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ABSTRACT 

Diabetic Ketoacidosis (DKA) is associated with pediatric cerebrovascular-related 

complications. DKA-associated inflammation instigates leukocyte adherence to the brain 

microvascular endothelium. As adhered leukocytes release enzymes that compromise 

vascular integrity, we questioned a role for leukocyte-derived matrix metalloproteinases 

(MMPs) and azurophilic enzymes (elastase, proteinase-3, myeloperoxidase). Our aims 

were to measure leukocyte-derived enzymes in DKA plasma, determine associations with 

DKA severity and investigate their effect on the cerebrovascular endothelium. 

Plasma was obtained from children with type-1 diabetes, either in acute DKA or 

insulin-controlled. DKA was associated with altered plasma levels of ↓MMP-2, ↑MMP-

8, ↑MMP-9 and ↑TIMP-4, which are largely leukocyte in origin. DKA was also 

associated with elevated plasma leukocyte elastase, proteinase-3 and myeloperoxidase. 

MMP-8, MMP-9 and proteinase-3 were positively correlated with DKA severity. 

Azurophilic enzymes decreased ZO-1 and degraded β-catenin in cerebrovascular 

endothelium. 

In summary, DKA is associated with dynamic regulation of leukocyte proteolytic 

enzymes that can impair blood brain barrier integrity.  

 

 

Key words: Human, Pediatric, Plasma, Diabetic ketoacidosis, Matrix metalloproteinase, 

Tissue inhibitor of metalloproteinase, Leukocyte, Elastase, Proteinase-3, 

Myeloperoxidase, β-catenin, ZO-1, Cerebrovascular endothelial cells. 
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CHAPTER 1: INTRODUCTION 
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1.1 Type 1 Diabetes Mellitus 

Type 1 diabetes mellitus (T1DM) is a serious affliction that persists throughout life 

(4). Globally, the incidence of T1DM varies greatly, anywhere from 0.5-30.3/100 000 

people per year with significant ethnic diversity (5). T1DM occurs predominantly in 

children younger than 15-18 years of age and in the past few decades, its incidence has 

been increasing (5, 6). Among juveniles with diabetes mellitus, T1DM accounts for over 

90% of the cases (7). Cases of T1DM account for 5-10% of all diabetics (4). 

Approximately 14.9 billion dollars is expended on T1DM annually, thus treatment and 

management of T1DM is of great significance to patients, healthcare professionals and 

researchers globally (8). 

T1DM is a condition caused by the destruction of the β-cells of the islets of 

Langerhans in the pancreas. These cells are responsible for all insulin production in the 

body and their destruction leads to an insulin deficiency. A lack of insulin results in an 

inability to regulate blood glucose effectively, leading to chronic hyperglycemia. T1DM 

is generally classified into 2 categories: Type 1A is the result of an autoimmune response 

destroying the β-cells whereas Type 1B is idiopathic destruction of the β-cells (4). Type 

1A diabetes mellitus has a predominantly genetic origin where polymorphisms in genes 

residing in the human leukocyte antigen (HLA) loci, the insulin-variable number tandem 

repeat (VNTR) and cytotoxic T-lymphocyte-associated protein (CTLA)-4 genes can 

confer susceptibility to T1DM (9, 10). The other facet of T1DM susceptibility involves 

environmental triggers that initiate the immune-mediated destruction of the β-cells in 

those already predisposed to it. Examples of triggers include viruses such as rubella, 
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environmental toxins such as N-nitroso compounds and food components such as cow’s 

milk proteins (11, 12).  

Symptoms of T1DM include polydipsia, polyphagia, weight loss, blurred vision, 

polyuria with glycosuria and fatigue. The symptoms of T1DM start to present themselves 

after approximately 90% of the β-cells have been destroyed (7). Therefore, by the time it 

is detected by clinicians, patients are already suffering from a severe insulin deficiency. 

Complications that can arise from uncontrolled blood glucose in T1DM are hypokalemia, 

hypophosphatemia, hypoglycemia, peripheral venous thrombosis, mucormycosis, 

rhabdomylosis, acute pancreatitis, acute renal failure, sepsis and aspiration pneumonia 

(13). Longer term complications include retinopathy, nephropathy, neuropathy, 

cardiovascular disease, cognitive impairment and increased susceptibility to certain 

infections (14). The most severe acute complication of T1DM is diabetic ketoacidosis 

(DKA). 

1.2 Diabetic Ketoacidosis 

DKA involves the breakdown and metabolism of fatty acids and amino acids for 

energy. It is caused by a severe deficiency in insulin together with altered levels of 

counterregulatory hormones such as catecholamines, glucagon, cortisol and growth 

hormones. Increased glycogenolysis and gluconeogenesis along with impaired glucose 

uptake by peripheral tissues results in a hyperglycemic and hyperosmolar state (15, 16). 

Increased serum glucose levels, beyond that which renal excretion is able to rectify, 

causes osmotic diuresis and depletion of electrolytes, leading to potentially fatal 

dehydration (15). Occurring concurrently is the metabolism of fatty acids in the liver to 

the ketone bodies, β-hydroxybutyrate and acetoacetate, which accumulate in peripheral 
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circulation, overwhelming the bicarbonate buffering system and contributing to metabolic 

acidosis. Clinically, DKA manifests with dehydration, Kussmaul respiration, nausea, 

vomiting, acute abdominal pain and reduced or loss of consciousness (15). Children who 

develop DKA possess a higher risk for intracranial vascular complications such as 

cerebral edema (17), hemorrhage (18) and stroke (19). 

The biochemical criteria for DKA involves hyperglycemia (blood glucose > 11 

mmol/L), venous pH < 7.3 or bicarbonate < 15 mmol/L and ketonemia or ketonuria (15). 

DKA is classified according to the severity of acidosis: Mild DKA is distinguished by a 

pH < 7.3, moderate DKA is distinguished by pH < 7.2 and severe DKA is distinguished 

by pH < 7.1 (20). 

DKA often occurs in “first time” diabetics, in undiagnosed and therefore, untreated 

T1DM cases. Other common events that precipitate DKA are the accidental or deliberate 

stoppage of insulin treatment (i.e., weight control in adolescents). Risk factors for DKA 

are extremely variable, including children with poor metabolic control, peripubescent 

females, children from troubled households and children with psychiatric disorders (21). 

1.3 DKA Cerebral Edema 

DKA, though a previously highly lethal condition, following the advent of insulin, 

has become much more manageable with a mortality rate below 2% (16). However, DKA 

still retains significant mortality due to related complications, one of which is cerebral 

edema (DKA-CE). DKA-CE is a serious and highly lethal condition, despite advances in 

management techniques. In North America, the incidence of DKA-CE among DKA cases 

is 0.5-0.9% with a devastating mortality rate of 21-24% (17, 22, 23). Some studies have 
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even reported a mortality rate of up to 90% (24). DKA-CE is the leading cause of death 

in pediatric cases of T1DM and leaves 30-40% of survivors with significant neurological 

damage (25). It has been surmised that DKA-CE mortality accounts for 80% of all 

diabetes-related deaths among children under 12 year of age (24). Ninety-five percent of 

DKA-CE patients are under 20 years of age and 33% are under 5 years of age (25). As 

such, DKA-CE is considered mainly a pediatric pathology. The reason for the apparent 

predisposition in children to this complication is not yet clear.  

Cases of DKA-CE usually occur within 2-24 hours after the onset of DKA 

treatment. Patients present with a sudden headache and reduced level of consciousness 

followed by rapid neurological degeneration and eventual herniation of the brain stem 

(13, 26). Thus, many researchers suspect DKA-CE to be a side effect of the interventions 

traditionally administered for DKA. However, it should be noted that cases of DKA-CE 

have been reported before the initiation of treatment (17, 22). Therefore, the etiology of 

DKA is more complex than just an adverse response to treatment. DKA-CE can manifest 

itself in two ways: from admission, the patient’s condition will steadily deteriorate into a 

comatose state or, more frequently, the patient will appear to recover and then suddenly 

worsen (24, 27).  

Much discussion has centered over the distinction between subclinical and 

symptomatic cerebral edema. In a study done on 6 children between the ages of 11 and 

14 years old with DKA who were asymptomatic for DKA-CE, it was discovered that all 6 

showed evidence of cerebral swelling via computerized tomography (CT) scans taken at 

the onset of treatment and at hospital discharge (28). Additionally, another study using 

brain encephalography detected the presence of significant cerebral swelling in 81% of 
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patients between the ages of 13-42 years old undergoing treatment for DKA, despite the 

absence of symptomatic cerebral edema (29). Taken together, these studies suggest that 

DKA-CE is far more common in pediatric cases of DKA than previously suspected. 

Conversely, another study evaluated ventricle size via CT following DKA treatment in 

patients 4-15 years old and found that subclinical DKA-CE did not occur frequently (30). 

These controversial findings may be explained by DKA-CE possessing a spectrum of 

severities from mild subclinical DKA-CE to severe symptomatic DKA-CE (31). 

Cerebral edema can be classified into 2 main categories: vasogenic edema and 

cytotoxic edema. Vasogenic edema is the flow of water into the extracellular space due to 

destabilization of the Blood-Brain Barrier (BBB). Cytotoxic edema is the flow of water 

into the intracellular space resulting in cell swelling (32). Though both cytotoxic and 

vasogenic edema are observed in pathological conditions, it has been suggested that the 

primary form of edema present in DKA, prior to treatment is that of the vasogenic type. 

Diffusion-weighted magnetic resonance imaging (MRI) of pediatric cases of DKA 

showed elevated brain apparent diffusion coefficient (ADC), indicating vasogenic edema 

(33, 34).  

 The exact cause of DKA-CE is still largely unknown at this point, though theories 

that have been proposed include increases in BBB permeability, increases in hydrostatic 

pressure due to aggressive fluid resuscitation concomitantly with decreased osmotic 

pressure, loss of cerebral autoregulation, osmotic disequilibrium from accumulation of 

intracellular osmoles in the brain, hypoxia and ischemia and intracranial acidosis (35).  
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A suggested mechanism of DKA-CE and perhaps the most convincing is the 

initiation of a pro-inflammatory cytokine cascade that results in BBB dysfunction. 

Observed consistently in DKA is an inflammatory cascade similar to that of systemic 

inflammatory response syndrome (36). This inflammatory cascade may trigger transient 

opening of the BBB. DKA has been shown to initiate a widespread inflammatory cascade 

involving the cytokines, C-X-C motif ligand (CXCL)-1, CXCL-8 and interferon (IFN)-α2 

(37). The same study also showed increased adherence of polymorphonuclear neutrophils 

(PMN) to the endothelium, providing convincing evidence of leukocyte involvement. 

Also reported to be upregulated in patients suffering from DKA are interleukin (IL)-1β, 

IL-6, IL-2 and tumor necrosis factor (TNF)-α, whose increase correlates with the 

timeframe of the development of subclinical DKA-CE (38). An immunological response 

during DKA is further supported by the detection of elevated levels of components of the 

complement pathway (C3a, Bb and C5b-9) (39) as well as C-reactive protein (CRP) (40). 

In juvenile mice, DKA increased circulating levels of numerous endothelial-specific 

molecules such as E-selectin, intracellular adhesion molecule (ICAM)-1 and vascular cell 

adhesion protein (VCAM)-1, indicating an onset of systemic inflammation (41). Thus, 

the onset of DKA involves a significant activation of the inflammatory cascade. It is well 

established that cytokines and the inflammation cascade lead to activation of the BBB 

endothelium as well as leukocytes and subsequent BBB disruption, resulting in increased 

water flux into the brain, hence the prevalence of cerebral edema in DKA (42-45). 

Furthermore, it is believed that acidosis per se plays an important role in DKA-CE. 

The ketone bodies, acetoacetate and β-hydroxybutrate are known to be pro-inflammatory 

agents that activate the endothelial cells in the BBB by increasing endothelin (ET)-1 and 
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vascular endothelial growth factor (VEGF) secretion (46). Both VEGF and ET-1 are 

known as vascular permeability inducing factors. In another study, acetoacetate was 

shown to increase expression of ICAM-1, a receptor that mediates leukocyte adhesion to 

the endothelium (47). Thus, ketone bodies are able to trigger inflammatory processes at 

the BBB endothelium and lead to the release of permeability inducing factors.  

