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Abstract
A mixed LP norm of a function on a product space is the result of successive classical Lp

norms in each variable, potentially with a different exponent for each. Conditions to determine
when one mixed norm space is contained in another are produced, generalizing the known
conditions for embeddings of Lp spaces.

The two-variable problem (with four Lp exponents, two for each mixed norm) is studied
extensively. The problem’s “unpermuted” case simply reduces to a question of Lp embeddings.
The other, “permuted” case further divides, depending on the values of the Lp exponents. Of-
ten, they fit the “Minkowski case”, when Minkowski’s integral inequality provides an easy,
complete solution. In the “non-Minkowski case”, the solution is determined by the structure
of the measures in the component Lp spaces. When no measure is purely atomic, there can be
no mixed-norm embedding in the non-Minkowski case, so for such measures the problem is
solved.

With at least one purely atomic measure, the non-Minkowski case divides further based on
the structure of the measures and the values of the exponents. Various necessary conditions
and sufficient conditions are found, solving a number of subcases. Other subcases are shown to
be genuinely complicated, with their solutions expressed in terms of an optimization problem
known to be computationally difficult.

With some difficult cases already present in the two-variable problem, it is impractical to
cover every case of the multivariable problem, but results are presented which fully solve some
cases. When no measure is purely atomic, the multivariable problem is solved by a reduction to
the Minkowski case of certain two-variable subproblems. The multivariable problem with un-
weighted `p spaces has a similar reduction to easy two-variable subproblems. It is conjectured
that this applies more generally; that, regardless of the structures of the involved measures,
when every permuted two-variable subproblem fits the Minkowski case, the full multivariable
mixed norm inclusion must hold.

Keywords: Lp mixed norms, permuted mixed norms, Minkowski’s integral inequality,
embedding, atomic measure, atomless measure, partition problem
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Chapter 1

Introduction

Every analyst knows at least one theorem regarding mixed norms. Minkowski’s integral in-
equality proves an embedding between mixed-norm spaces. Even Tonelli’s theorem tells us
that, when every exponent in a mixed norm is the same p, permuting their order is irrelevant,
always yielding Lp on the product space. (In case the name sounds unfamiliar, Tonelli’s theo-
rem is a version of Fubini’s theorem for nonnegative functions, which is valid with extended
real values even without requiring integrability.)

Given an n-tuple P = (p1, . . . pn), each pk ∈ (0,∞], a mixed LP norm is a norm applied to
functions f (x1, . . . , xn) on a product measure space (X1, µ1) × · · · × (Xn, µn), computed by

‖ f ‖P =

∫
Xn

· · · (∫
X1

| f (x1, . . . , xn)|p1 dµ1(x1)
)p2/p1

· · ·

pn/pn−1

dµn(xn)


1/pn

, (1.1)

successively applying an Lpk
µk (Xk) norm in each variable xk. (Naturally, when some pk = ∞, an

essential supremum is used instead. Also, for pk < 1 only quasi-norms are obtained.)
The problem addressed here is the question of when one mixed-norm LP space is contained

in another. As noted in [4], such spaces are Banach function spaces, so whenever this is true
there is a continuous inclusion map. The problem then amounts to one of determining whether
there is a finite constant, and what the best constant (i.e. least value) is, in the following
inequality.

Let X1, . . . , Xn be measurable spaces, each Xk admitting σ-finite measures µk and νk. Sup-
pose that P = (p1, . . . , pn) and Q = (q1, . . . , qn), two n-tuples of exponents drawn from (0,∞].
Take any permutation σ on {1, . . . , n}. Then the question is one of finding the least constant
C ∈ [0,∞] (or, at least, conditions when C < ∞) such that, for any measurable, complex-valued
function f on X1 × · · · × Xn,

‖ f ‖Q ≤ C ‖ f ‖σ(P) , (1.2)

where

‖ f ‖Q =

∫
Xn

· · ·

(∫
X1

| f (x1, . . . , xn)|q1 dν1(x1)
)q2/q1

· · · dνn(xn)
1/qn

and

‖ f ‖σ(P) =

∫
Xσ(n)

· · ·

(∫
Xσ(1)

| f (x1, . . . , xn)|pσ(1) dµσ(1)(xσ(1))
)pσ(2)/pσ(1)

· · · dµσ(n)(xσ(n))
1/pσ(n)

.
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2 Chapter 1. Introduction

Although one could permute the mixed norms on both sides of (1.2), only one permutation
σ is used, yielding ‖ f ‖σ(P). This is because the variables can be relabled, so that without loss
of generality the left-hand side is simply ‖ f ‖Q.

Computations involving mixed norms have appeared in the literature at least since Little-
wood’s famous 4/3 inequality [22] in 1930, generalized by Grothendieck’s inequality in 1956.
This inequality has proven fundamental in bilinear analysis, and been extended and interpreted
in many ways since. (Major results in bilinear and multilinear analysis and their history are
discussed by Blei in [6], where Theorem 10 shows a mixed-norm inequality central to the proof
of Littlewood’s inequality.) However, only in 1961 did Benedek and Panzone define the “LP

spaces with mixed norm”, and prove many of their properties, in their paper [4].
Since then, LP mixed norms have enjoyed a variety of applications in both pure and applied

mathematics. Applications in other disciplines seem to be growing in recent years, but the
following mention only a handful, not necessarily the most important. In 2009, Kowalski
[21] applied mixed norms, as well as the Besov and Triebel-Lizorkin spaces which can be
characterized using mixed norms, to sparse methods in signal regression. Various papers since
have cited this one, including [30] on dictionary learning and [32], which applies a mixed `2/`1

regularization to two learning tasks. In statistics, Zhao, Rocha, and Yu introduced “composite
absolute penalties”, a variation on mixed norms, in their much-cited [33].

In pure mathematics, the study of Sobolev spaces has come to use mixed norms frequently.
In 1987, Fournier [16] found that properties of mixed norms could be used to prove both the
approach of Gagliardo [17] and Nirenberg [26] to the Sobolev embedding theorem and Little-
wood’s inequality [22]. He developed, as an intermediate result, a mixed-norm generalization
of Minkowski’s integral inequality which is itself a special case of our Theorem 7.2.4. Inspired
by this paper and Fournier’s subsequent collaboration with Blei in [8] to investigate embed-
dings of Lorentz spaces into mixed-norm Lp spaces, Milman [25] combined mixed norms
with interpolation theory to provide alternate proofs of the major results both in [16] and in
Fournier’s subsequent collaboration with Blei, [8], which investigated embeddings of Lorentz
spaces into mixed-norm Lp spaces.

Those spaces that arise in these investigations of embeddings of the Sobolev spaces W1
1 (R)

have attracted recent research. Algervik and Kolyada’s 2011 paper [1] proves embeddings of
these mixed-norm spaces, dubbed “Fournier-Gagliardo mixed norm spaces” after [16] and [17],
into Lorentz-type spaces defined using iterative rearrangements, i.e. rearrangements over one
variable at a time. Kolyada’s 2012 [20] develops further properties of these Fournier-Gagliardo
mixed norm spaces and Lorentz-type spaces with iterative rearrangements, leading to a sharp
constant in a Sobolev embedding.

The Bohnenblust-Hille inequality, itself an extension of Littlewood’s 4/3 inequality, has
recently seen further extension, using the theory of multilinearity and p-summing operators. In
2010, Defant, Popa and Schwarting devised coordinatewise multiple summing operators and
applied them to develop vector-valued extensions of Bohnenblust-Hille in [14]. The next year,
Defant joined with four other authors in [13] to make great strides toward better estimates of
the coefficient in the Bohnenblust-Hille inequality, as well as various applications. Although
neither of these papers explicitly discusses mixed norms, some results use expressions involv-
ing mixed norms, and certain proofs can be simplified using the mixed-norm generalizations of
the Hölder and Minkowski inequalities in this document’s Section 7.2. Appendix A provides
example applications of these two inequalities, including a quick and easy proof of Lemma 1
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in [13], a special case of a result by Blei in [7]. More recently, Popa and Sinnamon [28] es-
tablished two inequalities which generalize inequalities in [6] and [14]. Some fairly lengthy
arguments there can be boiled down to quick applications of the mixed-norm forms of Hölder
and Minkowski.

The idea of mixed-norm spaces has been generalized beyond Lp; in [9], Blozinski intro-
duced mixed norm spaces constructed from rearrangement-invariant Banach function spaces.
Other than Lp, the specific spaces mentioned for this mixed-norm construction include Orlicz
spaces, Lorentz-Zygmund spaces, and Lorentz Λα(X) and L(p, q) spaces. Several applications
are developed, as well as inclusion results involving tensor products, kernels of integral opera-
tors, and Lorentz mixed-norm spaces.

Boccuto, Bukhvalov, and Sambucini developed impressive results on general mixed norms
in [10]. They primarily sought connections between mixed norms and “similar” norms on
product spaces, analogous to the way that an Lp mixed norm with p the same for every vari-
able is simply Lp on the product. Weaker properties are established for Orlicz, Lorentz, and
Marcinkiewicz mixed norms, as well as counterexamples refuting certain properties in many
Lorentz space cases. An appendix provides a striking generalization of the Kolmogorov-
Nagumo theorem. Roughly speaking, the Kolmogorov-Nagumo theorem provides that the
embedding given by Minkowski’s integral inequality (our Theorem 3.5.1) cannot be reversed
unless the exponents are equal, when Minkowski’s inequality becomes the equality of Tonelli’s
theorem. The generalization proves that, outside of special circumstances, this equivalence of
the two permutations of a mixed norm (F [E] and E [F] in their notation) is impossible unless
both component spaces E and F are Lp with the same p.

To define mixed-norm Lorentz spaces, Barza, Persson, and Soria defined a notion of multi-
dimensional rearrangement in [2]. This turned out to agree with Blozinski’s mixed norm con-
struction from [9], so Barza et al., joined by Kamińska, used Blozinski’s formulation in their
[3], which applied mixed Lorentz norms to find necessary and sufficient conditions for norma-
bility of two-dimensional Lorentz spaces, the one-dimensional problem having been solved
earlier. Furthermore, they proved embeddings among classical, multidimensional, and mixed
norm Lorentz spaces.

Finally, in 2014 Clavero and Soria [12] revisited the work done by Algervik and Kolyada
[1] and Fournier [16], generalizing their embeddings. Working with a particular generalization
of mixed-norm spaces using rearrangement-invariant spaces, these embeddings are generalized
to be between these mixed norm spaces and rerrangement-invariant spaces; optimal domains
and ranges are found. Though the definitions may be new, the paper notes that estimates on
these quantities have been found as early as the work of Gagliardo [17] and Nirenberg [26].

Yet, even though so much work has been done with mixed norms, over half a century after
the term was coined, the embedding problem between Lp mixed norm spaces had not been
resolved. Perhaps this is because some simple cases seem unremarkable. Many applications
may not need to change the order of the variables, as in amalgam spaces, where the meaning of
such a permutation is unclear. The “unpermuted” case where σ is the identity simply reduces
to one-variable problems, as treated in Sections 3.4 and 7.5. Even when permutation of mixed
norms is considered, when the left and right sides in (1.2) differ only by permutation (i.e. each
pk = qk and µk = νk for k = 1, 2 and σ is not the identity), the Minkowski inequality gives
a sufficient condition, and the Kolmogorov-Nagumo theorem shows that this is also, except
for fairly trivial measure spaces, necessary. Even the generalization of Minkowski’s integral



4 Chapter 1. Introduction

inequality to the “Minkowski condition” for inclusion in Section 3.6 is straightforward, and
gives an easily computed best constant. The complexity of certain non-Minkowski cases, and
the computationally difficult solutions that arise, are not necessarily expected.

With all the interesting generalizations that have arisen since Benedek and Panzone in-
troduced mixed-norm Lp spaces, one might ask why only Lp mixed norms are treated here.
First, the unpermuted case reduces to single-variable problems even for general mixed norms,
as noted in Theorem 2.2 of [18]. Therefore, only the permuted case of the problem really
teaches anything specifically about mixed norms. In order to develop sufficient conditions for
the permuted case, some method to deal with the permutation is required. Fundamentally, the
methods here are based on the Minkowski integral inequality and Tonelli’s theorem (which can
be viewed as an equality case of Minkowski). The generalized Kolmogorov-Nagumo theorem
in [10] shows that, for other spaces, an analogue to Tonelli’s theorem cannot be expected.

In addressing the problem, first comes a summary of the known one-variable solution in
Chapter 2. This is not only necessary for completeness, but important to general solutions,
because many cases reduce to one-variable inclusions and the computation of mixed-norm best
constants always involves one-variable best constants. Next simplest is the unpermuted case,
which in two variables looks like∫

X2

(∫
X1

| f (x1, x2)|q1dν1(x1)
) q2

q1

dν2(x2)


1

q2

≤ C

∫
X2

(∫
X1

| f (x1, x2)|p1dµ1(x1)
) p2

p1

dµ2(x2)


1

p2

.

Treated for two variables in Section 3.4 and more generally in Section 7.5, this case always re-
duces to one-variable subproblems. Simply applying the one-variable inclusions successively,
when they hold, solves the problem with C = C1 · · ·Cn, where each Ck is the best constant
over Xk. Even in the permuted case, one-variable inclusions remain necessary for mixed-norm
inclusion, as is proven by considering “factorable” functions f (x1, x2) = f1(x1) f2(x2).

The two-variable permuted case looks like∫
X2

(∫
X1

| f (x1, x2)|q1dν1(x1)
) q2

q1

dν2(x2)


1

q2

≤ C

∫
X1

(∫
X2

| f (x1, x2)|p2dµ2(x2)
) p1

p2

dµ1(x1)


1

p1

.

The so-called “Minkowski case” has min(p1, q1) ≤ max(p2, q2), i.e. one of the “one” expo-
nents (p1 and q1) is no greater than one of the “two” exponents (p2 and q2). In this case,
solved in Section 3.6, using both single-variable inclusions and applying Minkowski’s integral
inequality either at the start of this process, in between the inclusions, or at the end, solves
the problem. Again, C = C1C2, the product of single-variable best constants, for Minkowski’s
integral inequality has the constant 1.

In the non-Minkowski case, when max(p2, q2) < min(p1, q1), such a simple solution is not
possible. This more complex situation is first treated in the special case of common measures,
i.e. when for each k ∈ {1, 2} there is a single measure λk = µk = νk, in section 4.1. In this
case, both a proof that the Minkowski condition is necessary for measures which are not purely
atomic and a solution for the case where just one of X1 and X2 has purely atomic measures are
developed, in Sections 4.1.2 and 4.1.3 respectively.

Section 4.2 lifts the restriction of common measures to treat the non-Minkowski case more
generally. However, it opens with various results in Section 4.2.1 which can reduce many
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cases to the common measure situation, demonstrating that this special case is not as limited as
it initially seemed. It is also worth noting that the reductions to common measures developed
in Propositions 4.2.2 and 4.2.3 produce common measures λ1 and λ2 which are connected to
the solution of the one-variable problem, where in many cases the solution depends on the
properties of a measure λ produced in the same way.

The two-variable problem finishes with its most difficult case, the non-Minkowski case
where both X1 and X2 have purely atomic measures, treated in Chapter 5. Some basic necessary
and sufficient conditions still apply, but to cover nearly all the cases which remain, a variational
argument is developed in Section 5.2 to show that we can, in many cases, approach the best
constants with simpler functions. In particular, in the non-Minkowski case max(p2, q2) <
min(p1, q1), if p1 ≤ q1 or p2 ≤ q2, we need only consider functions analogous to matrices
with at most one non-zero entry per column, at most one non-zero entry per row, or both.
Section 5.3 uses rearrangements to compute the best constant in the case p2 ≤ q2 < p1 ≤

q1, when we can use “diagonal” functions with at most one non-zero entry per row and per
column. Section 5.5 treats p2 ≤ q2 < q1 < p1, using functions with one entry per row, and
q2 < p2 < p1 ≤ q1, with at most one entry per column. The best constants are given in terms
of a genuinely computationally difficult problem described in Section 5.4, of which a special
case amounts to the NP-hard optimization version of the partition problem. The very last case,
where q2 < p2 < q1 < p1 and both X1 and X2 have purely atomic measures, is left unsolved
beyond previously established conditions, but is expected to be the most complicated case.

Since certain cases of the two-variable problem are so difficult, a full multivariable solution
is not provided, but results covering a fair number of cases are given. First, mixed-norm Hölder
and Minkowski inequalities are given in Section 7.2, both for later use and because they’re
useful inequalities for mixed norms. Section 7.4 shows that, analogously to the previously
established necessity of single-variable inclusions, all “subinclusions” are necessary. Such
subinclusions are mixed-norm inclusions among a k-variable subset of the full n (or simple Lp

inclusions if k = 1), ordered according to the relative positions, depending on σ, in which they
appear in ‖ f ‖Q ≤ C ‖ f ‖σ(P). The proof uses partially factorable functions, where f (x1, . . . , xn)
is a product of one function of the selected k variables for a subinclusion and one-variable
functions in the other variables.

Section 7.5 proves the unsurprising result that the unpermuted case reduces to single-
variable problems however many variables are used in the mixed norms. Fortunately, Section
7.6 establishes a more substantial sufficient condition which brings back the Minkowski case
from the two-variable problem. When none of the measure spaces involved is purely atomic,
there is a complete solution: permuted mixed-norm inclusion holds if and only if every 2-
variable subinclusion is of either unpermuted or fits the Minkowski case. A different argument
establishes the same result for unweighted `p spaces; the connection between these is that one-
variable inclusion always has q ≤ p for measures which are not purely atomic, while it always
has p ≤ q for unweighted `p. The consistent order between each pk and qk makes it relatively
straightforward to use Minkowski’s integral inequality, plus one-variable inclusions, to prove
mixed-norm inclusion.

It is conjectured that these are not the only cases in which the multivariable problem can be
reduced to two-variable subproblems. Specifically, that to prove the full multivariable mixed
norm inclusion, it is sufficient to establish that each permuted two-variable subproblem is in
the Minkowski case.



Chapter 2

One-variable review

When is one Lp space contained in another? The known answer is both the simplest possible
case of the general problem and an important piece of its solution. Several articles in the Amer-
ican Mathematical Monthly address this problem, which constitutes the one-variable case of
the mixed-norm inclusion problem. Miamee [24] addresses the general problem and charac-
terizes it as one of checking the existence of a finite best constant, but does not cover all cases
and presents results which do not explicitly specify the best constants. The earlier notes by
Subramanian [29] and Villani [31] provide some results, but only treat the case of one measure
rather than two. This chapter develops a solution with best constants, where important cases
and issues relevant to the more general problem are discussed.

2.1 Problem Statement
Consider a measurable space (X,Σ), i.e. a set X on which Σ is a σ-algebra. Let µ and ν be
non-zero, σ-finite measures on Σ and p, q ∈ (0,∞]. The question is when Lp

µ(X) ⊂ Lq
ν(X),

understood in the sense that any function with finite Lp
µ(X) norm must also have finite Lq

ν(X)
norm. It turns out that the inclusion holds if and only if there is a constant C < ∞ such that, for
any measurable, complex-valued function f on X,

‖ f ‖Lq
ν(X) ≤ C‖ f ‖Lp

µ(X). (2.1)

It is not a priori obvious that the inclusion Lp
µ(X) ⊂ Lq

ν(X) is equivalent to the existence of
a finite constant C, though it is not difficult to see that C < ∞ is sufficient. Proof of this
equivalence is provided in Section 2.2.

Definition 2.1.1. Recall that the Lp spaces (or Lebesgue spaces) are a class of function spaces
defined by the Lp norms; for any measure space (X, µ) and 0 < p ≤ ∞, define for any measur-
able function f : X → C the quantity

‖ f ‖Lp
µ(X) =


(∫

X
| f (x)|p dµ(x)

)1/p
if p < ∞

ess supx∈(X,µ) | f (x)| if p = ∞
,

which takes values in [0,∞].

6
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The essential supremum, denoted ess sup, is a variation on the supremum which disregards
values on sets of measure zero. Here is a precise definition, along with some related definitions
from basic measure theory.

Definition 2.1.2. Given a measure space (X,Σ, µ), a measurable set E ∈ Σ is said to be µ-null
if and only if µE = 0. When context makes the measure µ clear, a µ-null set E is called null.

Definition 2.1.3. Let (X, µ) be a measure space, and P(x) a property which is either true or
false of each point x ∈ X. The property P(x) is said to hold µ-almost everywhere (abbreviated
µ-a.e.) if and only if it fails on a µ-null set, i.e.

µ({x ∈ X : ¬P(x)}) = 0.

When the measure is clear from context, we may simply say that a property holds almost
everywhere, or a.e..

Definition 2.1.4. Let (X, µ) be a measure space and f : X → R be a measurable function. Its
essential supremum is

ess sup
x∈(X,µ)

f (x) = inf
{
α ∈ [−∞,∞] : µ

(
f −1(α,∞)

)
= 0

}
,

in other words, the least α such that f ≤ α µ-a.e.

Definition 2.1.5. The vector space Lp
µ(X) defined by the ‖·‖Lp

µ(X) norm consists of all equivalence
classes, identifying functions which agree µ-almost everywhere, of measurable functions f :
X → C such that ‖ f ‖Lp

µ(X) < ∞. Whenever p ≥ 1, Lp
µ(X) is a Banach space, i.e. a complete

normed vector space. When 0 < p < 1, Lp
µ(X) is still a vector space, but is not normed since

the triangle inequality fails. When the measure µ or the underlying set X is clear from context,
the simpler notations Lp(X) or Lp may be used, with the corresponding norm (or quasi-norm
for p < 1) denoted ‖·‖Lp(X) or ‖·‖p.

The standard notation `p is used instead of Lp when weighted or unweighted counting
measure is involved, so that integrals are sums. Given an at most countable index set I, a
weight w : I → (0,∞), a measurable, complex-valued function f on I, and p ∈ (0,∞],

‖ f ‖`p
w(I) =

{
(
∑

i∈I | f (i)|p w(i))1/p if p < ∞
supi∈I | f (i)| if p = ∞

,

where every term is nonnegative, so the sum converges absolutely, if at all. (Therefore the
order of elements in I need not be specified.) The corresponding space `p

w(I) consists of those
functions f (i) (equivalently, sequences (ai)i∈I , since I is a countable index set) such that ‖ f ‖`p

w(I).
When the space is unweighted (i.e. w is a constant 1), the notation `p(I) is also used for the
space and norm. By itself, `p is understood to use unweighted counting measure on N. For any
of these, the short form ‖·‖p may be used for the norm.

Since the values of ‖ f ‖Lp
µ(X) and ‖ f ‖Lq

ν(X) depend only on the modulus | f (x)| and the follow-
ing results will not involve the addition of functions, it suffices to consider only nonnegative
functions. The notation L+(X) denotes the space of all measurable (with respect to Σ) functions
on X which take values in [0,∞].
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Definition 2.1.6. Given measures µ and ν on a space X, the measure ν is absolutely continuous
with respect to µ if and only if every µ-null set is ν-null. This is denoted by ν � µ.

Note that, if ν 3 µ, there is some measurable set E ⊂ X such that µE = 0 and νE > 0.
Since ‖ f ‖Lp

µ(X) = 0 while ‖ f ‖Lq
ν(X) > 0, there is no constant C < ∞ such that

‖ f ‖Lq
ν(X) ≤ C ‖ f ‖Lp

µ(X)

for all f ∈ L+(X). Furthermore, consider ∞χE, for which ‖∞χE‖Lp
µ(X) = 0 and ‖∞χE‖Lq

ν(X) =

χν(E)1/q = ∞. Therefore Lp
µ(X) 1 Lq

ν(X).
(The example∞χE may seem contrived, but when µE = 0, it is µ-a.e. equal to the constant

zero function. A meaning of inclusion Lp
µ(X) ⊂ Lq

ν(X) which does not respect a.e. equality
would be rather strange.)

Assumption For the rest of Chapter 2, assume that ν � µ. (Otherwise, inclusion always fails.)

When ν � µ, the Radon-Nikodym Theorem guarantees that there is a µ-measurable func-
tion, denoted by dν

dµ , such that ν(E) =
∫

E
dν
dµdµ for any measurable set E. The more general

Lebesgue-Radon-Nikodym Theorem is described for signed measures in Section 3.2 of Fol-
land’s [15], where it is Theorem 3.8. Because only unsigned measures are used here, only the
following corollary is needed.

Corollary 2.1.7 (Radon-Nikodym Theorem for Unsigned Measures). Let µ and ν be σ-finite
(positive) measures on a common measurable space (X,Σ) such that ν � µ. Then there is a
µ-measurable function f : X → [0,∞) such that, for each E ∈ Σ,

ν(E) =

∫
E

f (x)dµ(x).

Furthermore, any two such functions f must agree µ-a.e.

Because the Radon-Nikodym derivative dν
dµ is only defined by µ and ν uniquely up to modi-

fication on µ-null sets, it is most appropriate to think of dν
dµ as representing an equivalence class

of functions, rather than a function. However, this is the same identification made throughout
and whenever working with Lp norms. The following theorem provides the solution to the
one-variable inclusion problem, in terms of the Radon-Nikodym derivative, to be proven in
Section 2.4.

Theorem 2.1.8. The least constant C ∈ [0,∞] such that ‖ f ‖Lq
ν(X) ≤ C ‖ f ‖Lp

µ(X) for any measur-
able function f on X is as specified below, separated by case.

q = p = ∞ : C = 1.

0 < q < p = ∞ : C = ν(X)1/q.

0 < q ≤ p < ∞ : C =

∫
X

(
dν
dµ

(x)
) p

p−q

dµ(x)


p−q
pq

.

0 < p < q ≤ ∞ : C = ε1/q−1/p,

where ε ≥ 0 denotes the infimum of all strictly positive values of
∫

E

(
dν
dµ

)p/(p−q)
dµ, for E ∈ Σ.
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Observe that the second case is the limit of the third case as p → ∞, so they could be

combined into one case with C =
∥∥∥∥ dν

dµ

∥∥∥∥1/q

p/(p−q)
. This means that when 0 < q ≤ p ≤ ∞ (and not

both ∞), assuming ν � µ, the necessary and sufficient condition for Lp
µ(X) ⊂ Lq

ν(X) is that dν
dµ

be in Lp/(p−q)
µ (X). In the final case p < q, again assuming ν � µ, the necessary and sufficient

condition for inclusion is that the positive values of
∫

E

(
dν
dµ

)p/(p−q)
dµ be bounded away from

zero. Otherwise, ε = 0 and inclusion fails with C = 01/q−1/p = ∞, since 1/q − 1/p < 0 in this
case. Corollary 2.5.7 gives a condition on measures that implies ε = 0, showing that this holds
for many measures.

A slightly more condensed version of this theorem is given as part of the summary of the
one-variable solution in Section 2.7.

2.2 Preliminaries
Intuitively, we can think of Lp

µ(X) ⊂ Lq
ν(X) as saying that any function f ∈ L+(X) must be in

Lq
ν(X) if it is in Lp

µ(X), i.e. that ‖ f ‖Lp
µ(X) < ∞ implies ‖ f ‖Lq

ν(X) < ∞. Of course, technically,
the elements of Lp

µ(X) are not functions, but equivalence classes of functions, identified by
agreement µ-almost everywhere. Similarly, the elements of Lq

ν(X) are equivalence classes for
agreement ν-almost everywhere. The following describes the connection between this func-
tionwise notion of inclusion and what it means in terms of equivalence classes.

Definition 2.2.1. The inclusion Lp
µ(X) ⊂ Lq

ν(X) is understood here in a functionwise sense; that
is, for each f ∈ L+(X), if ‖ f ‖Lp

µ(X) < ∞ then ‖ f ‖Lq
ν(X).

Definition 2.2.2. Given a measure space (X, µ), let
[
f
]
µ denote the equivalence class of f for

agreement µ-a.e., i.e. [
f
]
µ =

{
g ∈ L+(X) : f = g µ-a.e.

}
.

Proposition 2.2.3. The formula ι
([

f
]
µ

)
= [ f ]ν specifies a well-defined map

ι : Lp
µ(X)→ Lq

ν(X)

if and only if ‖ f ‖Lp
µ(X) < ∞ implies ‖ f ‖Lq

ν(X) < ∞ for any f ∈ L+(X).

Proof. Assume that ‖ f ‖Lp
µ(X) < ∞ implies ‖ f ‖Lq

ν(X) for any f ∈ L+(X). To see that ι is well-
defined, consider any f1, f2 ∈ L+(X) which are in the same class, in the sense that

[
f1
]
µ =

[
f2
]
µ.

This means that f1 = f2 µ-a.e. Recall that we assume ν � µ, so because the set where f1 , f2

is µ-null, it is also ν-null; that is, f1 = f2 ν-a.e. Therefore
[
f1
]
ν =

[
f2
]
ν.

The space Lq
ν(X) is valid as the codomain because, as long as

[
f
]
µ ∈ Lp

µ(X), the function
f ∈ Lq

ν(X). For any g ∈
[
f
]
ν, i.e. such that f = g ν-a.e., ‖g‖Lq

ν(X) = ‖ f ‖Lq
ν(X) < ∞ and so the class

ι
([

f
]
µ

)
=

[
f
]
ν is in the space Lq

ν(X).
Conversely, suppose that ι : Lp

µ(X) → Lq
ν(X) as a transformation of equivalence classes.

Suppose that f ∈ L+(X) is such that ‖ f ‖Lp
µ(X) < ∞. Then

[
f
]
µ ∈ Lp

µ(X), so ι([ f ]µ) =
[
f
]
ν ∈ Lq

ν(X)
and ‖ f ‖Lq

ν(X) < ∞. �
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So, the functionwise inclusion Lp
µ(X) ⊂ Lq

ν(X) is equivalent to a natural embedding of
function spaces which consist of equivalence classes. For simplicity, we will from now on
work functionwise, making such statements as f ∈ Lp

µ(X) rather than
[
f
]
µ ∈ Lp

µ(X).
Next, we address why the inclusion problem Lp

µ(X) ⊂ Lq
ν(X) can be formulated in terms of

the existence of a finite best constant C in ‖ f ‖Lq
ν(X) ≤ C ‖ f ‖Lp

µ(X) . This is based on a property
of inclusions among Banach function spaces, which is quite helpful when p, q ≥ 1. If either
exponent is less than 1, there is still a method to convert the problem to one where the exponents
are at least 1, as the following result shows.

Lemma 2.2.4. Fix an arbitrary real number t > 0. Let C ∈ [0,∞] denote the least constant
such that

‖ f ‖Lq
ν(X) ≤ C ‖ f ‖Lp

µ(X) (2.2)

for all f ∈ L+(X), and let D ∈ [0,∞] denote the least constant such that

‖h‖Ltq
ν (X) ≤ D ‖h‖Ltp

µ (X) (2.3)

for each h ∈ L+(X). Then C = Dt.
Furthermore, Lp

µ(X) ⊂ Lq
ν(X) if and only if Ltp

µ (X) ⊂ Ltq
ν (X).

Proof. Given any h ∈ L+(X), let f = ht. Then

‖h‖Ltq
ν (X) = ‖ f ‖1/t

Lq
ν(X)

and ‖ f ‖Ltp
µ (X) = ‖h‖tLp

µ(X) .

Therefore
‖h‖Ltq

ν (X) = ‖ f ‖1/t
Lq
ν(X)
≤ (C ‖ f ‖Lp

µ(X))
1/t = C1/t ‖h‖Lp

µ(X) .

Because D is the least constant for (2.3), D ≤ C1/t, so Dt ≤ C.
To obtain the reverse inequality, for any f ∈ L+(X), let h = f 1/t. Of course, this implies that

f = ht, as above, so the same equalities apply, and

‖ f ‖Lq
ν(X) = ‖h‖t

Ltq
ν (X)
≤

(
D ‖h‖Ltp

µ (X)

)t
= Dt ‖ f ‖Lp

µ(X) .

Because C is the least constant for (7.7), C ≤ Dt.
For equivalence of the inclusion problems, suppose that Lp

µ(X) ⊂ Lq
ν(X). For any h ∈ L+(X),

let f = ht and note that if h ∈ Ltp
µ (X), then ‖ f ‖Lp

µ(X) = ‖h‖t
Ltp
µ (X)

< ∞, so ‖h‖Ltq
ν (X) = ‖ f ‖1/t

Lq
ν(X)

< ∞.

This means that Ltp
µ (X) ⊂ Ltq

ν (X). The converse is proven similarly. �

With this, it is possible to convert the original inclusion problem to one involving Banach
function spaces (defined in such sources as [5]; see Definitions 1.1 and 1.3), if this is not
already the case. Recall the standard fact that any linear operator between normed vector
spaces is continuous if and only if it is bounded.

Definition 2.2.5. Where V and W are normed vector spaces, a linear map T : V → W is
bounded if and only if there is some constant C ∈ [0,∞) such that, for all v ∈ V ,

‖Tv‖W ≤ C ‖v‖V .
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Remark A linear map T : V → W between normed vector spaces is bounded if and only if it
is continuous.

This equivalence is standard and given here without proof. See Folland’s [15], where it
is Proposition 5.2. The above notion of boundedness for linear maps is defined immediately
preceding the proposition. The following proof rests on the more powerful result that every
inclusion between Banach function spaces is continuous, found for example in [5] as Theorem
1.8.

Proposition 2.2.6. The inclusion Lp
µ(X) ⊂ Lq

ν(X) holds if and only if there is a constant C < ∞
such that

‖ f ‖Lq
ν(X) ≤ C ‖ f ‖Lp

µ(X)

for all f ∈ L+(X).

Proof. If either p or q is strictly less than 1, let

t = max(p−1, q−1)

and use this t in Lemma 2.2.4 to convert the inclusion problem Lp
µ(X) ⊂ Lq

ν(X) to the equivalent
Ltp
µ (X) ⊂ Ltq

ν (X), with both exponents tp, tq ≥ 1. This transformation also takes the problem of
finding the least constant C such that

‖ f ‖Lq
ν(X) ≤ C ‖ f ‖Lp

µ(X)

for all f ∈ L+(X) to the problem of finding the least constant D such that

‖h‖Ltq
ν (X) ≤ D ‖h‖Ltp

µ (X)

for all h ∈ L+(X). If either constant exists and is finite, so is the other, and C = Dt, by Lemma
2.2.4. This also means that, if one fails to exist (as a finite constant), then so does the other.
Replace p by tp and q by tq for the remainder, so that p, q ≥ 1.

With exponents at least 1, the Lebesgue spaces are Banach function spaces, as defined in
[5]. Therefore, if Lp

µ(X) ⊂ Lq
ν(X), then by Theorem 1.8 in [5], there is a constant C < ∞ such

that ‖ f ‖Lq
ν(X) ≤ C ‖ f ‖Lp

µ(X) for all f ∈ L+(X). The converse is simple, as the existence of C < ∞

implies that there is a continous inclusion map Lp
µ(X) ↪→ Lq

ν(X). �

This result is why the inclusion problem is addressed by finding the least constant C; the
inclusion holds if and only if C < ∞, in which case C provides the operator norm of the
inclusion map.

2.3 Hölder’s inequality
Recall Hölder’s inequality, a fundamental result in the theory of Lp spaces. It involves the con-
cept of conjugate exponents, defined here along with one standard notation, the prime notation
(as in p′) used for it. This notation is used throughout.
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Definition 2.3.1. Given any p ∈ [1,∞], its conjugate exponent p′ ∈ [1,∞] is defined by

1
p

+
1
p′

= 1. (2.4)

Because this definition is symmetric in the roles of p and p′, any (p′)′ = p. Note that
although this computation can be applied when 0 < p < 1, in this case −∞ < p′ < 0, and vice
versa with p and p′ exchanged. Furthermore, Hölder’s inequality, in the form described below,
is not valid for such exponents.

Theorem 2.3.2 (Hölder’s inequality). For any measure space (X, µ), any µ-measurable, complex-
valued functions f and g on X, any p ∈ [1,∞] and its conjugate exponent p′ ∈ [1,∞],∫

X
| f g|dµ ≤ ‖ f ‖Lp

µ
‖g‖Lp′

µ
.

If 1 < p < ∞ and f ∈ Lp
µ, g ∈ Lp′

µ , then f g ∈ L1, with equality if and only if f p and gp′ are
linearly dependent, i.e. there are constants α, β not both zero such that α f p = βgp′ µ-a.e.

Hölder’s inequality is sharp, which can be expressed in the following way. (A similar result
is true even for measures which are not σ-finite, but with the additional requirement that f be
in Lp

µ(X). Since this work is only concerned with σ-finite measures anyway, this version is
more convenient.)

Corollary 2.3.3. Suppose that (X, µ) is a σ-finite measure space. For any particular g ∈ L+(X),
the least constant 0 ≤ C ≤ ∞ such that, for any f ∈ L+(X),∫

X
f gdµ ≤ C‖ f ‖Lp

µ(X)

is C = ‖g‖Lp′
µ (X). Naturally, this means that it is possible to have C < ∞ if and only if g ∈ Lp′

µ (X).

Proof. By Hölder’s inequality, this inequality is valid with C = ‖g‖Lp′
µ (X) ∈ [0,∞], so it remains

only to establish that this is the least possible constant. Note that both sides are zero (and
C = 0 = ‖g‖Lp′

µ (X)) when µ is the zero measure on X, so assume that µ is nonzero.
Since µ is σ-finite and nonzero, there is an increasing sequence (En)n≥1 of measurable

subsets of X such that each µEn ∈ (0,∞) and X =
⋃

n≥1 En.
If p = ∞, define for each n ≥ 1 fn = χEn , so that each ‖ fn‖L∞µ (X) = 1 since µ(En) > 0. Also,∫

X
fngdµ =

∫
En

gdµ →
∫

X
gdµ = ‖g‖L1

µ(X) by the Monotone Convergence Theorem. Therefore
no constant less than ‖g‖L1

µ(X) is satisfactory.
If p = 1, observe that for any c < ‖g‖L∞µ (X), there is a measurable S c ⊂ X such that µS c ∈

(0,∞) and g > c on S c. Therefore
∫

X
χS cgdµ =

∫
S c

gdµ ≥ cµ(S c) = c‖χS c‖L1
µ(X), so C ≥ c.

Because this applies to any c < ‖g‖L∞µ (X), the least possible value of C is ‖g‖L∞µ (X).
Now suppose that 1 < p < ∞. For each n ≥ 1, let gn = min(g, n)χEn and fn = min(g, n)p′/pχEn .

Note that f p
n = gp′

n = min(g, n)p′χEn , which has an integral bounded above by
∫

En
np′dµ ≤

np′µ(En) < ∞, so fn ∈ Lp
µ(X) and gn ∈ Lp′

µ (X). There is now equality in Hölder’s inequality,
so

∫
X

fngndµ = ‖ fn‖Lp
µ(X)‖gn‖Lp′

µ (X), implying that C ≥ ‖gn‖Lp′
µ (X). By the Monotone Convergence

Theorem, limn→∞ ‖gn‖Lp′
µ (X) =

(
limn→∞

∫
X

min(g, n)p′χEndµ
)1/p′

=
(∫

X
gp′dµ

)1/p′
= ‖g‖Lp′

µ (X), so
‖g‖Lp′

µ (X) is the least possible value of C. �
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Simply rearranging the above inequality then provides the following result.

Corollary 2.3.4. For any g ∈ L+(X),

sup
f

∫
X

f gdµ

‖ f ‖Lp
µ(X)

= ‖g‖Lp′
µ (X),

where this supremum is taken over f ∈ L+(X), not almost everywhere zero.

Corollary 2.3.3 to Hölder’s inequality easily provides answers to some cases of the Lebesgue
space inclusion problem, including the following familiar examples.

Example 2.3.5. Whenever 1 ≤ q ≤ p ≤ ∞, Lp[0, 1] ⊂ Lq[0, 1] (with Lebesgue measure),
where the inclusion map has norm 1. (This is a slight generalization of the fact that any function
on [0, 1] which is pth power integrable (p ≥ 1), e.g. square-integrable, must also be integrable.)

Proof. This can be established by showing that the least constant C so that the following in-
equality holds for all f ∈ L+(X) is 1.

