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Abstract 

Less than a quarter of reintroduction programs have succeeded in re-establishing a self-

sustaining population of an extirpated species. Optimal source population selection, based on 

an evolutionary and ecological perspective, could increase the fitness of translocated 

individuals, thereby improving the success rate of restoring extirpated populations. Here, 

using three source populations of Atlantic salmon, Salmo salar (LaHave River, Sebago Lake, 

and Lac Saint-Jean), that are being used for reintroduction efforts into Lake Ontario, I 

examined two optimal source population selection approaches: environment matching and 

adaptive potential. For environment matching, source populations from locations containing 

similar key environment features as the reintroduction location should contain adaptations to 

these features. For adaptive potential, source populations with high heritable genetic 

variation should have the potential to adapt to new selection pressures, such as the key 

environment features in the reintroduction location. I tested environment matching using 

experimental settings by exposing the three source populations to two key environment 

features that are likely impediments to a successful reintroduction of Atlantic salmon into 

Lake Ontario: the presence of non-native salmonids and a high thiaminase diet that can lead 

to a thiamine (vitamin B1) deficiency. I also quantified the amount of within-population 

heritable (additive) genetic variation for early-life history traits to assess the adaptive 

potential of the source populations. Although the average amount of heritable genetic 

variation was the highest for early-life history traits of the Sebago population, the amount 

was low, suggesting that the traits have a limited potential to adapt to any new selection 

pressures in Lake Ontario. Overall, the Sebago population (a match to both key environment 

features) had the highest performance, followed by the Saint-Jean population (match to a 
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high thiaminase diet but not non-native salmonids), and finally the LaHave population (not 

a match to either feature). The pattern of overall performance and the low amount of 

heritable genetic variation of the three source populations generally supports environment 

matching over adaptive potential; however, further population comparisons are required over 

the entire life-cycle and in a fully natural setting to make more robust recommendations for 

large scale reintroduction efforts of Atlantic salmon into Lake Ontario.  

 

Keywords: non-native species, interspecific competition, multi-species competition, cortisol, 

11-ketotestosterone, microhabitat use, thiaminase, thiamine deficiency, genetic architecture  
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Chapter 1  

1 General Introduction* 

1.1 Reintroduction of Extirpated Populations 

The extirpation of native populations from historically occupied habitats is a major threat 

to conserving biodiversity as it is often a precursor to the extinction of the species and the 

loss of ecosystem services. Reintroduction programs, in which conspecific individuals are 

translocated into formerly occupied habitats, have emerged as an important conservation 

tool for reversing extirpations (Armstrong and Seddon 2008; Seddon 2010; IUCN 2013). 

These programs are intuitively appealing as a means of restoring populations and 

communities towards a historical baseline, and have been practiced for over a century 

(Kleiman 1989). In particular, there has been a pronounced increase in the number of 

reintroduction programs, rising from 124 species in the early 1990s to 424 species in 

2005 (Seddon et al. 2014). However, even in the absence of obvious barriers to 

population reintroduction, less than a quarter of reintroduction programs are successful at 

restoration (Fischer and Lindenmayer 2000). To increase success, a better understanding 

of the factors contributing to the outcome of reintroduction programs is needed. 

A number of guidelines and best practices for reintroduction programs have emerged, 

which largely focus on habitat quality and the demographics and logistics of translocation 

(Montalvo et al. 1997; Armstrong and Seddon 2008). For example, these guidelines 

indicate that population reintroduction should only be considered if the original causes of 

                                                 
*
 A part of this chapter (up to Atlantic salmon in Lake Ontario) is in review: Houde ALS, Garner SR, Neff 

BD. 2015. Restoring biodiversity through reintroductions: strategies for source population selection. Restor 

Ecol, in review. 
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the extirpation have been addressed and the habitat is again capable of supporting the 

species; otherwise habitat restoration is advised (Beck et al. 1994; Dobson et al. 1997; 

Palmer et al. 1997; Cochran-Biederman et al. 2015). Other guidelines suggest avoiding 

source populations that could suffer from deleterious genetic effects such as inbreeding 

depression or domestication (Montalvo et al. 1997; Weeks et. al 2011). Inbreeding 

depression may occur in small source populations when fitness-related traits (e.g. 

survival and reproductive traits) are reduced by inbreeding, and typically results from 

either the expression of deleterious recessive alleles or the loss of diversity at loci where 

heterozygosity is advantageous (Allendorf et al. 2013). Source populations may also be 

impaired by domestication selection that can result in the accumulation of alleles that are 

deleterious to individuals released back into the wild (Allendorf et al. 2013). 

Domestication selection may be especially problematic when a population has had 

multiple generations of captive breeding (Lynch and O’Hely 2001; Araki et al. 2007). 

These recommendations on the genetics of source populations have largely been 

incorporated into reintroduction programs (Armstrong and Seddon 2008; Weeks et al. 

2011; IUCN 2013).  

Despite potentially major effects on the outcome of reintroduction programs, few clear 

guidelines exist on how to optimally select source populations for translocation (see 

Cochran-Biederman et al. 2015). Based on case studies reviewed by the International 

Union for Conservation of Nature (Soorae 2008, 2010, 2011), reintroduction programs 

typically select one source population for reintroduction based on: (1) the only remaining 

source population; (2) a source population of sufficient size that should not have a 

reduction in viability if individuals were removed for translocation; or (3) the closest 
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geographic source population to the reintroduction location. However, I propose that 

source population selection based on an evolutionary and ecological perspective could 

greatly improve the success of reintroduction programs, and the strategies for identifying 

these source populations are part of the focus of this introductory chapter. Previous work 

on source population selection can be broadly categorized into the PRE-EXISTING 

ADAPTATION STRATEGY, which focuses on populations with a high frequency of 

genotypes that confer adaptations (i.e. high fitness) in the reintroduction location, or the 

ADAPTIVE POTENTIAL STRATEGY, which focuses on populations with high heritable 

genetic variation that confer the potential to adapt (i.e. respond to selection pressures) in 

the reintroduction location. Here I review the theoretical and empirical support for these 

two strategies and develop needed recommendations for selecting source populations.  

1.2 Pre-Existing Adaptation Strategy 

Source populations may differ in their viability in the reintroduction location because of 

genetically-based differences in individual fitness resulting from local adaptation. Local 

adaptation is a genotype by environment pattern in which the genotypes of local 

individuals have higher fitness in their local environment than they do in a foreign 

environment (Kawecki and Ebert 2004). Local adaptation can occur when local 

environments differ among populations of a species, resulting in different natural 

selection pressures. Provided gene flow among populations is restricted, genetically-

based differences in individual fitness can accumulate among the populations. Local 

adaptation can be driven by a wide range of key environment features, including 

temperature, competitors, predators, prey type, parasites, and pathogens (for reviews in 

plants see Lesica and Allendorf 1999; Anderson et al. 2011; Savolainen et al. 2007; 
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marine invertebrates: Sanford and Kelly 2011; lepidopterans: Aardema et al. 2011; 

salmonids: Taylor 1991; Garcia de Leaniz et al. 2007). For example, both colder and 

warmer temperatures relative to the local environment can reduce the survival and growth 

of translocated trees (Savolainen et al. 2007).  

If source populations with adaptations—  i.e. a high frequency of genotypes that confer 

high fitness— to the key environment features of the reintroduction location can be 

identified, targeting those populations for translocation can increase the success of 

reintroduction programs. Knowledge of local adaptation could therefore serve as a basis 

for identifying source populations with adaptations to the key environment features of the 

reintroduction location. Local adaptation is both taxonomically and geographically 

widespread, with fitness advantages of local populations observed in 71% of reciprocally 

translocated plants and animals and the fitness advantage averaging 45%, meaning that 

the fitness of local individuals was on average 45% greater than the fitness of foreign 

individuals (Hereford 2009). The fitness advantage tends to be positively correlated with 

the genetic similarity and environment similarity between the source and foreign 

locations (Raabová et al. 2007; Hereford 2009; Fraser et al. 2011). That is, genetically or 

environmentally dissimilar source populations tend to show lower individual fitness when 

translocated into a foreign location than similar source populations. Geographically close 

source populations also tend to show higher inidivudal fitness in foreign locations, 

although this relationship likely arises as a by-product of genetic and environment 

similarity, as both decrease with increasing geographic distance. Identifying source 

populations with adaptations to the key environment features of the reintroduction 

location can therefore be accomplished using genetic or environment similarity. I term 
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these two approaches (i) ancestry matching and (ii) environment matching, which are not 

mutually exclusive. 

1.2.1 Ancestry Matching Approach 

Using an ancestry matching approach, a source population is selected for translocation 

based on genetic similarity to the extirpated population. This approach is based on the 

premise that close genetic relatives could share genes that confer adaptations to the key 

environment features of the reintroduction location. The same genes may occur in both 

the source and extirpated populations because they were present in a recent common 

ancestor or were transferred between populations through gene flow (Moritz 1999). 

Reintroduction programs could use historical samples of the extirpated population, if 

available, and collect samples from source populations to directly measure genetic 

similarity. Similarity is typically estimated from phylogenetic relationships or historical 

gene flow using similarity at genetic markers (for methods see Goudet 1995; Holder and 

Lewis 2003). Often several unlinked genetic markers, such as microsatellite loci or single 

nucleotide polymorphisms (SNPs) need to be used to provide sufficient resolution for 

estimating the genetic similarity between populations (Beaumont and Nichols 1996; 

Parker et al. 1998). Alternatively, geographic distance between the source and foreign 

locations can be used as a proxy for genetic similarity as there is often a correlation 

between the two variables (e.g. r = 0.22-0.52 for two studies on plants, Montalvo and 

Ellstrand 2000; Raabová et al. 2007); albeit, direct estimates of genetic similarity had a 

stronger relationship with the fitness-related traits of translocated populations than 

geographic distance in these two studies. 
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1.2.2 Environment Matching Approach 

Using an environment matching approach, a source population is selected for 

translocation based on environment similarity between the source and reintroduction 

locations. Locations containing similar key environment features tend to produce 

individuals with similar phenotypes, either through selection on the same genes (e.g. 

Campbell and Bernatchez 2004; Turner et al. 2010; Schumer et al. 2011) or on different 

genes that produce similar phenotypes (e.g. Hoekstra and Nachman 2003; Nachman et al. 

2003; Campbell and Bernatchez 2004; Hoekstra et al. 2006). Regardless of the 

underlying mechanism, reintroduction programs could measure the similarity of key 

environment features between source and reintroduction locations. Analysis of similarity 

is typically accomplished using distance matrices constructed of measurements of the key 

environment features (for methods see Montalvo and Ellstrand 2000; Raabová et al. 

2007; Lawrence and Kaye 2011). Geographic distance between the source and foreign 

locations can also be used as a proxy for environment similarity when there is expected to 

be a correlation between the two variables (e.g. r = 0.22-0.75 in Montalvo and Ellstrand 

2000; Raabová et al. 2007); albeit, direct estimates of environment similarity had a 

stronger relationship with the fitness-related traits of translocated populations than 

geographic distance in these two studies (also see Lawrence and Kaye 2011). 

1.3 Adaptive Potential Strategy 

The second strategy for selecting source populations is to emphasize the potential to 

adapt to the key environment features of the reintroduction location. This strategy favours 

the translocation of source populations with high heritable genetic variation. The 
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evolutionary response (R) to selection is based on the selection pressure (S) and the 

amount of heritable genetic variation (h
2
) underlying the phenotype (R = Sh

2
; Falconer 

and Mackay 1996). That is, for a given selection pressure, such as that exerted by a key 

environment feature, there is a stronger evolutionary response (genetically induced 

change in phenotype) when there is a higher amount of heritable genetic variation 

underlying phenotypes. An association between the amount of heritable genetic variation 

and the potential to adapt is supported by laboratory populations of Drosophila 

melanogaster (Reed et al. 2003). Also, the amount of heritable genetic variation is 

associated with local persistence for metapopulations of butterflies (Melitaea cinxia) 

(Saccheri et al. 1998). Two approaches that provide high heritable genetic variation are 

translocations of individuals from (i) a single source population that has high heritable 

genetic variation and (ii) multiple source populations that are genetically or 

environmentally dissimilar from each other.  

1.3.1 Single Source Population Approach 

Using a single source population approach, a source population is selected for 

translocation because it possesses a high amount of heritable genetic variation. This 

approach typically assumes that heritable genetic variation scales with neutral genetic 

variation, which is supported in laboratory populations of Drosophila (Briscoe et al. 

1992). Genetic markers can be used to estimate the amount of within-population neutral 

genetic variation using indices such as heterozygosity, allelic richness, or the proportion 

of polymorphic loci (for methods see Excoffier and Heckel 2006). Population size can 

sometimes be used as a proxy for the amount of neutral genetic variation because of a 

correlation between the two variables (r = 0.7 for animal populations, reviewed by 
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Frankham 1996), assuming the population has not experienced a bottleneck otherwise 

there may be a weak correlation between these two variables (Reed and Frankham 2001). 

However, one concern with using neutral genetic markers (or population size) is that 

there might be no relationship between the amount of neutral and heritable genetic 

variation (Reed and Frankham 2001). Alternatively, quantitative genetic methods can be 

used to estimate the amount of heritable genetic variation for survival and fitness-related 

traits using a parent-offspring correlation or an analysis of variance of offspring traits 

produced using specific breeding designs (for methods see Falconer and Mackay 1996; 

Lynch and Walsh 1998). Although, such analyses are often costly and infrastructure-

intensive, they have an advantage of being able to target specific traits that are thought to 

be important for fitness (e.g. Puurtinen et al. 2009). 

1.3.2 Multiple Source Populations Approach 

Using a multiple source population approach, two or more source populations with 

distinctive genetic or environmental backgrounds are selected for translocation, which 

combined as a mixed-source group should produce a high amount of heritable genetic 

variation. Distinctive source populations can be identified based on genetic and 

environment dissimilarity, using methods similar to those described for identifying 

ancestry and environment matches. However, the multiple source population approach is 

associated with two major concerns.  

First, translocations from multiple source populations may result in inter-population 

breeding, which can lead to outbreeding depression or hybrid breakdown (Lesica and 

Allendorf 1999; Weeks et al. 2011; IUCN 2013; Cochran-Biederman et al. 2015), 
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especially given the distinctive genetic or environmental backgrounds of the source 

populations (Edmands 2007). Outbreeding depression may arise in hybrids because of 

genetic incompatibilities between populations (Lynch 1991; Neff 2004; Neff et al. 2011) 

and may not be detected until at least the second generation of inter-population breeding 

(Edmands 2007). For example, outbreeding depression led to reduced growth of second-

generation inter-population hybrids when multiple source populations of slimy sculpin 

(Cottus cognatus) were translocated into Minnesota as part of a reintroduction program 

(Huff et al. 2011).  

Second, the multiple source population approach is essentially a bet-hedging strategy, 

and, as such, provides little mechanistic insight into the factors that influence the 

outcome of reintroduction programs. For example, a mixed-source group by chance may 

contain an ancestry match or an environment match that has high fitness not because of 

adaptive potential, but because of pre-existing adaptations in the reintroduction location. 

Post-translocation monitoring could reveal a single source population with higher fitness 

and might aid such mechanistic analysis. Although reintroduction programs would indeed 

benefit from focussing on this single source population after the initial translocation, if 

the knowledge of how to select the population was available a priori, the fitness of 

initially translocated individuals could be increased relative to using individuals from 

multiple source populations. Some caution is warranted when using the multiple source 

populations approach because of concerns of outbreeding depression and delayed or lack 

of identification of a single best source population. 
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1.4 Atlantic Salmon in Lake Ontario 

Atlantic salmon (Salmo salar) in Lake Ontario provide an ideal study species to examine 

source population selection approaches for reintroducing extirpated populations. Reports 

suggest that Lake Ontario Atlantic salmon were so abundant that people could walk on 

their backs during upstream migration (MacCrimmon 1977), harvest individuals with 

pitchforks and clubs, and harvest over one thousand individuals in a night (Whitcher and 

Venning 1869), indicating that Lake Ontario Atlantic salmon was a large freshwater 

fishery. Lake Ontario Atlantic salmon were extirpated by 1898, mainly because of habitat 

degradation (Crawford 2001). Dams blocked adults from accessing suitable spawning 

habitat, thus forcing adults to spawn in unsuitable areas (Wright 1892). Pollution from 

agriculture and mill runoff increased siltation of the spawning sites causing the 

suffocation of developing eggs (Wilmot 1878; 1882). Deforestation increased water 

temperatures to intolerable levels (Wilmot 1882). Finally, overfishing with trap nets and 

other devices removed large amounts of adults that had the potential to reproduce 

(Wilmot 1869).  

The Lake Ontario habitat has been revitalized such that many of the original factors 

leading to the extirpated have been largely addressed (Beeton 2002). Lake Ontario and its 

tirbutaries also currently supports ecologically-similar salmonid species, but recent 

attempts to reintroduce Atlantic salmon using one source population have yet to succeed 

in establishing a self-sustaining population (Stewart and Schaner 2002; COSEWIC 2006, 

2010). Although there has been restoration to ameliorate the environment of Lake 

Ontario and its tributaries, the current environment is still quite different from its 

historical conditions (Beeton 2002, see summary in Table 1.1). Recent environmental 
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changes in Lake Ontario and its tributaries are likely impeding a successful reintroduction 

and two additional source populations are being used for reintroduction efforts 

(COSEWIC 2006). In particular, two key environment features of Lake Ontario and its 

tributaries have been identified as likely impediments to a successful reintroduction of 

Atlantic salmon: (1) the presence of introduced non-native salmonid species and (2) the 

presence of introduced high thiaminase-containing prey fishes that lead to a thiamine 

deficiency (Dimond and Smitka 2005; COSEWIC 2006, 2010).  

Recently introduced non-native salmonids are likely to be detrimental to Atlantic salmon 

in Lake Ontario, its tributaries, and in general (Dimond and Smitka 2005; COSEWIC 

2006, 2010). Beginning in the 1860s, millions of these non-native salmonids were 

introduced to Lake Ontario and its tributaries to provide a fishery and to decrease 

overpopulated prey fishes, specifically alewife (Alosa pseudoharengus) and rainbow 

smelt (Osmerus mordax) (Parsons 1973; Crawford 2001; Beeton 2002; Kerr 2006). These 

include the Pacific salmonids‒ Chinook salmon (Oncorhynchus tshawytscha), coho 

salmon (O. kisutch), rainbow trout (O. mykiss), and one European salmonid‒ brown trout 

(S. trutta) (Stanfield et al. 2006). Throughout their evolutionary history, North American 

populations of Atlantic salmon have not co-occurred with any of these non-native 

salmonid species until recently and although Atlantic salmon and brown trout are broadly 

sympatric in Europe, North American populations of Atlantic salmon diverged 

approximately 600,000 - 700,000 years ago (King et al. 2007). Because Atlantic salmon 

do not naturally coexist with these non-native salmonid species they may be exposed to 

stronger competition if living in sympatry (Hearn 1987; Fausch 1988). 
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Table 1.1. Summary of Environmental Changes in Lake Ontario and its Tributaries and 

their Anticipated Effect on Atlantic Salmon (Salmo salar). The presence of introduced 

non-native salmonid species and high-thiaminase containing prey fishes (i.e. alewife and 

rainbow smelt) have been identified as two key environment features of Lake Ontario and 

its tributaries that are likely impediments to a successful reintroduction of Atlantic 

salmon (Dimond and Smitka 2005; COSEWIC 2006, 2010). 

Change in the 

environment  
Additional details 

Anticiapted effect on  

Atlantic salmon 

Extent of the change to 

the environment 

Eutrophication -run-off from 

agriculture  

-sewage waste from 

cities 

-phosphate detergents 

-increased adult mortality because 

of low dissolved oxygen  

-increased adult mortality because 

of increased risk of infection  

habitat restoration has 

reduced the magnitude 

of change 

Land-use -dams 

-forestry 

-agriculture 

-urbanization 

-increased juvenile mortality due to 

loss of tributary habitat and changes 

in hydrology 

 

habitat restoration has 

reduced the magnitude 

of change 

Overfishing -recreational and 

commercial fishing 

-increased adult mortality because 

direct fishing of salmon 

reduced commercial 

fisheries has reduced 

the magnitude of 

change 

Invasive 

species 

-sea lamprey  

-zebra and quagga 

mussels 

-round goby 

-alewife  

-rainbow smelt 

-increased adult mortality  

-thiamine deficiency in adults 

because of thiaminase in introduced 

prey fishes 

currently a large 

change 

Introduced 

species 

-brown trout 

-rainbow trout  

-Chinook salmon 

-coho salmon 

  

-increased mortality due to 

interspecific competition  

 

currently a large 

change 

Pollution -chlorinated organics  

-mercury 

-increased mortality because of 

reduced health 

 

although there is 

limited current input, 

still a change because 

of persistent effects 

from historical input 

Climate 

change 

-temperature increase 

 

-increased mortality because of low 

water  levels and dissolved oxygen 

 

projected change in the 

future 
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Of the introduced non-native salmonids, brown trout and rainbow trout have similar 

habitat preferences to Atlantic salmon for riffle microhabitats in nursery streams and tend 

to be more aggressive than Atlantic salmon (e.g. Gibson 1981; Scott et al. 2005). In 

contrast, Chinook salmon and coho salmon prefer pool microhabitats in nursery streams 

and exhibit comparable aggression as Atlantic salmon (e.g. Heland and Beall 1997; 

Holecek et al. 2009). Based on the high ecological overlap (Hutchinson 1957) and 

differences in levels of aggression (Holway and Suarez 1999), it is thus predicted that 

competition with brown trout and rainbow trout, rather than with Chinook salmon and 

coho salmon, will have the biggest impact on survival and fitness-related traits of juvenile 

Atlantic salmon. 

In addition, the introduction of high thiaminase-containing prey fishes is likely to be 

detrimental to Atlantic salmon. Thiaminase is an enzyme that breaks down thiamine 

(vitamin B1) (Brown et al. 2005). Thiaminase occurs naturally and can be found in large 

quantities in certain prey fishes. Historically, low thiaminase-containing lake herring or 

cisco (Coregonus artedi) and bloater (C. hoyi) were the dominant prey fishes for Atlantic 

salmon in Lake Ontario (Fitzsimons et al. 1998). After cisco and bloater populations 

declined because of overfishing and environmental changes (Beeton 2002), high 

thiaminase-containing alewife and rainbow smelt were introduced to increase prey fish 

populations for predatory fishes (Fitzsimons et al. 1998; Crawford 2001). Alewife and 

rainbow smelt eventually replaced cisco and bloater as the dominant prey fishes in the 

diet of salmonids in Lake Ontario (Dimond and Smitka 2005). Similarly, the recently 

introduced round goby (Neogobius melanostomus) has been increasing in the diet of Lake 

Ontario salmonids and contains variable (low to high) thiaminase content (Tillit et al 
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2005; Honeyfield et al. 2012). Atlantic salmon consuming high thiaminase-containing 

prey fishes can develop a thiamine deficiency, which is associated with ‘wiggling’ 

behaviour and the loss of equilibrium that can be fatal because of a reduced ability to feed 

and migrate (Brown et al. 2005; Fitzsimons et al. 2005). Mature females may also pass on 

the thiamine deficiency to offspring via her eggs, resulting in significant offspring 

mortality and, in some cases, a complete reproductive failure (Fisher et al. 1996; Ketola 

et al. 2000). Similarly, mature males may have reduced reproductive function because of 

reduced spermatogenesis (Gangolf et al. 2010) and decreased offspring survival because 

of an unidentified change in sperm quality (Koski 2002). Interestingly, recent evidence 

suggests that alewife, present at the time of the historical Atlantic salmon population 

decline, may have contributed to the extirpation of this population because of a thiamine 

deficiency (Smith 1892; Smith 1995). These factors together may result in thiamine 

deficiency being the primary factor impeding a successful reintroduction of Atlantic 

salmon into Lake Ontario because it can cause high mortality and low reproductive 

success. 

Certain populations of Atlantic salmon may be better able to cope with the two features 

that are likely impeding a successful reintroduction into Lake Ontario, i.e. non-native 

salmonids and high thiaminase-containing prey fishes. Populations of salmonid species 

may have genetic differences in behaviour because of differences in their local 

environments, such as the intensity of predation (Rosenau and McPhail 1987; Swain and 

Holtby 1989; Houde et al. 2010; Van Zwol et al. 2012), which may alter competitive 

ability. For example, populations that show increased aggression (Holway and Suarez 

1999) or avoid agonistic interactions (Metcalfe 1986) may be better at competing with 
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non-native salmonids. Similarly, there may be differences among populations in their 

ability to process diets that are high in thiaminase. Although there is a clear link between 

the consumption of high thiaminase-containing prey fishes and the development of a 

thiamine deficiency (Honeyfield et al. 2005), it is less clear to what extent the ability to 

cope with ingested thiaminase varies within and among populations of salmonid species. 

For example, some freshwater resident populations of Atlantic salmon primarily consume 

rainbow smelt, yet do not appear to display a thiamine deficiency (Dimond and Smitka 

2005). Also, the extent of thiamine deficiency symptoms varies among Atlantic salmon 

individuals from Saint-Mary’s River, Michigan (Dimond and Smitka 2005), as well as 

coho salmon individuals from Platte River, Michigan (Brown et al. 2005) that typically 

consume alewife. These data suggest there may be some degree of variation in thiaminase 

tolerance both within and among populations.  

1.5 Source Populations 

Three source populations of Atlantic salmon are being used for reintroduction efforts into 

Lake Ontario: LaHave River (LaHave) from Nova Scotia, Sebago Lake (Sebago) from 

Maine, and Lac Saint-Jean (Saint-Jean) from Quebec (Dimond and Smitka 2005). A 

summary of the three source populations is presented in Table 1.2 and Figure 1.1. 

Because key environment features of Lake Ontario and its tributaries have changed 

relative to historical conditions, evolutionary and ecological theory suggests selecting 

source populations using an environment matching versus an ancestry matching 

approach. An environment match should possess a high frequency of genotypes that 

confer adaptations (i.e. high fitness) to the new conditions in the reintroduction location 

(Krueger et al. 1981; Moritz 1999; Jones 2003, 2013). An ancestry match may not 
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necessarily possess this high frequency of genotypes that confer adaptations if key 

environment features have changed from historical conditions (Krueger et al. 1981; 

Seddon and Soorae 1999; IUCN 2013). Greater details on a perspective source 

population selection framework are presented in Chapter 7. In addition, the adaptive 

potential strategy, such as the single source population approach or the multiple source 

population approach, could also be considered for the reintroduction efforts because of 

the ability of source populations to adapt to new selection pressures (Krueger et al. 1981; 

IUCN 2013). The simultaneous translocation of the three source populations is 

considered the multiple source population approach, given the divergent genetic and 

environment backgrounds of these populations (King et al. 2001; Dimond and Smitka 

2005). At the time these populations were selected by the Ontario Ministry of Nartural 

Resources and Forestry (OMNRF), there was no information on the amount of within-

population heritable genetic variation, which could be used for considering the single 

source population approach. 

The LaHave population has been the focus of reintroduction efforts since the 1990s. 

However, this populations was primarily selected because it was readily available 

(Dimond and Smitka 2005; Kerr 2006) rather than based on any specific criteria. Due to 

this, the LaHave population may not be the most suited for translocation into Lake 

Ontario because it is not an environment match to both features, nor is it an ancestry 

match. That is, LaHave River does not contain non-native salmonids, alewife and 

rainbow smelt are not the primary diet in this population (Dimond and Smitka 2005), and 

it is not a close genetic relative to the historical population (King et al. 2001). The 

LaHave population is anadromous (Dimond and Smitka 2005) and anadromous Atlantic 
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salmon consume capelin (Mallotus villosus), sand eels (Ammodytidae), krill 

(Euphausiacea), and amphipods (Amphipoda) (Rikardsen and Dempson 2011), a more 

diverse diet which presumably contains low thiaminase concentrations. The LaHave 

population was imported into Ontario from 1989 to 1995 as fertilized eggs from single-

pair matings of wild adult LaHave salmon in LaHave River (43°53'N, 70°27'W), a 

naturally reproducing river during the period of import. 

On the other hand, the Sebago population may be more suitable for translocation into 

Lake Ontario. Although the Sebago population is not an ancestry match, this population 

could be an environment match to both features. That is, the Sebago population is not a 

close genetic relative to the historical Lake Ontario population (King et al. 2001), and 

stocked Sebago salmon appear to be doing well in Lake Champlain where there is 

rainbow trout and brown trout as well as rainbow smelt and alewife (LCSG 2006; 

Marsden et al. 2010). The Sebago population was selected for Lake Champlain because 

two independent assessments by New York and Vermont of stocked Atlantic salmon 

from three landlocked source populations (Sebago Lake, Lake Memephremagog in 

Vermont and Quebec, and West Grand Lake in Maine) found that the Sebago population 

had the highest performance (Dimond and Smitka 2005). Admittedly, Sebago Lake does 

not contain non-native salmonids or alewife (Dimond and Smitka 2005), so this 

population is not a direct environment match using the criterion of environment 

similarity. Also, the Sebago population is potamodromous and primarily consumes 

rainbow smelt in Sebago Lake (Dimond and Smitka 2005), as well as recently introduced 

alewife in Lake Champlain (LCSG 2006). The Sebago population was imported into 

Ontario in 2006 as fertilized eggs from single-pair matings of wild adult Sebago salmon 
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in Panther River (43°53'N, 70°27'W), a tributary of Sebago Lake and a hatchery 

supplemented river. 

Similarly, the Saint-Jean population may also be more suitable for translocation into Lake 

Ontario. The Saint-Jean population is an environment match to one of the two features 

and is likely an ancestry match. That is, Lac Saint-Jean contains rainbow smelt but does 

not contain non-native salmonids or alewife (Dimond and Smitka 2005), and the Saint-

Jean population, specifically Métabetchouane River and Rivière aux Saumons, is 

believed to share the same glacial refugium as the historical Lake Ontario population, 

albeit the populations would have been separated by at least 8,600 years following the 

colonization of the two different lakes (Tessier and Bernatchez 2000). The Saint-Jean 

population is potamodromous and primarily consumes rainbow smelt. The Saint-Jean 

population was imported into Ontario in 2007 as fertilized eggs from single-pair matings 

of wild adult Saint-Jean salmon in Rivière-aux-Saumons (48°41'N, 72°30'W), a tributary 

of Lac Saint-Jean and a naturally reproducing river. 
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Table 1.2. Ecological and Genetic Information on the Three Source Populations of 

Atlantic Salmon (Salmo salar).  Competition with non-native salmonids and consuming 

high thiaminase-containing prey fishes that lead to a thiamine deficiency are identified as 

likely impediments to a successful reintroduction of Atlantic salmon into Lake Ontario 

(Dimond and Smitka 2005). Sebago Lake information is for the group that was stocked 

into Lake Champlain. An anadromous ability means that the adult Atlantic salmon have 

access to the Atlantic Ocean but the majority are believed to remain in the freshwater 

lake. 

 

 

Historical Lake 

Ontario 

Lac Saint-Jean, 

Quebec 

Sebago Lake, 

Maine 

LaHave River, 

Nova Scotia 

potamodromous  (mostly)    

anadromous ability ability   

genetic similarity     

     

Competition     

rainbow and brown trout     

coho and Chinook salmon     

     

Thiamine deficiency     

rainbow smelt      

alewife     
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Figure 1.1. Locations of the Extirpated Lake Ontario Population and the Three Source 

Populations of Atlantic Salmon (Salmo salar) being Used for Reintroduction Efforts. 
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Based upon the environment matching approach for selecting source populations, it is 

predicted that overall the Sebago population will have the highest performance (i.e. 

survival and fitness-related traits), followed by the Saint-Jean population, then the 

LaHave population when exposed to both features in experimental settings. Specifically, 

the Sebago population will do well with non-native salmonids and a high thiaminase diet, 

the Saint-Jean population will do well with a high thiaminase diet but not non-native 

salmonids, and the LaHave population will not do well with both non-native salmonids 

and a high thiaminase diet. In more detail, stocked Sebago salmon appear to be doing 

well in Lake Champlain where there is brown trout and rainbow trout as well as rainbow 

smelt and alewife (LCSG 2006; Marsden et al. 2010). The Saint-Jean population 

primarily consumes rainbow smelt and should do just as well as the Sebago population 

that also consumes primarily rainbow smelt in Sebago Lake (Dimond and Smitka 2005), 

as well as recently introduced alewife in Lake Champlain (LCSG 2006), when exposed to 

a high thiaminase diet. However, it is unknown whether the Saint-Jean or LaHave 

population have the potential to do well with the presence of non-native salmonids in 

contrast to the Sebago population (Dimond and Smitka 2005). In addition, the LaHave 

population primarily consumes a diversity of prey species (Rikardsen and Dempson 

2011), a diet that may be low in thiaminase, suggesting that it may not be do well if 

exposed to a high thiaminase diet.  

Also, the adaptive potential strategy could be considered for selecting source populations. 

The OMNRF is currently translocating all three source populations into Lake Ontario 

(Wilson 2014), which is the multiple source population approach. However, at the time 

these populations were selected by the OMNRF, there was no information on the amount 
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of within-population heritable genetic variation of survival and fitness-related traits, 

which could be used for considering the single source population approach. Measuring 

the amount of heritable genetic variation of these traits could be used to predict which of 

the three source populations may have the potential to adapt to new selection pressures in 

Lake Ontario. 

