 527 528 Y. G. Zhang, J. Henderiks, X. Liu, Geochimica et Cosmochimica Acta 281, 118 41. 529 (2020/07/15/, 2020). 530 E. G. Hyland, N. D. Sheldon, Palaeogeography, Palaeoclimatology, Palaeoecology 369, 42. 531 125 (2013). 532 43. T. Westerhold, N. Marwan, A. J. Drury, D. Liebrand, C. Agnini, E. Anagnostou et al., 533 Science **369**, 1383 (2020). 534 44. J. Hansen, M. Sato, G. Russell, P. Kharecha, Philosophical Transactions of the Royal 535 Society A: Mathematical, Physical and Engineering Sciences 371, 20120294 (2013/10/28, 536 2013). 537 S. J. Ring, S. G. Mutz, T. A. Ehlers, Paleoceanography and Paleoclimatology 37, 45. 538 e2021PA004364 (2022/12/01, 2022). 539 T. D. Herbert, K. T. Lawrence, A. Tzanova, L. C. Peterson, R. Caballero-Gill, C. S. Kelly, 46. 540 Nature Geosci 9, 843 (11//print, 2016).

541 47. D. E. Gaskell, M. Huber, L. O'Brien Charlotte, N. Inglis Gordon, R. P. Acosta, J. Poulsen 542 Christopher et al., Proceedings of the National Academy of Sciences 119, e2111332119 543 (2022/03/15, 2022). C. L. O'Brien, M. Huber, E. Thomas, M. Pagani, J. R. Super, L. E. Elder et al., Proceedings 544 48. 545 of the National Academy of Sciences 117, 25302 (2020). D. J. Lunt, A. Farnsworth, C. Loptson, G. L. Foster, P. Markwick, C. L. O'Brien et al., Clim. 546 49. 547 Past 12, 1181 (2016). 548 A. N. Meckler, P. F. Sexton, A. M. Piasecki, T. J. Leutert, J. Marguardt, M. Ziegler et al., 50. 549 *Science* **377**, 86 (2022/07/01, 2022). 550 PALEOSENS-project-members, Nature 419, 683 (2012). 51. 551 A. Tripati, D. Darby, Nature Communications 9, 1038 (2018/03/12, 2018). 52. 552 53. H. D. Scher, S. M. Bohaty, B. W. Smith, G. H. Munn, Paleoceanography 29, 628 553 (2014/06/01, 2014). 554 54. I. Sauermilch, J. M. Whittaker, A. Klocker, D. R. Munday, K. Hochmuth, P. K. Bijl et al., 555 *Nature Communications* **12**, 6465 (2021/11/09, 2021). D. L. Royer, Annual Review of Earth and Planetary Sciences 44, 277 (2016). 556 55. 557 R. M. Brown, T. B. Chalk, A. J. Crocker, P. A. Wilson, G. L. Foster, Nat. Geosci. 15, 664 56. 558 (2022/08/01, 2022). 559 T. E. Wong, Y. Cui, D. L. Royer, K. Keller, Nature Communications 12, 3173 (2021/05/26, 57. 560 2021). 561 58. D. L. Royer, M. Pagani, D. J. Beerling, *Geobiology* **10**, 298 (2012/07/01, 2012). 562 59. J. E. Tierney, J. Zhu, M. Li, A. Ridgwell, G. J. Hakim, C. J. Poulsen et al., Proceedings of the 563 National Academy of Sciences 119, e2205326119 (2022/10/18, 2022). 564 E. Anagnostou, E. H. John, T. L. Babila, P. F. Sexton, A. Ridgwell, D. J. Lunt et al., Nature 60. 565 *Communications* **11**, 4436 (2020/09/07, 2020). 566 J. Hansen, M. Sato, P. Kharecha, D. Beerling, R. Berner, V. Masson-Delmotte et al., Open 61. 567 Atm. Sci. J. 2, 217 (2008). 568 62. J. T. Kiehl, C. A. Shields, *Philosophical Transactions of the Royal Society A* **371**, 20130093 569 (October 28, 2013, 2013). 570 63. J. Zhu, C. J. Poulsen, J. E. Tierney, *Science Advances* 5, eaax1874 (2019). 571 D. J. Beerling, A. Fox, D. S. Stevenson, P. J. Valdes, *Proceedings of the National Academy* 64. 572 of Sciences 108, 9770 (2011/06/14, 2011). T. Schneider, C. M. Kaul, K. G. Pressel, Nat. Geosci. 12, 163 (2019/03/01, 2019). 573 65. 574 K. G. Miller, J. V. Browning, W. J. Schmelz, R. E. Kopp, G. S. Mountain, J. D. Wright, 66. 575 Science Advances 6, eaaz1346 (2020). 576 67. E. J. Rohling, J. Yu, D. Heslop, G. L. Foster, B. Opdyke, A. P. Roberts, Science Advances 7, 577 eabf5326 (2021). 578 M. J. Henehan, K. M. Edgar, G. L. Foster, D. E. Penman, P. M. Hull, R. Greenop et al., 68. 579 *Paleoceanography and Paleoclimatology* **35**, e2019PA003713 (2020/06/01, 2020). 580 E. Gasson, D. J. Lunt, R. DeConto, A. Goldner, M. Heinemann, M. Huber et al., Clim. Past 69. 581 **10**, 451 (2014). 582 70. R. M. DeConto, D. Pollard, P. A. Wilson, H. Palike, C. H. Lear, M. Pagani, Nature 455, 652 583 (2008). 584 71. R. M. DeConto, D. Pollard, Nature 421, 245 (2003).