Hyperglycemia, present during precipitation of DKA can initiate an inflammatory 

response as well. Hyperglycemic crises were associated with increased levels of 

circulating CRP, free fatty acids, CXCL-8, IL-6, IL-1β and TNF-α (48). Hyperglycemic 

conditions can also facilitate the activation of human T-lymphocytes, thus providing a 

mechanism by which hyperglycemia is able to trigger inflammation (49). Therefore, not 

only DKA, but also hyperglycemia per se is able to trigger an inflammatory response in 

the body by facilitating the production and release of circulating cytokines. The 

activation of the BBB endothelium by many of these cytokines leads to an increase in 

permeability of the BBB.  

Some studies have also addressed the role of hypoxia and ischemia in the 

development of DKA-CE. Factors like increased blood urea nitrogen (BUN) levels (17), 

and lower pCO2 levels (22) have been frequently associated with the development of 

DKA-CE. Studies have also shown that cerebral blood flow is decreased in rats with 

untreated DKA and that cerebral blood flow was directly tied to pCO2 (50). DKA 

commonly results in dehydration which could lead to, in combination with a low pCO2, 

increased vasoconstriction and consequently cerebral ischemia, hypoxia and increased 

capillary permeability (24, 51, 52). Increased capillary permeability would result in 

increased fluid flux across the BBB into the brain resulting in cerebral edema.  
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Several studies have attributed DKA-CE occurrence to rapid osmolar changes 

resulting from intravenous infusion during treatment (53-55). In a hyperosmolar 

environment, such as that commonly seen in hyperglycemia, cells in the brain generate 

intracellular osmoles in order to maintain their volume and osmolarity. Hyperglycemic 

rabbits showed an intracellular increase in various ionic solutes, sorbitol, lactate, urea, 

amino acids (56) and other idiogenic osmoles since identified as taurine and myoinositol 

(57-59). These changes were accompanied by equalization of brain and cerebrospinal 

fluid osmolality. When the hyperglycemia was corrected, the rabbits rapidly developed 

an osmotic gradient from brain to plasma, showed an increase in unidentified osmoles 

and other solutes in brain cells, an increased cerebral water content and most 

significantly, precipitation of cerebral edema (56). During treatment for DKA with fluids 

and insulin, plasma osmolarity decreases rapidly and if the intracellular osmoles do not 

dissipate accordingly, the result is that brain cells become relatively hyperosmolar to the 

serum, thus favouring inward fluid flux and consequentially, the formation of cytotoxic 

DKA-CE.  

Another proposed theory behind the pathophysiology of DKA-CE is the 

involvement of aquaporin channels, likely the result of fluid administration. Aquaporin 

channels are transmembrane channels whose function it is to transport water from 

extracellular to intracellular compartments. They are expressed in many epithelial and 

endothelial cells throughout the body as well as glial cells of the BBB. Aquaporins are 

highly expressed in the endfeet of astrocytes in contact with the abluminal surface of the 

cerebral endothelial cells (60). Aquaporin activity is pathologically associated with the 

formation of cerebral edema after injury in rats, both vasogenic and cytotoxic(61). They 
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have been shown to mediate cerebral edema in other pathological conditions such as 

traumatic brain injury and cerebral ischemia (61, 62). Acidotic conditions were shown to 

worsen cerebral edema in rats through the actions of aquaporin-1 (63).  

1.4 Blood-Brain Barrier 

The BBB is present in all mammals with a complex nervous system and plays a 

crucial role in keeping the brain isolated from peripheral circulation. The 

microvasculature in the brain provides a massive combined area for blood-brain gas, 

nutrient and waste exchange. A large functional surface area is critical due to the brain’s 

role as the most metabolically active organ in the body. With an average vessel diameter 

of < 8 µm, the microvessel functional area for blood-brain exchange in humans is 

approximately 100-200 cm
2
/g in brain tissue, or approximately 12-18 m

2
 total in an 

average adult (64). The BBB does not protect the areas of the brain involved in 

autonomic nervous control and endocrine function; it is present in every region of the 

brain except the circumventricular areas (65). 

The BBB is not a single protective brain partition as its name might imply, rather 

it refers to protective and exclusive characteristics that is inherent to brain vasculature 

itself, specifically the microvasculature. The BBB is composed of multiple cell types 

such as endothelial cells, astroglia and pericytes (66). The spatial arrangement of the 

BBB is very distinct. The luminal side of the barrier is composed of the cerebrovascular 

endothelial cells (CVEC) which form the vessel wall (Figure 1-1). The CVEC are 

arranged continuously, associating tightly together to form the tubular structure of the 

vessel. On the abluminal side of the vessel, underlying the CVEC is basal lamina which 

sheaths the capillary. Discontinuously associated with this surface are pericytes and 
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perivascular macrophages (45, 66). Further into the parenchyma are astrocytes, which 

project long endfeet onto the abluminal surface of the CVEC, and microglia (Figure 1-1). 

Astrocytes are the most abundant cell type interacting with CVEC and covers a majority 

of the microvascular abluminal surface (67). In terms of function, the term BBB refers to 

the actions and effects of the CVEC and to a lesser extent, pericytes and astrocytes (45, 

66). 

The main function of the blood-brain barrier is twofold. The first is to protect the 

brain and sensitive neural tissue from neurotoxic compounds, soluble factors, 

microorganisms, proteins and other cells that might be present in peripheral circulation. 

The second is to maintain homeostatic conditions in the neuronal extracellular 

environment by regulating the passage of blood-borne compounds into the brain 

parenchyma. In order to fulfill these roles, the BBB must be selectively permeable; it 

needs to be able to restrict entry of blood-borne macromolecular compounds with 

extreme prejudice, but at the same time, allow essential nutrients and compounds that the 

brain needs to function to access the brain parenchyma. The BBB accomplishes this 

through physical barriers and expression of selective transporters (64). Transporters 

specific for many important substances have been identified in the BBB, including ones 

specific for glucose compounds, amino acids, cholines, purines and monocarboxylic 

acids (68). The BBB functions to isolate cerebral circulation from peripheral circulation 

under physiological conditions. There are many macromolecules present in peripheral 

circulation that would be harmful to the brain. Proteins and factors such as albumin, 

prothrombin and plasminogen, if allowed to access the brain, are potent signalling 
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activators and can stimulate unwanted cell processes, resulting in damage and cell death 

(69-71).  

The BBB must also exclude peripheral neurotransmitters from the brain. Since both 

the central and peripheral nervous signalling uses the same neurotransmitters, it is 

imperative that the two systems remain independent of each other. Likewise, this also 

prevents excitotoxicity due to peripheral neurotransmitter imbalances spreading to the 

brain and disrupting signalling (72). The BBB also excludes immune cells from the 

cerebral environment. Activated immune cell infiltration into the brain can damage 

delicate neural tissue by releasing destructive factors and enzymes and turning on 

unwanted signalling pathways. As such, under normal physiological conditions, the brain 

is normally excluded from peripheral immune surveillance (72).  

Another function of the BBB is ion regulation. The BBB possesses a multitude of 

ion channels and transporters that preserve the ionic composition of the brain and keeps 

the extracellular space optimal for neuronal signalling. It is essential to keep the brain 

ionic content separate from peripheral ionic concentrations. For example, K
+
, an 

important ion in nervous signalling is held at ~2.5 mM in the brain, in spite of ionic 

fluctuations occurring in the periphery (64).  

 

 

 

 



13 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1-1. Schematic Diagram of the Blood-Brain 

Barrier. The BBB is found at the level of cerebral microvessels. 

Composing the wall of the vessel itself are continuous CVEC, 

tightly sealed against each other. Pericytes are located 

discontinuously on the abluminal side of the endothelial cells 

within the endothelial basal lamina. Perivascular macrophages also 

share this location. Extending cellular processes to make contact 

with the vessel from the neuropil are astrocytes. TJs and AJs 

function to seal the gaps between the adjacent endothelial cells. 
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1.5 Cerebrovascular Endothelial Cells 

The component of the BBB that is most responsible for its exclusionary properties 

are the CVEC. CVEC differ from endothelial cells elsewhere in the body by their relative 

lack of fenestrae. Fenestrae are pores that go through endothelial cells which allow for 

rapid exchange of material between blood vessels and the extracellular space without the 

use of transporters or channels and so in CVEC, this lack of fenestrae act to greatly 

reduce paracellular movement of substances, lending to the BBB’s permeability 

characteristics (45, 66). 

 CVEC possess tight junctions (TJ) which are complexes of transmembrane 

proteins whose primary purpose is to hold adjacent endothelial cells together and 

accordingly, they span the intercellular gap between adjacent endothelial cells. The TJs 

are also heavily involved in signal transduction in the cells. TJs are composed of a chain 

of many, almost continuous, but discrete points of intercellular contact, which are 

mediated by protein complexes. These are arranged in a belt-like formation around the 

apical end of the cell (45, 73). These points of tight contact between adjacent cells 

essentially occlude the paracellular passage. TJs act to increase electrical resistance 

across the endothelial layer as well as hindering paracellular transport of soluble 

compounds (45). TJs lend the BBB the functional properties of a single continuous cell 

membrane (64). This belt imparts polarity upon the cell by physically partitioning the 

apical and basal ends, allowing directional transport via asymmetrical expression of 

transporter proteins. TJs in the brain differ from those elsewhere in the body by being far 

tighter and more complex (64). 
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Tight junctions are composed of high levels of intercellular spanning 

transmembrane proteins, occludin and the claudins and the intracellular component, 

zonula occludens proteins (ZO) (Figure 1-2) (64). Occludin expression is higher in BBB 

TJs than in any other peripheral TJ, indicating a central role in the BBB (74). Of the over 

20 isoforms of claudin, only claudin-1 and -5 have been shown to be a component of 

BBB TJs (65). Both occludin and claudins are directly associated with the cytoplasmic 

scaffolding and signalling proteins ZO-1, -2, -3 and cingulin (64, 75). The TJ-ZO 

complex is also connected to the actin cytoskeleton. Many studies have associated 

disruption of occludin, claudin and ZO-1 with impaired BBB function (76-78). The final 

proteins involved in the TJs are junctional adhesion molecules (JAM). JAMs engage in 

heterogeneous and homogenous binding across the intercellular gap. Only JAM-A and -C 

are involved in the BBB TJs (79). Accordingly, the JAM family decreases BBB 

permeability and has been associated with an increased transendothelial electric 

resistance, inhibition of leukocyte extravasation and occludin localization (80).  

Another important feature of the CVEC in the BBB is the presence of adherens 

junctions (AJ). AJs are composed of transmembrane proteins called cadherins, anchored 

to the actin cytoskeleton in the cytosol via the catenins (α, β and γ) (Figure 1-2). In the 

intercellular space, vascular endothelial (VE)-cadherins homogenously bind to their 

adjacent cell counterpart, anchoring the 2 adjacent cells together (81). AJs play a role in 

cell-cell adhesion, signalling and transcriptional regulation (82). Perturbances to AJs have 

been shown to facilitate disruption of the endothelium (83, 84).  
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FIGURE 1-2. Schematic Diagram of the CVEC Junctional 

Complexes. Tight junctions are composed of three main proteins: 

occludin, claudin and junctional adhesion molecules (JAM). Intracellularly, 

these proteins are connected to the cytoskeleton by ZO-1. The junctional 

complex also consists of adherens junctions, which are composed of VE-

cadherin, α-catenin and β-catenin. Together, they are responsible for 

physically sealing adjacent endothelial cells together in order to prevent 

paracellular movement of luminal solutes as well as playing a role in signal 

transduction. (1)  
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1.6 Matrix Metalloproteinases 

Matrix metalloproteinases are a family of more than 20 zinc
2+

 dependent 

endopeptidases, found both secreted into the extracellular environment and membrane 

bound. In humans, there are 23, a number which includes the collagenases (MMP-1, -8, -

13, -18), the stromelysins (MMP-3, -10, -11), the matrilysins (MMP-7, -26) and the 

gelatinases (MMP-2, -9), as well as the membrane-type MMPs anchored to the cell 

surface by a C-terminal transmembrane domain (MMP-14 [MT1-MMP], -15 [MT2-

MMP], -16 [MT3-MMP] and -24 [MT5-MMP]) or a glycophosphatidylinositol (GPI) 

anchor (MMP-17 [MT4-MMP] and -25 [MT6-MMP]) (85-87).  

All MMPs are synthesized as preproenzymes with an endoplasmic reticulum-

targeting signal peptide and secreted as inactive zymogens or active enzymes (88). In 

terms of primary structure, MMPs are composed of several domain motifs, depending on 

the specific MMP. The catalytic domain is approximately 170 amino acids long and 

contains a zinc-binding motif inside the catalytic cleft (Figure 1-3). The zinc ion binds to 

a water molecule and is activated by a glutamate residue also located in the catalytic 

domain, in order to hydrolyze the target peptide bond (89). The propeptide domain, 

approximately 80 amino acids, is located at the N-terminus and is conserved among the 

MMP family (Figure 1-3). It contains a cysteine residue, also known as the cysteine 

switch that is able to bind to the catalytic site in order to suppress the proteolytic activity 

of the site in the propeptide. Some MMPs have a furin cleavage site between the pro-

domain and the catalytic domain. These enzymes are secreted in their active forms (90). 