‖ f ‖q ≤ C ‖ f ‖p

If q = ∞, then p = ∞ and clearly the least constant is C = 1. Now, if q < p = ∞, then C = 1
works since f ≤ ‖ f ‖∞ a.e., and therefore

∫ 1

0
| f (x)|qdx ≤ ‖ f ‖q∞ (1 − 0) = ‖ f ‖q∞; it is the least

constant because, for any constant c ≥ 0, (
∫ 1

0
cqdx)1/q = c. On the other hand, for p < ∞, this

inequality has the form (∫ 1

0
f (x)qdx

)1/q

≤ C
(∫ 1

0
f (x)pdx

)1/p

.

Substitute h = f q and take the qth power of each side for∫ 1

0
h(x)dx ≤ Cq

(∫ 1

0
h(x)p/qdx

)q/p

.

Corollary 2.3.3, applied with g as the constant function 1, shows that the least value of Cq (and

therefore C itself) is ‖g‖(p/q)′ =

(∫ 1

0
1dx

)1/(p/q)′

= 1. �

A similar argument shows that Lp
µ(X) ⊂ Lq

µ(X) whenever µ is a finite measure on X, though
the constant will not necessarily be one. In fact, this is a special case of Proposition 2.4.1 with
the Radon-Nikodym derivative dµ

dµ = 1, giving C = (µ(X))1/q. On the other hand, when there
is just one measure µ and µ(X) = ∞, there is no inclusion with q < p, as illustrated in the
following special case.

Example 2.3.6. When 1 ≤ q < p ≤ ∞, `p 1 `q, with the customary counting measure.
(This includes the fact that square-summable or other pth-power summable series need not be
summable.)
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Proof. The case p = ∞ is trivial since, when f (n) is the constant sequence 1, ‖ f ‖∞ = 1 while
‖ f ‖q = (

∑
n 1)1/q = ∞, so the least constant in ‖ f ‖q ≤ C ‖ f ‖∞ is C = ∞. When p < ∞, the

result after substituting h = f q and taking qth powers is

∑
n

h(n) ≤ Cq

∑
n

h(n)p/q

q/p

.

Again, use g = 1 in Corollary 2.3.3, this time to find that the least Cq = (
∑

n 1)1/(p/q)′ = ∞, so
C = ∞ as well. �

However, because no non-empty set can have a counting measure less than one, when p < q
there is an argument which shows that `p ⊂ `q. The exponents are not suitable for Hölder’s
inequality, so it is not applied, but the general argument is developed in Proposition 2.4.3.

2.4 Proof for one-variable case
The following results, taken together, establish Theorem 2.1.8, giving necessary and sufficient
conditions that Lp

µ(X) ⊂ Lq
ν(X), i.e. the existence of C < ∞ such that ‖ f ‖Lq

ν(X) ≤ C‖ f ‖Lp
µ(X).

Proposition 2.4.1 (Hölder condition). When 0 < q ≤ p ≤ ∞, there is a constant C < ∞ such
that ‖ f ‖Lq

ν(X) ≤ C‖ f ‖Lp
µ(X) for any f ∈ L+(X) if and only if the appropriate condition holds:

If p < ∞,
dν
dµ
∈ Lp/(p−q)

µ (X) with C =

∥∥∥∥∥dν
dµ

∥∥∥∥∥
L

p
p−q
µ (X)

1/q

.

If q < p = ∞,
dν
dµ
∈ L1

µ(X) with C =

∥∥∥∥∥dν
dµ

∥∥∥∥∥
L1
µ(X)

1/q

.

If q = p = ∞, C = 1.

where, as noted above, dν
dµ denotes the Radon-Nikodym derivative of ν with respect to µ.

Proof. If q < ∞, Hölder’s inequality gives

‖ f ‖q
Lq
ν(X)

=

∫
X
| f |q

dν
dµ

dµ ≤ ‖| f |q‖Lp/q
µ (X)

∥∥∥∥∥dν
dµ

∥∥∥∥∥
L(p/q)′
µ (X)

=

∥∥∥∥∥dν
dµ

∥∥∥∥∥
L(p/q)′
µ (X)

‖ f ‖q
Lp
µ(X)

.

Because the inequality is sharp, as found in Corollary 2.3.3, the least possible constant C ∈

[0,∞] in the inequality is
∥∥∥∥ dν

dµ

∥∥∥∥1/q

L(p/q)′
µ (X)

. If furthermore p < ∞, then (p/q)′ =
(
1 − q

p

)−1
=

p
p−q ,

while if p = ∞, then p/q = ∞ and (p/q)′ = 1. In either case, C < ∞ if and only if dν
dµ is in the

appropriate Lebesgue space.
Now suppose p = q = ∞. For any f ∈ L+(X) such that ‖ f ‖L∞µ (X) = ∞, the inequality holds

regardless of C. When ‖ f ‖L∞µ (X) < ∞, let E = f −1(‖ f ‖L∞µ (X),∞]. Because µE = 0 and ν � µ,
νE = 0, so ‖ f ‖L∞ν (X) ≤ 1 · ‖ f ‖L∞µ (X). To see that 1 is the least possible constant, consider any
constant function, for which ‖ f ‖L∞ν (X) = ‖ f ‖L∞µ (X). �
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Proposition 2.4.2. When 0 < p < q ≤ ∞, define a measure

λ(S ) =

∫
S∩{ dν

dµ>0}

(
dν
dµ

)p/(p−q)

dµ

(with the natural interpretation λ = µ when q = ∞). Then λ is σ-finite and ‖ f ‖Lq
ν(X) ≤ C ‖ f ‖Lp

µ(X)
for all f ∈ L+(X) if and only if, for all h ∈ L+(X),

‖h‖Lq
λ(X) ≤ C‖h‖Lp

λ(X). (2.5)

Proof. Because µ is σ-finite and the function

χ{ dν
dµ>0}

(
dν
dµ

)p/(p−q)

is measurable and finite µ-a.e., λ is also σ-finite. Assuming ‖ f ‖Lq
ν(X) ≤ C ‖ f ‖Lp

µ(X), for any
h ∈ L+(X), let

f = hχ{ dν
dµ>0}

(
dν
dµ

)1/(p−q)

and substitute to derive (2.5).
Conversely, given (2.5), for any f ∈ L+(X) let h = f

(
dν
dµ

)1/(q−p)
and compute

‖h‖Lq
λ(X) =

∥∥∥∥∥∥∥ f
(

dν
dµ

)1/q

χ{ dν
dµ>0}

∥∥∥∥∥∥∥
Lq
µ(X)

=

∥∥∥∥∥∥∥ f
(

dν
dµ

)1/q
∥∥∥∥∥∥∥

Lq
µ(X)

= ‖ f ‖Lq
ν(X),

‖h‖Lp
λ(X) =

∥∥∥∥ fχ{ dν
dµ>0}

∥∥∥∥
Lp
µ(X)
≤ ‖ f ‖Lp

µ(X),

from which ‖ f ‖Lq
ν(X) ≤ C ‖ f ‖Lp

µ(X) follows. �

Proposition 2.4.3. Let 0 < p < q ≤ ∞. If there exists ε > 0 such that every measurable E ⊂ X
with λ(E) < ε is λ-null, then for any C ≥ ε1/q−1/p,

‖h‖Lq
λ(X) ≤ C ‖h‖Lp

λ(X)

for any h ∈ L+(X).

Proof. If h < Lp
λ(X) or h = 0 λ-a.e., then the inequality is clearly true, so suppose neither of

these is true. Then λh(t) := λ
(
h−1(t,∞]

)
is a non-increasing function of t > 0, everywhere

finite and not everywhere zero. Let T = inf{t > 0 | λh(t) = 0} ∈ (0,∞] and note that h(x) ≤ T
for λ-a.e. x ∈ X. Whenever 0 < t < T , λh(t) > 0, so λh(t) ≥ ε. Thus,

tpε ≤ tpλh(t) =

∫
{h(x)>t}

tpdλ(x) ≤
∫
{h(x)>t}

h(x)pdλ(x) ≤
∫

X
h(x)pdλ(x) = ‖h‖p

Lp
λ(X)

.

Taking pth roots and letting t → T , this yields T ≤ ε−1/p‖h‖Lp
λ(X). This is exactly what is

required when q = ∞. For q < ∞,

‖h‖q
Lq
λ(X)

=

∫
h(x)qdλ(x) ≤ T q−p

∫
h(x)pdλ(x) ≤

(
ε−1/p‖h‖Lp

λ(X)

)q−p
‖h‖p

Lp
λ(X)

.

With qth roots, the proof is complete. �
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Corollary 2.4.4. Suppose that 0 < p < q ≤ ∞ and let ε denote the infimum of λ(E) for all
measurable E ⊂ X such that λ(E) > 0. If ε > 0, then the least value of C such that

‖h‖Lq
λ(X) ≤ C ‖h‖Lp

λ(X)

for any h ∈ L+(X) is C = ε1/q−1/p.

Proof. Proposition 2.4.3 has established that the least C ≤ ε1/q−1/p, so it remains only to show
that no lesser value works. By the definition of ε, for any n ≥ 1 there is some measurable
En ⊂ X such that ε ≤ λ(En) < ε + 1

n . Let hn = χEn and observe that

‖hn‖Lq
λ(X)

‖hn‖Lp
λ(X)

=

(∫
X
χ

q
En

dλ
)1/q(∫

X
χ

p
En

dλ
)1/p =

λ(En)1/q

λ(En)1/p = λ(En)1/q−1/p.

(Because λ(En) > 0, ‖hn‖L∞λ (X) = 1, so the numerator is still λ(En)1/q when q = ∞, with the

natural interpretation 1
∞

= 0.) Since the minimum value of C is sup f,0

‖ f ‖Lq
λ

(X)

‖ f ‖Lp
λ

(X)
and, because

1
q −

1
p < 0, λ(En)1/q−1/p >

(
ε + 1

n

)1/q−1/p
, C ≥

(
ε + 1

n

)1/q−1/p
for any n, and therefore C ≥

ε1/q−1/p. �

Lemma 2.4.5. For 0 < p < q ≤ ∞, if there are measurable sets of arbitrarily small positive λ
measure, then there is no finite constant C such that, for any h ∈ L+(X),

‖h‖Lq
λ(X) ≤ C ‖h‖Lp

λ(X) .

Proof. Substituting h = χE into (2.5) produces λ(E)1/q ≤ Cλ(E)1/p, which implies that C ≥
λ(E)1/q−1/p when λ(E) > 0. Because the exponent is negative, choosing E of sufficiently small
positive λ measure makes the right-hand side arbitrarily large. �

Taken together, these propositions yield Theorem 2.1.8.

2.5 Atomless measures only allow Hölder inclusion
Of the two types of conditions for inclusion between Lebesgue spaces, for many measures
inclusion is only possible with the Hölder condition, Proposition 2.4.1. The relevant properties
of measures are described below.

Definition 2.5.1. A measurable subset A of a measure space (X, µ) is called an atom when
µA > 0 and, for any measurable F ⊂ X, either µ(A ∩ F) = 0 or µ(A \ F) = 0.

Naturally, this means that the other piece, A \ F or A ∩ F respectively, must have the full
measure of A.

Proposition 2.5.2. Equivalently, we can define an atom A as a measurable set which, when
decomposed into any disjoint union A = E ∪ F of measurable sets E and F, must have one of
µE = 0 or µF = 0.
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Proof. Were A not an atom by the second definition, there would be a disjoint union A = E∪F
with both µE > 0 and µF > 0. Then, since (by disjointness) µE + µF = µA, 0 < µE =

µA − µF < µA. Consequently, A cannot be an atom by the first definition. Conversely, were A
not an atom by the first definition, there would be a subset E ⊂ A with 0 < µF < µA and so,
letting E = A \ F, we’d also have µE = µA − µF > 0, so A could not be an atom by the second
definition. �

As the name suggests, an atom is essentially an indivisible set. (Null sets might as well
be empty for many purposes, including the functional analytic operations here, based on the
integral and essential supremum.) This indivisibility makes atoms effectively much like sin-
gletons, as suggested by results in Section 2.6, especially the finding in Lemma 2.6.7 that any
measurable function on a measure space must be almost constant (constant up to null sets) on
any atom in the space. But of more immediate importance are two properties of measures in-
volving atoms, which will also be important in later chapters to separate cases of the problem
for more than one variable.

Definition 2.5.3. A measure is called purely atomic when every measurable set of positive
measure contains an atom. At the other extreme, it is atomless when it has no atom, i.e. every
subset of positive measure can be expressed as a disjoint union of two sets of positive measure.

Example 2.5.4. Counting measure on any set X is purely atomic, as is any weighted counting
measure (a measure µ on X where, for any S ⊂ X, µ(S ) =

∑
x∈S m(x), where m : X → [0,∞]).

Example 2.5.5. Lebesgue measure on any Euclidean space is atomless. So is any weighted
Lebesgue measure, i.e. a measure µ defined by µ(E) =

∫
E

w(x)dx, for any Lebesgue measurable
E ⊂ X, where w is a fixed nonnegative measurable function. (By the Radon-Nikodym theorem,
every measure which is absolutely continuous with respect to Lebesgue measure is a weighted
Lebesgue measure.)

These terms are the same as those used by Bogachev [11], though other authors differ; for
example, sometimes “non-atomic” is used instead of “atomless”. The following simple lemma
shows that any atomless space must have sets of arbitrarily small measure. Although a theorem
with a rather stronger result is cited as Theorem 4.1.4, that much won’t be needed to show that
inclusion among Lebesgue spaces with atomless measures is only possible through the Hölder
condition, Proposition 2.4.1.

Lemma 2.5.6. If (X, µ) is an atomless measure space and E ⊂ X a set with µE > 0, then for
any ε > 0 there is a measurable subset F ⊂ E with 0 < µF < ε.

Proof. The goal is to prove by induction that, for any n ≥ 0, there is some Fn ⊂ E such that
0 < µFn ≤ 2−nµE. (This is sufficient since, for any ε > 0, there is some n ≥ 0 such that
2−nµE < ε.) When n = 0, F0 = E suffices. For the inductive step, suppose that Fn ⊂ E has
0 < µFn ≤ 2−nµE. Because µ is atomless, by Proposition 2.5.2 there are disjoint subsets A and
B of Fn such that Fn = A ∪ B and both µA > 0 and µB > 0. Because µA + µB = µFn, let Fn+1

be whichever of A and B has the lesser measure and then 0 < µFn+1 ≤
1
2µFn ≤ 2−(n+1)µE. �

Corollary 2.5.7. Let µ and ν be σ-finite measures on X and p, q ∈ (0,∞]. When ν is not purely
atomic, ‖ f ‖Lq

ν(X) ≤ C ‖ f ‖Lp
µ(X) cannot hold with a constant C < ∞ unless q ≤ p.
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Proof. Assume that ν is not purely atomic, so there is some measurable set Y ′ ⊂ X, with
νY ′ > 0, which contains no atom for ν. Let g denote the Radon-Nikodym derivative of ν
with respect to µ, which must exist if inclusion is to be possible, and let Y = Y ′ ∩ g−1(0,∞),
i.e. the subset of Y ′ where g > 0. Since ν(Y ′ \ Y) =

∫
Y′\Y

g(x)dµ(x) =
∫

Y′\Y
0dµ(x) = 0,

ν(Y) = ν(Y ′) > 0. Therefore µ(Y) > 0 as well.
Furthermore, Y cannot contain any atom for µ. For any measurable A ⊂ Y there must be

disjoint union A = E ∪ F such that νE > 0 and νF > 0, by Proposition 2.5.2, since A cannot
be an atom for ν. Of course, this means that µE > 0 and µF > 0, so A cannot be an atom for
µ. Restricting µ and ν to Y then yields atomless measures with the Radon-Nikodym derivative
g > 0 µ-almost everywhere. Since Lp

µ(X) ⊂ Lq
ν(X) would also apply to functions supported on

Y , it can be disproven by refuting Lp
µ(Y) ⊂ Lq

ν(Y).
For any p < q, define λ as in Proposition 2.4.2, so that dλ = gp/(p−q)dµ. By Lemma 2.4.5,

it suffices to show that there are subsets of Y with arbitrarily small λ measure, which Lemma
2.5.6 establishes must be true as long as λ is atomless on Y . For any A ⊂ Y with λA > 0, also
µA > 0, so using Proposition 2.5.2 again there is a disjoint union A = E ∪ F such that µE > 0
and µF > 0. But, since g > 0 µ-a.e., also gp/(p−q) > 0 µ-a.e., and therefore λE > 0 and λF > 0.
This means that A cannot be an atom for λ, which therefore is atomless on Y . �

2.6 Integrals over σ-finite purely atomic spaces are weighted
series

Having found that, unless ν is purely atomic, the inclusion Lp
µ(X) ⊂ Lq

ν(X) is only possible
when q ≤ p, and only with the Hölder condition given in Proposition 2.4.1, we now investigate
the purely atomic case. Although there is more flexibility in the exponents, as p and q need not
be in any particular order, Lebesgue spaces with purely atomic measures turn out to be quite
constrained. Not only are the sequence spaces `p the archetypal example, but weighted `p is
essentially the only kind of Lebesgue space over a purely atomic, σ-finite space.

The following arguments establish that any σ-finite purely atomic measure space can be
decomposed into a countable disjoint collection of atoms and a leftover null set, and ultimately
that integration over any σ-finite, purely atomic measure space can be computed as a weighted
series. There’s nothing new here, but since later treatment will freely represent such measure
spaces as weighted counting measure on the natural numbers, an explanation follows.

One technical difficulty in making sense of counting atoms and even a basic notion of
distinct atoms is that, given any atom, adding or removing a null set will result in another
atom. As in the familiar notion of equivalence of functions which agree almost everywhere, we
must disregard such differences of measure zero, as made precise in the following equivalence
relation.

Definition 2.6.1. Let (X,Σ, µ) be a measure space. Atoms A1, A2 ∈ Σ are equivalent, denoted
A1 ∼ A2, if and only if their symmetric difference is a null set, i.e. µ(A14A2) = 0.

By additivity, any equivalent atoms A1 ∼ A2 have equal measures, so for any equivalence
class A, µ(A) is well defined. It is also useful to have a notion of disjointness applicable to
these equivalence classes, for which the measure-theoretic definition of “almost disjoint” is
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suitable. (Naturally, given any atoms A1 and A2 and a non-empty null set N, A1∪N and A2∪N
cannot be disjoint, though each Ak ∪ N ∼ Ak.)

Definition 2.6.2. Two atoms A1 and A2 are said to be almost disjoint when A1 ∩ A2 has zero
measure. Similarly, we can call two equivalence classesA1 andA2 almost disjoint when there
exist representatives A1 ∈ A1 and A2 ∈ A2 which are almost disjoint.

Note that this apparently weak demand that there exist an almost disjoint pair of represen-
tatives nonetheless implies that every pair of representatives is almost disjoint. Furthermore, it
turns out that any pair of inequivalent atoms must, in this sense, be almost disjoint.

Lemma 2.6.3. Any two inequivalent atoms are almost disjoint.

Proof. Suppose that two atoms A1 and A2 are not almost disjoint. Then A1∩A2 is a measurable
subset of A1 with positive measure. Since A1 is an atom, A1 \ (A1 ∩ A2) = A1 \ A2 is a null set.
Similarly, A2 \A1 is a null set. Therefore, so is A14A2 = (A1 \ A2)∪ (A2 \ A1), and A1 ∼ A2. �

The following corollary restates this result in terms of equivalence classes.

Corollary 2.6.4. Any two distinct equivalence classes of atoms are almost disjoint.

The countable additivity property of measures applies not only to disjoint sets, but also to
almost disjoint sets.

Lemma 2.6.5. For any sequence (En) of pairwise almost disjoint measurable sets in a space
with measure µ, µ(

⋃
n En) =

∑
n µEn.

Proof. Let F1 = E1 and, for n > 1, define Fn = En \ (En−1 ∪ · · · ∪ E1). Because En = Fn ∪

(En ∩ En−1)∪· · ·∪(En ∩ E1), µEn ≤ µFn +µ(En∩En−1)+ · · ·+µ(En∩E1) = µFn +0+ · · ·+0. But
Fn ⊂ En, so µFn ≤ µEn, and therefore µFn = µEn. The sets (Fn) are disjoint and have the same
union as the (En), so by countable additivity µ(

⋃
n En) = µ(

⋃
n Fn) =

∑
n µFn =

∑
n µEn. �

Proposition 2.6.6. Let µ be a σ-finite measure on a space X. Then there are only countably
many equivalence classes of atoms under ∼.

Proof. Consider any measurable E ⊂ X and natural number m. If there are infinitely many
equivalence classes of atoms with measure at least 1

m and a representative contained in E, then
there is a sequence (An) of such classes. Taking representatives An ⊂ An with each An ⊂ E, by
Lemma 2.6.3 the sequence (An) is almost disjoint. Because

⋃
n An ⊂ E, the countable additivity

provided by Lemma 2.6.5 gives µE ≥ µ(
⋃

n An) =
∑

n µAn ≥
∑

n
1
m = ∞.

Conversely, if µE < ∞, then the collection Cm of classes of atoms with measure at least 1
m

and a representative contained in E is finite. Since every atom has positive measure, the set of
all classes of atoms with a representative contained in E is

⋃
m Cm, which must be countable.

Because µ is σ-finite, there is a sequence E1 ⊂ E2 ⊂ E3 · · · of measurable sets such that
each µEk < ∞ and X =

⋃
k Ek. For any atom A, were µ(A ∩ Ek) = 0 for every k, then

by subadditivity µ(A) = µ(
⋃

k A ∩ Ek) ≤
∑

k µ(A ∩ Ek) = 0; of course, atoms have positive
measure, so this means that there must be some k such that µ(A ∩ Ek) > 0. Because A is an
atom, this implies that µ(A∩ Ek) = µA, and A is equivalent to the atom A∩ Ek contained in Ek.
Every equivalence class of atoms has a representative contained in some Ek. Since there are
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at most countably many equivalence classes of atoms contained in each Ek, this implies that,
as a countable union of countable sets, there collection of all equivalence classes of atoms is
countable. �

The following fact suggests that, for the purpose of working with functions on measure
spaces, atoms might as well be singletons.

Lemma 2.6.7. Any measurable function on a measure space must be almost constant on any
atom in the space, in the sense of having a single value almost everywhere on the atom.

Proof. Let f be a function on a measure space containing an atom A. Let y be the supremum
of all t such that µ{x ∈ A : f (x) < t} = 0. For any y′ > y, µ{x ∈ A : y ≤ f (x) < y′} > 0;
were this measure zero, then the supremum would have to have been at least y′. Because A is
an atom, then, {x ∈ A : y ≤ f (x) < y′} must have the same measure as A. Therefore, µ{x ∈ A :
f (x) > y′} = 0. Taking a countable union using y′ = y + 1

n , we find that µ{x ∈ A : f (x) > y} = 0.
Consequently, µ{x ∈ A : f (x) , y} = µ{x ∈ A : f (x) < y}+ µ{x ∈ A : f (x) > y} = 0, so f (x) = y
almost everywhere on A. �

Finally, we have the following result, as a consequence of which we can replace functions
defined onσ-finite purely atomic measure spaces by sequences of values. Since the integral and
essential supremum are preserved by mapping each function to the corresponding sequence, all
Lp norms are kept intact.

Theorem 2.6.8. For any σ-finite purely atomic measure space (X, µ), there is a sequence (An),
finite or infinite, of atoms such that every atom in X is equivalent to some An. For any f ∈
L+(X), for each n let f (An) denote the value which f takes µ-a.e. on An. Then L+(X) is in one-
to-one correspondence with sequences defined by an = f (An); furthermore, this equivalence
gives ∫

X
f dµ =

∑
n

anwn,

with weights defined by wn = µ(An), and ess supµ f = supn an.

Proof. By Proposition 2.6.6, we can enumerate the classes of atoms in a (finite or infinite)
sequence (An). For each n, let wn = µ(An) for any An ∈ An, noting that the measure is
independent of the choice of representative. For each n, Lemma 2.6.7 tells us that f takes on
one value an = f (An) almost everywhere on the atom An. Because µ is purely atomic, the
complement X \

⋃
n An of all the atoms has measure zero, for it contains no atom. Therefore

the integral ∫
X

f dµ =
∑

n

∫
An

f dµ =
∑

n

anµ(An) =
∑

n

anwn.

Each value an is attained on An (which must have positive measure), so ess sup f ≥ supn an.
On the other hand, f ≤ supn an on

⋃
n An, which means that f ≤ supn an almost everywhere, so

ess sup f ≤ supn an. �

Finally, the solution to the inclusion problem is specialized to purely atomic measures in
the following corollaries. Suppose that µ and ν are purely atomic measures, the necessary
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ν � µ assumed, with the µ-atoms of X enumerated as (Ei)i∈I for some index set I which is at
most countable, typically a subset of N. For each i ∈ I, let ui = µ(Ei) > 0 and vi = ν(Ei). Note
that each Ei is either a ν-atom, if vi > 0, or ν-null (when, of course, vi = 0). The problem can
then be described in terms of weighted `p, asking when `p

u (I) ⊂ `q
v(I).

Corollary 2.6.9. Let I be an at most countable set and, for each i ∈ I, let ui > 0 and vi ≥ 0.
The least constant C < ∞ such that, for any sequence (ci)i∈I ,

‖ci‖`q
v (I)) ≤ C ‖ci‖`p

u (I) ,

is as follows in each case, observing the conventions that 1/∞ = 0 and 1/0 = ∞.

q = p = ∞ : C = 1

0 < q ≤ p ≤ ∞ : C =
∥∥∥v1/q

i u−1/p
i

∥∥∥
`(q−1−p−1)−1 (I)

0 < p < q ≤ ∞ : C = sup
i∈I

{(
v

p
p−q

i u
−

q
p−q

i

)q−1−p−1

< ∞

}
Proof. Based on Proposition 2.4.1 and Corollary 2.4.4,

q = p = ∞ : C = 1

0 < q < p = ∞ : C =

∑
i∈I

vi

1/q

= ν(X)q−1

0 < q ≤ p < ∞ : C =

∥∥∥∥∥∥
(

vi

ui

)∥∥∥∥∥∥1/q

`
p

p−q
u (I)

=

∑
i∈I

v
p

p−q

i u
−

q
p−q

i

q−1−p−1

0 < p < q ≤ ∞ : C =

inf
S⊂I

∑
i∈S

v
p

p−q

i u
−

q
p−q

i > 0


q−1−p−1

The second and third cases combine neatly in the above formula. In the last case, q−1− p−1 < 0,
so the overall expression achieves greater values when the inner sum is smaller; since zero
values (when vi = 0) are excluded from the infimum, so the supremum excludes∞. �

The following simple fact about inclusion among unweighted `p sequence spaces is pre-
sented for easy reference later; one half appeared before as an example.

Corollary 2.6.10. The inclusion `p(N) ⊂ `q(N) occurs if and only if p ≤ q, in which case the
least constant C = 1.

Proof. Simply use ui = vi = 1 in the above. As noted in an example at the end of Section 2.3,
since

∑
i 1 = ∞, the Hölder criterion for inclusion (applicable when q ≤ p) cannot possibly be

satsified, except of course when p = q and the spaces are identical. (Clearly, C = 1, which
agrees with ‖1‖∞.) On the other hand, when p < q there is always inclusion, with C = 1, the

supremum of
(
1

p
p−q 1−

q
p−q

)q−1−p−1

. �
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2.7 Summary
This chapter’s solution to the one-variable problem is summarized in two following results.
First, a helpful piece of notation which will be used more extensively later. For exponents
p, q ∈ (0,∞],

(p : q)−1 = q−1 − p−1,

as defined in Definition 4.2.8, generalizing the standard Hölder conjugate p′ = p : 1. It is
defined with the conventions∞−1 = 0 and 0−1 = ∞; for example,∞ :∞ = 0−1 = ∞.

First, a condensed version of Theorem 2.1.8. It is still assumed that ν � µ, for otherwise
the best constant is C = ∞.

Theorem 2.7.1. The least constant C ∈ [0,∞] such that ‖ f ‖Lq
ν(X) ≤ C ‖ f ‖Lp

µ(X) for any measur-
able function f on X is as specified below, separated by case.

0 < q ≤ p < ∞ : C =

∥∥∥∥∥∥∥
(

dν
dµ

)1/q
∥∥∥∥∥∥∥

p : q

(Hölder condition)

0 < p < q ≤ ∞ : C = sup
E

∥∥∥∥∥∥∥
(

dν
dµ

)1/q

χE∩
{

dν
dµ>0

}
∥∥∥∥∥∥∥

p : q

p = q = ∞ : C = 1,

where the supremum in the second case is taken over all measurable E ⊂ X.

Recall that Lp
µ(X) ⊂ Lq

ν(X) if and only if C < ∞, so this provides the following characteri-
zation of when inclusion holds, in terms of the measure λ defined in Proposition 2.4.2.

Corollary 2.7.2. Define a measure λ(E) =
∫

E∩
{

dν
dµ>0

} ( dν
dµ

) p
p−q dµ on the measurable space (X,Σ).

Depending on p and q, the indicated condition on λ is both necessary and sufficient for inclu-
sion.

0 < q ≤ p < ∞ : Lp
µ(X) ⊂ Lq

ν(X) if and only if {λ(E) > 0 : E ∈ Σ} is bounded away from∞.

0 < p < q ≤ ∞ : Lp
µ(X) ⊂ Lq

ν(X) if and only if {λ(E) > 0 : E ∈ Σ} is bounded away from zero.

p = q = ∞ : Lp
µ(X) ⊂ Lq

ν(X).

A simpler way to state the first condition is λ(X) < ∞, but the formulation above is chosen
to emphasize the similarity between these two conditions.



Chapter 3

Two-variable basics

Because of its length and the numerous cases and subcases it features, the solution to the
two-variable mixed-norm inclusion problem is spread among Chapters 3, 4, and 5. (Chapter
6 summarizes the major results in these chapters, describing the major results and how they
fit together to ssolve the two-variable inclusion problem.) As cases are solved, the remainder
of the solution focuses on the complements of these solved cases. Note that there are two
assumptions which hold without loss of generality, and should be treated as given beginning
from the point where they appear.

Specifically, on page 26, an assumption of absolute continuity is introduced. This is shown
to be a necessary condition, so there is no point in proceeding without it, for inclusion is
certainly impossible unless it holds. This allows free use of the Radon-Nikodym derivative,
which as in the one-variable case is important to the solution. Proposition 4.2.1 provides a
reduction to problems involving only positive Radon-Nikodym derivatives, dνk

dµk
> 0 for k = 1, 2.

From 42 on, then, we assume this.
(These assumptions are based on ideas which work throughout, but the reader only needs

to keep them in mind beginning where they occur, until the end of the two-variable problem.)

3.1 Definitions
Let (X1,Σ1) be a measurable space (i.e. Σ1 is a σ-algebra on the set X1) with a σ-finite measure
µ1, and let (X2,Σ2) be a measurable space with a σ-finite measure µ2. Given, as well, exponents
p1, p2 ∈ (0,∞], we let P = (p1, p2), following the notation from Benedek and Panzone [4], and
define a mixed norm by computing, for any measurable function f on X1 × X2,

‖ f ‖P =
∥∥∥∥‖ f ‖Lp1

µ1 (X1)

∥∥∥∥
Lp2
µ2 (X2)

=

∫
X2

(∫
X1

| f (x1, x2)|p1 dµ1(x1)
)p2/p1

dµ2(x2)
1/p2

.

That is, first compute the Lp1 norm of the function f (·, x2) on X1 using the measure µ1, then
compute the Lp2 norm of the result (which depends on x2). If either p1 or p2 is ∞, the appro-
priate integral is replaced by an essential supremum. The corresponding function space, the
mixed norm space LP, consists of the equivalence classes (under the standard identification of
a.e. equal functions) of all measurable functions f : X1 × X2 → C such that ‖ f ‖P < ∞. When

23



24 Chapter 3. Two-variable basics

p1 ≥ 1 and p2 ≥ 1, as shown in [4], this space is a Banach function space. For exponents less
than one, the triangle inequality fails, so we do not have a true norm.

This mixed-norm computation is well-defined since the function ‖ f (x1, x2)‖Lp1
µ1 (X1) of x2 is

itself measurable, by Tonelli’s theorem if p1 < ∞. In the case p1 = ∞, the measurability of the
intermediate function ess supx1

| f (x1, ·)| is a consequence of the Luxemburg-Gribanov theorem
[23], which applies for any Banach function norms with the Fatou property.

We also wish to discuss reversing the order in which the mixed norm is computed, with
Lp2
µ2 (X2) before Lp1

µ1 (X1). The exponent vector P = (p1, p2) notation does not really describe
this concept, since writing, say, (3, 2) instead of (2, 3) would be understood as changing which
exponent is associated with each variable, but not the order of integration. This is not surpris-
ing, since although Benedek and Panzone describe many properties of mixed-norm Lebesgue
spaces in [4], they do not cover what Fournier calls “permuted mixed-norm spaces” in [16].
(This paper’s main topics are Sobolev spaces and bilinearity, but both the concept of “permuted
mixed-norm spaces” and a generalization of Minkowski’s integral inequality to mixed-norm
spaces are described.)

Since the order of integration is essentially arbitrary, and there is no fundamental reason
to prefer X1 before X2 (or why one space should be “one” and the other “two”), all mixed
norms here are assumed to be “permuted”. For now, given a permutation σ (of {1, 2}, in this
two-variable chapter) and P = (p1, p2), we define the (permuted) mixed norm

‖ f ‖σ(P) =

∫
Xσ(2)

(∫
Xσ(1)

| f (x1, x2)|pσ(1) dµσ(1)
(
xσ(1)

))pσ(2)/pσ(1)

dµσ(2)
(
xσ(2)

)1/pσ(2)

where, again, integration is replaced by the essential supremum for any∞ exponent. Naturally,
the mixed-norm space Lσ(P) consists of (the equivalence classes of) those functions f for which
‖ f ‖σ(P) < ∞. Ifσ is the identity, then this is identical to ‖ f ‖P from the previous definition, while
if σ is the transposition (12), then ‖ f ‖σ(P) is what would be obtained from ‖ f ‖P by reversing
the order in which the integrations over µ1 and µ2, as well as the exponentiations and roots p1

and p2, are applied. (Basically, every “one” object, such as X1, µ1, and p1, becomes a “two”
and vice versa.)

With that in mind, though, it’s worth asking why there is any need to introduce the per-
mutation. For discussing a single mixed norm, there really isn’t, since relabeling would work
as well. However, this is useful for discussing multiple mixed norms with different orders of
integration. As described in Section 3.5, Minkowski’s integral inequality provides a familiar
example of comparing differently permuted mixed norms, especially in its Corollary 3.5.2.

Note that when p1 = p2, regardless of the permutation σ, Lσ(P) = Lp, the classical Lebesgue
space, with p = p1 = p2. (Tonelli’s theorem can be used to verify the result’s independence of
the order of integration for p < ∞.) However, for unequal exponents, the permutation makes a
big difference. Not only can the numeric result of computing ‖ f ‖σ(P) vary with σ, but the two
norms need not be equivalent, as the following example shows. (However, Corollary 3.5.2 to
Minkowski’s integral inequality shows that one of them consistently gives greater values than
the other, and consequently one of the spaces Lσ(P) is always contained in the other.)

Example Using X1 = X2 = N with counting measure, P = (1, 2), and σ the non-identity
permutation in S 2, LP 1 Lσ(P).
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Proof. Let

ci, j =

{
i−1 if i = j
0 otherwise .

The function f (i, j) = ci, j is in LP but not in Lσ(P).

‖ f ‖P =

 ∞∑
j=1

 ∞∑
i=1

ci, j

2
1/2

=

 ∞∑
j=1

j−2


1/2

=
π
√

6
< ∞,

‖ f ‖σ(P) =

∞∑
i=1

 ∞∑
j=1

c2
i, j


1/2

=

∞∑
i=1

i−1 = ∞.

�

As we’ll see later, because the exponent p1 = 1 < 2 = p2, in this example (by Corollary
3.5.2) ‖·‖P ≤ ‖·‖σ(P), so Lσ(P) ⊂ LP.

3.2 Problem statement
Given two mixed-norm spaces in two variables, we seek necessary and sufficient conditions
for one to be a subset of another. Because mixed-norm spaces are Banach function spaces,
whenever this happens the inclusion map must be continuous. That is, there is a mixed-norm
inclusion if and only if there is a finite best constant. (This is demonstrated in multiple variables
in Proposition 7.3.2.)

Let (X1,Σ1) be a measurable space which admits σ-finite measures µ1 and ν1 and (X2,Σ2)
have σ-finite measures µ2 and ν2. Also let P = (p1, p2) and Q = (q1, q2), where p1, p2, q1, q2 ∈

(0,∞], and σ, τ ∈ S 2. When is there a constant C < ∞ such that the below inequality holds
for any measurable function f on X1 × X2? And, in this case, what is the least value of C in
‖ f ‖τ(Q) ≤ C ‖ f ‖σ(P), i.e. the norm of the inclusion map Lσ(P) ↪→ Lτ(Q)?

If τ is not the identity, then relabeling so as to swap every “one” (p1, q1, x1 ∈ X1, µ1, ν1)
with its corresponding “two” reduces to the case where τ is the identity and σ ◦ τ−1 replaces σ,
so that we only need consider

‖ f ‖Q ≤ C ‖ f ‖σ(P) .

(It is evident that the existence of C < ∞ implies that Lσ(P) ⊂ LQ. For the converse, see
Proposition 7.3.2 which covers the multi-variable case, relying on Lemma 7.3.1 to reduce to
the case where each pk, qk ≥ 1 for k = 1, 2. Then, as observed by Benedek and Panzone in
[4], our mixed-norm spaces are Banach function spaces, as defined in Bennett and Sharpley
[5]. As proven in Theorem 1.8 of [5], any inclusion between Banach function spaces must be
a bounded map, i.e. there must be such a C < ∞.)

Concretely, this breaks down into two cases, of which the first is the “unpermuted case”
with τ as the identity and where the order of integration is the same on each side,∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp1

µ1 (X1)

∥∥∥∥
Lp2
µ2 (X2)

. (3.1)
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The other case is the “permuted case”, with non-identity τ, where the inner and outer variables
are reversed between the two sides,∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

. (3.2)

3.3 One-variable inclusions are necessary
For either inequality (3.1) or (3.2) to hold for all measurable functions, it is necessary that
both Lp1

µ1 (X1) ⊂ Lq1
ν1 (X1) and Lp2

µ2 (X2) ⊂ Lq2
ν2 (X2). This is most readily seen by considering

factorable functions, i.e. those of the form f (x1, x2) = f1(x1) f2(x2). From these, it follows that
each νk � µk, but proving this consequence first makes it easier to establish the one-variable
inclusions.

Lemma 3.3.1. When either (3.1) or (3.2) holds with C < ∞, each νk � µk for k = 1, 2.

Proof. If ν1 � µ1, then there must be a measurable S 1 ⊂ X1 with µ1S 1 = 0 and ν1S 1 > 0. Let
f (x1, x2) = χS 1(x1) and observe that

ξ( f ) =
∥∥∥χS 1

∥∥∥
Lq1
ν1 (X1) ‖1‖Lq2

ν2 (X2) = (ν1S 1)1/q1 (ν2X2)1/q2 > 0,

with the convention (ν2X2)0 = 1. However,

ρ( f ) = (µ1S 1)1/p1 (µ2X2)1/p2 = 0,

since µ1S 1 = 0. This means that there is no suitable constant C < ∞.
Similarly, if ν2 3 µ2, then we can replace S 1 by X1 and X2 by some S 2 with µ2S 2 = 0 and

ν2S 2 > 0, and proceed as above to prove that C = ∞. �

Again, since absolute continuity is necessary, it can be assumed.

Assumption For the rest of the two-variable problem, assume that νk � µk for k = 1, 2.