585 72. E. Gasson, R. M. DeConto, D. Pollard, R. H. Levy, Proceedings of the National Academy of 586 Sciences 113, 3459 (2016/03/29, 2016). 587 73. D. Pollard, R. M. DeConto, *Glob. Planet. Change* **45**, 9 (2005/02/01/, 2005). 588 74. G. J. G. Paxman, E. G. W. Gasson, S. S. R. Jamieson, M. J. Bentley, F. Ferraccioli, 589 Geophysical Research Letters 47, e2020GL090003 (2020/10/28, 2020). 590 75. J. J. Fürst, G. Durand, F. Gillet-Chaulet, L. Tavard, M. Rankl, M. Braun et al., Nature 591 *Climate Change* **6**, 479 (2016/05/01, 2016). 592 J. C. McElwain, Annual Review of Plant Biology 69, 761 (2018/04/29, 2018). 76. 77. 593 S.-M. Popescu, J.-P. Suc, S. Fauquette, M. Bessedik, G. Jiménez-Moreno, C. Robin et al., 594 Journal of Biogeography 48, 2771 (2021/11/01, 2021). 595 C. Jaramillo, M. J. Rueda, G. Mora, Science 311, 1893 (Mar 31, 2006). 78. 596 79. J. Y. Lim, H. Huang, A. Farnsworth, D. J. Lunt, W. J. Baker, R. J. Morley et al., Global 597 *Ecology and Biogeography* **31**, 425 (2022/03/01, 2022). 598 80. A. Graham, Am J Bot 98, 336 (Mar, 2011). 599 81. J. R. Ehleringer, R. K. Monson, Annual Review of Ecology and Systematics 24, 411 (1993). 600 82. H. Griffiths, in Vascular plants as epiphytes, U. Lüttge, Ed. (Springer, Berlin, 1989), pp. 601 42-86. 602 83. C. J. Still, J. A. Berry, G. J. Collatz, R. S. DeFries, Glob. Biogeochem. Cycle 17, 6 603 (2003/03/01, 2003).604 P.-A. Christin, G. Besnard, E. Samaritani, M. R. Duvall, T. R. Hodkinson, V. Savolainen et 84. 605 al., Current Biology 18, 37 (2008/01/08/, 2008). 606 85. A. Vicentini, J. C. Barber, S. S. Aliscioni, L. M. Giussani, E. A. Kellogg, Glob. Change Biol. 607 14, 2963 (2008/12/01, 2008). 608 P. J. Polissar, C. Rose, K. T. Uno, S. R. Phelps, P. deMenocal, Nat. Geosci. 12, 657 86. 609 (2019/08/01, 2019). 610 L. Tauxe, S. J. Feakins, Paleoceanography and Paleoclimatology 35, e2020PA003857 87. 611 (2020/07/01, 2020).612 T. E. Cerling, J. M. Harris, B. J. MacFadden, M. G. Leakey, J. Quade, V. Eisenmann et al., 88. 613 Nature 389, 153 (1997/09/01, 1997). M. Arakaki, P. A. Christin, R. Nyffeler, A. Lendel, U. Eggli, R. M. Ogburn et al., Proc Natl 614 89. 615 Acad Sci U S A 108, 8379 (May 17, 2011). 616 90. T. J. Givnish, D. Spalink, M. Ames, S. P. Lyon, S. J. Hunter, A. Zuluaga et al., Proc. R. Soc. 617 B. 282, (2015). 618 E. J. Edwards, New Phytologist 223, 1742 (2019/09/01, 2019). 91. 619 92. J. R. Ehleringer, T. E. Cerling, B. R. Helliker, *Oecologia* **112**, 285 (1997/10/01, 1997). 620 93. H. Zhou, B. R. Helliker, M. Huber, A. Dicks, E. Akçay, Proceedings of the National 621 Academy of Sciences 115, 12057 (2018/11/20, 2018). 622 94. C. E. R. Lehmann, S. A. Archibald, W. A. Hoffmann, W. J. Bond, New Phytologist 191, 197 623 (2011/07/01, 2011). 624 W. M. Kürschner, Z. Kvacek, D. L. Dilcher, Proceedings of the National Academy of 95. 625 Sciences USA 105, 449 (2008). 626 C. A. E. Strömberg, Annual Review of Earth and Planetary Sciences 39, 517 (2011/05/30, 96. 627 2011).

