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Abstract 

The effect of the sympathetic nervous system (SNS) on blood flow distribution within 

skeletal muscle microvasculature is conditional upon regional activation of SNS receptors. 

Due to a lack of appropriate experimental models and techniques, no study has systematically 

evaluated the effect of SNS receptor activation in continuously branching skeletal muscle 

arteriolar trees. In line with previous work, we hypothesize that there will be a spatially-

dependent distribution of sympathetic receptor activation along the arteriolar tree. 

Specifically, we anticipate a progressive decrease of adrenergic activation and a progressive 

increase of peptidergic and purinergic activation with increasing arteriolar order. We 

developed a novel rat gluteus maximus (GM) muscle preparation which provided access to a 

large vascular network, from which we developed an experimental method for collecting cell 

velocity profiles in fast-flowing arterioles. Using these data, we derived an empirical 

relationship between velocity ratio (VMax/VMean) and arteriolar diameter, collected novel data 

on cell free layer width and estimated wall shear rates, and derived a wall shear rate equation 

from experimental data that can be used for calculating wall shear rates in skeletal muscle 

microvasculature. We evaluated SNS receptor activation (α1R, α2R, NPY1R, and P2X1R) in 

continuously branching arteriolar trees in the rat GM, as a function of network topology. A 

computational flow model estimated the total flow, resistance, and red blood cell flow 

heterogeneity. For the first time, we highlight effects of SNS receptor activation on network 

hemodynamics, where proximal arterioles responded most to adrenergic activation, while 

distal arterioles responded most to Y1R and P2X1R activation. Our data highlight the 

functional consequences of topologically-dependent SNS receptor activation. The tools 

developed in this thesis are beneficial for computing hemodynamic parameters from in vivo 

data, as well as providing input variables to and validation of computational flow models. 
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 What is the microcirculation? 

The microcirculation is comprised of the smallest vessels in the body, namely the 

arterioles, capillary networks and the venules. The microcirculation is embedded within a 

tissue or organ, allowing there to be an intimate interaction between these vessels and the 

surrounding parenchyma. This anatomical set-up provides immediate exchange of gasses, 

metabolites and nutrients both to and from the microcirculation and the proximate tissue. 

One of the unique features of the microcirculation is that it does not scale with species, in 

that capillary and red blood cell sizes are similar from mouse to large mammals (West et 

al., 1997). This feature allows for cross-examination of hemodynamic responses between 

species, where conclusions drawn from microcirculatory studies likely carry relevance 

across a wide range of animal species.  

Progressing from the larger conduit vessels (e.g., aorta and arteries) into the 

microcirculation, there is a large decrease in vascular inner diameter. Feed arterioles 

entering a tissue can be up to 200 μm in diameter, followed by an intermediate branching 

arteriolar network that leads to an interconnected parallel network of capillaries with 4-8 

μm inner lumenal diameter, and exiting venules. At the arteriolar level, this decrease in 

diameter is met with a large increase in vascular resistance as well as the greatest 

pressure drop in the circulatory system (Fronek & Zweifach, 1975). Poiseuille’s flow 

equation (Equation 1.1) coupled with a variation on Ohm’s law (Equation 1.2), describes 

the relationship between pressure, resistance, flow, and geometry in microvascular beds. 

Poiseuille’s equation (Equation 1.1) is useful when modelling a vessel segment as a 

straight smooth bore tube with a constant radius, which contains steady laminar flow with 

Newtonian (i.e., constant) viscosity. 
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Equation 1.1 

∆𝑷 =
𝟖𝝁𝑳𝑸

𝝅𝒓𝟒
 

Equation 1.2 

∆𝑷 = 𝑸𝑹 

Where ΔP is change in pressure along a vessel segment (Equation 1.1) or across any two 

points in the circulatory system (Equation 1.2), μ is blood viscosity, L is length of vessel 

segment, 𝑄 is blood volume flow through a vessel segment (Equation 1.1) or across any 

two points in the circulatory system, r is the radius of a vessel segment. Equation 1.1 and 

1.2 can be combined to solve for 𝑅, or resistance, for a given vessel,  

Equation 1.3 

𝑹 =
𝟖𝝁𝑳

𝝅𝒓𝟒
 

It is through modification of these hemodynamic parameters that resistance (𝑅) in the 

microcirculation is controlled, and blood flow is regulated in a tissue. Therefore, in 

addition to metabolite exchange within the tissue and regulation of systemic arterial 

pressure via changes in total peripheral resistance, the microcirculation serves to regulate 

blood flow distribution both to and within tissues.  

Blood is a suspension of formed elements in plasma (primarily made up of water, and 

contains dissolved proteins, electrolytes, sugars, clotting factors) and consists of a red 

blood cell (RBCs; 42-45%), white blood cells (1/600 of total cell volume), and platelets 

(1/800 of total cell volume). Blood flowing through a vessel segment generally follows a 
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two-phase model, where RBCs aggregate towards the center resulting in axial 

accumulation, and a plasma annulus is left near the inner wall of the vessel (Popel & 

Johnson, 2005). Poiseuille's equation (Equation 1.1) leads to a parabolic velocity profile, 

but blunted velocity profiles can be explained by radial variations in viscosity produced 

by variations in RBC density when blood flow is modelled as a two-phase model. 

 What is unique to skeletal muscle microcirculation? 

Skeletal muscle comprises a large proportion of the body’s weight [~40% of total body 

mass (Janssen et al., 2000)]. This large active tissue is fed with highly regulated vascular 

networks which allows skeletal muscle to increase its blood flow supply by up to 100-

fold (Andersen & Saltin, 1985). The largest volume of resistance arterioles resides within 

skeletal muscle, and is also where the greatest contribution to total peripheral resistance 

occurs.  

Each muscle fiber exhibits its own resting metabolic demand, which is primarily 

governed by its fiber type (Mackie & Terjung, 1983). This unique level of demand is 

precisely met by adequate blood flow, which is finely titrated by concurrent neurally-

mediated vasoconstriction (supplied by the SNS) and metabolically mediated 

vasodilation. Thus, this myofiber-centric blood flow supply results in heterogenous levels 

of blood flow distribution across a single muscle tissue (Koga et al., 2014). As well, 

blood flow heterogeneity across striated muscle tissue may result from time-dependent 

variability in blood flow distribution, thereby illustrating that skeletal muscle is subject to 

both spatially- and temporally-dependent changes in blood flow heterogeneity (Iversen & 

Nicolaysen, 1989). 



5 

 

To summarize, the uniqueness of skeletal muscle microvasculature is a result of the 

following: 1) the majority of total peripheral resistance is controlled and maintained 

within skeletal muscle microvasculature, 2) the ability of skeletal muscle to increase its 

blood supply by up to 100-fold, 3) heterogeneous blood flow distribution within a single 

muscle, and 4) its microvasculature is fine-tuned to precisely match the metabolic 

demands of muscle fibers on a moment-by-moment basis. Furthermore, skeletal muscle is 

responsible for adjustments to posture and voluntary movement, both of which require 

instantaneous coordinated changes in blood flow supply. 