1.6 Objectives and Thesis Structure 

My overall objective is to evaluate the relative performance (i.e. survival and fitness-

related traits) of the three source populations of Atlantic salmon in the context of 

suitability for translocation into Lake Ontario. The two key environment features that are 

likely impeding a successful reintroduction of Atlantic salmon are: (1) the presence of 

non-native salmonids and (2) the presence of high thiaminase-containing prey fishes. 

Experiments are a useful way to compare the relative performance of different source 

populations exposed to key environment features at small scales, such as laboratory 

settings and natural sites in the reintroduction location, prior or simultaneously to 

considering the source populations for large scale reintroduction efforts (e.g. van Katwijk 

et al. 2009). Here, I examine three source populations that differ in the degree of 

environment match to two features of Lake Ontario and its tributaries. I measured the 

relative performance of these three source populations when exposed to non-native 

salmonids and a high thiaminase diet. The environment matching approach may be 

supported if overall the Sebago population has the highest performance, followed by the 

Saint-Jean population, then the LaHave population. I also measured the amount of 

within-population heritable (additive) genetic variation for survival and fitness-related 

traits at early-life history stages that were exposed to water from a tributary of Lake 
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Ontario. If considering the single source population approach for selecting source 

populations, this population would be identified as the one with the highest amount of 

heritable genetic variation.  

This thesis contains six data chapters. In Chapter 2 (“Competitive Interactions among 

Multiple Non-Native Salmonids and Three Populations of Atlantic Salmon”) I placed 

Atlantic salmon juveniles into artificial streams with four species of non-native salmonids 

to examine the effects of interspecific competition in a controlled environment. Because 

Atlantic salmon may be exposed to more than one non-native salmonid species in 

tributaries of Lake Ontario, in Chapter 3 (“Predictability of Multi-Species Competitive 

Interactions in Three Populations of Atlantic Salmon”) I build on Chapter 2 by examining 

whether there are non-additive competitive interactions in a multi-species treatment, i.e. 

whether the observed multi-species effects can be predicted by a simple additive model 

of the effects from two-species treatments. In Chapter 4 (“Competitive Effects between 

Rainbow Trout and Two Populations of Atlantic salmon in Natural and Artificial 

Streams”) I placed Atlantic salmon juveniles into two natural stream sites differing in the 

presence of rainbow trout to examine the effects of interspecific competition and also 

compare these results to the artificial streams (Chapter 2). In Chapter 5 (“Effects of 

Feeding High Dietary Thiaminase to Sub-Adult Atlantic Salmon from Three 

Populations”) I fed sub-adult Atlantic salmon a diet mimicking the high thiaminase 

concentrations of prey fishes in Lake Ontario to examine the effects of thiamine 

deficiency. In Chapter 6 (“Genetic Architecture of Survival and Fitness-Related Traits in 

Three Populations of Atlantic Salmon”) I describe a full-factorial quantitative genetic 

breeding design and analysis to quantify the amount of heritable (additive) genetic 
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variation for survival and fitness-related traits at early-life history stages. In Chapter 7 

(“Restoring Biodiversity through Reintroductions: Approaches for Source Population 

Selection”) I provide a literature review of studies examining the different source 

population selection approaches and provide a perspective source population selection 

framework. 
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Chapter 2  

2 Competitive Interactions among Multiple Non-Native 

Salmonids and Three Populations of Atlantic Salmon* 

2.1 Introduction 

The introduction of non-native species is one of the leading causes of native species 

extinctions and declines (Cox 2004; Clavero and García-Berthou 2005). Non-native 

species can negatively impact native species by increased predation, competition, 

parasites, habitat alteration, and hybridization (Gurevitch and Padilla 2004). For example, 

introductions of rabbit (Oryctolagus cuniculus) and red foxes (Vulpes vulpes) have 

caused extinctions of native rodent species in Australia (Smith and Quin 1996). Similarly, 

worldwide introductions of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus 

mykiss) have caused declines in native salmonids (Korsu et al. 2010). In addition, life-

history traits, such as body size and growth rate, are commonly impacted by non-native 

species. For example, non-native plants have reduced the body mass of native grasses in 

North America and Europe (Callaway and Aschehoug 2000). Similarly, the presence of 

non-native salmonids leads to a reduced growth and foraging rate of native salmonids 

(Korsu et al. 2010) and are considered an impediment to rehabilitation of native galaxiid 

fishes in the Southern Hemisphere (McDowall 2006). 

Measures of the endocrine system have also been used to provide insight about the 

sublethal effects that non-native species can have on native species. Competitive 

                                                 
*
 Versions of this chapter have been published (year one) or are in review (year two): Houde ALS, Wilson 

CC, Neff BD. 2015. Competitive interactions among multiple non-native salmonids and two populations of 

Atlantic salmon. Ecol Freshw Fish 24:44-55. Houde ALS, Wilson CC, Neff BD. 2015. Effects of 

competition with four non-native salmonid species on Atlantic salmon from three populations. Trans Am 

Fish Soc, in review. 
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agonistic interactions with non-native species can be a source of chronic stress for native 

species (Sloman et al. 2001). The endocrine response for dealing with stress is to increase 

circulating glucocorticoids (Nelson 2011), such as cortisol in fishes (e.g. Wendelaar 

Bonga 1997; Iwama et al. 2004). An increase in glucocorticoids can be adaptive in the 

short-term for acute stressors because of the benefits of increased cardiovascular tone and 

energy availability (Wendelaar Bonga 1997). However, the increase can be detrimental in 

the long-term for chronic stressors because of the costs of lower disease resistance, 

growth, and reproduction (Pickering and Pottinger 1989). Losing agonistic interactions 

can also lead to reduced circulating androgens (Wingfield et al. 2001), such as 11-

ketotestosterone (11-KT) in fishes (Oliveira et al. 2009). A decrease in androgens can 

cause reductions in aggression level and social status that can subsequently lead to lower 

survival and growth (Huntingford et al. 1990; Nelson 2011).  

Salmonid fishes are an important group to examine the effects of introduced or invasive 

non-native species on native taxa. Several salmonid species have been introduced 

globally to provide fisheries (Crawford and Muir 2008), which has created new 

competitive interactions with ecologically-similar native salmonids (Hearn 1987; Fausch 

1988). In particular, the juvenile life stages of salmonids are highly competitive periods, 

as feeding territories are typically limited in nursery streams and individuals aggressively 

defend those territories (Kalleberg 1958). Survival in juvenile salmonids within nursery 

streams is often correlated with higher social rank and aggression level, as measured by 

circulating 11-KT (Oliveira et al. 2009), presumably because these traits are beneficial in 

acquiring better feeding territories (Fausch 1984; Metcalfe 1986; Ruzzante 1994; 

Harwood et al. 2003). Individuals with higher social status and aggression level also tend 
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to be larger (Huntingford et al. 1990) and have lower levels of circulating cortisol (Øverli 

et al. 1999; Consten et al. 2002; Øverli et al. 2004), suggesting that they are not 

chronically stressed. 

Here, I examine the survival and fitness-related traits of juvenile Atlantic salmon (Salmo 

salar) from three source populations in artificial stream tanks with varying extents of 

competition from juveniles of four non-native salmonid species: brown trout (S. trutta), 

rainbow trout (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho 

salmon (O. kisutch). Natural stream sites may differ in environmental variables that can 

affect the outcome of competition but are not easily controlled, whereas artificial streams 

can control for these variables (see Fausch 1998). An artificial stream experiment was 

conducted over two independent years. In year one, I examined the effects of competition 

on age 0+ juveniles of the LaHave and Sebago populations only. In year two, I examined 

the third source population (Saint-Jean) at age 0+ for the first time. The Saint-Jean 

population was not included in year one because broodstock had not reached maturity. 

Examining the performance (i.e. survival and fitness-related traits) of all three 

populations may be useful for guiding reintroduction efforts because these efforts are 

currently stocking all three populations into Lake Ontario tributaries that contain non-

native salmonids. In addition, Van Zwol et al. (2012a) examined the effects of 

competition on older (age 1+) juvenile Atlantic salmon in the same artificial stream tanks. 

I want to determine which non-native salmonids species are the most problematic over 

the two year duration freshwater stage to help strengthen Atlantic salmon translocation 

into Lake Ontario recommendations. My objective was to test three hypotheses: (1) 

Atlantic salmon performance in competition with non-native salmonid species will be 
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related to the degree of niche overlap and differences in aggression levels; (2) Sebago 

juveniles will have a better competitive ability and thus higher performance than LaHave 

and Saint-Jean juveniles and; (3) competition with non-native salmonid species will be a 

source of chronic stress and cause changes in the social status of Atlantic salmon. 

2.2 Materials and Methods 

2.2.1 Study Populations and Non-Native Salmonid Species 

Juveniles of all salmonid species were provided by the Ontario Ministry of Natural 

Resources and Forestry (OMNRF). Fertilized eggs from single-pair matings of wild adult 

LaHave (44°14′N 64°20′W) were received from 1989 to 1995 and captive generations 

were produced every year in Ontario starting in 1996 (OMNR 2005). Fertilized eggs from 

single-pair matings of wild adult Sebago in Panther River (43°53'N, 70°27'W), a hatchery 

supplemented river, were received in 2006. Fertilized eggs from single-pair matings of 

wild adult Saint-Jean in Rivière-aux-Saumons (48°41'N, 72°30'W), a naturally 

reproducing river, were received in 2007. For this study, LaHave and Sebago Atlantic 

salmon families were produced in early November 2010 and 2011 using mature 

individuals at the OMNRF Harwood Fish Culture Station, Harwood, Ontario. Five 

females and five males from each population were mated in all possible combinations to 

produce a 5 × 5 full factorial breeding design (Lynch and Walsh 1998). Fertilized eggs 

and the resultant offspring were reared at the OMNRF Codrington Research Facility, 

Codrington, Ontario. Saint-Jean families were also produced in early November 2011 

using single-pair matings (n = 66) of mature individuals at Harwood. A random subset of 
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500 fry (age 0+ parr) from the Saint-Jean families was transferred to the Codrington 

Facility in the spring of 2012.  

Rainbow trout and brown trout were from hatchery parents whose ancestry was derived 

from naturalized populations of both species in the Ganaraska River, Ontario (43°56'N 

78°17'W) (OMNR 2005). Rainbow trout and brown trout families for this experiment 

were produced by eight single-pair matings at the OMNRF Tarentorus Fish Culture 

Station, Sault Ste. Marie, Ontario and OMNRF Harwood Fish Culture Station, 

respectively. Chinook salmon and coho salmon families were from wild parents from the 

Credit River, Ontario (43°33'N 79°34'W). Chinook salmon and coho salmon families 

were produced by 30-100 single-pair matings at the OMNRF Normandale Fish Culture 

Station, Vittoria, Ontario and OMNRF Ringwood Fish Culture Station, Ringwood, 

Ontario, respectively. Random subsets of 250 fry (age 0+ parr) each for brown trout, 

rainbow trout, Chinook salmon, and coho salmon were transferred from the various 

OMNRF fish culture stations to the Codrington Facility in the spring of 2011 and 2012. 

The fry of each species were held in two tanks (38 L, n = 125 fry) until used in the 

artificial stream tanks. All juveniles were of the same age and culture history as those 

currently stocked in Lake Ontario streams; thus, fry of these species differed in body size 

and are therefore representative of the size differences in natural streams (see Table 2.1). 

 



 

 

Table 2.1. Summary of the Initial Sizes of Fry (age 0+ parr) for Three Populations of Atlantic Salmon (Salmo salar) and Four Non-

Native Salmonid Species (Brown Trout- S. trutta, Rainbow Trout- Oncorhynchus mykiss, Chinook Salmon- O. tshawytscha, and Coho 

Salmon- O. kisutch). Presented are means ± 1SD. Different uppercase letters indicate significant differences assessed using Tukey’s 

post-hoc multiple comparisons (p < 0.05). Sample sizes in year one are: n = 256 for each Atlantic salmon population; and n = 144 for 

each non-native salmonid species. Sample sizes in year two are: n = 224 for each Atlantic salmon population; and n = 120 for each 

non-native salmonid species. Saint-Jean juveniles were not examined in year one because mature individuals to produce offspring 

were not available. 

Traits Atlantic salmon populations 
 

Non-native salmonid species   

 LaHave Sebago Saint-Jean
 

 Brown trout Rainbow trout Chinook salmon Coho salmon 

Year one
    

 
    

length (cm) 5.8 ± 0.4
AD 

5.6 ± 0.5
B 

-  6.0 ± 0.7
C 

6.0 ± 0.6
CD 

8.2 ± 0.7
E 

8.5 ± 1.0
F 

mass (g) 2.17 ± 0.49
AB 

2.00 ± 0.51
A 

-  2.43 ± 0.91
B 

2.15 ± 0.69
AB 

5.95 ± 1.74
E 

6.68 ± 2.27
F 

condition (100 × g / cm
3
) 1.09 ± 0.06

A 
1.14 ± 0.06

B 
-  1.05 ± 0.05

C 
0.98 ± 0.06

D 
1.05 ± 0.10

C 
1.05 ± 0.06

C 

         

Year two
 

        

length (cm) 6.5 ± 0.6
A 

6.8 ± 0.6
B 

6.8 ± 0.8
B 

 6.6 ± 0.7
AB 

6.0 ± 0.6
C 

9.8 ± 0.7
D 

10.6 ± 0.8
E 

mass (g) 2.97 ± 0.92
AC 

3.70 ± 0.99
B 

3.28 ± 1.32
BC 

 3.23 ± 1.08
ABC 

2.28 ± 0.71
D 

10.32 ± 2.18
E 

14.22 ± 3.44
F 

condition (100 × g / cm
3
) 1.05 ± 0.05

AD 
1.13 ± 0.05

B 
0.99 ± 0.05

C 
 1.06 ± 0.05

DF 
1.02 ± 0.07

E 
1.07 ± 0.05

F 
1.18 ± 0.05

G 

3
8
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2.2.2 Experimental Set-up 

Artificial stream tanks (25 cm × 240 cm) were setup at the Codrington Facility and 

mimicked the natural stream environment by containing two types of microhabitats: a 

160 cm riffle section (mean ± 1SD: high current 20 ± 6 cm s
-1

, low depth 28 ± 3 cm) 

followed by a 80 cm pool section (low current 7 ± 3 cm s
-1

, high depth 68 ± 3 cm). 

Substrate was composed of two parts gravel river rock (2 mm- 64 mm) and one part 

cobble river rock (65 mm- 256 mm). Fish were supplied water from a natural Lake 

Ontario tributary at natural temperatures (8.6 ± 2.6°C).  

Seven different treatments were set up for juveniles from each Atlantic salmon 

population, each with a total of 32 juveniles, using a substitutive design to examine the 

effects of competition (see Fausch 1998). Treatments were: Atlantic salmon alone (32 

LaHave only, Sebago only, or Saint-Jean only), two-species (16 Atlantic salmon with 16 

of one non-native salmonid species), and multi-species (16 Atlantic salmon with 4 of all 

four non-native salmonid species). Each treatment was represented by two replicates. 

Because Saint-Jean Atlantic salmon families were not available in year one, an Atlantic 

salmon mixed (LaHave and Sebago together) and a non-native salmonid species ‘alone’ 

treatment (rainbow trout, brown trout, coho salmon, or Chinook salmon only) were setup 

in year one only. In September 2011 and 2012, fry (age 0+ parr) of each salmonid species 

were first anaesthetized with tricaine methanesulphonate (MS-222) and tagged by species 

with visual implant elastomers (Northwest Marine Technology, Washington) at the base 

of the dorsal and adipose fins (Olsen and Vollestad 2001). Random subsets of brown 

trout, rainbow trout, coho salmon, Chinook salmon, and Atlantic salmon fry were 
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selected for the treatments. Fry were measured for fork length (nearest 0.1 cm) and mass 

(nearest 0.01 g) before being transferred to the artificial stream tanks (Table 2.1).  

The juveniles were kept in the artificial stream tanks for 10 months (September to July). 

Juveniles were subjected to a natural light cycle and fed a competition-inducing ration of 

3% body mass per day (e.g. Garner et al. 2008) of commercial pellets at random times 

and amounts per day (Keenleyside and Yamamoto 1962; Symons 1968). The pellets were 

introduced at the upstream side of the artificial stream tanks because in natural streams 

juvenile salmonids compete for upstream positions to secure the first access to food 

(Metcalfe 1986). During the winter months, juvenile competition is typically reduced in 

natural streams because Atlantic salmon seek shelter underneath the substrate and reduce 

feeding in low water flow areas (Huntingford et al. 1988). Therefore, during the winter 

months (January to April), the food ration was reduced to 1% body mass per day. 

2.2.3 Survival and Fitness-Related Traits 

In year one, juvenile measurements in the artificial stream tanks were collected on 

October 28, November 29, and July 24, and in year two on November 11, December 17, 

May 29, June 26, and July 25. The dates coincide to when the juveniles were fed the 

ration of 3% body mass per day (i.e. September to December and May to July), but 

otherwise were left undisturbed (January to April). Juveniles were measured for survival 

and three fitness-related traits comprising body length, mass, and condition (Fausch 1984, 

1998). I also measured riffle use (the preferred microhabitat of Atlantic salmon) (Morantz 

et al. 1987) in both years and downstream displacement (upstream positions are typically 

associated with the first access to food) in year two only (Metcalfe 1986). For body 
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length (fork length), mass, and condition, all juveniles were removed from the artificial 

stream tanks, lightly anaesthetized, measured and then allowed to recover before being 

returned to the artificial stream tank. Condition was calculated as 100 × mass / length
3
 

(Fulton 1904). In year one, for riffle use, a trained observer took counts of each salmonid 

species within the riffle section at 12:00 on the day after body size measurements, taking 

care to limit visual exposure to the juveniles. I also examined riffle use by taking 

photographs the day before body size measurements, but did not have the data for all 

measurement dates. I therefore concentrated my analysis on the observer data in year one. 

In year two, for riffle use and downstream displacement, digital photographs were taken 

three times during the day (morning, noon, and evening) every 80 cm within the artificial 

stream tanks using cameras (Sony HDRXR200V) supported on a rig. Photographs were 

analyzed using ImageJ version 1.38 (NIH, Bethesda, MD, available at 

www.rsbweb.nih.gov/ij/). Riffle use was measured as the proportion of Atlantic salmon 

in the riffle section and downstream displacement was measured as the average of the 

distance downstream for each individual from the beginning of the riffle section. 

2.2.4 Blood Samples and Circulating Hormone Concentrations 

At the termination of the experiment, juveniles were starved for 24 hours and then 

quickly netted out of the artificial stream tanks. I collected as many Atlantic salmon 

individuals as possible within 2 minutes (median of 9, range 2 to 10 individuals per tank). 

Care was taken to minimally disturb the juveniles while netting. Atlantic salmon were 

quickly submerged in an overdose of anaesthetic (MS-222) until gill movement ceased, 

then immediately measured for length and mass, and blood collected from the caudal 

peduncle using a Heparin lined tube. The time from the initial disturbance of the 

http://www.rsbweb.nih.gov/ij/
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juveniles to blood collection was recorded for each Atlantic salmon. Care was taken to 

ensure that the entire process took less than 5 minutes per artificial stream tank (see 

Sumpter et al. 1986). Plasma was immediately separated in the blood by centrifugation 

(1,500 RCF for 5 minutes) and stored at -20°C until analysis (Van Zwol et al. 2012b).  

For the hormone analysis, I randomly selected a median of 4 of the collected plasma 

samples (range 2-9) to be measured for hormone concentrations. Prior to the enzyme 

immunoassay for 11-ketotestosterone (11-KT), 10 μL plasma samples were extracted 

three times with 2.5 mL diethylether using a snap freeze method described by Van der 

Kraak et al. (1989). The diethylether was evaporated in a fume hood and then the samples 

were stored at -20°C until assayed (Van Zwol et al. 2012b). Plasma concentrations of 

cortisol and 11-KT were determined using the manufacturer’s instructions for enzyme 

immunoassay kits (Cayman Chemical Company, Michigan). Briefly, 11-KT samples 

were reconstituted with assay buffer prior to the assay. Each sample was run in triplicate, 

with 50 μL (1/20 plasma dilution for cortisol and 11-KT) loaded into each well. Plates 

were read at an absorbance of 405 nm. 

2.2.5 Statistical Analysis of Traits 

Survival, length, mass, condition, riffle use, and circulating hormones concentrations of 

individual Atlantic salmon were analyzed in R 3.0.1 (available at http://www.r-

project.org/). Statistical significance was set at α = 0.05. In year one, there were no 

significant differences between the populations in the Atlantic salmon alone (LaHave 

only or Sebago only) and Atlantic salmon mixed (LaHave and Sebago together) 

treatments (data not shown); therefore, the juveniles from the mixed treatment were 

http://www.r-project.org/
http://www.r-project.org/
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pooled with their appropriate population in the “alone” treatment for comparisons to 

other treatments.  

Due to the Atlantic salmon mortality over the winter, which led to differences in juvenile 

densities for May through July, individual traits were statistically examined at the 3 

month mark (November 29 and December 17 in year one and two) and again at the 10 

month mark (July 24 and July 25). Survival and riffle use data were logit transformed 

(Crawley 2005) and circulating hormones concentrations were natural log + 1 

transformed to increase normality. Linear models were used to examine effects for 

survival and riffle use. Survival over time comparisons between the alone treatment and 

each inter-specific competition treatment were also examined using log-rank survival 

curve analysis (survdiff in the survival package of R) and the p-values for the multiple 

comparisons were corrected using false discovery rate. Linear mixed-effects models 

(lmer in the lme4 package of R) were used to examine effects for length, mass, condition, 

cortisol concentrations, and 11-KT concentrations of individuals. Because of the 

differences in the initial length, mass, and condition of each population in year two (see 

Table 2.1), these traits were standardized by subtracting the initial mean values for each 

population in all size analyzes for year two. In year one, initial sizes for the populations 

were more similar, thus standardization was not necessary. Atlantic salmon models 

contained fixed effects for population, treatment, and population × treatment and mixed-

effects models contained a random effect for artificial stream tank identity. 
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2.3 Results 

2.3.1 Survival 

Significant treatment and population by treatment effects were detected for the survival 

of Atlantic salmon (Table 2.2 and 2.3; Figure 2.1 and 2.2). There was no difference 

among the populations in survival at either time point (3 or 10 months) or over time in 

either year (year one: X
2
 = 0, df =1, p = 0.831 and year two: X

2
 = 1.2, df =2, p = 0.550). 

Atlantic salmon had lower survival in the presence of brown trout at 3 months (year two 

only) and 10 months, as well as lower survival over time in either year (year one: X
2
 = 

20.6, df =1, p < 0.001 and year two: X
2
 = 39.7, df =1, p < 0.001). LaHave juveniles had 

lower survival in the presence of rainbow trout at 10 months (year one only) and there 

was no significant effect of rainbow trout on survival over time for the remaining two 

populations in either year (year one: X
2
 = 1.2, df =1, p = 0.264 and year two: X

2
 = 0, df 

=1, p = 0.877). In year one, LaHave juveniles had lower survival in the multi-species 

treatment at 3 months but had the opposite effect for Sebago juveniles at 3 months. 

However, Atlantic salmon had lower survival in the multi-species treatment at 10 months 

and over time (X
2
 = 12.3, df =1, p = 0.001). Sebago juveniles had higher survival in the 

presence of coho salmon at 3 months (relative to the alone treatment), but otherwise the 

presence of coho salmon had no effect over time (X
2
 = 0, df =1, p = 0.980). In year two, 

there was no effect of the multi-species treatment and the presence of coho salmon on the 

survival of Atlantic salmon at either 3 or 10 months or over time (p > 0.07).  In either 

year, there was no significant effect of the presence of Chinook salmon on the survival of 

Atlantic salmon at either 3 or 10 months or over time (p > 0.947). 



45 

 

Table 2.2. Summary of Model Results for Traits in Two Populations Atlantic Salmon 

(Salmo salar) in Year One. Displayed are linear model results for survival and riffle use 

and linear mixed-effects results for length, mass, condition, circulating cortisol 

concentrations, and circulating 11-ketotestosterone concentrations (11-KT). Population 

and treatment were coded as fixed effects in all models and mixed-effects models 

contained a random effect for artificial stream tank identity. 

 

Trait 

3 months  10 months 

df F-statistic p-value  df F-statistic p-value 

Survival        

population 1,16 0.05 0.824  1,16 0.48 0.500 

treatment 5,16 1.74 0.182  5,16 18.46 < 0.001 

population × treatment 5,16 4.15 0.013  5,16 2.16 0.110 

        

Body length        

population 1,461.9 5.73 0.017  1,355 1.82 0.178 

treatment 5,461.9 4.02 0.001  5,355 4.71 < 0.001 

population × treatment 5,461.9 0.46 0.808  5,355 0.71 0.617 

        

Body mass        

population 1,461.9 0.24 0.623  1,355 1.20 0.274 

treatment 5,461.9 6.56 < 0.001  5,355 5.78 < 0.001 

population × treatment 5,461.9 0.58 0.712  5,355 0.60 0.699 

        

Body condition        

population 1,26.0 53.25 < 0.001  1,44.1 3.40 0.072 

treatment 5,21.0 8.45 < 0.001  5,12.2 2.22 0.118 

population × treatment 5,26.2 1.16 0.355  5,17.2 2.09 0.116 

        

Riffle use        

population 1,16 0.00 0.988  1,16 0.01 0.938 

treatment 5,16 2.87 0.049  5,16 9.29 < 0.001 

population × treatment 5,16 1.75 0.181  5,16 2.75 0.030 

        

Cortisol concentrations        

population     1,14.1 0.29 0.601 

treatment     5,32.3 3.06 0.023 

population × treatment     5,28.7 1.21 0.330 

        

11-KT concentrations
1
        

population     1,23.9 7.57 0.011 

treatment     5,27.6 0.67 0.652 

1 
Sample size was too small to examine a population × treatment interaction. 
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Table 2.3. Summary of Model Results for Traits in Three Populations of Atlantic Salmon 

(Salmo salar) in Year Two.  Displayed are linear model results for survival and riffle use 

and linear mixed-effects results for length, mass, condition, circulating cortisol 

concentrations, and circulating 11-ketotestosterone concentrations (11-KT). Population 

and treatment were coded as fixed effects in all models and mixed-effects models 

contained a random effect for artificial stream tank identity. 

Trait 
3 months  10 months 

df F-statistic p-value  df F-statistic p-value 

Survival        

population 2,18 1.32 0.291  2,18 0.33 0.721 

treatment 5,18 3.17 0.032  5,18 6.75 0.001 

population × treatment 10,18 1.93 0.107  10,18 1.61 0.183 

        

Body length        

population 2,557.94 13.05 < 0.001  2,556.96 32.20 < 0.001 

treatment 5,557.94 0.99 0.422  5,556.96 13.69 < 0.001 

population × treatment 10,557.94 0.25 0.990  10,556.96 1.48 0.144 

        

Body mass        

population 2,557.97 18.34 < 0.001  2,556.98 28.51 < 0.001 

treatment 5,557.97 0.79 0.554  5,556.98 19.99 < 0.001 

population × treatment 10,557.97 0.33 0.972  10,556.98 1.58 0.108 

        

Body condition        

population 2,19.013 0.26 0.776  2,556.88 8.94 0.021 

treatment 5,18.762 1.23 0.336  5,556.88 2.54 0.028 

population × treatment 10,18.746 0.25 0.985  10,556.88 1.17 0.306 

        

Riffle use        

population 2,90 2.88 0.062  2,90 0.48 0.618 

treatment 5,90 1.03 0.406  5,90 3.86 0.003 

population × treatment 10,90 1.18 0.316  10,90 1.83 0.066 

        

Downstream displacement        

population 2,90 0.82 0.444  2,90 2.77 0.068 

treatment 5,90 0.75 0.589  5,90 3.41 0.007 

population × treatment 10,90 1.34 0.219  10,90 1.65 0.104 

        

Cortisol concentrations        

population     2,16.66 0.39 0.686 

treatment     5,16.67 0.98 0.459 

population × treatment     10,16.72 1.19 0.365 

        

11-KT concentrations        

population     2,135 1.00 0.371 

treatment     5,135 1.22 0.304 

population × treatment     10,135 1.84 0.060 
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Figure 2.1. Traits in the Artificial Stream Tanks at 3 and 10 months for Two Populations 

of Atlantic salmon (Salmo salar) in Year One. Treatment symbols are AS = pooled 

Atlantic salmon alone and Atlantic salmon mixed, BT = Atlantic salmon with brown 

trout, RT = Atlantic salmon with rainbow trout, CH = Atlantic salmon with Chinook 

salmon, CO = Atlantic salmon with coho salmon, all = Atlantic salmon with all four non-

native salmonid species. Displayed are means ± 1SE for treatments. Dashed lines are the 

means for the population across all treatments. Different lowercase letters indicate 

significant differences assessed using Tukey’s post-hoc multiple comparisons (p < 0.05).  
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Figure 2.2. Traits in the Artificial Stream Tanks at 3 and 10 months for Three Populations 

of Atlantic salmon (Salmo salar) in Year Two. Treatment symbols are AS = Atlantic 

salmon alone, BT = Atlantic salmon with brown trout, RT = Atlantic salmon with 

rainbow trout, CH = Atlantic salmon with Chinook salmon, CO = Atlantic salmon with 

coho salmon, all = Atlantic salmon with all four non-native salmonid species. Displayed 

are means ± 1SE for treatments. Dashed lines are the means for the population across all 

treatments. Different uppercase and lowercase letters indicate significant differences 

assessed using Tukey’s post-hoc multiple comparisons (p < 0.05).  



51 

 

2.3.2 Length, Mass, Condition, Riffle Use, and Downstream Displacement 

The three Atlantic salmon populations initially differed in body length, mass, and 

condition (Table 2.1). In year one, LaHave juveniles were longer and in lower condition 

than Sebago juveniles. In year two, LaHave juveniles were shorter than Sebago and 

Saint-Jean juveniles. LaHave juveniles were also lighter and in lower condition than 

Sebago juveniles. Among the four non-native salmonid species, coho salmon were the 

largest in initial body size followed by Chinook salmon, brown trout, and rainbow trout 

(Table 2.1).  

Significant population effects were detected for the body length, mass, and condition of 

Atlantic salmon at either 3 or 10 months (Table 2.2 and 2.3; Figure 2.1 and 2.2). In year 

one, Sebago juveniles were in higher condition than LaHave juveniles at 3 months, but 

this pattern was reversed at 10 months; although, when alone, there were no differences 

between the populations in length, mass, or condition at either time (one-way ANOVAs, 

p > 0.14 for all). In year two, although standardizing for differences in the initial body 

length, mass, and condition of the populations, Sebago juveniles grew more and put on 

more mass than both LaHave and Saint-Jean juveniles at 3 and 10 months. Also, LaHave 

and Saint-Jean juveniles had larger increases in condition relative to Sebago juveniles at 

10 months, but not at 3 months. 

Also, significant treatment effects were detected for the body length, mass, and condition 

of Atlantic salmon at either 3 or 10 months (Table 2.2 and 2.3; Figure 2.1 and 2.2). In 

year one, LaHave juveniles, but not Sebago juveniles, had lower length and mass in the 

presence of brown trout. However, Sebago juveniles had lower mass in the presence of 
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brown trout at 10 months. LaHave juveniles had lower mass and Sebago juveniles had 

lower condition in the presence of rainbow trout at 3 months as well as both populations 

had lower length and mass at 10 months. Atlantic salmon had lower length and mass and 

Sebago juveniles had lower condition in the multi-species treatment at 3 months. Also, 

LaHave juveniles had lower length and mass in the multi-species treatment at 10 months. 

There were no significant effects of the presence of Chinook salmon and coho salmon on 

Atlantic salmon length, mass, and condition at either 3 or 10 months. In year two, 

Atlantic salmon had lower length and mass in the presence of brown trout, rainbow trout, 

and the multi species treatment at 10 months, whereas the effect was opposite in the 

presence of Chinook salmon and coho salmon at 10 months. In addition, the Atlantic 

salmon had higher condition in the presence of Chinook salmon at 10 months. There was 

no significant effect of the presence of brown trout, rainbow trout, coho salmon, or the 

multi species treatment on Atlantic salmon condition at 10 months. 

Significant treatment effects were detected for the riffle use of Atlantic salmon at 3 

months and 10 months (Table 2.2 and 2.3; Figure 2.1 and 2.2). The populations did not 

differ in riffle use and downstream displacement across all treatments at either time in 

either year. In year one, Atlantic salmon had lower riffle use in the presence of brown 

trout at 10 months, but not at 3 months. Sebago juveniles had lower riffle use in the 

multi-species treatment at 10 months, but otherwise had no effect. LaHave juveniles had 

higher riffle use in the presence of rainbow trout and Chinook salmon at 3 months, but 

not at 10 months. There was no significant effect of the presence of coho salmon on the 

riffle use for Atlantic salmon at either 3 or 10 months. Similar riffle use results were 

found when analysing the photograph data at 3 months (data not shown). In year two, 
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Atlantic salmon had higher riffle use and lower downstream displacement in the presence 

of Chinook salmon at 10 months. There was no significant effect of the presence of 

brown trout, rainbow trout, coho salmon, or the multi species treatment on the riffle use 

and downstream displacement of Atlantic salmon at 10 months. 