Thus, the propeptide domain’s function is to maintain the inactivity of the MMP’s 

catalytic domain. Most MMPs contain a C-terminal hemopexin-like domain as well 
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(Figure 1-3), which functions mainly as a recognition site for specific substrates, though 

most MMPs retain their proteolytic activity without it (91). The hemopexin domain is 

however, absolutely necessary for the degradation of triple helical collagen (92). 

Similarly, the gelatinases have a series of three fibronectin type II inserts in the catalytic 

domain which function to recruit and bind gelatin (93). The hemopexin domain in some 

MMPs is also involved in mediating activation via other MMPs (94).  

Since the MMPs possess extremely potent proteolytic activity, their activity and 

expression is regulated at many levels. A large portion of MMP regulation takes place at 

the transcriptional level. MMP transcription is under the control of a number of factors 

such as activating protein (AP)-1, E26 transformation-specific translocation variant 

(ETV)-4, nuclear factor (NF)-κB (95) and hypoxia-inducible factor (HIF)-1α (96). A 

feature common to most MMPs is that they are inducible. MMP gene expression can be 

enhanced or suppressed by many factors. Examples of inducers of MMP gene expression 

are cytokines, growth factors, phorbol esters, actin disrupters, physical stress and 

oxidative stress (94, 97). Factors such as interleukins, interferons, epidermal growth 

factor (EGF) and basic fibroblast growth factor (bFGF) can all increase expression of 

MMPs through activation of the AP-1 or the ETV-4 elements (95). MMP gene expression 

can also be downregulated by transforming growth factor (TGF)-β, retinoic acids and 

glucocorticoids (94).  

Once secreted, MMPs are activated via cleavage of the propeptide domain, 

removing the inhibiting cysteine residue from the catalytic cleft (Figure 1-4) (94). This 

cleavage can be mediated enzymatically by other MMPs or proteases such as plasmin 

(98). Activation can also be mediated non-enzymatically, which involves disruption of 
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the inhibitory interaction between the Zn
2+

 residue and the cysteine residue. Thus, MMPs 

may be activated by S-nitrosylation or oxidation without cleavage of the propeptide 

domain (99, 100). Reactive oxygen species, mercurial compounds and denaturants may 

also nonenzymatically activate MMPs (101, 102). Nevertheless, in vivo, a majority of 

proMMP activation is mediated by tissue or plasma proteases. Numerous studies have 

suggested that the urokinase plasminogen activator (uPA)/plasmin system is a critical 

physiological activator of proMMPs, including proMMP-2, -3, -9, -12 and -13 (103-105).  

Catalytic MMP activation can also be mediated by other MMPs. For example, 

MT1-MMP, MT2-MMP and MT5-MMP have been shown to activate proMMP-2 (106-

108). As well, MMP-2, MMP-3 and MMP-13 are able to cleave and activate proMMP-9 

(109-111). ProMMP-2 can be activated by MT1-MMP, but this activation is tightly 

regulated by the complexing of tissue inhibitor of metalloproteinase (TIMP)-2 and MMP-

2 in cells (112). It is thought that the TIMP-2 subunit is required for the localization of 

the whole complex and thus, MMP-2 localization to the cell membrane where it can then 

be proteolytically activated by MT1-MMP (113). Thus, MMPs play a significant role in 

the modulation of each other and allow for even tighter regulation of activity. 

Once they are activated however, the proteolytic activity of MMPs is modulated 

either by nonspecific protease inhibitors, α2-macroglobulin or by a family of endogenous 

regulators called tissue inhibitor of metalloproteinases. There are 4 known members of 

the TIMP family: TIMP-1, -2, -3 and -4, ranging from 21-30 kDa in size. TIMPs 

noncovalently bind to and inhibit MMPs in a 1:1 stoichiometric ratio (114). The 

mechanism by which TIMPs inhibit the catalytic activity of MMPs is not well known. 

Studies have reported on the interaction between TIMP-1 and MMP-3: TIMP-1 possesses 
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a cysteine residue that is capable of chelating the catalytic Zn
2+

, thus disrupting its ability 

to carry out hydrolytic attack on other species. Additionally, TIMP-1 possibly obstructs 

any potential substrate binding in MMP-3 (115).  

The TIMPs do not show strong specificity for any particular MMPs; each TIMP 

can inhibit every MMP physiologically (116). However, differences between the TIMPs 

do exist. TIMP-1 and TIMP-2 have been observed to exhibit a preference for MMP-9 and 

MMP-2 respectively (117). TIMP-1 shows a lower affinity for the membrane-type MMPs 

(118). Additionally, TIMP-2 and TIMP-3 show a lower affinity for MMP-3 and MMP-7 

than TIMP-1 (119). TIMP-3 displays a wider range of MMP inhibition than the other 

TIMPs. The expression of TIMP-1 and TIMP-3 are thought to be highly inducible, 

whereas TIMP-2 expression is mostly constitutive (120).  

The major targets of the MMPs are the proteins that compose the extracellular 

matrix and basal lamina such as fibronectin, gelatin, collagen and proteoglycans; indeed, 

virtually all protein components of the extracellular matrix (ECM) can be degraded by 

the MMPs (88). They serve to modulate tissue architecture through turnover of the ECM 

and intercellular junctions. 

MMPs not only serve to degrade the ECM but also play a role in the generation of 

substrate cleavage fragments that have a biological function, and modify, activate or 

deactivate signaling molecules during inflammation (121). MMP-1, -3 and -9 have shown 

the most potential to regulate chemokine signaling (122). CXCL-8, a major inflammatory 

chemokine has been shown to be potentiated via MMP-8 and-9 processing (123, 124). 

Another well-known example is the effect of MMP-7 on the generation on CXCL-1 
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gradient. MMP-7 is able to release the chemokine into the ECM thereby generating a 

gradient to facilitate PMN infiltration. MMPs have also been shown to possess certain 

anti-inflammatory actions. For example, the cytokines CXCL-8 and CXCL-1 have been 

shown to be degraded and inactivated by MMP-9. Many MMPs can inactivate CXCL-12 

as well (125). Furthermore, in addition to inactivating pro-inflammatory cytokines, 

MMPs can also further process them into potent antagonists (126). Examples of this are 

the processing of CX3CL-1 and MCP-2 by MMP-2,  and MCP-1 by MMP-8 (127).  

Thus, MMPs represent a bidirectional level of regulation of inflammatory signals. 

Despite their important physiological roles, MMPs, through their ability to promote 

ECM breakdown and remodeling, have also been implicated in numerous pathologies. 

MMPs are also known to be an important contributor to pathological processes like 

arthritis, cancer and cardiovascular diseases (128-130). In particular, the gelatinases, 

MMP-2 and -9, have been shown to play a critical role in processes such as tumour 

invasion, angiogenesis and neovascularisation.  
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FIGURE 1-3. Schematic Diagram of the Common Different 

Functional Domains of the MMP Family. 

S, signal peptide; Pro, propeptide domain; Cat, Catalytic domain; Zn, Zinc 

residue; Fn, Fibronectin domain; Hpx, Hemopexin domain; I, Type I 

transmembrane domain; Cp, Cytoplasmic region; G, GPI anchor; ■, Furin 

cleavage site; V, Vitronectin insert. 

Classically, MMPs are composed of 3 main regions, the propeptide domain 

which inactivates the enzyme, the catalytic domain which facilitates target 

cleavage and the hemopexin/vitronectin domain which facilitates substrate 

recognition. Other domains include the signal peptide which locates the 

preproenzyme to the endoplasmic reticulum, Type 1 transmembrane domain 

and GPI anchor which serve to attach MT-MMPs and the furin cleavage site 

which facilitates activation via furin. (2) 



23 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

FIGURE 1-4. Schematic Diagram of the Classic Activation of 

MMPs. The catalytic activity of the proenzyme is inhibited by the presence 

of propeptide domain which binds to and obstructs the catalytic cleft. 

Cleavage of the propeptide domain results in dissociation of the inhibitory 

complex and allows the MMP catalytic cleft to access and digest substrate.  
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1.7 Polymorphonuclear Neutrophils  

Polymorphonuclear neutrophils are the most abundant subtype of granulocyte 

white blood cell present in mammalian circulation. They are a key component of the 

innate immune system whose main role is to defend the body against microbes and 

pathogens during inflammation and are considered the “first line of defense”. PMN are 

constantly circulating throughout the body, moving through vessels in a nonadherent state 

and constantly probing the vascular wall. However, during inflammation, they transition 

into an adherent state. The endothelial cells of the vascular wall, upon inflammation, 

become activated and express many different membrane proteins such as E- and P-

selectin as well as ICAMs (131). The PMN themselves constitutively express L-selectin 

and P-selectin glycoprotein ligand (PSGL)-1 which can bind to all 3 types of selectin 

(132-134). Coupled with vessel dilation due to inflammation and flow stress, PMN are 

allowed to contact the vessel wall (135). Following inflammatory cytokine-mediated 

activation of endothelial cells, both expression of E-selectin and ICAM-1 are 

upregulated. L-selectin and PSGL-1, expressed on PMN, physically interact with E- and 

P-selectin, expressed by the endothelial cell, transiently recruiting the PMN to the 

endothelium. The PMN then “rolls” along the endothelium, jumping from selectin 

molecule to selectin molecule. Exposure to chemokines quickly triggers PMN to become 

more firmly adherent to the endothelium, a state change mediated by leukocyte integrins, 

leukocyte-function-associated antigen (LFA) and macrophage-associated protein (MAC)-

1 on the PMN interacting with ICAM-1 on the endothelial cell (134). The presence of 

chemokines during inflammation serves to activate integrins, thus increasing their 

binding strength immensely. At this stage, the rate at which PMN roll across the 
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endothelium is greatly diminished. Binding of leukocyte integrins to endothelial 

immunoglobulin (IgG)-superfamily molecules mediates leukocyte arrest (134, 136). Once 

its rolling has been arrested and the PMN firmly adheres to the endothelium, it is able to 

respond to inflammatory chemoattractants and undergoes chemotaxis. The PMN can then 

transmigrate through the endothelial layer into inflamed tissue, a process actively 

facilitated by endothelial platelet-endothelial cell adhesion molecule (PECAM)-1 and 

JAMs (Figure 1-5). 

PMN are able to coordinate the body’s immune system response as they can 

generate chemotactic signalling molecules, TNF and other cytokines such as IL-1β, 

monocyte chemoattractant protein (MCP) -1 and CXCL-1 to activate and direct immune 

cells (3, 137, 138). They can even direct macrophage differentiation into either a pro- or 

anti-inflammatory phenotype (138).  

PMN, however, are more recognized for their direct antimicrobial action. The 

cadre of microbicidal processes that PMN possess include their phagocytic function, their 

ability to release granules filled with proteolytic enzymes and their ability to produce 

reactive oxygen species (139, 140). The hallmark of all granulocytes and indeed, PMN, 

are the granules which form intracellularly during differentiation in the bone marrow 

(141). These granules can be divided into 3 main categories based on the proteins 

contained within them: primary/azurophilic granules, secondary/specific granules and 

tertiary/gelatinase granules. Azurophilic granules primarily contain myeloperoxidase 

(MPO) which facilitates peroxidation of cell membranes, 3 serine proteases, PMN 

elastase (HLE), proteinase-3 (PR-3) and cathepsin G (CTSG) as well as defensins and 

lysozyme. Specific granules contain lactoferrin, an enzyme that sequesters away iron and 
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copper, MMP-8 and lysozyme. Tertiary granules contain MMP-9 and MMP-25 (139). 

PMN also possess secretory vesicles which contain plasma proteins, complement 

receptor and Fc receptors (142). The type of granule produced coincides with the 

differentiation stage of the PMN such that azurophilic granules are indicative of relatively 

young PMN while gelatinase granules are that of mature PMN (143). These granules are 

released in a process called degranulation which occurs upon activation, during and after 

the transmigration of PMN through the endothelial layer into tissue. Different granules 

are released at different times during PMN extravasation. Secretory vesicles are 

exocytosed upon contact with the endothelium and so act to facilitate a further immune 

response (139, 144). In general, the order of granule subtype released depends upon the 

ease of mobility. Secretory vesicles are most easily mobilized and are therefore, released 

first, onto the PMN membrane within the bloodstream and at the endothelial surface. 