Lemma 3.3.2. When either (3.1) or (3.2) holds with C < ∞, there must be finite constants C1

and C2 such that, for each k ∈ {1, 2} and any measurable function fk on Xk,

‖ fk‖Lqk
νk (X) ≤ Ck‖ fk‖Lpk

µk (X). (3.3)

Proof. Suppose that f (x1, x2) = f1(x1) f2(x2) for some measurable functions f1 on X1 and
f2 on X2. For any such function and any exponent p > 0,

(∫
X1
| f (x1, x2)|p dµ1(x1)

)1/p
=

| f2(x2)|
(∫

X1
| f (x1)|p dµ1(x1)

)1/p
and ess supx1

| f (x1, x2)| = | f2(x2)| ess supx1
| f1(x1)|. Similarly, | f1|

factors out of any Lp norm computation over X2. Therefore, both inequalities (3.1) and (3.2)
reduce, for these factorable functions, to

‖ f1‖Lq1
ν1 (X1) ‖ f2‖Lq2

ν2 (X2) ≤ C ‖ f1‖Lp1
µ1 (X1) ‖ f2‖Lp2

µ2 (X2) . (3.4)

Because ν1 is a non-zero, σ-finite measure, there is a measurable E1 ⊂ X1 such that 0 < ν1E1 <
∞. As ν1 � µ1 by assumption, µ1E1 > 0, and by σ-finiteness there is a measurable S 1 ⊂ E1 so
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that 0 < µ1S 1 < ∞, while still 0 < ν1S 1 < ∞. (Were there no subset S 1 ⊂ E1 with µ1S 1 < ∞
and ν1S 1 > 0, then ν1 would have to be zero on E1.)

Following a similar procedure to that which established the existence of S 1 ⊂ X1 with
0 < µ1(S 1) < ∞ and 0 < ν1(S 1) < ∞ proves that there is some S 2 ⊂ X2 with 0 < µ2(S 2) < ∞
and 0 < ν2(S 2) < ∞.

For any measurable function f1 on X1, let f2 = χS 2 and inequality (3.4) gives(∫
X1

| f1(x1)|q1dν1(x1)
)1/q1

≤
(µ2S 2)1/p2

(ν2S 2)1/q2
C

(∫
X1

| f1(x1)|p1dµ1(x1)
)1/p1

,

which establishes that the minimal constant C1 in (3.3) satisfies C1 ≤ (µ2S 2)1/p2(ν2S 2)−1/q2C <
∞. Similarly, letting f1 = χS 1 , for any measurable function f2 on X2,(∫

X2

| f2(x2)|q2dν2(x2)
)1/q2

≤
(µ1S 1)1/p1

(ν1S 1)1/q1
C

(∫
X2

| f2(x2)|p2dµ2(x2)
)1/p2

,

thus the minimal constant C2 ≤ (µ1S 1)1/p1(ν1S 1)−1/q1C is also finite. �

The following result includes the necessity of single-variable inclusions, but also provides a
quantitative lower bound on the mixed-norm best constant, connecting it to the single-variable
constants.

Proposition 3.3.3. Let C ∈ [0,∞] denote the least constant for which either (3.1) or (3.2) is
satisfied for any measurable f , and for k = 1, 2 let Ck ∈ [0,∞] denote the least constant so that
for any measurable fk on Xk

‖ fk‖Lqk
νk (Xk) ≤ Ck‖ fk‖Lpk

µk (Xk). (3.5)

Then C ≥ C1C2.

Proof. From Lemma 3.3.2, we know that if C < ∞, then each Ck < ∞. (Because no measure is
zero, it is impossible for either Ck to be zero.) As in that lemma, for any measurable functions
f1 on X1 and f2 on X2, let f (x1, x2) = f1(x1) f2(x2) and then, for such f , either inequality (3.1)
or (3.2) reduces to

‖ f1‖Lq1
ν1 (X1) ‖ f2‖Lq2

ν2 (X2) ≤ C ‖ f1‖Lp1
µ1 (X1) ‖ f2‖Lp2

µ2 (X2) .

When both C1 and C2 are finite, for any ε > 0 it is possible to choose functions fk so that
each

Ck − ε <
‖ fk‖Lqk

νk (Xk)

‖ fk‖Lpk
µk (Xk)

≤ Ck,

because Ck is the supremum of all such ratios when the denominator is nonzero. For such
functions, inequality (3.2) yields

(C1 − ε) (C2 − ε) ≤ C,

so C1C2 ≤ C because this is true whenever ε > 0. �
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3.4 Unpermuted case
In the unpermuted case described by inequality (3.1), the necessary condition that both single-
variable inclusions Lpk

µk (Xk) ⊂ Lqk
νk (Xk) hold turns out to be sufficient, as well, and the lower

bound C1C2 is the best constant C.

Theorem 3.4.1. For k ∈ {1, 2}, let Ck ∈ [0,∞] denote the least constant such that, for any
measurable function fk on Xk,

‖ fk‖Lqk
νk (Xk) ≤ Ck‖ fk‖Lpk

µk (Xk),

and let C ∈ [0,∞] denote the least constant such that, for any measurable function f (x1, x2) on
X1 × X2, ∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp1

µ1 (X1)

∥∥∥∥
Lp2
µ2 (X2)

.

Then C = C1C2 (in particular, C < ∞ if and only if both C1 < ∞ and C2 < ∞.)

Proof. To see that C ≤ C1C2, i.e. that the two-variable inequality is valid with C1C2 in place
of C, take an arbitrary measurable f (x1, x2). For each particular value x2 ∈ X2, | f (·, x2)| is a
measurable function on X1, so the k = 1 inequality yields∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤

∥∥∥∥C1 ‖ f ‖Lp1
µ1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

= C1

∥∥∥∥‖ f ‖Lp1
µ1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

.

Furthermore, the inner Lp1
µ1 (X1) norm produces a measurable function of x2, so the k = 2 in-

equality applies.

C1

∥∥∥∥‖ f ‖Lp1
µ1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C1C2

∥∥∥∥‖ f ‖Lp1
µ1 (X1)

∥∥∥∥
Lp2
µ2 (X2)

,

so C ≤ C1C2.
Of course, C ≥ C1C2 regardless of permutation, from Proposition 3.3.3. �

Example Let X1 = [0, 1] with µ1 Lebesgue measure, ν1 = xµ1, p1 = 2, and q1 = 1. Let X2 = N
with µ2 = ν2 being counting measure, p2 = 1 and q2 = 2. Then the least constant C such that,
for any measurable function f (x, n) on [0, 1] × N, ‖ f ‖Q ≤ C ‖ f ‖P, i.e.∑

n

(∫ 1

0
| f (x, n)| xdx

)21/2

≤ C
∑

n

(∫ 1

0
| f (x, n)|2 dx

)1/2

is C = 1
√

3
.

Proof. By Hölder’s inequality, for any Lebesgue measurable function g on [0, 1] (since 1
2 + 1

2 =

1), ∫ 1

0
|g(x)| xdx ≤

(∫ 1

0
|g(x)|2 dx

)1/2 (∫ 1

0
x2dx

)1/2

=
1
√

3

(∫ 1

0
|g(x)|2 dx

)1/2

.
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Since Hölder’s inequality is sharp (Corollary 2.3.3), the least constant C1 in ‖g‖L1
ν1 ([0,1]) ≤

C1 ‖g‖L2
µ1 ([0,1]) is 1

√
3
. Because p2 = 1 < 2 = q2, Corollary 2.4.4 applies using the common

measure λ = µ2 = ν2, counting measure on N. The least non-zero counting measure of any set
is 1, which is the value of ε in that result, so C2 = 11/q2−1/p2 = 1. By Theorem 3.4.1, the least
value of C = C1C2 = 1

√
3
.

Furthermore, in this case we can confirm that C = 1
√

3
is achieved as ‖ f ‖Q

‖ f ‖P
, for example with

f (x, n) =

{
x if n = 1
0 otherwise

For this function,

‖ f ‖Q
‖ f ‖P

=

(∑
n

(∫ 1

0
| f (x, n)| xdx

)2
)1/2

∑
n

(∫ 1

0
| f (x, n)|2 dx

)1/2 =

∫ 1

0
x2dx(∫ 1

0
x2dx

)1/2 =

1
3
1
√

3

=
1
√

3

�

Because the unpermuted case has such a simple solution, the rest of this chapter covers the
permuted case, described by inequality (3.2). The example at the end of Section 3.1 already
shows that, for the permuted case, having both single-variable inclusions is not sufficient. (Re-
call that, in that example, the one-variable norms are identical on each side; however, the mixed
norms differ in the order of summation and turn out to be inequivalent.)

3.5 Minkowski integral inequality
To understand the permuted case, Minkowski’s integral inequality is an essential tool. Recall
that it generalizes the triangle inequality for Lebesgue spaces, known as Minkowski’s inequal-
ity, which itself is derived from Hölder’s inequality. A statement of this well-known theorem
follows here, without proof. Details can be found in many references, such as Folland’s [15],
where this is part (a) of Theorem 6.19, “Minkowski’s Inequality for Integrals”.

Theorem 3.5.1 (Minkowski integral inequality). Let (X, µ) and (Y, ν) beσ-finite measure spaces.
For any f ∈ L+(X × Y) and any p ∈ [1,∞),(∫

Y

(∫
X

f (x, y)dµ(x)
)p

dν(y)
)1/p

≤

∫
X

(∫
Y

f (x, y)pdν(y)
)1/p

dµ(x).

Each side of the inequality can be regarded as computing a mixed norm, with an implicit
1 exponent associated with the integral in x and the explicit p exponent for the integral in
y, where the difference between sides is that the y integral moves to the inside on the right,
its exponent coming with it. This is because p ≥ 1, as we can see in the following simple
generalization which replaces p ≥ 1 and 1 by two exponents p ≥ q; moving the integral with
the greater exponent, p, to the inside yields a norm which always produces greater values.
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Corollary 3.5.2. Let (X, µ) and (Y, ν) be σ-finite measure spaces. For any f ∈ L+(X × Y) and
any 0 < q ≤ p ≤ ∞, ∥∥∥∥‖ f ‖Lq

µ(X)

∥∥∥∥
Lp
ν (Y)
≤

∥∥∥‖ f ‖Lp
ν (Y)

∥∥∥
Lq
µ(X)

Proof. Suppose that p < ∞. Let g(x, y) = f (x, y)q and r = p/q, which must be at least 1. Then
we can apply the Minkowski integral inequality in∫

Y

(∫
X

f (x, y)qdµ(x)
)p/q

dν(y)
q/p

=

(∫
Y

(∫
X

g(x, y)dµ(x)
)r

dν(y)
)1/r

≤

∫
X

(∫
Y

g(x, y)rdν(y)
)1/r

dµ(x)

=

∫
X

(∫
Y

f (x, y)pdν(y)
)q/p

dµ(x)
q/q

and, by taking qth roots, obtain the desired result.
When q < p = ∞, for ν-a.e. y ∈ Y(∫

X
f (x, y)qdµ(x)

)1/q

≤

(∫
X

(
ess sup

y
f (x, y)

)q

dµ(x)
)1/q

,

so this inequality holds for the essential supremum in y,∥∥∥∥‖ f ‖Lq
µ(X)

∥∥∥∥
L∞ν (Y)

≤
∥∥∥‖ f ‖L∞ν (Y)

∥∥∥
Lq
µ(X)

.

Finally, in the case p = q = ∞, both sides are equal, simply the essential supremum of f on
(X, µ) × (Y, ν). �

As an immediate consequence, if P = (p, q) and σ is the non-identity permutation of two
elements, then so long as q ≤ p, LP ⊂ Lσ(P), with an inclusion map of norm 1. (The inequality
shows that C = 1 works, and it is easily verified to be the least constant by considering fac-
torable functions f = f1(x) f2(y), i.e. products of one-variable functions. For such f , each side
of the inequality equals ‖ f1‖Lq

µ(X) ‖ f2‖Lp
ν (Y).) Since the one-variable Lebesgue norms on each side

match, the one-variable constants are C1 = C2 = 1, so along with the unpermuted case, this
is another case where C = C1C2, the lower bound on C given in Proposition 3.3.3. However,
the next section establishes a much more general sufficient condition, based on Minkowski’s
integral inequality, for mixed-norm inclusion with C = C1C2.

3.6 Minkowski’s inequality sufficient condition
Recall that here and for the rest of the chapter we’re studying the permuted two-variable case,
seeking the least constant C ∈ [0,∞] in (3.2), which is repeated here:∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

.
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Observe that the least C ∈ [0,∞] satisfying (3.2) can be characterized as a supremum of
ratios over all measurable functions f on X1 × X2 which are not almost everywhere zero,

C = sup
f,0

∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

. (3.6)

(As long as f is not µ1 × µ2-a.e. zero, the denominator cannot be zero.)
The mixed-norm form of Minkowski’s integral inequality immediately provides certain

sufficient conditions for C < ∞ (that is, for the mixed-norm inclusion Lp1
µ1 (Lp2

µ2 ) ⊂ Lq2
ν2 (Lq1

ν1 )),
depending (outside of the necessary per-variable inclusions) only on the exponents.

Theorem 3.6.1 (Minkowski sufficient condition). Assume the necessary one-variable inclu-
sions, i.e. that for each k ∈ {1, 2} there is a least possible constant Ck such that, for any
measurable fk on Xk, ‖ fk‖Lqk

νk (Xk) ≤ Ck‖ fk‖Lpk
µk (Xk). If min(p1, q1) ≤ max(p2, q2), then inequality

(3.2) is satisfied with the least possible C = C1C2.

Proof. Considering factorable functions f (x1, x2) = g(x1)h(x2), we find (as in Theorem 3.4.1)
that C ≥ C1C2. For the reverse inequality, there are four cases in which to prove inequality
(3.2) is satisfied with C replaced by C1C2.

• Case 1: p1 ≤ p2

The one-variable inclusions, followed by Minkowski’s integral inequality (Theorem 3.5.2),
establish that∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C2

∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lp2
µ2 (X2)

≤ C2

∥∥∥∥C1 ‖ f ‖Lp1
µ1 (X1)

∥∥∥∥
Lp2
µ2 (X2)

≤ C1C2

∥∥∥∥‖ f ‖Lp2
µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

.

• Case 2: q1 ≤ p2

Using the one-variable inclusion ‖g‖Lq2
ν2 (X2) ≤ C2‖g‖Lp2

µ2 (X2) with g = ‖ f ‖Lq1
ν1 (X1), followed by

Minkowski’s integral inequality,∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C2

∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lp2
µ2 (X2)

≤ C2

∥∥∥∥‖ f ‖Lp2
µ2 (X2)

∥∥∥∥
Lq1
ν1 (X1)

.

Finally, applying the one-variable inclusion in X1 yields∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C1C2

∥∥∥∥‖ f ‖Lp2
µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

.

• Case 3: p1 ≤ q2
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This time, it’s inclusion in the first variable, Minkowski, and finally inclusion in the
second variable. ∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤

∥∥∥∥C1 ‖ f ‖Lp1
µ1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C1

∥∥∥∥‖ f ‖Lq2
ν2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

≤ C1C2

∥∥∥∥‖ f ‖Lp2
µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

• Case 4: q1 ≤ q2

Minkowski’s integral inequality provides that
∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤

∥∥∥∥‖ f ‖Lq2
ν2 (X2)

∥∥∥∥
Lq1
ν1 (X1)

. The

rest reduces to the unpermuted case, where both one-variable inclusions take this to the
conclusion ∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C1C2

∥∥∥∥‖ f ‖Lp2
µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

.

�



Chapter 4

Two-variable non-Minkowski case

4.1 Non-Minkowski case with common measures

4.1.1 Measure summability condition on blocks
Having found in Theorem 3.6.1 that the Minkowski condition min(p1, q1) ≤ max(p2, q2) is
sufficient for mixed norm inclusion with C = C1C2 (assuming the necessary one-variable in-
clusions), it remains only to consider the non-Minkowski permuted case, Inequality (3.2) with
max(p2, q2) < min(p1, q1) .

Although this non-Minkowski case splits into several subcases depending on properties of
the measures involved, this section treats the simplest situation, where all exponents are finite
(for which it is sufficient that max(p1, q1) < ∞) and, rather than separate measures µk and νk on
each Xk, they are replaced by common measures λk. Although this seems rather restrictive, in
most cases there are methods to reduce the problem to common measures, as seen in Section
4.2.1. Where this does not work, the basic arguments presented here will be generalized in
Section 4.2.

For this introductory section, the case where both measures λk are purely atomic is also
omitted (although one may be purely atomic), as this is a particularly complex case which
merits its own section.

Definition 4.1.1. Whenever max(p2, q2) < min(p1, q1), define

α =
q−1

1 − p−1
1

q−1
2 − p−1

1

and β =
q−1

2 − p−1
2

q−1
2 − p−1

1

, (4.1)

with the convention that∞−1 = 0.

Observe that, when p1 < ∞ and q1 < ∞,

α =
q2(p1 − q1)
q1(p1 − q2)

and β =
p1(p2 − q2)
p2(p1 − q2)

,

though this also applies with p1 = ∞ or q1 = ∞, if understood with appropriate limits.

Proposition 4.1.2. Suppose that max(p2, q2) < min(p1, q1) and each Lpk
µk ⊂ Lqk

νk . Then

33



34 Chapter 4. Two-variable non-Minkowski case

1. α < 1, β < 1, and α + β < 1.

2. If ν1 is not purely atomic then α ≥ 0.

3. If ν2 is not purely atomic then β ≥ 0.

Proof. Because q2 < p1, the denominator q−1
2 − p−1

1 is always positive. Additionally, q2 < q1,
so q−1

1 − p−1
1 < q−1

2 − p−1
1 ; dividing both sides by q−1

2 − p−1
1 then yields α < 1. A similar argument

based on p2 < p1 shows that β < 1. Finally,

α + β =
q−1

1 + q−1
2 − p−1

1 − p−1
2

q−1
2 − p−1

1

= 1 +
q−1

1 − p−1
2

q−1
2 − p−1

1

.

Of course, though the denominator is positive, q−1
1 − p−1

2 < 0, since p2 < q1.
Statements 2 and 3 are consequences of Corollary 2.5.7. If ν1 is not purely atomic, then

p1 ≥ q1, so q−1
1 −p−1

1 ≥ 0. Similarly, if ν2 is not purely atomic, then p2 ≥ q2, so q−1
2 −p−1

2 ≥ 0. �

The first use of these exponents is in the following necessary condition based on the prop-
erties of the measures λk, which also gives a lower bound on the least constant C.

Proposition 4.1.3. If max(p2, q2) < min(p1, q1) (i.e. the Minkowski sufficient condition does
not apply), max(p1, q1) < ∞, and there is some C such that for all measurable functions f on
X1 × X2 ∥∥∥∥‖ f ‖Lq1

λ1
(X1)

∥∥∥∥
Lq2
λ2

(X2)
≤ C

∥∥∥∥‖ f ‖Lp2
λ2

(X2)

∥∥∥∥
Lp1
λ1

(X1)

then, for any disjoint sequence (Ai) of measurable subsets of X1 and any disjoint sequence (Bi)
of measurable subsets of X2, ∑

i

aαi bβi


1

q2
− 1

p1

≤ C

where ai = λ1(Ai) and bi = λ2(Bi). Because 1
q2
− 1

p1
> 0 in the non-Minkowski case, as a

consequence it is necessary for C < ∞ not only that every such
∑

i aαi bβi converge, but that the
collection of such series be bounded above.

Proof. The idea is to use combinations
∑

i ciχEi×Fi of block characteristic functions. Consider

any such disjoint sequences (Ai) and (Bi). Define ci = a
q2−q1

q1(p1−q2)

i b
p2−p1

p2(p1−q2)

i and, for each N, a
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function fN(x1, x2) =
∑

i≤N ciχAi(x1)χBi(x2). Then∥∥∥∥‖ fN‖Lq1
λ1

(X1)

∥∥∥∥
Lq2
λ2

(X2)∥∥∥∥‖ fN‖Lp2
λ2

(X2)

∥∥∥∥
Lp1
λ1

(X1)

=

(∫
X2

(∫
X1

∑
i≤N cq1

i χAi(x1)dλ1(x1)
) q2

q1 χBi(x2)dλ2(x2)
) 1

q2

(∫
X1

(∫
X2

∑
i≤N cp2

i χBi(x2)dλ2(x2)
) p1

p2 χAi(x1)dλ1(x1)
) 1

p1

=

(∑
i≤N cq2

i λ1(Ai)
q2
q1 λ2(Bi)

) 1
q2

(∑
i≤N cp1

i λ2(Bi)
p1
p2 λ1(Ai)

) 1
p1

(4.2)

=

(∑
i≤N a

q2(q2−q1)
q1(p1−q2)

i b
q2(p2−p1)
p2(p1−q2)

i a
q2
q1
i bi

) 1
q2

(∑
i≤N a

p1(q2−q1)
q1(p1−q2)

i b
p1(p2−p1)
p2(p1−q2)

i aib
p1
p2
i

) 1
p1

=

∑
i≤N

aαi bβi


1

q2
− 1

p1

.

Naturally, the original left-hand side is at most C, while the supremum over N of the last

expression is
(∑

i aαi bβi
) 1

q2
− 1

p1 . �

Although the proof is complete as given, if one is curious about the source of the coefficients
ci, they are computed so as to obtain equality in Hölder’s inequality. Specifically, the greatest
possible value of the q2 power of the expression (4.2),

∑
i≤N cq2

i λ1(Ai)
q2
q1 λ2(Bi)(∑

i≤N cp1
i λ1(Ai)λ2(Bi)

p1
p2

) q2
p1

=

∑
i≤N

(
cq2

i a
q2
p1
i b

q2
p2
i

)
aq2(q−1

1 −p−1
1 )

i bq2(q−1
2 −p−1

2 )
i∥∥∥∥∥cq2

i a
q2
p1
i b

q2
p2
i

∥∥∥∥∥
`

p1
q2

,

is the `
p1

p1−q2 norm (the conjugate
(

p1
q2

)′
=

p1
p1−q2

) of the other factor,

∥∥∥∥aq2(q−1
1 −p−1

1 )
i bq2(q−1

2 −p−1
2 )

i

∥∥∥∥
`

p1
p1−q2

=

∑
i≤N

aαi bβi

q2

(
1

q2
− 1

p1

)
,

by Corollary 2.3.4 applied with f (i) = cq2
i a

q2
p1
i b

q2
p2
i and g(i) = aq2(q−1

1 −p−1
1 )

i bq2(q−1
2 −p−1

2 )
i . As noted in

Hölder’s inequality, Theorem 2.3.2, this value is achieved when f (i)
p1
q2 is a scalar multiple of

g(i)
p1

p1−q2 . Solving f (i)
p1
q2 = kg(i)

p1
p1−q2 for ci produces the formula for coefficients given above,

ci = a
q2−q1

q1(p1−q2)

i b
p2−p1

p2(p1−q2)

i (with k = 1), or a constant multiple of it. (Any extra constant factor is
cancelled in the ratio, because norms are homogeneous, i.e. ‖c f ‖ = |c| ‖ f ‖.)
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4.1.2 Necessity of the Minkowski criterion for non-atomic measures
Although in general the criterion based on Minkowski’s inequality and described in Section
3.6 is only a sufficient condition, it turns out to be necessary, as well, when neither λ1 nor λ2

is a purely atomic measure. The flexibility afforded by measures which are not atomic allows
the construction of a counterexample in any non-Minkowski permuted case. A review of facts
from measure theory precedes the main result. First, recall these definitions from Section 2.5.

Definition 2.5.1 A measurable subset A of a measure space (X, µ) is called an atom when
µA > 0 and, for any measurable F ⊂ X, either µ(A ∩ F) = 0 or µ(A \ F) = 0.

(From Proposition 2.5.2, we know this is equivalent to the requirement that µA > 0 and, for
any disjoint decomposition A = E ∪ F, either µE = 0 or µF = 0.)

Definition 2.5.3 A measure is called purely atomic when every measurable set of positive
measure contains an atom. At the other extreme, it is atomless when it has no atom, i.e. every
subset of positive measure can be expressed as a disjoint union of two sets of positive measure.

The following theorem regarding atomless measures was originally proven by Sierpiński
in 1922. It is given without proof, but can be found in texts on measure theory, for example
Corollary 1.12.10 in Bogachev [11].

Theorem 4.1.4. If (X, µ) is an atomless measure space, then for any real number α ∈ [0, µX],
there is some measurable F ⊂ X with µF = α.

It has the following corollary, helpful to construct counterexamples.

Corollary 4.1.5. If (X, µ) is a measure space with a measurable subset E, µE > 0 which
contains no µ-atom, and (ck) is a sequence (finite or infinite) of nonnegative real numbers with∑

k ck = µE, then X can be partitioned into a pairwise disjoint sequence (Fk), with as many
terms as (ck), of measurable subsets of E such that each µFk = ck.

Proof. First, observe that the restriction µ|E of µ to E, which applies to the σ-algebra of mea-
surable subsets of E, is an atomless measure. Were this not so, there would be an atom A of
µ|E, i.e. a measurable subset A ⊂ E such that, for any measurable F ⊂ E, either µ(A ∩ F) = 0
or µ(A \ F) = 0. Therefore this set A would also be an atom for the original measure µ, on
X. (For any measurable S ⊂ X, note that E ∩ S is a measurable subset of E. Because A
would be an atom for µ|E, and recalling that A ⊂ E, either 0 = µ(A ∩ E ∩ S ) = µ(A ∩ S ) or
0 = µ(A \ (E ∩ S )) = µ ((A \ E) ∪ (A \ S )) = µ(A \ S ).) By hypothesis, however, E contains no
µ-atom, so µ|E must be an atomless measure; work with it rather than µ.

Now, find sets Fk one-by-one, establishing by induction on n that, when we have just added
Fn, the sets F1, . . . , Fn are pairwise disjoint and, for each 1 ≤ k ≤ n, µFk = ck. Because
c1 ≤

∑
k ck = µE, Sierpiński’s theorem (Theorem 4.1.4) guarantees that there is some F1 ⊂ E

with µF1 = c1.
For the inductive step, suppose that F1, . . . , Fn are pairwise disjoint subsets of E, each

µFk = ck. If the sequence (ck) has only n terms, then this process is finished. Otherwise,
because

cn+1 ≤
∑
k>n

ck = µE −
n∑

k=1

ck = µ

E \
n⋃

k=1

Fk

 ,
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there is a measurable Fn+1 ⊂ E \(F1∪· · ·∪Fn) with µFn+1 = cn+1, so that we now have pairwise
disjoint subsets F1, . . . , Fn+1 of E with each µFk = ck for k ∈ {1, . . . , n + 1}.

Thus we reach a sequence (Fk) of measurable subsets of E with each µFk = ck. These sets
are pairwise disjoint; it is sufficient to prove that arbitrarily finitely many of them are pairwise
disjoint, as the induction shows. Finally, to obtain a partition of X, note that by countable
additivity,

µ

⋃
k

Fk

 =
∑

k

µFk =
∑

k

ck = µX.

Therefore µ(X \
⋃

k Fk) = 0. Add the null set X \
⋃

k Fk to any one of the sets Fk, not changing
its measure. This preserves pairwise disjointness and the property that each µFk = ck, and now
provides that X =

⋃
k Fk, in a disjoint union. �

Now, this is enough to prove that, when neither λk measure is purely atomic, the permuted
mixed-norm inclusion Lσ(P) ⊂ LQ is true if and only if the exponents satisfy the Minkowski
condition min(p1, q1) ≤ max(p2, q2) and both one-variable inclusions Lpk

λk
(Xk) ⊂ Lqk

λk
(Xk) (k ∈

{1, 2}) are true. (Recall that this mixed-norm inclusion is equivalent to the existence of a C < ∞
such that inequality (3.2) is true, with µk = νk = λk, for any measurable function f on X1 × X2.)

Having already established in Section 3.6 that one-variable inclusions plus the Minkowski
condition on exponents are sufficient for permuted mixed-norm inclusion, it now remains to
refute mixed-norm inclusion when the Minkowski condition fails. Given the non-Minkowski
case max(p2, q2) < min(p1, q1), the (always necessary) one-variable inclusions, and that neither
λk measure is purely atomic, the aim is to produce a counterexample where the mixed-norm in-
clusion fails. Note that, as with the rest of the section, the hypotheses include max(p1, q1) < ∞,
but Theorem 4.2.16 shows that this result holds more generally.

The key to this argument is working on subsets of each Xk which contain no atom for λk,
and therefore where the measures’ restrictions are atomless. On these sets, Corollary 4.1.5
allows the production of subsets of various desired measures, from which a function in Lσ(P)

but not in LQ can be obtained.

Theorem 4.1.6. Assume that neither λ1 nor λ2 is purely atomic. If max(p2, q2) < min(p1, q1)
and max(p1, q1) < ∞, then there is no constant C < ∞ such that, for every measurable function
f on X1 × X2, ∥∥∥∥‖ f ‖Lq1

λ1
(X1)

∥∥∥∥
Lq2
λ2

(X2)
≤ C

∥∥∥∥‖ f ‖Lp2
λ2

(X2)

∥∥∥∥
Lp1
λ1

(X1)
.

Proof. Since neither λk is purely atomic, for each there is a measurable subset Ek ⊂ Xk with
positive λk measure which contains no λk atom. Because λk is σ-finite, we can choose Ek such
that 0 < λk(Ek) < ∞.

When considering functions f supported on E1 × E2, inequality (3.2) with µk = νk = λk

implies that ∥∥∥∥‖ f ‖Lq1
λ1

(E1)

∥∥∥∥
Lq2
λ2

(E2)
≤ C

∥∥∥∥‖ f ‖Lp2
λ2

(E2)

∥∥∥∥
Lp1
λ1

(E1)
.

So, to disprove mixed-norm inclusion, we need only consider functions on E1 × E2, where
the restricted measures λk|Ek

are atomless. Proposition 4.1.3 shows that it suffices to find dis-
joint sequences (Ai) of measurable subsets of E1 and (Bi) of measurable subsets of E2 such
that, letting each ai = λ1(Ai) and bi = λ2(Bi),

∑
i aαi bβi = ∞.



38 Chapter 4. Two-variable non-Minkowski case

Proposition 4.1.2 establishes that, in this non-Minkowski case of max(p2, q2) < min(p1, q1),
α + β < 1. Furthermore, because neither λ1 nor λ2 is purely atomic, α ≥ 0 and β ≥ 0, so
0 ≤ α + β < 1.

When 0 < α + β < 1, the series
∑

m≥1 m−1/(α+β) converges; let M =
∑

m≥1 m−1/(α+β). For
each i ≥ 1, let ai = M−1λ1(E1)m−1/(α+β) and bi = M−1λ2(E2)m−1/(α+β), so that

∑
i ai = λ1(E1)

and
∑

i bi = λ2(E2). Because each Ek contains no atom of λk, by Corollary 4.1.5 there is a
pairwise disjoint sequence (Ai) of measurable subsets of E1 with each λ1Ai = ai and there is a
pairwise disjoint sequence (Bi) of measurable subsets of E2 with each λ2Bi = bi. As desired,∑

i≥1 aαi bβi = M−α−β (λ1E1)α (λ2E2)β
∑

i≥1 m−1 = ∞.
Finally, when α + β = 0 (i.e. α = β = 0), let ai = λ1(E1)2−i and bi = λ2(E2)2−i, in which

case again
∑

i≥1 ai = λ1(E1) and
∑

i≥1 bi = λ2(E2), so there are again disjoint sequences (Ai),
(Bi) with each Ai ⊂ E1, ai = λ1(Ai) and Bi ⊂ E2, bi = λ2(Bi). Now,

∑
i≥1 aαi bβi =

∑
i≥1 1 = ∞. �

4.1.3 Two-variable permuted case, one purely atomic measure
When at least one space is purely atomic, permuted mixed-norm inclusion is possible even
outside of the Minkowski case. We’re still considering common measures, where a single
λk takes the place of µk and νk, for each k ∈ {1, 2}, the non-Minkowski case max(p2, q2) <
min(p1, q1), and supposing that max(p1, q1) < ∞. (In the non-Minkowski case, this also implies
that p2 < ∞ and q2 < ∞.) The question is whether Lσ(P) ⊂ LQ, where σ denotes the unique
non-identity permutation of {1, 2}, and, if so, finding the norm of the inclusion map. Based
on the results in Section 2.6, the purely atomic factor will be taken to be an at most countable
index set I, with weighted counting measure. (The weights are the measures of atoms in the
original purely atomic space.)

Proposition 4.1.7. Suppose that max(p1, q1) < ∞. If λ2 is purely atomic but λ1 is not, then
Lσ(P) ⊂ LQ (with non-identity σ) if and only if each Lpk

λk
(Xk) ⊂ Lqk

λk
(Xk) for k = 1, 2 and one of

these conditions is true:

1. min(p1, q1) ≤ max(p2, q2)

2. the measures of all λ2 atoms are β

1−α -summable

In the first case, the least constant C = C1C2, the product of the one-variable constants. In the
second, C1C2 ≤ C ≤ C1 ‖(vi)‖

q−1
2 −p−1

2

`
β

1−α
, where (vi) denotes the sequence of measures of atoms of

λ2.

Recall that, as defined in Section 4.1.1, α =
(
q−1

1 − p−1
1

)
/
(
q−1

2 − p−1
1

)
and

β =
(
q−1

2 − p−1
2

)
/
(
q−1

2 − p−1
1

)
, so that β

1−α =
(
q−1

2 − p−1
2

)
/
(
q−1

2 − q−1
1

)
.

Proof. Factorable functions provide the lower bound C1C2 ≤ C, as shown in Proposition 3.3.3.
In the first case, the Minkowski sufficient condition for inclusion, demonstrated in Section 3.6
gives C ≤ C1C2. For the rest of the proof, assume this condition fails, so that max(p2, q2) <
min(p1, q1). Because (X2, λ2) is a σ-finite, purely atomic measure space, as shown in Section
2.6 it can be replaced by the natural numbers, with weighted counting measure. Let these
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weights be denoted by (vi), each vi the measure of an atom in X2. If there are only finitely
many atoms, the tail of the sequence (vi) can be filled with zeroes.

The following computation proves inclusion when (vi) is β

1−α -summable, i.e.
∑

i v
β

1−α
i < ∞.

For any measurable function f (x, i) ≥ 0 of x ∈ X1 and i ≥ 1,

‖ f ‖q2
Q =

∑
i

(∫
X1

f (x, i)q1dλ1(x)
) q2

q1

vi =
∑

i

(∫
X1

f (x, i)q1dλ1(x)
) q2

q1

v
q2
p2
i v

1− q2
p2

i .

By Hölder’s inequality using the conjugate exponents q1
q2

and q1
q1−q2

, recalling that q2 < q1 in the
non-Minkowski case,

‖ f ‖q2
Q ≤

∑
i

(∫
X1

f (x, i)q1dλ1(x)
)

v
q1
p2
i


q2
q1

∑
i

v
p2−q2

p2
·

q1
q1−q2

i


q1−q2

q1

=

∫
X1

∑
i

f (x, i)q1v
q1
p2
i dλ1(x)


q2
q1

∑
i

v
p2−q2

p2
·

q1
q1−q2

i


q1−q2

q1

,

where the equality is due to Tonelli’s theorem, allowing the order of integration and summation
to be reversed. Next, because q1

p2
> 1 in the non-Minkowski case, for any sequence (ci) the

series
∑

i cq1/p2
i ≤ (

∑
i ci)q1/p2 . Apply that here with ci = f (x, i)p2vi:

‖ f ‖q2
Q ≤

∫X1

∑
i

f (x, i)p2vi


q1
p2

dλ1(x)


q2
q1 ∑

i

v
p2−q2

p2
·

q1
q1−q2

i

q2(q−1
2 −q−1

1 )
.

Taking the q2 root, this is

‖ f ‖Q ≤

∫X1

∑
i

f (x, i)p2vi


q1
p2

dλ1(x)


1

q1 ∑
i

v
β

1−α
i

q−1
2 −q−1

1

.

The final step uses the one-variable inclusion Lp1
λ1

(X1) ⊂ Lq1
λ1

(X1), with the norm of that inclusion
represented as usual by C1,

‖ f ‖Q ≤ C1

∫X1

∑
i

f (x, i)p2vi


p1
p2

dλ1(x)


1

p1 ∑
i

v
β

1−α
i

q−1
2 −q−1

1

= C1

∑
i

v
β

1−α
i

q−1
2 −q−1

1

‖ f ‖σ(P) = C1 ‖(vi)‖
q−1

2 −p−1
2

`
β

1−α
‖ f ‖σ(P) .

On the other hand, if (vi) is not β

1−α -summable, we can disprove inclusion with Proposition
4.1.3, by obtaining appropriate sets so that

∑
n aαnbβn is arbitrarily large. The divergence of the

series
∑

i∈I vβ/(1−α)
i implies that the index set I is infinite; being countable, it has an enumeration

(in)n≥1. In the purely atomic factor, we simply let each Bn consist of exactly one atom, bn = vin .
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Since λ1 is not purely atomic, it has a subset A with λ1(A) > 0 which contains no atom. For
each N ≥ 1, define a sequence aN(1) to aN(N) by

aN(n) =
v

β
1−α
in∑N

n=1 v
β

1−α
in

λ1(A).

Using Corollary 4.1.5, because λ1 restricted to A is atomless and
∑N

n=1 aN(n) = λ1(A), there are
disjoint subsets AN(1), . . . , AN(n) of A with each λ1(AN(n)) = aN(n).

N∑
n=1

aN(n)αbβn =

∑N
n=1 v

αβ
1−α
in

vβin(∑I
i=1 v

β
1−α
in

)α
=

 N∑
n=1

v
β

1−α
in

1−α

Recalling that α < 1, for large N this sum becomes arbitrarily large. Proposition 4.1.3 then
shows that the least C = ∞, i.e. Lσ(P) 1 LQ. �

Proposition 4.1.8. Suppose that max(p1, q1) < ∞. If λ1 is purely atomic but λ2 is not, then
Lσ(P) ⊂ LQ (with non-identity σ) if and only if each Lpk

λk
(Xk) ⊂ Lqk

λk
(Xk), for k = 1, 2, and one of

these conditions is true:

1. min(p1, q1) ≤ max(p2, q2)

2. the measures of all λ1 atoms are α
1−β -summable

In the first case, the least constant C = C1C2, the product of the one-variable constants. In the
second, C1C2 ≤ C ≤ C2 ‖(ui)‖

q−1
1 −p−1

1

`
α

1−β
, where (ui) denotes the sequence of measures of atoms of

λ1.

With α =
(
q−1

1 − p−1
1

)
/
(
q−1

2 − p−1
1

)
and β =

(
q−1

2 − p−1
2

)
/
(
q−1

2 − p−1
1

)
,

α
1−β =

(
q−1

1 − p−1
1

)
/
(
p−1

1 − p−1
2

)
.

Proof. Factorable functions provide the lower bound C1C2 ≤ C, as shown in Proposition 3.3.3.
In the first case, the Minkowski sufficient condition for inclusion, demonstrated in Section 3.6
gives C ≤ C1C2. For the rest of the proof, assume this condition fails and that max(p2, q2) <
min(p1, q1).

As a σ-finite purely atomic measure space, (X1, λ1) has countably many atoms, with mea-
sures to be enumerated as (ui). Represent functions on X1 by functions on {1, 2, . . .}, with
integrals as series weighted by (ui). In these terms, if (ui) is α

1−β -summable, for any measurable
function f (i, y) with y ∈ X2,

‖ f ‖Q =

∫X2

∑
i

f (i, y)q1ui


q2
q1

dλ2(y)


1

q2

≤ C2

∫X2

∑
i

f (i, y)q1ui


p2
q1

dλ2(y)


1

p2

,
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using the inclusion Lp2
λ2

(X2) ⊂ Lq2
λ2

(X2). In the non-Minkowski case, p2 < q1, so for any non-

negative terms ci,
∑

i c
q1
p2
i ≤ (

∑
i ci)

q1
p2 . Applied to the above with ci = f (i, y)p2u

p2
q1
i ,

‖ f ‖Q ≤ C2

∫
X2

∑
i

f (i, y)p2u
p2
q1
i

 dλ2(y)


1

p2

= C2

∑
i

∫
X2

f (i, y)p2dλ2(y)u
p2
q1
i


1

p2

,

where the final equality is due to Tonelli’s theorem. By Hölder’s inequality with the conjugate
exponents p1

p2
and p1

p1−p2
,

∑
i

∫
X2

f (i, y)p2dλ2(y)u
p2
q1
i =

∑
i

(∫
X2

f (i, y)p2dλ2(y)u
p2
p1
i

)
u

p2

(
1

q1
− 1

p1

)
i

≤

∑
i

(∫
X2

f (i, y)p2dλ2(y)
) p1

p2

ui


p2
p1

∑
i

u
p2

(
1

q1
− 1

p1

)
·

p1
p1−p2

i


p1−p2

p1

= ‖ f ‖p2
σ(P)

∑
i

u
α

1−β

i

p2

(
1

p2
− 1

p1

)
.