2.3.3 Circulating Hormone Concentrations 

No population differences in circulating cortisol concentrations were detected in either 

year. However, significant treatment effects were observed in year one, but not year two 

(Table 2.2 and 2.3; Figure 2.3 and 2.4). In year one, LaHave juveniles, but not Sebago 

juveniles, had higher circulating cortisol concentrations in the multi-species treatment, 

whereas the presence of rainbow trout had the opposite effect. There was no significant 

effect of the presence of brown trout, Chinook salmon, and coho salmon on the 

circulating cortisol concentrations in Atlantic salmon, although the lack of effect 

detection for the presence of brown trout may have been limited by high variances 

(Figure 2.3 and 2.4). 

Significant population effects were detected for circulating 11-KT concentrations in year 

one, but not year two (Table 2.2 and 2.3; Figure 2.3 and 2.4). No significant treatment 

effects were detected for circulating 11-KT concentrations in either year. In year one, 

Sebago juveniles had lower circulating 11-KT concentrations than LaHave juveniles 

across all treatments, but when alone, there was no difference between the populations 

(F1,9= 3.46, p = 0.096).  
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Figure 2.3. Circulating Hormone Concentrations in the Artificial Stream Tanks at 10 

months for Two Populations of Atlantic salmon (Salmo salar) in Year One. The 

treatment symbols are the same as those described in the caption for Figure 2.1. Different 

uppercase letters indicate significant differences assessed using Tukey’s post-hoc 

multiple comparisons (p < 0.05). There was insufficient plasma to examine circulating 

11-KT concentrations for LaHave juveniles in the brown trout and rainbow trout 

treatments. 
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Figure 2.4. Circulating Hormone Concentrations in the Artificial Stream Tanks at 10 

months for Three Populations of Atlantic Salmon (Salmo salar) in Year Two. The 

treatment symbols are the same as those described in the caption for Figure 2.2. Different 

uppercase letters indicate significant differences assessed using Tukey’s post-hoc 

multiple comparisons (p < 0.05). 
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Circulating cortisol concentrations were correlated with the final (10 months) body size 

in either year. In year one, length and mass of Sebago juveniles were positively correlated 

with circulating cortisol concentrations (length: r = 0.362, df = 66, p = 0.002 and mass: r 

= 0.345, df = 66, p = 0.004), but length and mass of LaHave juveniles and condition for 

Atlantic salmon were not (p > 0.64 for all). In year two, length and condition of LaHave 

juveniles were correlated with circulating cortisol concentrations (length: r = 0.350, df = 

49, p = 0.011 and condition: r = -0.363, df = 49, p = 0.009), as well as the length and 

mass of Saint-Jean juveniles (length: r = 0.393, df = 49, p = 0.004 and mass: r = 0.371, df 

= 49, p = 0.007). There were no correlations between these metrics for Sebago juveniles 

(p > 0.07 for all). Circulating cortisol concentrations were not correlated with time to 

blood collection in either year (year one: r = -0.052, df = 128, p = 0.558 and year two: r = 

-0.094, df = 151, p = 0.249).  

Circulating 11-KT concentrations were not correlated with the final body size in year one 

(p > 0.12 for all), but correlated with the final size in year two. Circulating 11-KT 

concentrations were correlated with the length and condition of LaHave juveniles (length: 

r = -0.358, df = 49, p = 0.010 and condition: r = 0.292, df = 49, p = 0.037) and the 

condition of Saint-Jean juveniles (r = 0.700, df = 49, p < 0.001). There were no 

correlations between these metrics for Sebago juveniles (p > 0.13 for all). Circulating 11-

KT concentrations were not correlated with time to blood collection in either year (year 

one: r = -0.042, df = 41, p = 0.789 and year two: r = 0.051, df = 151, p = 0.532). 
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2.4 Discussion 

Non-native species have the potential to reduce the performance of native species, which 

could have significant consequences for reintroduction efforts. Examining the effects of 

competition with four non-native salmonids for two independent years in the artificial 

streams, I found that competition with brown trout, rainbow trout, and the multi-species 

treatment reduced the survival and fitness-related traits of Atlantic salmon. In contrast, in 

both years, Atlantic salmon survival and performance for fitness-related traits were not 

reduced in competition with Chinook salmon or coho salmon. I cannot rule out density 

effects at 10 months because of differential mortality across treatments. However, similar 

effects for body size traits were previously detected at 3 months in year one when 

treatment densities were more equal, indicating that density effects are not likely driving 

the results. Brown trout and rainbow trout may have reduced the performance of Atlantic 

salmon due to high ecological niche overlap in stream environments and are typically 

more aggressive than Atlantic salmon (Gibson 1981; Hearn and Kynard 1986; Volpe et 

al. 2001; Scott et al. 2005; Vehanen 2006). Chinook salmon and coho salmon, on the 

other hand, have little niche overlap with Atlantic salmon in streams (Gibson 1981; Beall 

et al. 1989; Heland and Beall 1997; Scott et al. 2005; Holecek et al. 2009). 

Stress level and social status are commonly assessed in fishes using circulating levels of 

hormones. Measuring circulating levels of cortisol for two independent years in the 

artificial streams, I found that competition with non-native species did not appear to 

induce chronic stress in Atlantic salmon. Chronic stress for salmonids is indicated at 

cortisol concentrations above 10 ng ml
-1

 (Maule et al. 1987; Pickering and Pottinger 

1989) and the Atlantic salmon juveniles concentrations were below this value in all but 
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two treatments in year two. Also, measuring circulating levels of 11-KT for both years in 

the artificial streams, I found that competition with non-native species did not appear to 

change the social status of Atlantic salmon juveniles. Some caution is warranted when 

interpreting the hormone results, however, as the juveniles I sampled were those that 

survived over the winter. Conceivably, the individuals that died may have been of lower 

social status and succumbed to chronic stress (see Wendelaar Bonga 1997; Gregory and 

Wood 1999). Alternatively, the Atlantic salmon may have adapted to the prolonged 

chronic stress (i.e. after 10 months of competition with non-native salmonid species). 

Prolonged exposure to a chronic stressor can decrease the production of cortisol (see 

Wendelaar Bonga 1997). In addition, different life stages tend to have different 

sensitivities to stressors, with younger juvenile salmonids typically being more tolerant of 

anthroprogenic handling, and possibly agonistic interactions, than older life stages 

(Wendelaar Bonga 1997). Indeed, Atlantic salmon that were a year older and exposed to 

a shorter period (8 days) of social interactions with non-native salmonid species had an 

increase in circulating cortisol concentrations to a level indicative of chronic stress (Van 

Zwol et al. 2012b). 

It is also possible that the circulating hormone concentrations in the Atlantic salmon 

simply relate to metabolism (Wendelaar Bonga 1997; Mommsen et al. 1999). Larger 

juveniles typically have a higher metabolic rate (Metcalfe et al. 1995), and circulating 

cortisol concentrations may have increased proportionally to metabolic rate given the 

food deprived conditions (i.e. starvation for 24 hours in this study; see Wendelaar Bonga 

1997; Mommsen et al. 1999). Indeed, in year one, I found that Sebago juveniles had a 

significant positive relationship between circulating cortisol concentration and body size. 
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In year two, I found that LaHave and Saint-Jean juveniles had a significant positive 

relationship between circulating cortisol and body length and between circulating 11-KT 

and body condition. Other hormones, such as growth hormone (Jonsson et al. 1998), 

testosterone (Desjardins et al. 2006), and arginine vasotocin (Dewan and Tricas 2011), 

may instead be involved in mediating aggression, social status, and ultimately stress in 

juvenile salmonids. These other hormones deserve further attention. 

My results have implications for the reintroduction efforts of an extirpated species. 

Although it is still premature to comment on the relative suitability of the different source 

populations of Atlantic salmon for whole-lake restoration, my findings suggest that the 

three populations may exhibit differential performance during the juvenile stage. At least 

in Lake Ontario tributaries, depending on the resident local communities of non-native 

salmonids, the source populations showed differences in survival and growth. Juvenile 

Atlantic salmon from the Sebago population generally fared better than the other two 

populations, but there were exceptions. In year two, Sebago juveniles grew more than 

both LaHave and Saint-Jean juveniles (after standardizing for differences in initial body 

size). In year one, the presence of rainbow trout reduced the survival of LaHave juveniles 

but not Sebago juveniles, although LaHave juveniles had better survival in the multi-

species treatment than Sebago juveniles. Interestingly, stocked Sebago juveniles also 

appear to do well in Lake Champlain, where there is competition with brown trout and 

rainbow trout (Marsden et al. 2010). These results suggest that a source population 

appearing to do well in a location with key environment features similar to the 

reintroduction location may possess adaptations important to fitness (Krueger et al. 1981; 

Moritz 1999; Jones 2003, 2013). In addition, the results presented here, as well as those 
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from previous studies (Van Zwol et al. 2012a,b), indicate that non-native salmonids can 

negatively affect the survival and performance of Atlantic salmon over the entire two 

year stream residency period, with brown trout in particular having a large impact. 

Adjusting stocking efforts to avoid tributaries with established brown trout populations 

may therefore increase the effectiveness of reintroduction efforts. 
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Chapter 3  

3 Predictability of Multi-Species Competitive Interactions in 

Three Populations of Atlantic Salmon* 

3.1 Introduction 

Non-native species are one of the top global threats to native species and biodiversity 

(Clavero and García-Berthou 2005). In particular, the fitness and health of native species 

can be reduced by competition with ecologically-similar non-native species (Hamilton et 

al. 1999; Maskell et al. 2006). As even small declines in population fitness can result in 

the extirpation of native species, particularly when confronted by multiple stressors, 

potential ecological pressures from non-native species are a significant conservation 

concern (Gause 1934; Hutchings 1991; Harig et al. 2000). Similarly, competition with 

non-native species can also impede a successful reintroduction of native species by 

limiting increases in population growth rate (Simberloff 1990; Vitousek 1990). 

Globally, species introductions, whether planned or unintentional, have become so 

common that native species are often in competition with more than one ecologically 

similar non-native species (Cox 2004). For example, native galaxiid fishes are in 

competition with two or more introduced salmonid species in Chilean Patagonia (Young 

et al. 2009) and native seagrass are in competition with several introduced seaweeds in 

North America (Williams 2007). In the Laurentian Great Lakes, zooplankton and aquatic 

macroinvertebrates have been heavily impacted by the establishment of Ponto-Caspian 

invaders (Ricciardi and McIsaac 2000; Ricciardi 2001). In general, however, the 

                                                 
*
A version of this chapter has been published: Houde ALS, Wilson CC, Neff BD. 2015. Predictability of 

multi-species competitive interactions in three populations of Atlantic salmon. J Fish Biol 86: 1438-1443. 
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combined effects of competition with multiple non-native species are largely unknown. 

Instead, a simple additive function of two-species competition effects is used to predict 

multi-species effects (Weigelt et al. 2007). Some studies examining multi-species 

competition support the simple additive function of two-species competition effects in 

plants (Fowler 1982; Weigelt et al. 2007) and animals (Vandermeer 1969; Pomerantz 

1981; Young et al. 2009). Yet, other studies examining multi-species competition have 

found non-additive competitive interactions (plants: Miller 1994; Dormann and 

Roxburgh 2005; animals: Wilbur 1972; Neill 1974; Case and Bender 1981; Wilbur and 

Fauth 1990; Wootton 1993). Based on these latter studies, the influence that non-additive 

competitive interactions have on the performance of focal native species is highly 

variable, with native species performance increasing, decreasing, or remaining unchanged 

(Levine 1976; Stone and Roberts 1991). 

Theory suggests that non-additive effects can arise in multi-species competition because 

of high variability in niche overlap, as well as synergistic effects from a higher number of 

species in the community. High niche overlap (i.e. when there is competition for three or 

more limiting resources) in multi-species competition can lead to the competitive 

exclusion of all but one species (Huisman and Weissing 1999, 2001, 2002). Conversely, 

low niche overlap can result in the stable coexistence of multiple species where each 

species is limited by different resources (Huissan and Weissing 1999). On top of this 

effect, if the dimensionality of species number in the community is greater than the 

number of limiting resources, species will be competitively excluded until the number of 

species matches the set imposed by limiting resources and carrying capacity (Huisman 

and Weissing 1999, 2001). The species that are not outcompeted are expected to be those 
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with traits most beneficial for acquiring the limiting resources (Huisman and Weissing 

2001, 2002). Similarly, high diversity habitats, containing more resource gradients, tend 

to support higher species diversities than low diversity habitats (MacArthur and 

MacArthur 1961), possibly because the species have a greater capacity for niche 

separation in high diversity habitats resulting in less competition than in lower diversity 

habitats (Young 2001). 

The reintroduction efforts of Atlantic salmon (Salmo salar) into Lake Ontario are a prime 

example of a native extirpated species whose restoration may be impeded by the presence 

of non-native competitors. Of these, rainbow trout (Oncorhynchus mykiss) are currently 

the most abundant salmonid in Lake Ontario tributaries (49% of sites sampled), followed 

by brown trout (S. trutta, 31%), then coho salmon (O. kisutch, 8%) (Stanfield et al. 2006). 

Chinook salmon (O. tshawytscha) have also been heavily stocked into Lake Ontario 

tributaries (OMNR 2014), and are thought to have established naturalized populations in 

the basin (Connerton et al. 2009).  

Here, I examine the survival, body size, and riffle use of Atlantic salmon juveniles of the 

three populations in artificial streams containing four non-native salmonid species. 

Atlantic salmon and non-native salmonid species body sizes were representative of those 

stocked in Lake Ontario tributaries and thereby reflect the size differences in natural 

streams. Greater details on the Atlantic salmon survival and fitness-related traits in the 

artificial streams are described in Chapter 2; however, here I examine the predictability of 

multi-species competition effects based on the classic two-species additive models. My 

objectives were to test two hypotheses: (1) that multi-species competition effects can be 
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predicted by a simple additive model of two-species competition effects; and (2) that 

Sebago juveniles will have a better competitive ability and thus higher performance (i.e. 

survival and fitness-related traits) than LaHave and Saint-Jean juveniles in multi-species 

competition. 

3.2 Materials and Methods 

3.2.1 Study Species 

Juveniles of all salmonid species were provided by the Ontario Ministry of Natural 

Resources and Forestry (OMNRF). LaHave and Sebago Atlantic salmon families (n = 25 

per population) were produced in early November 2010 and 2011 using mature 

individuals at the OMNRF Harwood Fish Culture Station, Harwood, Ontario. Families of 

fertilized eggs were transported the same day to the OMNRF Codrington Research 

Facility, Codrington, Ontario. Saint-Jean Atlantic salmon families (n = 66) were 

produced early November 2011 at Harwood and transferred to Codrington as fry (age 0+ 

parr, n = 500) in spring 2012. The Saint-Jean population was not included in 2010, as it 

was not possible to obtain sufficient numbers of fry. Rainbow trout, brown trout, Chinook 

salmon, and coho salmon fry (n = 250 for each species) were transferred from OMNRF 

Fish Culture Stations to Codrington in spring 2011 and 2012. Details on the broodstock 

and breeding of the salmonid species are described in Chapter 2. 

3.2.2 Survival, Fitness-Related Traits, and Riffle Use 

Juveniles were kept in the artificial stream tanks for 10 months (September to July) in 

each year. Details on the artificial stream tanks and experimental set-up are described in 

Chapter 2. Atlantic salmon were measured for survival and three fitness-related traits 
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(length, mass, and condition; Fausch 1984, 1998). Atlantic salmon riffle use was also 

examined, as it is the species’ preferred microhabitat (Morantz et al. 1987). 

Measurements were collected in year one on October 28, November 29, and July 24, and 

in year two on November 11, December 17, May 29, June 26, and July 25. On these 

dates, all juveniles were removed from the artificial stream tanks, lightly anaesthetized, 

measured for body length and mass, and then allowed to recover before being returned to 

the artificial stream tank. Condition was calculated as 100 × mass / length
3
 (Fulton 1904). 

The day after, for riffle use, a trained observer took counts of each salmonid species 

within the riffle section at 12:00. I also examined riffle use by taking photographs the day 

before body size measurements, but did not have the data for all measurement dates. I 

therefore concentrated my analysis on the observer data and similar riffle use results were 

found when analysing the photograph data (data not shown). 

3.2.3 Statistical Analysis of Multi-Species Effects 

The statistical analysis for the predictability of multi-species competition effects was 

performed in R 3.0.1 (available at http://www.r-project.org/). Statistical significance was 

set at α = 0.05. In both years, survival was assessed at 10 months in the artificial streams 

(July 24 and July 25), whereas body length, mass, condition, and riffle use were 

examined at 3 months (November 29 and December 17) because overwinter mortality of 

juveniles caused differences in fish densities that may influence these later traits (e.g. 

Fausch 1998).  

I compared the observed and predicted multi-species competition effects for the Atlantic 

salmon traits using the method described in Weigelt et al. (2007). First, observed effect 

http://www.r-project.org/
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estimates (OE) for each Atlantic salmon replicate were extracted using linear models that 

contained a fixed effect for artificial stream tank identity and no intercept. Second, 

predicted effect estimates of multi-species competition (PE) on Atlantic salmon were 

calculated based on a simple additive function of the observed estimates for two-species 

treatment replicates, weighted by the number of artificial stream tanks (n = 8):  

𝑃𝐸 =  
1

𝑛
× � OE𝑖

𝑛

𝑖=1

 

 1 

Where i denotes a replicate of a given two-species treatment. Third, the deviations 

between predicted and observed multi-species effects were tested for a significant 

difference from zero using one-sample Student’s t-tests.  

Confidence intervals (95%) for the deviations were generated using a modified 

bootstrapping method of Neff and Fraser (2010). First, data from Atlantic salmon 

individuals were resampled with replacement until the original sample size was 

reproduced. Using the resampled data set, the deviations were again calculated. The 

resampling process and calculations were repeated 1000 times for each of the two multi-

species replicates per population, from which the 95% confidence interval (CI) was 

determined for each parameter. Pairwise population comparisons of the deviations were 

conducted by calculating, for one Atlantic salmon population, the proportion of 

deviations that were larger than the other Atlantic salmon populations. The proportion 

served as a one-tailed p-value testing for significant differences between the populations. 
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3.3 Results 

Significant deviations between observed and predicted multi-species effects were 

detected for Atlantic salmon body length and mass, but not for survival, condition, or 

riffle use (Table 3.1). The deviations of length and mass were significantly more negative 

than expected. Negative deviations mean that the Atlantic salmon juveniles had worse 

performance (i.e. lower length and mass) than predicted by the simple additive model in 

the observed multi-species treatment. The Atlantic salmon populations were not 

significantly different in the deviations for the majority of traits, with the exception of 

riffle use in year two (Table 3.1). Sebago juveniles had the largest deviations followed by 

Saint-Jean juveniles then LaHave juveniles. Sebago juveniles also had larger deviations 

for survival than both LaHave and Saint-Jean juveniles in year two, but the opposite 

occurred in year one for LaHave and Sebago juveniles.  
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Table 3.1. Summary of the Deviations between Predicted and Observed Multi-Species 

Effects for Three Populations of Atlantic Salmon (Salmo salar). Stream 1 and 2 are the 

artificial stream tank identities representing replicates for the multi-species treatment. 

Significance of the deviations was determined by a one-tailed Student’s t-test. 

Confidence intervals (95%) were created using resampling procedures. LaHave is LA, 

Sebago is SE, and Saint-Jean is SJ for pair-wise population comparisons. 

Trait Stream 1 Stream 2 95% CI 
Pair-wise 

p-value 

Survival    

Year 1     

LaHave 0.086 -0.226 -0.453, 0.469 LA-SE = 0 

Sebago -0.570 -0.218 -0.742, -0.430  

Year 2     

LaHave 0.031 -0.156 -0.359, 0.188 LA-SE = 0 

Sebago 0.172 0.172 0.219, 0.328 LA-SJ = 0.462 

Saint-Jean -0.273 0.039 -0.469, 0.164 SE-SJ = 0 

     

t-test p-value 0.172    

     

Body length (cm)     

Year 1     

LaHave -0.221 -0.157 -0.566,0.180 LA-SE = 0.313 

Sebago -0.218 -0.474 -0.797, 0.093  

Year 2     

LaHave -0.252 -0.271 -0.793,0.300 LA-SE = 0.484 

Sebago -0.300 -0.277 -0.765,0.191 LA-SJ =0.463 

Saint-Jean -0.317 -0.148 -0.889,0.330 SE-SJ = 0.436 

     

t-test p-value < 0.001    

     

Body mass (g)     

Year 1     

LaHave 0.001 -0.003 -0.043, 0.041 LA-SE = 0.084 

Sebago -0.037 -0.045 -0.078, -0.003  

Year 2     

LaHave -0.324 -0.365 -1.394,0.870 LA-SE = 0.325 

Sebago -0.717 -0.697 -1.776,0.471 LA-SJ = 0.423 

Saint-Jean -0.482 -0.480 -1.772,1.003 SE-SJ = 0.420 

     

t-test p-value < 0.001    
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Body condition (100 × g  cm
-1

)    

Year 1     

LaHave -0.285 -0.223 -0.809, 0.295 LA-SE = 0.277 

Sebago -0.354 -0.691 -1.117,0.131  

Year 2     

LaHave -0.008 0.027 -0.038,0.062 LA-SE = 0.495 

Sebago 0.003 0.009 -0.028,0.048 LA-SJ = 0.250 

Saint-Jean -0.012 -0.011 -0.043,0.020 SE-SJ = 0.221 

     

t-test p-value 0.286    

     

Riffle use     

Year 1     

LaHave -0.078 -0.078 -0.109, -0.031 LA-SE = 0.168 

Sebago 0.008 -0.055 -0.094, 0.133  

Year 2     

LaHave 0.070 -0.055 -0.023, 0.250 LA-SE = 0 

Sebago -0.047 -0.109 -0.125, -0.039 LA-SJ = 0.016 

Saint-Jean -0.039 0.086 -0.063, -0.008 SE-SJ = 0.026 

     

t-test p-value 0.180    
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3.4 Discussion 

Native species may have lower performance in sympatry with multiple non-native 

species than predicted by two-species competition effects. I found negative deviations, 

indicating reduced performance, for Atlantic salmon body length and mass in the multi-

species treatment, such that Atlantic salmon juveniles had smaller body size in the multi-

species treatment than predicted using a simple additive model of two-species treatment 

effects. Other studies have found similar non-additive competitive interactions in multi-

species competition (Wilbur 1972; Neill 1974; Case and Bender 1981; Wilbur and Fauth 

1990; Wootton 1993) and suggest that varying degrees of ecological niche overlap can 

lead to non-additive competitive interactions (Stone and Roberts 1991; Huisman and 

Weissing 1999, 2001, 2002). Similarly, there tends to be higher niche overlap among 

species in habitats with lower than higher environment diversity (Young 2001). Atlantic 

salmon have high niche overlap with brown trout and rainbow trout in streams for habitat 

resources such as depth, velocity, and substrate (Gibson 1981; Hearn and Kynard 1986; 

Volpe et al. 2001; Scott et al. 2005; Vehanen 2006), but have little stream niche overlap 

with Chinook salmon and coho salmon (Gibson 1981; Beall et al. 1989; Heland and Beall 

1997; Scott et al. 2005; Holecek et al. 2009). Given that brown trout and rainbow trout 

are typically more aggressive than Atlantic salmon (Gibson 1981; Hearn and Kynard 

1986; Volpe et al. 2001; Scott et al. 2005; Vehanen 2006), these species may displace 

Atlantic salmon from riffle to pool microhabitat (e.g. Hearn and Kynard 1986). In the 

multi-species treatment, those displaced Atlantic salmon would encounter competition 

with Chinook salmon and coho salmon, which might contribute to the non-additive 

effects that were observed.  
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Non-additive competitive interactions can also occur in communities with a higher 

number of species (Dormann and Roxburg 2005). Theoretical models suggest that species 

with niche overlap can co-exist until the number of species matches the number of 

limiting resources (Huisman and Weissing 1999, 2001). Once this threshold is exceeded, 

only the species with the best competitive abilities typically remain (Huisman and 

Weissing 2001, 2002). Similarly, a higher number of species can be supported in higher 

diversity habitats because of a greater capacity for niche separation (Young 2001). 

Despite the historical loss of Atlantic salmon from Lake Ontario, species richness of 

salmonids in the lake and its tributaries has greatly increased due to introductions of non-

native salmonids (Webster 1982; Crawford 2001; Stanfield et al. 2006). Although brown 

trout and rainbow trout are typically more aggressive than Atlantic salmon, Chinook 

salmon and coho salmon show comparable aggression as Atlantic salmon (Gibson 1981; 

Beall et al. 1989; Heland and Beall 1997; Scott et al. 2005; Holecek et al. 2009). As 

aggression can be a beneficial trait for acquiring resources (Holway and Suarez 1999), 

Atlantic salmon in Lake Ontario tributaries may have reduced performance in multi-

species competition with these four non-native species due to a combination of niche 

overlap and habitat saturation (Jones and Stanfield 1993; Crawford 2001; Van Zwol et al. 

2012a,b). 

It is also possible that frequency-dependent competitive interactions contribute to the 

non-additive competitive interactions observed in the multi-species treatment. My 

experimental design used a constant number of Atlantic salmon and non-native salmonids 

to compare the strengths of intraspecific and interspecific competition. Brown trout, in 

particular, are known to be highly aggressive relative to other salmonids (Scott et al. 
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2005; Vehanen 2006), and brown trout performance is more negatively impacted by 

intraspecific than interspecific competition (see Van Zwol et al. 2012b). In the two-

species treatment, which had greater numbers of brown trout than in the multi-species 

treatment, there may have been a higher number of competitive interactions between 

brown trout individuals than between Atlantic salmon and brown trout. By contrast, the 

multi-species treatment, which had fewer brown trout, may have resulted in more 

interactions between brown trout and Atlantic salmon individuals. As I did not directly 

quantify behavioural interactions in this study, I cannot draw any definitive conclusions 

without more research examining the effect of the relative numbers of individuals across 

species in multi-species interactions. Nevertheless, from the results of this study and 

others (Van Zwol et al. 2012a,b; Chapter 2), it is clear that brown trout have a strong 

negative effect on juvenile Atlantic salmon in tributary habitats and contribute to negative 

non-additive growth effects. 

My results may have implications for source population selection for reintroduction 

efforts of extirpated populations. The presence of four non-native salmonid species is an 

important environmental feature that may be impeding a successful reintroduction of 

Atlantic salmon into Lake Ontario (Jones and Stanfield 1993; Crawford 2001; COSEWIC 

2006, 2010). I found that the Sebago population had lower survival in year one and 

higher survival in year two in the multi-species treatment relative to the other Atlantic 

salmon populations. The results in year two may be due to Sebago juveniles avoiding 

agonistic interactions with the non-native salmonids to a greater extent than LaHave and 

Saint-Jean juveniles (Van Zwol et al. 2012a). Avoiding agonistic interactions is a 

behavioural strategy that can conserve energy, which can instead be directed towards 
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survival and growth (Metcalfe 1986). Such a strategy may be particularly effective when 

resources or preferred habitats are not limited. Interestingly, stocked Sebago salmon also 

appear to co-exist with naturalized and stocked rainbow trout and brown trout in Lake 

Champlain (Marsden et al. 2010). The results from year two may support that a source 

population has adaptations important to the reintroduction location if it does well in a 

location with similar key environment features (Krueger et al. 1981; Moritz 1999; Jones 

2003, 2013). However, given the differences in performance of the Atlantic salmon 

populations between years in the artificial streams, I suggest that reintroduction efforts 

could benefit from more research examining source population performance and the 

composition of non-native competitors in natural streams for different years. 

In conclusion, non-additive competitive interactions were detected in the multi-species 

treatment which here caused reduced performance for native Atlantic salmon juveniles. 

These non-additive competitive interactions may be caused by high niche overlap with 

brown trout and rainbow trout, as well as an increase in the number of potentially 

competing species in stream communities. As reintroduction efforts become more 

necessary both locally and globally, source populations for these efforts should be 

examined in small scale natural settings that are similar to the reintroduction location, 

with particular consideration given to resident species assemblages. 
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Chapter 4  

4 Competitive Effects between Rainbow Trout and Atlantic 

salmon in Natural and Artificial Streams* 

4.1 Introduction 

Non-native species are recognized as one of the top threats to preserving native species 

(Clavero and García-Berthou 2005) in part because competition by ecologically similar 

non-native species may reduce the ecological performance of native species (Hamilton et 

al. 1999; Maskell et al. 2006). Non-native species that are more aggressive than native 

species also tend to be better at acquiring resources which can cause native species to 

shift their ecological niche to sub-optimal habitats and conditions (Holway and Suarez 

1999), further reducing population growth and performance (Hearn 1987; Fausch 1988). 

Such competition with non-native species may also impede a successful reintroduction of 

native species (Simberloff 1990; Vitousek 1990). 

Established populations of non-native salmonids have been identified as a potential 

concern for the re-establishment of formerly native Atlantic salmon into Lake Ontario 

(Jones and Stanfield 1993; Crawford 2001; COSEWIC 2006, 2010). Currently, Atlantic 

salmon in Lake Ontario streams may be competing with up to four species of non-native 

salmonids. Of these, rainbow trout and brown trout are the most abundant (Stanfield et al. 

2006), and have similar microhabitat associations to, and are generally more aggressive 

than, Atlantic salmon (Gibson 1981; Hearn and Kynard 1986; Armstrong et al. 2003; 

Scott et al. 2005). Therefore, rainbow trout and brown trout have the potential to 

                                                 
*
 A version of this chapter has been published:  Houde ALS, Smith, AD, Wilson CC, Peres-Neto PR, Neff 

BD. 2015. Competitive effects between rainbow trout and Atlantic salmon in natural and artificial streams. 

Ecol Freshw Fish. doi: 10.1111/eff.12206. 
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competitively displace Atlantic salmon to sub-optimal conditions in streams, such as a 

higher percentage of rocks and lower water depth microhabitats (Gibson 1981; Hearn and 

Kynard 1986; Volpe et al. 2001).   

In the case of the reintroduction efforts of Atlantic salmon (Salmo salar) into Lake 

Ontario, three source populations are being used for reintroduction efforts: LaHave River, 

Sebago Lake, and Lac Saint-Jean. The performance (i.e. survival and fitness-related 

traits) of LaHave and Sebago Atlantic salmon in competition with non-native salmonid 

species in Lake Ontario has been recently examined in artificial streams (see Van Zwol et 

al. 2012b,c; Chapter 2). Artificial streams can provide important insights as they allow 

the manipulation of a number of conditions (e.g. combination of competitors, competitive 

levels, sediment types) in a controlled environment as well as for increased experimental 

replication in contrast to natural environments. The effectiveness of artificial 

environments for simulating natural environments may vary, however, and examining 

interspecific competition effects in natural streams can place the results into a larger 

management context (Fausch 1988, 1998). Relatively, few studies have contrasted 

interspecific competition effects between artificial and natural environments (e.g. 

Blanchet et al. 2007); a recent meta-analysis examining interspecific competition effects 

suggests that the direction of effects are similar, but that the magnitude of effects can 

differ across the two types of experiments (Korsu et al. 2010). A comparison between 

artificial and natural streams may therefore help to identify similarities and differences in 

the responses of Atlantic salmon to competition with non-native salmonids and allow 

improved application of the findings from controlled, artificial environments to natural 

environments. 
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Here, I examine LaHave and Sebago Atlantic salmon juveniles in two natural stream sites 

of Lake Ontario that differed in the presence and absence of non-native salmonids, 

mainly rainbow trout (Oncorhynchus mykiss). I also compare the performance of Atlantic 

salmon in the natural streams to artificial streams. The Saint-Jean population was not 

included in these experiments, as it was not possible to obtain sufficient numbers of 

juveniles. My objective was to test three hypotheses: (1) juvenile Atlantic salmon in 

competition with rainbow trout in streams will have sub-optimal microhabitat 

associations and have reduced survival and fitness-related traits; (2) Sebago juveniles will 

have a better competitive ability and thus higher performance than LaHave juveniles with 

rainbow trout; and (3) that results from competition with rainbow trout in artificial 

streams are similar in direction, but not in magnitude to results in natural streams. 

4.2 Materials and Methods 

4.2.1 Study Populations 

LaHave and Sebago Atlantic salmon families were produced in early November 2010 at 

the Ontario Ministry of Natural Resources and Forestry (OMNRF) Harwood Fish Culture 

Station (Harwood, Ontario). Five females and five males within each population were 

mated in all possible combinations to produce a 5 × 5 full factorial breeding design 

(Lynch and Walsh 1998) for each population. Offspring were then transported the same 

day as fertilization to the OMNRF Codrington Research Facility, Codrington, Ontario, 

where they were exposed to natural photoperiods and local stream temperatures (mean ± 

SD: 8.4 ± 2.6°C). The offspring of one Sebago female had very low survival; therefore, 

five of the 25 Sebago families were removed from the study.  
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4.2.2 Study Sites 

Two sites within Duffins Creek, Ontario, were used to compare the performance of 

Atlantic salmon juveniles exposed to competition with non-native salmonids in natural 

conditions. I was only able to use two sites because of the challenges in getting 

landowner access to sites, appropriate permits to release fish in multiple locations, and 

minimizing the overlap in sites used for my experiment and the other stocking efforts of 

the OMNRF. My study nevertheless represents a rare opportunity to assess how 

generalizable the knowledge gained regarding the effects of competition in artificial 

streams is to natural systems. Because environment features may influence the outcomes 

of competition (Jones and Stanfield 1993; Fausch 1998; Stanfield and Jones 2003), the 

two sites were as similar as possible in temperature, productivity, and microhabitat, but 

differed in the presence of rainbow trout (Stanfield et al. 2006 and confirmed by my 

microhabitat surveys). The first site (Upper Duffins) did not contain rainbow trout and 

the second site (Lower Duffins) contained juvenile rainbow trout, but also low numbers 

of brown trout. Both sites contain native brook trout (Salvelinus fontinalis) and also have 

been used previously by the OMNRF for Atlantic salmon juvenile stocking. 