Tertiary granules are the second easiest mobilized granule and are released as PMN are 

moving through the endothelial layer whereas primary and secondary granules are the 

most difficult to mobilize and are thus, released directly at the site of inflammation (3). 

The release of these highly destructive enzymes is crucial for antimicrobial activity. 

However, unwanted or improper release due to severe inflammation can cause serious 

damage to tissue. Pathologically, PMN play a deleterious role in inflammatory conditions 

such as ischemia-reperfusion injury and sepsis (145-147). 
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FIGURE 1-5. Diagram of PMN Activation and Recruitment to the 

Vascular Endothelium. During inflammation, endothelial cells express P- 

and E-selectin on the cell surface. These proteins interact with ligands on the 

PMN resulting in margination and rolling of PMN on the endothelial surface. 

Adhesion molecules of IgG-superfamily (e.g., ICAM-1) expressed on vascular 

endothelium interact with PMN adhesion molecules (e.g., integrins) resulting 

in PMN capture and firm adhesion. Subsequently, PMN migrate across the 

endothelial barrier (a process mediated by PECAM-1 and JAMs) in response 

to chemotactic stimulus. Once inside the infected/inflamed tissue, PMN 

release their vesicles and microbicidal enzymes in a process called 

degranulation. (3) 
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1.8 PMN Serine Proteases 

The PMN serine proteases (NSP), as previously mentioned, include HLE, PR-3 

and CTSG. The major sources of these serine proteases are PMN, but also include 

monocytes (148, 149) and other granulocytes such as eosinophils (150). Similar to 

MMPs, NSPs are expressed as proenzymes (151-153) and require processing into active 

forms. However, unlike MMPs which are secreted as proenzymes, NSPs are generally 

processed into their active form prior to packaging into their respective granules and are 

therefore, active upon release (154).  

These homologous proteases depend upon a catalytic triad formed from aspartate, 

histidine and serine (154). As its name implies, serine proteases contain a catalytic serine 

residue. The catalytic unit utilizes the hydroxyl group on the residue and free H2O to 

hydrolyze the target peptide bond (155). They are all neutral proteases with their optimal 

pH range being around 7.5-8.5 (154, 156).  

Physiologically, they are irreversibly inhibited by the endogenous protease 

inhibitor family, the serpins, such as α1-proteinase inhibitor and α1-antichymotrypsin, or 

to a lesser extent, α2-macroglobulin (154). Interestingly, α1-proteinase inhibitor displays 

specificity for HLE but nevertheless, inhibits all serine proteases (157). A conserved loop 

domain on α1-proteinase inhibitor and other serpins, binds to the protease catalytic site. 

When the loop is cleaved, the inhibitor undergoes a rapid conformational change, 

trapping the NSP and the inhibitor in an inactive state (158). These inhibitors are 

extremely prominent in plasma, in far excess of circulating NSPs (157). However, it is 

thought that during inflammation, the release of these proteases is significant enough to 
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overwhelm the local inhibitory capacity and exert its actions for a brief period of time 

(159, 160).  

Intracellularly, NSPs are stored in phagolysosomes and act to digest phagocytised 

pathogens. They are, however, more recognized for their extracellular role in ECM 

destruction and peptide cleavage. NSPs are able to cleave a variety of ECM components 

including elastin, fibronectin, laminin, collagens and proteoglycans (161-163). They are 

also able to cleave a wide range of plasma proteins such as complement and factor VII 

(164, 165). Due to their extremely broad range of overlapping substrates, it is believed 

that they are non-specific proteases.  

NSPs also play a role in innate immunity (166) and regulation of the 

inflammatory response (167). NSPs have been shown to augment the inflammatory 

cytokine response. HLE can induce release of CXCL-8 (168-171), IL-33 and GM-CSF 

(170). PR-3 has been shown to be able to induce the release of CXCL-8 (171), active IL-

18 which can promote PMN activation (172, 173), TNF converting enzyme and IL-1β 

converting enzyme (174). The NSPs can not only induce cytokine release from other cells 

but are also able to modify the biological function of cytokines. For example, both TNF-α 

and IL-6 are cleaved and inactivated by all three of the NSPs (175, 176). PR-3 was also 

shown to be able to generate more active forms of CXCL-8 whereas HLE was shown to 

inactivate it (177, 178). HLE has also been shown to cleave IL-2, a potent T-cell 

activator, into inhibitory fragments (179). NSPs may also function to facilitate PMN 

transmigration through the endothelium. NSPs could, potentially, be used to degrade 

various proteins of the ECM and impeding intercellular junctions (180-182). Interestingly 

though, it has been shown in some studies that inhibition of the various NSPs does not 
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inhibit neutrophil migration (183), indicating an incomplete understanding of the 

mechanism by which PMN penetrate the endothelium.  

Pathologic regulation of NSPs has been observed in many diseases such as 

ischemia-reperfusion injury, arthritis and emphysema. As powerful proteases, much of 

the focus has been on their proteolytic activity. NSPs have been shown to contribute to 

lung injury due to its ability to degrade both endothelial VE-cadherin, thereby promoting 

microvascular permeability and E-cadherin which contributes to alveolar flooding (184). 

HLE has been shown to be associated with fatal sepsis (147) and is thought to function by 

disrupting endothelial integrity. This junctional disruption could be mediated by NSPs 

(182, 185). 
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1.9 Rationale 

Pediatric DKA has been linked to numerous intracranial cerebrovascular 

pathologies such as vasogenic edema and hemorrhagic stroke (19, 186-189). Although 

the exact mechanisms of these crises are not known, a common element to all 

cerebrovascular complications is endothelial dysfunction. A prominent theory is that 

DKA results in the breakdown or destabilization of the brain endothelium, increasing 

endothelial permeability and allowing solutes and water to cross into the extracellular 

space. BBB disruption was observed in conjunction with DKA in examination of brain 

tissue from 2 deceased human patients. In the same study, DKA was associated with 

decreased expression of numerous tight junction proteins such as occludin, claudin-5, 

ZO-1 and JAM-A in all areas of the brain, indicating a dysfunction in the formation or 

composition of the TJs at the BBB (190). Functionally, increased albumin leakage into 

the brain from peripheral circulation was also observed in the study, providing direct 

evidence of compromised BBB function. 

Pathological MMP activity is widely implicated in BBB disruption (98, 191-193). 

Increased MMP expression and activity have been seen in severe sepsis, traumatic brain 

injury, cerebral ischemia, bacterial meningitis, stroke and migraine and have been linked 

to increased permeabilization of the BBB (96, 192, 194-199). MMPs can contribute to the 

disruption of the BBB by directly degrading TJs between the CVEC, leading to increased 

water and solute movement across the BBB (200). Increased MMP-2 and -9 activity and 

expression was associated with degradation of claudin-5 and occludin in cerebral vessels 

following ischemic reperfusion injury in rats, indicating decomposition of the TJs (201).  
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MMPs can also contribute to BBB or any endothelial disruption by releasing 

permeability-inducing factors that are normally sequestered away in the ECM such as 

vascular endothelial growth factor (VEGF), thus facilitating an increase in biological 

activity (202, 203). It has also been demonstrated that MMPs are able to proteolytically 

activate latent factors such as TGF-β (204), which has been shown to significantly 

increase endothelial permeability (205).  

MMPs are known to play a role in cytokine processing and generation of 

biologically active fragments (127). Processing of the cytokines, CXCL-8, CXCL-5 and 

CXCL-6 by both MMP-8 and -9 has been shown to potentiate their chemotactic effects 

and biological function (206). MMP-mediated cytokine processing acts to facilitate 

leukocyte activation and migration, thus facilitating endothelial disruption indirectly 

(127).  

Previous work in our lab has shown that DKA is associated with a pro-adhesive 

phenotype of endothelial cells (41). DKA also results in increased circulating pro-

inflammatory cytokines such as CXCL-8, CXCL-1 and IFN-α2, which results in 

increased activation and adhesion of PMN (37). PMN possess granules full of destructive 

enzymes which are released upon activation. PMN-derived MMP-9 can facilitate the 

pathological breakdown of the BBB during ischemic-reperfusion injury (191). The PMN 

serine proteases, elastase and cathepsin G were shown to be able to induce a disruption of 

the BBB and increase vascular permeability in rats (207). Additionally, PMN elastase and 

PR-3 were shown to be able to induce apoptosis of endothelial cells (208, 209). Activated 

PMN and their associated proteases have been associated with widespread endothelial 

damage (207, 210, 211). MPO generates extremely powerful oxidizing species such as 
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hypochlorous acid from H2O2 and has been shown to severely disrupt BBB function in 

vitro and in vivo (212). It also plays a role in generation of endothelial intracellular 

oxidative species and drives apoptosis in some cell types (213, 214).  

Similar to the MMPs, the PMN protease are known to play a role in the processing 

of cytokines, rendering them either active or inactive. For example, elastase and PR-3 are 

known to be able to cleave immunoglobulin, IL-2 receptor (215), TNF-α (175) and TNF-

α converting enzyme (174). All 3 serine protease also process CXCL-8 and CXCL-1 

(177). 

Previous experiments done in our lab have shown leukocyte adherence to the 

endothelium under DKA conditions indicating significant leukocyte involvement. We 

believe that the intracranial vascular complications often seen in DKA are the result of 

the destructive enzymes released by adherent leukocytes during the DKA inflammatory 

response. Therefore, is it believed that disturbance in the BBB and other endothelial 

barriers are exacerbated by the presence of DKA through perturbances in circulating 

leukocyte-derived MMPs as well as azurophilic enzymes. 
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1.10 Hypothesis 

I hypothesize that children with DKA will present with increased plasma 

leukocyte-derived proteases and enzymes compared to insulin-controlled T1DM. In 

addition, enzyme levels will correlate with DKA severity and result in brain 

microvascular junctional disruption.  

1.11 Objectives 

I. To examine plasma MMPs/TIMPs in pediatric DKA patients and to correlate 

these with DKA severity. 

II. To (1) examine the systemic PMN azurophilic enzyme profile of pediatric 

DKA patients and to correlate these with DKA severity and (2) to examine 

the potential for PMN azurophilic enzymes to disrupt brain microvascular 

intercellular junctions.   
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CHAPTER 2: DYNAMIC REGULATION OF PLASMA MATRIX 

METALLOPROTEINASES IN HUMAN DIABETIC KETOACIDOSIS 

  

  

A version of this chapter has been submitted for review. 
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2.1 Introduction 

Type 1 diabetes mellitus (T1DM) is a chronic affliction that occurs predominantly 

in children, and is expected to double over the next decade (1). The most frequent 

complication of T1DM is diabetic ketoacidosis (DKA), a state of insulin deficiency that 

leads to metabolic acidosis, hyperglycemia and ketonemia (2). DKA is associated with 

intracranial cerebrovascular-related complications such as stroke (3), hemorrhage (4) and 

vasogenic edema (5).  

DKA is associated with systemic inflammation (6-9). We recently reported that 

DKA elicits significant elevations in the chemokines CXCL-1 (GROα) and CXCL-8 (IL-

8), resulting in leukocyte adhesion to human-derived cerebral microvascular endothelium 

(10). Adhered leukocytes can release substances that mediate endothelial damage and 

vascular destabilization (i.e., matrix metalloproteinases [MMP]) (11).  

MMPs are a family of endogenous proteases that include collagenases (MMP-1,-

8,-13), stromelysins (MMP-3,-10,-11), matrilysins (MMP-7,-26), gelatinases (MMP-2,-9) 

and membrane-type MMPs (MMP-14, -15, -16, -17,-24, -25) (12). Leukocytes are a 

major source of circulating MMPs during inflammation (13). Alterations of MMPs and 

their endogenous tissue inhibitors (TIMPs) are observed in inflammation-related 

pathologies (14-16) and MMPs have potential to compromise cerebrovascular endothelial 

barrier function (17-19).  

We hypothesized that DKA is associated with elevated leukocyte-derived MMPs. 

Our aims, using blood from acute pediatric DKA patients, were (1) to measure plasma 
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levels of MMPs/TIMPs, (2) to correlate the MMP/TIMP levels with DKA severity, and 

(3) to determine if MMPs are leukocyte-derived.  

2.2 Methods 

This study was approved by the Health Sciences Research Ethics Board at 

Western University. Patients were recruited at our regional tertiary care centre; the 

Children’s Hospital, London Health Sciences Centre (London, ON). 