628	97.	A. T. Karp, K. T. Uno, P. J. Polissar, K. H. Freeman, Paleoceanography and	
629		<i>Paleoclimatology</i> 36 , e2020PA004106 (2021/04/01, 2021).	
630	98.	T. Kukla, J. K. C. Rugenstein, D. E. Ibarra, M. J. Winnick, C. A. E. Strömberg, C. P.	
631		Chamberlain, <i>AGU Advances</i> 3 , e2021AV000566 (2022/04/01, 2022).	
632	99.	M. Fortelius, J. T. Eronen, F. Kaya, H. Tang, P. Raia, K. Puolamäki, Annual Review of Earth	
633		and Planetary Sciences 42 , 579 (2014/05/30, 2014).	
634	100.	F. Kaya, F. Bibi, I. Žliobaitė, J. T. Eronen, T. Hui, M. Fortelius, Nature Ecology & Evolution	
635		2 , 241 (2018/02/01, 2018).	
636	101.	C. M. Janis, J. Damuth, J. M. Theodor, Proceedings of the National Academy of Sciences	
637		97 , 7899 (2000).	
638	102.	M. Fortelius, N. Solounias, American Museum Novitates 3301 , 1 (2000).	
639	103.	M. C. Mihlbachler, F. Rivals, N. Solounias, G. M. Semprebon, Science 331 , 1178	
640		(2011/03/04, 2011).	
641	104.	C. A. E. Strömberg, <i>Paleobiology</i> 32 , 236 (2006).	
642	105.	C. M. Janis, M. Fortelius, Biol Rev Camb Philos Soc 63, 197 (May, 1988).	
643	106.	M. R. Badger, D. Hanson, G. D. Price, Funct Plant Biol 29 , 161 (Apr, 2002).	
644	107.	M. P. S. Badger, <i>Biogeosciences</i> 18, 1149 (2021).	
645	108.	Y. G. Zhang, M. Pagani, Z. Liu, S. M. Bohaty, R. DeConto, Philosophical Transactions of	
646		the Royal Society A: Mathematical, Physical and Engineering Sciences 371 , (October 28,	
647		2013, 2013).	
648	109.	P. D. Tortell, <i>Limnology and Oceanography</i> 45 , 744 (2000/05/01, 2000).	
649	110.	C. T. Bolton, H. M. Stoll <i>, Nature</i> 500 , 558 (2013).	
650	111.	M. N. Evans, S. E. Tolwinski-Ward, D. M. Thompson, K. J. Anchukaitis, Quaternary	
651		Science Reviews 76 , 16 (2013/09/15/, 2013).	
652	112.	G. J. Bowen, B. Fischer-Femal, G. J. Reichart, A. Sluijs, C. H. Lear, Clim. Past 16, 65 (2020).	
653	113.	M. B. Osman, J. E. Tierney, J. Zhu, R. Tardif, G. J. Hakim, J. King et al., Nature 599, 239	
654		(2021/11/01, 2021).	
655	114.	C. Godbillot, F. Minoletti, F. Bassinot, M. Hermoso, Clim. Past 18, 449 (2022).	
656	115.	A. Pack, A. Gehler, A. Süssenberger, Geochimica et Cosmochimica Acta 102, 306	
657		(2013/02/01/, 2013).	
658	116.	C. R. Scotese, Annual Review of Earth and Planetary Sciences 49 , 679 (2021/05/30,	
659		2021).	
660	117.	P. A. Christin, C. P. Osborne, R. F. Sage, M. Arakaki, E. J. Edwards, Journal of	
661		experimental Botany 62 , 3171 (2011).	
662			
663	Ackn	owledgments: We thank Candace Major at NSF and the many researchers who contributed	
664			