To this end, investigating microvascular hemodynamics in skeletal muscle models 

provides the opportunity to characterize the behaviour of the microcirculation over a wide 

range of metabolic conditions (e.g., resting heterogeneous blood flow distribution to near 

instantaneous 100-fold increases in blood flow supply during muscular contraction). 

Experiments utilizing skeletal muscle preparations for the study of blood flow provide 

insight to the vast capacity of control elicited by the microcirculation’s innate regulatory 

mechanisms, and how these mechanisms may adapt or become disrupted during 

abnormal tissue conditions. 

 How is skeletal muscle microcirculation regulated?  

The essence of microvascular regulation lies in maintaining the balance between oxygen 

supply in the microvessels, and the oxygen demand of the surrounding tissue. Regulation 

of skeletal muscle microvasculature involves fulfilling regional metabolic demands of 

single muscle fibers, as well as integrating local blood flow responses to ensure overall 

adequate blood supply to the whole tissue. Fick’s law of diffusion, given by Equation 1.4, 

best describes the assimilated responses to oxygen extraction in microvascular networks.   
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Equation 1.4 

𝑭 = −𝑫𝒌𝑨 (
𝒅𝑷

𝒅𝒙
) 

In the context of oxygen transfer, Fick’s law states that oxygen flux (𝐹) occurs down a 

partial pressure gradient (
𝒅𝑷

𝒅𝒙
), is proportional to the surface area of the membrane (𝐴), and 

is inversely proportional to the thickness of the membrane through which oxygen must 

travel (𝑥). 𝐷 refers to oxygen diffusion constant, and 𝑘 is oxygen’s solubility in a given 

medium. To facilitate the exchange of oxygen in the microcirculation, oxygen transfer 

occurs in the arterioles as well as in the capillaries where the thinnest vascular walls 

reside (i.e., one endothelial cell thick), and the flow is significantly slower in order to 

provide enough time for oxygen extraction. As well, the greatest surface area throughout 

the vascular network occurs at the capillaries (Poole et al., 2013), further optimizing 

oxygen extraction from RBCs.  

As described, the topological features of the capillary bed facilitate oxygen extraction 

into the surrounding parenchyma. Capillaries are not directly regulated by the SNS, and 

must rely on the received blood volume flow in order to determine the hematocrit (or 

percentage of RBCs in whole blood) and RBC supply rate, and the ensuing oxygen 

available for extraction. The arterioles directly feed into the capillary network, which 

then immediately feed into the venular network. Microvascular regulation, and therefore 

coordinated blood flow delivery to and from the capillaries, occurs in both the arteriolar 

and the venular components of the microvascular system. 
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Skeletal muscle microvascular regulation is governed by a net effect of multiple 

vasostimulatory actions (Segal, 2005) including vasoconstriction, vasodilation, and the 

consequent “network” effect on responses as illustrated by the effects of upstream and/or 

downstream resistance. For a given site, local microvascular regulation is executed either 

through constriction or dilation at a given vessel. The degree to which constriction or 

dilation occurs depends on the integration of supply-demand relationships across an 

entire network. That is, resistance vessels may instantaneously dilate (allow for more 

blood flow when metabolic demands are high) (Naik et al., 1999) or constrict (conserve 

blood flow when demands are low) in order to meet metabolic demands of the tissue on a 

moment-by-moment basis; however, in order to maintain perfusion throughout the whole 

tissue, constriction/dilation occurs within the confines of assimilating vasoregulation 

across multiple branch orders of a network. Thus, the underpinnings of microvascular 

regulation must reside in a network’s topology, where any investigation of regulation at 

this level ought to consider both the geometry (i.e., diameter) and the topology (i.e., 

length, branch order) of the network.  

 Sympathetic nervous system-mediated arteriolar 
vasoconstriction 

The sympathetic nervous system (SNS) is the autonomic regulator of microvascular flow 

in skeletal muscle. Numerous locally derived/released endothelial factors evoke ongoing 

vasodilation [notably nitric oxide (NO), ATP (adenosine triphosphate), cyclooxygenase 

(COX), endothelial derived hyperpolarizing factor (EDHF), adenosine from 5’-

nucleotidase (5’NUC)]. For the purposes of this thesis, only the SNS and its contributions 

to vascular resistance will be discussed.  
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The sympathetic nervous system innervates the adventitiomedial layer of arterioles, 

coming in direct contact with vascular smooth muscle cells. These nerves elicit tonic 

vasoconstriction of arterioles through the release of norepinephrine (NE), neuropeptide Y 

(NPY), and ATP acting on their associated receptors (α1R and α2R, Y1R, and P2X1R) 

located on smooth muscle cells. Independent of the SNS, vasomotor tone is set by the 

integration of myogenic contraction of smooth muscle and the vasodilator influence of 

the endothelium.  

There are four vascular smooth muscle cell sympathetic receptors that are responsible for 

arteriolar vasoconstriction: α1 adrenergic receptor, α2 adrenergic receptor, NPY Y1 

receptor, and P2X1 receptor. The two adrenergic receptors (O'Connell et al., 2014) and 

the NPY Y1R receptor (Hirsch & Zukowska, 2012) are classified under the metabotropic 

G-protein coupled receptor (GPCR) family of receptors; whereas the purinergic receptor 

subunit type 1 receptor (P2X1R) is part of the ligand-gated ion channel family of 

receptors (specifically, an ATP-gated cation channel) (Surprenant & North, 2009). 

The α1 adrenergic receptor (α1R) belongs to the Gq/11 family of heterotrimeric G 

proteins. Briefly, upon α1R activation via norepinephrine or epinephrine binding, β-

isoforms of phospholipase C are stimulated and generate IP3 which then causes a release 

of calcium (Ca2+) from intracellular stores and activation of protein kinase C (PKC; to 

phosphorylate and activate downstream cascade of protein signaling) via DAG (Exton, 

1996). This release of Ca2+ binds onto calmodulin, which activates myosin light chain 

kinase to phosphorylate myosin heads, increasing myosin ATPase activity. Myosin cross-

bridges are created causing actin to slide over using myosin power strokes (sliding 

filament theory) to contract the smooth muscle, resulting in overall vasoconstriction. 



9 

 

Both the NPY Y1R (Brothers & Wahlestedt, 2010) and the α2 adrenergic receptor (α2R) 

(Bylund, 1992) belong to the Gi family of the heterotrimeric G proteins. Upon ligand 

binding, this receptor acts through adenylyl cyclase inhibition, ultimately attenuating 

cyclic adenosine monophosphate (cAMP) production from ATP. The drop in cAMP 

increases the activity of myosin light chain kinase, thereby phosphorylating myosin light 

chain and resulting in overall vasoconstriction. 

In contrast to the above metabotropic receptors, the P2X1 receptor is an ionotropic 

receptor and a member of the ligand-gated ion channel P2X receptor family (Valera et 

al., 1994). Upon binding of ATP to an allosteric binding site, the P2X1 receptor changes 

conformation and allows for Ca2+ and Na2+ into the cell, depolarizing smooth muscle 

cells and resulting in overall vasoconstriction in the arteriole. 