Therefore

‖ f ‖Q ≤ C2

∑
i

u
α

1−β

i


1

p2
− 1

p1

‖ f ‖σ(P) = C2 ‖(ui)‖
q−1

1 −p−1
1

`
α

1−β
‖ f ‖σ(P) .

However, if (ui) is not α
1−β -summable, take inequivalent atoms (Ai)i∈I of X1, where I must

be infinite (but countable, by Proposition 2.6.6), so it has an infinite enumeration (in)n≥1. Let
each an = uin . Let B ⊂ X2 be a subset with λ2(B) > 0 which contains no atom. For each N ≥ 1,
define for 1 ≤ n ≤ N

bN(n) =
u

α
1−β

in∑N
n=1 u

β
1−α
in

λ2(B).

Because λ2 is atomless on B and
∑N

n=1 bN(n) ≤ λ2(B), there are disjoint subsets BN(1), . . . , BN(N)
of B such that λ2(BN(n)) = bN(n).

N∑
n=1

aαnbN(n)β =

∑N
n=1 uαinu

αβ
1−β

in(∑N
n=1 u

α
1−β

in

)β
=

 N∑
n=1

u
α

1−β

in

1−β

Since β < 1, for large N this sum is arbitrarily large. As in the previous proposition, by
Proposition 4.1.3 Lσ(P) 1 LQ. �
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4.2 Non-Minkowski case, in general
The previous section’s restrictions of considering common measures and finite exponents are
here lifted. One-variable inclusions remain necessary, and the Minkowski case min(p1, q1) ≤
max(p2, q2) remains, with such inclusions, sufficient for permuted mixed-norm inclusion, with
C = C1C2. Therefore, the focus remains on the non-Minkowski max(p2, q2) < min(p1, q1)
case, but with the possibility that one or both of p1 and q1 may be∞. Furthermore, rather than
studying only common measures λk, different measures µk and νk are allowed.

Absolute continuity, νk � µk, remains necessary and is therefore still assumed. Methods
using the Radon-Nikodym derivative turn out, in most cases, to allow a reduction of the prob-
lem with different measures to one with common measures, as we are about to see. Thus, the
previous simplified arguments remain relevant, not only in inspiring the ideas behind somewhat
more complicated approaches, but in solving some problems after reduction. Although there
are limitations and cases better handled otherwise, the idea of reducing a problem in µ and ν
to one in λ, which first showed up in the one-variable problem in Proposition 2.4.2 (and could
also be applied for Proposition 2.4.1 in many cases), still has its uses.

4.2.1 Reducing to common measures
Recall from Theorem 2.1.8 that each necessary one-variable inclusion Lpk

µk (Xk) ⊂ Lqk
µk(Xk) im-

plies that νk � µk, so each Radon-Nikodym derivative dνk
dµk

exists. For this problem, we can
further suppose that each dνk

dµk
> 0 µk-a.e.

Assumption For the rest of the two-variable problem, assume that dνk
dµk

> 0, µk-a.e., for k = 1, 2.

The justification comes from the following proposition.

Proposition 4.2.1. For each k ∈ {1, 2}, let Yk =
{
x ∈ Xk : dνk

dµk
(x) > 0

}
. Any constant C ≥ 0

satisfies, for any measurable function f on X1 × X2,∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

,

if and only if it satisfies, for any measurable function g on Y1 × Y2,∥∥∥∥‖g‖Lq1
ν1 (Y1)

∥∥∥∥
Lq2
ν2 (Y2)

≤ C
∥∥∥∥‖g‖Lp2

µ2 (Y2)

∥∥∥∥
Lp1
µ1 (Y1)

.

(Equivalently, for any measurable function g on X1 × X2 which is supported on Y1 × Y2.)

Proof. Naturally, if C works in the first inequality, it works in the second, since Y1 × Y2 ⊂

X1 × X2. (Any function g can be extended to f = g on Y1 × Y2, f = 0 off Y1 × Y2, to which the
first inequality applies.) It remains only to show that, if the second inequality is always valid
for a particular C, the first inequality also holds with it.

Assuming the second inequality for a particular C, take any measurable function f on
X1 × X2. Let g be the restriction f |Y1×Y2

of f to Y1 × Y2. Because each νk(Xk \ Yk) = 0,∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

=
∥∥∥∥‖g‖Lq1

ν1 (Y1)

∥∥∥∥
Lq2
ν2 (Y2)

,
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while because each Yk ⊂ Xk, ∥∥∥∥‖g‖Lp2
µ2 (Y2)

∥∥∥∥
Lp1
µ1 (Y1)

≤

∥∥∥∥‖ f ‖Lp2
µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

.

Therefore, as desired, ∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

=
∥∥∥∥‖g‖Lq1

ν1 (Y1)

∥∥∥∥
Lq2
ν2 (Y2)

≤ C
∥∥∥∥‖g‖Lp2

µ2 (Y2)

∥∥∥∥
Lp1
µ1 (Y1)

≤ C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

.

�

Replacing each Xk by Yk to work on this Y1 × Y2, where each dνk
dµk

> 0, we get the same best
constant C with the convenience that each dνk

dµk
> 0, µk-almost everywhere. (If desired, it can be

defined and positive everywhere.)
The next two results reduce to a common measure in a particular variable; first in X1, then

in X2. When both are applicable, they can be applied together to reduce the problem entirely to
common measures λ1 and λ2. Note that the constant remains the same in this reduction, so not
only does the qualitative question of whether inclusion holds have the same answer afterward,
but the quantitative best value of the constant C is preserved.

(The assumption that dν1
dµ1

> 0 is helpful because it means that
(

dν1
dµ1

) p1
p1−q1 makes sense whether

p1 > q1 or p1 < q1, although even without that assumption we could use it times the character-
istic function of the set where dν1

dµ1
> 0.)

Proposition 4.2.2. Suppose that Lp1
µ1 (X1) ⊂ Lq1

ν1 (X1) and either p1 = q1 = ∞ or p1 , q1. Define
a measure λ1 as follows.

If p1 = q1 = ∞ then λ1 = µ1

If p1 , q1 and p1, q1 < ∞ then λ1 =

(
dν1

dµ1

) p1
p1−q1

µ1

Then the following are equivalent:

For each measurable f on X1 × X2,
∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

For each measurable h on X1 × X2,
∥∥∥∥‖h‖Lq1

λ1
(X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖h‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
λ1

(X1)

Proof. First, suppose that p1 = q1 = ∞. Because ν1 � µ1, any subset E ⊂ X1 with ν1(E) > 0
must also have µ1(E) > 0. With the further assumption that dν1

dµ1
> 0 µ1-a.e., explained earlier in

this section, if µ1(E) > 0 then ν1(E) > 0. Consequently, the essential supremum norms ‖·‖L∞µ1 (X1)

and ‖·‖L∞ν1 (X1) are identical, so we can simply use either µ1 or ν1 as the common measure λ1 and
obtain the same problem.



44 Chapter 4. Two-variable non-Minkowski case

For the rest of the argument, assume that p1 , q1 and both are finite. If the first inequality

holds, then for any measurable h let f = |h|
(

dν1
dµ1

) 1
p1−q1 .

∥∥∥∥‖h‖Lq1
λ1

∥∥∥∥
Lq2
ν2

=

∥∥∥∥∥∥∥∥∥
∫

X1

|h|q1

(
dν1

dµ1

) p1
p1−q1

dµ1


1

q1

∥∥∥∥∥∥∥∥∥
Lq2
ν2 (X2)

=

∥∥∥∥∥∥∥
(∫

X1

f q1dν1

) 1
q1

∥∥∥∥∥∥∥
Lq2
ν2 (X2)

≤ C
(∫

X1

‖ f ‖p1

Lp2
µ2 (X2)

dµ1

) 1
p1

= C

∫
X1

‖h‖p1

Lp2
µ2 (X2)

(
dν1

dµ1

) p1
p1−q1

dµ1


1

p1

= C
∥∥∥∥‖h‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
λ1

(X1)

If the second inequality holds, then for any measurable f let h = | f |
(

dν1
dµ1

) −1
p1−q1 .∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

=

∥∥∥∥∥∥∥
(∫

X1

| f |q1dν1

) 1
q1

∥∥∥∥∥∥∥
Lq2
ν2 (X2)

=

∥∥∥∥∥∥∥
(∫

X1

hq1dλ1

) 1
q1

∥∥∥∥∥∥∥
Lq2
ν2 (X2)

≤ C
(∫

X1

‖h‖q1

Lp2
µ2 (X2)

dλ1

) 1
p1

= C
(∫

X1

‖ f ‖Lp2
µ2 (X2) dµ1

) 1
p1

= C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

�

(Note that in this next result, p2 = q2 = ∞ is impossible in the non-Minkowski case. This is
left in since the result could be applied in the Minkowski case, even though that case is simple
enough as it is.)

Proposition 4.2.3. Suppose that Lp2
µ2 (X2) ⊂ Lq2

ν2 (X2) and either p2 = q2 = ∞ or p2 , q2. Define
a measure λ2 as follows.

If p2 = q2 = ∞ then λ2 = µ2

If p2 , q2 and p2, q2 < ∞ then λ2 =

(
dν2

dµ2

) p2
p2−q2

µ2
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Then the following are equivalent:

For each measurable f on X1 × X2,
∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

For each measurable h on X1 × X2,
∥∥∥∥‖h‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
λ2

(X2)
≤ C

∥∥∥∥‖h‖Lp2
λ2

(X2)

∥∥∥∥
Lp1
µ1 (X1)

Proof. The case p2 = q2 = ∞works as in the preceding result, where the one-variable inclusion
from the hypothesis and dν2

dµ2
> 0 provide that ‖ · ‖L∞µ2 (X2) = ‖ · ‖L∞ν2 (X2). Again, for the rest assume

that p2 , q2 and both are finite.

If the first inequality holds, then for any measurable h let f = |h|
(

dν2
dµ2

) 1
p2−q2 .

∥∥∥∥‖h‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
λ2

=

∫
X2

‖h‖q2

Lq1
ν1 (X1)

(
dν2

dµ2

) p2
p2−q2

dµ2


1

q2

=

(∫
X2

‖ f ‖q2

Lq1
ν1 (X1)

dν2

) 1
q2

≤ C

∥∥∥∥∥∥∥
(∫

X2

f p2dµ2

) 1
p2

∥∥∥∥∥∥∥
Lp1
µ1 (X1)

= C

∥∥∥∥∥∥∥∥∥
∫

X2

|h|p2

(
dν2

dµ2

) p2
p2−q2

dµ2


1

p2

∥∥∥∥∥∥∥∥∥
Lp1
µ1 (X1)

= C
∥∥∥∥‖h‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

If the second inequality holds, then for any measurable f let h = | f |
(

dν2
dµ2

) −1
p2−q2 .

∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

=

(∫
X2

‖ f ‖q2

Lq1
ν1 (X1)

dν2

) 1
q2

=

(∫
X2

‖h‖q2

Lq1
ν1 (X1)

dλ2

) 1
q2

≤ C

∥∥∥∥∥∥∥
(∫

X2

hp2dλ2

) 1
p2

∥∥∥∥∥∥∥
Lp1
µ1 (X1)

= C

∥∥∥∥∥∥∥
(∫

X2

| f |p2dµ2

) 1
p2

∥∥∥∥∥∥∥
Lp1
µ1 (X1)

= C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

�

In the remaining cases where p1 = q1 < ∞ or p2 = q2 < ∞, inclusions with common
measures turn out to be sufficient, but may not be necessary. Also, unlike the previous results,
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the best constants may differ between the original Lσ(P) ⊂ LQ problems and the versions with
common measures.

For example, the following result shows that proving an inclusion using either µ1 or ν1,
alone, as a common measure on X1 implies the original inclusion using both µ1 and ν1. The
converse is true if the Radon-Nikodym derivative is bounded away from zero. Because of the
limitations on these results, alternative methods are instead used to solve the problem with
general measures, but they are given here in case they are of interest.

Proposition 4.2.4. Suppose that Lp1
µ1 (X1) ⊂ Lq1

ν1 (X1), p1 = q1 < ∞, and that there is some
constant C < ∞ such that at least one of the following is true for every measurable function f
on X1 × X2. ∥∥∥∥‖ f ‖Lq1

µ1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
ν1 (X1)

Then there is a constant C′ < ∞ such that, for every measurable function f on X1 × X2,∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C′
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

.

If additionally the Radon-Nikodym derivative dν1
dµ1

has a strictly positive a.e. lower bound, then
the existence of such a constant C′ implies that there is a constant C satisfying both of the first
two inequalities.

Proof. Recall from Theorem 2.1.8 that the inclusion Lp1
µ1 (X1) ⊂ Lq1

ν1 (X1) with p1 = q1 < ∞
implies that dν1

dµ1
∈ L∞µ1

(X1), so there is some M ≥ 0 such that dν1
dµ1
≤ M µ1-a.e.

Suppose that the first inequality holds with some C < ∞.∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

=

∥∥∥∥∥∥∥
(∫

X1

| f |q1dν1

) 1
q1

∥∥∥∥∥∥∥
Lq2
ν2 (X2)

≤

∥∥∥∥∥∥∥M1/q1

(∫
X1

| f |q1dµ1

) 1
q1

∥∥∥∥∥∥∥
Lq2
ν2 (X2)

≤ M1/q1C
(∫

X1

‖ f ‖p1

Lp2
µ2 (X2)

dµ1

) 1
p1

= M1/q1C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

That is, the final inequality is then true with the (not necessarily least) constant C′ = M1/q1C.
Next, assume that the second statement is true with some C < ∞.∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
(∫

X1

‖ f ‖p1

Lp2
µ2 (X2)

dν1

) 1
p1

≤ C
(∫

X1

M ‖ f ‖p1

Lp2
µ2 (X2)

dµ1

) 1
p1

= M1/p1C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)
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The final inequality is true with C′ = M1/p1C.
Now suppose that there is some m > 0 such that dν1

dµ1
≥ m µ1-a.e. and that there is some

C′ < ∞ satisfying the last inequality. Then we can verify both of the first two inequalities for
different constants C, as follows.

∥∥∥∥‖ f ‖Lq1
µ1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

=

∥∥∥∥∥∥∥
(∫

X1

| f |q1dµ1

) 1
q1

∥∥∥∥∥∥∥
Lq2
ν2 (X2)

≤ m1/q1

∥∥∥∥∥∥∥
(∫

X1

| f |q1dν1

) 1
q1

∥∥∥∥∥∥∥
Lq2
ν2 (X2)

≤ m1/q1C′
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C′
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

= C′
(∫

X1

‖ f ‖p1

Lp2
µ2 (X2)

dµ1

) 1
p1

≤ m1/p1C′
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
ν1 (X1)

�

Unsurprisingly, there is a similar result involving µ2 and ν2.

Proposition 4.2.5. Suppose that Lp2
µ2 (X2) ⊂ Lq2

ν2 (X2), p2 = q2 < ∞, and that there is some
constant C < ∞ such that at least one of the following is true for every measurable function f
on X1 × X2. ∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
µ2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp2

ν2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

Then there is a constant C′ < ∞ such that, for every measurable function f on X1 × X2,∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C′
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

.

If additionally the Radon-Nikodym derivative dν2
dµ2

has a strictly positive a.e. lower bound, then
the existence of such a constant C′ implies that there is a constant C satisfying both of the first
two inequalities.

Proof. As in the preceding result, the one-variable inclusion implies that dν2
dµ2
∈ L∞µ2

(X2), so
there is some M ≥ 0 such that dν2

dµ2
≤ M µ2-a.e.
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Assuming that there is some C < ∞ for which the first inequality holds,

∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

=

(∫
X2

‖ f ‖q2

Lq1
ν1 (X1)

dν2

) 1
q2

≤ M1/q2

(∫
X2

‖ f ‖q2

Lq1
ν1 (X1)

dµ2

) 1
q2

≤ M1/q2C

∥∥∥∥∥∥∥
(∫

X2

| f |p2dµ2

) 1
p2

∥∥∥∥∥∥∥
Lp1
µ1 (X1)

= M1/q2C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

.

This is the last inequality with C′ = M1/q2C. Now suppose that the second inequality is true
with C < ∞.

∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C

∥∥∥∥∥∥∥
(∫

X2

| f |p2dν2

) 1
p2

∥∥∥∥∥∥∥
Lp1
µ1 (X1)

≤ M1/p2C

∥∥∥∥∥∥∥
(∫

X2

| f |p2dµ2

) 1
p2

∥∥∥∥∥∥∥
Lp1
µ1 (X1)

= M1/p2C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

This time, C′ = M1/p2C works.
Now, suppose that for some m > 0, dν1

dµ1
≥ m µ1-a.e. and that the last inequality holds for

some C′ < ∞. The first two inequalities are established below.

∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
µ2 (X2)

=

(∫
X2

‖ f ‖q2

Lq1
ν1 (X1)

dµ2

) 1
q2

≤ m1/q2

(∫
X2

‖ f ‖q2

Lq1
ν1 (X1)

dν2

) 1
q2

≤ m1/q1C′
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C′
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

= C′
∥∥∥∥∥∥∥
(∫

X2

| f |p2dµ2

) 1
p2

∥∥∥∥∥∥∥
Lp1
µ1 (X1)

≤ m1/p2C′
∥∥∥∥‖ f ‖Lp2

ν2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

�
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4.2.2 Block factorable function necessary condition
The following results generalize the main result, Proposition 4.1.3, of Section 4.1.1. Although
they cover the cases p1 = ∞ and q1 = ∞, they also serve to generalize the combinations
of characteristic functions of blocks, used in that section, to a more flexible notion of block
factorable functions. Factorable functions, i.e. those of the form f (x1, x2) = f1(x1) f2(x2),
established the basic lower bound C1C2 ≤ C, which is refined by considering block factorable
functions (which are so named since they are locally factorable on blocks, although they are
generally not globally factorable functions) as described below.

Definition 4.2.6. Let I be an (at most) countable index set, with a corresponding disjoint col-
lection (Ai)i∈I of measurable subsets of X1 and another disjoint collection (Bi)i∈I of measurable
subsets of X2. For each i ∈ I, let C1(Ai) and C2(Bi) be the least nonnegative constants such that,
for any gi ∈ L+(Ai) and hi ∈ L+(Bi),

‖gi‖Lq1
ν1 (Ai) ≤ C1(Ai) ‖gi‖Lp1

µ1 (Ai) and

‖hi‖Lq2
ν2 (Bi) ≤ C2(Bi) ‖hi‖Lp2

µ2 (Bi) .
(4.3)

(Equivalently, C1(Ai) is the least constant such that ‖gi‖Lqi
ν1 (X1) ≤ C1(Ai) ‖gi‖Lpi

µ1 (X1) for any gi ∈

L+(X1) supported on Ai, and similarly for C2(Bi).)

Although the index set I would normally be either N or, for finite collections, {1, . . . n}, any
(at most) countable set, being in bijection with one of these, would do. The constants C1(Ai)
are so named because they are local versions of C1, and C2(Bi) of C2, applicable to functions
supported on the sets Ai and Bi, respectively. (In this sense, C1 = C1(X1) and C2 = C2(X2).) Of
course, any function on Ai is a function on X1, and similarly for Bi and X2, so each C1(Ai) ≤ C1

and C2(Bi) ≤ C2.

Definition 4.2.7. Given disjoint collections (Ai)i∈I and (Bi)i∈I as above, a block factorable func-
tion f supported on (Ai × Bi)i∈I is one of the form

f (x1, x2) =
∑
i∈I

gi(x1)hi(x2),

where each gi is supported on Ai and each hi supported on Bi. (Naturally, the order of summa-
tion here is irrelevant since each point (x1, x2) is in at most one block Ai × Bi, and therefore at
most one non-zero term contributes to f (x1, x2).)

Definition 4.2.8. Given two exponents p, q ∈ (0,∞], define the relative conjugate of p with
respect to q as p : q ∈ (−∞,∞], computed using the conventions that∞−1 = 0 and 0−1 = ∞, by

(p : q)−1 = q−1 − p−1. (4.4)

Note that the standard Hölder conjugate is recovered by p : 1 = p′. Although this idea is
hardly new, the term “relative conjugate” is improvised and probably not standard. This name
for the exponent p : q is chosen because of its role in the following generalization of Corollary
2.3.3, a sharp form of Hölder’s inequality.
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Corollary 4.2.9. Let (X, µ) be a σ-finite measure space and suppose that 0 < q ≤ p ≤ ∞. For
fixed g ∈ L+(X), the least constant 0 ≤ Cg ≤ ∞ such that, for any f ∈ L+(X),

‖ f g‖q ≤ Cg ‖ f ‖p

is Cg = ‖g‖p : q. Consequently, C < ∞ if and only if g ∈ Lp : q
µ (X).

Proof. If q = ∞, then p = ∞ and p : q = 0−1 = ∞ as well. Because | f g| ≤ ‖ f ‖∞‖g‖∞ µ-a.e., in
the essential supremum ‖ f g‖∞ ≤ ‖ f ‖∞‖g‖∞. Therefore the least constant Cg ≤ ‖g‖∞.

To find that ‖g‖∞ is the least constant Cg, note that for any ε > 0, there is a set Eε ⊂ X on
which |g| > ‖g‖∞−ε and such that 0 < µ(Eε) < ∞. (Use σ-finiteness of µ to produce Eε of finite
measure, if necessary.) Let fε = χEε and then observe that, on Eε itself, | fεg| = |g| > ‖g‖∞ − ε.
Therefore

‖ fεg‖∞ ≥ ‖g‖∞ − ε = ‖ fε‖∞ (‖g‖∞ − ε) ,

and in the limit as ε → ∞, Cg ≥ ‖g‖∞.
Now suppose that q < ∞. Simply let f̃ = f q and g̃ = gq and apply Corollary 2.3.3:

‖ f g‖qq =

∫
X

f̃ g̃dµ ≤ C‖ f̃ ‖p/q = C‖ f ‖qp (4.5)

has the least constant C = ‖g̃‖(p/q)′ = ‖g̃‖p/(p−q) = ‖g‖qp : q. Taking qth roots,

‖ f g‖q ≤ Cg‖ f ‖p (4.6)

is valid with Cg = ‖g‖p : q; this is also the least constant Cg since, if (4.6) holds with some Cg,
then (4.5) must hold with C = Cq

g, and the least value of C there is C = ‖g‖qp : q. �

Many following results will be easier to write in terms of relative conjugates. The compli-
cated exponents which appeared in the case of common measures, dubbed α, β, α

1−β , and β

1−α
and defined in (4.1), can be easily written using this notation.

α =
p1 : q2

p1 : q1

α

1 − β
=

p1 : p2

p1 : q1

β =
p1 : q2

p2 : q2

β

1 − α
=

q1 : q2

p2 : q2

It is simply computed, and convenient to note, that the sign of p : q corresponds to the order
of p and q, as expressed below.

p : q > 0 if and only if p > q
p : q < 0 if and only if p < q

Proposition 4.2.10. Suppose that max(p2, q2) < min(p1, q1) (the Minkowski sufficient condi-
tion for inclusion does not apply) and let C ∈ [0,∞]. For any (at most) countable I and disjoint
collections (Ai)i∈I of measurable subsets of X1, (Bi) of measurable subsets of X2, let C1(Ai) and
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C2(Bi) denote the least constants in (4.3). Then the least constant CBF(A, B) such that, for any
block factorable function f supported on (Ai, Bi)i∈I ,

‖ f ‖Q ≤ CBF(A, B) ‖ f ‖σ(P)

is computed by
CBF(A, B) = ‖C1(Ai)C2(Bi)‖`p1 : q2 (I) .

Proof. For any block factorable function f =
∑

i∈I gihi supported on (Ai × Bi)i∈I , define ratios

r1(i) =
‖gi‖Lq1

ν1 (X1)

‖gi‖Lp1
µ1 (X1)

, r2(i) =
‖hi‖Lq2

ν2 (X2)

‖hi‖Lp2
µ2 (X2)

.

For this block-factorable f , when q1 < ∞ (so q2 < q1 < ∞ as well), since the collections
(gi) and (hi) are disjointly supported,

‖ f ‖Q =
∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

=

∫X2

∫
X1

∑
i∈I

|gi(x1)hi(x2)|q1 dν1(x1)


q2
q1

dν2(x2)


1

q2

=

∫
X2

∑
i

(∫
X1

|gi(x1)|q1 dν1(x1)
) q2

q1

|hi(x2)|q2 dν2(x2)


1

q2

=

∑
i

(∫
X1

|gi(x1)|q1 dν1(x1)
) q2

q1
∫

X2

|hi(x2)|q2 dν2(x2)


1

q2

=

∑
i

‖gi‖
q2

Lq1
ν1 (X1)

‖hi‖
q2

Lq2
ν2 (X2)


1

q2

.

When q1 = ∞, the same conclusion is true, computed as follows.

‖ f ‖Q =
∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

=

∫
X2

ess sup
x1∈X1

∑
i∈I

|gi(x1)hi(x2)|q1

q2

dν2(x2)


1

q2

=

∑
i

(
ess sup

x1∈X1

|gi(x1)|
)q2 ∫

X2

|hi(x2)|q2 dν2(x2)


1

q2

=

∑
i

‖gi‖
q2

Lq1
ν1 (X1)

‖hi‖
q2

Lq2
ν2 (X2)


1

q2

.

Similarly,

‖ f ‖σ(P) =
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

=

∑
i

‖gi‖
p1

Lp1
µ1 (X1)

‖hi‖
p1

Lp2
µ2 (X2)


1

p1

,
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understood as supi ‖gi‖Lp1
µ1 (X1) ‖hi‖Lp2

µ2 (X2) when p1 = ∞. These can be used together with the
inequality which defines CBF(A, B) to produce∑

i

‖gi‖
q2

Lp1
µ1 (X1)

‖hi‖
q2

Lp2
µ2 (X2)

r1(i)q2r2(i)q2 =
∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥q2

Lq2
ν2 (X2)

≤ CBF(A, B)q2

∥∥∥∥‖ f ‖Lp2
µ2 (X2)

∥∥∥∥q2

Lp1
µ1 (X1)

= CBF(A, B)q2

∑
i

‖gi‖
p1

Lp1
µ1 (X1)

‖hi‖
p1

Lp2
µ2 (X2)


q2
p1

.

By Hölder’s inequality (Corollary 2.3.3) applied with the exponent p1
q2

to ‖gi‖
q2

Lp1
µ1 (X1)

‖hi‖
q2

Lp2
µ2 (X2)

and
(

p1
q2

)′
=

p1
p1−q2

to r1(i)q2r2(i)q2 , the least constant K in

∑
i

‖gi‖
q2

Lp1
µ1 (X1)

‖hi‖
q2

Lp2
µ2 (X2)

r1(i)q2r2(i)q2 ≤ K

∑
i

‖gi‖
p1

Lp1
µ1 (X1)

‖hi‖
p1

Lp2
µ2 (X2)


q2
p1

(4.7)

is K =
∥∥∥rq2

1 rq2
2

∥∥∥
`

p1
p1−q2

. Since CBF(A, B)q2 is a viable constant above,

CBF(A, B)q2 ≥ K =

∑
i∈I

(r1(i)r2(i))
p1q2

p1−q2


p1−q2

p1

=

∑
i∈I

(r1(i)r2(i))p1 : q2


q2

p1 : q2

,

for the right-hand side here is the least constant given by Hölder. Consequently, CBF(A, B) ≥
‖r1r2‖`p1 : q2 (I). (When p1 = ∞,

(
p1
q2

)′
= 1, so this is an `q2 norm, as desired.) Finally, since

each C1(Ai) is the supremum of r1(i) over all functions gi supported on Ai and C2(Bi) is
the supremum of r2(i) over hi supported on Bi, taking these suprema we have CBF(A, B) ≥
‖C1(Ai)C2(Bi)‖`p1 : q2 (I).

On the other hand, K = ‖C1(Ai)q2C2(Bi)q2‖
`

p1
p1−q2 (I)

satisfies (4.7) for any functions gi sup-
ported on Ai and hi supported on Bi, so taking the q2 root implies that

‖ f ‖Q ≤ ‖C1(Ai)C2(Bi)‖`p1 : q2 (I) ‖ f ‖σ(P)

for any block-factorable f supported on (Ai × Bi). Because CBF(A, B) is the least such constant,
CBF ≤ ‖C1(Ai)C2(Bi)‖`p1 : q2 (I). �

Theorem 4.2.11. Suppose that max(p2, q2) < min(p1, q1) (the non-Minkowski case) and let
C ∈ [0,∞] be the least constant so that inequality (3.2),

‖ f ‖Q ≤ C ‖ f ‖σ(P) ,

holds for all f ∈ L+(X1 × X2).
For any (at most) countable I and disjoint collections (Ai)i∈I of measurable subsets of X1,

(Bi)i∈I of measurable subsets of X2, let C1(Ai) and C2(Bi) denote the least constants as above.
Then

C ≥ ‖C1(Ai)C2(Bi)‖`p1 : q2 (I) .
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Proof. By Proposition 4.2.10, the best constant for block-factorable f supported on (Ai × Bi)i∈I

is CBF(A, B) = ‖C1(Ai)C2(Bi)‖`p1 : q2 (I). No lesser constant works for this special class of func-
tions, so certainly no lesser constant will work for the more general f ∈ L+(X1×X2). Therefore
C ≥ CBF(A, B) = ‖C1(Ai)C2(Bi)‖`p1 : q2 (I). �

This is easily seen to refine the established C ≥ C1C2 since, with only one A1 = X1 and
B1 = X2, C1(A1) = C1, C2(B1) = C2, and ‖C1(A1)C2(A2)‖`p1 : q2 (I) = C1C2. More generally,
assuming the mixed-norm inclusion Lσ(P) ↪→ LQ on X1 × X2, the same inclusion holds locally
on blocks Ai × Bi. On each block, the product C1(Ai)C2(Bi) of local best constants C1(Ai) (for
Lp1
µ1 (Ai) ↪→ Lq1

ν1 (Ai)) and C2(Bi) (for Lp2
µ2 (Bi) ↪→ Lq2

ν2 (Bi)) gives a lower bound on the norm of
inclusion Lσ(P)(Ai × Bi) ↪→ LQ(Ai × Bi). These products combine through the `p1 : q2 norm to
give a lower bound on the best constant C in the global mixed-norm inclusion Lσ(P)(X1×X2) ↪→
LQ(X1 × X2).

The resulting necessary condition lets us rule out mixed-norm inclusion if there is any way
to form disjoint sequences (Ai) in X1 and (Bi) in X2 such that the resulting ‖C1(Ai)C2(Bi)‖p1 : q2

=

∞. This can be established by finding functions gi and hi such that ‖r1r2‖p1 : q2 = ∞ or is
arbitrarily large (for various choices of functions with fixed (Ai) and (Bi)), where r1(i) and r2(i)
are as defined in the preceding proof.

One possible application is in considering characteristic functions, as a quick way to obtain
a generalization of the necessary measure summability condition from Proposition 4.1.3 of∑

i aαi bβi < ∞, i.e. ∑
i

a
p1 : q2
p1 : q1
i b

p1 : q2
p2 : q2
i < ∞,

beyond the case of common measures. The below result can also be obtained directly by
computing the ratio of mixed norms ‖ f ‖Q / ‖ f ‖σ(P) where f is a combination of characteristic
functions of blocks (

∑
i ciχAi×Bi) and choosing coefficients ci for which Hölder’s inequality is

sharp.

Corollary 4.2.12. Whenever max(p2, q2) < min(p1, q1), for any disjoint sequences (Ai) of
measurable subsets of X1 and (Bi) of measurable subsets of X2, any constant C satisfying
inequality (3.2) is bounded below,

C ≥

∥∥∥∥∥∥ ν1(Ai)1/q1

µ1(Ai)1/p1

ν2(Bi)1/q2

µ2(Bi)1/p2

∥∥∥∥∥∥
`p1 : q2 (I)

.

(Naturally, this means that the above sequence norm must converge, regardless of the sets Ai

and Bi, if C < ∞; furthermore, in this case its values must be bounded above.)

Proof. Let gi(x1) = χEi(x1) and hi(x2) = χFi(x2) and apply Theorem 4.2.11. The local best
constants

C1(Ai) ≥
‖gi‖Lq1

ν1 (Ai)

‖gi‖Lp1
µ1 (Ai)

=
ν1(Ai)1/q1

µ1(Ai)1/p1

C2(Bi) ≥
‖hi‖Lq2

ν2 (Bi)

‖hi‖Lp2
µ2 (Bi)

=
ν2(Bi)1/q2

µ2(Bi)1/p2
,
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since each gi is supported on Ai and hi on Bi. Therefore this is an immediate consequence of
C ≥ ‖C1(Ai)C2(Bi)‖p1 : q2

. �

In the case of common measures λk = µk = νk, Proposition 4.1.3 that
(∑

i aαi bβi
) 1

q2
− 1

p1 ≤ C is
an easy consequence, generalized by Corollary 4.2.12. When each λ1(Ai) = ai and λ2(Bi) = bi,∥∥∥∥∥∥λ1(Ai)1/q1

λ1(Ai)1/p1

λ2(Bi)1/q2

λ2(Bi)1/p2

∥∥∥∥∥∥
`p1 : q2 (I)

=

∥∥∥∥∥a
1

p1 : q1
i b

1
p2 : q2
i

∥∥∥∥∥
p1 : q2

=

∑
i

aαi bβi

q−1
2 −p−1

1

.

4.2.3 Necessity of the Minkowski criterion for non-atomic measures
The result here generalizes Theorem 4.1.6 beyond the special case of common measures, and
allows exponents to be ∞. This establishes that, in the case of measures which are not purely
atomic, the Minkowski sufficient condition is always necessary. Relevant definitions and prop-
erties from Section 2.6 and Subsection 4.1.2 are used, and a few more added here to deal with
distinct measures µk and νk.

First, recall that Proposition 4.2.1 reduced the problem to the case where each dνk
dµk

> 0, for
k = 1, 2. This means that µk and νk have the same atoms, are either both atomless or neither
atomless, and both purely atomic or neither purely atomic. (Although this assumption remains
in place for the mixed-norm inclusion problem, for these more general measure-theoretic is-
sues, the hypotheses are stated explicitly.)

Lemma 4.2.13. Whenever ν � µ and dν
dµ > 0 µ-a.e., any measurable set has positive µmeasure

if and only if it has positive ν measure. (Equivalently, the null sets are also the same.)

Proof. For any measurable set F with µ(F) > 0, since dν
dµ > 0 µ-a.e., the nonnegative function

χF
dν
dµ is not µ-a.e zero. Consequently, ν(F) =

∫
F

dν =
∫
χF

dν
dµdµ > 0. On the other hand, if

µ(F) = 0, then of course ν(F) =
∫

F
dν
dµdµ = 0. �

Lemma 4.2.14. Whenever ν � µ and dν
dµ > 0 µ-a.e., the measures µ and ν have the same

atoms.

Proof. Let A be any µ-atom. By definition, for any measurable E ⊂ A, either µ(E) = 0 or
µ(A \ E) = 0. Because ν � µ, in the first case ν(E) = 0, while in the second ν(A \ E) = 0.
Therefore, as long as ν(A) > 0 (i.e. A is not ν-null), A is a ν-atom.

Conversely, let A be any ν-atom. Since ν(A) > 0, of course µ(A) > 0 as well. For any
measurable E ⊂ A, either ν(E) = 0 or ν(A \ E) = 0. By Lemma 4.2.13 applied to F = E or
F = A \ E, as appropriate, if ν(E) = 0, then µ(E) = 0; also, if ν(A \ E) = 0, then µ(A \ E) = 0.
One or the other must be true for any E, so A must be a µ-atom. �

Lemma 4.2.15. Whenever ν � µ and dν
dµ > 0 µ-a.e., µ is purely atomic if and only if ν is purely

atomic. Similarly, µ is atomless if and only if ν is atomless.

Proof. Lemmas 4.2.13 and 4.2.14 show that µ and ν have the same atoms, the same null sets,
and the same sets of positive measure. Because the definitions of “purely atomic” and “atom-
less” are dependent only on which measurable sets have these properties, clearly either both of
µ and ν are purely atomic or neither is, and either both of µ and ν are atomless or neither is. �
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The next theorem generalizes Theorem 4.1.6 to cover distinct measures µk and νk, as well
as∞ as a possible exponent. The basic idea remains the same, though.

Theorem 4.2.16. Suppose that neither µ1 (equivalently, ν1) nor µ2 (equivalently, ν2) is purely
atomic. If max(p2, q2) < min(p1, q1), then there is no constant C < ∞ such that, for every
measurable function f on X1 × X2,∥∥∥∥‖ f ‖Lq1

ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp2

µ2 (X2)

∥∥∥∥
Lp1
µ1 (X1)

.

Proof. Since neither νk is purely atomic, for each there is a measurable subset Ẽk ⊂ Xk with
positive νk measure which contains no νk atom. Because µk is σ-finite, we can also have 0 <
νk(Ẽk) < ∞. Decompose Ẽk = ∪n≥1

{
x ∈ Ẽk : dνk

dµk
≥ 1

n

}
, possible since dνk

dµk
> 0. By subadditivity,

at least one of these sets must have positive measure, since νk(Ẽk) > 0; that is, there must be
some nk such that the subset Ek ⊂ Ẽk where dνk

dµk
≥ 1

nk
has positive measure. Now we have

sets Ek with 0 < νk(Ek) < ∞, where dνk
dµk
≥ 1

nk
, and which contain no νk atom. Additionally,

0 < µk(Ek) < ∞ and each Ek contains no µk atom. (By Lemma 4.2.13, also 0 < µk(Ek). And
νk(Ek) =

∫
Ek

dνk
dµk

dµk ≥
∫

Ek

1
nk

dµk = 1
nk
µk(Ek), so µk(Ek) < ∞ because νk(Ek) < ∞.) Furthermore,

Lemma 4.2.14 shows that Ek contains no µk atom because it contains no νk atom.)
For any function f supported on E1 × E2, inequality (3.2) implies that∥∥∥∥‖ f ‖Lq1

ν1 (E1)

∥∥∥∥
Lq2
ν2 (E2)

≤ C
∥∥∥∥‖ f ‖Lp2

µ2 (E2)

∥∥∥∥
Lp1
µ1 (E1)

.

Because each dνk
dµk
≥ 1

nk
on Ek, by direct computation we find that

∥∥∥∥‖ f ‖Lq1
ν1 (E1)

∥∥∥∥
Lq2
ν2 (E2)

≥

(
1
n1

)1/q1
(

1
n2

)1/q2 ∥∥∥∥‖ f ‖Lq1
µ1 (E1)

∥∥∥∥
Lq2
µ2 (E2)

,

with the natural convention 1/∞ = 0 in case q1 = ∞. This implies that∥∥∥∥‖ f ‖Lq1
µ1 (E1)

∥∥∥∥
Lq2
µ2 (E2)

≤ n1/q1
1 n1/q2

2

∥∥∥∥‖ f ‖Lq1
ν1 (E1)

∥∥∥∥
Lq2
ν2 (E2)

≤ n1/q1
1 n1/q2

2 C
∥∥∥∥‖ f ‖Lp2

µ2 (E2)

∥∥∥∥
Lp1
µ1 (E1)

.

So, to disprove mixed-norm inclusion, we need only consider functions on E1 × E2 with,
rather than µk and νk, the common measure µk|Ek

on each Ek. Proposition 4.1.3 shows that it
suffices to find disjoint sequences (Am)m≥1 of measurable subsets of E1 and (Bm)m≥1 of measur-
able subsets of E2 such that, letting each am = µ1(Am) and bm = µ2(Bm),

∑
m aαmbβm = ∞, with

the exponents α and β defined in (4.1).
Proposition 4.1.2 establishes that, in this non-Minkowski case of max(p2, q2) < min(p1, q1),

α + β < 1. Furthermore, because neither ν1 nor ν2 is purely atomic, α ≥ 0 and β ≥ 0, so
0 ≤ α + β < 1.