2.2.1 Human Subjects 

Consent was obtained from the legal guardians of all pediatric patients admitted 

with DKA, and both legal guardian consent and patient assent were obtained for T1DM 

insulin-controlled patients. Biochemical diagnostic criteria for DKA included 

hyperglycemia > 11 mmol/L, bicarbonate < 15mmol/L and ketonurea (20). DKA is 

classed according to severity of acidosis as mild DKA (venous pH < 7.3), moderate DKA 

(pH < 7.2) or severe DKA (pH < 7.1) (21, 22). The majority of DKA cases used in this 

study were severe. Clinic patients with insulin-controlled T1DM (HbA1c < 10% and no 

DKA for > 3 months) served as controls (CON). 

2.2.2 Blood Collection and Processing 

Blood for research purposes was obtained on hospital presentation at the time of 

clinically-indicated blood draws. Blood was drawn into citrate-containing tubes 

(Vacutainers
®

, BD Biosciences, Mississauga, ON) by certified nursing personnel, placed 

on ice, and immediately transferred to the Translational Research Centre facility for 

processing by standard operating procedures (www.translationalresearch.ca, London, 

ON) (23, 24). Briefly, blood was centrifuged at 1500 g for 15 min (4
o
C), and the upper 

http://www.translationalresearch.ca/
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plasma layer collected into 250 µl aliquots. Next, the buffy coat was removed and also 

aliquoted. Both plasma and buffy coat aliquots were immediately frozen at −80 °C until 

usage. When needed for experiments, plasma was thawed and maintained briefly on ice. 

Freeze-thaw cycles were avoided. 

2.2.3 MMP/TIMP Antibody Microarray 

The plasma concentrations of MMP-1, MMP-3, MMP-8, MMP-10, MMP-13, 

TIMP-1, TIMP-2 and TIMP-4 were measured using a multiplex enzyme-linked 

immunosorbent assay (ELISA)-based array, the Quantibody® Human MMP array 

(RayBioTech, Inc.; Norcross, GA) which utilizes a biotin conjugated detection antibody 

and a streptavidin-labeled Cy3 equivalent dye that produces a fluorescent signal intensity 

proportional to concentration. Undiluted plasma was loaded into each well and assayed 

according to the manufacturer’s instructions. The completed arrays were then shipped 

back to the manufacturer for data extraction and analysis. 

2.2.4 MMP Gelatin Zymography 

MMP-2 and MMP-9 were assayed using gelatin zymography, as we reported 

previously (16). Plasma samples were diluted 1:1 in PBS. Protein in the diluted plasma 

samples was then quantified using the bicinchoninic acid assay (Thermo Fisher 

Scientific, Waltham, MA). Equal amounts of protein (75µg) were mixed with non-

reducing sample buffer and loaded in each well. Samples were run on a 10% sodium 

dodecyl sulphate polyacrylamide electrophoretic gel impregnated with 0.1% gelatin (m/v) 

under non-reducing conditions at 140V until the dye front left the gel. Enzymes were re-

natured in 50mL of 2.7% Triton X-100 (v/v) in distilled water with gentle shaking for 1 

hour at room temperature. After washing gels for 5 minutes in 50mL of distilled water on 
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a rotary mixer, the gels were developed in 50mL of developing buffer (50mM Tris-base 

pH 7.4, 200mM NaCl, 5mM CaCl2·2H2O) containing 1 cOmplete EDTA-free Protease 

Inhibitor Cocktail Tablet (Roche Applied Science, Indianapolis, IN) for 20 hours at 37°C 

(5% CO2). The gels were then stained with 0.5% Commassie Brilliant Blue R-250 

(Roche Diagnostics, Mississauga, ON) for 1 hour and then de-stained with a solution 

consisting of 30% MeOH (v/v) and 10% acetic acid (v/v) until bands of proteolysis were 

clear. Gels were scanned using a GS-690 densitometer (Bio-Rad Laboratories, Hercules, 

CA). Proteolytic bands were quantified as a ratio of the optical density of the 

experimental band to a known amount of human recombinant active MMP-2 standard 

(EMD Millipore, Etobicoke, ON) run on the same gel. Quantification of bands was 

performed using image quantification software (FroggaBio, Toronto, ON). Negative 

control zymograms were incubated in the presence of 20 mM ethylenediaminetetraacetic 

acid (Bioshop, Burlington, ON). 

Since the zymography technique measures protein as gelatinolytic activity as 

opposed to concentration, it was necessary to estimate the concentration of MMP-9 from 

proteolytic bands in a separate experiment. In order to quantify the MMP-9 present in a 

zymogram, identical volumes (1.0 µL) of three representative age- and sex-matched 

sample pairs were loaded and run on a zymogram as previously described. A dose-

response curve of a known amount of recombinant human active MMP-9 standard (EMD 

Millipore) was loaded and run on the same gel. The optical density of the proteolytic 

bands were measured as previously described and the standard dilutions were used to 

generate a standard curve to quantify the mass of MMP-9 present in a given proteolytic 

band. The plasma concentration (ng/mL) of MMP-9 in each experimental condition was 
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estimated by adjusting the average mass of MMP-9 in the zymogram for the volume of 

plasma initially loaded in the gel and the dilution factor. 

2.2.5 Quantitative Real-Time PCR 

Quantitative real-time polymerase chain reaction (qPCR) was used to quantify the 

expression of the genes found to be significantly altered in zymography and the ELISA 

array. RNA was isolated using TRIzol® LS Reagent (Life Technologies, Grand Island, 

NY) from buffy coat extracted from CON and DKA patients then subjected to Turbo 

DNA-free (Life Technologies) digest according to the manufacturer's suggested protocol. 

The RNA integrity number (RIN) of the samples was assessed using the Agilent 2100 

Bioanalyzer (Agilent Technologies, Mississauga, ON) at the London Regional Genomics 

Center, samples had an RIN > 6.7. 2µg of RNA from each sample was then reverse 

transcribed using iScript™ Advanced Reverse Transcriptase (Bio-Rad). TaqMan® Gene 

Expression Assays (Life Technologies) were used with the SensiFAST™ Probe No-ROX 

kit (Bioline, London, UK) for qPCR. The assay IDs were MMP-2 (Hs01548727_m1), 

MMP-8 (Hs01029058_m1), MMP-9 (Hs00957562_m1) and TIMP-4(Hs00162784_m1). 

Target genes were normalized to β-actin (Hs01060665_g1) and GAPDH 

(Hs02758991_G1). The reaction was carried out with CFX96 Real-Time PCR Detection 

System-IVD (Bio-Rad).The PCR protocol was as follows: 2 minute initial denaturation at 

95°C, 70 cycles of 10 second denaturation at 95°C, 30 second annealing and extension at 

60°C. 

2.2.6 Statistical Analysis 

All calculations were done using Graphpad Prism software. Data was assessed 

with the Mann-Whitney U test for nonparametric data with Bonferroni’s correction for 
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multiple comparisons when applicable. Correlation analysis utilized Spearman’s rank 

correlation coefficient. All data is presented as mean ± standard error (SEM). Statistical 

significance utilized a P value of < 0.05. 
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2.3 Results 

Study patients 

Plasma was obtained from T1DM patients either in an acute DKA or in an 

insulin-controlled state (CON). The two groups were age- and sex-matched (n=16/group; 

Table 2-1). Patients with DKA had significantly higher HbA1c values, compared to those 

with insulin-controlled T1DM (P<0.001), indicating elevated blood glucose over the 

previous three months. DKA patients all had elevated blood glucose (27.4±8.3 mmol/L) 

and moderate to severe metabolic acidosis (pH 7.00±0.03; PCO2 20.8±2.3 mmHg; HCO3
-
 

5.9±0.8 mmol/L; lactate 2.9±0.7 mmol/L).  

ELISA array measurements of plasma MMPs/TIMPs 

In order to generate an MMP/TIMP profile, the levels of MMP and TIMP species 

were measured in plasma from both DKA and CON groups. Out of all the plasma MMP 

and TIMP species measured on the array, only MMP-8 and TIMP-4 were found to be 

significantly increased in DKA (17.1-fold increase and 2.1-fold increase, respectively), as 

compared to CON (Table 2-1; P < 0.001; n=16 per group). These results demonstrate 

selective elevation of the collagenase MMP-8, and to a lesser extent, TIMP-4.  
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TABLE 2-1. Clinical Data and Plasma MMP/TIMP Levels in Type-1 Diabetes 

Patients.  

Either insulin-controlled (CON) or with acute diabetic ketoacidosis (DKA) (n= 16/group)  

 

 

  CON DKA P value 

Clinical Data    

   Mean age (years) 11.4 ± 1.0 11.7 ± 0.8 0.830 

   Male: Female 

ratio 
8:8 8:8 1.000 

   HbA1c 8.3 ± 0.3 11.7 ± 0.5 < 0.001 

MMP/TIMP 

Microarray 
   

   MMP-1 1.22 ± 0.72 2.24 ± 1.18 0.865 

   MMP-3 6.04 ± 1.34 9.45 ± 1.72 0.086 

   MMP-8
a
 39.96 ± 12.90 684.25 ± 307.59 < 0.001 

   MMP-10 0.28 ± 0.04 0.60 ± 0.16 0.181 

   MMP-13 0.03 ± 0.01 0.04 ± 0.02 0.201 

   TIMP-1 5.46 ± 1.75 10.70 ± 2.28 0.318 

   TIMP-2 4.42 ± 0.37 4.71 ± 0.47 0.925 

   TIMP-4 1.08 ± 0.12 2.26 ± 0.22 < 0.001 

a; Concentrations of MMP-8 are reported in pg/mL (mean ± SEM). All the rest 

are all reported in ng/mL (mean ± SEM). To control for repeated measures in 

MMP/TIMP analyses, a P value<0.005 was considered significant. Boldface 

indicates significant P value. 
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Gelatin zymography for MMP-2 and MMP-9 

To assess MMP-2 and MMP-9 levels in DKA, we assayed gelatinolytic activity of 

both CON and DKA plasma via zymography. A representative zymogram of 3 different 

CON/DKA sample pairs is shown in Figure 2-1A. MMP-9 was significantly increased 

1.7 fold in DKA plasma compared to CON plasma (Figure 2-1B; ~100 kDa MW; P < 

0.05). Conversely, MMP-2 was significantly decreased 2.8 fold in DKA plasma 

compared to CON plasma (Figure 2-1C; ~70 kDa MW; P < 0.001). In addition, DKA 

plasma had a faint ~135 kDa band on gelatin zymography that may reflect a well-

described complex of MMP-9 with neutrophil-gelatinase-associated lipocalin (25). 

Overall, these results suggest distinct opposing regulation of the MMP gelatinases by 

DKA in children, and a potential neutrophilic source of MMP-9.  

The plasma concentration of MMP-9 was estimated from zymography (data not 

shown) using 3 age-/sex-matched sample pairs (CON ~670 ng/mL vs. DKA ~1,509 

ng/mL). 
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FIGURE 2-1. Gelatin Zymography of DKA Plasma. Gelatin zymography was used 

to measure both MMP-2 and MMP-9. (A) A representative zymogram of 3 plasma 

DKA/CON experimental pairs. The right-most lane contains a molecular weight ladder. 