 Importance of the SNS in microvascular control 

Activation of the SNS receptors in the periphery largely contributes to the maintenance of 

total peripheral resistance (TPR) in the control of systemic blood pressure. To illustrate, 

the mere act of a person moving from a supine to a standing position, requires activation 

of the SNS in order to maintain mean arterial pressure when cardiac output falls in order 

to prevent neurally-mediated syncope (Fu & Levine, 2014). As well, SNS-mediated 

maintenance of blood pressure, via control of TPR, is achieved in the face of cardiac 

output distribution to various tissues and organs, as well as blood flow redistribution 

within tissues, based on local regional metabolic needs.  

The SNS and its actions are graded with the level of exercise; in the case of high intensity 

exercise, cardiac output is redirected from the splanchnic circulation to the active limbs 
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(Rowell et al., 1964). These regulatory mechanisms speak to the various degrees of 

control (peripherally) the SNS exerts on the cardiovascular system: from maintenance of 

blood pressure to fine-tuned distribution of blood flow fractions within microvascular 

networks, which will be further discussed in sections below. 

 The overlooked non-adrenergic control of skeletal 
muscle microcirculation 

The majority of studies characterizing sympathetic neuronal density expression in 

skeletal muscle microvasculature have utilized data collected from adrenergic neuronal 

staining. One of the earliest reports of adrenergic nerve fiber density in a skeletal muscle 

vascular bed was from the cat gastrocnemius and tibialis anterior muscles, where 

adrenergic fibers uniformly innervated the microcirculation (Fuxe & Sedvall, 1965). 

Similarly, immunohistochemical analysis performed in the rat cremaster (Fleming et al., 

1989) and later in the hindlimb of the guinea pig (Anderson et al., 1996) and in the 

hamster retractor muscle (Grasby et al., 1999) resolved spatially-dependent co-localized 

tyrosine hydroxylase (TH; rate-limiting enzyme in the synthesis of norepinephrine) and 

NPY-containing axons, where these neurons uniformly innervated proximal to distal 

arterioles, but not veins or venules. As well, in the case of the hamster retractor and cheek 

pouch study, these NPY and TH co-localized adrenergic neurons were only present on 

the skeletal muscle region (retractor) and were absent on the epithelial (cheek pouch) 

portion of the preparation (Grasby et al., 1999). 

There are a limited number of studies investigating sympathetic neuronal density as a 

function of arteriolar network topology. The adrenergic plexus spatial density (via 

catecholaminergic neuronal staining with glyoxylic acid) has been shown to be 
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topologically-dependent within the arteriolar network, where there is a progressive 

increase in adrenergic nerve density when transitioning from the arcade to transverse 

arterioles in the rat spinotrapezius, and is absent in terminal arterioles (Saltzman et al., 

1992). As well, NPY-containing sympathetic axons profusely innervate resistance vessels 

(i.e., arterioles) and become progressively more dense with increasing arteriolar order 

(Sundler et al., 1993). Evidence for a differential neuronal density distribution at the 

microanatomical level provides indication of topologically-dependent heterogeneous 

sympathetic control in skeletal muscle microvasculature. 

One of the first detailed accounts of heterogeneous arteriolar responses to sympathetic 

stimulation in skeletal muscle was provided by Marshall’s work on the microvascular bed 

of the rat spinotrapezius (Marshall, 1982). In congruence with aforementioned findings 

on spatially-dependent sympathetic innervation in skeletal muscle microvasculature, 

Marshall reported order-dependent differences in arteriolar responses, where 1st and 2nd 

order arterioles exhibited a gradual on-set in large vasoconstrictor responses to 

paravascular nerve stimulation at 8-10 Hz (up to an 85% decrease in diameter), which 

was in contrast to the rapid on-set of short-lived constriction responses exhibited by 

terminal arterioles.  

Similarly, during sympathetic nerve stimulation, maximum constriction occurred in 4th 

order vessels, and there was a progressively greater “sympathetic escape” (i.e., secondary 

fall in vascular resistance) with increasing arteriolar orders of the cat sartorius 

(Boegehold & Johnson, 1988). Furthermore, in 1st to 6th order arterioles of the 

exteriorized cat sartorius muscle, 3rd order arterioles have the greatest levels of responses 

during concurrent sympathetic nerve stimulation at 8 Hz (Dodd & Johnson, 1991).  
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In complementary experiments, sympathetic neuronal stimulation in the rat cremaster 

elicited vasoconstriction along the arteriolar network; yet, responses were abolished in 

proximal vessels with the concurrent addition of prazosin (1R antagonist), and were 

also abolished in distal vessels with the addition of rauwolscine (2R antagonist). This 

study also suggested that sympathetic nerve stimulation at low frequencies 

(corresponding to basal neurogenic vascular tone) of 0.2-2 Hz results in preferential 

constriction of small arterioles via 2-adrenergic receptor activation, and would largely 

contribute to changes in neurogenic resistance. At higher neuronal firing frequencies in 

the rat cremaster, proximal arterioles would be more responsive via 1 adrenergic 

receptor activation and would be the predominant determinant of neurogenic tone 

(Ohyanagi et al., 1991). These varying constrictor patterns could reflect variations in 

sympathetic neurotransmitter release patterns, post-junctional receptor sensitivity and/or 

post-receptor contractile properties of vascular smooth muscle.  

In the rat hindlimb, sympathetic stimulation elicited blood flow responses during muscle 

contraction that were dependent on contraction intensity and muscle fiber type (i.e., high 

oxidative rat soleus did not exhibit functional sympatholysis (inhibition of SNS mediated 

vasoconstriction during skeletal muscle contraction) during maximal contractions, 

compared to absence of functional sympatholysis in the highly-glycolytic rat 

gastrocnemius-plantaris muscles during low-intensity contractions) (Thomas et al., 

1994). Despite these differences, application of specific adrenergic agonists elicited 

similar arteriolar vasoconstrictor responses between both the mouse fast-twitch extensor 

digitorum longus muscle and the slow-twitch soleus muscle, highlighting that vascular 
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responses to adrenergic receptor activation are independent from skeletal muscle type 

(Lambert & Thomas, 2005). 

Interestingly, despite the existence of three different SNS neurotransmitters acting on 

their respective receptors, both the roles of NPY and ATP in skeletal muscle blood flow 

regulation remain to be characterized. The view, more recently considered as 

oversimplified, that sympathetic vascular control is dominated by the adrenergic system 

was primarily justified by a) baseline NE concentration and an increase in NE 

concentration during stress (Zukowska-Grojec et al., 1988); and b) decrease in vascular 

resistance, and blood pressure, during prazosin administration (α1R adrenergic blockade) 

(Oates et al., 1976). 

However, despite having negligible effects on blood pressure, NPY itself elicits 

vasoconstriction at interstitial concentrations that are nearly 1000× lower than NE 

(Hirsch & Zukowska, 2012; Mortensen et al., 2012). In fact, NPY was shown to play an 

important role in microvascular flow regulation through its effects on Y1R in distal 

arterioles (Jackson et al., 2004). As previously mentioned, the density of NPY-containing 

axons progressively increases with decreasing resistance vessel diameter (Sundler et al., 

1993). Therefore, despite higher interstitial concentrations of NE, the above highlights 

that NE and NPY possess spatially-dependent heterogeneous functions in the vasculature 

(i.e., proximal versus distal locations of action). This is further supported by work on cat 

microcirculatory beds showing that both NPY (Ekelund & Erlinge, 1997) and ATP 

studies in the rat (Gitterman & Evans, 2000) exert diameter-dependent vasoconstrictor 

responses, with peak responses occurring at the distal arterioles. Taken together, the 

classically accepted adrenergic view of vascular control may have evolved from a 
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shortage in comprehensive evaluations of SNS-mediated vasoconstrictor effects at 

multiple microvascular branch orders. 