Acknowledgments: We thank Candace Major at NSF and the many researchers who contributed
advice and enthusiasm for this project over the years. We are grateful to the staff at NCEI for
facilitating curation of the paleo-CO₂ database, and to LDEO, the UCLA Lake Arrowhead Lodge
and the Lady Bird Johnson Wildflower Center for hosting the three workshops that framed this
work. Editor Jesse Smith and two anonymous reviewers provided valuable comments that
improved this manuscript. This study is dedicated to Wally Broecker and Taro Takahashi, who
pioneered the study of CO₂ dynamics in a changing climate.

671 Funding:

- 672 National Science Foundation grant OCE 16-36005 (BH, PJP)
- 673 Heising-Simons Foundation 2018-0996 (BH, VF)
- 674 National Science Foundation grant EAR 21-21649 (BH, VF, JM, CG)
- 675 National Science Foundation grant EAR 21-21170 (GJB)
- 676 National Science Foundation grant EAR 20-02370 (YC)
- 677 National Science Foundation grant 18-43285 (AP)
- 678 Columbia University's Center for Climate and Life (KTU)
- 679 G. Unger Vetlesen Foundation (KTU)
- 680 National Science Foundation grant 21-00537 (AP, PJP)
- 681 National Science Foundation grant 21-00509 (PJP)
- 682 National Science Foundation grant EAR 21-21165 (AR)
- 683 National Science Foundation grant EAR 18-06015 (YGZ)
- 684 National Science Foundation grant DGE 16-44869 (SRP)
- 685 National Science Foundation grant 18-13703 (EGH)
- 686 National Science Foundation grant OCE 16-58023 (JCZ)
- 687 National Science Foundation grant 16-02905 (MH)
- 688 Swedish Research Council grant NT7-2016 04905 (MS)
- European Research Council grant 101020824 (JCM)
- 690 SFI/RC/2092 (JCM)
- 691 UK Research and Innovation grant 101045371 (MJH)
- 692 Natural Environment Research Council grant NE/X000567/1 (MPSB)
- 693 Royal Society grant DHF\R1\221014 (CRW)
- 694 Australian Research Council grant DP150104007 (PJF)
- 695 Deutsche Forschungsgemeinschaft grant RA 2068/4-1 (MR)
- 696 European Research Council grant 805246 (JWBR)
- 697 ETH Fellowship (JKCR)
- 698 National Science Foundation of China grant 42030503 (JD)
- 699 The Sandal Society Museum (GR)
- 700 Royal Society Tata Fellowship (BDAN)
- 701 Natural Environment Research Council grant NE/P019048/1 (GLF)
- 702

703 Author contributions:

- Conceptualization: BH, GJB, DOB, MJH, MJK, AP, PJP, SRP, AR, DLR, MS, RSB, PJF,
 MH, MFS, JKCR, NDS, YGZ
- Data Curation: BH, GJB, DOB, YC, MJH, MJK, JCM, PJP, DLR, MS, SRP, EA, MPSB,
 RSB, TBC, EdIV, KAD, CFG, MG, DTH, LLH, TKL, MG, JNM, MHS, RW, AR-N, NDS,
- 708SS, CRW, YGZ, JMC, DJ, DDE, GLF, EGH, BDAN, JBWR, MR, GJR, OS, LZ, CTB
- 709 Formal Analysis: BH, GJB, DOB, CY, MJH, PJP, DLR, AM, CEL
- Investigation: BH, DLR, DOB, PJP, SRP, GJB, MJH, YC, MS, JCM, MJK, AP, EA,
 MPSB, RSB, PJF, WK, TKL, MFS, YGZ,
- 712 Software: GJB, VF, JJM, RW
- 713 Visualization: BH, GJB, MJH, MS, JCM, KTU, PJP, DOB, JA, BAK, CRS, JJM, RW

- Funding acquisition: BH, PP, DLR, DOB, GJB, MJK, AP, RMdC, MH, KES, VF
- 715 Project administration: BH, DLR, DOB, PJP, GJB
- 716 Writing - original draft: BH, DLR, DOB, PJP, GJB, MJH, YC, MS, JCM, MJK, AP, KTU,
- 717 AR, SRP
- 718 Writing – review & editing: all
- 719
- 720 Competing interests: None.