MMP-9 is represented at ~100 kDa, likely representing the latent form. MMP-2 is 

represented by the bands at ~70 kDa, also representing the latent form. (B) MMP-9 levels 

in DKA plasma were significantly increased relative to CON plasma. Results are 

presented as relative optical density. (C) MMP-2 levels in DKA plasma were 

significantly decreased from CON plasma. Results are presented as relative optical 

density. *P<0.05; ***P<0.001; n= 16/group. 
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MMP-8 and MMP-9 correlated with DKA severity  

In order to determine correlations between altered MMP/TIMP levels in DKA 

plasma and a clinically relevant parameter, correlation analysis was applied to data points 

graphed as MMP concentrations versus blood pH (acidotic blood pH reflects greater 

DKA severity). Both MMP-8 and MMP-9 were inversely correlated with blood pH 

(Figure 2-2A; rs= -0.71; P < 0.01 and Figure 2-2B, rs= -0.60, P < 0.05, respectively). In 

contrast, no correlations could be determined for either MMP-2 or TIMP-4 (rs= 0.26, P= 

0.34 and rs= 0.07, P= 0.80, data not graphically shown). These results suggest that MMP-

8 and MMP-9 plasma levels are correlated with DKA severity. 
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FIGURE 2-2. Plasma MMP Correlation with pH in DKA. MMPs correlate with 

DKA severity. (A) MMP-8 plasma concentrations were inversely correlated with blood 

pH in DKA patients. A best-fit line was added to aid in visual interpretation of the graphs 

(rs= -0.714, P= 0.0019, n= 16). (B) MMP-9 plasma concentrations were inversely 

correlated with blood pH in DKA patients. A best-fit line was added to aid in visual 

interpretation of the graphs (rs= -0.6024, P= 0.0135; n= 16). 
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Leukocyte mRNA expression of MMPs and TIMPs 

To determine whether the observed changes in MMP-2, MMP-8, MMP-9 and 

TIMP-4 were leukocyte derived, we assayed the respective gene mRNA levels with 

qPCR. MMP-8, MMP-9 and TIMP-4 gene expression was significantly increased in 

leukocytes from DKA patients, as compared to CON patients (Figure 2-3; 45.0, 6.3 and 

31.8 fold-change respectively; P < 0.0025). In contrast, MMP-2 showed no significant 

changes. These results suggest that elevated plasma MMP-8, MMP-9 and TIMP-4 are, at 

least in part, leukocyte derived. 
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FIGURE 2-3. Leukocyte MMP Gene Expression in DKA. Elevated MMPs/TIMP-4 

in DKA plasma are leukocyte-derived. Gene expression of MMP-8, MMP-9 and TIMP-4 

were significantly elevated in DKA, as compared to CON patients. Target gene 

expression is normalized to β-actin and GAPDH and presented as fold-change from 

CON. N.S.: not significant; **P < 0.005 (controlled for repeated measures); n= 5/group 

for MMP-2, n= 7/group for all other genes. Mean CT values for CON and DKA samples 

were MMP-2 (37.73; 37.35), MMP-8 (29.91; 35.09), MMP-9(25.83; 28.11), TIMP-4 

(39.40; 43.08), respectively.  
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2.4 Discussion 

In this study, we report that DKA induced a markedly altered plasma MMP/TIMP 

profile in acute pediatric DKA patients, and that both MMP-8 and MMP-9 concentrations 

correlated with DKA severity. DKA-induced MMPs were, at least in part, leukocyte 

derived. MMP-8 and MMP-9, at concentrations similar to those measured in DKA 

plasma, have been reported to disrupt brain endothelial cell tight junctions. To our 

knowledge, this study is the first to employ human DKA tissues in relation to 

pathological changes in systemic proteases.  

Our current data, taken together with our previously reported results (10), show 

that DKA is an inflammatory state associated with highly elevated levels of systemic 

cytokines (IL-6 and IFN-α2), chemokines (CXCL-1 and CXCL-8) and MMPs (i.e., 

MMP-8 and MMP-9). MMPs have diverse actions that that may involve exacerbation of 

existing inflammatory cascades (26), as well as direct actions on the microvasculature 

(27). This latter action of MMPs is particularly intriguing given that DKA induced 

leukocyte adherence to the brain microvasculature (10) and that the DKA-induced MMPs 

appear to be leukocyte-derived. 

MMP-8 was significantly elevated in DKA plasma and plasma MMP-8 

concentrations correlated with DKA severity. MMP-8 mRNA was elevated in leukocytes 

from DKA patients, a finding that is consistent with the almost exclusive production of 

MMP-8 by neutrophils (28, 29). The primary substrates for MMP-8 are the fibrillary 

collagens, I, II, III, as well as other extracellular matrix components (13). Vascular 

leukocyte trafficking and blood brain barrier disruption are mediated by MMP-8, and 

may involve cleavage of the endothelial cell tight junction proteins (30, 31). Our results 
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raise the possibility that the DKA-induced elevations in MMP-8 may contribute to 

cerebrovascular endothelial perturbations. 

MMP-9 was significantly increased in DKA plasma and plasma MMP-9 activity 

on zymogram correlated with DKA severity. The 100 kDa MMP-9 band suggests that the 

plasma MMP-9 is primarily a latent form (32, 33), but it is available for immediate 

activation. Neutrophils are a likely source of MMP-9 in DKA plasma given that increased 

MMP-9 mRNA was found in our leukocyte preparation, that a ~135 kDa band was 

observed on zymography that likely reflects a well-described complex of MMP-9 with 

neutrophil-gelatinase-associated lipocalin (25), and that early rises in plasma MMP-9 

have been attributed to neutrophil degranulation of stored MMP-9 (34). Delayed sources 

of plasma MMP-9 may include de novo synthesis via monocytes, lymphocytes, dendritic 

cells and endothelial cells (35). CXCL-8, known to be elevated in DKA, stimulates 

expression of MMP-9 (36, 37). MMP-9 can proteolytically degrade virtually all 

components of the extracellular matrix, and MMP-9 has the ability to disrupt components 

of junctional complexes in the brain microvasculature (27, 38). 

Our data suggests that plasma MMP-2 (~70 kDa) is decreased in DKA, possibly 

due to the hyperglycemic conditions that are characteristic of DKA (39). Decreased 

MMP-2 facilitates increased extracellular matrix deposition in vascular structures as a 

primary function of MMP-2 is extracellular matrix turnover (40). Indeed, decreased 

plasma levels of MMP-2 during DKA may contribute to chronic thickening of basal 

lamina and pathologic remodeling of the extracellular matrix over multiple DKA 

episodes.  
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Plasma TIMP-4 was also mildly elevated in DKA and was at least partially 

leukocyte-derived. Increases in TIMP-4 are likely due to increased monocytic expression. 

While TIMP-4 is considered a broad MMP inhibitor, it also displays some specificity 

against MMP-2 (41) and has the ability to prevent cell surface activation of MMP-2 (42). 

Depressed levels of MMP-2, in conjunction with elevated plasma TIMP-4, could 

facilitate extracellular matrix deposition. 

The actions of elevated plasma MMP-8 and MMP-9 in DKA are largely 

unknown. The main role attributed to MMPs during inflammation is its proteolytic ability 

on cellular junctions, however, MMPs are now known to play a role in cytokine 

processing and generation of biologically active or inactive fragments (26). Processing of 

the DKA-relevant chemokine CXCL-8 (10), by both MMP-8 and MMP-9, has been 

shown to potentiate its chemotactic effects and biological function (43), MMP-mediated 

cytokine processing acts to facilitate leukocyte migration, thus facilitating endothelial 

disruption indirectly (26). 

Higher concentrations of plasma MMP-8 and MMP-9 were associated with 

greater DKA severity (lower pH). Acidic pH directly stimulates the induction and release 

of cellular MMPs (44-47), and a lower pH is associated with markedly more MMP-8 and 

MMP-9 catalytic activity (44, 48-50). Thus, DKA patients, by virtue of their blood acidic 

pH, are particularly susceptible to the deleterious actions of MMP-8 and MMP-9. DKA 

correction with intravenous fluid and exogenous insulin administration normalizes the 

blood pH. While MMP-8 activity would decrease with increasing pH to normal values 

(48, 50), MMP-9 still maintains much of its catalytic activity (44, 49). In contrast, MMP-
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2 is noted to have decreased activity in acidic pH conditions (51), perhaps resulting in 

further reduced MMP-2 functional capacity.  

MMPs have been shown to increase permeability of human brain microvascular 

endothelium (i.e., vasogenic edema) (18, 19), likely by degrading tight junction proteins, 

including occludin, claudin-5 and ZO-1 (17). Active MMP-9 has been most thoroughly 

investigated, and exerts actions at concentrations (100-250 ng/ml) that are compatible 

with those measured for latent MMP-9 in DKA plasma (1,509 ng/ml) (17, 18). The 

sequential addition of MMPs (i.e., MMP-8) has been demonstrated to boost substrate 

degradation (52). 

Our study has several limitations worthy of discussion. First, our data showed a 

leukocyte origin of the MMP-8 and MMP-9, but we cannot rule out other cellular 

contributions (i.e., endothelial cells). Future studies should try to isolate leukocyte 

subtypes for analyses from fresh blood samples. Second, the measured concentrations of 

MMP-8 and MMP-9 might not represent the exact concentrations encountered at the 

brain endothelial cell layer. The MMP concentrations adjacent to leukocytes adhered to 

the brain microvascular endothelium are almost certainly higher, but we have no way of 

measuring concentrations in such localized domains.  

In summary, our data show for the first time that DKA is a disease state 

associated with dynamic regulation of plasma MMPs. In particular, leukocyte-derived 

MMPs (e.g., MMP-8 and MMP-9) correlated with disease severity and they have the 

potential to degrade key components of the cerebrovascular tight junctions, perhaps 

explaining the susceptibility of children with DKA to intracranial complications. Our 
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data, provide a plausible mechanism for DKA-induced cerebrovascular perturbations, and 

represents a possible link between DKA mediated inflammation and DKA 

cerebrovascular crises.  
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CHAPTER 3: ELEVATED LEUKOCYTE AZUROPHILIC ENZYMES IN 

HUMAN DIABETIC KETOACIDOSIS PLASMA DEGRADE 

CEREBROVASCULAR ENDOTHELIAL JUNCTIONAL PROTEINS 
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3.1 Introduction 

Type 1 diabetes mellitus (T1DM) is a chronic affliction that occurs primarily in 

children, whose diagnosis has been occurring at an increasingly younger age (1, 2). A 

serious complication of T1DM is diabetic ketoacidosis (DKA), which results from severe 

insulin deficiency. DKA refers to the triad of metabolic acidosis, hyperglycemia and 

ketonemia (3). Intracranial cerebrovascular complications such as stroke (4), hemorrhage 

(5, 6) and cerebral edema (7, 8) have all been shown to be associated with DKA in 

children. Previous work in our lab has shown that DKA is associated with a systemic 

inflammatory response that stimulates polymorphonuclear neutrophil (PMN) adherence to 

the brain microvascular endothelium via CXCL-1/CXCL-8 (9, 10).  

PMN antimicrobial/proteolytic enzymes are normally stored safely in azurophilic 

granules (11). Upon inflammatory stimulation, PMN undergo degranulation and granules 

containing azurophilic enzymes (e.g., leukocyte elastase [HLE], proteinase-3 [PR-3], 

cathepsin G [CTSG] and myeloperoxidase [MPO]) are released by activated circulating 

or adherent PMNs. Elevated azurophilic enzymes produced by adherent PMNs may 

contribute to degradation of the vascular element and potentially contribute to 

destabilization of the BBB (12, 13). 

We hypothesized that DKA is associated with elevated PMN azurophilic enzymes 

and that some or all of these enzymes may lead to BBB dysfunction. Thus, our aims using 

human DKA blood were: (1) to measure plasma levels of PMN azurophilic enzymes, (2) 

to determine any relationships between enzyme levels and DKA severity and (3) to 

determine the consequential effects of enzyme levels on cerebrovascular endothelial 

junctional proteins in vitro. 
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3.2 Methods 

 This study was approved by the Health Sciences Research Ethics Board at 

Western University. Patients were recruited at our regional tertiary care centre; the 

Children’s Hospital, London Health Sciences Centre (London, ON). 

3.2.1 Human Subjects 

Consent was obtained from the legal guardians of all pediatric patients admitted 

with DKA, and both legal guardian consent and patient assent were obtained for type-1 

diabetes control patients. Biochemical diagnostic criteria for DKA include hyperglycemia 

> 11 mmol/L, bicarbonate < 15 mmol/L and ketonurea (14). DKA is classed according to 

severity of acidosis as mild DKA (venous pH < 7.3), moderate DKA (pH < 7.2) or severe 

DKA (pH < 7.1) (15, 16). A majority of DKA cases used in this study were severe. Clinic 

patients with insulin controlled type-1 diabetes (HbA1c < 10% and no DKA for at least 3 

months) served as controls (CON). 

3.2.2 Blood Collection and Processing 

Blood for research purposes was obtained on hospital presentation at the time of 

clinically-indicated blood draws. Blood was drawn into citrate-containing tubes 

(Vacutainers
®

, BD Biosciences, Mississauga, ON) by certified nursing personnel, placed 

on ice, and immediately transferred to the Translational Research Centre facility for 

processing by standard operating procedures (www.translationalresearch.ca, London, 

ON) (17, 18). Briefly, blood was centrifuged at 1500 g for 15 min (4
o
C), and the upper 

plasma layer was collected in 250 µl aliquots and frozen at −80 °C. Thawed plasma was 

maintained on ice for short periods prior to use in experiments and freeze-thaw cycles 

were avoided. 
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3.2.3 Polymorphonuclear Neutrophil Enzyme Measurement 

 The plasma concentrations of several major PMN-associated enzymes were 

measured via enzyme-linked immunosorbent assay (ELISA) in patients. We measured the 

plasma concentration of the serine proteases human leukocyte elastase (HLE; 1:100 

dilution; Abcam, Cambridge, UK), proteinase-3 (PR-3; 1:30 dilution; Cloud-Clone Corp., 

Houston, TX) and cathepsin G (CTSG; undiluted; MyBioSource, Inc., San Diego, CA). 