To further investigate the spatially- or topologically-dependent heterogeneous response to 

receptor activation, α-adrenoreceptor (i.e., α1R and α2R) arteriolar control of the rat 

cremaster (Faber, 1988; Ohyanagi et al., 1991) and mouse gluteus maximus muscle 

(Moore et al., 2010) were investigated. However, these studies were limited to 

adrenoreceptor control in partial networks (i.e., 1st to 3rd order arterioles), and primarily 

focused on acquiring functional bio-assay data on ligand sensitivity, leaving any 

consequent hemodynamic changes to speculation. Thus, our working hypothesis is that 

there may be an emerging relationship between network topology and ligand-receptor 

activation, suggesting there may be a heterogeneous vaso-active response to all 4 

sympathetic receptors progressing from the proximal (feed artery) to the distal (pre-

capillary terminal arterioles) arterioles. 
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Summary of SNS receptor functionality as a function of network topology. Based on 

previous literature, it is hypothesized that there is a progressively decreasing sensitivity to 

adrenergic (α1R and α2R) receptor activation with increasing branch order (towards 

distal, pre-terminal arterioles that branch into the capillary bed), and a progressively 

decreasing sensitivity to purinergic and peptidergic receptor activation with decreasing 

branch order (towards proximal, inlet arterioles). 

 

 

Figure 1.1: Topologically-dependent SNS receptor functionality. 
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Since arteriolar network geometry (i.e., topology) plays a considerable role in setting 

network resistance, it necessarily follows that acute control of arteriolar diameter must 

coordinate with topology in order to regulate microvascular blood flow and RBC 

distribution efficiently. Currently, the impact of microvascular topology on 

sympathetically-mediated arteriolar control is unknown. The importance of assessing 

microvascular network hemodynamics has been either overlooked or not experimentally 

feasible.  

 Importance of network topology in microvascular 
regulation 

Blood flow to capillary beds is affected by upstream vasoregulation (e.g., upstream 

dilation/constriction) (Segal et al., 1989), topology, morphology, and hemodynamic 

parameters (Zweifach, 1974; Pries et al., 1986; Duling & Damon, 1987; Pries et al., 

1995). Skeletal muscle microvascular data are predominantly collected from single 

microvessels within a network (VanTeeffelen & Segal, 2006; Moore et al., 2010; Frisbee 

et al., 2011), and the remaining network data are extrapolated from the experimentally 

collected data (Duling et al., 1982). However, with the existence of blood flow 

heterogeneity in skeletal muscle microvasculature (Duling & Damon, 1987), it becomes 

necessary to collect data from more complete networks (Pries et al., 1986; Pries et al., 

1995) as opposed to single sites of observation. 

Blood can be described as a two-phase fluid, comprised of both red blood cell and plasma 

components. When blood meets a bifurcation, there may be uneven distribution of the red 

blood cell fraction (i.e., hematocrit) between the two daughter vessels, which contributes 

to the heterogeneous level of red blood cell distribution within a vascular network. 
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Therefore, even within a single bifurcation there may be differences in hematocrit in 

individual segments that will ultimately affect hematocrit at the level of the capillaries 

(Pries et al., 1996).  

Blood flow supplied to the microvasculature is also affected by the architecture of the 

supplied downstream network. As microvascular networks are more than an 

interconnected set of isolated vessels, changes in demand at the capillary end can be 

communicated to the preceding branches in order to receive the required level of 

adequate blood flow supply. As summarized by Bearden, signals are sent from the 

downstream vessels along the length of a vessel upstream, and are categorized as 

intercellular, mechanical, or countercurrent forms of communication (Bearden, 2006). 

Intercellular communication occurs when a segment of a vessel is exposed to a 

vasomotor stimuli, and sends a vasomotor signal upstream to a part of the network that is 

not experiencing the same stimulus to cause remote changes in vasodilation upstream 

(Segal & Duling, 1987). Mechanical communication is illustrated when downstream 

dilation causes an increase in shear stress upstream. Countercurrent communication 

describes the communication between a venule and an arteriole, through which the tissue 

can send a signal (via release of a vasoactive substance) to cause a dilation in upstream 

arterioles. As illustrated, the inherent network connectivity present in microvascular 

networks precludes complete acquisition of hemodynamic data from single sites of 

observation. Therefore, to more thoroughly investigate hemodynamic parameters within a 

network, it is pertinent to incorporate downstream and upstream changes in parameters, 

as well as network geometry and morphology.  
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Although experimental data on skeletal muscle microvascular hemodynamics are limited, 

the tenacious efforts of Pries, Secomb and their collaborators have greatly contributed to 

network hemodynamic analysis via decades of seminal work on microvascular networks 

from the rat mesentery. As it is experimentally difficult to acquire data from all segments 

within a network, Pries et al. have mastered the photomontage technique and collected 

experimental data that are complemented by computational simulations to assess full 

network hemodynamics (Pries et al., 1986; Pries et al., 1990; Pries et al., 1994). This 

approach has been very useful in simulating network structural adaptations to elevated 

pressure (Pries et al., 2001b), angio-adaptation in tumor microvascular networks 

(Secomb et al., 2012), and general adaptations of the terminal network to changes in 

tissue demands (Pries et al., 2001a). Much of the advances made in microvascular 

network flow simulations can be accredited to their work. With the development of more 

network-accessible skeletal muscle preparations, the experimentally collected and 

computationally simulated approach to data collection would serve as a powerful 

technique in calculating valuable hemodynamic data in skeletal muscle microvascular 

networks.  

 Where has skeletal muscle microvasculature classically 
been studied? 

The first description of a systemic circulation was given by William Harvey in the early 

1600s. In 1661, nearly 4 years after Harvey’s death, Marcello Malpighi observed blood 

flowing through small tubes (nowadays known as capillaries) in the frog. He was the first 

to assert that capillaries were the connection between arteries and veins, thereby 

completing the systemic circuitry that was first laid out by Harvey (Pearce, 2007). 
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The majority of our understanding on microvascular regulation in skeletal muscle tissues 

comes from experiments conducted on in vivo preparations, all notably described in the 

1973 5th Volume of the Microvascular Research journal. These preparations [namely the 

rat cremaster (Baez, 1973), hamster cheek pouch (Duling, 1973), rat spinotrapezius 

(Gray, 1973), and cat sartorius (Burton, 1973)] revolutionized microvascular research and 

pushed past the previous limits of in vivo research, launching a new realm of in-depth 

microvascular regulation studies.  