721

722 Data and materials availability: The completed data sheets for each study can be accessed as the 723 paleo-CO₂ 'Archive' at NOAA's National Center for Environmental Information (NCEI). The 724 specific choice of category, as well as the updated CO₂ and age estimates, are documented in 'Product' sheets for each data set and proxy. In contrast to the 'Archive', which will grow with new 725 726 publications but will otherwise remain passive, the paleo-CO₂ 'Product' is a living database that will be updated when newly published data or ancillary data constraints become available, and/or 727 728 methodological improvements are developed that enable modernization of previously 729 underconstrained datasets. The 'Product' sheets created for this study can be accessed in NCEI, and 730 this is also the place where future data updates will be made available in consecutive versions of 731 the data 'Product'.

732

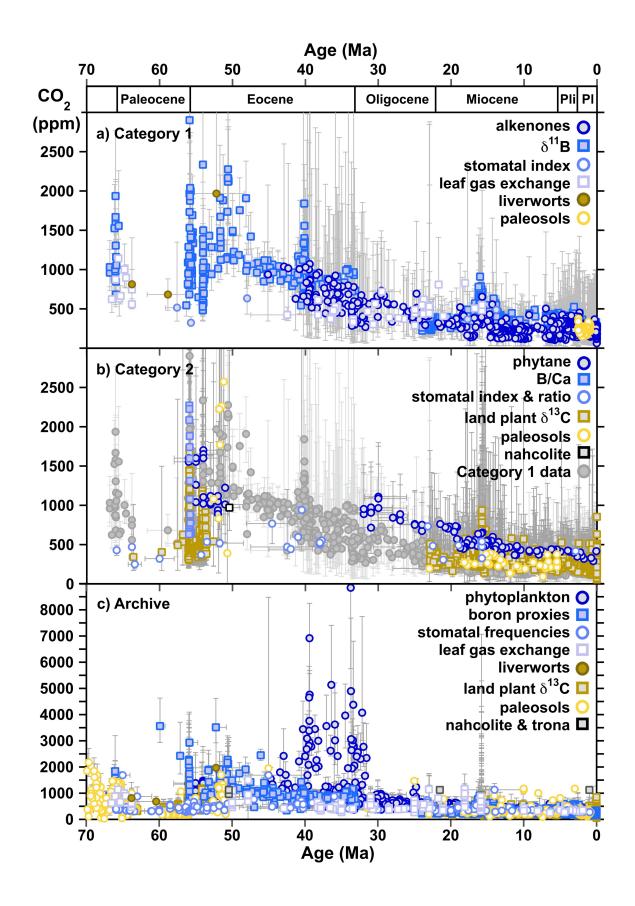
Authors composing the Consortium: 733

Bärbel Hönisch^{1*}, Dana L. Royer^{2*}, Daniel O. Breecker^{3*}, Pratigya J. Polissar^{4*}, Gabriel J. Bowen^{5*}, 734 735 Michael J. Henehan⁶, Ying Cui⁷, Margret Steinthorsdottir⁸, Jennifer C. McElwain⁹, Matthew J. Kohn¹⁰, Ann Pearson¹¹, Samuel R. Phelps¹², Kevin T. Uno¹, Andy Ridgwell^{13*}, Eleni Anagnostou¹⁴, 736 Jacqueline Austermann¹, Marcus P. S. Badger¹⁵, Richard S. Barclay¹⁶, Peter K. Bijl¹⁷, Thomas B. 737 Chalk¹⁸, Christopher R. Scotese¹⁹, Elwyn de la Vega²⁰, Robert M. DeConto²¹, Kelsey A. Dyez²², 738 Vicki Ferrini¹, Peter J. Franks²³, Claudia F. Giulivi¹, Marcus Gutjahr¹⁴, Dustin T. Harper⁵, Laura L. 739 740 Haynes²⁴, Matthew Huber²⁵, Kathryn E. Snell²⁶, Benjamin A. Keisling²⁷, Wilfried Konrad²⁸, Tim K. Lowenstein²⁹, Alberto Malinverno¹, Maxence Guillermic³⁰, Luz María Mejía³¹, Joseph N. 741 Milligan¹⁶, John J. Morton¹, Lee Nordt³², Ross Whiteford³³, Anita Roth-Nebelsick³⁴, Jeremy K. C. 742 Rugenstein³⁵, Morgan F. Schaller³⁶, Nathan D. Sheldon²², Sindia Sosdian³⁷, Elise B. Wilkes³⁸, 743 Caitlyn R. Witkowski⁶, Yi Ge Zhang³⁹, Lloyd Anderson¹, David J. Beerling⁴⁰, Clara Bolton¹⁸, Thure 744 E. Cerling⁵, Jennifer M. Cotton⁴¹, Jiawei Da³, Douglas D. Ekart⁴², Gavin L. Foster⁴³, David R. 745 Greenwood⁴⁴, Ethan G. Hyland⁴⁵, Elliot A. Jagniecki⁴⁶, John P. Jasper⁴⁷, Jennifer B. Kowalczyk⁴⁸, 746 Lutz Kunzmann⁴⁹, Wolfram M. Kürschner⁵⁰, Charles E. Lawrence⁴⁸, Caroline H. Lear³⁷, Miguel A. 747 Martínez-Botí⁵¹, Daniel P. Maxbauer⁵², Paolo Montagna⁵³, B. David A. Naafs⁶, James W. B. Rae³³, 748 Markus Raitzsch⁵⁴, Gregory J. Retallack⁵⁵, Simon J. Ring⁵⁶, Osamu Seki⁵⁷, Julio Sepúlveda²⁶, 749 Ashish Sinha⁵⁸, Tekie F. Tesfamichael⁵⁹, Aradhna Tripati³⁰, Johan van der Burgh⁶⁰, Jimin Yu⁶¹, 750 James C. Zachos⁶², Laiming Zhang⁶³ 751 752