Atlantic salmon fry were measured for body length (fork length) and mass, and families 

were pooled together by site (Table 4.1). Fry were released at the sites on 24 May 2011 

using plastic bags filled with oxygen saturated water. At the sites, bags were held within 

the stream water until the temperature was similar between the water inside the bag and 

the stream. Fry were then gently dispersed into riffle habitats within a 200 m section of 

stream using plastic watering cans (stocking area was 1066 m
2
 for Upper Duffins and 

1341 m
2
 Lower Duffins). Sebago salmon fry were initially larger in body length, mass, 
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and Fulton’s condition (Fulton 1904) than LaHave salmon fry (Student’s t-tests, p < 

0.001): Sebago salmon fry (n = 540) were 3.0 ± 0.2 cm (mean + SD), 0.26 ± 0.06 g, and 

had a condition of 1.00 ± 0.12, and LaHave salmon fry (n = 1125) were 2.9 ± 0.2 cm, 

0.23 ± 0.07 g, and had a condition of 0.93 ± 0.15. 
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Table 4.1. Summary of Fry Releases and Captured Juveniles at Two Natural Stream Sites 

for LaHave and Sebago Atlantic Salmon (Salmo salar). Area sampled is the stream area 

sampled by electrofishing. The age 0+ and 1+ are the counts of juveniles that assigned to 

the families and in brackets are the counts of juveniles that assigned to a population 

(including other OMNRF-stocked juveniles of the target age classes). “Older” indicates 

the number of juveniles that were larger than the individuals that assigned to the families 

and were excluded from analyses. 

Site Population 
Number of fry 

released
 

Area sampled 

(m
2
)

 

Fall number of 

juveniles 

 Spring number of 

juveniles 

age 0+
 

older
 

 age 1+ older 

Upper 

Duffins 

LaHave 1444 - 18 (22)  12  5 (14) 1 

 Sebago 446 - 11 (13) 0  1 (1) 1 

 Total 1890 1967 29 (35) 12  6 (15) 2 

         

Lower 

Duffins 

LaHave 1469 - 8 (41) 10  2 (13) 5 

 Sebago 457 - 3 (18) 7  0 (11) 0 

 Total 1926 3436 11 (59) 17  2 (24) 5 
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4.2.3 Capturing Juveniles and Population Assignments 

Atlantic salmon juveniles were captured from the two sites using a backpack electrofisher 

(Halltech Aquatic Research, Guelph, Ontario) and a lip-seine net at 5 months (Fall: 7-10 

November 2011) and 11 months after release (Spring: 10-11 April 2012). Electrofishing 

started 500 m downstream of the fry release point and moved upstream until about 50 m 

upstream of the fry release point following a single pass zigzag pattern to ensure the 

greatest sampling coverage. The entire stream area, including all habitats, was sampled. 

There was greater coverage sampling downstream than upstream because the majority of 

fry disperse downstream, usually within 500 m of the release point, within the first year 

(Webb et al. 2001; Einum et al. 2011). In addition, size-dependent dispersal should be 

captured within the first 150 m of the release point (Einum et al. 2011). Captured 

individuals were held in large buckets (10 L) filled with stream water until a 

predetermined stream section sample was completed. Stream sections were defined as 

areas roughly 30 m in length that contained homogenous habitat (riffle, runs, or pools). 

These stream section boundaries were confirmed by the microhabitat survey described 

below. Upper Duffins had 9 stream sections and Lower Duffins had 12 stream sections. 

Atlantic salmon juveniles from each section were lightly anaesthetized using food-safe 

clove oil (Hilltech Canada, Vankleek Hill, Ontario, 100 ppm) and measured for body 

length, mass, and Fulton’s condition (Fulton 1904), traits which are considered relevant 

for future survival (Metcalfe and Thorpe 1992; Koskinen et al. 2002). A small fin clip (< 

0.15 cm
2
) was then collected from one of the caudal fin lobes and stored in 95% ethanol 

for later genetic assignment to family and population (see Appendix A). Juveniles were 

allowed to recover and were then returned to the section from where they were originally 
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captured. Non-target species from each section were identified to species, counted, and 

immediately returned to the site downstream of electrofishing. 

4.2.4 Microhabitat Variables 

Microhabitat variables were measured once in the fall and used for both fall and spring 

analyses. Microhabitat measurement were collected at 10 m intervals throughout the 

study sites (see Peres-Neto 2004 for additional details): (1) average cross-sectional 

stream water depth from measurements every 50 cm along the entire cross-section; (2) 

cross-sectional stream width from bank to bank along the entire cross-section; (3) average 

cross-sectional stream water velocity from measurements at 2-3 points along the cross-

section using a 10 second average measurement for each point using a digital flowmeter 

(Hӧntszsch, Germany); (4) stream substrate coarseness estimated visually from the centre 

of  the cross-section in the area bounded 1 m upstream and 1 m downstream along the 

cross-section by percentage composition of clay (< 0.002 mm), silt (0.002-0.05 mm), 

sand (0.05-2 mm), gravel (2-60 mm), pebbles (60-150 mm), and rocks (> 150 mm). 

Visual classification of substrate coarseness was based off of a modified Wentworth scale 

(Heggenes and Saltveit 1990) and was recorded by the same individual for all sites to 

ensure the consistency of measurements. 

4.2.5 Statistical Analysis of Microhabitat Associations 

Cumulative distribution functions described by Perry and Smith (1994) were used to 

describe the associations between each salmonid species (i.e. Atlantic salmon, brook 

trout, and rainbow trout) and the microhabitat variables for both fall and spring. Principal 

component analysis with the correlation matrix was used to simplify substrate 
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composition variables into a smaller number of variables (Coghlan et al. 2007). The 

availability of each microhabitat variable at each site was quantified using the following 

cumulative distribution function:  

𝑓�𝑡 = 100 �𝐼       where 𝐼 =   
1         if 𝑥𝑖 ≤ 𝑡
0    otherwise,

 
𝑛

𝑖=1

      

 

where t was a level of the microhabitat variable and xi was the microhabitat variable 

measurement for stream measurement i (i.e. taken every 10 meters). Similar cumulative 

distribution functions were calculated for each salmonid species counts in relation to each 

microhabitat variable at each site for the fall and spring:  

𝑔�𝑡 = 100 �
𝑦𝑖

𝑌 

𝑛

𝑖=1

𝐼     where I =  
1         if 𝑥𝑖 ≤ 𝑡
0    otherwise,

       

 

where yi was the salmonid species counts in stream section i and Ῡ was the mean counts 

of the species in a given sampling site and season. Significance of the microhabitat 

association was determined using a randomization procedure. The test statistic D was the 

maximum absolute vertical difference between g(t) and f(t) (Perry and Smith 1994). This 

observed D was compared to the distribution values of D produced by 999 random 

permutations of the microhabitat data (a total of 1000 permutations including the 

observed data). That is, under the null hypothesis of random association, I randomly 
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paired salmonid species counts and microhabitat variables to create the distribution 

values of D. 

4.2.6 Statistical Analysis of Recapture, Size, and Condition 

Atlantic salmon recapture proportion (number recaptured divided by the number 

released) between sites and populations was examined using relative fitness analyses 

described by Kalinowski and Taper (2005; available at 

http://www.montana.edu/kalinowski/RFA/RFA_Home.htm). One-way ANOVAs 

compared the body length, mass, and condition of recaptured Atlantic salmon between 

sites, seasons, and populations in R 3.0.1 (available at http://www.r-project.org/). 

Binomial generalized linear ordinary least squares regressions were used to test for 

relationships between Atlantic salmon recapture proportion with body length, mass, or 

condition. The binomial regressions were weighted by the number of fry released. 

Poisson (or quasi-Poisson in cases of overdispersion, i.e. if residual deviance was much 

larger than the degrees of freedom) generalized linear ordinary least squares regressions 

were used to test for relationships between Atlantic salmon counts with the average 

microhabitat variables of each stream section. Linear models tested for relationships 

between Atlantic salmon body length, mass, and condition with average microhabitat 

variables of each stream section. Statistical significance was set at α = 0.05. 

4.2.7 Statistical Comparisons between Natural and Artificial Streams 

Atlantic salmon water depth, body length, mass, and condition values from the natural 

stream sites were compared against those from artificial stream environments (Chapter 

2). For Atlantic salmon water depth in the natural streams, I used the average water depth 

http://www.montana.edu/kalinowski/RFA/RFA_Home.htm
http://www.r-project.org/
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of the section where individuals were captured. The artificial streams contained siblings 

from eight of the families per population that were released into the two Duffins Creek 

sites. Artificial stream treatments that were used in the comparisons were (1) Atlantic 

salmon alone and (2) Atlantic salmon with rainbow trout. To compare the two different 

environments (natural versus artificial), data from both environments were combined and 

standardized prior to analysis (mean = 0 and variance = 1 for each variable). Standardized 

data were analyzed using two-way ANOVAs that contained treatment (rainbow trout 

absent or present) and source (natural streams or artificial streams). 

4.3 Results 

4.3.1 Juvenile Captures and Assignments 

About 50% more Atlantic salmon juveniles were captured in Lower Duffins than Upper 

Duffins (Table 4.1). Because the sites potentially contained older Atlantic salmon (i.e. 

fall age 1+ and spring age 2+) from prior OMNRF Atlantic salmon fry releases, bimodal 

histograms of Atlantic salmon length were used to separate different age classes. Atlantic 

salmon that were in the larger mode were considered older Atlantic salmon age classes 

and were excluded from my analyses. This consideration was further supported based on 

genetic analysis of samples from the older Atlantic salmon age classes, which confirmed 

their exclusion from the experimental released families (data not shown). The proportions 

of older Atlantic salmon were not significantly different between sites (Χ
2
 = 0, df = 1, p = 

0.99). 

All Atlantic salmon of the target age classes (i.e. fall age 0+ and spring age 1+), except 

for two individuals, were assigned to the families or to the LaHave and Sebago 
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populations (including other OMNRF-stocked juveniles of the target age classes) based 

on genetic analyses (see Appendix A), and were included in my analyses. OMNRF-

stocked juveniles in my sample were a small proportion of what was stocked; OMNRF-

stocked juveniles in Upper Duffins originated from fry stockings at a site 500 m 

downstream in May 2011 (n = 21,730) and 2010 (n = 19,990) and OMNRF-stocked 

juveniles in Lower Duffins originated from two fry stocking sites 1.7- 4 km upstream in 

May 2011 (n = 36,140) and 2010 (n = 30,575). In addition, Upper Duffins contained 108 

and 55 brook trout in the fall and spring sampling periods, respectively, but did not 

contain rainbow trout. By contrast, the Lower Duffins site contained 16 and 6 brook 

trout, 560 and 199 rainbow trout, and 9 and 1 brown trout in the fall and spring sampling 

periods, respectively. 

4.3.2 Microhabitat Associations 

Although efforts were made to select sites that were as similar in microhabitat as 

possible, there were significant differences in the microhabitat variables between the 

Upper and Lower Duffins sites (MANOVA, p < 0.001). The sites were significantly 

different in water velocity (mean ± 1SD, Upper Duffins: 68 ± 12 cm s
-1

 and Lower 

Duffins: 81 ± 12 cm s
-1

, Student’s t-test, p < 0.001) and the percentages of pebbles (19 ± 

10% and 37 ± 22%, p < 0.001) and sand (20 ± 14% and 12 ± 13%, p = 0.005) (principal 

component 2, Table 2), but the sites were not significantly different in water depth (23 ± 

10 cm and 25 ± 8 cm, p = 0.51) and the percentages of gravel (18 ± 12 and 14 ± 13%, p = 

0.097) and rocks (29 ± 23 and 26 ± 24%, p = 0.62) (principal component 1, Table 4.2). 

Upper Duffins had a lower water velocity, a lower proportion of pebbles, and a higher 

proportion of sand than Lower Duffins.  
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Salmonid species were significantly associated with microhabitat variables (Figure 4.1). 

In the absence of rainbow trout (Upper Duffins), Atlantic salmon were found in habitats 

with a higher percentage of gravel in the fall and with a lower water depth in the spring. 

On the other hand, in the presence of rainbow trout (Lower Duffins), Atlantic salmon 

were found in habitats with a higher percentage of pebbles in the fall and with higher 

percentages of rocks and sand in the spring (Figure 4.1). Similarly, in the absence of 

rainbow trout, brook trout were found in habitats with a higher percentage of gravel in the 

fall, but had no microhabitat associations in the spring (Figure 4.1). In the absence of 

rainbow trout, brook trout had no microhabitat associations in the fall, but were found in 

habitats with a higher percentage of rocks in the spring. Rainbow trout were found in 

habitats with a higher percentage of rocks in the spring, but had no specific microhabitat 

associations in the fall. 
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Table 4.2. Summary of Relationships Between Substrate Composition and the First Two 

Principal Components based on Two Natural Stream Sites. Relationships greater than 

0.45 and lesser than -0.45 are displayed in bold. 

Variable PC 1 PC2 

Clay 0.376   0.148   

Silt 0.430 -0.415 

Sand 0.122 -0.590 

Gravel 0.494   0.237   

Pebbles 0.147  0.600 

Rocks     -0.638  -0.205   

   

Proportion of variance 

explained 

29.3% 25.5% 

Cumulative proportion 

of variance explained 

29.3% 54.8% 
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Figure 4.1. Microhabitat Associations of Three Species of Salmonid (Atlantic Salmon- 

Salmo salar, Brook Trout- Salvelinus fontinalis, Rainbow Trout- Oncorhynchus mykiss) 

at Two Natural Stream Sites. Shown are data from four microhabitat variables: (a) water 

depth, (b) water velocity, (c) principal component 1 of substrate composition (PC 1), (d) 

principal component 2 of substrate composition (PC 2). Solid lines and boxes display the 

median and 25th to 75th percentiles of available microhabitat; dots and dashed boxes 

display the median and 25th to 75th percentiles of associated (utilized) microhabitat. 

Filled dots indicate significant microhabitat associations (p < 0.05). The principal 

component loadings are presented in Table 4.2. 
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Between sites, Atlantic salmon associated with different microhabitat variables (Figure 

4.1). Atlantic salmon were found in habitats with a lower water depth in the fall (one-way 

ANOVA, p = 0.007) (opposite in the spring, p = 0.001), and in both seasons were found 

in habitats with a higher water velocity (both p < 0.001) and higher percentages of rocks 

(fall, p < 0.001 and spring, p = 0.026) and pebbles (both p < 0.001) in the presence than 

in the absence of rainbow trout. Within sites, Atlantic salmon associated with different 

microhabitat variables in comparison to the other salmonid species that were present. In 

the absence of rainbow trout, Atlantic salmon were found in habitats with a greater water 

depth (one-way ANOVA, p < 0.001) and a larger percentage of sand (p = 0.006) than 

brook trout in the fall, and there were no significant differences in microhabitat 

associations in the spring (p > 0.14 for all). Conversely, in the presence of rainbow trout, 

Atlantic salmon were found in habitats with similar microhabitat variables as brook trout 

and rainbow trout for both seasons (p > 0.13 for all), with exception of water depth and 

the percentage of sand compared to brook trout (both p < 0.001) and water depth 

compared to rainbow trout (p = 0.047) in the fall. Atlantic salmon populations were not 

significantly different in microhabitat associations in both seasons (p > 0.08 for all; 

Figure 4.2), with exception that Sebago juveniles associated with a higher percentage of 

gravel than LaHave juveniles in the absence of rainbow trout (p = 0.01). 
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Figure 4.2. Microhabitat Associations, Body Length, Mass, and Condition for LaHave 

and Sebago Atlantic salmon (Salmo salar) in Two Natural Stream Sites. Displayed are 

means ± 1SE. 
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4.3.3 Recapture Proportion, Size, and Condition 

Over the winter, the relative recapture proportion of Atlantic salmon was not significantly 

different between the two sites (0.95 [95% CI = [0.50, 1.85]); therefore, fall and spring 

Atlantic salmon counts were combined. Although one purpose of the stocking experiment 

was to assess fitness variation within as well as between the two source populations, the 

counts of juvenile Atlantic salmon were insufficient to assess family-level differences in 

recapture proportions (Table 4.1). Using the counts from Atlantic salmon that were 

assigned to specific families, the relative recapture proportion of Atlantic salmon was 

significantly different between sites (0.36 [0.19, 0.67]), which cannot be explained by the 

difference in sampling area (Table 4.1). On the other hand, using the counts of all 

Atlantic salmon (my experimental fish plus the OMNRF-stocked fish), the density was 

similar between the sites (0.017 Atlantic salmon m
-2

 for both sites). Also, the relative 

recapture proportion of the two Atlantic salmon source populations was not significantly 

different in both sites (Upper Duffins: 1.69 [0.81, 3.33] and Lower Duffins: 0.97 [0.22, 

3.17]). There were no significant relationships between Atlantic salmon recapture 

proportion and initial release body length (binomial model, p > 0.30), mass (p > 0.14), 

and condition (p > 0.26) within sites (data not shown). Also, there were no significant 

relationships between Atlantic salmon recapture proportion and the microhabitat 

variables (quasi-Poisson models, p > 0.12 for all; data not shown) or the counts of older 

Atlantic salmon within sites (p > 0.81). 

Body length, mass, and condition of Atlantic salmon were significantly different between 

sites and populations (Figure 4.2). Atlantic salmon were shorter (one-way ANOVA, p = 

0.005), had lower mass (p = 0.001), and were in lower condition (p = 0.007) in the 
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presence than in the absence of rainbow trout. Sebago juveniles were longer (p = 0.040) 

and had higher mass (p = 0.026) than LaHave salmon in the presence of rainbow trout, 

whereas LaHave and Sebago juveniles were not significantly different in body length (p 

= 0.12) and mass (p = 0.36) in the absence of rainbow trout. Also, Sebago juveniles were 

in higher condition than LaHave juveniles in both sites (p = 0.014). For Upper Duffins, 

there was a significant correlation between these Atlantic salmon variables (i.e. body 

length, mass, and condition) and substrate composition (principal component 1) (p < 

0.04); Atlantic salmon were larger in habitats with a higher percentage of rocks and in 

higher condition in habitats with a higher percentage of gravel. For Lower Duffins, there 

was a significant correlation between body condition and substrate composition (principal 

component 1 and 2) (p < 0.03); Atlantic salmon were in higher condition in habitats with 

higher percentages of rocks and sand. There were no significant relationships between the 

Atlantic salmon variables and the remaining microhabitat variables (linear models, p > 

0.09 for all; data not shown) or the counts of older Atlantic salmon within sites (p > 

0.81). There also were no significant relationships between body length (linear model, p 

> 0.11), mass (p > 0.28), or condition (p > 0.27) within sites at the time of release versus 

the time of recapture, based Atlantic salmon family means (data not shown). 

4.3.4 Comparisons to Artificial Streams 

The direction and magnitude of the response of the water depth that Atlantic salmon 

occupied as well as their body length and mass to the presence of rainbow trout did not 

significantly differ between natural and artificial streams (Table 4.3; Figure 4.3). On the 

other hand, the body condition response to the presence of rainbow trout was 

significantly different between natural and artificial streams; there was a greater 
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reduction in condition in the natural streams than in the artificial streams. In both 

artificial and natural streams, Atlantic salmon were not associated with different depths in 

the presence of rainbow trout. In addition, in both environments there was a reduction in 

Atlantic salmon body length, mass, and condition in the presence of rainbow trout. 



104 

 

Table 4.3. Two-Way ANOVA Results Comparing Habitat and Body Measurements of 

Juvenile Atlantic Salmon (Salmo salar) in Natural and Artificial Streams. Variables 

tested were treatment (rainbow trout absent or present) and source (natural streams or 

artificial streams). Samples sizes for the natural stream experiment were n = 51 

individuals for the rainbow trout absent and n = 83 individuals for the rainbow trout 

present treatments. Sample sizes for the artificial stream experiment were n = 32 average 

values of individuals within streams in both the rainbow trout absent and present 

treatments for water depth, and were n = 486 individuals for the rainbow trout absent and 

n = 225 individuals for the rainbow trout present treatments for the body size variables. 

Variable df Sum sq. Mean sq. F p 

      

Water Depth      

treatment 1 2.83 2.83 86.95 < 0.001 

source 1 196.56 196.56 6036.91 < 0.001 

treatment × source 1 0.00 0.00 0.05 0.827 

residuals 203 6.61 0.03   

      

Body Length      

treatment 1 5.6 5.59 5.85 0.016 

source 1 35.2 35.19 36.85 < 0.001 

treatment × source 1 0.0 0.02 0.02 0.899 

residuals 842 804.2 0.96   

      

Body Mass      

treatment 1 14.9 14.85 15.13 < 0.001 

source 1 3.7 3.73 3.80 0.052 

treatment × source 1 0.1 0.11 0.11 0.743 

residuals 842 826.3 0.98   

      

Body Condition      

treatment 1 26.0 26.04 27.56 < 0.001 

source 1 17.8 17.80 18.83 < 0.001 

treatment × source 1 5.6 5.61 5.94 0.015 

residuals 842 795.6 0.95   
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Figure 4.3. Standardized Water Depth, Body Length, Mass, and Condition of Atlantic 

Salmon (Salmo salar) in Natural and Artificial Streams. Displayed are means ± 1SE in 

the presence of rainbow trout. Solid lines represent natural stream data; dashed lines 

represent the artificial stream data. 
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4.4 Discussion 

Ecological niche overlap among species has long been considered to lead to increased 

competition for similar resources (Hutchinson 1957). I found that Atlantic salmon and 

rainbow trout had similar microhabitat associations in a stream during the juvenile stage. 

I also found that the presence of rainbow trout led to reductions in Atlantic salmon body 

length, mass, and condition, but not the relative recapture proportion at this juvenile 

stage. My release sites were originally selected because they were similar in microhabitat 

composition, productivity, and temperature. Indeed, the sites were similar in water depth, 

and the percentages of gravel and rocks, but the sites differed in water velocity and the 

percentages of pebbles and sand. Nevertheless, the mean values for water velocity and 

the percentages of pebbles were within the optimal range for Atlantic salmon juveniles in 

both sites (Morantz et al. 1987; Guay et al. 2000; Beland et al. 2004; Hedger et al. 2005). 

Although, Atlantic salmon juveniles tend to avoid microhabitats with a high percentage 

of sand (e.g. Morantz et al. 1987), the difference in the percentage of sand between the 

two sites was small at 8%. Similarly, the sites both contained older Atlantic salmon, but 

the proportions were similar and the counts were not related to the changes in my focal 

Atlantic salmon numbers or sizes. Thus, the changes I observed in Atlantic salmon 

microhabitat association and size do not appear to be due to intraspecific competition 

with older Atlantic salmon. Instead my results suggest that the changes in Atlantic 

salmon microhabitat association and size at this site are due to competition with rainbow 

trout, as has been documented in other studies (Jones and Stanfield 1993; Stanfield and 

Jones 2003; Coghlan et al. 2007; Thibault and Dodson 2013). 



107 

 

Competition among ecologically-similar species may decrease by reducing the ecological 

niche overlap (Hutchinson 1957). I found that Atlantic salmon had optimal microhabitat 

associations in a natural stream site without rainbow trout but sub-optimal microhabitat 

associations in a site where rainbow trout were present. Specifically, Atlantic salmon 

were found in habitats with a higher percentage of gravel and lower water velocity, their 

optimal physical microhabitats (Morantz et al. 1987), when rainbow trout were absent, 

but were found in habitats with a lower water depth, lower percentages of pebbles, rocks, 

sand, and a higher water velocity in the presence of rainbow trout. Other studies have 

also found that Atlantic salmon shift to habitats with lower water depth and higher water 

velocity in the presence of rainbow trout, possibly because Atlantic salmon pectoral fins 

are better suited to holding position in faster water than rainbow trout (Gibson 1981; 

Hearn and Kynard 1986; Volpe et al. 2001). A shift in Atlantic salmon microhabitat 

associations may also be due to competitive displacement by the generally more 

aggressive rainbow trout (Gibson 1981; Hearn and Kynard 1986; but see Van Zwol et al. 

2012a). The displacement could explain the reductions in Atlantic salmon body length, 

mass, and condition that I observed because of the increased energy expenditure or 

perhaps fewer available resources in the sub-optimal microhabitat (Hearn 1987; Fausch 

1988). Native species that are displaced by ecologically-similar species may 

consequently have decreased fitness because of associations with sub-optimal 

microhabitats. 

Salmonid populations may differ in their ability to cope with the competition imposed by 

non-native species. Examining my experimental families, I found no difference in the 

relative recapture proportion of the populations, but this result may reflect the small 
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sample size (driven partly by the high juvenile mortality in Lake Ontario tributaries; 

COSEWIC 2006, 2010). Indeed, I did detect differences between populations when 

examining all the Atlantic salmon caught. I found that Sebago salmon were longer, 

heavier, and had greater body condition than LaHave salmon in the natural stream site 

containing rainbow trout. Although Sebago salmon were initially larger at release, the 

difference was negligible and not likely to have driven the differences at recapture. For 

example the body length difference was 3% (0.1 mm) whereas at recapture the difference 

was 8% (7 mm). In addition, the LaHave and Sebago populations were similar in size in 

the natural stream site that did not contain rainbow trout. Similar results were reported for 

Atlantic salmon juveniles that were examined in artificial streams (Van Zwol et al. 

2012b; Chapter 2). Van Zwol et al. (2012b) observed that Sebago salmon avoided 

agonistic interactions with rainbow trout relative to LaHave salmon. This difference in 

behavioural tactics may underlie the difference I detected in performance when in 

competition with a non-native species. 

Effects of interspecific competition may be similar in natural and artificial environments. 

I examined the effects of competition with rainbow trout on the traits of Atlantic salmon 

in both natural and artificial streams (Chapter 2). I found that Atlantic salmon responses 

to competition were similar in both environments. A meta-analysis by Korsu et al. (2010) 

found that effects of competition were similar in direction, but differed in magnitude 

between environments. The direction and magnitude may have been more similar in my 

study (for three out of the four traits I examined) because I used a paired-family design, 

i.e. a subset of eight families per population in the artificial streams from those families 

that were released in the natural streams. My data suggest that there is merit in 
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performing controlled experiments first in artificial environments as a primary test for 

performance and fitness reductions due to interspecific competition (also see Fausch 

1998). Artificial environments may also provide insight into target variables, such as the 

importance for controlling for physical habitat, before taking the research into the more 

complex natural environment. 

My results have implications for the reintroduction efforts of native species. The presence 

of non-native salmonids has been identified as an important feature of the environment 

that may be an impediment to a successful reintroduction of Atlantic salmon into Lake 

Ontario (Jones and Stanfield 1993; Crawford 2001; COSEWIC 2006, 2010). I found that 

the Sebago population had better performance (i.e. larger body size and better condition) 

with rainbow trout in a natural stream than the LaHave population. Stocked Sebago 

salmon also appear to co-exist with naturalized and stocked rainbow trout and brown 

trout in Lake Champlain (Marsden et al. 2010), whereas the LaHave population has not 

previously been examined in wild sympatry with rainbow trout (Dimond and Smitka 

2005). More broadly, my results suggest that source populations appearing to do well in a 

location with similar key environment features as the reintroduction location may possess 

important adaptations (Krueger et al. 1981; Moritz 1999; Jones 2003, 2013). Identifying 

ideal source populations may also require an examination of the performance of several 

populations in response to important features of the reintroduction location (van Katwijk 

et al. 1998). Finally, I found that the presence of ecologically similar non-native species 

reduced fitness-related traits of a native species in both natural and artificial 

environments. I suggest that native species reintroduction efforts minimize ecological 
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niche overlap with non-native species in an attempt to maximize the performance of 

translocated individuals. 
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Chapter 5  

5 Effects of Feeding High Dietary Thiaminase to Sub-Adult 

Atlantic Salmon from Three Populations* 

5.1 Introduction 

Anthropogenic impacts on natural environments are increasingly altering prey species 

composition and abundance. It is becoming apparent that these impacts can lead to 

deficiencies in essential nutrients formerly available in prey species (Barboza et al. 2009). 

Because essential nutrients cannot be synthesized de novo, deficiencies in these nutrients 

can leave predator species vulnerable to metabolic dysfunction and disease. For example, 

habitat changes have diminished the prey resources containing vitamin A for southern sea 

otters (Enhydra lutris nereis) (St Leger et al. 2011). Subsequent vitamin A deficiencies in 

sea otters resulted in abnormal bone growth and a reduction in survival (St. Leger et al. 

2011). Furthermore, lipid deficiencies in Daphnia magna caused by human-induced 

cyanobacteria blooms reduced the number and quality of the eggs produced (Wacker et 

al. 2007). Nutrient deficiencies can have significant ecological effects, as even small 

reductions in individual fitness can lead to altered community dynamic, the extirpation of 

small populations (Hutchings 1991), and potentially impede a successful reintroduction 

of native populations (Dimond and Smitka 2005). 

Thiamine (vitamin B1) is an essential, environmentally-obtained nutrient for many fish 

species (Halver and Hardy 2002). Thiamine is essential for metabolism as a coenzyme for 

several enzymes that breakdown carbohydrates and amino acids to produce energy (or 

                                                 
*
A version of this chapter is in review:  Houde ALS, Saez PJ, Wilson CC, Bureau DP, Neff BD. 2015. 

Effects of feeding high dietary thiaminase to sub-adult Atlantic salmon from three populations. J Great 

Lakes, in review. 



115 

 

adenosine triphosphate, ATP) (Kawasaki and Egi 2000). Many salmonid populations are 

currently experiencing thiamine deficiencies (Norrgren et al. 1993; Fisher et al. 1995; 

Fitzsimons et al. 1995). In the Laurentian Great Lakes and New York Finger Lakes, the 

source of the thiamine deficiency for salmonid fishes appears to be the consumption of 

introduced non-native prey fishes that contain high concentrations of thiaminase, an 

enzyme that degrades thiamine (Fitzsimons et al. 1998; Wistbacka et al 2002; Honeyfield 

et al. 2012). On the other hand, in the Baltic Sea, the thiamine deficiency in salmonids 

appears to be driven by a reduced thiamine transfer from lower to higher trophic levels 

because of eutrophication in the environment (Sylvander et al. 2013).  

Salmonids within the Great Lakes and Finger Lakes historically consumed native prey 

fishes, such as cisco or lake herring (Coregonus artedi) and bloater (C. hoyi), which 

contain low thiaminase concentrations (Tillitt et al. 2005; Zajicek et al. 2005). Currently, 

within these lakes, the dominant prey fishes are now introduced non-native alewife 

(Alosa pseudoharengus) and rainbow smelt (Osmerus mordax), which contain high 

thiaminase concentrations (Tillitt et al. 2005; Zajicek et al. 2005; Honeyfield et al. 2012). 

A source of the thiaminase found in these introduced prey fishes is the non-pathogenic 

bacteria Paenibacillus thiaminolyticus, which has been isolated from Lake Michigan 

alewives (Honeyfield et al. 2002; Zajicek et al. 2009). Non-native prey fish can also 

produce thiaminase de novo within their bodies (Richter et al. 2012). Without 

consideration of the presence of thiaminase, the introduced non-native prey fishes 

themselves exceed the amount of dietary requirement of thiamine for fish (Fitzsimons et 

al. 1998; Tillitt et al. 2005). However, the high thiaminase concentrations of these prey 
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fishes can degrade any available thiamine in the digestive system of salmonid predators 

before it can be absorbed (Fitzsimons et al. 2007).  

Here, I examine the performance (i.e. survival and fitness-related traits) of sub-adult 

(two-year-old) Atlantic salmon from three populations that were given prepared diets 

mimicking the historical diet (low thiaminase content) and the current diet (high 

thiaminase content) within the Great Lakes. I predict that potamodromous populations 

(i.e. the Sebago and Saint-Jean populations) that primarily consume rainbow smelt 

(Dimond and Smitka 2005) will have higher thiaminase tolerance than an anadromous 

population (i.e. the LaHave population) that has a more diverse diet (Rikardsen and 

Dempson 2011), which could be lower in thiaminase. Although several studies have 

examined the effects of thiamine deficiency in adult salmonids and their offspring, these 

effects have rarely been examined in smolt or sub-adult salmonids, the age when these 

fishes begin consuming high thiaminase-containing prey fishes (Morito et al. 1986; 

Ketola et al. 2008).  