When 0 < α + β < 1, the series
∑

m≥1 m−
1

α+β converges; let M =
∑

m≥1 m−
1

α+β . For each
i ≥ 1, let am =

µ1(E1)
M m−

1
α+β and bm =

µ2(E2)
M m−

1
α+β , so that

∑
m am = µ1(E1) and

∑
m bm =

µ2(E2). Because each Ek contains no atom of µk, by Corollary 4.1.5 there is a pairwise disjoint
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sequence (Am) of measurable subsets of E1 with each µ1Am = am and there is a pairwise disjoint
sequence (Bm) of measurable subsets of E2 with each µ2Bm = bm. As desired,

∑
m≥1 aαmbβm =

M−α−β (µ1E1)α (µ2E2)β
∑

m≥1 m−1 = ∞.
Finally, when α + β = 0 (i.e. α = β = 0), let am = µ1(E1)2−m and bm = µ2(E2)2−m,

in which case again
∑

m≥1 am = µ1(E1) and
∑

m≥1 bm = µ2(E2), so there are again disjoint
sequences (Am), (Bm) with each Am ⊂ E1, am = µ1(Am) and Bm ⊂ E2, bm = µ2(Bm). Now,∑

m≥1 aαmbβm =
∑

m≥1 1 = ∞. �

4.2.4 Two-variable permuted case, one purely atomic measure
Now, we address the final topic which was introduced in the setting of common measures
with finite exponents, that of Section 4.1.3: the situation where one measure is purely atomic.
Fortunately, with the assumption that dνk

dµk
> 0 (justified by the reduction in Proposition 4.2.1),

Lemma 4.2.14 shows that µk is purely atomic if and only if νk is. As before, the purely atomic
space is represented by the natural numbers, with different weights for the measures µk and νk.
The first step, however, is to reduce to a simpler formulation of the problem.

Recall that Proposition 4.2.1 reduces the problem to considering only the case where each
Radon-Nikodym derivative dνk

dµk
> 0 (since the region where dνk

dµk
= 0 can be discarded), and

Lemma 4.2.15 shows that, in this case, µk is purely atomic if and only if νk is purely atomic.
Therefore, in this case it makes sense to say either that Xk is a purely atomic space, or it is not.
Furthermore, Lemma 4.2.14 establishes that each µk and νk have the same atoms.

Suppose that X1 has purely atomic measures, with atoms enumerated by (Ei)i∈I; the meaning
of dνk

dµk
> 0 is that each ν1(Ei) > 0, as well as µ1(Ei) > 0. (This is achieved by tossing out any

atoms with zero νk measure, in accordance with Proposition 4.2.1.) As explained in Section
2.6, any measurable function f on X1 can be represented by a sequence ci, such that

∫
X1

f dµ1 =∑
i∈I ciµ1(Ei) and

∫
X1

f dν1 =
∑

i∈I ciν1(Ei). Similarly, when X2 has purely atomic measures,
enumerate the atoms (for both µ2 and ν2) by (F j) j∈J, so that integrals of measurable functions
over X2 become sums

∑
j∈J c jµ2(F j) and

∑
j∈J c jν2(F j).

Since it is possible that measure spaces may be neither purely atomic nor atomless, the
standard measure-theoretic decomposition into purely atomic and atomless parts is used. An
appropriate notation, as well as that for the measures of atoms, is described below.

Definition 4.2.17.

X1 = E0 ∪̇

⋃̇
i∈I

Ei

 , X2 = F0 ∪̇

⋃̇
j∈J

F j

 ,
where E0 and F0 are atomless, each Ei is an atom for µ1 and ν1, and each F j is an atom for µ2

and ν2.
Note that E0 is a null set if and only if X1 is purely atomic, while I is empty if and only if

X1 is atomless. Similarly, F0 is null if and only if X2 is purely atomic, and J is empty if and
only if X2 is atomless.

As noted in Lemma 2.6.7, measurable functions are almost constant on atoms. For con-
venience, then, functions on a purely atomic Xk will be represented as functions on the index
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set I and J. The same principle applies to functions f (x1, x2), which will be written as f (i, x2)
when X1 has purely atomic measures, f (x1, j) when X2 has purely atomic measures, or f (i, j)
with both.

Definition 4.2.18. Weights in the resulting sums are represented with the following brief forms.

u1(i) = µ1(Ei) u2( j) = µ2(F j)
v1(i) = ν1(Ei) v2( j) = ν2(F j)

The mixed norms σ(P) and Q implicitly use weighted one-variable norms for the atomic
factors, here to be denoted `p1(u1), `p2(u2), `q1(v1), and `q2(v2), as appropriate. Arguments
will also include unweighted sequence norms, denoted `p(I) and `p(J), for various values 0 <
p ≤ ∞. The colon notation p : q is used extensively in the following, as well. To repeat the
definition,

(p : q)−1 = q−1 − p−1.

For another notational convenience, note that a sequence (finite or infinite, depending on the
index set) (ai)i∈I can be referred to as a, and an `p norm ‖ai‖`p(I) can be written as ‖a‖`p(I).
Similarly, we can use the abbreviation b to refer to a sequence (b j) j∈J, and write ‖b‖`p(J) =

‖b j‖`p(J). This is used, for example, in the norm
∥∥∥v1/q2

2 u−1/p2
2

∥∥∥
`p1 : q2 (J)

of
(
v2( j)1/q2u2( j)−1/p2

)
j∈J

.

Proposition 4.2.19. Suppose that 0 < max(p2, q2) < min(p1, q1) ≤ ∞ and the two necessary
one-variable inclusions Lpk

µk (Xk) ⊂ Lqk
νk (Xk) (for k = 1, 2) hold, with best constants Ck. Fur-

thermore, assume that neither µ1 nor ν1 is purely atomic, while µ2 and ν2 are purely atomic.
Represent X2 by a countable index set J with weights u2 and v2.

Then Lσ(P) ⊂ LQ if and only if the sequence (v2( j)1/q2u2( j)−1/p2) j∈J is (q1 : q2)-summable, in
which case C1(E0)

∥∥∥v1/q2
2 u−1/p2

2

∥∥∥
`p1 : q2 (J)

≤ C ≤ C1

∥∥∥v1/q2
2 u−1/p2

2

∥∥∥
`q1 : q2 (J)

, where E0 is the atomless
part of X1.

Naturally, when X1 is atomless, this simplifies to C = C1

∥∥∥v1/q2
2 u−1/p2

2

∥∥∥
`q1 : q2 (J)

.

Proof. First, a computation to verify that (q1 : q2)-summability of v1/q2
2 u−1/p2

2 is sufficient for
inclusion, establishing the upper bound on C.

‖ f (x1, j)‖Q =

∑
j∈J

‖ f ‖q2

Lq1
ν1 (X1)

u2( j)
q2
p2

v2( j)

u2( j)
q2
p2


1

q2

≤

∑
j∈J

‖ f ‖q1

Lq1
ν1 (X1)

u2( j)
q1
p2


1

q1
∑

j∈J

 v2( j)

u2( j)
q2
p2


q1

q1−q2


q1−q2
q1q2

=

∥∥∥∥∥∥∥∥∥∥ f (x1, j)u2( j)
1

p2

∥∥∥∥
Lq1
ν1 (X1)

∥∥∥∥∥∥
`q1 (J)

∥∥∥∥∥∥∥ v1/q2
2

u1/p2
2

∥∥∥∥∥∥∥
`q1 : q2 (J)

,

by Hölder’s inequality with conjugate exponents q1
q2

and q1
q1−q2

. The first factor’s value is inde-
pendent of the order of the one-variable q1 norms (by Tonelli’s theorem if q1 < ∞), so it can
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be reversed. Next, recall from Corollary 2.6.10 that, since p2 < q1 in the non-Minkowski case,
‖·‖`q1 (J) ≤ ‖·‖`p2 (J).

‖ f ‖Q ≤

∥∥∥∥∥∥∥
∥∥∥∥∥∥
(

f u
1

p2
2

)∥∥∥∥∥∥
`q1 (J)

∥∥∥∥∥∥∥
Lq1
ν1 (X1)

∥∥∥v1/q2
2 u−1/p2

2

∥∥∥
`q1 : q2 (J)

≤

∥∥∥∥∥∥∥
∥∥∥∥∥∥
(

f u
1

p2
2

)∥∥∥∥∥∥
`p2 (J)

∥∥∥∥∥∥∥
Lq1
ν1 (X1)

∥∥∥v1/q2
2 u−1/p2

2

∥∥∥
`q1 : q2 (J)

=

∥∥∥∥∥∥∥∥
∑

j∈J

f (x1, j)p2u2( j)


1

p2

∥∥∥∥∥∥∥∥
Lq1
ν1 (X1)

∥∥∥v1/q2
2 u−1/p2

2

∥∥∥
`q1 : q2 (J)

≤ C1

∥∥∥∥∥∥∥∥
∑

j∈J

f (x1, j)p2u2( j)


1

p2

∥∥∥∥∥∥∥∥
Lp1
µ1 (X1)

∥∥∥v1/q2
2 u−1/p2

2

∥∥∥
`q1 : q2 (J)

= C1

∥∥∥v1/q2
2 u−1/p2

2

∥∥∥
`q1 : q2 (J) ‖ f ‖σ(P) ,

where the final step is applying the Lp1
µ1 (X1) ⊂ Lq1

ν1 (X1) inclusion.
Notice that, because any measurable function on a single atom F j is constant, the local best

constant C2(F j) on each atom is

C2(F j) = v2( j)1/q2u2( j)−1/p2 .

(Regardless of the values of p2 and q2, the best constant given in Corollary 2.6.9 reduces to
that simple value.)

For any finite subset J0 ⊂ J, let S (J0) denote the partial sum
∑

j∈J0

(
v2( j)1/q2u2( j)−1/p2

)q1 : q2
.

Define, for j ∈ J0,

γ j = S (J0)−1
(
v2( j)1/q2u2( j)−1/p2

)q1 : q2
= S (J0)−1C2(F j)q1 : q2 . (4.8)

Observe that
∑

j γ j = 1.
Because Lp1

µ1 (X1) ⊂ Lq1
ν1 (X1) with measures which are not purely atomic, by Corollary 2.5.7

we know that q1 ≤ p1. The atomless part E0 of X1 is then not null, and on E0 as a subspace
Lp1
µ1 (E0) ⊂ Lq1

ν1 (E0). The case p1 = q1 will be postponed, but otherwise Proposition 2.4.1 shows

that the Radon-Nikodym derivative dν1
dµ1

is in L
p1

p1−q1
µ1 (E0), and that the best constant on E0 is

C1(E0) =

∫
E0

(
dν1

dµ1
(x1)

) p1
p1−q1

dµ1(x1)


q−1

1 −p−1
1

≤ C1(X1) < ∞.

If we define the measure λ1 =
(

dν1
dµ1

) p1
p1−q1 µ1, this means that λ1(E0) = C1(E0)p1 : q1 .

Corollary 4.1.5 provides a disjoint sequence
(
A j

)
j∈J0

of measurable subsets which partitions
E0, each

λ1(A j) = γ jλ1(E0) = γ jC1(E0)p1 : q1 .
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(Since
∑

j∈J0
γ j = 1, the total

∑
j∈J0

λ1(A j) = λ1(E0).)

Proposition 2.4.1 can be applied to each A j to show that C1(A j) =

(∫
A j

(
dν1
dµ1

) p1
p1−q1 dµ1

)q−1
1 −p−1

1

;

in other words, λ1(A j) =
∫

A j

(
dν1
dµ1

(x1)
) p1

p1−q1 dµ1(x1) = C1(A j)p1 : q1 , and therefore each

C1(A j) = γ
1

p1 : q1
j C1(E0).

The necessary condition using block factorable functions, Theorem 4.2.11, yields

C ≥
∥∥∥C1(A j)C2(B j)

∥∥∥
`p1 : q2 (J0)

.

Applied with the A j above and B j = F j, and using (4.8), this means that

C ≥
∥∥∥∥∥γ 1

p1 : q1
j C1(E0)C2(F j)

∥∥∥∥∥
`p1 : q2 (J0)

=
C1(E0)

S (J0)p1 : q1

∥∥∥∥C2(F j)
q1 : q2
p1 : q2

∥∥∥∥
`p1 : q2 (J0)

= C1(E0)

(∑
j∈J0

C2(F j)q1 : q2
) 1

p1 : q2(∑
j∈J0

C2(F j)q1 : q2
) 1

p1 : q1

= C1(E0)

∑
j∈J0

C2(F j)q1 : q2


1

q1 : q2

= C1(E0)
∥∥∥v2( j)1/q2u2( j)−1/p2

∥∥∥
`q1 : q2 (J0)

.

This provides the lower bound on C, by taking the supremum over the various finite J0 ⊂ J.
As a consequence, if

(
v1/q2

2 u−1/p2
2

)
is not (q1 : q2)-summable, this lower bound can be made

arbitrarily large for various J0 ⊂ J. In this case, C = ∞.
The case p1 = q1 = ∞ is simple. For any measurable E ⊂ X1 with ν1E > 0, the local

best constant C1(E) = 1. (Of course, the best constant on a ν1-null set would be zero, but
the hypothesis that both measures be non-zero in the one-variable inclusion problem Lp

µ(X) ⊂
Lq
ν(X) would not be satisfied on such a set.) We need only obtain any disjoint sequence

(
A j

)
j∈J

of measurable A j ⊂ X1 such that each ν1A j > 0, which is easy to do within E0 since ν1

is atomless there. (With j ≥ 1, say, use Corollary 4.1.5 to obtain sets with ν1A j = 2− jν1E0,
shrinking E0 to a subset with finite ν1 measure if necessary.) Then each C1(A j) = 1, so applying
Theorem 4.2.11 with B j = F j yields (since p1 = q1)

C ≥
∥∥∥C2(F j)

∥∥∥
`p1 : q2 (J)

=
∥∥∥v1/q2

2 u−1/p1
2

∥∥∥
`q1 : q2 (J)

= C1

∥∥∥v1/q2
2 u−1/p1

2

∥∥∥
`q1 : q2 (J)

.

Finally, suppose that p1 = q1 < ∞. In this case, C1(E) = ess supE

(
dν1
dµ1

)1/q1
for any

measurable E ⊂ X1, including C1 = C1(X1). (For the following, recall that the assump-
tion dνk

dµk
> 0 means that any subset of each Xk has positive µk measure if and only if it has
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positive νk measure. Such sets will simply be said to “have positive measure”.) Fix an ar-
bitrary ε > 0 and note that the subset of E0 where

(
dν1
dµ1

)1/q1
≥ C1(E0) − ε has positive mea-

sure. Take a collection
(
A j

)
j∈J

of disjoint measurable subsets of that set, each with posi-
tive measure, possible since the measures µ1 and ν1 are atomless on E0. Observe that each
C1(A j) = ess supA j

(
dν1
dµ1

)1/q1
≥ C1(E0) − ε. Apply Theorem 4.2.11 with such A j and let each B j

be the atom F j, again with C2(F j) = v2( j)1/q2u2( j)−1/p2 .

C ≥
∥∥∥C1(A j)C2(B j)

∥∥∥
`p1 : q2 (J)

≥
∥∥∥(C1(E0) − ε) C2(F j)

∥∥∥
`p1 : q2 (J)

= (C1(E0) − ε)
∥∥∥v1/q2

2 u−1/p2
2

∥∥∥
`q1 : q2 (J)

This applies with arbitrary ε > 0, so with ε→ 0+, C ≥ C1

∥∥∥v1/q2
2 u−1/p2

2

∥∥∥
`q1 : q2 (J)

. �

Proposition 4.2.20. Suppose that 0 < max(p2, q2) < min(p1, q1) ≤ ∞ and the two necessary
one-variable inclusions Lpk

µk (Xk) ⊂ Lqk
νk (Xk) (for k = 1, 2) hold, with best constants Ck. Fur-

thermore, assume that µ1 and ν1 are purely atomic, while neither µ2 nor ν2 is purely atomic.
Represent X1 by a countable index set I with weights u1 and v1.

Then Lσ(P) ⊂ LQ if and only if the sequence
(
v1(i)1/q1u1(i)−1/p1

)
i∈I

is (p1 : p2)-summable, in

which case C2(F0)
∥∥∥v1/q1

1 u−1/p1
1

∥∥∥
`p1 : p2 (I)

≤ C ≤ C2

∥∥∥v1/q1
1 u−1/p1

1

∥∥∥
`p1 : p2 (I)

, where F0 is the atomless
part of X2.

Naturally, when X2 is atomless, this simplifies to C = C2

∥∥∥v1/q1
1 u−1/p1

1

∥∥∥
`p1 : p2 (I)

.

Proof. First, a computation to verify that (p1 : p2)-summability of v1/q1
1 u−1/p1

1 is sufficient for
inclusion. Using Lp2

µ2 (X2) ⊂ Lq2
ν2 (X2),

‖ f (i, x2)‖Q =

∑
j∈J

‖ f ‖q2
`q1 (v1)


1

q2

≤ C2

(∫
X2

∥∥∥ f v1/q1
1

∥∥∥p2

`q1 (I)
dµ2(x2)

) 1
p2

.

In the non-Minkowski case, p2 < q1, so by Corollary 2.6.10, ‖·‖`q1 (I) ≤ ‖·‖`p2 (I). Together with
Tonelli’s inequality (to exchange the order of the Lp2 one-variable norms),

‖ f ‖Q ≤ C2

(∫
X2

∥∥∥ f v1/q1
1

∥∥∥p2

`p2 (I)
dµ2(x2)

) 1
p2

= C2

∥∥∥∥∥∥∥∥ f v1/q1
1

∥∥∥
Lp2
µ2 (X2)

∥∥∥∥∥
`p2 (I)

= C2

∑
i∈I

‖ f ‖p2

Lp2
µ2 (X2)

u1(i)p2/p1
(
v1(i)1/q1u1(i)−1/p1

)p2


1

p2

.

By Hölder’s inequality with the conjugate exponents p1
p2

and p1
p1−p2

,

‖ f ‖Q ≤ C2

∥∥∥∥‖ f ‖Lp2
µ2 (X2) u1/p1

1

∥∥∥∥
`p1 (I)

∥∥∥v1/q1
1 u−1/p1

1

∥∥∥
`

p1 p2
p1−p2 (I)

= C2

∥∥∥v1/q1
1 u−1/p1

1

∥∥∥
`p1 : p2 (I) ‖ f ‖σ(P) .

The lower bound on C proceeds much as in the previous proposition. Because any measur-
able function on a single atom Ei is constant, the local best constant C1(Ei) is

C1(Ei) = v1(i)1/q1u1(i)−1/p1 .
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For any finite subset I0 ⊂ I, let S (I0) denote the partial sum
∑

i∈I0

(
v1(i)1/q1u1(i)−1/p1

)p1 : p2
. De-

fine, for i ∈ I0,

γi = S (I0)−1
(
v1(i)1/q1u1(i)−1/p1

)p1 : p2
= S (I0)−1C1(Ei)p1 : p2 , (4.9)

so that
∑

i γi = 1.
Because Lp2

µ2 (X2) ⊂ Lq2
ν2 (X2) with measures which are not purely atomic, by Corollary 2.5.7

we know that q2 ≤ p2. The atomless part F0 of X2 is then not null, and on F0 as a subspace
Lp2
µ2 (F0) ⊂ Lq2

ν2 (F0). Postponing the case p2 = q2, otherwise Proposition 2.4.1 shows that the

Radon-Nikodym derivative dν2
dµ2

is in L
p2

p2−q2
ν2 (F0), and that the best constant in F0 is

C2(F0) =

∫
F0

(
dν2

dµ2
(x2)

) p2
p2−q2

dµ2(x2)


q−1

2 −p−1
2

≤ C2(X2) < ∞.

Define λ2 =
(

dν2
dµ2

) p2
p2−q2 µ2, so that λ2(F0) = C2(F0)p1 : q2 .

Partition F0 into a disjoint sequence (Bi)i∈I0 of measurable subsets, by Corollary 4.1.5, with
each

λ2(Bi) = γiλ2(F0) = γiC2(F0)p2 : q2 .

Proposition 2.4.1 shows that each C2(Bi) =

(∫
Bi

(
dν2
dµ2

) p2
p2−q2 dµ2

)q−1
2 −p−1

2

. Then

C2(Bi) = γ
1

p2 : q2
i C2(F0).

Use Ai = Ei and the Bi above, plus (4.9), in the necessary condition for block factorable
functions, Theorem 4.2.11.

C ≥ ‖C1(Ai)C2(Bi)‖`p1 : q2 (I0)

=
C2(F0)

S (I0)
1

p2 : q2

∥∥∥∥C1(Ei)
p1 : p2
p1 : q2

∥∥∥∥
`p1 : q2 (I0)

= C2(F0)

(∑
i∈I0

C1(Ei)p1 : p2
) 1

p1 : q2(∑
i∈I0

(
v1/q1

1 u−1/p1
1

)p1 : p2
) 1

p2 : q2

= C2(F0)

∑
i∈I0

(
v1/q1

1 u−1/p1
1

)p1 : p2


1

p1 : p2

= C2(F0)
∥∥∥v1/q1

1 u−1/p1
1

∥∥∥
`p1 : p2 (I0)

.

When
(
v1/q1

1 u−1/p1
1

)
i∈I

is not (p1 : p2)-summable, this lower bound can be arbitrarily large for
different choices of I0, so C = ∞.

In the non-Minkowski case, neither p2 nor q2 can be∞, so all that remains is p2 = q2 < ∞.
In this case, for any measurable F ⊂ X2, C2(F) = ess supF

(
dν2
dµ2

)1/q2
. Fix an arbitrary ε > 0 and

note that
(

dν2
dµ2

)1/q2
≥ C2(F0)−ε on a subset of F0 of positive measure. Since the measures on F0
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are atomless, we can take a collection (Bi)i∈I of disjoint measurable subsets, each with positive
measure and C2(Bi) = ess supBi

(
dν2
dµ2

)1/q2
≥ C2(F0) − ε. By Theorem 4.2.11 with each Ai = Ei,

recalling that C1(Ei) = v1(i)1/q1u1(i)−1/p1 ,

C ≥ ‖C1(Ei) (C2(F0) − ε)‖`p1 : q2 (I)

= (C2(F0) − ε)
∥∥∥v1/q1

1 u−1/p1
1

∥∥∥
`p1 : p2 (I)

.

As ε→ 0+, C ≥ C2(F0)
∥∥∥v1/q1

1 u−1/p1
1

∥∥∥
`p1 : p2 (I)

. Once more, v1/q1
1 u−1/p1

1 must be (p1 : p2)-summable
to have C < ∞. �



Chapter 5

Non-Minkowski case with two atomic
measures

5.1 Weight summability sufficient conditions
When all measures are purely atomic, we represent integrals in either space as weighted series,
with weights (u1(i))i∈I for µ1, (v1(i))i∈I for ν1, (u2( j)) j∈J for µ2, and (v2( j)) j∈J for ν2. The previous
arguments that (q1 : q2)-summability of v1/q2

2 u−1/p2
2 and (p1 : p2)-summability of v1/q1

1 u−1/p1
1 are

sufficient conditions for Lσ(P) ⊂ LQ still apply, just as when one space has purely atomic
measures. However, they might not now be necessary, as it may not be possible to produce
similar counterexamples when both spaces are purely atomic.

The following results establish that (p1 : q2)-summability of v1/q2
2 u−1/p2

2 or v1/q1
1 u−1/p1

1 is also
sufficient for Lσ(P) ⊂ LQ. Although these conditions are also valid for the case of one purely
atomic space, they are less useful there.

Specifically, when X1 has measures which are not purely atomic, by Corollary 2.5.7 the
necessary inclusion Lp1

µ1 (X1) ⊂ Lq1
ν1 (X1) implies that q1 ≤ p1. Therefore q−1

2 −q−1
1 ≤ q−1

2 − p−1
1 , so(

q−1
2 − p−1

1

)−1
= p1 : q2 ≤ q1 : q2 =

(
q−1

2 − q−1
1

)−1
. Corollary 2.6.10 then establishes that (p1 : q2)-

summability implies (q1 : q2)-summability. Any theorem should be given with the weakest
hypothesis possible, so when X1 does not have purely atomic measures, the weaker (q1 : q2)-
summability condition on

(
v1/q2

2 u−1/p2
2

)
(which, in that case, is also necessary) is preferred.

Similarly, when X2 does not have purely atomic measures, the weaker (p1 : p2)-summability
condition on

(
v1/q1

1 u−1/p1
1

)
is used.

When both X1 and X2 have purely atomic measures, the preferred condition may vary.
When p1 > q1, (q1 : q2)-summability of

(
v1/q2

2 u−1/p2
2

)
is the preferred sufficient condition for in-

clusion, but it is also possible that p1 < q1, so that (p1 : q2)-summability is preferred. Similarly,
when p2 > q2, the weaker inclusion condition is (p1 : p2)-summability of

(
u1/q1

1 u−1/p1
1

)
, while

when p2 < q2, we would look for (p1 : q2)-summability.

Proposition 5.1.1. Suppose that 0 < max(p2, q2) < min(p1, q1) ≤ ∞ and that µ2 and ν2 are
purely atomic. Represent X2 by a countable index set J with weights u2 and v2.

If the sequence
(
v2( j)1/q2u2( j)−1/p2

)
j∈J

is (p1 : q2)-summable, then Lσ(P) ⊂ LQ, with

C ≤ C1

∥∥∥v1/q2
2 u−1/p2

2

∥∥∥
`p1 : q2 (J)

.

63
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Proof. Consider any f (x1, j) ∈ L+(X1 × J). Using Lp1
µ1 (X1) ⊂ Lq1

ν1 (X1),

‖ f (x1, j)‖Q =

∑
j∈J

‖ f ‖q2

Lq1
ν1 (X1)

u2( j)
q2
p2

(
v2( j)1/q2u2( j)−1/p2

)q2


1

q2

≤ C1

∑
j∈J

‖ f ‖q2

Lp1
µ1 (X1)

u2( j)
q2
p2

(
v2( j)1/q2u2( j)−1/p2

)q2


1

q2

.

Next, Hölder’s inequality with the conjugate exponents p1
q2

and p1
p1−q2

yields

‖ f ‖Q ≤ C1

∥∥∥∥‖ f ‖Lp1
µ1 (X1) u2( j)

1
p2

∥∥∥∥
`p1 (J)

∑
j∈J

(
v2( j)1/q2u2( j)−1/p2

) p1q2
p1−q2


p1−q2
p1q2

.

Reversing the order of the Lp1 norms (by Tonelli’s theorem if p1 < ∞),

‖ f ‖Q ≤ C1

∥∥∥v2( j)1/q2u2( j)−1/p2
∥∥∥
`q1 : q2 (J)

∥∥∥∥∥∥∥ f u1/p2
2

∥∥∥
`p1 (J)

∥∥∥∥
Lp1
µ1 (X1)

.

Corollary 2.6.10 shows that ‖·‖`p1 (J) ≤ ‖·‖`p2 (J), so

‖ f ‖Q ≤ C1

∥∥∥v2( j)1/q2u2( j)−1/p2
∥∥∥
`q1 : q2 (J)

∥∥∥∥∥∥∥ f u1/p2
2

∥∥∥
`p2 (J)

∥∥∥∥
Lp1
µ1 (X1)

= C1

∥∥∥v2( j)1/q2u2( j)−1/p2
∥∥∥
`q1 : q2 (J) ‖ f ‖σ(P) .

�

Proposition 5.1.2. Suppose that 0 < max(p2, q2) < min(p1, q1) ≤ ∞ and that µ1 and ν1 are
purely atomic. Represent X1 by a countable index set I with weights u1 and v1.

If the sequence
(
v1(i)1/q1u1(i)1/p1

)
i∈I

is (p1 : q2)-summable, then Lσ(P) ⊂ LQ, with C ≤

C2

∥∥∥v1/q1
1 u−1/p1

1

∥∥∥
`p1 : q2 (I)

.

Proof. Consider any f (i, x2) ∈ L+(I×X2). Because q2 < q1, Corollary 2.6.10 provides ‖·‖`q1 (I) ≤

‖·‖`q2 (I).

‖ f (i, x2)‖Q =

(∫
X1

‖ f (i, x2)‖q2
`q1 (I) v1(i)

q2
q1 dν2(x2)

) 1
q2

≤

∫
X1

∑
i∈I

f (i, x2)q2

 v1(i)
q2
q1 dν2(x2)


1

q2

=

∑
i∈I

(∫
X1

f (i, x2)q2dν2(x2)
)

v1(i)
q2
q1


1

q2
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with the order of integration reversed by Tonelli’s theorem. After some rewriting, apply
Hölder’s inequality with the conjugate exponents p1

q2
and p1

p1−q2
.

‖ f ‖Q ≤

∑
i∈I

(∫
X2

f (i, x2)q2dν2(x2)
)

u1(i)
q2
p1

(
v1(i)1/q1u1(i)−1/p1

)q2


1

q2

≤

∥∥∥∥∥∥∥
(∫

X2

f (i, x2)q2dν2(x2)
) 1

q2

u1(i)
1

p1

∥∥∥∥∥∥∥
`p1 (I)

∑
i∈I

(
v1(i)1/q1u1(i)−1/p1

) p1q2
p1−q2


p1−q2
p1q2

.

The inclusion Lp2
µ2 (X2) ⊂ Lq2

ν2 (X2) then yields

‖ f ‖Q ≤ C2

∥∥∥∥‖ f ‖Lp2
µ2 (X2)

∥∥∥∥
`p1 (u1)

∥∥∥v1/q1
1 u−1/p1

1

∥∥∥
`p1 : q2 (I)

= C2

∥∥∥v1/q1
1 u−1/p1

1

∥∥∥
`p1 : q2 (I) ‖ f ‖σ(P) .

�

5.2 Classifying extremal functions
With both measures purely atomic, we identify functions on X1 × X2 with functions f (i, j) on
I × J, for some (at most) countable index sets I and J. As noted earlier, the measures of atoms
become weights on the elements of I and J, so that, where (Ei)i∈I enumerates the atoms on X1

and
(
F j

)
j∈J

enumerates the atoms on X2,

u1(i) = µ1(Ei) u2( j) = µ2(F j)
v1(i) = ν1(Ei) v2( j) = ν2(F j).

Recall that Proposition 4.2.1 reduces to the case where each dνk
dµk

> 0 µk-a.e., which is assumed.
This way, each pair µk and νk has the same atoms, so the phrase “the atoms on Xk” is not
ambiguous. This also means that the uk and vk sequences are strictly positive.

The functions f (i, j) can be thought of as possibly infinite matrices
(

fi, j

)
. Matrices of

specific forms may prove particularly easy to analyze; Corollary 4.2.12, with its combinations
of characteristic functions of blocks, in this purely atomic case is about considering matrices
which, up to reordering of rows and columns, are block diagonal and constant on each block.
The expression it gives as a lower bound on C is computed as a best constant for all such
functions with a particular division into blocks; it gives an `p1 : q2 norm of terms each of which
is a best constant for constant functions on the block Ai × Bi.

Measurable functions are always (almost everywhere) constant on atoms, so by using the
atoms Ei and F j as blocks (corresponding to singletons i ∈ I and j ∈ J for f (i, j)) the special
case of blockwise constant functions actually becomes general; in terms of matrices, it is only
natural that each entry contains a single value. Given finite or infinite sequences (in) in I and
( jn) in J, the inequality from Corollary 4.2.12 becomes

C ≥

∑
n

(
v1(in)1/q1

u1(in)1/p1

v2( jn)1/q2

u2(in)1/p2

)p1 : q2


1
p1 : q2

,
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obtained by considering functions which correspond to matrices ( fi, j) with at most one entry in
each row and in each column, and which can thus be rearranged to be diagonal.

(To clarify, lest we be tempted to start thinking about diagonalizability, this matrix con-
ceptualization is only a convenience, to provide a simple way to imagine these purely atomic
functions and to describe certain special types which are easy to work with. The term “matrix”
naturally brings to mind linear algebra and the properties of well-behaved linear operators, but
none of that is actually used here. While it is possible that matrix multiplication could provide
a meaningful operation which would enrich these ideas somehow, it is not clear that there is a
reasonable application of linear algebra here.)

Although special classes of functions give lower bounds on C, to obtain upper bounds we
must either consider more general functions or prove that the general best constant C can be
achieved, or at least approached, by the ratio ‖ f ‖Q / ‖ f ‖σ(P) for functions f from a special class.
Ideally, we want conditions when it’s sufficient to consider functions representable by diagonal
matrices (for some order of I and J), i.e. when for each i ∈ I there is at most one j such that
f (i, j) is nonzero, and for each j ∈ J there is at most one i such that f (i, j) is nonzero. If not,
it still may be possible to allow at most one non-zero entry per row, or at most one non-zero
entry per column.

First, a demonstration that it is sufficient to work with functions represented by finite-
dimensional matrices.

Proposition 5.2.1. Let C denote the least nonnegative constant such that, for any f ∈ L+(I×J),
‖ f ‖Q ≤ C ‖ f ‖σ(P), and recall that C = sup f,0 ‖ f ‖Q/‖ f ‖σ(P). Then there is a sequence ( fk) such
that:

• Each fk has a corresponding integer Nk such that fk(i, j) = 0 except on I0(k) × J0(k), for
particular finite sets I0(k) ⊂ I and J0(k) ⊂ J with cardinality at most Nk.

• limk→∞
‖ fk‖Q
‖ fk‖σ(P)

= C.

Proof. Fix any enumeration (im) of I and any enumeration ( jm) of J. For each k ≥ 1, there is
some gk such that

C −
1
k
<
‖gk‖Q

‖gk‖σ(P)
≤ C.

(Take gk = |gk| ≥ 0, valid since this doesn’t change the norms at all.) For N ≥ 1, let χN(im, jm̄) =

1 if m ≤ N and m̄ ≤ N, and χN(i, j) = 0 otherwise. Every Lp norm has the Fatou property, so
mixed Lp norms do as well (as stated in Part I of [4] immediately following the mixed-norm
triangle inequality); therefore,

lim
N→∞

‖gkχN‖Q

‖gkχN‖σ(P)
=
‖gk‖Q

‖gk‖σ(P)

because limN→∞ gkχN = gk pointwise.
(Recall that a Banach function norm ρ is said to have the Fatou property when 0 ≤ hn ↗ h

implies ρ(hn) ↑ ρ(h). The Monotone Convergence Theorem establishes this for Lp with p < ∞,
and it’s fairly straightforward for L∞ as well.)
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Therefore there is some Nk such that
‖gkχNk ‖Q

‖gkχNk ‖σ(P)
is within 1

k of ‖gk‖Q

‖gk‖σ(P)
. Let fk = gkχNk and the

triangle inequality gives

C −
2
k
<
‖ fk‖Q

‖ fk‖σ(P)
≤ C.

Of course, each fk is supported on the set I0(k)× J0(k), where I0(k) = {im : m ≤ Nk} and J0(k) =

{ jm : m ≤ Nk}. Each factor has cardinality at most Nk. �

Corollary 5.2.2. Let C denote the least nonnegative constant such that, for any f ∈ L+(I × J),
‖ f ‖Q ≤ C ‖ f ‖σ(P). For any particular finite subsets I0 ⊂ I and J0 ⊂ J, let C(I0, J0) denote the
least nonnegative constant such that, for any f ∈ L+(I, J) supported on I0 × J0 (that is, zero off
I0 × J0), ‖ f ‖Q ≤ C(I0, J0) ‖ f ‖σ(P).

Then C is the supremum of C(I0, J0) over all finite subsets I0 ⊂ I and J0 ⊂ J.

Proof. By Proposition 5.2.1, there is a sequence ( fk) of functions, each fk ∈ L+(I×J) supported
on I0(k)×J0(k) for some finite subsets I0(k) ⊂ I and J0(k) ⊂ J, such that limk→∞ ‖ fk‖Q / ‖ fk‖σ(P) =

C. Any C(I0, J0) is the best constant for a subset of L+(I × J), so C(I0, J0) ≤ C. Therefore

C = sup
k

‖ fk‖Q

‖ fk‖σ(P)
≤ sup

k
C (I0(k), J0(k)) ≤ sup

I0,J0

C (I0, J0) ≤ C.

�

Proposition 5.2.3. Suppose that 0 < p2 ≤ q2 < min(p1, q1) ≤ ∞ (the non-Minkowski case with
the additional constraint p2 ≤ q2) and let I0 ⊂ I and J0 ⊂ J be any finite subsets of the index
sets for f (i, j). Let C(I0, J0) be the least constant such that, for any f (i, j) for which all nonzero
values have i ∈ I0 and j ∈ J0,

‖ f ‖Q ≤ C(I0, J0) ‖ f ‖σ(P) .

Then C(I0, J0) can be achieved as ‖ f ‖Q / ‖ f ‖σ(P) where f has at most one non-zero entry per
row, i.e. for each fixed i ∈ I0, there is at most one j ∈ J0 such that f (i, j) , 0.

Proof. Let f (i, j) ∈ L+(I × J) be supported on I0 × J0, i.e. zero except for (i, j) ∈ I0 × J0, with
‖ f ‖σ(P) = 1, ‖ f ‖Q = C(I0, J0), and among such functions the fewest possible non-zero values.
(The maximum is achieved since L+(I0 × J0) is finite-dimensional, so the unit sphere of Lσ(P)

there is compact, and any continuous function achieves its optima on a compact domain. Well-
ordering of the natural numbers provides that among those functions achieving the maximum,
there is a minimum number of non-zero values.) Suppose, in order to produce a contradiction,
that there is some r ∈ I0 with distinct s1, s2 ∈ J0 such that both f (r, s1) > 0 and f (r, s2) > 0.

First suppose that q1 = ∞. In this case, define g(i, j) to match f (i, j), except replacing
whichever of f (r, s1) and f (r, s2) is lesser by zero. Because max j∈J0 f (r, j) = max j∈J0 g(r, j),
‖ f ‖Q = ‖g‖Q. Then, since g ≤ f , ‖g‖σ(P) ≤ ‖ f ‖σ(P) = 1. Define h(i, j) = ‖g‖−1

σ(P) g(i, j) and
observe that

‖h‖σ(P) =
‖g‖σ(P)

‖g‖σ(P)
= 1 while ‖h‖Q =

‖g‖Q
‖g‖σ(P)

≥ ‖g‖Q = C(I0, J0).

This means that h is in the Lσ(P) unit sphere and achieves the maximum value C(I0, J0) of the
LQ mixed norm on it. However, h has one fewer non-zero value than f , contradicting the
minimality of the number of non-zero values in f .
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For the remainder, suppose that q1 < ∞. Let T denote the open interval

T = (− f (r, s1)p2u2(s1), f (r, s2)p2u2(s2))

and define

a(θ) =

(
f (r, s1)p2 +

θ

u2(s1)

) 1
p2

and b(θ) =

(
f (r, s2)p2 −

θ

u2(s2)

) 1
p2

for θ in the closed interval T =
[
− f (r, s1)p2u2(s1), f (r, s2)p2u2(s2)

]
. Note that a(0) = f (r, s1),

b(0) = f (r, s2), and ap2u2(s1) + bp2u2(s2) is constant. For θ ∈ T , a′(θ) > 0 and b′(θ) < 0. On
this open interval, differentiating the constant a(θ)p2u2(s1) + b(θ)p2u2(s2) shows that

ap2−1a′u2(s1) = bp2−1 (
−b′

)
u2(s2).

Take the logarithm and differentiate to get

(p2 − 1) log a + log a′ + log u2(s1) = (p2 − 1) log b + log
(
−b′

)
+ log u2(s2)

(p2 − 1)
a′

a
+

a′′

a′
= (p2 − 1)

b′

b
+

b′′

b′
(5.1)

For each value θ ∈ T , define a modified version fθ of f by

fθ(i, j) =


a(θ) if i = r, j = s1

b(θ) if i = r, j = s2

f (i, j) otherwise

and observe that f0 = f , and for all θ ∈ T

‖ fθ‖
p1
σ(P) =

∑
i∈I0

∑
j∈J0

fθ(i, j)p2u2( j)


p1
p2

u1(i) = 1,

i.e. each such fθ is on the unit sphere of Lσ(P). (When p1 = ∞, instead observe that, for each

θ ∈ T , ‖ fθ‖σ(P) = maxi∈I0

(∑
j∈J0

fθ(i, j)p2u2( j)
) 1

p2 = 1, because the inner sum is always the same
as in f .) Because ‖ f ‖Q achieves the maximum value, C(I0, J0), for f supported on I0 × J0 in
the Lσ(P) unit sphere, the function

‖ fθ‖
q2
Q =

∑
j∈J0

∑
i∈I0

fθ(i, j)q1v1(i)


q2
q1

v2( j) (5.2)

of θ has a maximum at zero. Only two terms vary with θ, so define

A =
∑
i∈I0

f (i, s1)q1v1(i) and B =
∑
i∈I0

f (i, s2)q1v1(i)

and this means that the function F defined by

F(θ) = (A − f (r, s1)q1v1(r) + a(θ)q1v1(r))
q2
q1 v2(s1)

+ (B − f (r, s2)q1v1(r) + b(θ)q1v1(r))
q2
q1 v2(s2)

(5.3)
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has a maximum at θ = 0. Therefore F′(0) = 0 and F′′(0) ≤ 0.