- 753

754 Affiliations:

755	*Corresponding authors. Email: <u>hoenisch@ldeo.columbia.edu</u> , <u>droyer@wesleyan.edu</u> ,
756	breecker@jsg.utexas.edu, gabe.bowen@utah.edu, polissar@ucsc.edu, andy@seao2.org
757	
758	¹ Lamont-Doherty Earth Observatory of Columbia University, Palisades, United States
759	² Wesleyan University, Middletown, United States
760	³ The University of Texas at Austin, Austin, United States
761	⁴ University of California Santa Cruz, Santa Cruz, United States
762	⁵ University of Utah, Salt Lake City, United States
763	⁶ University of Bristol, Bristol, United Kingdom
764	⁷ Montclair State University, Montclair, United States
765	⁸ Swedish Museum of Natural History, Stockholm, Sweden
766	⁹ Trinity College Dublin, Dublin, Ireland
767	¹⁰ Boise State University, Boise, United States
768	¹¹ Harvard University, Cambridge, United States
769	¹² CIM Group, New York, United States
770	¹³ University of California Riverside, Riverside, United States
771	¹⁴ GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Germany
772	¹⁵ The Open University, Milton Keynes, United Kingdom
773	¹⁶ Smithsonian Institution, Washington, DC, United States
774	¹⁷ Utrecht University, Utrecht, Netherlands
775	¹⁸ Aix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
776	¹⁹ Northwestern University, Evanston, United States
777	²⁰ University of Galway, Galway, Ireland
778	²¹ University of Massachusetts, Amherst, United States
779	²² University of Michigan, Ann Harbor, United States
780	²³ The University of Sydney, Sydney, Australia
781	²⁴ Vassar College, Poughkeepsie, United States
782	⁵⁶ Purdue University, West Lafayette, United States
783	²⁶ University of Colorado Boulder, Boulder, United States
784	²⁷ University of Texas Institute for Geophysics, Austin, United States
785	²⁸ University of Tübingen, Tübingen, Germany
786	²⁹ Binghamton University, Binghamton, United States
787	³⁰ University of California Los Angeles, Los Angeles, United States
788	³¹ MARUM, University of Bremen, Bremen, Germany
789	³² Baylor University, Waco, United States
790	³³ University of St Andrews, St Andrews, United Kingdom
791	³⁴ State Museum of Natural History, Stuttgart, Germany
792	³⁵ Colorado State University, Fort Collins, United States
793	³⁶ Rensselaer Polytechnic Institute, Troy, United States
794	³⁷ Cardiff University, Cardiff, United Kingdom
795	³⁸ Ginkgo Bioworks, Boston, United States
796	³⁹ Texas A&M University, College Station, United States
797	⁴⁰ University of Sheffield, Sheffield, United Kingdom
798	⁴¹ California State University Northridge, Northridge, United States
799	⁴² n/a, Salt Lake City, United States
	•