5.2 Materials and Methods 

5.2.1 Study Populations 

Families for the LaHave (n = 37), Sebago (n = 14), and Saint-Jean (n = 66) populations 

were produced in early November 2011 using single-pair matings of mature individuals 

at the Ontario Ministry of Natural Resources and Forestry (OMNRF) Harwood Fish 

Culture Station, Harwood, Ontario. The LaHave mature individuals originated from 

fertilized eggs of single-pair matings of captive LaHave adults descended from the wild 

source population (44°14′N 64°20′W). The OMNRF LaHave broodstock was founded 



117 

 

from several years of wild spawn collections (1989 to 1995), and the captive adults used 

from the 2007 cohort were the product of two generations of post-founding hatchery 

breeding (OMNR 2005). The Sebago and Saint-Jean mature individuals originated from 

fertilized eggs of single-pair matings of wild Sebago from Panther River (43°53'N, 

70°27'W) and wild Saint Jean from Rivière-aux-Saumons (48°41'N, 72°30'W); both 

founding wild spawn collections were carried out in 2007. Families were transported to 

the OMNRF Codrington Research Facility, Codrington, Ontario in spring 2012, where 

they were subjected to a natural light cycle and water from a surface stream (Marsh 

Creek) at natural temperatures. The salmon were fed commercial pellets (Corey 

Aquafeeds, Fredericton, New Brunswick) until used in the experiment. 

5.2.2 Experimental Diets 

Two experimental diets were formulated to be isoproteic, isoenergetic, and to contain 

different concentrations of bacterial thiaminase (Paenibacillus thiaminolyticus) isolated 

from Lake Michigan alewives (Honeyfield et al. 2002). These diets were control (no 

thiaminase) and high thiaminase (6,800 pmol min
-1

 per gram of feed, Honeyfield et al. 

2005), similar to the thiaminase activity of alewife, rainbow smelt, and round goby 

(Neogobius melanostomus) in Lake Ontario (Honeyfield et al. 2012). The diets were 

formulated to mimic the naturally occurring symptoms of thiamine deficiency in lake 

trout (Salvelinus namaycush) (Honeyfield et al. 2005). Both diets (control and 

thiaminase) were fish meal based and contained all the nutrient requirements of fish, 

including thiamine measured at 19.8 ± 8.6 (mean ± 1SD) mg per kilogram of feed (Table 

5.1).  
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All dry ingredients were thoroughly mixed (Hobart mixer, Hobart Ltd, Don Mills, 

Ontario, Canada) and then mixed again with the addition of thiaminase bacteria liquid 

culture (thiaminase diet only) and water (about 400 ml of liquid per kg of mash dry 

weight) at the University of Guelph Fish Nutrition Research Lab, Guelph, Ontario. The 

mix was immediately transported to the University of Western Ontario, London, Ontario. 

After 24 h, more water was then added until the feed was a dough-like consistency and 

the dough was screw pressed using a 5 mm diameter die. The resultant moist pellets were 

air dried at room temperature for 2 to 3 days and then transported and stored at -20°C at 

the Codrington Facility until used. 
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Table 5.1. Composition and Proximate Analysis of the Experimental Diets for Atlantic 

Salmon (Salmo salar). Greater details on the diet formulation are described in Honeyfield 

et al. (2005). Proximate analysis is based on dry matter basis. Thiaminase bacteria 

(Paenibacillus thiaminolyticus) cultures were prepared using liquid media (yeast extract 

1.0 g L
-1

 and 8.0 g L
-1

 Difco nutrient broth, Becton Dickinson, Mississauga, Ontario) 

inoculated with the bacteria (3 ml inoculation for 1 L of media) and incubated for 96 h at 

37°C. For the thiaminase diet, bacteria cultures were mixed into dry ingredients (300 ml 

per kilogram of feed) to produce a thiaminase activity of 6,800 pmol min
-1

 per gram of 

feed. Thiamine was measured at 19.8 ± 8.6 (mean ± 1SD) mg per kilogram of diet. 

Variable Control (%) Thiaminase (%) 

Diet composition   

fish meal, herring 32.0 32.0 

starch 30.0 30.0 

corn gluten meal 18.0 18.0 

blood flour 8.6 8.6 

fish oil 8.0 8.0 

dextrin 1.0 1.0 

choline chloride 0.5 0.5 

vitamin premix 0.5 0.5 

mineral premix 0.2 0.2 

ascorbyl-2-polphosphate 0.2 0.2 

betaine-HCl 1.0 1.0 

bacterial thiaminase none trace 

   

Proximate analysis   

dry matter 81.4 80.4 

crude protein 38.7 39.4 

crude lipid 10.4 10.3 

total carbohydrates 25.2 24.0 

ash 7.1 6.7 
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5.2.3 Experimental Set-up 

Atlantic salmon were adapted to experimental conditions for one year before starting the 

trial. Groups of 48 individually marked salmon (16 fish per population, sub-adults that 

were two-year-olds) were randomly distributed into six (260 L) tanks. Experimental diets 

were assigned randomly to the tanks (three tanks per diet). Salmon were maintained on 

water from Marsh Creek at natural temperatures and subjected to a natural light cycle.  

Trials began in October 2013 when salmon were anesthetized with buffered MS-222 

(tricaine methanesulfonate, 0.1 g L
-1

), measured for fork length (nearest 0.1 cm) and mass 

(nearest 0.1 g). Salmon individuals had an initial body mass of 56.3 ± 13.7 g (mean ± 

1SD). Condition was calculated as 100 × mass / length
3
 (Fulton 1904). While still 

anaesthetized, salmon were tagged with a 2 cm vinyl anchor tag on the left side just 

below the dorsal fin (Floy Tag & Mfg., Seattle, Washington) before being placed into the 

treatment tanks (Table 5.2). Tags were individually numbered and coloured for each 

population and were applied using a fine fabric gun (Avery Mark III Fine Fabric Pistol 

Grip) with a maximum needle insertion depth of 1.5 cm. The needle was disinfected with 

hydrogen peroxide between individuals. The same day as tagging, salmon were given a 

1% (0.01 kg L
-1

) sodium chloride bath for 20 minutes for additional disinfection.  

After a 14 day recovery period during which fish were fed a commercial diet (Corey 

Aquafeeds, 3 mm pellet, once a day), individual salmon were lightly anaesthetized (MS-

222, 0.05 g L
-1

), placed on their right side and digitally photographed (10.3 MP Kodak 

Natural Color System) using a camera set at a fixed height. Each digital photograph 

contained a size and a colour standard. Salmon were allowed to recover and were 
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returned to their tank. A sample of extra salmon (not used in the experiment) were also 

sacrificed at this time point (n = 12 from each population) to serve as a baseline for the 

thiamine concentrations of red blood cells and plasma. These latter salmon were 

euthanized using an overdose of anaesthetic until gill movement ceased; blood samples 

(0.5-1 ml) were then collected from the caudal peduncle posterior to the anal fin using a 

Heparin lined tube. Blood samples were immediately separated into plasma and red blood 

cells by centrifugation (1,500 RCF for 5 minutes), frozen using dry ice and stored at -

80°C until thiamine analysis. 

Experimental salmon recovered for another 14 days, during which time they were fed a 

mixture of experimental diet and commercial diet (1:1). Afterward, salmon in the 

different treatment tanks were fed 100% their experimental diet for 8 months at 1% body 

mass per day from December to April and 2% body mass per day from June to August. 

Salmon survival was determined by removing mortalities daily from the tanks. 

A subset of Atlantic salmon were sacrificed on June 10, 2014 (n = 4 from each 

population in each diet) to assess the thiamine concentrations of tissues. Baseline plasma 

total thiamine concentrations were at the lower end of the detection limit (mean ± 1SD, 

0.18 ± 0.18 nmol ml
-1

), so I also collected liver tissue at this time. Liver tissue is expected 

to be higher in total thiamine concentration (see Brown et al. 1998). Liver tissue was 

immediately frozen on dry ice and stored at -80°C until thiamine analysis.  
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Table 5.2. Summary of Body Traits and Total Thiamine Concentrations for Three 

Populations of Sub-Adult Atlantic Salmon (Salmo salar) at the Beginning of the 

Experiment. Presented are means ± 1SD. Different uppercase letters indicate significant 

differences assessed using Tukey’s post-hoc multiple comparisons (p < 0.05). For 

morphology, centroid size (used as a covariate for morphology to control for potential 

allometric effects of body size, see Bookstein 1991) was included in the analysis. 

Morphology higher relative warp 1 (RW1) scores were associated with a more 

streamlined body shape. For skin pigmentation, higher principal component 1 (PC1) 

scores were associated with yellower body regions and higher principal component 2 

(PC2) scores were associated with whiter body regions. Sample sizes are: n = 12 

individuals for thiamine traits and n = 96 individuals for remaining traits for each Atlantic 

salmon population. The individuals used for thiamine traits were extra salmon (surplus) 

not used in the experiment (see Materials and Methods). 

Traits LaHave Sebago Saint-Jean 

length (cm) 17.1 ± 1.2
A 

17.6 ± 1.5
B 

16.8 ± 1.5
A 

mass (g) 52 ± 10
A 

63 ± 14
B 

54 ± 14
A 

condition (100 × g  cm
-3

) 1.03 ± 0.07
A 

1.12 ± 0.05
B 

1.12 ± 0.06
B 

morphology (RW1) 0.018 ± 0.015
A 

0.004 ± 0.011
B 

0.002 ± 0.009
B 

pigmentation (PC1) -11.4 ± 13.2
A 

-6.7 ± 12.2
B 

2.1 ± 13.6
C 

pigmentation (PC2) -8.4 ± 10.3
A
 -7.6 ± 10.7

A 
-2.5 ± 10.9

B 

red blood cells total thiamine (nmol g
-1

) 2.3 ± 1.2
A 

1.9 ± 0.9
A 

2.4 ± 1.0
A 

plasma total thiamine (nmol ml
-1

) 0.12 ± 0.14
A 

0.18 ± 0.19
A 

0.26 ± 0.20
A 
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5.2.4 Thiamine Analysis 

I focussed my thiamine analysis on the red blood cells and liver tissues; the total thiamine 

concentrations in plasma were nearly undetectable for the thiaminase diet (data not 

shown). Thiamine concentrations of red blood cells and liver tissues were determined 

using the method developed by Brown et al. (1998). Samples of red blood cells (100-200 

mg) or liver (300 mg) tissue were mixed with tricholoracetic acid, boiled for 10 minutes, 

centrifuged (14,000 RCF for 15 minutes), washed with ethyl acetate and hexane, and kept 

at -20°C until oxidized. Washed extracts were oxidized with sodium hydroxide and 

potassium ferricyanide to their corresponding thiochromes. The thiochrome fluorescence 

of thiamine pyrophosphate, thiamine monophosphate, and free thiamine was measured 

using reverse-phase high-performance liquid chromatography with a Poroshell 120 

column (100 × 4.6 mm, 2.7 µm mesh size; Agilent, Mississauga, Ontario) and a 

fluorescence detector at Agriculture Canada, London, Ontario. 

5.2.5 Morphology and Skin Pigmentation 

Photographs of the salmon were examined for body morphology and skin pigmentation 

using the methods described by Fraser et al. (2010) and Villafuerte and Negro (1998). For 

morphology, 21 landmarks related to aspects of head and body depth and caudal region 

lengths were measured using tpsDig software (Rohlf 2008) and these landmarks were 

subjected to a relative warp analysis using tpsRelw software (Rohlf 2009) to get the 

centroid sizes and principal relative warp scores. For skin pigmentation, the average 

colour of red, green, and blue pixels (RGB colour space) were measured for the dorsal, 

lateral, ventral, caudal peduncle, and caudal fin body regions using ImageJ version 1.47 

(NIH, Bethesda, MD, available at www.rsbweb.nih.gov/ij/). RGB colour space values for 

http://www.rsbweb.nih.gov/ij/
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skin pigmentation, i.e. dorsal, ventral, lateral, caudal peduncle, and caudal fin body 

regions, were converted into XYZ colour space values, and then converted into LAB 

colour space values using colour conversion formulas of EasyRGB (available at: 

http://www.easyrgb.com/). Principal component analysis (PCA) with the covariance 

matrix in R 3.0.1 (available at http://www.r-project.org/) was used to simplify LAB 

colour space values into a smaller number of variables. 

For morphology, I considered only relative warp 1 which explained 30.4% of the 

variation among individuals and could be easily interpreted biologically: positive relative 

warp 1 scores were associated with a more streamlined body shape. For skin 

pigmentation, I considered principal components 1 and 2 which explained 39.0% and 

22.6% of the variation among individuals, respectively. Principal component 1 was 

positively related to the yellowness of the lateral, ventral, and caudal peduncle body 

regions. Principal component 2 was positively related to the whiteness of the lateral, 

ventral, caudal peduncle, and dorsal body regions.  

5.2.6 Swimming Performance 

Atlantic salmon were measured for critical swimming speed between July 23 and August 

4 using the methods described in Colborne et al. (2011). Briefly, an individual was placed 

into an acrylic swim flume (Loligo Systems, Denmark) and acclimated for a period of 3 

minutes. Water flow speed was then increased incrementally at 0.3 m s
-1

 every 2 minutes 

until the individual displayed signs of fatigue. Critical swimming speed (Ucrit) was 

calculated as Ucrit=Ui + (Ti / Tii × Uii), where Ui is the highest velocity maintained for a 

full 2 minute interval, Ti is the time of fatigue at last current velocity (minutes), Tii is the 

http://www.easyrgb.com/
http://www.r-project.org/
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interval length (2 minutes), and Uii is the velocity increment (0.3 m s
-1

). To account for 

size influences on swimming performance, I used an Aitchinson (1986) log-ratio 

correction to produce relative swimming performance scores (also see Colborne et al. 

2011) calculated as rspi = [ln(spi) - ln(centroidi)] / 2 + K, where for individual i, rspi is 

the relative swimming performance, spi is the critical swimming speed, centroidi is the 

centroid size, and K is the minimum rspi included so that all rspi values are positive. 

Fatigued salmon were lightly anaesthetized, measured for length and mass, and then 

digitally photographed as described above. Thermal-unit growth coefficient (TGC) was 

calculated as 100 × (S2
1/3 

– S1
1/3

) / ∆D (Cho 1992), where S2 is the size at time 2, S1 is the 

size at time 1, and ∆D is the growing degree-days (∆D = ∑ ˚C per day) from the initial 

body size measurements. 

5.2.7 Statistical Analysis of Traits 

Traits of individual Atlantic salmon were analyzed in R, using a significance threshold of 

α = 0.05 for all statistical tests. Changes in traits (final – initial values for individuals) 

were used for analyses of condition, morphology, and skin pigmentation. Linear mixed-

effects models (lmer in the lmerTest package of R) were used to examine effects for 

normally distributed data and binomial mixed-effects models were used for survival 

(coded as 1 for alive and 0 for dead). Mixed-effects models contained fixed effects for 

population, diet, and population × diet and a random effect for tank identity. A linear 

discriminant analysis (lda in the MASS package of R) was then used to examine the 

effect of diet on the three populations. Five traits were included in the analysis (liver 

thiamine concentrations; relative swimming performance; and changes in morphology, 

skin pigmentation, and body condition) because these traits displayed differences 
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between diets. Linear discriminant components were examined for correlations to 

variables and a two-way ANOVA was used to examine population, diet, and population 

× diet effects. 

5.3 Results 

5.3.1 Population Comparison of Initial Traits 

The three Atlantic salmon populations initially differed in body length, mass, condition, 

morphology, and skin pigmentation (Table 5.2). Sebago salmon were longer and heavier 

than LaHave and Saint-Jean salmon. Both Sebago and Saint-Jean salmon had higher 

condition than LaHave salmon, whereas LaHave salmon had a more streamlined body 

shape than the other two populations. For skin pigmentation, Saint-Jean salmon had 

yellower and whiter body regions than LaHave and Sebago salmon. Despite these 

phenotypic differences, the three Atlantic salmon populations did not initially differ in 

baseline red blood cells or plasma total thiamine concentrations (Table 5.2). Total 

thiamine concentrations derivatives ‒ thiamine pyrophosphate, thiamine monophosphate, 

and free thiamine ‒ are presented in Appendix B. 

5.3.2 Thiamine Concentrations 

The baseline red blood cells total thiamine concentrations were not significantly different 

from that of salmon fed the control diet after 6 months (t = -0.22, df = 22, p = 0.828), 

however, they were significantly different and higher from those of the salmon fed the 

thiaminase diet at 6 months (t = -6.22, df = 45, p < 0.001; Table 5.2; Figure 5.1). 

Significant diet but not population effects were also detected for red blood cells and liver 

total thiamine concentrations (Table 5.3; Figure 5.1). Atlantic salmon fed the thiaminase 
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diet had lower red blood cells and liver total thiamine concentrations than those fed the 

control diet. I also detected a diet by population interaction for liver total thiamine 

concentrations with LaHave salmon having a larger decrease in liver total thiamine 

concentrations than Sebago and Saint-Jean salmon, although the diet by population 

interaction for total thiamine concentrations in red blood cells was not significant (Table 

5.3; Figure 5.1). Despite this latter finding, there was a significant correlation between 

red blood cells and liver total thiamine concentrations across all fish (r = 0.75, df = 22, p 

< 0.001). 

5.3.3 Diet Effect on Traits 

Significant population but not diet effects were detected for the survival of sub-adult 

Atlantic salmon (Table 5.4; Figure 5.2) with the LaHave population exhibiting lower 

survival than the Sebago and Saint-Jean populations independent of diet treatment. 

Significant population effects were also detected for changes in skin pigmentation; 

LaHave salmon had whiter body regions than Saint-Jean salmon with Sebago salmon 

being intermediate (Table 5.4; Figure 5.2). There was a trend for all populations to have a 

less streamlined body shape and less yellow body pigmentation in the thiaminase diet. 

Significant diet effects were detected for the relative swimming performance of sub-adult 

Atlantic salmon; for all three populations, Atlantic salmon had lower relative swimming 

performance in the thiaminase than control diet (Table 5.4; Figure 5.2). 
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Table 5.3. Summary of Model Results Comparing Total Thiamine Concentrations of Red 

Blood Cells and Liver by Diet across Three Populations of Atlantic Salmon (Salmo 

salar). Displayed are linear mixed-effects results. Fixed effects were diet and population 

and a random effect was tank identity. 

Tissue df F-statistic p-value 

Red blood cells    

population 2,18 0.72 0.498 

diet 1,18 18.92 <0.001 

population × diet 2,18 1.87 0.195 

    

Liver    

population 2,18 0.48 0.625 

diet 1,18 24.64 <0.001 

population × diet 2,18 5.30 0.015 
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Figure 5.1. Total Thiamine Concentrations in Red Blood Cells and Liver by Diet for 

Three Populations of Atlantic Salmon (Salmo salar). RBC is red blood cells. Displayed 

are means ± 1SE for diets. Population symbols are LA = LaHave salmon, SE = Sebago 

salmon, SJ = Saint-Jean salmon. Dashed lines show the means for the population across 

all diets. Star symbols denote indicate significant differences between diets (p < 0.05). 

Total thiamine concentrations derivatives‒ thiamine pyrophosphate, thiamine 

monophosphate, and free thiamine‒ are presented in Appendix B. 
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Table 5.4. Summary of Model Results Comparing Comparing Survival, Swimming 

Performance, and Body Traits by Diet across Three Populations of Atlantic Salmon 

(Salmo salar). Displayed are binomial mixed-effects results for survival and linear 

mixed-effects results for remaining traits. Changes in traits (final – initial values for 

individuals) were used for analyses of morphology, skin pigmentation, and condition. 

TGC is thermal-unit growth coefficient. Diet, population, and diet by population were 

treated as fixed effects; tank identity was treated as a random effect for the tests. 

Trait df F-statistic p-value 

Survival    

population 2, 277.9 42.99 <0.001 

diet 1, 4.0 0.00 1 

population × diet 2, 277.9 0.00 1 

    

Relative swimming performance   

population 2, 223.1 0.31 0.732 

diet 1, 4.1 8.19 0.045 

population × diet 2, 223.1 0.29 0.750 

    

Morphology (RW1)    

population 2, 225.5 1.76 0.174 

diet 1, 225.5 3.45 0.064 

population × diet 2, 225.5 2.09 0.126 

    

Pigmentation (PC1)    

population 2, 224.1 2.18 0.115 

diet 1, 4.0 5.66 0.076 

population × diet 2, 224.1 0.02 0.977 

    

Pigmentation (PC2)    

population 2, 224.1 5.49 0.005 

diet 1, 4.0 0.13 0.741 

population × diet 2, 224.1 1.46 0.234 

    

TGC of length    

population 2, 212.4 53.94 <0.001 

diet 1, 4.1 0.54 0.503 

population × diet 2, 212.4 3.03 0.050 

    

TGC of mass    

population 2, 223.5 36.08 <0.001 

diet 1, 4.1 0.02 0.713 
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population × diet 2, 223.5 2.34 0.015 

    

Condition    

population 2, 223.9 17.33 <0.001 

diet 1, 4.1 4.99 0.088 

population × diet 2, 223.9 0.06 0.938 
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Figure 5.2. Survival, Swimming Performance, and Body Traits by Diet for Three 

Populations of Atlantic Salmon (Salmo salar). Displayed are means ± 1SE for diets. 

Population symbols are LA = LaHave salmon, SE = Sebago salmon, SJ = Saint-Jean 

salmon. Dashed lines show the means for the diets across all populations. Star symbols 

indicate significant differences between diets (p < 0.05) and cross symbols indicate trends 

between diets (p < 0.1). For morphology, positive relative warp 1 (RW1) scores were 

associated with a more streamlined body shape. For skin pigmentation, principal 

component 1 (PC1) was positively related to the yellowness of the body regions, and 

principal component 2 (PC2) was positively related to the whiteness of the body regions. 
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Significant population but not diet effects were also detected for the thermal-unit growth 

coefficient of body length and mass and changes in body condition of sub-adult Atlantic 

salmon; although, there was a trend for Atlantic salmon to be in lower condition in the 

thiaminase than control diet, the differences were not significant (Table 5.4; Figure 5.2). 

Independent of diet, LaHave and Sebago salmon had a higher thermal-unit growth 

coefficient of length and mass than Saint-Jean salmon. Sebago salmon maintained a 

better condition relative to LaHave and Saint-Jean salmon.  

There were no significant relationships between changes in morphology and changes in 

skin pigmentation within diets (Pearson correlations, p < 0.12 for all). There were also no 

significant relationships between relative swimming performance and body condition or 

skin pigmentation as measured by either PC1 or PC2 within diets (Pearson correlations, p 

> 0.10 for all).  

5.3.4 Linear Discriminant Analysis 

I considered linear discriminant components 1 and 2 (LD1, LD2), which explained 80.1% 

and 12.8% of the variation among the six groups (two diets by three populations), 

respectively. LD1 was positively related to liver thiamine concentrations, relative 

swimming performance, and changes in skin pigmentation (PC1) and body condition; 

LD2 was positively related to relative swimming performance and changes in 

morphology, skin pigmentation (PC1), and body condition.  

Significant population, diet, and population by diet effects were detected for LD1 (two-

way ANOVA, p < 0.001 for all) and significant diet and population by diet effects were 

detected for LD2 (two-way ANOVA, p < 0.002 for both; Figure 5.3). Generally, within 
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the control diet, LaHave salmon had higher LD1 values but lower LD2 values than 

Sebago and Saint-Jean salmon. The thiaminase diet also affected LaHave salmon more so 

than the other two populations, resulting in the opposite pattern ‒ within the thiaminase 

diet, LaHave salmon had lower LD1 values and higher LD2 values than Sebago and 

Saint-Jean salmon (Figure 5.3). 
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Figure 5.3. Canonical Plot of the First Two Linear Discriminant Components (LD1, LD2) 

separating Six Groups (Two Diets by Three Populations) for Atlantic Salmon (Salmo 

salar). Displayed are the centroids with 95% confidence intervals for the groups. 

Population symbols are LA = LaHave salmon, SE = Sebago salmon, SJ = Saint-Jean 

salmon. Dashed lines connect the two diet centroids for each population. 
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5.4 Discussion 

Atlantic salmon migrate into Lake Ontario as smolts and become sub-adults, remaining in 

the lake environment until they mature. During this time, high thiaminase-containing 

prey fishes may form a significant part of their diet due to the presence of alewife and 

rainbow smelt and near-absence of the historical coregonine prey assemblage (Tillitt et 

al. 2005; Zajicek et al. 2005; Honeyfield et al. 2012). I fed sub-adult (two-year-old) 

Atlantic salmon from three populations an artificial diet that mimicked the current high 

thiaminase content of prey fishes (Honeyfield et al. 2005) in an 8 month trial. These sub-

adult Atlantic salmon had lower thiamine concentrations in tissues and lower swimming 

performance, but showed no change in survival or growth. This result is in contrast to 

Morito et al. (1986), who observed juvenile rainbow trout (O. mykiss) mortality after 

about 3 months of consuming low thiamine content diets (thiamine content of < 2 mg kg 
-

1
 feed). On the other hand, adult lake trout took more than two years on a similar bacterial 

thiaminase diet to mine to show an effect of thiamine deficiency (Honeyfield et al. 2005). 

Atlantic salmon thus appear to be able to tolerate a high thiaminase diet for at least 8 

months without showing an effect on survival. On the other hand, there were trends for 

lower body condition, a less streamlined body shape, and less yellow body pigmentation 

when fed the thiaminase diet. These latter changes may be important because they have 

been shown to negatively impact Atlantic salmon survival (Taylor and McPhail 1985; 

Taylor 1991; Sutton et al. 2000; Garcia de Leaniz et al. 2007). A longer-term study is 

warranted to investigate survival across the entire lake-phase life stage (2 to 3 years). 

Although there was no effect of the thiaminase diet on survival, there were several 

indicators of thiamine deficiency in the Atlantic salmon. I detected a decline in the 
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swimming performance of sub-adult Atlantic salmon fed the thiaminase diet. Morito et al. 

(1986) similarly found that the first signs of thiamine deficiency in the juvenile rainbow 

trout were changes in swimming behaviour (also see Amcoff et al. 1998; Brown et al. 

2005; Fitzsimons et al. 2005). Thiamine is important for energy production, as it is 

required to enable pyruvate to enter the citric acid cycle to produce ATP (Morito et al. 

1986; Koski et al. 2005). In addition, plasma lactate can increase as a result of thiamine 

deficiency in juvenile rainbow trout, which affects muscle performance (Morito et al. 

1986; Fitzsimons et al. 2012). Because swimming is energetically costly, the Atlantic 

salmon fed the high thiaminase diet in the present study may have had lower swimming 

performance due to a reduction in ATP production or a build-up of lactate caused by a 

thiamine deficiency. 

Other indicators of a thiamine deficiency may be changes in body appearance. I found a 

trend of sub-adult Atlantic salmon having less yellow body pigmentation when fed a 

thiaminase diet. Yellow pigmentation can be related to the amount of the carotenoid 

idoxanthin, a metabolite of astaxanthin (Hatlen et al. 1998). Because thiamine can act as 

an anti-oxidant (Lukienko et al. 2000), a thiamine deficiency may cause oxidative stress 

in the bodies of Atlantic salmon, resulting in the decline of other anti-oxidants such as 

astaxanthin (Pettersson and Lignell 1999). Body de-pigmentation may also be related to a 

lack of essential fatty acids (Leclercq et al. 2010). The lower liver thiamine concentration 

that I detected in the present study has been previously associated with lower liver lipid 

content in Chinook salmon (O. tshawytscha) (Honeyfield et al. 2008). Juvenile Chinook 

salmon fed diets lacking such fatty acids have decreased skin pigmentation (Nicolaides 

and Woodall 1962) and I also found a trend for lower condition and a trend for a less 
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streamlined body shape in the thiaminase diet. A less streamlined body shape may be a 

developmental effect related to reduced swimming activity (Taylor and McPhail 1985).  

Although all three populations that I studied had similar responses to the thiaminase diet, 

I found that the LaHave population had a greater reduction in thiamine concentrations in 

the liver relative to the Sebago and Saint-Jean populations. The liver is a storage tissue 

for thiamine (Depeint et al. 2006), therefore the data may reflect fish from the LaHave 

population using more of their thiamine stores than the Sebago and Saint-Jean 

populations. I also found that the Sebago population was able to maintain better condition 

relative to the LaHave and Saint-Jean populations when fed a high thiaminase diet. 

Indeed, I predicted that freshwater resident populations, such as the Sebago and Saint-

Jean populations, should have adaptations to higher thiaminase in their diets from 

consuming primarily rainbow smelt (Dimond and Smitka 2005), relative to anadromous 

populations, such as the LaHave population, that consume a more diverse diet (Rikardsen 

and Dempson 2011). Because I used a common garden experimental approach, my 

results indicate genetic differences in thiaminase tolerance among my study populations. 

Given that the LaHave population has been in captive breeding for longer than the 

Sebago and Saint-Jean populations (3 generations of captive breeding vs. single-pair 

matings using wild fish) the results from this present study might also reflect selection 

relaxation for thiaminase tolerance resulting from several generations of consuming a 

commercial diet that lacks any thiaminase.   

Finally, my results have implications for the reintroduction efforts of an extirpated 

species. A successful reintroduction of Atlantic salmon into Lake Ontario may be 
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impeded by a diet of high thiaminase-containing prey fishes (Dimond and Smitka 2005; 

COSEWIC 2006, 2010). I found that a thiaminase diet mimicking a current Lake Ontario 

diet negatively impacted the swimming performance and body appearance of sub-adult 

Atlantic salmon relative to a control diet that mimicked a more historical diet of low 

thiaminase-containing prey fishes. Although I found no direct effect of the high 

thiaminase diet on survival during the 8 months trial, the Atlantic salmon fed a high 

thiaminase diet had less total thiamine in tissues, tended to be in lower condition and 

have a less streamlined body shape, all of which are indicators of lower survival (e.g. 

Taylor and McPhail 1985; Sutton et al. 2000; Taylor 1991; Garcia de Leaniz et al. 2007). 

The restoration of native prey fishes, containing lower thiaminase, may have to be 

considered for Lake Ontario to increase the health of salmonids in the lake (also see 

Fitzsimons and O’Gorman 2006). As the Sebago and Saint-Jean populations retained 

more thiamine in their tissues when fed the high thiaminase diet, they may have higher 

resistance to thiamine deficiency under natural conditions than the LaHave population. If 

so, this may have a significant effect on adult survival and recruitment in Lake Ontario, 

with significant implications for the reintroduction efforts. More broadly, source 

populations known to do well in locations with features similar to the reintroduction 

location may be suited for translocation because they may possess important adaptations 

(Krueger et al. 1998; Moritz 1999; Jones 2003, 2013). 
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Chapter 6  

6 Genetic Architecture of Survival and Fitness-Related Traits in 

Three Populations of Atlantic Salmon* 

6.1 Introduction 

The genetic architecture underlying phenotypic traits can be used to predict evolutionary 

trajectories. In particular, responses to selection are directly related to the amount of 

heritable (additive) genetic variance (Falconer and Mackay 1996). Non-additive genetic 

effects, on the other hand, have not been considered as important in part because they 

cannot be used to predict the response to selection (Lynch 1994). However, there is 

increasing evidence that non-additive genetic effects are key components of phenotypes 

(Crnokrak and Roff 1995; Roff and Emerson 2006). Furthermore, non-additive genetic 

effects are a cause of inbreeding depression (Crnokrak and Roff 1999; Keller and Waller 

2002) and can be converted to additive genetic effects, for example during a bottleneck, 

which can then provide genetic variation for natural selection to act on (Carson 1990; 

also see Neff and Pitcher 2008).  

Phenotypic variance can also be explained by maternal effects (maternal additive genetic 

and maternal environmental) (Falconer and Mackay 1996) and these effects can also 

affect evolutionary trajectories (Räsänen and Kruuk 2007). For example, maternal 

environmental effects can impact the rate and direction of change in response to natural 

selection and can generate rapid phenotypic changes in offspring traits as a result of the 

                                                 
*
Versions of this chapter have been published: Houde ALS, Wilson CC, Neff BD. 2013. Genetic 

architecture of survival and fitness-related traits in two populations of Atlantic salmon. Heredity 111: 513-

519. Houde ALS, Black CA, Wilson CC, Pitcher TE, Neff BD. 2015. Genetic and maternal effects on 

juvenile survival and fitness-related traits in three populations of Atlantic salmon. Can J Fish Aquat Sci 72: 

751-758. 
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phenotypic plasticity of female traits (Mousseau and Fox 1998; Räsänen and Kruuk 

2007). Also, additive genetic and non-additive genetic effects can also be used to 

understand mating systems (reviewed by Neff and Pitcher 2005). Traits that are mainly 

influenced by additive genetic effects indicate the importance of beneficial alleles present 

in only certain parents, whereas traits that are mainly influenced by non-additive genetic 

effects indicate the importance of the compatibility of alleles between parents. Such 

differences can govern mating patterns and affect the effective population size (e.g. 

Saccheri et al. 1998; also see Neff et al. 2011); for example, female mate choice for 

compatible gene combinations may be an important mechanism for maintaining genetic 

diversity (Neff and Pitcher 2005). Consequently, understanding the contributions of all of 

maternal environmental effects, additive genetic effects, and non-additive genetic effects 

is needed to fully understand evolutionary trajectories and mating systems in general for 

breeding programs. 

Studies examining the architecture of traits have shown that the relative contributions of 

genetic and maternal environmental effects can change during development and may be 

influenced by the correlation between the trait and fitness. Traits expressed during the 

early-life history stages tend to be influenced mainly by maternal environmental effects, 

whereas traits expressed during later life stages are influenced increasingly by genetic 

effects (Kruuk et al. 2008). Initial egg investments are often fully utilized during early 

development, leaving later life stage traits that are influenced by genetic effects (e.g. 