F′(θ) =
q2

q1
(A − f (r, s1)q1v1(r) + aq1v1(r))

q2
q1
−1 v2(s1)

(
q1aq1−1a′v1(r)

)
−

q2

q1
(B − f (r, s2)q1v1(r) + bq1v1(r))

q2
q1
−1 v2(s2)

(
q1bq1−1 (

−b′
)

v1(r)
)

=x(θ) − y(θ),

where

x(θ) = q2 (A − f (r, s1)q1v1(r) + aq1v1(r))
q2
q1
−1 aq1−1a′v1(r)v2(s1),

y(θ) = q2 (B − f (r, s2)q1v1(r) + bq1v1(r))
q2
q1
−1 bq1−1 (

−b′
)

v1(r)v2(s2),

and both x and y are strictly positive functions with x(0) = y(0) and x′(0) ≤ y′(0).
(F′(0) = 0 gives x(0) = y(0) and x′(0) ≤ y′(0) because F′′(0) ≤ 0. Strict positivity of

A − f (r, s)q1u1(r) + aq1u1(r) and B f (r, t)q1u1(r) + bq1u1(r) is because a′ > 0, b′ < 0, and having
a(θ) and b(θ) replace terms in A and B still leaves a nonnegative sum, with the replaced terms
strictly positive within the open interval T .)

This means that (
log x

)′ (0) =
x′(0)
x(0)

≤
y′(0)
y(0)

=
(
log y

)′ (0). (5.4)

Differentiating log x and log y,

(
log x

)′ (θ) = (q2 − q1)
aq1−1a′v1(r)

A − f (r, s1)q1v1(r) + aq1v1(r)
+ (q1 − 1)

a′

a
+

a′′

a′(
log y

)′ (θ) = (q2 − q1)
bq1−1b′v1(r)

B − f (r, s2)q1v1(r) + bq1v1(r)
+ (q1 − 1)

b′

b
+

b′′

b′

and, since the denominators are A and B, respectively, when θ = 0, (5.4) gives

(q2 − q1)
a(0)q1

A
a′(0)
a(0)

v1(r) + (q1 − 1)
a′(0)
a(0)

+
a′′(0)
a′(0)

≤ (q2 − q1)
b(0)q1

B
b′(0)
b(0)

v1(r) + (q1 − 1)
b′(0)
b(0)

+
b′′(0)
b′(0)

.

Subtracting (5.1) evaluated at θ = 0 from both sides,

(q2 − q1)
a(0)q1

A
a′(0)
a(0)

v1(r) + (q1 − p2)
a′(0)
a(0)

≤ (q2 − q1)
b(0)q1

B
b′(0)
b(0)

v1(r) + (q1 − p2)
b′(0)
b(0)

.

(5.5)

Divide by a(0)p2−1a′(0)u2(s1) = b(0)p2−1 (−b′(0)) u2(s2) > 0:

(q2 − q1) a(0)q1−p2v1(r)
Au2(s1)

+
q1 − p2

a(0)p2u2(s1)
≤ −

(q2 − q1) b(0)q1−p2v1(r)
Bu2(s2)

−
q1 − p2

b(0)p2u2(s2)
.



70 Chapter 5. Non-Minkowski case with two atomic measures

That is,

(q2 − p2) a(0)q1v1(r) − (q1 − p2) a(0)q1v1(r)
Aa(0)p2u2(s1)

+
(q1 − p2) A

Aa(0)p2u2(s1)

≤ −
(q2 − q1) b(0)q1v1(r) − (q1 − p2) b(0)q1v1(r)

Bb(0)p2u2(s2)
−

(q1 − p2) B
Bb(0)p2u2(s2)

,

so
(q2 − p2) a(0)q1v1(r) + (q1 − p2) (A − a(0)q1v1(r))

Aa(0)p2u2(s1)

≤ −
(q2 − p2) b(0)q1v1(r) + (q1 − p2) (B − b(0)q1v1(r))

Bb(0)p2u2(s2)
.

However, 0 < a(0)q1v1(r) = f (r, s1)q1v1(r) ≤ A and 0 < b(0)q1v1(r) = f (r, s2)q1v1(r) ≤ B, so
with p2 ≤ q2 < min(p1, q1), the left-hand side is at least zero while the right-hand side is at most
zero. Therefore, both sides must be zero, so that p2 = q2, A = a(0)q1v1(r), and B = b(0)q1v1(r).
These equations, plus the definitions of a(θ) and b(θ), allow the simplification of F(θ) from the
formula in (5.3) to

F(θ) = aq2v1(r)
q2
q1 v2(s1) + bq2v1(r)

q2
q1 v2(s2)

= ap2v1(r)
p2
q1 v2(s1) + bp2v1(r)

p2
q1 v2(s2)

= v1(r)
p2
q1

(
f (r, s1)p2v2(s1) + f (r, s2)p2v2(s2) +

(
v2(s1)
u2(s1)

−
v2(s2)
u2(s2)

)
θ

)
.

As noted before, F has a maximum at the interior point zero, so since it is an affine function
of θ, it must be constant. Therefore the expression (5.2) is constant with respect to θ ∈ T
and, by continuity, θ ∈ T . Consequently, ‖ fθ‖Q = C(I0, J0) for any θ ∈ T , including at either
end. But there is one fewer non-zero value of fθ for endpoint θ; when θ = − f (r, s1)p2u2(s1),
a(θ) = fθ(r, s1) = 0, while when θ = f (r, s2)p2u2(s2), b(θ) = fθ(r, s2) = 0. The minimality of
the number of non-zero values in f is therefore contradicted. �

For the next argument, it is convenient to note that, by the characterizaation

C = sup
f,0

‖ f ‖Q
‖ f ‖σ(P)

and by homogeneity,

C = sup
{
‖g‖Q : ‖g‖σ(P) = 1

}
=

(
inf

{
‖h‖σ(P) : ‖h‖Q = 1

})−1
.

In detail, given any f which is not almost everywhere zero, define g = ‖ f ‖−1
σ(P) f . Observe that

‖g‖σ(P) = 1 and ‖g‖Q =
‖ f ‖Q
‖ f ‖σ(P)

,

so ‖g‖Q ≤ C and can be brought arbitrarily close to C, which must be the supremum. Similarly,
let h = ‖ f ‖−1

Q f .

‖h‖σ(P) =
‖ f ‖σ(P)

‖ f ‖Q
and ‖h‖Q = 1.
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Therefore ‖h‖−1
σ(P) ≤ C, so ‖h‖σ(P) ≥ C−1, and can be brought arbitrarily close to C−1, which

therefore is the infimum.
These same remarks apply, of course, to the best constants C(I0, J0) for functions supported

on the finite sets I0 × J0, where compactness of the norms’ unit spheres means that

max
{
‖ f ‖Q : ‖ f ‖σ(P) = 1

}
= C(I0, J0)

min
{
‖ f ‖σ(P) : ‖ f ‖Q = 1

}
= C(I0, J0)−1.

Proposition 5.2.4. Suppose that 0 < max(p2, q2) < p1 ≤ q1 ≤ ∞ (the non-Minkowski case
with the additional constraint p1 ≤ q1) and let I0 ⊂ I and J0 ⊂ J be any finite subsets of the
index sets for f (i, j). Let C(I0, J0) be the least constant such that, for any f (i, j) for which all
nonzero values have i ∈ I0 and j ∈ J0,

‖ f ‖Q ≤ C(I0, J0) ‖ f ‖σ(P) .

Then C(I0, J0) can be achieved as ‖ f ‖Q / ‖ f ‖σ(P) where f has at most one non-zero entry per
column, i.e. for each fixed j ∈ J0, there is at most one i ∈ I0 such that f (i, j) , 0.

Proof. Let F(i, j) ∈ L+(I × J) be supported on I0 × J0, i.e. zero except for (i, j) ∈ I0 × J0, with
‖ f ‖σ(P) = C(I0, J0)−1, ‖ f ‖Q = 1, and among such functions the fewest possible non-zero values.
(The minimum C(I0, J0)−1 is achieved since L+(I0× J0) is finite-dimensional, so the unit sphere
of LQ there is compact.) Suppose, in order to produce a contradiction, that there is some s ∈ J0

with distinct r1, r2 ∈ I0 such that both f (r1, s) > 0 and f (r2, s) > 0.
First suppose that q1 = ∞, in which case

‖ f ‖Q =

∑
j∈J0

(
max
i∈I0

f (i, j)
)q2

v2( j)


1

q2

.

Changing f to a new function g by reducing the lesser of f (r1, s) and f (r2, s) to zero will not
change maxi∈I0 f (i, s), so ‖g‖Q = ‖ f ‖Q = 1. However, because g ≤ f , ‖g‖σ(P) ≤ ‖ f ‖σ(P) =

C(I0, J0)−1, so it must be the minimum, C(I0, J0)−1. This contradicts the minimal number of
non-zero entries in f .

For the remainder, suppose that q1 < ∞ and therefore, by hypothesis, p1 < ∞ as well. Let
T denote the open interval (− f (r1, s)q1v1(r1), f (r2, s)q1v1(r2)) and define

a(θ) =

(
f (r1, s)q1 +

θ

v1(r1)

) 1
q1

b(θ) =

(
f (r2, s)q1 −

θ

v1(r2)

) 1
q1

for θ in the closed interval T . Because a(θ)q1v1(r1) + b(θ)q1v1(r2) is constant,

aq1−1a′v1(r1) = bq1−1 (
−b′

)
v1(r2).

Differentiate the logarithm to obtain

(q1 − 1)
a′

a
+

a′′

a′
= (q1 − 1)

b′

b
+

b′′

b′
. (5.6)
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For any θ ∈ T ,

‖ fθ‖
q2
Q =

∑
j∈J0

∑
i∈I0

fθ(i, j)q1v1(i)


q2
q1

v2( j) = 1,

so ‖ fθ‖Q = 1. Because ‖ f ‖σ(P) achieves its minimum value, C(I0, J0)−1, for f supported on
I0 × J0 in the LQ unit sphere, the function

‖ fθ‖
p1
σ(P) =

∑
i∈I0

∑
j∈J0

fθ(i, j)p2v1(i)


p1
p2

u1(i) (5.7)

has a minimum at θ = 0. Define

A =
∑
j∈J0

fθ(r1, j)p2u2( j) and B =
∑
j∈J0

fθ(r2, j)p2u2( j).

The function

F(θ) = (A − f (r1, s)p2u2(s) + ap2u2(s))
p1
p2 u1(r1)

+ (B − f (r2, s)p2u2(s) + bp2u2(s))
p1
p2 u1(r2)

(5.8)

has a minimum at zero. Therefore F′(0) = 0 and F′′(0) ≥ 0.

F′(θ) =
p1

p2
(A − f (r1, s)p2u2(s) + ap2u2(s))

p1
p2
−1 u1(r1)

(
p2ap2−1a′u2(s)

)
−

p1

p2
(B − f (r2, s)p2u2(s) + bp2u2(s))

p1
p2
−1 u1(r1)

(
p2bp2−1 (

−b′
)

u2(s)
)

=x(θ) − y(θ)

where

x(θ) = p1 (A − f (r1, s)p2u2(s) + ap2u2(s))
p1
p2
−1 ap2−1a′u1(r1)u2(s)

y(θ) = p1 (B − f (r2, s)p2u2(s) + bp2u2(s))
p1
p2
−1 bp2−1 (

−b′
)

u1(r2)u2(s)

and both x and y are strictly positive functions with x(0) = y(0), since F′(0) = 0 and x′(0) ≥
y′(0), because F′′(0) ≥ 0. Therefore

(
log y

)′ (0) =
y′(0)
y(0)

≤
x′(0)
x(0)

=
(
log x

)′ (0).

Differentiate log x and log y to find that

(
log y

)′ (θ) = (p1 − p2)
bp2−1b′u2(s)

B − f (r2, s)p2u2(s) + ap2u2(s)
+ (p2 − 1)

b′

b
+

b′′

b′(
log x

)′ (θ) = (p1 − p2)
ap2−1a′u2(s)

A − f (r1, s)p2u2(s) + ap2u2(s)
+ (p2 − 1)

a′

a
+

a′′

a′
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and, when θ = 0,

(p1 − p2)
b(0)p2

B
b′(0)
b(0)

u2(s) + (p2 − 1)
b′(0)
b(0)

+
b′′(0)
b′(0)

≤ (p1 − p2)
a(0)p2

A
a′(0)
a(0)

u2(s) + (p2 − 1)
a′(0)
a(0)

+
a′′(0)
a′(0)

.

Subtract the value of (5.6) at θ = 0 from both sides to obtain

(p1 − p2)
b(0)p2

B
b′(0)
b(0)

u2(s) + (p2 − q1)
b′(0)
b(0)

≤ (p1 − p2)
a(0)p2

A
a′(0)
a(0)

u2(s) + (p2 − q1)
a′(0)
a(0)

Divide by a(0)q1−1a′(0)v1(r1) = b(0)q1−1 (−b′(0)) v1(r2) > 0:

−
(p1 − p2)b(0)p2−q1u2(s)

Bv1(r2)
−

p2 − q1

b(0)q1v1(r2)
≤

(p1 − p2)a(0)p2−q1u2(s)
Av1(r1)

+
p2 − q1

a(0)q1v1(r1)

−
(p1 − p2)b(0)p2u2(s)

Bb(0)q1v1(r2)
−

(p2 − q1) B
Bb(0)q1v1(r2)

≤
(p1 − p2)a(0)p2u2(s)

Aa(0)q1v1(r1)
+

(p2 − q1) A
Aa(0)q1v1(r1)

(q1 − p2) (B − b(0)p2u2(s)) + (q1 − p1)b(0)p2u2(s)
Bb(0)q1v1(r2)

≤ −
(q1 − p2) (A − a(0)p2u2(s)) + (q1 − p1)a(0)p2u2(s)

Aa(0)q1v1(r1)

Because p1 ≤ q1, the left-hand side is at least zero, while the right-hand side is at most zero.
Therefore each side is zero, p1 = q1, A = a(0)p2u2(s), and B = b(0)p2u2(s). Together with the
definitions of a(θ) and b(θ), these simplify the formula in (5.8) to

F(θ) = ap1u2(s)
p1
p2 u1(r1) + bp1u2(s)

p1
p2 u1(r2)

= u2(s)
q1
p2

((
f (r1, s)q1 +

θ

v1(r1)

)
u1(r1) +

(
f (r2, s)q1 −

θ

v1(r2)

)
u1(r2)

)
= u2(s)

q1
p2

(
f (r1, s)q1u1(r1) + f (r2, s)q1u1(r2) +

(
u1(r1)
v1(r1)

−
u1(r2)
v1(r2)

)
θ

)
.

Because this affine function has a minimum at the interior point θ = 0, it must be constant.
Therefore, ‖ fθ‖σ(P) = C(I0, J0)−1 for any θ ∈ T , including the endpoints, where fθ has one fewer
non-zero value than f . This contradicts the minimality of the number of non-zero values in f
among those functions in the LQ unit sphere with ‖ f ‖σ(P) = C(I0, J0)−1. �

5.3 Best constants for diagonal case, p2 ≤ q2 < p1 ≤ q1

When the non-Minkowski condition max(p2, q2) < min(p1, q1) is combined with the necessary
condition p2 ≤ q2 for Proposition 5.2.3 and p1 ≤ q1 for Proposition 5.2.4, the best constant is
obtained by considering functions which are, up to rearrangement of the indices, diagonal, in
the sense that each row ({ f (i0, j) : j ∈ J} for fixed i0 ∈ I) and each column ({ f (i, j0) : i ∈ I} for
fixed j0 ∈ J) contains at most one non-zero entry. So far, this is only established over finite
subsets I0 ⊂ I and J0 ⊂ J, but the following results show that this is generally true, and develop
a formula for the resulting best constant.
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Lemma 5.3.1. For any i ∈ I, let C1(i) denote the least constant such that, for any function
f1 ∈ L+(I) supported on {i}, ‖ f1‖`q1

v1 (I) ≤ C1 ‖ f1‖Lp1
u1 (I). For j ∈ J, let C2( j) denote the least

constant such that, for any f +
2 (J) supported on { j}, ‖ f2‖Lq2

v2 (J) ≤ C2( j) ‖ f2‖Lp2
u2 (J). Then

C1(i) = v1(i)1/q1u1(i)−1/p1 and C2( j) = v2( j)1/q2u2( j)−1/p2 .

Proof. Any function f1 supported on {i} has the form f = cχ{i} for some constant c. By homo-
geneity,

‖ f ‖Lq1
v1 (I)

‖ f ‖Lp1
u1 (I)

=

|c|
∥∥∥χ{i}∥∥∥Lq1

ν1 (X1)

|c|
∥∥∥χ{ j}∥∥∥Lp1

µ1 (X1)

=
v1(i)1/q1

u1(i)1/p1
,

and a similar computation works for J. �

Lemma 5.3.2. For any i0 ∈ I, j0 ∈ J, let C(i0, j0) denote the least constant such that

‖ f ‖Q ≤ C(i0, j0) ‖ f ‖σ(P)

for any function f ∈ L+(I × J) which is zero everywhere except (i0, j0). Then

C(i0, j0) = C1(i0)C2( j0) =
v1(i0)1/q1

u1(i0)1/p1

v2( j0)1/q2

u2( j0)1/p2
.

Proof. Any such function has the form f (i, j) = cχ{i0}(i)χ{ j0}( j). Using homogeneity and the
fact that mixed norms computed of factorable functions are products of Lebesgue space norms
of the factors, so long as c , 0

‖ f ‖Q
‖ f ‖σ(P)

=

|c|
∥∥∥χ{i0}∥∥∥`q1

v1 (I)

∥∥∥χ{ j0}∥∥∥`q2
v2 (J)

|c|
∥∥∥χ{i0}∥∥∥`p1

u1 (I)

∥∥∥χ{ j0}∥∥∥`p2
u2 (J)

≤ C1(i0)C2( j0).

Therefore C(i0, j0) ≤ C1(i0)C2( j0), while Proposition 3.3.3 (also based on factorable func-
tions), applied with I and J replaced by the singleton subspaces {i0} and { j0} respectively,
yields C(i0, j0) ≥ C1(i0)C2( j0). �

Lemma 5.3.3. Suppose that p2 ≤ q2 < p1 ≤ q1. Let I0 ⊂ I and J0 ⊂ J be finite subsets,
each with cardinality |I0| = |J0| = N, where of course N ≤ min(|I| , |J|). Let

(
C∗1(m)

)
1≤m≤N

be a nonincreasing enumeration, i.e. C∗1(1) ≥ · · · ≥ C∗1(N), of {C1(i) : i ∈ I0}, corresponding
to an enumeration

(
i∗m

)
1≤m≤N according to C∗1(m) = C1(i∗m). Similarly, let

(
C∗2(m)

)
1≤m≤N

be
a nonincreasing enumeration of (C2( j)) j∈J0

, corresponding to an enumeration
(
j∗m

)
1≤m≤N by

C∗2(m) = C2( j∗m). Then the best constant C(I0, J0) such that

‖ f ‖Q ≤ C(I0, J0) ‖ f ‖σ(P)

for all functions f ∈ L+(I × J) supported on I0 × J0 is

C(I0, J0) =
∥∥∥C∗1(m)C∗2(m))

∥∥∥
`p1 : q2 ({1,...,N})

=

∥∥∥∥∥∥ v1(i∗m)1/q1v2( j∗m)1/q2

u1(i∗m)1/p1u2( j∗m)1/p2

∥∥∥∥∥∥
p1 : q2

.
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Proof. The order of exponents provides, using Propositions 5.2.3 and 5.2.4, that the best con-
stant C(I0, J0) can be achieved with some function f ∈ L+(I0 × J0) which has at most one entry
in each row, and at most one entry in each column. Any such function has the form

f (i, j) =

N∑
m=1

cmχ{i∗m}(i)χ{
j∗
σ(m)

}( j)

for some coefficients c1, . . . , cN ≥ 0 and some permutation σ ∈ S N . (There is at most one non-
zero value in the “row” identified with each i∗m; its “column” is given by j∗σ(m), where injectivity
is because there is at most one non-zero value in each column. The value is given by cm; if there
is no non-zero value in that row, then cm = 0 and the value of σ(m) can be any not reserved for
a non-zero value.)

Such a function is clearly block-factorable, supported on blocks
({

i∗m
}
×

{
j∗σ(m)

})
1≤m≤N

. For
those particular blocks, dependent on σ, the best constant for block-factorable functions is

CBF

({
i∗m

}
,
{
j∗σ(m)

})
=

∥∥∥C1(i∗m)C2( j∗σ(m))
∥∥∥
`p1 : q2 ({1,...,N})

,

according to Proposition 4.2.10. The choice of σ which maximizes this constant is the one
which maximizes its p1 : q2 power,

N∑
m=1

ambσ(m) (5.9)

where each am = C1(i∗m)p1 : q2 and bσ(m) = C2( j∗σ(m))
p1 : q2 . Recall that the enumeration

(
i∗m

)
of

I0 is chosen so that
(
C1(i∗m)

)
is nonincreasing, and therefore so is (am), i.e. a1 ≥ · · · ≥ aN .

The rearrangement inequality, given by Hardy, Littlewood, and Pólya as Theorem 368 in [19],
establishes that

∑
ambσ(m) is greatest when (am) and

(
bσ(m)

)
are similarly ordered, i.e. when

b1 ≥ · · · ≥ bN , which occurs when σ is the identity and

CBF
({

i∗m
}
,
{
j∗m

})
=

∥∥∥C1(i∗m)C2( j∗m)
∥∥∥
`p1 : q2 ({1,...,N})

.

Therefore C(I0, J0) is equal to this greatest value,
∥∥∥C∗1(m)C∗2(m)

∥∥∥
`p1 : q2 ({1,...,N})

. �

To solve the case with infinite index sets, we need the notion of decreasing rearrangement
of sequences, a special case of the decreasing rearrangement of functions described in such
references as [5] and [27]. When the definition there is applied to a sequence K = (K1,K2, . . .),
finite or infinite, its rearrangement K∗ =

(
K∗1 ,K

∗
2 , . . . ,

)
is a function on (0,∞),

K∗(t) = inf {α ∈ (0,∞] : {n : |Kn| > α} has at most t elements} .

But the function K∗ is a step function, constant on intervals [n, n + 1). We identify each such
function with a sequence, and let K∗ refer to that sequence.

For convenience, the rearrangement K∗n of a nonnegative sequence K = (Kn) can be char-
acterized as follows. Let N denote the possibly infinite number of elements of K which strictly
exceed lim supi Ki. Then

if 1 ≤ n ≤ N, then K∗n is the nth greatest value in K,
but if n > N, then K∗n = lim sup

i
Ki.
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(Given any y > lim supi Ki, there are only finitely many values in K which are at least y; this is
why the nth largest value is well-defined for n ≤ N.)

For any nonnegative sequence K which is either finite or convergent to zero, K∗ is a permu-
tation of K, sorting its entries into nonincreasing order.

The superscript asterisk notation used for the finite case in Lemma 5.3.3 is consistent with
this definition, and used in this sense in C∗1(m) and C∗2(m). The is not the case for i∗m and j∗m,
since I and J need not have any inherent order, and the values in the index sets are irrelevant;
the notations i∗m and j∗m are only used due to their connection to the rearrangements of the
atomic best constants C1(i) and C2( j).

The well-known Hardy-Littlewood inequality gives an upper bound in terms of rearrange-
ments, ∫

X
| f g| ≤ dµ ≤

∫ ∞

0
f ∗(t)g∗(t)dt.

This also applies when f is replaced by a function equimeasurable to itself, and the same for
g. (Note that equimeasurable functions have identical rearrangements, so the right-hand side
remains fixed.) The measure µ is said to be resonant, as in Definition 2.2.3 from [5], if and
only if

sup
∫

X
| f g̃|dµ =

∫ ∞

0
f ∗(t)g∗(t)dt,

where the supremum is over all g̃ equimeasurable to g. By symmetry in the roles of f and g,
we could just as well use functions f̃ equimeasurable to f , and the supremum replacing both f
and g with equimeasurable functions must then be

∫
f ∗g∗.

Theorem 2.2.7 in [5] establishes that counting measure is resonant. In terms of sequences,
let A and B be countably infinite collections of nonnegative numbers. Then

sup
∑

n

anbn =
∑

a∗nb∗n,

where the supremum is taken over all enumerations (an) of A and (bn) of B.

Theorem 5.3.4. Suppose that p2 ≤ q2 < p1 ≤ q1 and each Xk has purely atomic measures. Let
the atoms of X1 be (Ei)i∈I and the atoms of X2 be

(
F j

)
j∈J

, where I and J are (at most) countable
index sets. For each i ∈ I and each j ∈ J, let

C1(i) = ν1(Ei)1/q1µ1(Ei)−1/p1 and C2( j) = ν2(F j)1/q2µ2(F j)−1/p2 .

Then the least constant C such that

‖ f ‖Q ≤ C ‖ f ‖σ(P)

for any f ∈ L+(X1 × X2) can be computed by

C =
∥∥∥C∗1(m)C∗2(m)

∥∥∥
p1 : q2

,

where C∗1 and C∗2 denote the decreasing rearrangements of these sequences. (If I, J, or both
are finite, pad out C1, C2, or both with zeroes.)
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Proof. For convenience, identify functions on X1×X2 with functions on I× J, using weights uk

and vk, as described in Definition 4.2.18 on page 57. For any finite subsets I0 ⊂ I and J0 ⊂ J,
let C(I0, J0) denote the least constant such that, for any f ∈ L+(I × J) supported on the subset
I0 × J0 of I × J,

‖ f ‖Q ≤ C(I0, J0) ‖ f ‖σ(P) .

The order of exponents provides, by Propositions 5.2.3 and 5.2.4, that the constant can be
achieved by some f with at most one entry in each row and at most one entry in each column.
Any such function has the form

f (i, j) =

N∑
m=1

cmχ{im}(i)χ{ jm}( j)

for coefficients c1, . . . , cN ≥ 0 and distinct elements i1, . . . , iN ∈ I0 and j1, . . . , jN ∈ J. (There is
at most one non-zero value in the “row” identified with each im; its column is given by jm; if
there is no non-zero value in that row, cm = 0.)

Such a function is clearly block-factorable, supported on blocks ({im} × { jm})1≤m≤N . For
those particular blocks, the best constant for block-factorable functions is

CBF ({im} × { jm}) = ‖C1(im)C2( jm)‖`p1 : q2 ({1,...,N}) ,

according to Proposition 4.2.10. Therefore C is the supremum of∑
m

C1(im)p1 : q2C2( jm)p1 : q2

1/(p1 : q2)

, (5.10)

over all enumerations (im) of I and ( jm) of J, padded with zeroes if either set is finite. As noted
earlier, counting measure is resonant (as described and proven in such sources as [27] and [5]),
which means that the supremum of (5.10) over all enumerations (im) and ( jm) is

C =

∑
m

(
C∗1(m)C∗2(m)

)p1 : q2

1/(p1 : q2)

,

as desired. �

This is enough to solve the two-variable permuted inclusion problem where every measure
is counting measure on a countably infinite set, i.e. where every one-variable space is an
unweighted `p space.

Proposition 5.3.5. Let C ∈ [0,∞] be the least constant such that, for any function f (i, j) on
N2,

‖ f ‖Q ≤ C ‖ f ‖σ(P) .

If p1 ≤ q1. p2 ≤ q2, and p1 ≤ q2, then C = 1. Otherwise, C = ∞.

Proof. If, indeed, p1 ≤ q1 ≤ p2 ≤ q2, then the fact that each pk ≤ qk means that `pk ⊂ `qk with
Ck = 1 by Corollary 2.6.10. Also, this is in the Minkowski case, so Theorem 3.6.1 proves that
C = C1C2 = 1.
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The rest of the argument is devoted to refuting inclusion in every other case. If either pk >
qk, then by Corollary 2.6.10, `pk 1 `qk ; that is, Ck = ∞. By Proposition 3.3.3, C ≥ C1C2 = ∞.
When p1 ≤ q1 and p2 ≤ q2, the only case left is p2 ≤ q2 < p1 ≤ q1. But this case is the
one handled by Theorem 5.3.4; unweighted counting measure with pk ≤ qk gives the local
best constant Ck(n) = 1 on each atom n ∈ N. This constant sequence is its own decreasing
rearrangement, C∗k = 1. Theorem 5.3.4 then shows that

C =

∑
n∈N

1p1 : q2

1/(p1 : q2)

= ∞.

�

5.4 Generalized partition problem
Solutions to the remaining non-Minkowski cases involve a generalization of a known problem,
the optimization version of the partition problem, known to be NP-hard. Considering this, a
full solution to the problem is not presented, just the definition and certain properties.

Definition 5.4.1 (Generalized Partition Problem). Let γ ∈ (0, 1) and two nonnegative se-
quences (ai)i∈I and

(
b j

)
j∈J

. Define

GPPγ(a, b) = sup
∑
i∈I

ai

∑
j∈J(i)

b j


γ

,

a supremum over all partitions {J(i) : i ∈ I} of J into pairwise disjoint, possibly empty subsets
indexed by I.

The partition problem itself is obtained when I = {1, 2}, with weights a1 = a2 = 1, and a
finite set J = {1, . . . ,N}. The problem is one of maximizing, over all subsets J′ ⊂ J,∑

j∈J′
b j


γ

+

 ∑
j∈J\J′

b j


γ

.

Regardless of the partition, the two sums always add up to the same total,
∑

j∈J b j. Because the
exponent γ is less than one, the maximum is achieved when these sums are as close to equal as
possible. Trying to partition a finite set into subsets with as close to equal totals as possible is
the optimization version of the partition problem.

1. If GPPγ(a, b) < ∞ then b ∈ `1 and a ∈ `∞. To see this, fix any i0 ∈ I and consider the
trivial partition with J(i0) = J, every other J(i) = ∅. With this,

∑
i∈I

ai

∑
j∈J(i)

b j


γ

= ai0

∑
j∈J

b j


γ

≤ GPPγ(a, b) < ∞.

This implies that ‖b‖1 =
∑

j∈J b j < ∞, and furthermore that every ai0 ≤ ‖b‖
−γ
1 GPPγ(a, b),

so ‖a‖∞ ≤ ‖b‖
−γ
1 GPPγ(a, b) < ∞.
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2. If b ∈ `1 and a ∈ `1/(1−γ), then GPPγ(a, b) < ∞. Regardless of the partition, apply
Hölder’s inequality with conjugate exponents 1/(1 − γ) and 1/γ:

∑
i∈I

ai

∑
j∈J(i)

b j


γ

≤

∑
i∈I

a
1

1−γ

i

γ
∑

i∈I

∑
j∈J(i)

b j


γ

= ‖a‖1/(1−γ) ‖b‖
γ
1

This also applies to the supremum, GPPγ(a, b) ≤ ‖a‖1/(1−γ) ‖b‖
γ
1.

3. If a ∈ `∞ and b ∈ `γ then GPPγ(a, b) < ∞.

∑
i∈I

ai

∑
j∈J(i)

b j


γ

≤
∑
i∈I

‖a‖∞

∑
j∈J(i)

b j


γ

≤ ‖a‖∞
∑
i∈I

∑
j∈J(i)

bγj = ‖a‖∞ ‖b‖
γ
γ

In the supremum, GPPγ(a, b) ≤ ‖a‖∞ ‖b‖
γ
γ.

4. Let N = min(|I| , |J|), possibly infinite, and define, for 1 ≤ m ≤ N, a∗(m) and b∗(m) to
enumerate the N greatest values in ai and bi in nonincreasing order. If GPPγ(a, b) < ∞
then a∗(b∗)γ ∈ `1.

For each 1 ≤ m ≤ N, let i∗(m) be the element of I such that ai∗(m) = a∗(m), and let
j∗(m) be the element of J such that b j∗(m) = b∗(m). Then partition J into singletons, each
J(i∗(m)) = { j∗(m)}. (If |J| > |I|, there will be leftover, lesser elements of j, but inserting
those in any set in the partition preserves the following inequality.)

GPPγ(a, b) ≥
N∑

m=1

a∗(m)(b∗(m))γ = ‖a∗(b∗)γ‖1

Although the simple kinds of partitions used in the above examples shed some light on the
problem, this GPP is too complex to be solved by considering only such partitions. Example 5.7
in [18] establishes that, even when all these partition types give bounded values, the supremum
defining GPPγ(a, b) can be infinite.

5.5 Best constants for cases with one entry per row or per
column

Next, consider the case p2 ≤ q2 < q1 < p1, where Proposition 5.2.3 guarantees that there is at
most one non-zero entry per row, but Proposition 5.2.4 does not apply, so this need not be the
case for columns.

Theorem 5.5.1. Suppose that p2 ≤ q2 < q1 < p1 and each Xk has purely atomic measures. Let
the atoms of X1 be (Ei)i∈I and the atoms of X2 be

(
F j

)
j∈J

, where I and J are (at most) countable
index sets. For each i ∈ I and each j ∈ J, let

C1(i) = ν1(Ei)1/q1µ1(Ei)−1/p1 and C2( j) = ν2(F j)1/q2µ2(F j)−1/p2 .
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Then the least constant C such that

‖ f ‖Q ≤ C ‖ f ‖σ(P)

for any f ∈ L+(X1 × X2) is

C =

(
GPP p1 : q2

p1 : q1
(C2( j)p1 : q2 ,C1(i)p1 : q1)

) 1
p1 : q2

,

in terms of a solution to a generalized partition problem.

Proof. Fix finite subsets I0 ⊂ I and J0 ⊂ J. By Proposition 5.2.3, the best constant C(I0, J0)
for functions supported on I0 × J0 can be achieved with a function f ∈ L+(I × J), supported on
I0 × J0, with at most one non-zero entry in each row, i.e. for each i ∈ I0, there is at most one
j ∈ J0 such that f (i, j) > 0.

This means that there are pairwise disjoint subsets (I( j)) j∈J0
of I0, each I( j) = {i ∈ I0 : f (i, j) > 0},

the places in column j where f takes positive values. For each fixed j ∈ J0, define g j(i) =

f (i, j). (Note that then I( j) is the support of g j.) With these,

‖ f ‖Q =

∑
j∈J0

∥∥∥g j

∥∥∥q2

`
q1
v1 (I( j))

v2( j)


1/q2

.

Also, if p1 < ∞, then since for each i ∈ I0 there is at most one j ∈ J0 where f (i, j) > 0,

‖ f ‖σ(P) =

∑
i∈I0

∑
j∈J0

f (i, j)p2u2( j)


p1
p2

u1(i)


1

p1

=

∑
j∈J0

∑
i∈I( j)

f (i, j)p1u1(i)u2( j)
p1
p2


1

p1

=

∥∥∥∥∥∥∥∥g j

∥∥∥
`

p1
u1 (I( j))

u2( j)1/p2

∥∥∥∥∥
`p1 (J0)

.

If p1 = ∞, the same result holds:

‖ f ‖σ(P) = sup
i∈I0

∑
j∈J0

f (i, j)p2u2( j)


1

p2

= sup
i∈I0

(
sup
j∈J0

f (i, j)p2u2( j)
) 1

p2

= sup
j∈J0

sup
i∈I( j)

(
f (i, j)u2( j)

1
p2

)p2

=

∥∥∥∥∥∥∥∥g j

∥∥∥
`

p1
u1 (I( j))

u2( j)
1

p2

∥∥∥∥∥
`p1 (J0)

.

Therefore, ‖ f ‖Q ≤ C(I0, J0) ‖ f ‖σ(P) can be rewritten as

∑
j∈J0

∥∥∥g j

∥∥∥q2

`
q1
v1 (I( j))

v2( j)


1

q2

≤ C(I0, J0)
∥∥∥∥∥∥∥∥g j

∥∥∥
`

p1
u1 (I( j))

u2( j)
1

p2

∥∥∥∥∥
`p1 (J0)

,

where C(I0, J0) is the least constant so that this holds for all f ∈ L+(I, J) supported on I0 × J0.
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By Hölder’s inequality with the conjugate exponents p1/q2 and (p1 : q2) /q2,

‖ f ‖q2
Q =

∑
j∈J0

∥∥∥g j

∥∥∥q2

`
p1
u1 (I( j))

u2( j)
q2
p2

∥∥∥g j

∥∥∥q2

`
q1
v1 (I( j))

v2( j)∥∥∥g j

∥∥∥q2

`
p1
u1 (I( j))

u2( j)
q2
p2

≤

∥∥∥∥∥∥∥∥g j

∥∥∥
`

p1
u1 (I( j))

u2( j)
1

p2

∥∥∥∥∥q2

`p1 (J0)

∑j∈J0


∥∥∥g j

∥∥∥
`

q1
v1 (I( j))

v2( j)
1

q2∥∥∥g j

∥∥∥
`

p1
u1 (I( j))

u2( j)
1

p2


p1 : q2

q2
p1 : q2

=

∥∥∥∥∥∥∥∥
∥∥∥g j

∥∥∥
`

q1
v1 (I( j))∥∥∥g j

∥∥∥
`

p1
u1 (I( j))

C2( j)

∥∥∥∥∥∥∥∥
q2

`p1 : q2 (J0)

‖ f ‖q2
σ(P) .

Therefore, the supremum of ‖ f ‖Q / ‖ f ‖σ(P) over f ∈ L+(I × J), supported on I0 × J0 and not
almost everywhere zero is

C(I0, J0) = sup
‖ f ‖Q
‖ f ‖σ(P)

= sup
{I( j)}
‖C1(I( j))C2( j)‖`p1 : q2 (J0) ,

where the rightmost supremum denotes one taken over all disjoint collections {I( j) : j ∈ J0}

of subsets of I. (The ratio ‖g j‖`q1
v1 (I( j))‖g j‖

−1
`

p1
u1 (I( j))

can approach C1(I( j)) arbitrarily closely for

various g j.) Appropriate choices of f can select both any desired disjoint subsets I( j) of I and
the functions g j on them. Because q1 < p1, Corollary 2.6.9 gives the formula

C1(I( j)) =
∥∥∥∥v1(i)

1
q1 u1(i)−

1
p1

∥∥∥∥
`p1 : q1 (I( j))

= ‖C1(i)‖`p1 : q1 (I( j))

so

C(I0, J0) = sup
{I( j)}

∥∥∥‖C1(i)‖`p1 : q1 (I( j)) C2( j)
∥∥∥
`p1 : q2 (J0)

= sup
{I( j)}

∑
j∈J0

∑
i∈I( j)

C1(i)p1 : q1


p1 : q2
p1 : q1

C2( j)p1 : q2


1

p1 : q2

. (5.11)

By Corollary 5.2.2, the supremum of all C(I0, J0) over finite subsets I0 and J0 is C itself.
Furthermore, since the expression for C(I0, J0) in (5.11) grows with more terms, as J0 is brought
closer to J and the collection {I( j) : j ∈ J} comes closer to partitioning I, the supremum

Cp1 : q2 = sup
I0,J0

C(I0, J0)p1 : q2 = sup
{I( j)}

∑
j∈J

C2( j)p1 : q2

∑
i∈I( j)

C1(i)p1 : q1


p1 : q2
p1 : q1

= GPP p1 : q2
p1 : q1

(C2( j)p1 : q2 ,C1(i)p1 : q1) ,

where it is worth noting that 0 < (p1 : q2) / (p1 : q1) < 1. Finally, the formula for best constants
on singletons is given by Lemma 5.3.1. �
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Theorem 5.5.2. Suppose that q2 < p2 < p1 ≤ q1 and each Xk has purely atomic measures. Let
the atoms of X1 be (Ei)i∈I and the atoms of X2 be (F j) j∈J, where I and J are (at most) countable
index sets. For each i ∈ I and each j ∈ J, let

C1(i) = ν1(Ei)1/q1µ1(Ei)−1/p1 and C2( j) = ν2(F j)1/q2µ2(F j)−1/p2 .