The plasma concentration of myeloperoxidase (MPO; 1:1 dilution; Abcam) as a marker of 

PMN activation was also assessed. Concentrations were adjusted for dilution factor. 

3.2.4 Cell Culture 

 Primary human brain endothelial primary cells (hBMEC) were kindly provided by 

Dr. Mahmud Bani (NRC, Ottawa, ON) and used as a model of brain microvascular 

endothelium in vitro. hBMEC were cultured in EBM-2 Endothelial Growth Basal 

Medium (Clonetics®; Lonza) supplemented with Clonetics® EGM®-2 MV SingleQuots 

kit (Lonza), 1% GA-1000 (Lonza) on gelatin (0.5% w/v in water; Sigma-Aldrich) coated 

plates. The cells were maintained at 37°C in a humidified atmosphere with 5% CO2 and 

reseeded when the cell monolayer became sub-confluent. hBMEC at passage 2-15 were 

used in all experiments. For treatments, hBMEC were seeded into 24-well plates (8.0×10
5 

cells/well) and grown until confluence. 

3.2.5 In vitro Experimental Approach 

 hBMEC monolayers were treated with human neutrophil PR-3 (Athens Research 

& Technology, GA), HLE (Abcam) and MPO (Abcam) diluted in serum-free VascuLife® 

basal medium (VL; Lifeline Cell Technology). Growth media was aspirated and wells 

were treated with basal medium only (-), HLE (2 µg/mL) (19), PR-3 (5 µg/mL) (20, 21) 
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or MPO (35 ng/mL) (22) by themselves or all in combination (Total) for 1 hour at 37°C 

(5% CO2). MPO-treated wells (MPO and Total) were supplemented with 80 µM H2O2 to 

provide a substrate for free radical generation. 

3.2.6 Immunoblotting 

Degradation of zonula occludens-1 (ZO-1) and β-catenin were assessed using 

immunoblotting. Following protease treatment, wells were washed 3 times with ice-cold 

phosphate buffered saline (PBS) then lysed in 200µL of hot SDS-electrophoresis sample 

buffer. Samples were then stored at -20°C. Prior to running, samples were boiled for 5 

minutes then electrophoresed with 10% SDS-polyacrylamide gel electrophoresis. Proteins 

were transferred overnight to a BioTrace polyvinylidene diflouride (PVDF) membrane 

(Pall Corporation, Port Washington, NY). Following transfer, the membranes were 

blocked in 5% skim milk in 0.1% Tween tris-buffered saline (TBST) for 1 hour at room 

temperature. Membranes were then incubated with primary antibody, polyclonal rabbit 

anti-ZO-1 (mid) 1:2000 (Invitrogen, Carlsbad, CA) or polyclonal rabbit anti-β-catenin 

1:4000 (Abcam, Cambridge, UK) in 2% skim milk in tris-buffered saline (TBS) for 2 

hours at room temperature. The membrane was then washed 3 times for 5 min each with 

TBST then incubated with secondary horseradish peroxidase-conjugated antibody, goat 

anti-rabbit (Invitrogen) in 2% skim milk in TBS for 1 hour at room temperature. Finally, 

membranes were washed for 5 min twice and then 10 min with TBS. For a loading 

control, each membrane was also probed with monoclonal anti-lamin-β1 (Abcam). Bound 

target antibodies were visualized using enhanced chemiluminescence detection (2.5mM 

Luminol, 0.4mM p-coumaric acid, 0.02% H2O2 in 100mM Tris buffer; Sigma-Aldrich). 

Images of the immunoblots were captured using a MicroChemi imaging system 
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(Froggabio) and band quantification was done with GelQuant Pro Software (Froggabio). 

Target bands were quantified as an optical density (O.D.) ratio to its corresponding lamin-

β1 band. 

3.2.7 Quantification of Monolayer Detachment 

 To determine whether there was significant hBMEC detachment following PMN 

enzyme treatment, we quantified the number of cells present in the culture media 

following treatment. hBMEC were grown on gelatin-coated 24-well plates until the 

monolayer reached confluency. Cells were treated for 1 hour at 37°C with PMN enzymes. 

Subsequently, the culture media from wells were collected into microtubes. Samples were 

centrifuged at 20,000 g for 10 minutes, supernatant discarded and pellets were 

resuspended in cold 0.4% Trypan Blue in PBS. Cells were resuspended in a much smaller 

volume (10X concentrated) relative to the original sample volume to allow for a more 

accurate cell counting. The number of cells in each sample was counted using a 

Haemocytometer (Hausser Scientific, Horsham, PA) and expressed as the number of cells 

detached per well.  

3.2.8 Statistical Analysis 

Data was screened for normality and assessed with either the Mann-Whitney U 

test (nonparametric data) or the Student’s t-test (parametric data). For multiple 

comparisons, the Kruskal-Wallace test with post-hoc Tukey test (nonparametric data) or a 

One-Way Analysis of Variance (ANOVA) test with post-hoc Holm-Sidak test (parametric 

data) was used. Correlation analysis utilized the Spearman’s rank correlation coefficient. 

All data is presented as mean ± SEM, statistical significance (P < 0.05). 
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3.3 Results 

Study patients 

Plasma was obtained from type-1 diabetes patients either in acute DKA or an 

insulin-controlled state (CON). The two groups were age- and sex-matched (Table 3-1; 

n= 16 patients/group). Patients with DKA had significantly higher HbA1C values, 

compared to those with controlled type-1 diabetes (P < 0.001), indicating elevated blood 

glucose over the previous three months. DKA patients all had elevated blood glucose 

(27.4 ± 8.3 mmol/L) and metabolic acidosis on blood gas measurements (pH 7.00 ± 0.03; 

PCO2 20.8 ± 2.3 mmHg; HCO3
-
 5.9 ± 0.8 mmol/L; lactate 2.9 ± 0.7 mmol/L).  

DKA patients had an elevated complete blood leukocyte count (Table 3-2; n= 16) 

relative to age-specific normal ranges. Specifically, all DKA patients had neutrophilia and 

monocytosis (n= 14; Two patients did not have a differential WBC count done).  
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TABLE 3-1. Human Clinical and Biochemical Data for Type-1 Diabetes 

Patients  

Insulin Controlled (CON) or with Acute Diabetic Ketoacidosis (DKA). (n= 

16/group) 

 

CON DKA P value 

Mean age (years) 11.4 ± 1.0 11.7 ± 0.8 0.83 

Male: female ratio 8:8 8:8 1.00 

HbA1c (%) 8.3 ± 0.3 11.7 ± 0.5 < 0.001 

pH N/A 7.00 ± 0.03 
 

HCO3
- 
(mmol/L) N/A 5.9 ± 0.8 

 
pCO2 ( mmHg) N/A 20.8 ± 2.3 

 

Lactate (mmol/L) N/A 2.9 ± 0.7 
 

Blood glucose (mmol/L) N/A 27.4 ± 8.3 
 

Data presented as mean ± SEM. 

a; Boldface indicates significant P value (P < 0.05). N/A; data not gathered 
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TABLE 3-2. Differential White Blood Cell Count for DKA Patients 

 Cell type n= 16 

Healthy 

Reference Range 

Status 

Leukocytes, total (x10
9
/L) 22.99 ± 2.16 4.0-10 Elevated 

Neutrophils (x10
9
/L) 18.43 ± 1.96 4.0-5.3 Elevated 

Lymphocytes 

(x10
9
/L) 2.04 ± 0.17 1.4-4.0 Normal 

Monocytes (x10
9
/L) 1.54 ± 0.19 0.2-0.8 Elevated 

Eosinophils (x10
9
/L) 0.02 ± 0.01 0.0-0.8 Normal  

Basophils (x10
9
/L) 0.11 ± 0.01 0.0-0.1 Normal 

Data presented as mean ± SEM. 
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Polymorphonuclear neutrophil enzyme measurements 

 In order to assess PMN degranulation, plasma levels of the major azurophilic 

granule enzymes were investigated. The concentration of HLE, PR-3, CTSG and MPO 

was measured in DKA and CON plasma. It was found that HLE was significantly 

increased in DKA plasma (85.99 ng/mL) compared to CON plasma (31.61 ng/mL; P < 

0.001; Figure 3-1A). PR-3 was significantly increased in DKA plasma (27.04 ng/mL) 

compared to CON plasma (8.87 ng/mL; P < 0.001; Figure 3-1B). CTSG was assessed but 

found to be not significantly changed between CON and DKA plasma (P=0.81; Figure 3-

1C). MPO, a major component of the PMN oxygen-dependent antimicrobial pathway, 

was significantly increased in DKA plasma (5.49 ng/mL) compared to CON plasma (3.25 

ng/mL) (P < 0.001; Figure 3-1D). 
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FIGURE 3-1. Plasma Leukocyte Azurophilic Enzymes in DKA. DKA plasma was 

associated with increased circulating PMN enzymes. Circulating HLE increased in DKA 

plasma compared to CON plasma (A). The average concentrations in CON and DKA 

plasma were 31.6 ng/mL and 85.99 ng/mL, respectively. PR-3 was also increased 

significantly in DKA plasma compared to CON plasma (B). The average concentrations 

for CON and DKA were 8.87 ng/mL and 27.04 ng/mL, respectively. CTSG was not 

significantly changed between CON and DKA groups (C). Finally, MPO increased in 

DKA plasma compared to CON (D). Observed concentrations were 5.49 ng/mL and 3.25 

ng/mL, respectively. N.S. not significant; **P < 0.01; ***P < 0.001; n= 14 per group (A); 

n= 15 per group (B); n= 16 per group (C, D). 
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PR-3 was inversely correlated with blood pH 

In order to determine the relationship between level of significantly altered plasma 

PMN azurophilic enzymes in DKA samples and disease severity, correlation analysis was 

applied to data points graphed as concentration versus blood pH which was used as a 

surrogate of DKA severity. Plasma PR-3 (Figure 3-2B) concentration in DKA was found 

to be significantly inversely correlated with blood pH (rs = 0.73, P < 0.01). In contrast, no 

correlation could be detected for HLE (Figure 3-2A) or MPO (Figure 3-2C) (rs= -0.24, P= 

0.41 and rs= 0.06, P= 0.82, respectively). 
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FIGURE 3-2. Plasma PMN Azurophilic Enzyme Correlation with pH in DKA.  

PR-3 was significantly correlated with disease severity. Correlation analysis was applied 

to the concentration of the 3 significantly increased PMN azurophilic enzymes, HLE, PR-

3 and MPO in DKA plasma with blood pH. Only PR-3 concentration displayed 

significant inverse correlation with blood pH (rs= -0.7317, P= 0.002, n= 15) (B). Both 

HLE (rs= -0.24, P= 0.41, n= 14) (A) and MPO (rs= 0.06, P= 0.82, n= 16) (C) were not 

significantly correlated with blood pH. A line of best fit was added to the graphs to aid in 

interpretation of the data points. 
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PMN enzymes disrupt ZO-1 and β-catenin in vitro 

 Elevated PMN enzymes were applied to hBMEC monolayers in order to assess 

their effect on protein junctions. Specifically, we investigated degradation of both ZO-1 

and β-catenin, critical structural elements of TJs and AJs, respectively. PR-3 and total 

enzyme mixture both significantly decreased ZO-1 expression (Figure 3-3A, B; P < 0.05, 

P <0.01, respectively). No changes were seen in regards to ZO-1 degradation products. 