Lindholm et al. 2006; Evans et al. 2010). For example, in mammals, maternal 

environmental effects typically decline, whereas additive genetic effects remain constant 

(e.g. Wilson and Réale 2006) or increase during development (e.g. Cheverud et al. 1983). 
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Additionally, life-history traits, such as survival, that have strong correlations with fitness 

typically have larger non-additive than additive genetic effects, whereas morphological 

traits, such as body size, that have weaker correlations with fitness typically have larger 

additive than non-additive genetic effects (Crnokrak and Roff 1995; Roff and Emerson 

2006). Independent of trait type, directional selection, or to some extent stabilizing 

selection, on traits can erode additive genetic effects, fixing alleles across loci and 

leaving only non-additive genetic effects (Willis and Orr 1993). For example, 

morphological traits that are under strong directional selection in domestic species often 

have larger non-additive than additive genetic variances (Roff and Emerson 2006). 

In this study, I examine the phenotypic variance of survival and fitness-related traits at 

three early-life history developmental stages (egg, alevin, and fry) in Atlantic salmon 

(Salmo salar) for two independent years. Atlantic salmon have declined sharply 

throughout their North American range over the past two centuries (Dunfield 1985). I 

used a full-factorial quantitative genetic breeding design to partition phenotypic variance 

in survival and fitness-related traits to maternal environmental, additive, and non-additive 

genetic effects for three source populations being used for reintroduction efforts of Lake 

Ontario and its tributaries. The resultant data were used to examine the relative 

contributions of additive and non-additive genetic effects to morphological and life-

history traits, as well as any shift in contributions during early-life history stages. Also, 

using the adaptive potential strategy for reintroduction efforts, the amount of heritable 

(additive) genetic effects could be used to identifiy which of the three source populations 

may have the highest potential to adapt to new selection pressures in Lake Ontario and its 

tributaries (Lesica and Allendorf 1999; Weeks et al. 2011). 
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6.2 Materials and Methods 

6.2.1 Families 

Adult broodstock fish from each population were provided by the Ontario Ministry of 

Natural Resources and Forestry (OMNRF). For this study, LaHave families (n = 25 in 

year one and 75 in year two), Sebago families (n = 25 in year one and 75 in year two), 

and Saint-Jean families (n = 75 in year two) were produced in early November 2010 and 

2011, respectively, at the OMNRF Harwood Fish Culture Station, Harwood, Ontario 

following the methods of Pitcher and Neff (2006). Five females and five males from each 

population were mated in all possible combinations to produce full-factorial breeding 

design, with one block in the first year and three blocks in the second year (Lynch and 

Walsh 1998, p. 598). The Saint-Jean population was not included in the first year because 

broodstock had not reached maturity. Subsamples of eggs (n = 7 in year one and 20 in 

year two) from each female from only one family were measured for diameter (nearest 

0.01 mm) using digital callipers and mass (nearest 0.0001 g) using a digital scale. For the 

first year only, those eggs were then frozen at -20°C, transported to the University of 

Western Ontario and kept frozen for subsequent energy content analysis. Remaining eggs 

were randomly placed into sections of Heath-style incubators and then tanks after 

hatching at the OMNRF Codrington Research Facility, Codrington, Ontario, using two to 

three sections (replicates) for each full-sibling family based on offspring numbers (i.e. to 

keep densities in sections equal). Digital photographs of the single layer of eggs in each 

section were taken and the number of eggs was calculated using ImageJ version 1.38 

(NIH, Bethesda, MD, available at www.rsbweb.nih.gov/ij/). 

http://www.rsbweb.nih.gov/ij/
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6.2.2 Survival and Fitness-Related Traits 

I collected six measures of survival, as direct measures of early-life history stage fitness: 

egg survival (fertilized egg to hatch, also examined as a rate over time in year one only); 

alevin survival (post-hatch until yolk sac absorption, also examined as a rate over time in 

year one only); fry survival (yolk sac absorption until released into the wild); and overall 

survival (fertilized egg until released into the wild). In year one, I also measured 12 traits 

that are known to be related to fitness in salmonids (Metcalfe and Thorpe 1992; Berg et 

al. 2001; Pakkasmaa et al. 2001; Koskinen et al. 2002): egg diameter and mass; egg 

contents at fertilization (relative fat, protein, and energy); development time to hatch 

(also examined as a rate over time); body length at hatch; yolk sac volume at hatch; body 

length at yolk sac absorption; specific growth rate; and yolk sac conversion efficiency. In 

year two, I also measured six traits related to fitness in salmonids: egg diameter and 

mass; body length and mass at hatch; body length and mass at yolk sac absorption.  

6.2.3 Statistical Analysis of Parental and Population Effects 

All survival and fitness-related traits were examined for a population effect in addition to 

individual parental effects (dam and/or sire effects), position effects (tray and tank 

effects) and density effects using Akaike Information Criteria (AIC) forward step-wise 

model selection in R 3.0.1 (available at http://www.r-project.org/). Main effects were 

examined only, i.e. no interactions among effects. Statistical significance was set at α = 

0.05 and all non-proportional data were checked visually for approximate normality using 

histograms before analysis with parametric statistics (Crawley 2005). Linear models were 

used for normally distributed data and binomial models were used for binary data (i.e. 1 

for alive and 0 for dead and 1 for hatched and 0 for non-hatched). Effects that did not 

http://www.r-project.org/
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cause a change in AIC of greater than 10 were considered to be poorly supported and 

were removed to produce the final model (Burnham and Anderson 2002). Remaining 

effects were tested for significance using an ANOVA of a linear model, or an analysis of 

deviance (ANODEV) of a binomial model. Non-significant effects, starting with non-

significant interactions, were removed one at a time.  

If individual parental effects were retained by the model selection process, the data were 

analyzed using mixed-effects models that treated individual parental effects as random 

intercepts and examined population as a fixed effect (in addition to the fixed effects of 

density if retained by the selection process). Any significant position effect if retained by 

the selection process was treated as a random intercept. Restricted Maximum Likelihood 

(REML) linear mixed-effects models were used for normally distributed data and Laplace 

approximation binomial generalized linear mixed-effects models were used for binary 

data in the lme4 package of R. The mixed-effects model output in the lme4 package does 

not produce significance values for fixed effects; therefore, significance for the 

population effect was determined using a likelihood ratio test between the full model and 

a reduced model without population. 

6.2.4 Statistical Analysis of Genetic Architecture 

In addition to parental and population effects, I examined nine out of the 18 survival and 

fitness-related traits in year one and seven of the 10 survival and fitness-related traits in 

year two for genetic architecture. The nine traits in year one that were not examined were 

the overall survival measure because I could not control for position effects, the five egg 

traits (i.e. diameter, mass, relative fat, protein, and energy) because data were collected 
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from only one family for each female, and the three traits examined as a rate over time 

(i.e. egg survival, alevin survival, and development time to hatch) because standard 

analyses cannot incorporate the inclusion of a time variable. The three traits in year two 

that were not examined were overall survival and two egg traits (i.e. diameter and mass) 

for the reasons described above. 

First, the phenotypic variance was partitioned into random effects for dam ID (VD, 

maternal environmental and maternal additive genetic variance), sire ID (VS, paternal 

additive genetic variance), and dam ID × sire ID (VD×S, non-additive genetic variance) 

components using a mixed-effects model. I used individual estimates of traits (e.g. 

individual survival and length) to account for within-family variation because means of 

family replicates overestimates genetic effects (see Puurtinen et al. 2009; Neff et al. 

2011). Means of family replicates were used for specific growth rate and yolk sac 

conversion efficiency because individual estimates were not available. Regardless of the 

AIC criterion noted above, position effects were always included as a random effect to 

ensure that I did not overestimate non-additive genetic effects. Although position effects 

were treated as fixed effects for determining their influence on traits using model 

selection, in the present analyses, they were treated as random effects because they were 

a source of stochastic variation. Density effects were not included in the analysis because 

they came after individual parental effects for only two traits using model selection, 

suggesting that maternal environmental and genetic effects had larger influences on 

phenotypic variance than density effects (see results). Block effects were included as a 

random effect for egg survival in year two only because there was more than one block. 

Significances of the variance components were determined by likelihood ratio tests as 
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above. The additive, non-additive, and maternal environmental variance components 

were calculated based on (Lynch and Walsh 1998, p. 509): VD = ¼ VA + VM; VS = ¼ VA; 

and VD×S = ¼ VN. Negative variance components were set to a value of zero. 

Using a similar method outlined in Neff and Fraser (2010), bootstrap 95% confidence 

intervals were produced by first resampling with replacement the individuals within each 

replicate for each family until the original size was reproduced for trait assessments. I 

resampled individuals to account for within-family variation and ensure that the genetic 

effects were not overestimated (see Puurtinen et al. 2009). I resampled means per 

replicate for specific growth rate and yolk sac conversion efficiency because individual 

estimates were not available. Using the resampled data set, additive, non-additive, and 

maternal environmental variance components were calculated as a percentage of the 

phenotypic variance. The resampling and calculations were repeated 1000 times and the 

95% confidence interval (CI) was determined for each parameter. Additionally, pair-wise 

population comparisons for each metric were done by calculating for one population the 

proportion of comparisons that were either larger or smaller than the other population. 

The proportions served as one-tailed p-values testing for differences between 

populations. 

6.3 Results 

Summary statistics of survival and fitness-related traits are presented in Table 6.1 and 

6.2. There was nearly 100% offspring mortality for one Sebago female (n = 5 families) in 

year one and for the Saint-Jean families beyond the alevin stage in year two. Thus, the 

offspring from those Sebago families were not used in any of the analyses and the 
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offspring from Saint-Jean families were not used in analyses beyond the alevin stage. 

Individual parental effects and position effects (in the Heath trays and tanks) had 

significant influences on survival and fitness-related traits for model selection (Table 6.3 

and 6.4). These effects were subsequently treated as random effects in the mixed-effects 

models. Density effects were also detected for body length and mass at hatch in year two, 

but came after individual parental effects in their influence on these traits (Table 6.4). 

The examination of genetic architecture revealed that maternal environmental and non-

additive genetic effects explained most of the phenotypic variance in survival and fitness-

related traits (Figure 6.1 and 6.2; Appendix C).  

 



 

 

Table 6.1. Summary of Survival and Fitness-Related Traits from Two Populations of Atlantic Salmon (Salmo salar) in Year One. 

Presented are means ± 1SD, except for over time traits that are logit estimate ± 1SE. There were 25 LaHave families (5 females × 5 

males) and 20 Sebago families (4 females × 5 males). Egg traits were based on 7 eggs per female. Survival, development time to 

hatch, and energy conversion numbers (n) represent the total number of replicates: 3 per LaHave family and 2 per Sebago family. Size 

traits were represented by 10 individuals per replicate. For example, n of 35 for LaHave egg traits is based on 7 eggs from each of the 

5 females and n of 750 for LaHave size traits is based on 10 individuals from each of the 3 replicates from each of the 25 families. 

Trait n LaHave n Sebago 

Egg traits     

Diameter (mm) 35 5.72 ± 0.34 28 5.33 ± 0.40 

Mass (g) 35 0.1051 ± 0.0133 28 0.0864 ± 0.0168 

Relative fat (g / g of egg) 35 0.0031 ± 0.0077 28 0.0089 ± 0.0141 

Relative protein (g / g of egg) 35 0.3702 ± 0.0321 28 0.3780 ± 0.0387 

Relative energy (kJ / g of egg) 35 9.00 ± 0.76 28 9.42 ± 0.88 

     

Egg survival (%)     

Over time 75 -3.29 × 10
-3

 ± 2 × 10
-5

 40 -4.14 × 10
-3

 ± 3 × 10
-5

 

Day 0-83 75 69.1 ± 19.0 40 53.8 ± 19.9 

     

Alevin survival (%)     

Over time 75 -3.30 × 10
-2

 ± 6 × 10
-3

 40 -2.30 × 10
-2

 ± 5 × 10
-3

 

Day 84-138 75 84.0 ± 8.2 40 79.9 ± 8.8 

     

Fry survival (%)     

Day 139-192 75 61.3 ± 19.5 40 58.0 ± 19.0 

     

Overall survival (%) 25 35.7 ± 10.2 20 23.6 ± 14.1 

     

Development time     

Over time 75 2.42 × 10
-1

 ± 2 × 10
-3

 40 1.11 × 10
-1

 ± 1 × 10
-3

 

to hatch (degree-days) 75 479.8 ± 6.4 40 472.3 ± 12.1 

1
5
5
 



 

 

     

Size traits     

Body length at hatch (mm) 750 16.3 ± 0.8 400 15.6 ± 0.8 

Yolk sac volume (mm
3
) 750 72 ± 17 400 64 ± 15 

Body length at yolk sac absorption (mm) 750 25.8 ± 1.0 400 25.7 ± 1.2 

     

Energy conversion     

Specific growth rate (100 × ln(mm) / degree-days) 75 0.146 ± 0.007 40 0.146 ± 0.009 

Yolk sac conversion efficiency (mm / mm
3
) 75 0.136 ± 0.016 40 0.158 ± 0.018 

1
5
6
 



 

 

Table 6.2. Summary of Survival and Fitness-Related Traits from Three Populations of Atlantic Salmon (Salmo salar) in Year Two. 

Presented are means ± 1SD. There were 75 LaHave families (5 females × 5 males × 3 blocks), 75 Sebago families, and 75 Saint-Jean 

families. Egg traits were based on 20 eggs per female. Egg survival numbers (n) represent the total number of replicates: 2 per family. 

Alevin and fry survival numbers (n) represent the total number of replicates for one block per population (25 families): 2 per family. 

Size traits at hatch were represented by 5 individuals and at yolk sac absorption were represented by 15 individuals per replicate for 

one block per population. For example, n of 300 for LaHave egg traits is based on 20 eggs from each of the 15 females and n of 750 

for LaHave size traits is based on 15 individuals from each of the 2 replicates from each of the 25 families. 

Trait n LaHave n Sebago n Saint-Jean 

Egg traits       

Diameter (mm) 300 5.42 ± 0.31 300 5.59 ± 0.33 300 5.63 ± 0.49 

Mass (g) 300 0.0911 ± 0.0171 300 0.1002 ± 0.0182 300 0.1025 ± 0.0273 

       

Egg survival (%)       

Day 0-74 150 53.3 ± 26.7 150 47.2 ± 20.2 150 22.9 ± 19.5 

       

Alevin survival (%)       

Day 75-121 50 91.0 ± 10.2 50 93.1 ± 5.0 50 83.8 ± 11.6 

       

Fry survival (%)       

Day 122-186 50 28.1 ± 17.7 50 55.6 ± 23.9 - - 

       

Overall survival (%) 25 13.8 ± 9.9 25 29.1 ± 17.6 - - 

       

Size traits       

Body length at hatch (mm) 250 24.8 ± 1.3 250 27.3 ± 1.5 200 27.1 ± 1.4 

Body mass at hatch (g) 250 0.108 ± 0.017 250 0.154 ± 0.028 200 0.139 ± 0.023 

Body length at yolk sac absorption (mm) 750 30.0 ± 2.5 750 33.8 ± 2.3 - - 

Body mass at yolk sac absorption (g) 750 0.262 ± 0.073 750 0.407 ± 0.088 - - 1
5
7
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Table 6.3. Model Selection and Population Effect Results for Survival and Fitness-

Related Traits in Two Populations of Atlantic Salmon (Salmo salar) in Year One. All 

mixed-effects models contained a fixed effect for population. Mixed-effects models also 

contained fixed effects for density and degree-days, and random effects for dam ID, sire 

ID, tray ID, and tank ID, if these effects were identified during model selection. 

  Mixed-effects model 

Trait Selected model Population effect, 

p-value 

Egg traits   

Diameter dam ID 0.022 

Mass dam ID 0.021 

Relative fat no effects  

Relative protein no effects  

Relative energy dam ID 0.140 

   

Egg survival   

Over time degree-days + dam ID + tray ID + sire 

ID + degree-days × dam ID + degree-

days × sire ID + degree-days × tray ID  

< 0.001 

Day 0- 83 dam ID + tray ID + sire ID 0.126 

   

Alevin survival    

Over time degree-days + dam ID + sire ID + tank 

ID + degree-days × dam ID + degree-

days × tank ID + degree-days × sire ID 

< 0.001 

Day 84-138 dam ID + tank ID + sire ID 0.196 

   

Fry survival   

Day 139-192 dam ID + tank ID + sire ID 0.451 

   

Overall survival dam ID + sire ID 0.104 

   

Development time   

Over time degree-days + dam ID + tray ID + sire 

ID + degree-days × dam ID + degree-

days × tray ID + degree-days × sire ID 

< 0.001 

to hatch dam ID + tray ID + sire ID < 0.001 

   

Size traits   

Body length at hatch dam ID + sire ID 0.022 

Yolk sac volume dam ID + sire ID 0.226 

Body length at yolk sac 

absorption 

dam ID + tank ID + sire ID 0.117 

   

Energy conversion   

Specific growth rate dam ID + tank ID + sire ID 0.372 

Yolk sac conversion efficiency dam ID + sire ID + tank ID < 0.001 
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Table 6.4. Model Selection and Population Effect Results for Survival and Fitness-

Related Traits in Three Populations of Atlantic Salmon (Salmo salar) in Year Two. All 

mixed-effects models contained a fixed effect for population. Mixed-effects models also 

contained fixed effects for density and random effects for dam ID, sire ID, tray ID, and 

tank ID, if these effects were identified during model selection. 

  Mixed-effects model 

Trait Selected model Population effect, 

p-value 

Egg traits   

Diameter dam ID 0.048 

Mass dam ID 0.048 

   

Egg survival   

Day 0-74 dam ID + sire ID + tray ID < 0.001 

   

Alevin survival    

Day 75-121 dam ID + tank ID + sire ID 0.016 

   

Fry survival   

Day 122-186 tank ID + dam ID  + sire ID 0.027 

   

Overall survival dam ID + sire ID 0.078 

   

Size traits   

Body length at hatch dam ID + sire ID + density < 0.001 

Body mass at hatch dam ID + sire ID + density < 0.001 

Body length at yolk sac absorption dam ID + tank ID + sire ID < 0.001 

Body mass at yolk sac absorption dam ID + tank ID + sire ID < 0.001 

 

  



160 

 

 

 

Figure 6.1.The Maternal Environmental, Additive, and Non-Additive Genetic Effects 

Underlying Phenotypic Variance of Survival and Fitness-Related Traits in Atlantic 

Salmon (Salmo salar) in Year One.  Shown are data from two populations: (a) LaHave 

and (b) Sebago. Displayed are the median and 95% confidence intervals (CI) for maternal 

environmental, additive genetic, and non-additive genetic effects. Hatch is development 

time to hatch; ale length is body length at hatch; yolk is yolk sac volume; fry length is 

body length at yolk sac absorption; SGR is specific growth rate; and YCE is yolk sac 

conversion efficiency.  
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Figure 6.2. The Maternal Environmental, Additive, and Non-Additive Genetic Effects 

Underlying Phenotypic Variance of Survival and Fitness-Related Traits in Atlantic 

Salmon (Salmo salar) in Year Two. Shown are data from three populations: (a) LaHave, 

(b) Sebago, and (c) Saint-Jean. Displayed are the median and 95% confidence intervals 

(CI) for maternal environmental, additive genetic, and non-additive genetic effects.  
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6.3.1 Survival 

In all three populations, dam effects were significant for egg survival, alevin survival 

(LaHave only), and fry survival (year two only) (Appendix C). Sire effects were not 

significant for any population, whereas dam × sire effects were significant for egg 

survival, but not alevin survival and fry survival (Sebago only in year one and LaHave 

only in year two). For the Saint-Jean population, maternal environmental effects were 

larger than genetic effects in their contribution to egg survival, but maternal 

environmental effects decreased during the alevin stage (Figure 6.2). On the other hand, 

for the LaHave (year two only) and Sebago populations, non-additive genetic effects 

were larger than maternal environmental effects in their contribution to egg survival, 

whereas maternal environmental effects similarly decreased during the alevin and fry 

stages (Figure 6.1 and 6.2). In year one, for the LaHave population, maternal 

environmental and non-additive genetic effects were similar in their contribution to egg 

survival. Also in year one, Sebago had significantly higher non-additive genetic effects 

for egg survival, but lower non-additive genetic effects for fry survival than LaHave 

(randomization routine one-tailed p = 0.001). In year two, Sebago had significantly 

higher additive genetic effects for egg survival than LaHave followed by Saint-Jean 

(randomization routine one-tailed p = 0.001). Differences were also observed among the 

populations for maternal environmental effects. In year one, LaHave had significantly 

higher maternal environmental effects for egg and fry survival than Sebago 

(randomization routine one-tailed p = 0.001). In year two, Saint-Jean had significantly 

higher maternal environmental effects for egg survival than LaHave followed by Sebago, 
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but lower maternal environmental effects for alevin survival than LaHave (randomization 

routine one-tailed p = 0.001). 

6.3.2 Fitness-Related Traits 

In year one, dam effects were significant for the LaHave and Sebago populations for 

development time to hatch and yolk sac volume, and for LaHave only specific growth 

rate  and yolk sac conversion efficiency (Appendix C). Similarly, in year two, dam 

effects were also significant for all three populations for body length and mass at hatch 

and for LaHave and Sebago for body length and mass at yolk sac absorption. Sire effects 

on the fitness-related traits were not significant in any population, whereas dam × sire 

effects were significant for traits in year one (with exception of LaHave development 

time to hatch and body length at hatch) and in year two for LaHave body length at hatch 

only (Appendix C). In year one, non-additive genetic effects explained more of the 

phenotypic variance than maternal environmental effects for development time to hatch, 

body length at hatch (Sebago only), yolk sac volume (Sebago only), specific growth rate, 

and yolk sac conversion efficiency (Figure 6.1). On the other hand, maternal 

environmental effects explained more of the phenotypic variance than non-additive 

genetic effects for body length at hatch (LaHave only), yolk sac volume (LaHave only), 

and body length at yolk absorption. In year two, non-additive genetic effects explained 

more of the phenotypic variance than maternal environmental effects for body mass at 

hatch (except Saint-Jean), whereas the opposite was observed for body length at hatch 

(except LaHave) (Figure 6.2). 
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In year two, there were significant differences among the populations for all the genetic 

architecture values for the fitness-related traits. Sebago had higher additive genetic 

effects for all four fitness-related traits than LaHave, but not Saint-Jean (randomization 

routine one-tailed p < 0.018; Figure 6.2). On the other hand, in year one, there were no 

significant differences between populations in the majority of the genetic architecture 

values for the fitness-related traits (randomization routine one-tailed p > 0.05), with 

exception that Sebago had significantly higher non-additive genetic effects for body 

length at hatch than LaHave (randomization routine one-tailed p = 0.012; Figure 6.1). In 

either year, there were significant differences among the populations in maternal 

environment effects. In year one, LaHave had significantly higher maternal environment 

effects for body length at hatch, yolk sac volume, and yolk sac conversion efficiency, but 

lower maternal environmental effects for body length at yolk sac absorption when 

compared to Sebago (randomization routine one-tailed p < 0.05). Similarly, in year two, 

LaHave had higher maternal environmental effects for all four fitness-related traits than 

Sebago, but not Saint-Jean (randomization routine one-tailed p < 0.040). 

6.3.3 Population Differences in Performance 

In year two, the populations differed in survival (with exception of overall survival), but 

not in year one (with exception of the egg and alevin survival rates) (Table 6.3 and 6.4). 

For example, in year one, egg survival for the Sebago population declined at a faster rate 

than the LaHave population (Table 6.1). The opposite pattern was detected for alevin 

survival. Sebago had larger egg and alevin survival than Saint-Jean (25% and 10% of the 

mean, respectively), but not LaHave (6% and 3%) in year two (Table 6.2). However, in 

year two, Sebago had larger fry survival than LaHave (28%). 
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In addition, the populations differed in fitness-related traits in year one (6 of 12 traits) and 

year two (6 of 6 traits) (Table 6.3 and 6.4). In year one, LaHave and Sebago populations 

differed in egg diameter and mass, body length at hatch, development time to hatch (rate 

and degree-days), and yolk sac conversion efficiency (Table 6.3). However, the 

differences were generally small between the populations for egg diameter (0.4 mm, 7% 

of the mean) and mass (0.02 g, 21%), body length at hatch (0.7 mm, 4%), and 

development time to hatch (7 degree-days, 2%). LaHave hatched at a faster rate than 

Sebago. In year two, Sebago had larger body mass at hatch than both LaHave and Saint-

Jean (0.03 g, 22.9%) and larger body mass at yolk sac absorption than LaHave (0.15 g, 

44%) (Table 6.4). Similarly, the differences were generally small among populations for 

egg diameter, egg mass, body length at hatch, and body length at yolk sac absorption. 

Saint-Jean had larger egg diameter (0.2 mm, 4%) and mass (0.01 g, 12%) than LaHave, 

but not Sebago. Sebago had a larger body length at hatch than both LaHave and Saint-

Jean (1.4 mm, 5%) and a larger body length at yolk sac absorption than LaHave (3.8 mm, 

12%). 

6.3.4 Population Differences in Additive Genetic Effects 

Combining all survival and fitness-related traits values for both years, there was a 

significant difference in the additive genetic effects among the three populations (one-

way ANOVA, F2,35 = 4.50, p = 0.018). Sebago had larger additive genetic effects (mean 

± 1SD, 13.6 ± 13.4% of the phenotypic variance) than both LaHave (4.1 ± 6.3%) and 

Saint-Jean (2.3 ± 4.6%). The results were also similar using the trait values for which all 

three populations were represented in year two (one-way ANOVA, F2,9 = 9.36, p = 

0.006): Sebago 18.1 ± 9.5%, LaHave 0.95 ± 1.9%, and Saint-Jean 2.3 ± 4.6%.    
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6.4 Discussion 

My results detected maternal environmental and genetic effects that explained more than 

half (87% and 52% for year one and two) of the phenotypic variance in survival and 

fitness-related traits. In both years, maternal environmental effects were prominent at 

early (egg and alevin) life stages, decreased during development, and non-additive effects 

became most prominent at the later (fry) life stage. Similarly, in both years, I found that 

non-additive genetic effects were more prominent than additive effects. In contrast, the 

LaHave and Sebago populations were not significantly different in trait values and the 

genetic architecture of those traits in year one, but all three populations differed in the 

values for survival and fitness-related traits as well as the genetic architecture of those 

traits in year two. 

Maternal environmental and genetic effects may be important in explaining the 

phenotypic variance of survival and fitness-related traits (Qvarnström and Price 2001). I 

found significant maternal environmental effects in the traits examined for architecture, 

and those effects explained a mean of 19% and 21% of the phenotypic variance across 

the traits in year one and two. I also found sire effects in the traits, with additive genetic 

effects explaining a mean of 12% and 5% of the phenotypic variance. Similarly, 16 other 

studies, examining some 60 different survival and fitness-related traits in natural 

populations, found maternal environmental effects explained a mean of 26 ± 3% (mean ± 

1SD) of the phenotypic variance in the traits and that additive genetic effects explained a 

bit less at a mean of 18 ± 3% (see references in Table 1 in Puurtinen et al. 2009; also see 

Evans et al. 2010). Collectively, these data suggest that maternal environmental effects 

may be the primary factor contributing to survival and fitness-related traits during early 
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development, although additive genetic effects also contribute to phenotypic variance 

during this life stage. 

The amount of phenotypic variance explained by maternal environmental and genetic 

effects may shift during development (Fox et al. 2003; Evans et al. 2010). Early-life 

history stages that rely on maternal investments such as egg nutrients often have 

phenotypic variances explained more by maternal environmental effects (reviewed by 

Wilson and Réale 2006). Later life stages instead have phenotypic variances largely 

explained by genetic effects because maternal investments have been fully utilized 

(Wilson and Réale 2006). I found that maternal environmental effects explained a mean 

of 23% and 24% of the phenotypic variance across the traits related to egg investments 

(egg and alevin) in year one and two, but that genetic effects also explained a similar 

amount of the variance in these traits (23% and 14%). I also found that genetic effects, 

largely influenced by non-additive effects, explained a mean of 40% and 19% of the 

phenotypic variance across the remaining traits that were collected at the later (fry) stage. 

Maternal environmental effects, on the other hand, captured only 17% and 14% of the 

variance in those traits. Similarly, other studies have found that maternal environmental 

and genetic effects explained about equal amounts of the phenotypic variance for early-

life history stage traits (see references in Table 1 in Puurtinen et al. 2009; also see Evans 

et al. 2010). Furthermore, those studies also found that genetic effects explained 50 ± 9% 

and maternal environmental effects explained only 10 ± 4%, on average, of the 

phenotypic variance for traits expressed during later life stages. Thus, the data suggest a 

shift with genetic effects becoming increasingly important with life stage, but also 
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suggest that non-additive genetic effects play an important role in survival and fitness-

related traits.  

Life-history and morphological traits may differ in the amount of genetic variance 

explained by additive and non-additive genetic effects. Life-history traits, which have 

strong correlations with fitness, typically have large non-additive genetic effects, whereas 

morphological traits, which have weak correlations with fitness, tend to have large 

additive genetic effects (Crnokrak and Roff 1995; Roff and Emerson 2006). However, a 

review recently suggested that additive and non-additive effects contribute about equally 

to both life-history and morphological traits (Puurtinen et al. 2009). I found that non-

additive genetic effects were on average larger than additive genetic effects. Non-additive 

genetic effects explained means of 56% and 26% in year one and two, and additive 

genetic effects explained means of only 12% and 5% of the phenotypic variance across 

the traits. In my case, the morphological traits ‒ body length at hatch, yolk sac volume, 

and body length at yolk sac absorption ‒ may have possessed larger non-additive genetic 

effects because these traits typically have strong correlations with fitness in salmonids 

(see Koskinen et al. 2002); morphological traits in other mammal wild populations 

typically have weak correlations with fitness (see Crnokrak and Roff 1995; Roff and 

Emerson 2006). My data support the idea that non-additive genetic effects are larger than 

additive genetic effects for traits that have strong correlations with fitness and that this 

pattern may be independent of whether the traits are life-history or morphological in 

nature. Some caution is warranted when making these comparisons in my data set 

because my analysis is based on 5 × 5 crosses (albeit populations revealed analogous 

patterns). 
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The LaHave and Sebago populations were not significantly different in trait values and 

the genetic architecture of the traits in year one, but all three populations differed in the 

values for survival and fitness-related traits as well as the genetic architecture of those 

traits in year two. Because the rearing environments across the two years were nearly 

identical, the population differences in trait values may be associated with differences in 

the genetic architecture underlying the traits. Indeed, in year two, I found that the three 

populations differed in the genetic architecture, mainly non-additive genetic effects, of all 

seven traits that could be examined. Other studies have also found that populations can 

differ in the amount of non-additive genetic effects that explain traits (e.g. Waldmann 

2001; Evans and Neff 2009). Given that the LaHave population has been in captive 

breeding longer than the Sebago and the Saint-Jean populations, the results might also 

reflect genetic changes caused by selection in a captive environment at least for that 

population. Because non-additive genetic effects result from specific pairings of gametes 

(e.g. genotype effects), large quantitative breeding designs are needed to fully detail their 

effects (see Lynch and Walsh 1998; Neff et al. 2011). Some caution is otherwise 

warranted because of the susceptibility to sampling error. The three Atlantic salmon 

populations also differed in the maternal environmental effects for six out of the seven 

traits. One important maternal environmental effect is dam age: older salmonid females 

generally produce larger offspring with higher survival relative to younger salmonids 

(Green 2008). In year one, the LaHave dams were a year older than the Sebago dams, 

whereas in year two, the dams were the same age in all populations. Differences in 

maternal environmental effects and non-additive genetic effects might thus explain the 
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variation in population comparisons of trait values across years. Moreover, they highlight 

the need for repeatability in studies of genetic architecture to make robust conclusions. 

The large non-additive genetic effects in both years indicate the importance of the 

compatibility of alleles between parents on offspring fitness. Such compatibility has been 

of recent interest in the field of behavioural ecology in the context of mate choice 

(reviewed in Neff and Pitcher 2005). Observational mate choice studies comparing the 

offspring produced by natural matings with those produced by random matings have 

found increases in survival and fitness-related traits for the offspring produced by natural 

matings in Atlantic salmon (e.g. Consuegra and Garcia de Leaniz 2008; also see Agbali et 

al. 2010). Breeding programs should consider non-additive genetic effects in their mating 

designs as a way to increase offspring fitness. 

My results have described the components explaining the phenotypic variance of survival 

and fitness-related traits during the early-life history stages of three Atlantic salmon 

populations. Both years support a shift from maternal environmental to genetic effects 

during development and highlight the importance of non-additive genetic effects in 

explaining the phenotypic variance of the traits. The variability in both the trait values 

and the genetic architecture of the traits across years may reflect effects of dam age (a 

maternal environmental effect) and non-additive genetic effects. This variability suggests 

some level of caution when interpreting results from one study.  