The definitive objective of an in vivo skeletal muscle microvascular preparation is to best 

recreate the endogenous environment, while providing an opportunity to manipulate and 

observe the regulation of control systems within microvascular networks. The 

development of a functional, in vivo skeletal muscle preparation for intravital video 

microscopy is a difficult feat. Each step in the procedure must be executed with great 

care: from animal handling, to finely exposing the tissue with minimal surgical trauma 

and maintaining both the preparation and animal under stable conditions throughout the 

course of the experiment.  

In 1961, the cremaster muscle was described as a valuable model for microvascular 

observation (Grant, 1964). This method of cremaster preparation was limited as there 

were three key characteristics which constrained the view of the microcirculatory 

network: a) curvature of the testes was left in situ thus creating a smaller field of view; b) 

the preparation oscillated with respiration; and c) the vessels found in the tunica 

albuginea lining of the cremaster provided a poor background of contrast for the 

cremaster vessels. As a means to evade the anatomical obstructions, a white enamel 

spatula was introduced through an abdominal incision to prevent curvature of the 
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preparation (thereby increasing its field of view), to better secure the muscle in situ 

(therefore preventing respiratory artifacts in imaging), and to provide a white background 

for imaging cremaster microcirculation (an improvement from the low-contrast 

vascularized tunica albuginea background) (Majno et al., 1967). While introduction of 

the white enamel spatula improved the imaging quality of the cremaster microcirculation, 

it, along with the original method proposed by Grant et al., depended on incident light 

illumination for microvascular imaging. This type of imaging can only be carried out 

under low magnification conditions, thereby preventing imaging at the resolution 

necessary for identifying a clear boundary between the lumen and the wall of the vessel.  

To circumvent aforementioned obstructions to imaging, a detailed method was described 

in 1973 that involved fully opening and exposing the cremaster muscle, as well as 

implementing transillumination in lieu of incident light illumination (Baez, 1973). Fully 

opening up the cremaster along with the use of transillumination proved to be a powerful 

combination as this allowed, for the first time since the conception of utilizing the 

cremaster for microcirculatory observations, data collection from a large field of view as 

well as clearly defined borders between the lumen and vessel wall in the cremaster 

muscle. 

The hamster cheek pouch was first described as a preparation for observing 

microcirculation in the late 1940’s and early 1950’s (Fulton et al., 1947; Lutz & Fulton, 

1954). In 1973, the hamster cheek pouch preparation for acute experimentation, its 

anatomical characteristics, and functional responses (to acetylcholine and oxygen) were 

described in full detail. This preparation has been praised for: 1) its dual nature in cell 

types (its anatomy involves a cheek skin pouch that is retained by a thin retractor muscle 
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(Grasby et al., 1999), thereby possessing both striated muscle and cutaneous circulatory 

beds) providing the ability to conduct comparative studies, 2) being a thin tissue which is 

ideal for tissue transillumination and improving clarity of microvessel observations, and 

3) providing visual access to multiple consecutive branch orders. While this preparation 

has lent its utility to the study of blood flow regulation in skeletal muscle, there exist 

important anatomical differences between the retractor muscle and true locomotor 

muscles and therefore may limit its generalisability to non-locomotor muscles (Loeb et 

al., 1987; Williams & Segal, 1993; Welsh & Segal, 1997). 

The spinotrapezius skeletal muscle preparation was introduced by Zweifach and Metz in 

1955 (Zweifach & Metz, 1955), and its preparation was first described in detail by 

Hyman and Paldino who used the spinotrapezius to study local temperature regulation 

(Hyman & Paldino, 1962). Since then, the preparation was refined and modified (Gray, 

1973), and has been used in recent work (Chen et al., 2013). Due to the thickness of this 

muscle, the spinotrapezius has been used to measure capillary hemodynamics during 

muscle contractions (Bailey et al., 2000; Richardson et al., 2003). This locomotor muscle 

has been difficult to study during exercise paradigms as rodent treadmill experiment 

paradigms (the conventional training program used during exercise experimentation) do 

not activate the spinotrapezius, and in fact reduce blood flow within the muscle (Musch 

& Poole, 1996). It has been shown that the spinotrapezius is activated during downhill 

running; an eccentric movement that has been shown to elicit powerful muscle 

contractions (Meyer et al., 2003) and induces muscle adaptation (Clarkson et al., 1992) 

despite the potential muscle damage that may be accompanied with such exercise (Kano 

et al., 2004a; Kano et al., 2004b). 
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The cat sartorius muscle preparation was developed for microcirculatory studies as it 

exhibits two ideal characteristics necessary for improved visualization of the 

microvessels: thinness for optimized transillumination, and a parallel muscle fiber layout. 

Another key benefit to utilizing the cat sartorius muscle was that its blood supply 

(primarily, lateral circumflex femoral artery and vein; secondarily, femoral artery and 

vein) can be cannulated (Burton & Johnson, 1972; Burton, 1973), which is the ideal 

method for acquiring total flow to a tissue during hemodynamic experiments where data 

can then be used as inputs for experimental modelling. Of particular importance, the frog 

sartorius was extensively used by Tyml et al. to provide some of the first evidence 

showing the capillary as a medium of communication in the microvasculature (Dietrich & 

Tyml, 1992), as well as for highlighting the importance of capillary recruitment and 

blood flow heterogeneity within capillaries (Tyml, 1986). Although the sartorius muscle 

is simple to exteriorize, at its thinnest region, it may have up to 15 muscle fibers with 

capillaries exhibiting countercurrent flow near adjacent muscle fibers (Sullivan & 

Pittman, 1982). 

In most preparations, thick fascia tissue hinders microvascular visibility, which limits the 

age range to younger subjects as they have less fascia tissue; however, this prevents the 

conduction of aging studies. The rat extensor digitorum longus (EDL) preparation was 

developed with the incentive that it would be an in vivo skeletal muscle preparation that 

provides good microvascular visibility independent of animal age or size (Tyml & 

Budreau, 1991). As the EDL is a tubular muscle, deep in the hindlimb muscles, where 

capillary beds and their small venules are easily observed at the surface of the muscle. A 

coverslip is placed on the muscle and is used to a) prevent air exposure to the muscle, 
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thus bypassing the use of superfusion (as employed by other studies), b) stabilizes 

preparation from breathing artifacts, and c) enables good visualization for use in epi-

illumination. With this set-up and the microvascular anatomy of the preparation itself, 

live imaging of red blood cell velocity and perfused capillary density is possible. The 

major benefits of this preparation are a) it is a true locomotive skeletal muscle, b) the 

preparation can be used independent of animal age or size, c) does not depend on use of 

superfusion for stability, and d) can be used with a coverslip to maximize the field of 

view size (Tyml & Budreau, 1991). Despite the many benefits of the EDL preparation, its 

primary utility lies in the investigation of capillary beds, as its tubular anatomy does not 

allow access to a microvascular network. That is, the feed arteriole/exiting venule are 

embedded closer to the middle; subsequent vessels then bifurcate towards the surface of 

the muscle, where only capillaries are visible. As well, another drawback to the use of the 

coverslip is it does not allow for hemodynamic investigation of drug perturbations, which 

would otherwise have been easily dissolved in a superfusate solution flowing over the 

muscle. 