PR-3 and total enzyme mixture also both significantly increased the appearance of 

smaller molecular weight β-catenin degradation products (Figure 3-3C, D; P < 0.01 and P 

< 0.001, respectively). No significant changes were seen with regard to full length β-

catenin. H2O2 by itself as a control did not have an effect on either ZO-1 or β-catenin, full 

length or degradation (Data not shown). The changes in protein levels were not due to cell 

detachment from the monolayer as there were no changes in the number of detached cells 

in treatment media following treatment (P= 0.60; n= 3; Data not shown). 
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FIGURE 3-3. Enzyme-Mediated Degradation of ZO-1 and β-Catenin. An enzyme 

cocktail mixture consisting of HLE, PR-3 and MPO was able to degrade β-catenin. 

hBMEC monolayers were treated with a combination of significantly elevated PMN 

azurophilic enzymes; (-), basal media only; HLE, 2 µg/mL HLE; PR-3, 5 µg/mL PR-3; 

MPO, 35 ng/mL MPO + 80 µM H2O2; Total, 2 µg/mL HLE + 5 µg/mL PR-3 + 35 ng/mL 

MPO + 80 µM H2O2. Representative blots for ZO-1 and β-catenin are shown in (A) and 

(C), respectively. Full length ZO-1 expression (B) was significantly decreased by PR-3 

treatment and total enzyme treatment whereas full length β-catenin (D) was not 

significantly altered. No significant ZO-1 degradation products were observed (B). Total 

enzyme mixture and PR-3 treatment resulted in an increase of a range of smaller 

molecular weight β-catenin degradation bands (D). *P < 0.05, **P < 0.01, ***P < 0.001; 

n= 7-8. 
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3.4 Discussion 

In this present study, we report that DKA is associated with elevated neutrophils 

and induces increased PMN degranulation. While HLE, PR-3 and MPO were all elevated 

in DKA plasma, only PR-3 was positively correlated with DKA severity. PR-3 alone, or 

in combination with the other PMN enzymes, resulted in decreased expression of the tight 

junction protein ZO-1 and degradation of the adherens junction protein β-catenin in vitro. 

To our knowledge, this study is the first to employ human DKA tissues in relation to 

pathological changes in systemic PMN azurophilic enzymes.  

In this study, the differential white blood cell count of DKA patients showed 

monocytosis and neutrophilia, consistent with previous reports of  increased circulation of 

leukocytes during DKA (23, 24). Also, we show that PMN in acute DKA patients 

undergo degranulation with the release of azurophilic granule-specific enzymes, HLE, 

PR-3 and MPO. Ubiquitous PMN activation in DKA patients is in direct agreement with 

our previous work that showed increased PMN-endothelial adherence due to the 

cytokines CXCL-1 and CXCL-8 (10) as well as DKA-induced regulation of leukocyte-

derived MMPs (Chapter 2).  

The increased circulating enzymes, HLE, PR-3 and MPO, are relevant to 

intracerebral complications as there is evidence linking them to endothelial perturbation 

(25-28). HLE can disrupt junctional proteins such as E-cadherin (19, 25, 29) and β-

catenin (30) and break down components of the extracellular matrix (31, 32). HLE has 

also been shown to facilitate PMN transmigration, thereby contributing to endothelial 

disruption indirectly (33). HLE can also activate MMP-9 (34, 35), thus potentiating the 

destructive effects of the MMPs that we have shown to be elevated in DKA plasma 
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(Chapter 2). The presence of extracellular PMN enzymes may also affect endothelial 

stability indirectly; HLE has also been shown to induce CXCL-8 expression (36, 37) 

which has been shown to facilitate PMN adherence to the endothelium in DKA (10). 

PR-3 is also involved in PMN transmigration (38), and MMP activation (35). PR-

3 has been shown to potentiate the effects of CXCL-8 by cleavage into a more potent 

form (39). Only PR-3 was positively correlated with DKA severity. This latter finding 

may be due to PMN activation by acidic extracellular pH as it has been shown that a sub 

fraction of PMN PR-3 localizes not to azurophilic granules but to secretory vesicles (40, 

41). Secretory vesicles are the first vesicles to be released by PMN following stimulation 

and tend to be released in a dose-dependent manner (42). These vesicles are released 

faster than azurophilic granules and so it is conceivable that only PR-3, at this stage in 

DKA progression, is released in a pH-dependent manner 

Through its ability to generate hypohalous acid, MPO can facilitate endothelial 

dysfunction, both in vitro and in vivo (22, 28, 43), as well as degrade the endothelial 

extracellular matrix (26). Hypochlorous acid generated by MPO can activate MMP-9 

(44), and MMP-9 was elevated in DKA (Chapter 2). Apart from its oxidative compound-

generating ability, MPO facilitates leukocyte activation and adhesion to the endothelium 

during inflammation (45, 46). 

In support of the notion that PMN azurophilic enzymes contribute to vascular 

dysfunction in DKA, a total enzyme cocktail containing significantly increased 

azurophilic enzymes, HLE, PR-3 and MPO decreased ZO-1 expression in brain 

microvascular endothelial cells in vitro. ZO-1 is an integral component of the tight 
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junction as it anchors both occludin and claudin to the actin cytoskeleton and is important 

for junctional regulation (47). Reduced expression of ZO-1 facilitates endothelial 

permeability (48-50).  

Our total enzyme cocktail also degraded β-catenin in human brain endothelial 

cells. β-catenin is one of the terminal cytoplasmic proteins in the adherens junction. Its 

role is to anchor the intercellular component VE-cadherin to the cytoskeleton and it is 

responsible for junctional regulation (51). β-catenin loss is associated with vascular 

instability and hemorrhage (52). However, we did not observe a significant decrease in 

full length β-catenin concurrently with appearance of the degradation products, indicating 

increased protein turnover as opposed to only protein breakdown. Also, since we did not 

observe any enzyme-mediated degradation products with ZO-1, this implies that β-

catenin and ZO-1 are differentially processed. These changes most likely occurred 

through extracellular-intracellular signalling as it has been shown that disruption of both 

the membrane-bound proteins occludin and VE-cadherin result in disruption of their 

cytosolic counterparts (53, 54). 

The concentrations of PMN enzymes used in our in vitro experiments were greater 

than what we measured in plasma. Physiologically, PMN degranulation occurs at the 

endothelial surface, or inside the intercellular compartment. In actuality, the 

concentrations at the endothelium of PMN-derived molecules are almost certainly greater 

than those that we measured in plasma. In fact, HLE (55, 56), lactoferrin and defensins 

(57) and cytokines (58) have been suggested to reach local concentrations of up to 2 

mg/ml, following PMN degranulation. The levels of enzymes we measured in plasma are 

most likely “spill over” from more localized domains and would be diluted as compared 
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to the effective concentrations at the level of the endothelium. Therefore, we used enzyme 

concentrations used in other publications (19-22) 

As neutral proteases, both HLE and PR-3 may display slightly reduced catalytic 

activity at acidic pH but as pH is normalized during DKA treatment, HLE and PR-3 

activity would increase (59, 60). Our observation that PR-3 release is correlated with a 

lower pH raises the possibility that increased PR-3 release under acidotic conditions may 

compensate for decreased catalytic activity. MPO is known to be more active under acidic 

conditions as well, thereby potentiating its ability to generate oxidative compounds in 

DKA patients prior to treatment (61).  

This study has several limitations. First, we assumed that HLE and PR-3 were of 

PMN origin due to their release concurrent with PMN-specific MPO. Other notable 

plasma sources of HLE and PR-3, however minor, include endothelial cells (62) and 

monocytes (63). Future studies should examine specific leukocyte components isolated 

from DKA patients. Second, the release and maximal effects of the individual enzymes, 

HLE, PR-3 and MPO during DKA and its treatment are currently unknown and require 

further examination. 

We have shown previously that pediatric DKA is associated with inflammation 

and PMN adherence to brain microvascular endothelial cells. We now demonstrate 

increased circulating PMN azurophilic enzymes (HLE, PR-3 and MPO) that reduced the 

expression of the tight junction protein, ZO-1 and degraded the adherens junction protein, 

β-catenin. These findings support the notion of DKA as an inflammatory condition and in 
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conjunction with our other work (10), implicates PMN activation and degranulation in 

DKA-associated BBB disruption.  
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CHAPTER 4: DISCUSSION 
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4.1 Discussion  

DKA is associated with intracerebral vascular complications in children, such as 

stroke (1), hemorrhage (2) and cerebral edema (3). The mechanisms of these 

complications are not well known. 

DKA is an inflammatory condition involving increases in circulating cytokines 

such as CXCL-1 (GROα), CXCL-8 (IL-8), IL-6 and IFN-α2 (4). These cytokines are 

known to cause activation of leukocytes, including PMN (5). Thus, I hypothesized that 

during pediatric DKA, inflammation leads to widespread activation of leukocytes which 

then release destructive enzymes. This enzyme surge could be responsible for facilitating 

cerebrovascular damage. 

 In this thesis, we observed alterations in the plasma level of a number of MMPs 

and TIMP-4 as well as PMN azurophilic enzymes. DKA plasma was associated with 

decreased MMP-2 and increased MMP-8, MMP-9 and TIMP-4. DKA plasma was also 

associated with increased PMN azurophilic enzymes, HLE, PR-3 and MPO. Our findings 

are consistent with a widespread inflammatory condition occurring in DKA patients. 

HLE, PR-3 and MPO are major components of PMN azurophilic granules, which are 

only released upon degranulation following PMN activation (6). In fact, MPO is 

exclusively a component of the PMN azurophilic granules and as such is widely utilized 

as a marker for PMN activation. MMP-8 is found in the PMN secondary granules (7) and 

is released upon activation as well, albeit earlier in inflammation than the other PMN 

enzymes (8). Interestingly, active transcription of MMP-8 is thought to occur only in 

immature PMN, indicating mobilization from bone marrow of immature PMN during 

DKA: a hallmark of an overwhelming inflammatory response (6). MMP-9 is, among 
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other sources, associated with the PMN tertiary granule. Further support for notion of 

PMN-associated MMP-9 comes from the detection of lipocalin-associated MMP-9 

complex in DKA plasma, characteristic of PMN-associated MMP-9. 

 The plasma levels of MMP-8, MMP-9 and PR-3 were positively correlated with 

DKA severity. The aforementioned correlations are in agreement with studies that have 

shown that acidic pH directly stimulates release of MMPs from cells (9-11) and leads to 

enhanced PMN activation (12). The severity of acidosis during DKA has previously been 

shown to be determinant of the magnitude of consciousness impairment. Cerebral 

function in DKA patients with cerebral edema is closely tied to pH; a lower pH is 

correlated with increased level of cognitive impairment (13). Our data supports the 

notion that the relationship between pH and severity of DKA neurological impairment 

may involve pathological regulation of MMP-8 and MMP-9 as well as PR-3.  

 We have shown that DKA plasma is associated with increased levels of MMP-8, 

MMP-9, HLE, PR-3 and MPO. The presence of these enzymes at the level of the 

endothelium could potentially lead to breakdown of the intercellular junctions and 

facilitate fluid movement into the brain (e.g., vasogenic edema). Indeed, using human 

brain microvascular endothelial cells, we have shown a potential role for PR-3, HLE and 

MPO in disruption of both AJs and TJs. Numerous studies have implicated the MMPs 

and PMN azurophilic enzymes in facilitating breakdown of the BBB (14-17).  

 Our data raises the possibility of a 2-stage insult to the brain microvasculature. 

We have shown that DKA stimulates the release of MMP-8, MMP-9, HLE, PR-3 and 

MPO. Following DKA-induced release of these enzymes, MMP-8 and MPO can be 
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expected to display higher catalytic activity during the initial stages of DKA when blood 

pH is low (18, 19). During treatment and the ensuing normalization of pH, the catalytic 

activity of MMP-9 (20), HLE and PR-3 (21) can be expected to increase, potentially 

leading to a second wave of protease activity.  

 These studies have provided insight into the circulating protease profile occurring 

in pediatric DKA patients. Future studies could examine the effects on these enzymes in 

vivo by assessing markers of BBB disruption in DKA plasma. Solubilized junctional 

proteins in circulation like occludin, claudin-5 and cadherin might indicate cleavage and 

subsequent release from the brain endothelium. Unfortunately, due to the ethical 

ramifications of patient studies, it is difficult to probe more into the physiological 

functions. The effects of these enzymes on BBB structure and function could be assessed 

in vitro. Isolated PMN could be applied to human cerebromicrovascular endothelial 

monolayers under DKA conditions (e.g., acidosis, hyperglycemia, and DKA-specific 

cytokine mixture) in order to assess their direct effect on monolayer integrity. The effect 

of PMN on the BBB could be assessed in a juvenile mouse model of DKA as well (22). 
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FIGURE 4-1. Proposed Mechanism of PMN-Mediated DKA 

Endothelial Perturbations. DKA is a well-known inflammatory 

condition. Inflammatory cytokines in circulation serve to activate 

endothelial cells and PMN, recruiting them to the endothelial surface. 

PMN degranulate upon activation and the released proteases destroy 

the junctions between adjacent cells. Released proteases may also 

potentiate existing DKA-mediated cytokines, thereby facilitating a 

positive feedback mechanism. This results in the loss of vascular 

integrity, leading to fluid and solutes moving across the BBB, thus 

facilitating DKA-mediated cerebrovascular dysfunction. 
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