Finally, the additive genetic effects were small, suggesting a weak adaptive potential of 

the traits (Falconer and Mackay 1996). There were also source population differences in 

the additive genetic effects: the Sebago population on average had larger additive genetic 



172 

 

effects than the LaHave and Saint-Jean populations. Although some caution is required 

because of the limited adaptive potential suggested of the traits, if considering the 

adaptive potential strategy for reintroduction efforts (Lesica and Allendorf 1999; Weeks 

et al. 2011), the Sebago population is predicted to better able to adapt to new selection 

pressures in Lake Ontario and its tributaries relative to the LaHave and Saint-Jean 

populations. 
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Chapter 7  

7 Restoring Biodiversity through Reintroductions: Strategies 

for Source Population Selection* 

Despite potentially major effects on the outcome of reintroduction programs, few clear 

guidelines exist on how to optimally select source populations for translocation (see 

Cochran-Biederman et al. 2015). In Chapter 1, I presented the theoretical support for two 

source population selection strategies: the PRE-EXISTING ADAPTATION STRATEGY which 

focuses on populations with a high frequency of genotypes that confer adaptations (i.e. 

high fitness) in the reintroduction location, or the ADAPTIVE POTENTIAL STRATEGY, which 

focuses on populations with high heritable genetic variation that confer the potential to 

adapt (i.e. respond to new selection pressures) in the reintroduction location. The pre-

existing strategy can be further divided into the ancestry matching approach and the 

environment matching approach. The adaptive potential strategy can be further divided 

into the single source population approach and the multiple source population approach. 

Here I review the empirical support for these two strategies and develop needed 

recommendations for selecting source populations. 

7.1 Empirical Evaluation of the Approaches 

Using the Web of Science, I conducted a literature search for studies that examined the 

fitness of different source groups translocated into foreign locations previously occupied 

by the target species or into locations containing small numbers of conspecifics. I 

included studies if they provided a coefficient of determination (r
2
 or a Pearson 

                                                 
*
 A version of this chapter is in review: Houde ALS, Garner SR, Neff BD. 2015. Restoring biodiversity 

through reintroductions: strategies for source population selection. Restor Ecol, in review. 
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correlation, r) between fitness-related traits (e.g. survival and reproductive traits) from 

different source groups and the genetic similarity to the group at the foreign location, the 

environment similarity between the source and foreign locations, or the amount of 

heritable genetic variation within the translocated groups. I also included studies that 

compared relative fitness-related traits among different source groups. Correlations 

between fitness-related traits and the genetic similarity and environment similarity are 

tests of the usefulness of the two approaches within the pre-existing adaptation strategy. 

Similarly, correlations between fitness-related traits and the amount of heritable genetic 

variation of the translocated groups are tests of the usefulness of the two approaches 

within the adaptive potential strategy. There were 15 studies that met these criteria with 

11 studies that provided coefficients of determination (Table 7.1) and four studies that 

compared the relative fitness-related traits among different source groups.  

 



 

 

Table 7.1. Summary of Studies that Measured the Effects of Ancestry Matching, Environment Matching, and Single Source 

Population Approaches on Survival and Fitness-Related Traits. The data comprise the species, the basis of the analysis, the traits 

measured, the effect size (r2), and the source reference. Effect sizes are significant (p < 0.05) unless denoted as non-significant using 

the symbol ns. 

Species name Basis Trait Effect size Reference 

Ancestry matching 
    

Lotus scoparius genetic distance (allozymes) individual fitness (juvenile 

survival and flower production) 

38%  Montalvo and Ellstrand (2000) 

Aster amellus genetic distance (isozymes) juvenile survival 4% Raabová et al. (2007) 

Lychnis flos-cucui genetic distance (microsatellites) juvenile survival 1% (ns) Bowman et al. (2008) 

Lychnis flos-cucui genetic distance (microsatellites) flower production 2% (ns) Bowman et al. (2008) 

Spartina alteriflora genetic distance (AFLP) clone size (stem diameter, 

number, height, width)  

40%   Travis and Grace (2010) 

Spartina alteriflora genetic distance (AFLP) flower production 30%  Travis and Grace (2010) 

     

Environment matching    

Lotus scoparius similar soil, temperature, and elevation  fitness (juvenile survival and 

height or flowers) 

56% Montalvo and Ellstrand (2000) 

Lotus corinculatus similar vegetation community clone survival 3% (ns) Smith et al. (2005) 

Lotus corinculatus similar vegetation community reproductive biomass 4%  Smith et al. (2005) 

Lotus corinculatus similar vegetation community seed number 4%  Smith et al. (2005) 

Aster amellus similar vegetation  and elevation juvenile survival 6% Raabová et al. (2007) 

Lychnis flos-cucui soil, light, and temperature similarity juvenile survival 16%  Bowman et al. (2008) 

Lychnis flos-cucui soil, light, and temperature similarity flower production 27%  Bowman et al. (2008) 

Castilleja levisecta similar soil and vegetation functional 

group 

juvenile survival 35% Lawrence and Kaye (2011) 

25 wetland species (e.g. 

Anagallis, Spium, 

Eleocharis, and Oenanathe 

sps.)  

similar vegetation community increase in population size 16%  Noël et al. (2011) 

11 grassland species (e.g. 

Anthoxanthum, Leontodon, 

similar temperature cover 68%  Weißhuhn et al. (2012) 

1
7
7
 



 

 

Trifolium sps.) 

     

Single source population    

Lychnis flos-cucui population size proxy juvenile survival 4% (ns) Bowman et al. (2008) 

Lychnis flos-cucui population size proxy flower production 19%   Bowman et al. (2008) 

 

1
7
8
 



179 

 

7.1.1 Empirical Tests of the Pre-Existing Adaptation Strategy 

Of the 15 total studies, four studies examined the ancestry matching approach and seven 

studies examined the environment matching approach (Table 7.1). Comparing these two 

approaches, there was no significant difference between the effect sizes (Wilcoxon Rank 

Sum, W
 
= 0.35, p = 0.62), albeit there was a large range of effect sizes (mean = 22%, 

range 1-68%, Table 7.1). Ancestry matching by genetic similarity was supported by four 

studies on several plant species that detected positive correlations with fitness-related 

traits (mean = 19%, range = 1-40%, Table 7.1). For example, genetic similarity using 

AFLPs explained 30% of the variation in plant flower production in Spartina alteriflora 

using 23 source groups translocated to a single foreign location (Travis and Grace 2010). 

Similarly, environment matching was supported by seven studies on several plant species 

that detected positive correlations with fitness-related traits (mean = 24%, range = 3-

68%, Table 7.1). For example, environment similarity, using similarity of soil and 

vegetation, explained 35% of the variation in plant survival in Castilleja levisecta using 

six source groups translocated to 10 foreign locations (Lawrence and Kaye 2011).  

Two of the 15 studies found support for environment matching but did not provide a 

coefficient of determination between fitness-related traits and environment similarity. 

Instead these studies compared the fitness-related traits between environment matches 

and environment non-matches. Smith and Bradshaw (1979) translocated individuals from 

four source groups (two environment matches and two environment non-matches) of 

grass plants (Festuca, Agrostis, and Lolium sps.) to 10 locations polluted with 

metalliferous waste in Great Britain. The two environment matches, based on lead and 

zinc tolerance in their local environment, had higher biomass than the two remaining 
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source groups in all 10 locations. Schneider (2011) translocated individuals from five 

source groups (one environment match and four environment non-matches) of Atlantic 

salmon (Salmo salar) into the Rhine River, Germany. The environment match, based on 

similar spawning time to the extirpated population (spawning time is linked to the water 

temperature similarity in the source and foreign locations), successfully reproduced in all 

11 monitored locations, whereas the four environment non-matches successfully 

reproduced in only 5 of the 11 monitored locations. However, the four environment non-

matches were translocated in different years separate from the environment match. 

I found that only three studies examining ancestry matching or environment matching 

directly compared the effects of both approaches on fitness-related traits (i.e. Montalvo 

and Ellstrand 2000; Raabová et al. 2007; Bowman et al. 2008 in Table 7.1). In the first 

study, 60 individuals from 12 source groups were translocated to two foreign locations as 

seedlings (Montalvo and Ellstrand 2000). Environment similarity explained a larger 

amount of the variation in fitness than genetic similarity. In the second study, 18,000 

individuals from six source groups were translocated to two locations as seeds (Raabová 

et al. 2007). Environment similarity by elevation similarity, but not vegetation similarity, 

explained a larger amount of the variation in juvenile survival than genetic similarity. In 

the third study, six individuals from 15 source groups were translocated to 15 locations as 

seedlings (Bowman et al. 2008). Environment similarity by soil and temperature 

similarity explained more variation in both juvenile survival and flower production than 

genetic similarity. Interestingly, in Montalvo and Ellstrand (2000) and Raabová et al. 

(2007), for some foreign locations, the ancestry match had the highest fitness and in other 

foreign locations the environment match had the highest fitness. In all three studies, 
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environment matching was a better predictor of fitness than ancestry matching; albeit, the 

single best population was sometimes an ancestry match and sometimes an environment 

match. 

7.1.2 Empirical Tests of the Adaptive Potential Strategy 

Of the 15 total studies, two studies examined translocations of source populations that 

differed in the amount of within-population genetic variation (Table 7.1). The two studies 

examined fitness-related traits as a function of source population size, a proxy of within-

population neutral genetic variation (Frankham 1996), which has been shown to correlate 

with heritable genetic variation (Briscoe et al. 1992; but see Reed and Frankham 2001). 

Bowman et al. (2008) reciprocally translocated 15 populations of perennial herb Lychnis 

flos-cuculi in northeast Switzerland and measured survival and flower production; there 

was a positive correlation between these two variables and source population size. 

However, the authors noted that the higher fitness-related trait values for the larger 

relative to smaller source populations could also be explained by a lack of inbreeding 

depression rather than higher heritable genetic variation per se in the large source 

populations (Bowman et al. 2008). In the second study, Zeisset and Beebee (2013) 

translocated individuals from a large foreign source population of common toads (Bufo 

bufo) into Sussex, England after failed reintroduction attempts using two local small 

source populations. The translocation of the large source population successfully 

produced a self-sustaining population. Although there was no difference in the amount of 

within-population neutral genetic variation between the small and large population 

populations, the authors suggested that population size was positively correlated with 

heritable genetic variation (Zeisset and Beebee 2013). One potential caveat with the 
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interpretation of these studies is that neither directly estimated the amount of within-

population heritable genetic variation. Thus, the fitness of translocated populations could 

not be clearly linked to adaptation following translocation, as these results are also 

consistent with the absence of inbreeding depression in larger relative to smaller source 

groups. 

Three of the 15 studies examined translocations using multiple source populations. None 

of the studies provided a coefficient of determination between fitness-related traits and a 

direct quantity of the amount of heritable genetic variation within the translocated mixed-

source group, although high heritable genetic variation was inferred because of the 

distinctive genetic and environmental backgrounds of each source. Instead these studies 

examined the contributions of each source populations to the reintroduced population. 

Tordoff and Redig (2001) translocated individuals from seven source groups of Peregrine 

falcons (Falco peregrinus) into the mid-western United States, and after one generation, 

five groups were detected in the reintroduced population. Wilson et al. (2007) 

translocated individuals from four source groups of walleye (Sander vitreus) into Nipigon 

Bay, and after two generations, a single source group largely contributed to the 

reintroduced population. Huff et al. (2010) translocated individuals from three source 

groups of slimy sculpin into nine foreign locations of southeastern Minnesota, and after 

two generations, a single source group had largely contributed to the reintroduced 

populations at eight of the nine locations. For all three studies, selection in the 

reintroduction location removed certain source groups, resulting in a single source group 

that disproportionally contributed to the reintroduced population. However, it is not clear 
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if this result was due to adaptation following translocation because there was no fitness 

comparison between the reintroduced population and its translocated group. 

7.1.3 Summary of Empirical Support for the Strategies 

Based upon my literature review, there was a difference in the level of support for the 

pre-existing adaptation and adaptive potential strategies. Most of the studies examining 

the pre-existing adaptation strategy found strong support for both the ancestry matching 

and environment matching approaches (Table 7.2). The strong support was inferred from 

positive correlations between fitness-related traits and direct measures of genetic 

similarity and environment similarity (Table 7.1). In contrast, most of the studies 

examining the adaptive potential strategy provided only ambiguous support for single or 

multiple source populations approaches (Table 7.2). This ambiguity arouse because 

neither the amount of heritable genetic variation within the translocated group nor the 

relationship between genetic variation and fitness-related traits were measured. Although 

the studies described successful population reintroductions, the explanation for the 

success could not be directly attributed to the high genetic variation within the 

translocated group. To provide less ambiguous tests of the effectiveness of the adaptive 

potential strategy, studies should directly examine the relationship between the amount of 

heritable genetic variation within the translocated group and fitness in the reintroduction 

location. 

 



 

 

Table 7.2. Summary of Support for the Approaches within the Pre-Existing Adaptation and Adaptive Potential Strategies.  

 

Note: displayed are the references for studies that provided either strong support for the approaches, weak support, or that were 

ambiguous. Strong support was a significant positive relationship between fitness-related traits and either genetic similarity (ancestry 

matching), environment similarity (environment matching), or amount of heritable genetic variation (adaptive potential strategy). 

Weak support was a non-significant but positive relationship between fitness-related traits and an approach. Ambiguous support was 

an increase in fitness-related traits or a successful population reintroduction that was not clearly linked to an approach. 

Level of 

support 

Pre-existing adaptation strategy  Adaptive potential strategy 

Ancestry matching  

approach 

Environment matching 

approach 

 Single source  

population approach 

Multiple source 

populations approach 

strong Montalvo and Ellstrand (2000) 

Raabová et al. (2007) 

Travis and Grace (2010) 

Smith and Bradshaw (1979)
 

Montalvo and Ellstrand (2000) 

Smith et al. (2005) 

Raabová et al. (2007) 

Bowman et al. (2008) 

Lawrence and Kaye (2011) 

Noël et al. (2011) 

Weißhuhn et al. (2012) 

   

weak Bowman et al. (2008)     

ambiguous  Schneider (2011)
 

 Bowman et al. (2008) 

Zeisset and Beebee (2013) 

Tordoff and Redig (2001) 

Wilson et al. (2007) 

Huff et al. (2010) 

1
8
4
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7.2 A Source Population Selection Framework 

Building upon previous recommendations (Krueger et al. 1981; Seddon and Soorae 1999; 

Weeks et al. 2011; IUCN 2013; Cochran-Biederman et al. 2015), I constructed a novel 

source population selection framework (Figure 1). My framework has an a priori 

expectation that the habitat can support the target species, otherwise habitat restoration is 

recommended before considering a reintroduction (Beck et al. 1994; Dobson et al. 1997; 

Palmer et al. 1997; Cochran-Biederman et al. 2015). The framework is presented as a 

guide to selecting source populations with the highest probability of possessing 

adaptations to the key environment features of the reintroduction location. Cost, 

difficulty, and time constraints may be issues for certain steps and such steps can be 

skipped; however, skipping steps is not recommended because it may lower the 

probability that the source populations possess the needed adaptations to ensure 

successful reintroduction. My framework offers three key advantages and clarifications to 

previous recommendations: (1) it highlights the importance of identifying and measuring 

key environment features between the source and reintroduction locations prior to 

selecting source populations; (2) it offers guidelines for choosing between ancestry and 

environment matching; and (3) it prioritizes the pre-existing adaptation strategy above the 

adaptive potential strategy. 
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Figure 7.1. A Framework for Selecting Source Populations for Reintroduction. The 

framework is an optimized guide for selecting source populations. Steps may be skipped 

due to cost, difficulty, and time constraint issues; however, skipping such steps may 

reduce the probability of a successful reintroduction. 
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First, given the influence of key environment features on the fitness of different source 

populations in a location, these features should be identified and measured in the source 

and reintroduction locations. Key environment features may include temperature, 

competitors, predators, prey type, parasites, and pathogens. Second, the placement of 

ancestry matching and environment matching is dependent on the state of current key 

environment features relative to historical conditions. If there is an ancestry match, and 

the current key environment features are close to historical conditions (i.e. not largely 

changed), then the ancestry match should be translocated into the reintroduction location 

(also see Krueger et al. 1981). The ancestry match may possess adaptations to 

unidentified (cryptic) key environment features that may be absent in a source population 

chosen using environment matching (see Krueger et al. 1981; Garcia de Leaniz et al. 

2007; Fraser 2008). In addition, ancestry matching has the greatest potential to restore an 

extirpated population closest to its original state, which may be particularly important for 

restoring populations of cultural or evolutionary significance (Moritz 1999). However, if 

the current key environment features have changed relative to historical conditions, and 

there is an environment match to those features, then the environment match should 

instead be translocated into the reintroduction location. An environment match to the new 

or otherwise changed key environment features may possess the necessary adaptations to 

these features. Third, if there is no ancestry match (for an environment close to historic 

conditions), no environment match to current conditions, or high uncertainty in the key 

environment features, then multiple source populations should be translocated as a bet-

hedging strategy; preferably source populations with high heritable genetic variation or 

source populations from diverse genetic and environmental backgrounds. The fitness of 
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the translocated individuals should then be monitored to determine whether a single 

source population (or group of individuals) has higher fitness. That source population (or 

group of individuals) should then be the focus of future reintroduction efforts should 

further translocations be necessary.  

Using this framework, if translocations do not establish a self-sustaining population, post-

translocation monitoring should be used to determine any outstanding key environment 

features that could be preventing a successful reintroduction. Additional habitat 

restoration should be considered to address these environment features whenever 

possible. Trying another source population is cautioned, without identifying the key 

environment features first, because there is a high chance that a new source population 

will also lack the necessary adaptations and will not establish a self-sustaining population 

(e.g. Cochran-Biederman et al. 2015).  
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Chapter 8  

8 General Discussion* 

My overall objective was to evaluate the relative performance (i.e. survival and fitness-

related traits) of the three source populations of Atlantic salmon (Salmo salar) in the 

context of suitability for translocation into Lake Ontario. To this end, using experimental 

settings, I compared the relative performance of the three source populations exposed to 

two key environment features of Lake Ontario and its tributaries. Specifically, I exposed 

Atlantic salmon to: (1) four species of non-native salmonids (i.e. brown trout- S. trutta, 

rainbow trout- Oncorhynchus mykiss, Chinook salmon- O. tshawytscha, and coho 

salmon- O. kisutch) in artificial and natural streams and (2) a high thiaminase diet in a 

controlled setting. I also quantified the amount of within-population heritable (additive) 

genetic variation for early-life history traits when exposed to water from a Lake Ontario 

tributary. This heritable genetic variation can be used to predict the potential of traits to 

adapt to new selection pressures (Falconer and Mackay 1996), such as those of key 

environment features in Lake Ontario and its tributaries. 

Because key environment features of Lake Ontario and its tributaries have changed 

relative to historical conditions, evolutionary and ecological theory suggests an 

environment matching approach for selecting source populations relative to an ancestry 

matching approach (Krueger et al. 1981; Moritz 1999; Jones 2003, 2013). Source 

populations can also be selected using an adaptive potential strategy, such as the single 

source population approach or multiple population approach (Lesica and Allendorf 1999; 

                                                 
*
 A part of this chapter (knowledge gaps) is in review: Houde ALS, Garner SR, Neff BD. 2015. Restoring 

biodiversity through reintroductions: strategies for source population selection. Restor Ecol, in review. 
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Weeks et al. 2011). I discuss a perspective source population selection framework in 

greater detail in Chapter 7. Using the relative performance of the three source populations 

exposed to both features, I discuss the support for the environment matching approach. 

Using the amount of heritable (additive) genetic variation, I discuss which of the three 

source populations may be suitable for Lake Ontario using the single source population 

approach. In this chapter, I also present knowledge gaps and research needs for validating 

and potentially revising a source population framework presented in Chapter 7. I build on 

the framework and the research gaps by discussing their relevance for the reintroduction 

efforts of Atlantic salmon into Lake Ontario.  

8.1 Relative Performance of the Three Source Populations 

Three source populations of Atlantic salmon are being used for reintroduction efforts into 

Lake Ontario: LaHave from Nova Scotia, Sebago from Maine, and Saint-Jean from 

Quebec (Dimond and Smitka 2005). The source populations could possess genetic 

differences in their competitive ability (e.g. Rosenau and McPhail, 1987; Swain and 

Holtby 1989; Houde et al. 2010; Van Zwol et al. 2012a) and thiaminase tolerance (e.g. 

Brown et al. 2005; Dimond and Smitka 2005), which large scale reintroduction efforts 

could draw upon if the relative performance of the three source populations were 

evaluated using experimental settings (e.g. van Katwijk et al. 1998, 2009). 

Based upon my studies, the three source populations differed in their performance when 

exposed to non-native salmonids as age 0+ juveniles. Although there was a decrease in 

performance for all three populations exposed to brown trout, rainbow trout, and the 

multi-species treatment, in the artificial streams, Sebago juveniles had higher growth in 
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the presence of non-native salmonids than LaHave and Saint-Jean juveniles. In the 

natural stream site containing rainbow trout, Sebago juveniles had higher growth but not 

recapture proportion relative to LaHave juveniles. Also, Sebago juveniles had higher 

growth but not survival relative to LaHave juveniles in four other natural stream sites 

containing non-native salmonids (Bowlby 2014). Although the survival (or recapture 

proportion) was similar for these two populations in the natural streams, the higher 

growth of Sebago juveniles can be associated with higher future survival (Metcalfe and 

Thorpe 1992; Koskinen et al. 2002). Unfortunately, Saint-Jean juveniles could not be 

examined in the natural stream sites because there were not enough individuals for both 

the artificial and natural streams. The Sebago juveniles may have higher growth in the 

presence of non-native salmonids relative to the other two populations because of 

avoiding agonistic interactions with the non-native salmonids (Van Zwol et al. 2012a). 

Avoiding agonistic interactions is a behavioural strategy that can conserve energy, which 

can instead be directed towards survival and growth (Metcalfe 1986).  

The three source populations also differed in their performance when fed a high 

thiaminase diet. Although there was a decrease in performance for all three populations 

consuming a high thiaminase diet, Sebago salmon had higher condition than LaHave and 

Saint-Jean salmon and retained a higher concentration of liver thiamine than LaHave 

salmon. Saint-Jean salmon also retained a higher concentration of liver thiamine 

compared to LaHave salmon, but did not grow as well as Sebago and LaHave salmon. 

Other studies have found that individuals that typically consume high thiaminase-

containing alewife (Alosa pseudoharengus) can differ in the thiamine concentrations of 

tissues. This has been observed for Atlantic salmon from Saint-Mary’s River, Michigan 
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(Dimond and Smitka 2005) and coho salmon from Platte River, Michigan (Brown et al. 

2005). The Sebago and Saint-Jean populations may be better at coping with a high 

thiaminase diet relative to the LaHave population because of higher thiaminase tolerance. 

Sebago and Saint-Jean salmon primarily consume rainbow smelt (Osmerus mordax), a 

high thiaminase-containing prey fish, and do not display a thiamine deficiency in their 

native lakes (Dimond and Smitka 2005), whereas LaHave salmon are anadromous with a 

more diverse diet (Rikardsen and Dempson 2011), which could be low in thiaminase. The 

results may indicate a genetic basis to thiaminase tolerance among Atlantic salmon 

populations. 

Overall, the Sebago population had the best performance, for example highest growth, 

relative to the Saint-Jean and LaHave populations. Also, the Saint-Jean population had 

intermediate performance, higher concentration of liver thiamine than the LaHave 

population but lower growth than the Sebago population. In addition, other studies have 

found that the Sebago population had higher performance for fitness-related traits relative 

to the LaHave population. Sebago juveniles (age 0+) had no change in lactic acid 

(probiotic) bacteria in response to the presence of non-native salmonids, whereas there 

was a decrease in these bacteria for LaHave juveniles (Xiaoping He, University of 

Windsor, unpublished data). The Sebago juveniles also had higher immunity gene 

expression and swimming performance (because of a more streamlined body 

morphology) relative to the LaHave population (He et al. 2015; Andrew Smith, 

University of Quebec at Montreal, unpublished data). In addition, the Sebago population 

had the highest thermal tolerance, followed by LaHave population, and then the Saint-

Jean population (Kayla Gradil, University of Western Ontario, unpublished data). 
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However, there are also indications that the Saint-Jean population may do better than the 

LaHave and Sebago populations at a different life stage. Saint-Jean juveniles that were 

one year older (age 1+) initated the most aggression and lost the least mass in response to 

brown trout and rainbow trout relative to LaHave and Sebago juveniles (Van Zwol et al. 

2012a); albeit, Saint-Jean juveniles had an increase in chronic stress (based on elevated 

cortisol concentrations) relative to the remaining to populations (Van Zwol et al. 2012b). 

Interestingly, the source population that had the worst performance was the LaHave 

population, which has been the focus of previous reintroduction efforts (Dimond and 

Smitka 2005).  

8.2 Pre-Existing Adaptation Strategy 

Of the two approaches within the pre-existing adaptation strategy (i.e. ancestry matching 

and environment matching), evolutionary and ecological theory suggests that if the key 

environment features of the reintroduction location have changed, an environment match 

to the new conditions should possess the genes important to fitness relative to an ancestry 

match (Krueger et al. 1981; Moritz 1999; Jones 2003, 2013). Using experimental settings, 

the relative overall performance of the three source populations may support environment 

matching for selecting source populations in a changed environment. Stocked Sebago 

salmon appear to be doing well in Lake Champlain where there is also brown trout and 

rainbow trout as well as rainbow smelt and alewife (LCSG 2006; Marsden et al. 2010). 

Saint-Jean salmon are exposed to rainbow smelt but not non-native salmonids in Lac 

Saint-Jean (Dimond and Smitka 2005). LaHave salmon are not exposed to non-native 

salmonids in LaHave River (Dimond and Smitka 2005) and have a diverse diet 

(Rikardsen and Dempson 2011) that may be low in thiaminase. Overall, the Sebago 
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population had the highest performance, followed by the Saint-Jean population, then the 

LaHave population when exposed to both features. Specifically, the Sebago population 

had higher growth in the presence of non-native salmonids relative to the two remaining 

populations. The Sebago and Saint-Jean populations both had higher concentrations of 

liver thiamine when consuming a high thiaminase diet relative to the LaHave population. 

Given that the Sebago population is a match to both features, the Saint-Jean population is 

a match to a high thiaminase diet and not competition, and the LaHave population is not a 

match to either feature, the pattern of the relative overall performance of the three source 

populations may be explained by their degree of environment match to both features.  

The Sebago population also appears to be doing well in other locations with similar 

features as Lake Ontario. Stocked Sebago salmon appear to be doing well in Lake 

Champlain where there is also brown trout and rainbow trout as well as rainbow smelt 

and alewife (LCSG 2006; Marsden et al. 2010). On the New York side of Lake Ontario 

there is stocking of the Sebago population and recently there has been an increase in 

Sebago salmon catches in Lake Ontario as well as adult returns and natural reproduction 

in Salmon River (Johnson 2014). The New York side of Lake Ontario also has all four 

non-native salmonid species (Johnson 2008) as well as alewife and rainbow smelt (Urban 

and Brandt 1993). However, the increase in Atlantic salmon survival and reproduction on 

the New York side of Lake Ontario could also be explained by environmental changes in 

the lake, such as a reduced proportion of alewife in the diet (Johnson 2014). Regardless, 

there appears to be merit to considering the Sebago population for translocation into Lake 

Ontario because of its performance in Lake Champlain and the New York side of Lake 

Ontario.  
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One recognized confounding issue with examining the LaHave population is its longer 

history of captive breeding than the Sebago and Saint-Jean populations. Captive rearing 

can reduce the fitness of populations when exposed to natural conditions because of 

domestication selection, such as reduced anti-predator response, and this reduction in 

fitness typically increases with the greater number of generations in captivity (reviewed 

by Fraser 2008). The LaHave population has been in captive breeding in Ontario since 

the 1990s (OMNR 2005) and is currently in its third and fourth generation (Gord Durant, 

Ontario Ministriy of Natural Resources and Forestry (OMNRF), personal 

communication). The Sebago and Saint-Jean populations are in their first generation of 

captive breeding in Ontario (Gord Durant, OMNRF, personal communication). Although 

the LaHave population is not an environment match to either non-native salmonids or a 

high thiaminase diet, the lower performance of this population relative to the Sebago and 

Saint-Jean populations when exposed to these two features of the natural environment 

could also be explained by a reduction in performance due to domestication selection.   

8.3 Adaptive Potential Strategy 

Source populations can also be selected for reintroduction efforts using the adaptive 

potential strategy. Given the divergent genetic and environmental backgrounds of the 

three source populations (King et al. 2001; Dimond and Smitka 2005), simulatenous 

translocation of the three source populations into Lake Ontario is considered the multiple 

source population approach. One concern is that the different source populations 

translocated into the same location may naturally inter-breed. Such inter-breeding 

between genetically and environmentally dissimilar populations can produce hybrid 

offspring with outbreeding depression (Edmands 2007), i.e. the hybrid offspring have 
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lower fitness than either parental population (Lynch 1991). Indeed, there has been an 

indication that the LaHave and Sebago populations are inter-breeding in Lake Ontario 

tributaries based on DNA microsatellite population assignments (Wilson 2014b). 

Although there has been no indication of outbreeding depression in the first generation 

hybrids of the LaHave and Sebago populations based on survival and fitness-related trait 

data collected from the egg to juvenile (age 0+) life stages (Chantal Audet, University of 

Windsor, unpublished data), genetic incompatibilities resulting in lower fitness can first 

arise in the second generation hybrids of genetically different Atlantic salmon 

populations (e.g. McGinnity et al. 2003; Fraser et al. 2010). Thus, some caution is 

warranted using the multiple source population approach for translocating Atlantic 

salmon into Lake Ontario because outbreeding depression may occur for inter-population 

hybrid offspring. 

The single source population approach could also be considered for selecting source 

populations. Until recently (Chapter 6), there was no information on the amount of 

within-population heritable genetic variation for survival and fitness-related traits to 

consider this approach. My measurement of the amount of within-population heritable 

(additive) genetic variation of these traits at early-life history stages was low: on average 

8% across both years. There were also differences among the three source populations. 

The Sebago population had a higher amount of heritable genetic variation (average of 

14% across both years) than the LaHave (4%) and Saint-Jean populations (2%). The 

Sebago population could be selected for translocation into Lake Ontario if the single 

source population approach is considered in the future. However, the amount of heritable 

genetic variation for the traits was low, indicating a limited potential of the traits to adapt 
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to new selection pressures (Falconer and Mackay 1996). Another consideration is that the 

amount of heritable genetic variation for the traits was measured at early-life history 

stages (egg to first-feeding fry) in a hatchery environment, whereas Atlantic salmon are 

first exposed to non-native salmonids as juveniles and a high thiaminase diet as smolts in 

the natural environment. Concievably, there could be a higher amount of heritable genetic 

variation for survival and fitness-related traits at these later life stages which could be 

used to adapt to these features. For example, selection pressures in the natural 

environment can favour the survival of certain genotypes, thus changing the frequency of 

alleles such that now rare beneficial domiant alleles may increase the heritability for traits 

(Allendorf et al. 2013). Further research should consider quantifying the amount of 

within-population heritable genetic variation for traits at these later life stages exposed to 

the two features in natural settings. Because of the predicted limited potential of the 

early-life history traits to adapt to new selection pressures, using the single source 

population approach should be considered with caution. All together, the pattern of 

overall performance and the amount of heritable genetic variation of the three source 

populations generally supports environment matching over adaptive potential. 

8.4 Knowledge Gaps and Research Needs 

By examining the empirical literature on translocations, I have identified four major 

knowledge gaps (Table 8.1). Filling these gaps is critical to validate, and potentially 

revise, my source population selection framework. First, most studies have not measured 

fitness as per capita growth rate or intrinsic r but have measured fitness-related traits that 

do not necessarily capture population growth rate (see Hendry and Gonzalez 2008). For 

reintroduction programs, there is a large interest in establishing a self-sustaining 
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population with a growing (r > 0) or stable (r = 0) population size in the reintroduction 

location. Thus, per capita growth rate is a more useful measure than fitness-related traits 

and should be estimated in translocation studies. Additionally, there may be benefits to 

comparing different candidate source populations in experimental settings prior to large 

scale reintroduction efforts. For example, experiments could measure the relative fitness 

of different candidate source populations exposed to key environmental features in 

laboratory settings (e.g. van Katwijk et al. 1998, 2009; Chapter 5) or small scale natural 

settings of the reintroduction location (e.g. Chapter 4).  

Second, environment matching is likely the most challenging of the source population 

selection approaches to implement because identifying key environment features can be 

difficult, time consuming, and costly. Most of the studies that examined environment 

matching in my analysis were on plants, possibly because of the better understanding of 

the key environment features for these taxa. The plant studies supported competitors (e.g. 

vegetation community) and temperature as key environment features that influence 

fitness. A better understanding of the key environment features for other taxa, such as 

animals, could increase the usefulness of environment matching. Identifying key 

environment features can be accomplished using local adaptation methods, e.g. common-

garden and reciprocal translocation experiments (Kawecki and Ebert 2004), or assessing 

the influence of select features on the fitness of individuals in natural populations. 



 

 

Table 8.1. Summary of Four Knowledge Gaps and the Benefit of the Knowledge for Selecting Source Populations. 

Knowledge gap Details Benefit of knowledge 

1. Can fitness-related traits predict 

reintroduction outcome? 

Measure per capita growth rate instead of fitness-

related traits 

Per capita growth rate is a better predictor 

of population growth in the 

reintroduction location 

2. What are the key environment 

features for environment matching? 