These described preparations have been integral in providing a window into the 

microcirculation, a once ambitious experimental feat to have overcome. In addition, it is 

noteworthy to mention non-skeletal muscle preparations such as the rat mesenteric bed 

(McGregor, 1965), rabbit ear (Ahern et al., 1949), and bat wing (Nicoll & Webb, 1946) 

that have also greatly contributed to the knowledge base of microvascular regulation. 
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 How has skeletal muscle microcirculation classically 
been imaged? 

The establishment of many viable models for visualizing the microcirculation was 

conveniently conducted in tandem with the development of techniques for quantifying 

red blood cell velocity and flow hemodynamics in microvessels. The different techniques 

were developed under various experimental conditions and are dependent upon many 

contributing factors (i.e., type/method of illumination, size of vessel, magnification, and 

cell velocity). Initially, observation of the microcirculation utilized a visual method 

approach, which was then followed by photographic methods; however, the majority of 

today’s techniques either include to some capacity or directly evolve from electro-optical 

methods. 

A complete, yet brief, history of red blood cell velocity quantification is described by 

Wiedeman et al., (Wiedeman et al., 1981) where they state the first attempt at visually 

determining the velocity of a red cell was made in the late 17th century by Anton Van 

Leewenhoek when he observed how far a red cell would travel in the time it took for him 

to recite four syllables. He concluded that the velocity of a red cell was 2 mm·sec-1, 

which is remarkably similar to what is measured today. There was a single criterion that 

had to have been met in order for Leewenhoek to determine the red cell velocity with 

such accuracy: he would have needed to observe and track either one cell or a small 

group of cells at a time in order to allow him to confidently obtain velocity 

measurements. The visual methods that followed Leewenhoek’s measurement technique 

also pursued a similar timed-interval-of-travel course of action, although velocity 

measurements were limited to values of 2 mm·sec-1. This was accepted as a limitation in 
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microcirculatory observation up until the 1960’s, when Monro developed a novel streak-

image technique that measured up to 16 mm·sec-1 velocities by taking advantage of the 

human retina’s ability to accurately measure the angle at which streaks of light (remains 

of fast moving objects) would pass in front of it (Wiedeman et al., 1981).  

Photographic, unlike visual, methods have the advantage of allowing measurements to be 

made off-line, and by multiple observers. These methods, however, also come with 

criteria which must be met prior to their use: a) the same target or cell must be in two 

consecutive image frames for a set interval of time between frames, and b) there must be 

high enough resolution to distinguish the target or cell in a given frame. In order to 

ensure that the first criterion is met, only one target must have passed in a pair of 

subsequent frames collected over a finite period of time, thereby necessitating use of high 

enough frame rates that would ensure the object has not passed by the time the second 

frame is captured.  

By ensuring that the target is not in a state of transit during frame acquisition, the second 

criterion is met; the target must not be moving faster than the shutter speed, or the rate at 

which the image was taken. In this context, one is left with the issue of balancing shutter 

speed and frame rate. Too low of an exposure time does not allow enough light to enter 

the shutter leaving the potential for lower contrast in imaging. High exposure times 

improve contrast, however this is achieved at the expense of catching the target in 

transition (i.e., not still) as well as slowing down frame rate. Cinephotography was the 

preferred method of data acquisition for the photographic approach to measuring 

velocities. Although, high frame rates are required, this technique would require 
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unfeasibly large amounts of film in order to store the images for off-line analysis 

(Wiedeman et al., 1981).  

Both the visual and photographic methods rely on high contrast visibility of the target. 

The single red blood cell against the plasma provides high contrast for imaging. Thus, the 

eye recognizes the red cell itself as it exhibits a different light intensity compared to the 

formed plasma gaps found between each red cell. This visual algorithm can be 

implemented electronically by using electro-optical techniques, where a sensor is used to 

differentiate between the varying light intensities of the red cell and the plasma gaps. The 

sensor converts the light information into a signal with amplitude corresponding to the 

light intensity. If this sensor is fixed in a single position on a vessel, then it can detect red 

blood cell flow patterns as a function of time. Taking it one step further, if two sensors 

are placed at two different locations in a vessel, with the same cell flowing past each of 

the two sensors, then fixed distance between the two sensors must be traveled in the time 

it took for the single cell to pass from the first to the second sensor.  

According to Wiedeman et al., Müller was the first to execute an electro-optical 

technique in microcirculatory imaging in the early 1960’s (Wiedeman et al., 1981), and 

Wayland and Johnson later refined the method in the late 1960s. Wayland and Johnson 

used a photomultiplier tube as a sensor for detecting light (to increase the range of light 

that can be detected), and added two sensors instead of just one, which allowed them to 

account for the time of travel between the two sensors that were fixed in position. These 

adjustments (Wayland & Johnson, 1967) were pivotal in changing microvascular 

imaging, and the theories behind the two-slit photometric imaging technique remain to be 

one of the most widely used techniques in microvascular hemodynamic quantification. 
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The utility of the two-slit photometric method is accompanied by specific assumptions; 

namely, the red blood cell flow pattern (distance of the plasma gap occupied by two red 

cells) is assumed to remain constant in length as it travels between the upstream and 

downstream photo sensors. With regards to practicality, there are a number of limitations 

(Sapuppo et al., 2004) associated to the original technique: 1) system parameters (e.g., 

system’s clock frequency) must first be manually modified to give information about 

velocity, leaving room for operator bias; 2) correlated velocity peaks only give one 

velocity measurement resulting in non-reproducible values; 3) data cannot be saved in 

digital format; 4) although the system collects data in real-time, it does not cross-correlate 

peaks between the two sensors automatically, which does not allow the system to follow 

the time changes of velocity, thereby only providing average velocity values. In a recent 

study (Roman et al., 2012), the dual-slit technique was replaced by two regions of 

interest in a simulation involving computer-generated image sequences of red blood cells 

flowing through a tube. This allowed for the control of hematocrit and velocity profile; 

two factors known to influence the outcome of dual-sensor measurements conducted on 

vessels that are larger than capillaries (i.e., non-single file flow vessels) (Pittman & 

Ellsworth, 1986; Roman et al., 2012). 

Laser Doppler velocimetry is a method which takes advantage of coherent light 

scattering, and infers changes in particle velocities based on the Doppler shift in laser 

light. When a laser light strikes biological tissue, a portion of the light will reflect back 

from static tissue with the same incident frequency. The other portion of light will reflect 

from moving particles (specifically, red blood cells), and experience a shift in frequency 

as a result of the Doppler shift (Nilsson et al., 1980). However, due to Doppler 
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velocimetry’s dependence on incident angle of the light, an issue arises with imaging 

microvascular beds as the directionality of blood flow is found in random orientations. To 

resolve this, a technique was developed which incorporated use of a uni-dimensional 

fringe pattern formation atop the region of interest (kept at an angle normal to the blood 

stream), and as blood particles passes the bands of the fringe pattern, reflections in the 

light bands are picked up by a photodetector (Le-Cong & Zweifach, 1979). These 

reflections are interpreted by the Doppler shift principle, are directly related to the 

number of red cells, and quantified as velocity measurements. The advantages of this 

technique are that it is non-invasive, does not require tracers or particle labeling, and 

allows for longitudinal tissue perfusion monitoring without influencing blood flow 

regulation in the tissue. This technique is limited by the lack of standardized 

interpretation available for the measured signals, use of arbitrary units, and its inability to 

be calibrated to units relevant to perfusion. 