800	⁴³ University of Southampton, Southampton, United Kingdom
801	⁴⁵ Department of Biology, Brandon University, Brandon, Canada
802	⁴⁵ North Carolina State University, Raleigh, United States
803	⁴⁶ Utah Geological Survey, Salt Lake City, United States
804	⁴⁷ Molecular Isotope Technologies, LLC, Niantic, United States
805	⁴⁸ Brown University, Providence, United States
806	⁴⁹ Senckenberg Natural History Collections, Dresden, Germany
807	⁵⁰ University of Oslo, Oslo, Norway
808	⁵¹ EIT Urban Mobility, Barcelona, Spain
809	⁵² Carleton College, Northfield, United States
810	⁵³ Institute of Polar Sciences - National Research Council, Bologna, Italy
811	⁵⁴ Dettmer Group KG, Bremen, Germany
812	⁵⁵ University of Oregon, Eugene, United States
813	⁵⁶ Deutsches GeoForschungsZentrum GFZ, Potsdsam, Germany
814	⁵⁷ Hokkaido University, Sapporo, Japan
815	⁵⁸ California State University Dominguez Hills, Carson, United States
816	⁵⁹ Addis Ababa University, Addis Ababa, Ethiopia
817	60 n/a, Rossum, The Netherlands
818	⁶¹ Laoshan Laboratory, Qingdao, China
819	⁶² University of California Santa Cruz, Santa Cruz, United States
820	⁶³ China University of Geosciences, Beijing, China
821	
822	List of Supplementary Materials
823	Supplementary Text, Sections 1-10, Figs. S1 to S13
824	Tables S1 to S3
825	References (118-439)
826	
077	

828 Figures :

Fig. 1. Documentation and assessment of all Cenozoic paleo-CO₂ estimates published to

date. Individual proxy estimates are defined by colored symbols in legends. (a) Vetted Category

- 1 estimates with their fully developed uncertainty estimates (95% CIs); age uncertainties have
- been updated or established to the best of current understanding. (b) Vetted Category 2 estimates
- 833 whose uncertainty is not yet fully constrained. Category 1 data are shown in grey for reference.
- 834 (c) Archive compilation of all CO_2 estimates in their originally published quantification. To
- toggle view of individual proxy records in panels (a) and (c), please go to <u>paleo-co2.org</u> (Note:
- panel (a) visualization will be published on the website after acceptance of the manuscript forpublication).
- 838

840 Fig. 2. Category 1 paleo-CO₂ record compared to global climate signals. The vertical dashed 841 line indicates the onset of continent-wide glaciation in Antarctica. (a) Atmospheric CO_2 842 estimates (symbols) and 500-kyr mean statistical reconstructions (median and 50 and 95% 843 credible intervals - dark and light-blue shading, respectively). Major climate events are highlighted (K-PG - Cretaceous/Paleogene boundary, PETM - Paleocene Eocene Thermal 844 845 Maximum, EECO - Early Eocene Climatic Optimum, MECO - Middle Eocene Climatic 846 Optimum, EOT - Eocene/Oligocene Transition, MCO - Miocene Climatic Optimum, NHG -847 onset of Northern Hemisphere Glaciation, MPT - Mid Pleistocene Transition). The 2022 annual average atmospheric CO_2 of 419 ppm is indicated for reference. (b) Global mean surface 848 849 temperatures estimated from benthic δ^{18} O data after Westerhold et al. (43) (solid line, individual 850 proxy estimates as symbols, and statistically reconstructed 500-kyr mean values shown as the 851 continuous curve, with 50 and 95% credible intervals) and from surface temperature proxies (45) (grev boxes). (c) Sea level after Ref. (66) with grav dots displaying raw data; the solid black line 852 853 reflects median sea level in a 1-Myr running window. High- and lowstands are defined within a running 400-kyr window, with lower and upper bounds of highstands defined by the 75th and 854 95th percentiles, and lower and upper bounds of lowstands defined by the 5th and 25th 855 856 percentiles in each window. Globes depict select paleogeographic reconstructions and the 857 growing presence of ice sheets in polar latitudes from Ref. (116). (d) Crown ages show C_4 858 clades, with CCMs adapted to low CO₂, initially diversified in the early Miocene and then 859 rapidly radiated in the late Miocene (117). Flora transition from dominantly forested and woodland to open grassland habitats based on fossil phytolith abundance data (96). North 860 American equids typify hoofed animal adaptations to new diet and environment (103), including 861 862 increasing tooth mesowear (black line, note inverted scale), hypsodonty (blue line), and body 863 size.