Then the least constant C such that

‖ f ‖Q ≤ C ‖ f ‖σ(P)

for any f ∈ L+(X1 × X2) is

C =

(
GPP p1 : q2

p2 : q2
(C1(i)p1 : q2 ,C2( j)p2 : q2)

) 1
p1 : q2

,

in terms of a solution to a generalized partition problem.

Proof. Fix finite subsets I0 ⊂ I and J0 ⊂ J. By Proposition 5.2.4, the best constant C(I0, J0)
for functions supported on I0 × J0 can be achieved with a function f ∈ L+(I × J), supported on
I0 × J0, with at most one non-zero entry in each column, i.e. for each j ∈ J0 there is at most
one i ∈ I0 such that f (i, j) > 0.

This means that there are pairwise disjoint subsets (J(i))i∈I0
of J0, each { j ∈ J0 : f (i, j) > 0},

the places in row i where f takes positive values. For each fixed i ∈ I0, define hi( j) = f (i, j).
(Note that then J(i) is the support of hi.) With these facts,

‖ f i‖Q =
∥∥∥∥‖hi‖`q2

v2 (I( j)) v1(i)1/q1

∥∥∥∥
`q2 (I0)

. (5.12)

This is proven by one of two computations, depending on the value of q1. If q1 < ∞,

‖ f ‖Q =

∑
j∈J0

∑
i∈I0

f (i, j)


q2

v2( j)


1

q2

=

∑
i∈I0

∑
j∈J(i)

f (i, j)q2v1(i)
q2
q1 v2( j)


1

q2

=

∑
i∈I0

‖hi‖
q2

`
q2
v2 (J(i))

v1(i)
q2
q1


1

q2

.

If q1 = ∞,

‖ f ‖Q =

∑
j∈J0

(
sup
i∈I0

f (i, j)
)q2

v2( j)


1

q2

=

∑
j∈J0

∑
i∈I0

f (i, j)q2v2( j)


1

q2

,

because the supremum and sum over a unique term are the same. Next, because v1(i)q2q1 = 1
when q1 = ∞,

‖ f ‖Q =

∑
i∈I0

∑
j∈J(i)

f (i, j)q2v2( j)

 v1(i)
q2
q1


1

q2

=

∑
i∈I0

‖hi‖
q2

`
q2
v2 (J(i))

v1(i)
q2
q1


1

q2

.



5.5. Best constants for cases with one entry per row or per column 83

It is easily seen that
‖ f ‖σ(P) =

∥∥∥∥‖hi‖`p2
u2 (J(i)) u1(i)

1
p1

∥∥∥∥
`p1 (I0)

.

Equation (5.12) leads to the following application of Hölder’s inequality, using the conjugate
exponents p1/q2 and (p1 : q2) /q2.

‖ f ‖q2
Q =

∑
i∈I0

(
‖hi‖`p2

u2 (J(i)) u1(i)
1

p1

)q2

 ‖hi‖`q2
v2 (J(i)) v1(i)

1
q1

‖hi‖`p2
u2 (J(i)) u1(i)

1
p1


q2

≤

∥∥∥∥‖hi‖`p2
u2 (J(i)) u1(i)

1
p1

∥∥∥∥q2

`p1 (I0)

∑
i∈I0

 ‖hi‖`q2
v2 (J(i)) v1(i)

1
q1

‖hi‖`p2
u2 (J(i)) u1(i)

1
p1


p1 : q2

q2
p1 : q2

.

Therefore

‖ f ‖Q ≤

∥∥∥∥∥∥∥‖hi‖`q2
v2 (J(i))

‖hi‖`p2
u2 (J(i))

C1(i)

∥∥∥∥∥∥∥
`p1 : q2 (I0)

‖ f ‖σ(P) .

Different choices of the function f can provide any disjoint collection {J(i) : i ∈ I0} of subsets
of I0 and functions hi, each supported on J(i). These functions hi can be chosen so as to bring
the ratio ‖hi‖`q2

v2 (J(i)) / ‖hi‖`p2
u2 (J(i)) as near as desired to the local best constant C(I0). Therefore, the

supremum C(I0, J0) of ‖ f ‖Q / ‖ f ‖σ(P) over f ∈ L+(I × J) supported on I0 × J0 (and not almost
everywhere zero) can be expressed as follows:

C(I0, J0) = sup
f

‖ f ‖Q
‖ f ‖σ(P)

= sup
{J(i)}
‖C1(i)C2(J(i))‖`p1 : q2 (I0) ,

where the latter supremum is over all disjoint collections {J(i) : i ∈ I0} of subsets of J0. Because
q2 < p2, Corollary 2.6.9 gives the formula

C2(J(i)) =
∥∥∥∥v2( j)

1
q2 u2( j)−

1
p2

∥∥∥∥
`p2 : q2 (J(i))

= ‖C2( j)‖`p2 : q2 (J(i)) .

Therefore

C(I0, J0) = sup
{J(i)}

∥∥∥C1(i) ‖C2( j)‖`p2 : q2 (J(i))

∥∥∥
`p1 : q2 (I0)

= sup
{J(i)}

∑
i∈I0

∑
j∈J(i)

C2( j)p2 : q2


p1 : q2
p2 : q2

C1(i)p1 : q2


1

p1 : q2

. (5.13)

By Corollary 5.2.2, the supremum of C(I0, J0) over finite subsets I0 and J0 is C itself. As J0

comes closer to J and the collection {I( j) : j ∈ J} comes closer to partitioning I, more terms
are introduced and the expression in (5.13) grows. Therefore, the supremum

Cp1 : q2 = sup
I0,J0

C(I0, J0)p1 : q2 = sup
{J(i)}

∑
i∈I

C1(i)p1 : q2

∑
j∈J(i)

C2( j)p2 : q2


p1 : q2
p2 : q2

= GPP p1 : q2
p2 : q2

(C1(i)p1 : q2 ,C2( j)p2 : q2) ,

where 0 < (p1 : q2) / (p2 : q2) < 1. Finally, Lemma 5.3.1 gives the best constants for singletons.
�



Chapter 6

Two-variable summary

The following summary clarifies the cases in the two-variable inclusion problem, and how the
results fit together to solve it. Assume that X1 and X2 are measurable spaces and, for each
k = 1, 2, there are non-zero σ-finite measures µk and νk on Xk. Bounds and, where possible,
values are provided for the best constant C in one of the following inequalities.∫

X2

(∫
X1

| f |q1 dν1

)q2/q1

dν2

1/q2

≤ C
∫

X2

(∫
X1

| f |p1 dµ1

)p2/p1

dµ2

1/p2

(6.1)∫
X2

(∫
X1

| f |q1 dν1

)q2/q1

dν2

1/q2

≤ C
∫

X1

(∫
X2

| f |p1 dµ2

)p1/p2

dµ1

1/p1

(6.2)

The corresponding mixed-norm inclusion holds if C < ∞ and fails if the least constant C = ∞.
For each k = 1, 2, let Ck ∈ [0,∞] denote the least constant such that, for any fk ∈ L+(Xk),
‖ fk‖Lqk

νk (Xk) ≤ Ck ‖ fk‖Lpk
µk (Xk).

Inequality (6.1) is the “unpermuted case” solved in Section 3.4, with a simple solution
given by Theorem 3.4.1.

C = C1C2,

so that inclusion holds if and only if each Lpk
µk (Xk) ⊂ Lqk

νk (Xk), or equivalently Ck < ∞. (Each
Ck > 0 because no measure µk or νk is zero.)

Inequality (6.2) is the “permuted case” introduced in Chapter 3 and treated in various sub-
cases. The following questions step through solving an instance of the problem.

1. Do both one-variable inclusions Lpk
µk (Xk) ⊂ Lqk

νk (Xk) hold, for k = 1, 2?

• By Proposition 3.3.3, C ≥ C1C2.

• Therefore, unless both inclusions hold, inclusion is impossible (C = ∞).

2. Is this the Minkowski case, where min(p1, q1) ≤ max(p2, q2)?

• If so, by Theorem 3.6.1, C = C1C2.

From this point, we must have both one-variable inclusions, for which absolute continuity
νk � µk is necessary. Assume that each dνk

dµk
> 0, µk-almost everywhere, if necessary by
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reducing to functions supported where this is so. (Proposition 4.2.1) With this assumption,
note that each µk has exactly the same atoms and the same null sets as νk, so we can speak
of “atoms of Xk”. Similarly, we can discuss whether or not Xk or any measurable subset is
atomless, as well as whether or not it is purely atomic.

Now decompose X1 = E0∪̇(
⋃̇

i∈IEi) and X2 = F0∪̇(
⋃̇

j∈JF j), where E0 and F0 are atomless
and each Ei or F j is an atom.

3. Is either X1 or X2 purely atomic? (That is, is either E0 or F0 a null set?)

• If not, C = ∞. Theorem 4.2.16 shows that the Minkowski sufficient condition
(Theorem 3.6.1) is in this case also necessary.

What remains is the non-Minkowski case, max(p2, q2) < min(p1, q1), with one or both of
X1 and X2 purely atomic.

4. Is X1 purely atomic, but X2 not?

• If so, inclusion holds if and only if the sequence Mi := ν1(Ei)1/q1µ1(Ei)−1/p1 is
(p1 : p2)-summable. (Recall p1 : p2 = (p−1

2 − p−1
1 )−1.) In this case,

C2(F0) ‖Mi‖p1 : p2 ≤ C ≤ C2 ‖Mi‖p1 : p2 .

5. Is X2 purely atomic, but X1 not?

• If so, inclusion holds if and only if the sequence N j := ν2(F j)1/q2µ2(F j)−1/p2 is
(q1 : q2)-summable. In this case,

C1(E0)
∥∥∥N j

∥∥∥
q1 : q2

≤ C ≤ C1

∥∥∥N j

∥∥∥
q1 : q2

.

Otherwise, both measures are purely atomic. The non-Minkowski max(p2, q2) < min(p1, q1)
divides into four more specific cases, with different solutions. The following are true in each
of these cases.

• From factorable functions (Proposition 3.3.3): C1C2 ≤ C.

• From “diagonal” functions (Theorem 4.2.11 applied to functions of the same form as
Theorem 5.3.4): ‖M∗N∗‖p1 : q2 ≤ C.

• From the use of Hölder’s inequality and Tonelli’s theorem (Propositions 4.2.19, 4.2.20,
5.1.1, and 5.1.2):

C ≤ C1 ‖N‖q1 : q2 , C ≤ C1 ‖N‖p1 : q2 ,

C ≤ C2 ‖M‖p1 : p2 , and C ≤ C2 ‖M‖p1 : q2 .
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6. Is p2 ≤ q2 < p1 ≤ q1? If so,

• Theorem 5.3.4 gives the best constant with “diagonal” functions, C = ‖M∗N∗‖p1 : q2 .

7. Is p2 ≤ q2 < q1 < p1? If so, by Theorem 5.5.1,

C =

(
GPP p1 : q2

p1 : q1
(C2( j)p1 : q2 ,C1(i)p1 : q1)

) 1
p1 : q2

.

8. Is q2 < p2 < p1 ≤ q1? If so, by Theorem 5.5.2,

C =

(
GPP p1 : q2

p2 : q2
(C1(i)p1 : q2 ,C2( j)p2 : q2)

) 1
p1 : q2

.

(Refer to Section 5.4 for a description of the generalized partition problem (GPP).)

9. Otherwise (q2 < p2 < q1 < p1, X1 and X2 purely atomic), the problem is not fully solved.
It is not clear that there is any tractable condition to be found which is both necessary and
sufficient, and it is feared that it may be at least as tricky as the computationally difficult
of the GPP cases.

There are, at least, the separate necessary conditions and sufficient conditions given
above, plus necessary conditions derived by using either particular functions or special
classes of functions, like block-factorable functions.

(Note that not all purely atomic spaces can produce such difficult problems. For one simple
example, when dealing only with unweighted `p, a special case of Theorem 7.6.2 shows that
the Minkowski condition is both necessary and sufficient.)



Chapter 7

Multiple-variable case

7.1 Notation
Let (X1,Σ1), . . . , (Xn,Σn) be measurable spaces, each Σk a σ-algebra on Xk. Denote the product
by X = X1 × · · · × Xn, with its σ-algebra Σ. Let L+(Xk) represent the space of nonnegative
measurable functions on (Xk,Σk), and let L+(X) represent the space of nonnegative measurable
functions on (X,Σ).

For any k ∈ {1. . . . , n}, any pk ∈ (0,∞], and any σ-finite measure µk on Xk, let ρpk
µk be a map

taking L+(X) to itself, defined by

ρpk
µk

( f )(x1, . . . , xn) =


(∫

Xk
f (x1, . . . , xn)pkdµk

)1/pk
if pk < ∞

ess supxk∈(Xk ,µk) f (x1, . . . , xn) if pk = ∞

The idea of this map is that it takes an Lpk norm (a norm, at least, for pk ≥ 1) in the variable
xk, resulting in a function which is constant in xk and depends only on the remaining variables.

By composing such maps, we can express the LP mixed norms described by Benedek and
Panzone in [4]. Given an n-tuple of exponents P = (p1, . . . , pn), each pk ∈ (0,∞] and σ-finite
measures µ1, . . . , µn, each µk on Xk, define for each k ∈ {1, . . . , n} a map ρk := ρ

pk
µk as specified

above. The composition is denoted by

ρ = ρn ◦ · · · ◦ ρ1.

Observe that, for any f ∈ L+(X), ρ( f ) is a constant function. When each pk ≥ 1, its sole value
is that of the mixed norm ‖ f ‖P in the notation used by Benedek and Panzone, computed with
respect to the measures µ1, . . . , µn. (The same procedure is used with at least one exponent less
than 1, but the result is not, strictly speaking, a norm.) Making the natural identification of
numbers with constant functions, ρ is that mixed norm. We then define the mixed norm space

Lρ =
{
f ∈ L+(X) | ρ( f ) < ∞

}
, (7.1)

modulo the identification of any pair of functions which agree almost everywhere. Of course,
the full mixed-norm space Lρ will include all measurable real-valued or complex-valued func-
tions f such that the modulus | f | ∈ Lρ as defined above, but since all of the work here depends
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only on the modulus, with no addition of functions, only those functions in L+(X) need be
considered.

The composition need not be ρn ◦ · · · ◦ ρ1 in numeric order, however. By introducing a
permutation to the composition, we can obtain what Fournier [16] called “permuted mixed
norms.” As in the two-variable case, it turns out that the question of embeddings has a trivial
answer unless the mixed norms involved are differently permuted.

Given exponents p1, . . . , pn ∈ (0,∞] and measures µ1, . . . , µn, and additionally a permuta-
tion σ ∈ S n, where as before ρk = ρ

pk
µk , form the composition

ρ = ρσ(n) ◦ · · · ◦ ρσ(1).

Such (permuted) mixed norms are those for which we consider the inclusion problem.

7.2 Mixed-norm Hölder and Minkowski inequalities
Benedek and Panzone [4] provide a mixed-norm version of Hölder’s inequality, in several for-
mulations. The following is a consequence of their Theorem 2 in Section 2. Unlike Minkowski’s
integral inequality, which involves mixed norms with different permutations, the two mixed
norms which appear in Hölder’s inequality, ρP and ρP′ below, have their variables in the same
order.

Theorem 7.2.1. Let (X1, µ1), . . . , (Xn, µn) be σ-finite measure spaces with product (X, µ), P =

(p1, . . . , pn) with each pk ∈ [1,∞], and P′ =
(
p′1, . . . , p′n

)
, meaning that each 1

pk
+ 1

p′k
= 1. For

each k ∈ {1, . . . , n}, define ρk = ρ
pk
µk , ρP = ρpn ◦ · · · ◦ ρp1 , ρ

′
k = ρ

p′k
µk , and ρP′ = ρ′n ◦ · · · ◦ ρ

′
1. Then,

for any f , g ∈ L+(X), ∫
X

f (x)g(x)dµ(x) ≤ ρP( f )ρP′(g). (7.2)

Furthermore, for any fixed f , ρP( f ) is the least constant C such that, for any g ∈ L+(X),∫
X

f (x)g(x)dµ(x) ≤ CρP′(g). (7.3)

Proof. Theorem 2 in Section 2 of Benedek and Panzone says that, for any measurable function
f on X,

ρP( f ) = sup
g∈UP′

∣∣∣∣∣∫
X

f (x)g(x)dµ(x)
∣∣∣∣∣ ,

where UP′ denotes the unit sphere in LP′ , i.e. the set of functions g for which ρP′(g) = 1. If
g = 0 µ-a.e., then (7.2) holds trivially, as does (7.3) with C = 0. As long as ρP′(g) < ∞, let
g̃(x) = (ρP′(g))−1 g(x) and observe that ρP′(g̃) = 1, so g̃ ∈ UP′ . Therefore∫

X
f (x)g̃(x)dµ(x) ≤ ρP( f ), so∫

X
f (x)g(x)dµ(x) = ρP′(g)

∫
X

f (x)g̃(x)dµ(x)

≤ ρP′(g)ρP( f ).
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For 1 ≤ k ≤ n, because µk is σ-finite there is a sequence Ek,1 ⊂ Ek,2 ⊂ · · · with each
µkEk,m < ∞ and

⋃
m Ek,m = Xk. For each m ≥ 1, define

gm(x1, . . . , xn) = min (m, g(x1, . . . , xn))
n∏

k=1

χEk,m(xk).

Since gm ≤ m and each set Ek,m has finite measure, ρP′(gm) < ∞. The preceding argument then
shows that

∫
X

f (x)gm(x)dµ(x) ≤ ρP( f )ρP′(gm). Of course, (gm) is an increasing sequence of sets
converging pointwise to g, so by monotone convergence∫

X
f (x)g(x) ≤ ρP( f )ρP′(g).

(Although the monotone convergence theorem is technically only for integrals, dealing with
p′k < ∞, it is also valid to conclude that any ρp′k

µk (gm)→ ρ
p′k
µk (g) when p′k = ∞.)

To see that ρP( f ) is the least value of C for the second inequality, note that the second
inequality applies to any g ∈ UP′ . For such functions g, it states that

∫
X

f (x)g(x)dµ(x) ≤ C,
which when combined with Benedek and Panzone’s Theorem 2 means that ρP( f ) ≤ C. �

Hölder’s inequality has another formulation involving more than two mixed norms, anal-
ogous to the version of Hölder’s inequality which uses more than two Lp norms. Previously
stated in [4], this result is presented with the notation used here for convenience.

Theorem 7.2.2. Given any m ≥ 1, for i ∈ {1, . . . ,m} let Pi = (pi(1), . . . , pi(n)) be an n-tuple of
exponents from [1,∞]. Suppose that

∑m
i=1 (Pi)−1 = 1 interpreted coordinatewise, i.e. for each

j ∈ {1, . . . , n},
∑m

i=1 pi( j)−1 = 1. Then, for any f1, . . . , fm ∈ L+(X),∫
X

f1 · · · fmdµ1 · · · dµn ≤

m∏
i=1

ρPi( fi),

where each ρPi is the mixed norm defined by

ρPi( f ) =

∫
Xn

· · ·

∫
X2

(∫
X1

f pi(1)dµ1

)pi(2)/pi(1)

dµ2 · · · dµn

1/pi(n)

for any f ∈ L+(X), replacing by an essential supremum if any exponent is∞.

Proof. Simply apply the traditional m-function version of Hölder’s inequality, variable by vari-
able. �

Minkowski’s integral inequality, as stated in Corollary 3.5.2, can be generalized to situa-
tions involving more than two variables. Such a mixed-norm Minkowski’s integral inequality
was described by Fournier in [16]; although the Theorem 2.2 there explicitly describes only
the greatest and least permutations, those tend to be particularly useful cases, and there is no
reason to believe that Fournier would have been unaware of the ideas in this version. This
mixed-norm Minkowski’s integral inequality is presented not as a novel result, but to provide a
statement compatible with the notation used here, and so as to include some examples of how
the mixed-norm versions of Hölder’s and Minkowski’s inequalities can be useful.
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Proposition 7.2.3. Let (X1, µ1), . . . , (Xn, µn) be σ-finite measure spaces, with product space X.
Suppose that i, j ∈ {1, . . . , n}, i , j, and 1 ≤ pi ≤ p j ≤ ∞. For any f ∈ L+(X),

ρ
p j
µ j ◦ ρ

pi
µi

( f ) ≤ ρpi
µi
◦ ρ

p j
µ j ( f ).

Proof. Take any f ∈ L+(X). For fixed values of x1, . . . , xn, excluding xi and x j, define g(xi, x j) =

f (x1, . . . , xn), so that g ∈ L+(Xi × X j). Because 1 ≤ pi ≤ p j ≤ ∞, Corollary 3.5.2 provides that∥∥∥∥‖g‖Lpi
µi

∥∥∥∥
L

p j
µ j

≤

∥∥∥∥∥‖g‖Lp j
µ j

∥∥∥∥∥
Lpi
µi

. (7.4)

The above one-variable norms in xi and x j produce functions of the remaining variables; be-
cause (7.4) holds for every value of these variables, one of these functions is greater than the
other. The quantities can also be viewed as functions of (x1, . . . , xn) which happen to be con-
stant in xi and x j. Either way, (7.4) means that ρp j

µ j ◦ ρ
pi
µi ( f ) ≤ ρpi

µi ◦ ρ
p j
µ j ( f ). �

By repeatedly applying adjacent permutations, we can achieve the following generalization
of Minkowski’s integral inequality to mixed norms. (Since the number s of one-variable Lp

computations involved could be less than the number n of spaces, this result also applies to
compositions which are not mixed norms, for their values are functions of n− s variables rather
than constants.)

Theorem 7.2.4 (Mixed-norm Minkowski integral inequality). Let (X1, µ1), . . . , (Xn, µn) be σ-
finite measure spaces. For each k ∈ {1, . . . , n}, let ρk = ρ

pk
µk , for some exponent 0 < pk ≤ ∞.

Let S be a subset of {1, . . . , n}, enumerated by k1, . . . , ks and l1, . . . , ls, where s = |S |. Define a
permutation of S by τ(a) = b if and only if ka = lb. If pki < pk j whenever i < j and τ(i) > τ( j),
then

ρks ◦ · · · ◦ ρk1 ≤ ρls ◦ · · · ◦ ρl1 .

Proof. The proof is by induction on s. Both s = 0 (with the identity as a trivial composition)
and s = 1 are trivial, providing base cases. Recall the hypothesis that i < j and τ(i) > τ( j) imply
pki < pk j . Whenever i < τ−1(1), of course τ(i) > 1, so this hypotheses yields pki < pkτ−1(1)

= pl1 .
For such i, Proposition 7.2.3 then shows that ρl1 ◦ ρki ≤ ρki ◦ ρl1 . Repeatedly applying these
gives

ρkτ−1(1)
◦ · · · ◦ ρk1 = ρl1 ◦ ρkτ−1(1)−1

◦ · · · ◦ ρk1

≤ ρkτ−1(1)−1
◦ ρl1 ◦ ρkτ−1(1)−2

◦ · · · ◦ ρk1

...

≤ ρkτ−1(1)−1
◦ · · · ◦ ρk1 ◦ ρ1.

Because furthermore every ρk is monotone, in the sense that f ≤ g implies ρk( f ) ≤ ρk(g),
precompose ρks ◦ · · · ◦ ρkτ−1(1)+1

to obtain

ρks ◦ · · · ◦ ρk1 ≤ ρks ◦ · · · ◦ ̂ρkτ−1(1)
◦ · · · ◦ ρk1 ◦ ρl1

where ̂ρkτ−1(1)
indicates that this term is omitted, appearing instead at the beginning of the com-

position as ρl1 . The inductive hypothesis, applied to S \
{
kτ−1(1)

}
= S \ {l1}, provides

ρks ◦ · · · ◦ ̂ρkτ−1(1)
◦ · · · ◦ ρk1 ≤ ρls ◦ · · · ◦ ρl2 ,
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which completes the inductive step with

ρks ◦ · · · ◦ ρk1 ≤ ρls ◦ · · · ◦ ρl1 .

�

Although the hypothesis looks a bit complicated at first glance, the idea is that Minkowski’s
integral inequality applies to any permutation which is formed from adjacent transpositions,
each of which moves norms with larger exponents earlier in the composition; the mixed norm
resulting from such a permutation always gives larger values than the original mixed norm.
On the other hand, if each adjacent transposition moves norms with larger exponents later in
the composition, then the resulting norm always gives smaller values than the original mixed
norm.

For a theorem with a simpler statement, we have the following useful corollary.

Corollary 7.2.5. Let (X1, µ1), . . . , (Xn, µn) be σ-finite measure spaces. For each k ∈ {1, . . . , n},
let ρk = ρ

pk
µk for some 0 < pk ≤ ∞. If σ ∈ S n is a permutation such that pi < p j whenever both

1 ≤ i < j ≤ n and σ−1(i) > σ−1( j), then

ρn ◦ · · · ◦ ρ1 ≤ ρσ(n) ◦ · · · ◦ ρσ(1).

Proof. Simply apply Theorem 7.2.4 with ki = i and li = σ(i). Then τ = σ−1, since for each
i ∈ {1, . . . , n}, lσ−1(i) = σ(σ−1(i)) = i = ki. �

The last result provides a partial order on those mixed norms produced by permuting some
particular starting norm. (In terms of group actions, this partial order is on an orbit of the action
of the symmetric group S n on mixed norms in n variables.) Among these, there are always a
maximum and a minimum based on the order of the exponents. This is given by the following
special case, which describes the same idea which Fournier proved in [16] as Theorem 2.2.

Corollary 7.2.6. For each k ∈ {1, . . . , n}, let (Xk, µk) be a σ-finite measure space, let 0 < pk ≤

∞, and let ρk = ρ
pk
µk . Suppose that σ, τ ∈ S n are permutations such that

pσ(1) ≤ pσ(2) ≤ · · · ≤ pσ(n),

pτ(1) ≥ pτ(2) ≥ · · · ≥ pτ(n).

Then
ρσ(n) ◦ · · · ◦ ρσ(1) ≤ ρn ◦ · · · ◦ ρ1 ≤ ρτ(n) ◦ · · · ◦ ρτ(1).

That is, of all permutations of the mixed norm ρn ◦ · · · ◦ ρ1, one which puts the exponents
in decreasing order gives the greatest values, and thus the smallest mixed-norm space. At the
other extreme, a permutation which puts the exponents in increasing order gives the least values
and the largest space. (When some exponents are equal, such extreme permutations may not
be unique, but by Tonelli’s theorem the resulting mixed-norm spaces will be the same.)
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7.3 Problem statement
Let (X1,Σ1), . . . , (Xn,Σn) be measurable spaces with corresponding non-zero, σ-finite measures
µ1 to µn and ν1 to νn, and let X = X1 × · · · × Xn. Also, let P = (p1, . . . , pn) and Q = (q1, . . . , qn)
be vectors of exponents, each in (0,∞], and both σ and η be permutations of {1, . . . , n}. As
noted above, for each k ∈ {1, . . . , n} let ρk = ρ

pk
µk and form the mixed norm ρ = ρσ(n) ◦ · · · ◦ ρσ(1).

Similarly, for each k let ξk = ρ
qk
νk , then define ξ = ξη(n) ◦ · · · ◦ ξη(1).

We aim to find necessary and sufficient conditions for Lρ ⊂ Lξ or, equivalently, for there to
exist C < ∞ (and, ideally, to determine the least C) such that, for every f ∈ L+(X),

ξ( f ) ≤ Cρ( f ), (7.5)

which would be written in terms of single-variable norms as

ξη(n) ◦ · · · ◦ ξη(1)( f ) ≤ Cρσ(n) ◦ · · · ◦ ρσ(1)( f ).

When n = 1, the permutations are irrelevant and this is solved by Theorem 2.1.8. The case
n = 2 is the subject of the two-variable chapters, with the unpermuted case covering σ = η and
the permuted case covering σ , η. For example, when n = 2 and σ = η is the identity, the
inequality (7.5) expands to ξ2 ◦ ξ1( f ) ≤ Cρ2 ◦ ρ1( f ), i.e. ρq2

ν2 ◦ ρ
q1
ν1 ( f ) ≤ Cρp2

µ2 ◦ ρ
p1
µ1 ( f ), which

represents, in the notation used in Chapter 3,∥∥∥∥‖ f ‖Lq1
ν1 (X1)

∥∥∥∥
Lq2
ν2 (X2)

≤ C
∥∥∥∥‖ f ‖Lp1

µ1 (X1)

∥∥∥∥
Lp2
µ2 (X2)

The following results address the problem of determining when Lρ ⊂ Lξ for more general n,
finding conditions for inclusion to exist between permuted mixed norm spaces. By reordering
the variables according to η, we can reduce to one permutation. Suppose that we replace each
Xk by Xη(k), reorder the corresponding exponents pk and qk as well as the measures µk and νk,
and replace σ by σ̃ = σ◦η−1. With this relabeling of coordinates, inequality (7.5) is equivalent
to

ξn ◦ · · · ξ1( f ) ≤ Cρσ̃(n) ◦ · · · ρσ̃(1)( f ) (7.6)

So, we can always let η be the identity when solving this problem, which is exactly what
was done in Chapter 3. Henceforth, η is therefore not used.

Why is Lρ ⊂ Lξ equivalent to the existence of C < ∞? A first step is to sweep away the
annoying technicality that the presence of an exponent less than 1 means that we do not, strictly
speaking, have norms. This can be achieved through the following lemma, which uses a trick
to adjust all exponents involved in the problem simultaneously.

Lemma 7.3.1. Fix an arbitrary real number t > 0 and, for each k ∈ {1, . . . , n}, define ρ̃k the
same way as ρk, but replacing pk by tpk, i.e.

ρ̃k( f )(x1, . . . , xn) =


(∫

Xk
f (x1, . . . , xn)tpkdµk

)1/tpk
if pk < ∞

ess supxk∈(Xk ,µk) f (x1, . . . , xn) if pk = ∞
.

and similarly define ξ̃k which differs from ξk only in its use of tqk in place of qk. Let C ∈ [0,∞]
denote the least constant such that

ξ( f ) ≤ Cρ( f ) (7.7)
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holds for all f ∈ L+(X), and D ∈ [0,∞] denote the least constant such that

ξ̃(h) ≤ Dρ̃(h) (7.8)

holds for all h ∈ L+(X). Then C = Dt.
Furthermore, Lρ ⊂ Lξ if and only if Lρ̃ ⊂ Lξ̃.

Proof. Given any h ∈ L+(X), let f = ht. Observe that

ξ̃(h) = ξ̃n ◦ · · · ◦ ξ̃1(h)

=

∫
Xn

· · ·

(∫
X1

f (x1, . . . , xn)tp1dµ1(x1)
)tp2/tp1

· · · dµn(xn)
1/tpn

= ξ( f )1/t

and

ρ( f ) = ρσ(n) ◦ · · · ◦ ρσ(1)( f )

=

∫
Xσ(n)

· · ·

(∫
Xσ(1)

f (x1, . . . , xn)tp1 dµσ(1)(xσ(1))
)pσ(2)/pσ(1)

· · · dµσ(n)(xσ(n))
1/pσ(n)

= ρ̃(h)t,

with appropriate use of the essential supremum if any exponent is ∞. Therefore, with C the
least constant such that (7.7) holds,

ξ̃(h) = ξ( f )1/t ≤ (Cρ( f ))1/t = C1/tρ̃(h).

Because D is the least constant for (7.8), D ≤ C1/t, so Dt ≤ C.
To obtain the reverse inequality, for any f ∈ L+(X), let h = f 1/t. Of course, this implies that

f = ht, as above, so the same equalities apply, and

ξ( f ) = ξ̃(h)t ≤ (Dρ̃(h))t = Dtρ( f ).

Because C is the least constant for (7.7), C ≤ Dt.
Finally, to see equivalence of the inclusion problems, suppose that Lρ ⊂ Lξ. For any h ∈

L+(X), let f = ht and note that if h ∈ Lρ̃, then ρ( f ) = ρ̃(h)t < ∞, so ξ̃(h) = ξ( f )1/t < ∞;
consequently, Lρ̃ ⊂ Lξ̃. The converse is proven similarly. �

With this generalization of 2.2.4 to multiple variables, it is possible to convert the original
inclusion problem to one involving Banach function spaces. The following generalization of
Proposition 2.2.6 takes advantage of this to show that the mixed-norm inclusion problem can
be formulated as one of finding a best constant.

Proposition 7.3.2. There is a constant C < ∞ such that ξ ≤ Cρ if and only if Lρ ⊂ Lξ.

Proof. If any exponent pk or qk, for k ∈ {1, . . . , n}, is strictly less than 1, let

t = max(p−1
1 , . . . , p−1

n , q
−1
1 , . . . , q

−1
n )

and use this t in Lemma 7.3.1 to convert the inclusion problem of proving or refuting Lρ ⊂ Lξ

to the equivalent problem concerning Lρ̃ ⊂ Lξ̃; at the same time, go from finding the least
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constant in ξ ≤ Cρ to finding the least constant in ξ̃ ≤ Dρ̃. (If either C or D exists, the other
does and they are related by C = Dt, by Lemma 7.3.1. Consequently, if one of them fails to
exist, so does the other.) From now on, use ρ and ξ to refer to the values ρ̃ and ξ̃, and observe
that no exponent involved has a value less than 1.

This means that the spaces Lρ and Lξ are normed spaces; furthermore, as observed by
Benedek and Panzone in [4], they are Banach function spaces, defined in such references as
[5]. One direction is clear; the existence of C < ∞ immediately gives a bounded (equivalently,
continuous) inclusion map Lρ ↪→ Lξ.

Conversely, suppose that Lρ ⊂ Lξ. Because these are Banach function spaces there is a
constant C < ∞ such that ξ ≤ Cρ, by Theorem 1.8 in [5]. That is, the inclusion map must be
bounded. �

Now that the inclusion problem Lρ ⊂ Lξ is known to amount to determining whether the
best constant C is finite, the following definition summarizes the notation for the multi-variable
inclusion problem.

Definition 7.3.3. Take measurable spaces (X1,Σ1) , . . . , (Xn,Σn), where for k = 1, . . . , n each Xk

has measures µk and νk on the σ-algebra Σk. Given exponents p1, . . . , pn, q1, . . . , qn ∈ (0,∞],
define, for any f ∈ L+(X),

ρk( f )(x1, . . . , xn) =


(∫

Xk
f (x1, . . . , xn)pkdµk

)1/pk
if pk < ∞

ess supxk∈(Xk ,µk) f (x1, . . . , xn) if pk = ∞
,

ξk( f )(x1, . . . , xn) =


(∫

Xk
f (x1, . . . , xn)qkdνk

)1/qk
if qk < ∞

ess supxk∈(Xk ,νk) f (x1, . . . , xn) if qk = ∞
.

For any permutation σ of {1, . . . , n}, define mixed norms

ρ = ρσ(n) ◦ · · · ◦ ρσ(1), ξ = ξn ◦ · · · ◦ ξ1,

where the constant value of ρ( f ) is understood as the value of the mixed norm, and similarly
for ξ. The mixed-norm spaces Lρ and Lξ are then defined by

Lρ =
{
f ∈ L+(X) | ρ( f ) < ∞

}
, Lξ =

{
f ∈ L+(X) | ξ( f ) < ∞

}
.

Let C denote the least constant in [0,∞] such that ξ ≤ Cρ, i.e. for all f ∈ L+(X),

ξ( f ) ≤ Cρ( f ).

7.4 All subinclusions are necessary
The permuted mixed-norm inclusion Lρ ⊂ Lξ has, as necessary conditions, inclusions involving
subsets of the variables x1, . . . , xn, corresponding to subsets S ⊂ {1, . . . , n}. Important special
cases include the one-variable inclusions Lpk

µk (Xk) ⊂ Lqk
νk (X) obtained by considering singleton

S and, two-variable subinclusions, for which the results in the two-variable problem will be
helpful. A first step is to establish absolute continuity of measures, again.
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Lemma 7.4.1. If Lρ ⊂ Lξ, then every νk � µk.

Proof. Were any particular ν j 3 µ j, then there would be some measurable S j ⊂ X j with
µ jS j = 0, yet ν jS j > 0. For each k , j, let S k = Xk; because νk is non-zero, νkS k > 0. Let
f = χ∏n

k=1 S k =
∏n

k=1 χS k and then compute

ξ( f ) =

n∏
k=1

∥∥∥χS k

∥∥∥
L

qk
νk (Xk)

> 0

since each factor is positive; if qk < ∞, then
∥∥∥χS k

∥∥∥
L

qk
νk (Xk)

= (νkS k)1/qk > 0, while the essential
supremum of χS k is 1 since νkS k > 0. On the other hand, since µ jS j = 0, χS j = 0 µ j-a.e., so

ρ( f ) =

n∏
k=1

∥∥∥χS k

∥∥∥
L

pk
µk

= 0

Consequently, there can be no constant C such that ξ( f ) ≤ Cρ( f ). �

Once more, since ν � µ is a basic necessary condition, it is assumed.

Assumption For the rest of the n-variable problem, assume that νk � µk for k ∈ {1, . . . , n}.

For this theorem, recall that the permutation σ is included in the definition of the composi-
tion ρ = ρσ(n) ◦ · · · ◦ ρσ(1), while ξ = ξn ◦ · · · ξ1 is defined in a standard order.

Theorem 7.4.2. Suppose that Lρ ⊂ Lξ, i.e. there is some C < ∞ such that ξ ≤ Cρ. For any
S ⊂ {1, . . . , n}, let s = |S |. Write S = {k1, . . . , ks} = {l1, . . . , ls} where k1 < · · · < ks and
σ−1(l1) < · · · < σ−1(ls). Define a permutation τ on S by τ(ki) = li for each 1 ≤ i ≤ s. Then
there is a constant C′ < ∞ such that

ξks ◦ · · · ◦ ξk1 ≤ C′ρls ◦ · · · ◦ ρl1

Proof. Let t = n − |S | and enumerate {1, . . . , n} \ S by m1, . . . ,mt (in any order). For each
1 ≤ j ≤ t, because νm j � µm j and νm j , 0, there is some set E j with positive µm j and νm j

measure. Because these measures are σ-finite, we can ensure (taking a subset if needed) that
0 < µm j(E j) < ∞ and 0 < νm j(E j) < ∞.

For any measurable function g(xk1 , . . . , xks) depending on the variables xi with i ∈ S , define
h ∈ L+(X) by h = g

∏t
j=1 χE j(xm j). Also, for i ∈ S , let ρ̃i and ξ̃i denote essentially the same

one-variable Lebesgue norm computations as ρi and ξi, with the same exponents and measures,
but instead of mapping L+(X) to itself, these take L+(

∏
i∈S Xi) to itself. Then t∏

j=1

∥∥∥χE j

∥∥∥
L

qm j
νm j

(Xm j )

 ξ̃ks ◦ · · · ◦ ξ̃k1(g) = ξ(h)

≤ Cρ(h)

= C

 t∏
j=1

∥∥∥χE j

∥∥∥
L

pm j
µm j

(Xm j )

 ρ̃ls ◦ · · · ◦ ρ̃l1(g),
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so

ξ̃ks ◦ · · · ◦ ξ̃k1(g) ≤ C
t∏

j=1


∥∥∥χE j

∥∥∥
L

pm j
µm j

(Xm j )∥∥∥χE j

∥∥∥
L

qm j
νm j

(Xm j )

 ρ̃ls ◦ · · · ◦ ρ̃l1(g).

Each E j satisfies 0 < µm j E j < ∞ and 0 < νm j E j < ∞, so that 0 <
∥∥∥χE j

∥∥∥
L

pm j
µm j

(Xm j )
< ∞ and

0 <
∥∥∥χE j

∥∥∥
L

qm j
νm j

(Xm j )
< ∞. So, we can define C′ = C

∏t
j=1


∥∥∥∥χE j

∥∥∥∥
L

pm j
µm j

(Xm j )∥∥∥∥χE j

∥∥∥∥
L

qm j
νm j

(Xm j )

 and note that C′ < ∞.