More recently, technological advances in ultra high-speed cameras and imaging 

microscopy have launched the acquisition of whole velocity fields in microvessels 

through the development of particle image velocimetry (PIV). This technique is used to 

reconstruct velocity profiles by measuring the instantaneous two- or three-dimensional 

velocity vector fields of particles seeded in flow. In microcirculation, PIV has been 

subjected to difficulties with optimal resolving power and out-of-focus effects of the 

microscopy system. Macro-PIV, or application of PIV to large-scale flows (e.g., such as 

in mechanical engineering practices) acquires velocity field vector data by illuminating a 

single 2-dimensional plane with lasers, and correlating wavelengths emitted by seeded 

particles with directional flow. Micro-PIV (µ-PIV), or application of PIV to small-scale 
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flows (e.g., micro-channels and microvasculature), requires illumination of the entire 

channel. This provides great loss of accuracy in vector field information as velocities are 

simultaneously collected from multiple stacked fields within the channel or microvessel 

and averaged in the orthogonal or z-direction.  

To circumvent axial averaging errors, µ-PIV has been implemented with use of confocal 

microscopy to acquire single planes of velocity vector field data. Although coupling of 

confocal microscopy with µ-PIV is an advancement, the issue remains that use of a RBC 

as a particle tracker in µ-PIV may not provide high enough resolution for near-wall 

interactions due to the existence of the cell-free layer in microvessels (Popel & Johnson, 

2005). 

The optical section thickness for velocity data acquisition is largely dependent on the 

numerical aperture (NA) of the objective, where higher (compared to lower) NA values 

resolve thinner volume measurements and is commonly specified by the depth-of-field 

for a given microscope system. It is often the case that depth-of-field is mistaken for the 

absolute thickness of tissue under microscopic observation. In fact, this thickness, 

predicted using a Gaussian intensity distribution, is called depth-of-correlation and is 

largely dependent on the size of the tracer particle (Poelma et al., 2012). Depth-of-

correlation indicates a particle’s contribution to the averaging of cross-correlated particle 

tracer velocities. Due to this depth-of-correlation parameter, both artificial and naturally 

occurring particle tracers (RBCs) provide identical blood flow measurements at low 

magnifications (Poelma et al., 2012).  
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 Purpose of thesis dissertation 

The SNS has a vital role in maintaining microvascular network resistance in skeletal 

muscle microcirculation. Previous findings confirm that the SNS has differential control 

over the span of a microvascular network, and that the varying levels of control may be 

attributed to heterogeneous functional distribution of the SNS receptors within the 

network (Fig. 1.1). Despite the evidence for a relationship between the functionality of 

each SNS receptor and vascular diameter, there remains to be a comprehensive 

evaluation of receptor activation in a skeletal muscle microvascular network. These 

shortcomings are partly due to the absence of a single skeletal muscle microvascular 

preparation that provides access to a complete network for evaluation of SNS receptor 

activation along the network.  

Moreover, the prominent role of the SNS in microvascular control presents a strong case 

for the SNS having an intimate role in skeletal muscle hemodynamics. However, the 

current set of blood flow measurement techniques is not conducive to assessing the role 

of the SNS in skeletal muscle microvascular hemodynamics (e.g., RBC velocity, flow, 

wall shear rate). Some of the limitations presented by the previously mentioned blood 

flow techniques are: 1) spatial averaging which poses the risk of over- or under-

estimating blood flow calculations within a vessel segment, 2) difficulty in acquiring 

measures from fast-flowing arterioles, 3) use of non-native tracers (i.e., not naturally 

found in blood), and 4) in-depth post-experiment computation preventing fast data 

acquisition. 
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To this end, the objectives of the thesis herein are to: 1) develop a viable in vivo skeletal 

muscle preparation for use with intravital video microscopy that provides access to a 

complete microvascular network, 2) develop a blood flow measurement technique for 

acquisition and calculation of in vivo hemodynamic parameters (i.e., RBC velocity, flow, 

and shear rate), 3) characterize SNS receptor functional distribution along the network, 

and 4) assess how SNS receptor activation along the network affects skeletal muscle 

microvascular hemodynamics within various levels of the network. We hypothesize a 

topologically-dependent SNS receptor functionality, with adrenergic receptor activation 

primarily governing the proximal vessels and peptidergic and purinergic receptor 

activation primarily governing the distal vessels (Fig. 1.1). 
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 Introduction 

The function of skeletal muscle, which is essential for locomotion and shares many basic 

features with other metabolically active tissues, relies on microvascular resistance 

networks that are directly involved in blood flow and pressure regulation (Popel & 

Johnson, 2005). The unique structure of the microvascular units (i.e., a terminal arteriole 

and the subsequent capillaries it supplies) within skeletal muscle are arranged to 

maximize diffusion and exchange. Arteriolar resistance is modulated by intrinsic systems 

(e.g., myogenic control and endothelium derived factors) and extrinsic systems (e.g., 

sympathetic nerves) that tightly match blood flow (oxygen delivery) to metabolic 

demand. Thus, for decades, physiologists have been interested in the characteristics of 

skeletal muscle blood flow, with an emphasis on measuring and understanding red blood 

cell velocity (VRBC). 

Blood flow through a vessel segment is generally calculated as a product of mean red 

blood cell flow velocity (VMean) and vessel cross sectional area (AVessel). Centerline VRBC 

(VCenter) is commonly measured using Doppler velocimetry (VanTeeffelen & Segal, 

2006; Jackson et al., 2010) or the dual-slit/sensor technique (Sato & Ohshima, 1988; Lee 

& Duling, 1989) and is converted to VMean through use of the Baker and Wayland 

velocity ratio conversion factor (VRatio; an index of profile bluntness and transition layer) 

of 1.6 (Baker & Wayland, 1974). Use of this conversion factor, however, disregards 

diameter- and hematocrit-dependent changes in luminal VRBC profiles and depending on 

the size and location of the vessel of interest tends to erroneously estimate blood flow 

(Pittman & Ellsworth, 1986).  
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At present, evaluation of microvascular VRBC profiles is limited to experiments 

investigating arterioles and/or venules in the mesentery (Tangelder et al., 1985; 

Tangelder et al., 1986; Tangelder et al., 1988; Nakano et al., 2003) and omentum 

(Schmid-Schoenbein & Zweifach, 1975), or skeletal muscle venules (Bishop et al., 2004; 

Das et al., 2007). However, due to experimental and technical limitations, these past 

studies have been constrained to a small range of arteriolar diameters (approximately 17-

40 m), limiting current knowledge of VRBC profiles to this range.  

Arteriolar networks in many tissues have a broad range of diameters; for example, 

skeletal muscle arterioles range from ~15 m to ~100 m. Thus, there remains a need for 

a feasible in vivo experimental model enabling concurrent measurement of VRBC profiles 

at multiple levels within microvascular networks. Having a means to acquire VRBC 

profiles for a broad range of arteriolar diameters would provide accurate and detailed data 

necessary to derive VRatio. Such data would facilitate accurate blood flow calculations for 

a broad range of arteriolar diameters in studies limited to centreline VRBC measurements 

that require VRatio to calculate VMean.   