Determine the features that have major influences 

on fitness (e.g. competitors and temperature) which 

should be used for the environment matching 

criteria 

A better understanding of key features 

may enhance the implementation of the 

environment matching approach 

3. What is the effect of current key 

environment features relative to 

historical conditions? 

Distinguish between an ancestry match, which may 

have higher fitness exposed to historical key 

environment features,  and an environment match, 

which may have higher fitness if matched to current 

key environment features  

Evidence to support the selection of an 

ancestry match versus an environment 

match based on the state of the current 

key environment features 

4. Does the adaptive potential 

strategy affect the outcome of 

translocations? 

Compare the fitness of the reintroduced population 

and its translocated group in the new location to 

identify adaptation following translocation 

Will determine if high heritable genetic 

variation is beneficial because of adaptive 

potential  

 

2
0
2
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Third, within the pre-existing adaptation strategy, the selection of an ancestry match 

versus an environment match is based on the state of the current key environment 

features relative to historical conditions. Although, the empirical support for ancestry and 

environment matching approaches appears to be similar, it is based on few studies and 

those studies show a large range in effect sizes, highlighting the need for more data. The 

three studies that examined both ancestry matching and environment matching (Montalvo 

and Ellstrand 2000; Raabová et al. 2007; Bowman et al. 2008) did not indicate if the 

current key environment features in the foreign locations had changed from historical 

conditions. An environment match is predicted to have higher fitness than an ancestry 

match when current key environment features have changed significantly from historical 

conditions. In contrast, an ancestry match is predicted to have higher or equivalent fitness 

as an environment match when historical key environment features have not changed 

substantially. To provide empirical data that addresses selecting an ancestry match versus 

an environment match, translocation studies should assess how source populations 

respond to the current key environment features relative to historical conditions at the 

reintroduction location, when known. Also, using similar local adaptation methods for 

identifying key environment features, researchers could experimentally manipulate 

environment features (e.g. historical versus current conditions) and examine the fitness of 

individuals from ancestry and environment matches (e.g. Chapter 4).  

Fourth, it is not yet clear if the adaptive potential strategy is of practical benefit in 

reintroduction programs. This strategy aims to translocate a group with high heritable 

genetic variation, with the goal of facilitating adaptation from this variation through 

evolutionary processes. However, even when this strategy works as intended, many 
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individuals from the translocated group will likely have low fitness in the reintroduction 

location (Krueger et al. 1981). Consequently, the benefits of the adaptive potential 

strategy will be fully-realized only after multiple generations, once selection has acted on 

the translocated group to remove individuals with genotypes that confer low fitness in the 

reintroduction environment. No studies have directly compared the fitness of a 

reintroduced population and its translocated group, so it is difficult to estimate the 

magnitude of the fitness benefits resulting from the adaptive capacity strategy (i.e. 

adaptation following translocation). Further research is needed to determine the role of 

adaptive capacity in translocation outcome and whether populations with high heritable 

genetic variation are more likely to re-establish a population in the reintroduction location 

than populations with low heritable genetic variation. At this time there is limited 

evidence that the adaptive potential strategy affects translocation outcome.  

8.5 Research Recommendations 

The source population selection framework (Figure 7.1) may have relevance for the 

reintroduction efforts of Atlantic salmon into Lake Ontario. For the first step, there is an 

a priori expectation that the Lake Ontario habitat should now support Atlantic salmon 

because there has been habitat restoration such that the original factors leading to the 

extirpation have been largely addressed (Beeton 2002). The Lake Ontario habitat also 

supports ecologically-similar salmonids species (Beeton 2002). For the second step, key 

environment features for Atlantic salmon have largely been identified (reviewed by 

Taylor 1991; Garcia de Leaniz et al. 2007) and in particular two features (i.e. non-native 

salmonids and high-thiaminase containing prey fishes) have been implicated as likely 
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impediments to a successful reintroduction of Atlantic salmon into Lake Ontario 

(Dimond and Smitka 2005; COSEWIC 2006, 2010). In addition, there are measurements 

of these two features in the source and reintroduction locations. For the third step, 

although there is likely an ancestry match (i.e. the Saint-Jean population, based on 

Tessier and Bernatchez 2000), the two identified features of Lake Ontatio are not close to 

historical conditions, i.e. non-native salmonids and high-thiaminase containing prey 

fishes are recent changes (Beeton 2002), suggesting that the ancestry matching approach 

is not appropriate. For the fourth step, there may be an environment match to both 

features (i.e. the Sebago population based on its performance in Lake Champlain, LCSG 

2006; Marsden et al. 2010), suggesting the environment matching approach is 

appropriate.  

In addition, there is post-release monitoring of the three source populations by the 

Ontario Ministry of Natural Resources and Forestry (OMNRF) to evaluate the relative 

fitness of the three source populations in Lake Ontario and its tributaries. Furthermore, 

there is research testing for outbreeding depression, specifically for the first generation 

hybrids of the LaHave and Sebago populations (Chantal Audet, University of Windsor, 

unpublished data). Ideally, outbreeding depression research would examine inter-

population hybrids of all three populations for at least two generations, because 

outbreeding depression may not be detected until the second generation in Atlantic 

salmon (e.g. McGinnity et al. 2003; Fraser et al. 2010). All together, the experiments 

measuring the relative fitness of different source populations or their inter-population 

hybrids in laboratory or small scale natural settings can be beneficial as a guide prior to 

large scale reintroduction efforts (e.g. van Katwijk et al. 1998, 2009). Not enough time 
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has passed to fully evaluate the relative fitness of the three populations over the entire life 

cycle and in small scale natural settings of Lake Ontario and its tributaries (Wilson 

2014b). In the future, if the translocation of the three source populations into Lake 

Ontario has not resulted in a self-sustaining population, the post-release monitoring or 

further research could be used to determine any outstanding key environment features 

and habitat restoration could be considered to address these limiting features.  

The knowledge gaps and research needs (Table 7.3) may also have relevance for the 

reintroduction efforts of Atlantic salmon into Lake Ontario. For the first gap, in my 

studies, I measured survival and fitness-related traits to compare among the three source 

populations. Admittedly, these measures do not necessarily capture per capita growth rate 

or intrinsic r (Hendry and Gonzalez 2008), which would be a more useful estimate of 

whether the source populations may provide a growing population (r > 0) or stable 

population (r = 0). Further research should consider measuring the per capita growth rate 

of the three source populations over the entire life-cycle and in natural settings. For the 

second gap, it is suggested that the key environment features have largely been identified 

for Atlantic salmon in Lake Ontario (Dimond and Smitka 2005; COSEWIC 2006, 2010), 

suggesting that an environment matching approach is appropriate if there is an 

environment match. However, additional key environment features may be identified 

from post-release monitoring or further research and this approach may no longer be 

appropriate if there is no environment match. For the third gap, environment features in 

Lake Ontario and its tributaries have changed relative to historical conditions (Beeton 

2002), suggesting that an environment match may have higher performance than an 

ancestry match (Krueger et al. 1981; Moritz 1999; Jones 2003, 2013). Futher research 
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could test this prediction in natural settings using the three source populations. For the 

fourth gap, there is post-release monitoring (Wilson 2014a,b) and other research 

comparing the three source populations. Further research could also measure the amount 

of heritable genetic variation for the three populations to test whether source populations 

with a higher amount of this variation have higher fitness in the reintroduction location 

relative to source populations with a lower amount of this variation.   

Admittedly, in my studies, the relative performance of the three populations was not 

examined in a fully natural setting or over the entire life cycle of the Atlantic salmon. 

Currently, the OMNRF is evaluating the relative performance of the three source 

populations over the entire life-cycle and in natural settings (Wilson 2014a,b). In 

particular, the Saint-Jean population is of interest as a source population because it is a 

presumed ancestry match to the extirpated Lake Ontario population (Tessier and 

Bernatchez 2000). Conceivably, an ancestry match, rather than an environment match, 

may be more likely to possess genes that are important to dealing with unidentified 

(cryptic) key environment features of Lake Ontario that may have been there historically 

(see Krueger et al. 1981; Garcia de Leaniz et al. 2007; Fraser 2008). Similarly, although 

the LaHave population had the worst performance when exposed to both features, the 

LaHave population may have better relative performance over the entire life cycle or 

certain Lake Ontario tributaries. For example, in year one of the artificial streams, 

LaHave juveniles had higher survival than Sebago juveniles in the multi-species 

treatment. Although a similar result did not occur in year two of the artificial streams, the 

results from year one suggest that the LaHave population may be more suitable than the 

Sebago population for natural streams containing all four species of non-native 
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salmonids. However, given the differences between years, further research should 

consider examining the three populations exposed to different compositions of non-native 

salmonid species in natural streams for different years. All together, the post-release 

monitoring and other research comparing the three source populations can have its 

benefits prior to large scale reintroduction efforts (e.g. van Katwijk et al. 1998, 2009). 

8.6 Conclusion 

Based on my experimental evaluations of the three populations using two key 

environment features of Lake Ontario and its tributaries (i.e. non-native salmonids and a 

high thiaminase diet), the pattern of overall performance and the amount of heritable 

genetic variation of the three source populations generally supports environment 

matching over adaptive potential. It is predicted that the Sebago population would be the 

most suited out of the three source populations for translocation into Lake Ontario. 

However, some caution is warranted, because all three source populations were not 

examined over the entire life cycle or in a fully natural setting. Conceivably, future 

information from post-release monitoring and further research of the three source 

populations over the entire life cycle and natural settings could reveal a different source 

population (i.e. the LaHave or Saint-Jean population) that is the most suited for 

translocation into Lake Ontario. Notably, given the concerns of outbreeding depression 

for naturally-produced inter-population hybrid offspring of Atlantic salmon, especially in 

the second generation (e.g. McGinnity et al. 2003; Fraser et al. 2010), identifying a single 

source population for future large scale reintroduction efforts should be considered. 
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Appendices 

Appendix A. Details of The Genetic Assignments for LaHave and Sebago Atlantic 

Salmon (Salmo salar). 

Adipose fin tissue samples of the parents were previously collected by the Ontario 

Ministry of Natural Resources and Forestry (OMNRF) and stored in 95% ethanol for 

DNA microsatellite genotyping. Atlantic salmon genotype information of all samples was 

collected at the OMNRF DNA Profiling and Forensic Centre, Peterborough, Ontario. 

Genomic DNA was extracted from Atlantic salmon tissue samples using a crude lysis 

extraction method (see Wilson et al. 2007). DNA samples were amplified at eight DNA 

microsatellite loci (i.e. Ssa197, Ssa202- O’Reilly et al. 1996; SSsp1605, SSssp2201, 

SSsp2213, SSsp2215, SSsp2216, SSspG7- Paterson et al. 2004). The heat cycle 

parameters were amplification at 95°C for 3 min, 35 denaturation cycles at 95°C for 30 s, 

annealing at 58°C for 30 s, and elongation at 72°C for 60 s. The extension time on the 

final cycle was 5 min. Amplified products were electrophoresed using an AB 3730 DNA 

Sequencer along with LIZ 500 size standards (Applied Biosystems). Genotypes at each 

locus were scored using GenoTyper 4.0 (Applied Biosystems) and confirmed by manual 

proofreading.  

Atlantic salmon individuals were assigned to the families using likelihood-based 

parentage pair assignments in Cervus 3.0 (Marshall et al. 1998). A parentage assignment 

simulation in FAP 3.6 (Taggart 2007) estimated a 97.5% success rate of assignment to a 

single family given the known 5 × 5 full factorial families that were released. Individuals 

were allowed to mismatch at a single locus for the assignment to experimental families in 

Cervus. Individuals that could not be assigned to the experimental families were assigned 
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to either the LaHave or Sebago population in Structure 2.1 (Pritchard et al. 2000) using 

the genotype information of all broodstock. 
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Appendix B. Summary of Baseline Thiamine Concentrations comparing Red Blood Cells 

and Plasma across Three Populations of Atlantic Salmon (Salmo salar). 

Table B1. Summary of baseline thiamine concentrations comparing red bloods cells and 

plasma across three populations of Atlantic salmon (Salmo salar). Presented are means ± 

1SD. Thiamine symbols are TPP = thiamine pyrophosphate, TMP = thiamine 

monophosphate, TH = free thiamine, and TTH = total thiamine. Sample size is n = 12 

from each population. 

Tissue TPP TMP TH TTH 

Red blood cells (nmol g
-1

)     

LaHave 2.1 ± 1.2 0.2 ± 0.2 0.0 ± 0.0 2.3 ± 1.2 

Sebago 1.7 ± 0.8 0.2 ± 0.2 0.0 ± 0.0 1.9 ± 0.9 

Saint-Jean 2.2 ± 0.9 0.3 ± 0.2 0.0 ± 0.0 2.4 ± 1.0 

     

Plasma (nmol ml
-1

)     

LaHave 0.03 ± 0.05 0.02 ± 0.06 0.06 ± 0.07 0.12 ± 0.14 

Sebago 0.06 ± 0.07 0.03 ± 0.05 0.09 ± 0.08 0.18 ± 0.19 

Saint-Jean 0.07 ± 0.06 0.03 ± 0.05 0.15 ± 0.12 0.26 ± 0.20 
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Table B2. Summary of Thiamine Concentrations comparing Red Blood Cells and Liver 

after 6 Months of Diet across Three Populations of Atlantic Salmon (Salmo salar). 

Presented are means ± 1SD. Thiamine symbols are TPP = thiamine pyrophosphate, TMP 

= thiamine monophosphate, TH = free thiamine, and TTH = total thiamine. Sample size 

is n = 4 from each population in each treatment. 

Tissue TPP TMP TH TTH 

Control diet 
    

Red blood cells (nmol g
-1

)     

LaHave 1.8 ± 0.8 0.8 ± 0.5 0.1 ± 0.1 2.7 ± 1.3 

Sebago 1.5 ± 0.4 0.4 ± 0.2 0.1 ± 0.1 2.0 ± 0.6 

Saint-Jean 1.4 ± 0.4 0.3 ± 0.1 0.0 ± 0.0 1.8 ± 0.5 

     

Liver (nmol g
-1

)     

LaHave 13.5 ± 2.5 10.8 ± 3.6 2.8 ± 1.0 27.1 ± 6.6 

Sebago 12.1 ± 2.5 9.7 ± 2.1 2.4 ± 0.5 24.3 ± 2.8 

Saint-Jean 10.1 ± 1.5 7.0 ± 0.8 2.2 ± 0.6 19.3 ± 2.2 

     

Thiaminase diet     

Red blood cells (nmol g
-1

)     

LaHave 0.8 ± 0.5 0.1 ± 0.1 0.0 ± 0.0 0.9 ± 0.5 

Sebago 0.7 ± 0.2 0.1 ± 0.1 0.0 ± 0.0 1.2 ± 0.3 

Saint-Jean 1.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 1.2 ± 0.2 

     

Liver (nmol g
-1

)     

LaHave 7.6 ± 1.3 2.1 ± 0.7 0.3 ± 0.2 10.0 ± 1.3 

Sebago 12.8 ± 5.9 3.0 ± 1.5 0.3 ± 0.4 16.1 ± 7.8 

Saint-Jean 11.5 ± 0.8 4.5 ± 0.5 0.9 ± 0.2 16.9 ± 1.3 
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Appendix C. Summary of the Results for the Genetic Architecture of Survival and 

Fitness-Related Traits in Three Populations of Atlantic Salmon (Salmo salar). 

Table C1. Summary of Results for the Genetic Architecture of Survival and Fitness-

Related Traits in Two Populations of Atlantic Salmon (Salmo salar) in Year One. 

Presented are the results on the observed data for the populations using mixed-effects 

models containing random effects for dam ID, sire ID, dam ID × sire ID. All mixed-

effects models contained a random effect for position effects (i.e. tray ID or tank ID). 

Significance of the effects was determined using likelihood ratio tests. The maternal 

environmental, additive, and non-additive variance components were calculated as: VD = 

¼ VA + VM; VS = ¼ VA; and VD×S = ¼ VN. 

Trait n p-value σ
2
 (% total 

variance) 

phenotypic 

variance 

% phenotypic 

variance  

Egg survival (Day 0-83)     

LaHave      

dam 5 < 0.001 0.499 (28.7) maternal 27.9  

sire 5 0.5654 0.015 (0.9) additive 3.5 

dam × sire 25 < 0.001 0.132 (7.6) non-additive 30.6  

tray 13 < 0.001 0.086 (5.0)   

Residual   1.002 (57.7)   

Sebago       

dam 4 < 0.001 0.988 (24.5) maternal 23.5 

sire 5 0.8746 0.039 (1.0) additive 3.9 

dam × sire 20 < 0.001 1.125 (27.9) non-additive 111.6  

tray 13 < 0.001 0.887 (22.0)   

Residual   0.992 (24.6)   

      

Alevin survival (Day 84-138)    

LaHave      

dam 5 0.036 0.100 (7.7) maternal 6.8 

sire 5 0.719 0.012 (0.9) additive 3.7  

dam × sire 25 0.286 0.089 (7) non-additive 27.6  

tank 38 0.044 0.126 (9.8)   

Residual   0.967 (74.8)   

Sebago      

dam 4 0.524 0.093 (5.9) maternal 5.4 

sire 5 0.692 0.019 (1.3) additive 5.5  

dam × sire 20 0.500 0.076 (6.5) non-additive 22.1 

tank 31 0.084 0.236 (15.5)   

Residual   0.950 (70.9)   

      

Fry survival (Day 139-192)     

LaHave      

dam 5 0.090 0.173 (8.6) maternal 8.6 

sire 5 1 0 (0.0) additive 0.0  

dam × sire 25 < 0.001 0.308 (15.3) non-additive 61.2  
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tank 51 < 0.001 0.550 (27.3)   

Residual   0.984 (48.8)   

Sebago      

dam 4 0.161 0.137 (7.1) maternal 0 

sire 5 0.114 0.235 (12.1) additive 48.3 

dam × sire 20 0.287 0.078 (4.0) non-additive 16.1 

tank 32 < 0.001 0.526 (27.0)   

Residual   0.970 (49.8)   

      

Development time to hatch    

LaHave      

dam 5 0.003 1.58 (3.8) maternal 2.1 

sire 5 0.046 0.72 (1.7) additive 6.9  

dam × sire 25 < 0.001 1.00 (2.4) non-additive 9.6  

tray 13 < 0.001 1.82 (4.3)   

Residual   36.72 (87.8)   

Sebago      

dam 4 0.004 12.53 (8.0) maternal 5.4 

sire 5 0.057 4.03 (2.6) additive 10.3 

dam × sire 20 0.025 3.42 (2.2) non-additive 8.7 

tray 13 < 0.001 4.22 (2.7)   

Residual   132.49 (84.5)   

      

Body length at hatch      

LaHave      

dam 5 < 0.001 0.134 (21.6)  maternal 18.7 

sire 5 0.038 0.018 (2.9) additive 11.7 

dam × sire 25 0.365 0.006 (1.0) non-additive 4.0 

tray 13 0.121 0.007 (1.1)   

Residual   0.453 (73.3)   

Sebago      

dam 4 0.124 0.078 (12.1) maternal 11.3 

sire 5 0.969 0.005 (0.8) additive 3.3 

dam × sire 20 < 0.001 0.092 (14.4) non-additive 57.4  

tray 13 0.194 0.017 (2.7)   

Residual   0.448 (70.0)   

      

Yolk sac volume      

LaHave      

dam 5 < 0.001 117.3 (36.4) maternal 35.9 

sire 5 0.536 1.73 (0.5) additive 2.2 

dam × sire 25 0.028 7.41 (2.3) non-additive 9.2 

tray 13 0.728 0.67 (0.2)   

Residual   194.7 (60.5)   

Sebago      

dam 4 0.001 60.6 (25.2) maternal 23.2 

sire 5 0.461 4.83 (2.0) additive 8.0 

dam × sire 20 0.007 14.4 (6.0) non-additive 24.0 

tray  0.604 1.52 (0.6)   

Residual   159.4 (66.2)   

      

Body length at yolk sac absorption    

LaHave      

dam 5 <0.001 0.273 (24.2) maternal 22.9 

sire 5 0.347 0.015 (1.3) additive 5.2 
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dam × sire 25 0.022 0.036 (3.2) non-additive 12.8 

tank 38 <0.001 0.042 (3.8)   

Residual   0.760 (67.5)   

Sebago      

dam 4 < 0.001 0.578 (39.2) maternal 39.2 

sire 5 0.993 0 (0.0) additive 0.0 

dam × sire 20 0.002 0.086 (5.8) non-additive 23.3 

tank 31 < 0.001 1.29 (8.8)   

Residual   0.680 (46.2)   

      

Specific growth rate      

LaHave      

dam 5 0.022 1.9e-5 (35.1) maternal 22.1 

sire 5 0.195 6.9e-6 (13.0) additive 51.9 

dam × sire 25 0.036 1.2e-5 (22.5) non-additive 90.1 

tank 38 0.943 2.4e-7 (0.5)   

Residual   1.6e-5 (29.3)   

Sebago      

dam 4 1 2.8e-6 (3.6) maternal 3.4 

sire 5 1 0 (0.0) additive 0.0 

dam × sire 20 0.004 4.5e-5 (57.2) non-additive 228.7 

tank 31  0 (0.0)   

Residual   3.1e-5 (39.2)   

      

Yolk sac conversion efficiency    

LaHave      

dam 5 < 0.001 2.1e-4 (71.9) maternal 69.3  

sire 5 0.564 7.4e-6 (2.5) additive 10.0 

dam × sire 25 0.0002 5.2e-5 (17.7) non-additive 70.8 

tank 38 1 0 (0.0)   

Residual   2.3e-5 (7.9)   

Sebago      

dam 4 0.274 9.0e-5 (25.7) maternal 16.0 

sire 5 0.618 3.4e-5 (9.7) additive 38.7 

dam × sire 20 0.0001 1.7e-4 (48.9) non-additive 195.6 

tank 31 1 0 (0.0)   

Residual   5.5e-5 (15.8)   
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Table C2. Summary of Results for the Genetic Architecture of Survival and Fitness-

Related Traits in Three Populations of Atlantic Salmon (Salmo salar) in Year Two. 

Presented are the results on the observed data for the populations using mixed-effects 

models containing random effects for dam ID, sire ID, dam ID × sire ID. All mixed-

effects models contained a random effect for position effects (i.e. tray ID or tank ID). 

Egg survival mixed-effects models contained a random effect for block effects. 

Significance of the effects was determined using likelihood ratio tests. The maternal 

environmental, additive, and non-additive variance components were calculated as: VD = 

¼ VA + VM; VS = ¼ VA; and VD×S = ¼ VN. 

Trait n p-value σ
2
 (% total 

variance) 

phenotypic 

variance 

% phenotypic 

variance  

Egg survival (Day 0-120)     

LaHave      

dam 15 < 0.001 1.043 (36.0) maternal 35.0 

sire 15 0.5346 0.028 (1.0) additive 3.9 

dam × sire 75 < 0.001 0.427 (14.7) non-additive 58.9  

tray 29 < 0.001 0.177 (6.1)   

block 3 0.4273 0.224 (7.8)   

Residual   0.998 (34.4)   

Sebago       

dam 15 < 0.001 0.506 (27.1) maternal 22.0 

sire 15 0.0021 0.096 (5.2) additive 20.5 

dam × sire 75 < 0.001 0.180 (9.6) non-additive 38.5  

tray 28 < 0.001 0.089 (4.8)   

block 3 0.9966 0 (0)   

Residual   0.994 (53.3)   

Saint-Jean       

dam 15 < 0.001 3.420 (69.8) maternal 69.8  

sire 15 0.9980 0 (0) additive 0.0 

dam × sire 75 < 0.001 0.403 (8.2) non-additive 32.9 

tray 28 < 0.001 0.149 (3.0)   

block 3 1 0 (0)   

Residual   0.926 (18.9)   

      

Alevin survival (Day 121-143)    

LaHave      

dam 5 < 0.001 0.422 (21.7) maternal 21.7 

sire 5 1 0 (0) additive 0.0  

dam × sire 25 1 0 (0) non-additive 0.0  

tank 46 < 0.001 0.579 (29.8)   

Residual   0.941 (48.5)   

Sebago      

dam 5 0.246 0.055 (4.3) maternal 2.4  

sire 5 0.522 0.024 (1.8) additive 7.3  

dam × sire 25 0.737 0.021 (1.6) non-additive 6.5 

tank 45 < 0.001 0.255 (19.7)   

Residual   0.941 (72.6)   
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Saint-Jean      

dam 5 0.370 0.039 (3.1) maternal 3.1  

sire 5 1 0 (0) additive 0.0  

dam × sire 25 0.604 0.158 (3.2) non-additive 12.7 

tank 38 < 0.001 0.219 (17.6)   

Residual   0.948 (76.1)   

      

Fry survival (Day 144-187)     

LaHave      

dam 5 0.091 0.195 (9.3) maternal 9.1 

sire 5 0.963 0.004 (0.2) additive 0.8  

dam × sire 25 0.060 0.198 (9.4) non-additive 37.8  

tank 46 < 0.001 0.745 (35.5)   

Residual   0.953 (45.5)   

Sebago      

dam 5 0.079 0.389 (13.2) maternal 13.2 

sire 5 1 0 (0) additive 0.0  

dam × sire 25 < 0.001 0.577 (19.7) non-additive 78.6  

tank 45 < 0.001 0.995 (33.9)   

Residual   0.976 (33.2)   

      

Body length at hatch      

LaHave      

dam 5 0.003 0.718 (34.8)  maternal 34.5 

sire 5 1 0 (0) additive 0.0 

dam × sire 25 0.015 0.236 (11.4) non-additive 45.8 

tank 46 < 0.001 0.440 (21.3)   

Residual   0.671 (32.5)   

Sebago      

dam 5 0.002 0.417 (23.5) maternal 17.5 

sire 5 0.125 0.570 (6.0) additive 24.0  

dam × sire 25 0.866 0.065 (0.7) non-additive 2.7 

tank 45 < 0.001 0.412 (17.3)   

Residual   1.251 (52.5)   

Saint-Jean      

dam 4 0.006 0.441 (20.5) maternal 17.5 

sire 5 0.373 0.065 (3.0) additive 12.0  

dam × sire 20 0.280 0.082 (3.8) non-additive 15.3  

tank 38 1 0 (0)   

Residual   1.569 (72.7)   

      

Body mass at hatch      

LaHave      

dam 5 0.003 8.9 × 10
-5

 (29.9) maternal 29.9 

sire 5 1 0 (0) additive 0.0  

dam × sire 25 0.176 2.8 × 10
-5

 (9.6) non-additive 38.3 

tank 46 < 0.001 4.9 × 10
-5

 (16.4)   

Residual   1.3 × 10
-4

 (44.1)   

Sebago      

dam 5 0.036 1.1 × 10
-4

 (13.7) maternal 9.0  

sire 5 0.288 3.9 × 10
-5

 (4.7) additive 18.7 

dam × sire 25 0.464 3.2 × 10
-5

 (3.8) non-additive 15.3 

tank 45 0.002 1.2 × 10
-4

 (14.1)   

Residual   5.3 × 10
-4

 (63.7)   
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Saint-Jean 

dam 4 0.001 1.1 × 10
-4

 (19.2) maternal 19.2 

sire 5 1 0 (0) additive 0.0 

dam × sire 20 1 0 (0) non-additive 0.0 

tank 38 0.351 2.4 × 10
-5

 (4.4)   

Residual   4.2 × 10
-4

 (76.4)   

      

Body length at yolk sac absorption    

LaHave      

dam 5 < 0.001 0.172 (25.9) maternal 25.9 

sire 5 1 0 (0) additive 0.0 

dam × sire 25 0.217 0.168 (2.5) non-additive 10.1 

tank 44 < 0.001 0.514 (7.8)   

Residual   4.224 (63.8)   

Sebago      

dam 5 0.003 0.681 (12.5) maternal 9.2 

sire 5 0.156 0.176 (3.2) additive 12.9 

dam × sire 25 0.245 0.148 (2.7) non-additive 10.9 

tank 45 < 0.001 0.398 (7.3)   

Residual   4.061 (74.3)   

      

Body mass at yolk sac absorption    

LaHave      

dam 5 < 0.001 1.5 × 10
-3

 (27.1) maternal 27.1 

sire 5 1 0 (0) additive 0.0 

dam × sire 25 0.167 1.9 × 10
-4

 (3.3) non-additive 13.3 

tank 44 < 0.001 4.6 × 10
-4

 (8.1)   

Residual   3.5 × 10
-3

 (61.5)   

Sebago      

dam 5 0.007 7.9 × 10
-4

 (9.4) maternal 5.9 

sire 5 0.109 3.0 × 10
-4

 (3.6) additive 14.2 

dam × sire 20 0.336 1.7 × 10
-4

 (2.0) non-additive 7.9 

tank 45 < 0.001 6.2 × 10
-4

 (7.4)   

Residual   6.5 × 10
-3

 (77.6)   
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Appendix D. Permission to Reproduce Published Material 

The content contained within Chapter 2 (artificial streams, year one) and 4 (natural 

streams) has been published in Ecology of Freshwater Fish (2015). The materials that I 

have requested permission to reproduce (the "John Wiley and Sons Materials") for the 

thesis are protected by copyright.  

“You are hereby granted a personal, non-exclusive, non-sub licensable (on a 

stand-alone basis), non-transferable, worldwide, limited license to reproduce the 

Wiley Materials for the purpose specified in the licensing process.” 

Chapter 2 licence number: 3421100105908 

Chapter 4 licence number: 3530920234522 

 

The content contained within Chapter 3 (multi-species) and has been published in the 

Journal of Fish Biology (2015): 

 

If you wish to reuse your own article (or an amended version of it) in a new 

publication of which you are the author, editor or co-editor, prior permission is not 

required (with the usual acknowledgements). http://onlinelibrary.wiley.com/ 

journal/10.1111/%28ISSN%291095-8649/homepage/Permissions.html  

 

The content contained within Chapter 6 (genetic architecture, year one) has been 

published in Heredity (2013): 

“Ownership of copyright in the article remains with the Authors, and provided that, 

when reproducing the Contribution or extracts from it, the Authors acknowledge 

first and reference publication in the Journal, the Authors retain the following non-

exclusive rights: a) To reproduce the Contribution in whole or in part in any 

printed volume (book or thesis) of which they are the author(s).”  

http://www.nature.com/reprints/permission-requests.html 

 

The content contained within Chapter 6 (genetic architecture, year two) has been 

published in the Canadian Journal of Fisheries and Aquatic Sciences (2015): 

“Ownership of the copyright in the material contained in the Manuscript remains 

with the Author(s), and provided that, when reproducing the Manuscript or extracts 

from it, the Author(s) acknowledge and reference publication in the Journal, the 

Author(s) retain the following non-exclusive rights: (d) To reuse all or part of the 

Manuscript in other works created by them, provided the original publication in an 

NRC Press journal is acknowledged through a note or citation in a format 

acceptable to NRC Press. http://www.nrcresearchpress.com/userimages/Content 

Editor/1296158928124/2010-Copyright-Manuscript.pdf  

http://onlinelibrary.wiley.com/%20journal/10.1111/%28ISSN%291095-8649/homepage/Permissions.html
http://onlinelibrary.wiley.com/%20journal/10.1111/%28ISSN%291095-8649/homepage/Permissions.html
http://www.nature.com/reprints/permission-requests.html
http://www.nrcresearchpress.com/userimages/Content%20Editor/1296158928124/2010-Copyright-Manuscript.pdf
http://www.nrcresearchpress.com/userimages/Content%20Editor/1296158928124/2010-Copyright-Manuscript.pdf
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Appendix E. Experimental Protocol Approval Records 

The experimental protocols used in the thesis research were developed in accordance 

with the guidelines of the Canadian Council on Animal Care, the Animal Care 

Committee at the University of Western Ontario, the Committees of the Ontario Ministry 

of Natural Resources and Forestry, and Environment Canada. 

 

University of Western Ontario 

Animal Use Protocol #2010-2014 (2010- present) for Chapters 2-6 

“Behavioural and molecular ecology of fishes” 

 

 
 

Ontario Ministry of Natural Resources and Forestry 

Aquatic Research and Monitoring Section 

 

Animal Use Protocol #93 (2010-2011) for Chapters 2, 3, and 6 

“Performance of early-life stages and juveniles of Atlantic salmon in competition with 

non-native salmonids” 

 

Animal Use Protocol #94 (2011-2013) for Chapter 4  

“Performance of juvenile Atlantic salmon in natural streams of Lake Ontario” 
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Animal Use Protocol #103 (2011-2013) for Chapters 2, 3, and 6 

“Performance of early-life stages and juveniles of Atlantic salmon in competition with 

non-native salmonids” 

 

Animal Use Protocol #115 (2013-2016) for Chapter 5 

“Genetic adaptations to current thiaminase diets in candidate strains of Atlantic salmon 

for reintroduction into Lake Ontario” 

 

Animal Use Protocol #128 (2014-2016) for Chapter 5 

“Thiaminase diet effects on the swim performance of juvenile Atlantic salmon” 

 

Ontario Ministry of Natural Resources 

Aurora District Office 

Licence to Collect Fish for Scientific Purposes #1065095 (2011) for Chapter 4 

 

Environment Canada 

Notification and Processing Control Unit 

New Substance Notification #16996 (2013) for Chapter 5 

“Paenibacillus thiaminolyticus in salmon diet research” 
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