It remains to show that this C′ is a suitable value of the constant we seek; remember that
ξks◦· · ·◦ξk1 and ρls◦· · ·◦ρl1 apply to functions in L+(X), i.e. of all variables x1, . . . , xn rather than
merely xk1 , . . . , xks . For any f ∈ L+(X) and any particular points xm1 ∈ Xm1 , . . . , xmt ∈ Xmt , let
g(xk1 , . . . , xks) = f (x1, . . . , xn) where each xi is one of the temporarily fixed xm j (where i = m j)
if i < S or is xk j (i = k j) if i ∈ S . From what we’ve already found,

ξks ◦ · · · ◦ ξk1( f )(x1, . . . , xn) = ξ̃ks ◦ · · · ◦ ξ̃k1(g)(xm1 , . . . , xmt)
≤ C′ρ̃ls ◦ · · · ◦ ρ̃l1(g)(xm1 , . . . , xmt)
= C′ρls ◦ · · · ◦ ρl1( f )(x1, . . . , xn).

The quantities ξ̃ks ◦ · · · ◦ ξ̃k1(g) and ρ̃ls ◦ · · · ◦ ρ̃l1(g) are functions of those variables xm1 , . . . , xmt

included as parameters in the definition of g, so this inequality compares the (constant) func-
tions

ξks ◦ · · · ◦ ξk1( f ) ≤ C′ρls ◦ · · · ◦ ρl1( f ),

which holds for any f ∈ L+(X) with the constant C′. �

Definition 7.4.3. The inequalities in the conclusion of Theorem 7.4.2, and the corresponding
embeddings of s-variable mixed norm spaces, are referred to as s-variable subinclusions of
the mixed-norm inclusion problem. It is important to note that every subinclusion with s > 1
inherits a permutation of the variables l1, . . . , ls from the permutation in the original problem.

The reason why σ−1 appears in the definition of l1, . . . , ls is that σ maps the position i on
the right-hand side of inequality (7.6) to the index σ(i) of the variable in the ith place. That
is, σ, maps the place to the variable, dictating which variable goes in a particular spot in the
mixed norm. However, when determining whether particular variables are inverted between
the left and right sides, we instead want to use σ−1, which maps each index to the place where
it appears. Specifically, σ−1( j) is the place where the computation of Lp j

µ j (X j) ends up in the
composition on the right-hand side.

Corollary 7.4.4. If Lρ ⊂ Lξ, then for each k ∈ {1, . . . , n}, Lpk
µk (Xk) ⊂ Lqk

νk (Xk).

Proof. Simply consider S = {k} in Theorem 7.4.2. �

Corollary 7.4.5. If Lρ ⊂ Lξ, then for each 1 ≤ i < j ≤ n, there is a constant C′ < ∞ such that

ξ j ◦ ξi ≤ C′ρτ( j) ◦ ρτ(i)

where the permutation τ on {i, j} is the identity if σ−1(i) < σ−1( j) or τ is the transposition
swapping i and j if σ−1(i) > σ−1( j). (That is, it places i and j in the relative order imposed on
them by σ.)
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Proof. Let S = {i, j} in Theorem 7.4.2. �

Although they are simple consequences of the theorem, these corollaries turn out to be im-
portant. As following sections will show, these corollaries have converses in certain special
cases. In the case of unpermuted mixed norms, all one-variable inclusions are not only nec-
essary but also sufficient for the mixed norm inclusion. When no measure is purely atomic,
having all two-variable subinclusions suffices for the complete mixed norm inclusion, so the
problem reduces to the two-variable case.

7.5 Unpermuted case
When there is no permutation, i.e. σ is the identity, then the necessary condition of Corollary
7.4.4 is also sufficient.

Proposition 7.5.1. The unpermuted mixed norm inclusion Lρ ⊂ Lξ holds if and only if every
Lpk
µk (Xk) ⊂ Lqk

νk (Xk). Furthermore, in this case the norm of the inclusion operator Lρ ↪→ Lξ is the
product of the norms of the inclusions Lpk

µk (Xk) ↪→ Lqk
νk (Xk).

In other words, if for each k ∈ {1, . . . , n}, Ck ∈ [0,∞] is the least constant such that
ξk ≤ Ckρk, then the least constant in ξ ≤ Cρ is C = C1 · · ·Cn.

Proof. Corollary 7.4.4 has already established that every single-variable inclusion is neces-
sary. For the converse, take any g ∈ L+(X) and note that, for k ∈ {1, . . . , n}, for every fixed
(x1, . . . , x̂k, . . . , xn) (where x̂k denotes that xk is omitted), g(x1, . . . , xn) is a measurable function
of xk, with its Lpk

µk (Xk) norm given by the value of ρk(g)(x1, . . . , xn), which does not depend on
xk. The same is true of the Lqk

νk (Xk) norm, so that the inclusion Lpk
µk (Xk) ⊂ Lqk

νk (Xk) implies that
ξk(g) ≤ Ckρk(g).

For any f ∈ L+(X), successively applying this result to each variable in turn provides

ξ( f ) = ξn ◦ · · · ◦ ξ1( f )
≤ C1ξn ◦ · · · ◦ ξ2 ◦ ρ1( f )

...

≤ C1 · · ·Cnρn ◦ · · · ◦ ρ1( f )
= C1 · · ·Cnρ( f ).

In the particular case that f ∈ Lρ, this shows that f ∈ Lξ as well. To see that C1 · · ·Cn is
actually the norm of the inclusion, we need only consider a factorable function f = f1 · · · fn,
where each fk ∈ Lpk

µk (Xk) ⊂ Lqk
νk (Xk). In this case,

ρ( f ) =

n∏
k=1

‖ fk‖Lpk
µk (Xk) =

n∏
k=1

ρk( f )

ξ( f ) =

n∏
k=1

‖ fk‖Lqk
νk (Xk) =

n∏
k=1

ξk( f )

By choosing f1, . . . , fn such that the ratio ξk( f )/ρk( f ) is arbitrarily close to Ck, which is
possible since that is the norm of inclusion, the ratio ξ( f )/ρ( f ) can be brought as close as
desired to C1 · · ·Cn. �
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7.6 Minkowski criterion with no purely atomic measure
Now, suppose that none of the measures µk or νk is purely atomic. As noted in Section 4.2.1, we
can restrict our attention to functions supported where every dνk

dµk
> 0, since non-zero values off

that set only increase ρ( f ), not ξ( f ), and thus take us further from C = sup f∈L+(X)
ξ( f )
ρ( f ) . This can

be effected by restricting our measures, after which we have dνk
dµk

> 0 µk-a.e. and, consequently,
either both µk and µk are purely atomic or neither of them is.

In this case, it is not only necessary that every two-variable subinclusion hold to have
Lρ ⊂ Lξ, but also sufficient. Furthermore, as we learned from studying the two-variable case,
with no purely atomic measure, this occurs when the exponents satisfy a condition based on
Minkowski’s inequality.

Theorem 7.6.1. Suppose that, for each k ∈ {1, . . . , n}, neither µk nor νk is purely atomic and
that there is a constant Ck < ∞ such that ξk ≤ Ckρk. Then the following are equivalent.

1. For any 1 ≤ i < j ≤ n there exists some constant C′ < ∞ such that

ξ j ◦ ξi ≤ C′ρτ( j) ◦ ρτ(i)

where τ is the identity if σ−1(i) < σ−1( j) or τ swaps i and j if σ−1(i) > σ−1( j).

2. For any 1 ≤ i < j ≤ n, if σ−1(i) > σ−1( j) then qi ≤ p j.

3. There is a finite C < ∞ such that
ξ ≤ Cρ.

Furthermore, if these are true, then the least possible values of C and C1, . . . ,Cn satisfy
C = C1 · · ·Cn.

Proof. Suppose the first condition holds and we have every two-variable inclusion. In every
case where σ−1(i) > σ−1( j) while i < j, the two-variable inclusion is permuted, so Theorem
4.2.16 provides that min(pi, qi) ≤ max(p j, q j). Furthermore, Theorem 2.1.8 provides that qi ≤

pi and q j ≤ p j, so that the Minkowski criterion on exponents is qi ≤ p j. This proves the second
condition.

Assuming the second condition, we have the Minkowski sufficient condition described in
Section 3.6, so every permuted (non-identity τ) inclusion in the first condition holds. Of course,
when τ is the identity, unpermuted inclusion follows from single-variable inclusions, by Theo-
rem 3.4.1. Therefore we have every two-variable inclusion required for the first condition.

Corollary 7.4.5 says that the third condition implies the first, so all that remains is to es-
tablish, with the assumed single-variable inclusions and atomless measures, that the second
condition implies the third. The aim is to prove that all subinclusions (each corresponding to
some S ⊂ {1, . . . , n}) hold, by induction on the size of the subset. While this is a superficially
stronger result, Theorem 7.4.2 tells us that it is actually equivalent to the overall inclusion.

Claim: For any S ⊂ {1, . . . , n}, let s = |S | and write S = {k1, . . . ks} = {l1, . . . , ls}, where
k1 < · · · < ks and σ−1(l1) < · · · < σ−1(ls). Then the least constant C ∈ [0,∞] such that

ξks ◦ · · · ◦ ξk1 ≤ Cρls ◦ · · · ◦ ρl1 (7.9)
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is C = Ck1 · · ·Cks .
The proof is by induction on s. The base case s = 1 is in the hypothesis. Assume that all

subinclusions for subsets S with |S | < s hold, each with the specified constant, the product of
all single-variable constants. (The case of factorable functions fk1 · · · fks , each fki ∈ L+(Xki),
gives C ≥ Ck1 · · ·Cks , so it remains only to establish (7.9) with C = Ck1 . . .Cks .)

Define a permutation τ on {1, . . . , s} by, for each i, j ∈ {1, . . . , s}, τ(i) = j if and only if
ki = l j. Let i0 = τ−1(1), so ki0 = l1. The single-variable inclusion ξl1 ≤ Cl1ρl1 implies that

ξki0
◦ · · · ◦ ξk1 ≤ Cl1ρl1 ◦ ξki0−1 ◦ · · · ◦ ξk1 . (7.10)

For any i < i0, τ(i) > 1 = τ(i0), so li occurs after li0 in the l ordering of S , i.e. σ−1(i) > σ−1(i0).
By the second condition, qki ≤ pki0

= pl1 . Repeatedly apply Minkowski’s integral inequality
(Proposition 7.2.3) to all i < i0.

ρl1 ◦ ξki0−1 ◦ · · · ◦ ξk1 ≤ ξki0−1 ◦ ρl1 ◦ ξki0−2 ◦ · · · ◦ ξk1

...

≤ ξki0−1 ◦ · · · ◦ ξk1 ◦ ρl1

Composition with ξks ◦ · · · ◦ ξki0+1 gives

ξks ◦ · · · ◦ ξki0+1 ◦ ρl1 ◦ ξki0−1 ◦ · · · ◦ ξk1 ≤ ξks ◦ · · · ◦ ξ̂ki0
◦ · · · ◦ ξk1 ◦ ρl1 ,

where ξ̂ki0
indicates that this term is missing from the composition. With (7.10), this means that

ξks ◦ · · · ◦ ξk1 ≤ Cl1ξks ◦ · · · ◦ ξ̂ki0
◦ · · · ◦ ξk1 ◦ ρl1 . (7.11)

Apply the inductive hypothesis to S \ {l1} = S \
{
ki0

}
to find that

ξks ◦ · · · ◦ ξ̂ki0
◦ · · · ◦ ξk1 ≤ Cls · · ·Cl2ρls ◦ · · · ◦ ρl2

which, together with (7.11), gives

ξks ◦ · · · ◦ ξk1 ≤ Cl1ξks ◦ · · · ◦ ξ̂ki0
◦ · · · ◦ ξk1 ◦ ρl1

≤ Cl1 · · ·Clsρls ◦ · · · ◦ ρl1 ,
(7.12)

as desired. �

The case of nonatomic measures is not the only time when the multivariable problem re-
duces to two-variable subproblems. There is a similar result involving counting measure.

Theorem 7.6.2. Suppose that, for each k ∈ {1, . . . , n}, both of µk and νk are (unweighted)
counting measure and that there is a constant Ck < ∞ such that ξk ≤ Ckρk. (When this
happens, the least constant is Ck = 1.) Then the following are equivalent.

1. For any 1 ≤ i < j ≤ n there exists some constant C′ < ∞ such that

ξ j ◦ ξi ≤ C′ρτ( j) ◦ ρτ(i),

where τ is the identity if σ−1(i) < σ−1( j) or τ swaps i and j if σ−1(i) > σ−1( j).
(When this is true, the least such constant is C′ = 1.)
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2. For any 1 ≤ i < j ≤ n, if σ−1(i) > σ−1( j) then pi ≤ q j.

3. There is a finite C < ∞ such that
ξ ≤ Cρ.

(When this is true, the least constant is C = 1.)

Proof. The proof proceeds much as in Theorem 7.6.1. One difference to note is that each
single-variable inclusion `pk(Xk) ⊂ `qk(Xk) holds if and only if pk ≤ qk, and in this case Ck = 1,
by Corollary 2.6.10.

Assume the first condition. Whenever i < j and σ−1(i) > σ−1( j), the permuted two-variable
inclusion requires pi ≤ q j by Proposition 5.3.5. This proves the second condition.

Assume the second condition. The hypothesis provides one-variable inclusions and, con-
sequently, pi ≤ qi and p j ≤ q j. Theorem 3.4.1 shows that the one-variable inclusions suffice
in the first condition’s unpermuted case, with C′ = CiC j = 1. The permuted case, with non-
identity τ, has σ−1(i) > σ−1( j) and therefore pi ≤ q j. Proposition 5.3.5 then gives permuted
two-variable inclusion with C′ = 1, finishing the proof of the first condition.

Subinclusions are necessary by Corollary 7.4.5, so the third condition implies the first. It
remains only to prove that the second condition implies the third. As in Theorem 7.6.1, the
following claim is established by induction on s, assuming the second condition.

Claim: For any S ⊂ {1, . . . , n}, let s = |S | and write S = {k1, . . . ks} = {l1, . . . , ls}, where
k1 < · · · < ks and σ−1(l1) < · · · < σ−1(ls). Then the least constant C ∈ [0,∞] such that

ξks ◦ · · · ◦ ξk1 ≤ Cρls ◦ · · · ◦ ρl1 (7.13)

is C = 1.
The hypothesis includes the base case s = 1. Assume that all subinclusions for subsets S

with |S | < s hold with constant 1. (Factorable functions give C ≥ Ck1 · · ·Cks = 1.)
Define a permutation τ on {1, . . . , s} by, for each i, j ∈ {1, . . . , s}, τ(i) = j if and only if

ki = l j. Let i0 = τ−1(s), so ki0 = ls. The single-variable inclusion ξls ≤ ρls implies that

ξks ◦ · · · ◦ ξki0
≤ ξks ◦ . . . ξki0+1 ◦ ρls . (7.14)

For any j > i0, τ( j) < n = τ(i0), so l j occurs before li0 in the l ordering of S , i.e. σ−1( j) <
σ−1(i0). By the second condition, pls = pki0

≤ qk j . Repeatedly apply Minkowski’s integral
inequality (Proposition 7.2.3) to all j > i0.

ξks ◦ . . . ξki0+1 ◦ ρls ≤ ξks ◦ . . . ξki0+2 ◦ ρls ◦ ξki0+1

...

≤ ρls ◦ ξks ◦ · · · ◦ ξki0+1

Composition with ξki0−1 ◦ · · · ◦ ξ1 gives

ξks ◦ · · · ◦ ξki0+1 ◦ ρls ◦ ξki0−1 ◦ · · · ◦ ξk1 ≤ ρls ◦ ξks ◦ · · · ◦ ξ̂ki0
◦ · · · ◦ ξk1 ,

where ξ̂ki0
indicates that this term is missing from the composition. With (7.14), this means that

ξks ◦ · · · ◦ ξk1 ≤ ρls ◦ ξks ◦ · · · ◦ ξ̂ki0
◦ · · · ◦ ξk1 . (7.15)
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Apply the inductive hypothesis to S \ {ls} = S \
{
ki0

}
to find that

ξks ◦ · · · ◦ ξ̂ki0
◦ · · · ◦ ξk1 ≤ ρls−1 ◦ · · · ◦ ρl1

which, together with (7.15), gives

ξks ◦ · · · ◦ ξk1 ≤ ρls ◦ ξks ◦ · · · ◦ ξ̂ki0
◦ · · · ◦ ξk1

≤ ρls ◦ · · · ◦ ρl1 .
(7.16)

�

In each of these cases, the multivariable problem has been reduced to two-variable subprob-
lems. Where these two-variable subproblems are permuted, inclusion in either case requires
the Minkowski criterion. Additionally, each one-variable subproblem requires a particular or-
der of exponents. For measures which are not purely atomic, one-variable inclusions demand
qk ≤ pk so that the Hölder criterion for inclusion can apply; with this, the Minkowski case of
min(pi, qi) ≤ max(p j, q j) is reduced to qi ≤ p j.. For unweighted `p, pk ≤ qk is both necessary
and sufficient, and it reduces the Minkowski case to pi ≤ q j. Without these special conditions,
it is not clear that just having the Minkowski condition for each permuted two-variable subin-
clusion suffices to establish the full inclusion. However, this has been proven to suffice in all
cases with three or four variables, and computation has furthermore ruled out a counterexample
in five or six variables. Therefore, the following conjecture is suggested.

Conjecture 7.6.3. For each k ∈ {1, . . . , n}, let Ck ∈ [0,∞] denote the least constant so that ξk ≤

Ckρk. Assume that every permuted two-variable subinclusion satisfies the Minkowski criterion.
That is, assume that for any 1 ≤ i < j ≤ n, if σ−1(i) > σ−1( j), then min(pi, qi) ≤ max(p j, q j).
Then the least constant C such that

ξ ≤ Cρ

is C = C1 · · ·Cn.

7.7 Multiple-variable summary
Let X1, . . . , Xn be measurable spaces such that each Xk has non-zero σ-finite measures µk and
νk. For each k ∈ {1, . . . , n}, let ρk denote the one-variable Lpk

µk (Xk) norm, while ξk denotes the
one-variable Lqk

νk (Xk) norm. Let σ be a permutation of {1, . . . , n} and let C denote the least
constant such that

ξn ◦ · · · ◦ ξ1 ≤ Cρσ(n) ◦ · · · ◦ ρσ(1). (7.17)

There is an inclusion between the corresponding mixed-norm spaces if and only if C < ∞.
Factorable functions yield the lower bound C ≥ C1 · · ·Cn.

1. (Theorem 7.4.2) Does any subinclusion fail? If so, then C = ∞.

Given a subset S ⊂ {1, . . . , n} with cardinality s = |S |, the corresponding s-variable
subinclusion is obtained by removing from the compositions in

ξn ◦ · · · ◦ ξ1 ≤ Cρσ(n) ◦ · · · ◦ ρσ(1)
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any one-variable norms in variables xk with k < S . The order in which one-variable
norms are computed in the subinclusion is inherited from their order in the original inclu-
sion problem. Although the best constant may differ among the subinclusions, if ξ ≤ Cρ
with C < ∞, there must be a finite best constant for the subinclusion corresponding to
any S . There are two special cases worth noting.

• (Corollary 7.4.4) Every one-variable subinclusion ξk ≤ Ckρk must hold (and let
Ck denote the best constant there) if mixed-norm inclusion is to be possible, by
considering singleton S .

• (Corollary 7.4.5) Every two-variable subinclusion must hold if mixed-norm inclu-
sion is to be possible, by considering S with two elements.

The standard results on embeddings among Lebesgue spaces solve the one-variable sub-
problems, while the two-variable methods developed here solve many two-variable cases
fully, and provide insight even into the more difficult cases. If any necessary condition
can show that a subinclusion in one or two variables fails, then the full mixed-norm
problem certainly fails, as well.

One unfortunate side to this is that proving a mixed-norm inclusion establishes every
subinclusion, so it must be at least as difficult a problem as each of its subproblems.
Since certain difficult two-variable cases have been found, the most difficult problems in
three or more variables must be at least as troublesome. Therefore, a neat solution to all
cases is not expected. Certain cases, however, are solved.

2. (Proposition 7.5.1) Is σ the identity? If so, then if all one-variable inclusions hold (each
Ck < ∞), so does the mixed-norm inclusion, with C = C1 · · ·Cn.

3. (Theorem 7.6.1) Is no measure µk or νk purely atomic? In this case, the mixed-norm
inclusion holds if and only if every two-variable subinclusion does.

(Unpermuted two-variable subproblems, of course, reduce to their one-variable pieces,
while in this case permuted two-variable subinclusions hold if and only if both the one-
variable inclusions and the Minkowski criterion hold.)

4. (Theorem 7.6.2) Is every measure space a countably infinite set with counting measure?
In this case as well, the problem reduces to its two-variable subproblems. Permuted
two-variable inclusion holds if and only if one-variable inclusions and the Minkowski
criterion hold.

5. (Conjecture 7.6.3) It is conjectured that, if every two-variable subinclusion holds, and
every permuted two-variable subinclusion satisfies the Minkowski criterion, then the full
mixed-norm inclusion holds.
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[17] Emilio Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7
(1958), 102–137. MR 0102740 (21 #1526)

[18] W. Grey and G. Sinnamon, The inclusion problem for mixed-norm spaces, Trans. Amer.
Math. Soc. (to appear).
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Appendix A

Applications of mixed-norm Hölder and
Minkowski inequalities

Although they are not necessary to address the central inclusion problem, the mixed-norm
versions of the Hölder and Minkowski integral inequalities were included in Chapter 7. In
part, this is because Minkowski’s integral inequality does describe a special class of inclusions,
specifically those among permuted copies of some particular mixed norm. For example, if

ρ = ρ3 ◦ ρ2 ◦ ρ1

is a mixed norm for functions on X1 × X2 × X3, where each ρk is a one-variable norm over
Xk, then Minkowski’s integral inequality describes inclusions among the various mixed norms
ρσ(3) ◦ ρσ(2) ◦ ρσ(1), where σ is any permutation of {1, 2, 3}.

However, another reason is because the mixed-norm Hölder and Minkowski can be used
together effectively for certain proofs, as mentioned in the introduction. Several examples are
included here as simple demonstrations, hopefully to encourage readers to take advantage of
these tools when appropriate.

The first example involves Littlewood’s 4/3 inequality (from [22], described and general-
ized in numerous ways since) which directly concerns bilinearity, but has a proof which relies
on a certain inequality involving mixed norms. That inequality is stated and proven below.

Proposition A.0.1. For any doubly-indexed collection
(
ai, j

)
i, j∈N

of nonnegative numbers,

∑
i, j

a4/3
i, j


3/4

≤

∑
j

∑
i

a2
i, j

1/2
1/2 ∑

i

∑
j

a2
i, j


1/2

1/2

.

Proof. For P = (p1, p2), define a mixed norm

ρP(ci, j) =

∑
j

∑
i

cp1
i, j

p2/p1


1/p2

,

with appropriate replacements by the essential supremum if either or both of p1 and p2 is ∞.
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As described in Theorem 7.2.1,
(
3, 3

2

)′
=

(
3
2 , 3

)
. Let αi, j = βi, j = a2/3

i, j and, by that very theorem,∑
i, j

a2/3
i, j =

∑
i, j

αi, jβi, j ≤ ρ(3, 3
2 )(αi, j)ρ( 3

2 ,3)(βi, j)

=

∑
j

∑
i

α3
i, j

1/2
2/3 ∑

j

∑
i

β3/2
i, j

2
1/3

.

Notice that the ( 3
2 , 3) mixed norm has its smaller exponent 3

2 on the inside of the nested sums
and its larger exponent 3 on the outside. Even the everyday two-variable Minkowski establishes
that swapping the order of those one-variable norms would give greater values. Therefore

∑
i, j

a2/3
i, j ≤

∑
j

∑
i

α3
i, j

1/2
2/3 ∑

i

∑
j

β3
i, j


1/2

2/3

=

∑
j

∑
i

a2
i, j

1/2
2/3 ∑

i

∑
j

a2
i, j


1/2

2/3

,

after which taking the 3/4 power on each side gives the desired result. �

Notice that this demonstration used no property specific to sums, and in fact would work
perfectly well for integrals over any σ-finite measure spaces instead of series. The next demon-
stration takes advantage of this by deriving the result for integrals first, with the series version
as a corollary.

Proposition A.0.2. Let (X1, µ1), . . . , (X3, µ3) be σ-finite measure spaces. Let X = X1 × X2 × X3

and let µ denote the product measure on X. Then, for any f ∈ L+(X),(∫
X

f 6/5dµ
)5/6

≤

∫
X2×X3

(∫
X1

f (x1, x2, x3)2dµ1(x1)
)1/2

dµ2(x2)dµ3(x3)
1/3

∫
X1×X3

(∫
X2

f (x1, x2, x3)2dµ2(x2)
)1/2

dµ1(x1)dµ3(x3)
1/3

∫
X1×X2

(∫
X3

f (x1, x2, x3)2dµ3(x3)
)1/2

dµ1(x1)dµ2(x2)
1/3

.

Proof. Define three ordered triples by

P1 =

(
5,

5
2
,

5
2

)
P2 =

(
5
2
, 5,

5
2

)
P3 =

(
5
2
,

5
2
, 5

)
.

Denoting the jth coordinate of Pi by pi( j), notice that
∑

i P−1
i = 1, in the sense that for each

particular j,
∑

i pi( j)−1 = 1. This permits the use of a three-function mixed-norm Hölder’s
inequality, as given in Theorem 7.2.2. Letting g1 = g2 = g3 = f 2/5,∫

X
g1g2g3dµ ≤ ρP1(g1)ρP2(g2)ρP3(g3), (A.0)
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where each mixed norm ρPi is defined by, for f ∈ L+(X),

ρPi = ρpi(3)
µ3
◦ ρpi(2)

µ2
◦ ρpi(1)

µ1
,

e.g. ρP1 = ρ5/2
µ3 ◦ρ

5/2
µ2 ◦ρ

5
µ1

. Two of these mixed norms have their largest exponent, 5, somewhere
other than the inside, coming in the middle or last in the composition of one-variable norms.
Let ξ2 denote the version of ρP2 thus permuted and ξ3 denote the version of ρP3 thus permuted,
so that

ξ2 = ρ5/2
µ3
◦ ρ5/2

µ1
◦ ρ5

µ2
and ξ3 = ρ5/2

µ2
◦ ρ5/2

µ1
◦ ρ5

µ3
.

The mixed-norm Minkowski inequality in Theorem 7.2.4 (or, perhaps more conveniently here,
Corollary 7.2.6) shows that ρP2 ≤ ξ2 and ρP3 ≤ ξ3. Therefore, continuing from (A.0),∫

X
g1g2g3dµ ≤ ρP1(g1)ξ2(g2)ξ3(g3).

When each side is expanded, this turns out to be the desired inequality. �

As an immediate corollary, here is Lemma 2 on page 430 of [6], a mixed-norm lemma
leading up to a trilinear result.

Corollary A.0.3. Let ai, j,k ≥ 0 be triply indexed over N. Then∑
i, j,k

a6/5
i, j,k


5/6

≤

∑
j,k

∑
i

a2
i, j,k

1/2
1/3 ∑

i,k

∑
j

a2
i, j,k


1/2

1/3 ∑
i, j

∑
k

a2
i, j,k

1/2
1/3

.

A more substantial application is the following theorem, which is Theorem 2.1 in [28].
Just over three pages of argument can be replaced by the following application of mixed-norm
techniques. First, relevant definitions from the paper.

Definition A.0.4. Let (M j, µ j) be σ-finite measure spaces for j = 1, 2, . . . , n, and introduce the
product measure spaces (Mn, µn) and (Mn

j , µ
n
j) by

Mn =

n∏
k=1

Mk, µn =

n∏
k=1

µk, Mn
j =

n∏
k=1
k, j

Mk, µn
j =

n∏
k=1
k, j

µk.

Note that Mn
n = Mn−1.

Theorem A.0.5. If n ≥ 2 and positive indices q1, . . . , qn satisfy
∑n

j=1
1
q j
≤ 1 then for any non-

negative µn-measurable functions f1, f2, . . . , fn,∫
Mn

f1 f2 · · · fndµn ≤

n∏
j=1

∫
M j

∫
Mn

j

f q j

j dµn
j

p j/q j

dµ j


1/p j

and

∫
Mn

f1 f2 · · · fndµn ≤

n∏
j=1

∫
Mn

j

(∫
M j

f q j

j dµ j

)s j/q j

dµn
j

1/s j

.

Here 1
p j

= 1
q j

+ 1 −
∑n

k=1
1
qk

and 1
s j

= 1
q j

+ 1
n−1

(
1 −

∑n
k=1

1
qk

)
.
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Proof. To prove the first inequality, define, for each j, k ∈ {1, . . . , n},

ρ j,k( f ) =


(∫

Mk
f p jdµk

)1/p j
if j = k,(∫

Mk
f q jdµk

)1/q j
if j , k.

For each j ∈ {1, . . . , n}, let ρ j = ρ j,n ◦ · · · ρ j,1, which can also be specified as ρP j where each kth

entry of the n-tuple P j is P j,k = q j, except for the jth, P j, j = p j.
For each k ∈ {1, . . . , n}, let P j(k) denote the kth entry in P j and observe that

n∑
j=1

P j(k)−1 = p−1
k +

∑
j,k

q−1
j = q−1

k + 1 −
n∑

j=1

q−1
j +

∑
j,k

q−1
j = 1,

so that
∑n

j=1 P−1
j = 1, in the coordinatewise sense used in Theorem 7.2.2, a mixed-norm

Hölder’s inequality. This theorem then implies that∫
Mn

f1 f2 · · · fndµn ≤

n∏
j=1

ρP j( f j).

By hypothesis, each p j ≤ q j, so ρ j, j has the least exponent, p j, compared to the q j exponents on
the other ρ j,k. Therefore Minkowski’s integral inequality, in its Corollary 7.2.6 form, implies
that, if we sort the composition ρ j into

ρ̃ j = ρ j,n ◦ · · · ρ j, j+1 ◦ ρ j, j−1 ◦ · · · ◦ ρ j,1 ◦ ρ j, j,

then ρ j ≤ ρ̃ j. Therefore ∫
Mn

f1 f2 · · · fndµn ≤

n∏
j=1

ρ̃ j( f j),

which expands into the desired first inequality in the conclusion. For the second inequality, let,
for j, k ∈ {1, . . . , n},

ξ j,k( f ) =


(∫

Mk
f q jdµk

)1/q j
if j = k,(∫

Mk
f s jdµk

)1/s j
if j , k.

For each j ∈ {1, . . . , n}, let ξ j = ξ j,n ◦ · · · ◦ ξ j,1, a mixed norm defined by an n-tuple S j, where
each entry S j(k) = s j, except for S j( j) = q j. Observe that

∑n
j=1 S −1

j = 1, since for each
k ∈ {1, . . . , n},

n∑
j=1

S j(k)−1 = q−1
k +

∑
j,k

s−1
j

= q−1
k +

∑
j,k

q−1
j +

1
n − 1

1 − n∑
m=1

q−1
m


=

n∑
j=1

q−1
j +

∑
j,k

1
n − 1

−
∑
j,k

1
n − 1

n∑
m=1

q−1
m

=

n∑
j=1

q−1
j + 1 −

n∑
m=1

q−1
m = 1,
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so by Hölder’s inequality (Theorem 7.2.2) and Minkowski’s integral inequality (Corollary
7.2.6), ∫

Mn
f1 f2 · · · fndµn ≤

n∏
j=1

ξ j( f j) ≤
n∏

j=1

ξ̃ j( f j),

where, for each j ∈ {1, . . . , n},

ξ̃ j = ξ j, j ◦ ξ j,n ◦ · · · ◦ ξ j, j+1 ◦ ξ j, j−1 ◦ · · · ◦ ξ j,1.

Minkowski’s integral inequality implies that each ξ j ≤ ξ̃ j because each s j ≤ q j, so ξ j, j has a
greater exponent, q j, than the other ξ j,k with their s j exponents. �

For another example, take Lemma 1 from [13], itself a rather restricted special case of
Lemma 5.3 in Blei’s [7]. Again, there are preliminary definitions.

Definition A.0.6. For two positive integers m and n, both assumed to be larger than 1, define

M(m, n) = {i = (i1, . . . , im) : i1, . . . , im ∈ {1, . . . , n}} .

Definition A.0.7. Given an index i in M(m, n), we set ik = (i1, . . . , ik−1, ik+1, . . . , im), which is
then an index in M(m − 1, n).

Lemma A.0.8. For all families (ci)i∈M(m,n) of complex numbers, we have

 ∑
i∈M(m,n)

|ci|
2m

m+1


m+1
2m

≤
∏

1≤k≤m


n∑

ik=1

 ∑
ik∈M(m−1,n)

|ci|
2


1
2


1
m

.

Note that each such family (ci) is naturally identified with a complex-valued function
f (i1, . . . , im) on {1, . . . , n}m defined by f (i1, . . . , im) = ci. The above result can be substantially
generalized, and is a special case of the following proposition.

Proposition A.0.9. Let (X1, µ1), . . . , (Xm, µm) be σ-finite measure spaces with product space
(X, µ). For any k ∈ {1, . . . , n}, let

Xk = X1 × · · · × X̂k × · · · × Xm,

with its product measure µk, where the notation X̂k indicates that this factor is omitted. For any
µ-measurable function f : X → C,

(∫
X
| f |

2m
m+1 dµ

)m+1
2m

≤
∏

1≤k≤m

∫
Xk

(∫
Xk
| f |2dµk

) 1
2

dµk


1
m

.

Proof. For k ∈ {1, . . . ,m}, let gk = | f |
2

m+1 . Let Pk =
(
pk,1, . . . , pk,n

)
, where each

pk,i =

{
m + 1 if i , k
m+1

2 if i = k .
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For each i ∈ {1, . . . ,m},
∑m

k=1 p−1
k,i = (m−1) · 1

m+1 + 2
m+1 = 1, so by Hölder’s inequality (Theorem

7.2.2) ∫
X
| f |

2m
m+1 =

∫
X

m∏
k=1

gk ≤

m∏
k=1

ρPk(gk).

Let ρ̃k denote the mixed norm which results from permuting ρPk so that its exponents are in
decreasing order; the least exponent m+1

2 comes last in ρ̃k. By Minkowski’s integral inequality
(Corollary 7.2.6), each ρPk ≤ ρ̃k. Therefore

∫
X
| f |

2m
m+1 ≤

m∏
k=1

ρ̃k

(
| f |

2
m+1

)
=

∏
1≤k≤m

∫
Xk

(∫
Xk
| f |2dµk

) 1
2

dµk


2

m+1

.

Finally, take the m+1
2m power of each side. �

Furthermore, Lemma 5.3 from [7] can be readily obtained with these methods, even though
it is a somewhat more complicated result. Once more, the preliminary notation. The wording
does not match Blei’s original, but should be similar, and correctly reflect the meaning.

Definition A.0.10. Consider integers J > K > 0. Let N =
(

J
K

)
and let S 1, . . . , S N enumerate the

size-K subsets of {1, . . . , J}, and for 1 ≤ α ≤ N, let ∼ S α denote the complement {1, . . . , J} \S α

of S α.

Lemma A.0.11. For any J-fold indexed sequence
(
a j1,..., jJ

)
, i.e. function on the product (Z+)J,

 ∑
j1,..., jJ

∣∣∣a j1,..., jJ

∣∣∣ 2J
K+J


K+J
2J

≤

N∏
α=1

∑
S α

∑
∼S α

∣∣∣a j1,..., jJ

∣∣∣2
1/2

1/N

.

As always with these methods, the result does not depend on exactly which σ-finite mea-
sure spaces are considered, much less the fact that the integration here is summation, so a
generalization will be proven.

Proposition A.0.12. For any σ-finite measure spaces (X1, µ1) , . . . , (XJ, µJ) and any measur-
able function f (x1, . . . , xJ) on X1 × · · · × XJ,(∫

{1,...,J}
| f |

2J
K+J

) K+J
2J

≤

N∏
α=1

∫
S α

(∫
∼S α

| f |2
)1/21/N

,

where the notation
∫

S
, for S ⊂ {1, . . . , J}, denotes integration over the product space

∏
k∈S Xk.

Proof. For 1 ≤ α ≤ N, let gα(x1, . . . , xn) = | f |
2J

N(K+J) and define a J-tuple Pα by

Pα(i) =

{ N(K+J)
J if i < S α

N(K+J)
2J if i ∈ S α

for i ∈ {1, . . . , J}. For each i, the number of sets S α which include a particular i is
(

J−1
K−1

)
, since

any set of size K known to include i is determined by the other K − 1 elements chosen out of
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the J − 1 in {1, . . . , J} \ {i}. The number of sets S α which exclude that i is
(

J−1
K

)
, because all K

elements of each such set are chosen from the J − 1 other values than i. Therefore

N∑
α=1

Pα(i)−1 =

(
J − 1
K − 1

)
2J

N(K + J)
+

(
J − 1

K

)
J

N(K + J)

=
J

K + J

2
(

J−1
K−1

)(
J
K

) +

(
J−1
K

)(
J
K

) 
=

J
K + J

(
2

(J − 1)!
(K − 1)!(J − K)!

K!(J − K)!
J!

+
(J − 1)!

K!(J − K − 1)!
K!(J − K)!

J!

)
=

J
K + J

(
2K
J

+
J − K

J

)
=

J
K + J

·
K + J

J
= 1.

Since
∑N
α=1 P−1

α = 1 coordinatewise, by Hölder’s inequaliity (Theorem 7.2.2),∫
{1,...,J}

| f |
2J

K+J =

∫
{1,...,J}

N∏
α=1

gα ≤
N∏
α=1

ρPα(gα).

Let ρ̃Pα denote the mixed norm obtained by permuting ρPα so that its greatest exponents N(K+J)
J

occur first, in coordinates from S α, and its least exponents N(K+J)
2J occur last, in coordinates

from ∼ S α. By Minkowski’s integral inequality (Corollary 7.2.6), each ρPα ≤ ρ̃Pα , so

∫
{1,...,J}

| f |
2J

K+J ≤

N∏
α=1

ρ̃Pα(gα) =

N∏
α=1

∫
S α

(∫
S α

| f |2
)1/2 2J

N(K+J)

.

Take K+J
2J powers on each side to obtain the desired inequality. �



Appendix B

Index of Notation

Notation Page Description
‖·‖Lp

µ(X) 6 Lp norm over (X, µ)
Lp
µ(X) 7 Lp space over (X, µ)
‖·‖p 7 Lp norm on an inferred measure space
‖·‖`p

w(I), ‖·‖`p(I), ‖·‖`p 7 Lp norms w.r.t (possibly weighted) counting measure
L+(X) 7 Nonnegative measurable functions on X
� 8 Absolute continuity of measures
dν
dµ 8 Radon-Nikodym derivative[
f
]
µ 9 Equivalence class of f for µ-a.e. agreement

p′ 12 Conjugate exponent to p for Hölder’s inequality
∼ 18 Equivalence of atoms by null symmetric difference
LP, ‖·‖P 23 (Unpermuted) mixed-norm space LP and its norm
Lσ(P), ‖·‖σ(P) 24 Permuted mixed-norm space Lσ(P) and its norm
C1,C2 27 Norms of inclusions Lpk

µk (X1) ↪→ Lq1
ν1 (X1), Lp2

µ2 (X2) ↪→ Lq2
ν2 (X2)

α, β 33 Exponents dependent on p1, q1, p2, and q2

C1(Ai),C2(B j) 49 Best one-variable constants on subsets Ai ⊂ X1, B j ⊂ X2

p : q 49 Relative conjugate of p with respect to q
CBF(A, B) 51 Best constant for block factorable functions on (Ai × Bi)
E0, F0 56 Atomless parts of X1 and X2(
Ei

)
i∈I ,

(
F j

)
j∈J 56 Atoms in X1 and X2

u1, v1, u2, v2 57 Weights from measures of atoms on X1 and X2

C(I0, J0) 67 Best constant for functions supported on I0 × J0

C1(i),C2( j) 74 Best one-variable constants for functions on atoms
C(i, j) 74 Best constant for functions supported on {i} × { j}
K∗ 75 Decreasing rearrangement of a sequence
ρ

p
µk 87 One-variable Lp

µk(Xk) norm for functions on X1 × · · · × Xn

ρ, ξ 94 Mixed norms on multiple variables
Lρ, Lξ,C 94 Mixed norm spaces on multiple variables, best constant
C1, . . . ,Cn 97 Norms of Lpk

µk (Xk) ↪→ Lqk
νk (Xk), best constants in ξk ≤ Ckρk
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