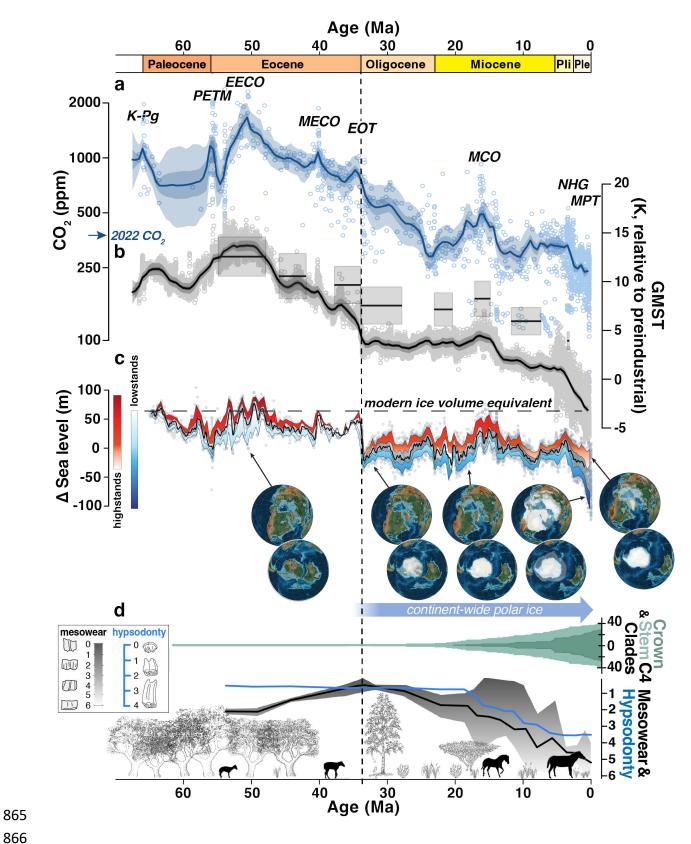
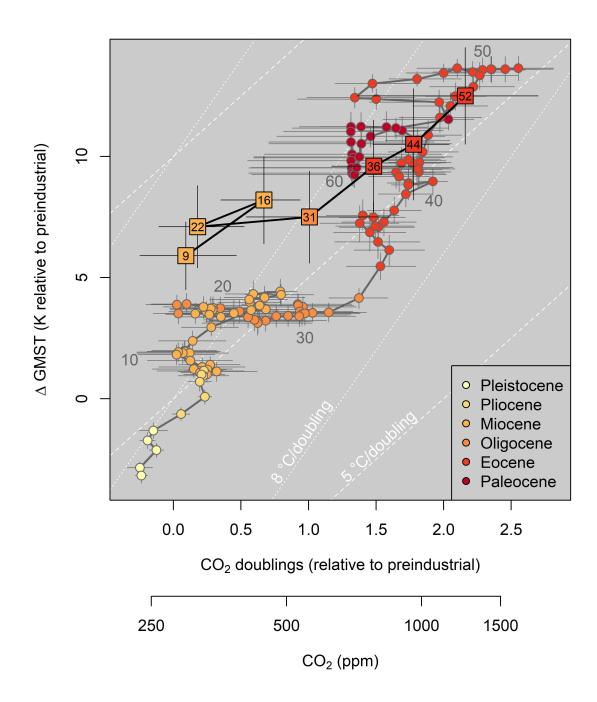



Fig. 3. Application of the Category 1 CO₂ record to determine ESS_[CO2]. GMST deviation

- 868 (K) from preindustrial global average surface temperature of 14.15°C is displayed versus paleo-
- CO_2 doublings relative to the preindustrial baseline of 280 ppm (upper x-axis) and paleo- CO_2
- 870 estimates on a log scale (lower x-axis). The slopes between two points in time reflect the average
- 871 ESS_[CO2]. Circles reflect 500-kyr binned 'Category 1' CO₂ estimates paired with corresponding
- **872** GMST-means from Ref. (43), squares pair CO_2 and GMST means from compilations of sea
- 873 surface temperature (45) in seven coarsely resolved time intervals. Note that this figure omits the
- Pliocene temperature estimate of (45) because it samples too short a time interval (cf. Fig. 2) to
- be comparable with mean CO₂. Data from Cenozoic epochs are color coded and shift from red
- 876 (Paleocene) to yellow (Pleistocene); labels indicate specific age bins (Ma). Dashed lines indicate
- reference $\text{ESS}_{[\text{CO2}]}$ lines of 8 and 5°C warming per doubling of CO₂.
- 878