In the current study we used the rat gluteus maximus (GM) muscle preparation and 

intravital video microscopy to meet the following objectives: 1) develop a method 

(“streak length method”) for VRBC detection, improved characterization of in vivo VRBC 

profiles and blood flow for a broad range of diameters in continuously branching 

arterioles and 2) obtain a best fit regression line describing the relationship between VRatio 

and arteriolar diameter. 
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 Materials and methods 

 Preparations and protocols 

 Animal care and use  

The Council on Animal Care at the University of Western Ontario approved the 

experimental protocol. Experiments were performed using 6 male Sprague Dawley rats 

(6-7 weeks old; mass: 168.5  9 grams, mean  SD), purchased from Charles River 

Laboratories (Saint-Constant, Quebec, Canada) and housed on site for at least 1 week 

prior to study. Rats were housed in animal care facilities of the University of Western 

Ontario, at ∼24°C on a 12 h–12 h light–dark cycle with access to food and water ad 

libitum. Upon completion of experimental procedures each day, the anesthetised rat was 

euthanized with an overdose of α-chloralose and urethane cocktail mix (intraperitoneal 

injection), and cervical dislocation. 

 Anesthesia and skeletal muscle preparation  

Using intraperitoneal injection, the rat was anesthetised with a cocktail of α-chloralose 

(80 mgkg-1) and urethane (500 mgkg-1). A mid-neck incision was made and a tracheal 

cannula (PE-205) was introduced to facilitate spontaneous respiration. The right jugular 

vein was cannulated (PE-50 tubing) to maintain a constant infusion of anesthetic to the 

animal (-chloralose: 8-16 mgkg-1hr-1, urethane: 50-100 mgkg-1hr-1) and a T-connector 

was used to inject fluorescent RBCs. The left carotid artery was cannulated (PE-50 

tubing) to allow for recording of arterial blood pressure via the amplified signal of a 

pressure transducer using a PowerLab system (model ML118 PowerLab Quad Bridge 

Amplifier; model MLT0699 BP Transducer, AD Instruments, Colorado Springs, CO, 

USA). The rat was placed prone on a custom-fabricated animal platform using conducted 
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heat with animal temperature feedback to maintain rectal temperature at 37°C. With the 

animal shaved and skin prepared, under microscopic guidance the GM muscle was cut 

from its origin along the spine and along its rostral and caudal borders [adapted from the 

mouse preparation (Bearden et al., 2004)]. With great care taken to preserve its 

neurovascular supply, the muscle flap was gently reflected away from the rat, spread 

evenly onto a transparent Sylgard®
 (Sylgard 184; Dow Corning, Midland, MI, USA) 

pedestal to approximate in situ dimensions and pinned to secure edges. The exposed 

tissue was superfused continuously (4-5 mlmin-1) with bicarbonate-buffered 

physiological salt solution (PSS; 35C at tissue, pH 7.4) of the following composition 

(mM): NaCl 137, KCl 4.7, MgSO4 1.2, CaCl2 2, NaHCO3 18 and equilibrated with 5% 

CO2 / 95% N2.  

 Fluorescent labelling of red blood cells  

One day prior to experimentation, blood was drawn from a donor animal via cardiac 

puncture into a vial containing heparin. Sample was centrifuged at 1300g for 5 minutes, 

and the plasma layer and buffy coat were discarded. RBCs were then washed in Tris-

buffered Ringer's solution (room temperature, pH = 7.4), and incubated in a freshly 

prepared FITC (fluorescein isothiocyanate, [0.4 mgml-1], Cat# 4014f, Research Organics 

Inc., Cleveland, OH, USA) dye solution (FITC mixed into dimethyl sulfoxide and Tris-

buffered Ringer’s albumin (biotechnology grade bovine albumin, [0.005 gml-1], 

Bioshop Canada Inc.) solution, room temperature, pH = 7.4) for 2 hours. Cells were 

washed in Tris-buffered Ringer's albumin solution and stored overnight at 4C. On day of 

experiment, excess dye was removed by washing cells in Tris-buffered Ringer's albumin 

solution, and hematocrit (Hct) was adjusted to ~30-35% with buffer. Prior to injection, 
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fluorescent RBCs were imaged on a microscope and qualitatively evaluated for 

fluorescence signal and cellular integrity. Prior to intravital video microscopy (IVVM), 

cells were injected (1% of total animal blood volume, blood volume estimated to be 6 

ml(100 g)-1 rat) into the animal via the jugular vein (PE-50 tubing for cannula) and the 

line was flushed with heparinized saline. To confirm labelled cell fraction, post-

experiment systemic blood samples were acquired and analysed using flow cytometry. In 

a separate set of experiments, the hang test (i.e., RBCs are free to fall on their edge in an 

oil suspension where their geometry can be observed) was conducted to derive sphericity 

factors, an indicator of RBC deformability (Canham & Burton, 1968), for both 

fluorescent and unstained RBCs. There was no significant difference in sphericity index 

between groups. Additionally, it has been previously shown that FITC labelled fresh 

blood (1 day or less) did not exhibit adherent or undeformable characteristics in the 

circulation (Chin-Yee et al., 2009). In our experiments, no plugging of capillaries with 

FITC labelled cells was observed in the muscle preparation. 

 Intravital video microscopy 

Upon completion of microsurgical procedures, the preparation was transferred to the 

stage of the intravital microscope (Olympus BX51). The preparation was equilibrated for 

~30 minutes, during which time the arteriolar network was observed and a diagram was 

made to identify sites for data collection (vasomotion was not observed). Microvessels 

were observed under Kohler illumination using a long working distance condenser (NA = 

0.80) and a long working distance water immersion objective (Olympus LUMPLFL: 10 

NA = 0.30; depth of field ~9µm) with illumination from a 100-Watt halogen light source. 

To enhance contrast of the RBC column, a 450 nm/20 nm band-pass filter (450BP20, 
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Omega Optical, Brattleboro, VT, USA) was placed in the light path. In an effort to assess 

microvascular VRBC, fluorescent RBCs were epi-illuminated using a 120-Watt Mercury 

Vapor Short Arc light source (EXFO, X-Cite 120PC Q) in line with a FITC (450-490 nm) 

filter. The optical image was coupled to a front-illuminated interline CCD camera 

(Qimaging EXi Blue) and viewed/stored to a hard drive using specialised imaging 

software (MetaMorph® 7.6). Following equilibration, baseline internal vessel lumen 

diameter was recorded and arterioles were tested for oxygen sensitivity by elevating 

superfusate O2 from 0 to 21% (5% CO2, balance N2) for 10 minutes, and recording 

arteriolar diameter. Equilibration with 5% CO2–95% N2 was restored for the duration of 

experimental procedures. Video (.tiff) images were collected (15 fps) under epi-

illumination for off-line analysis of VRBC, and blood flow. Corresponding bright-field 

video (.tiff) images were collected (15 fps) under Kohler bright-field illumination for off-

line analysis of RBC column (and luminal) diameters. 

 RBC streaks, velocity profiles and flow calculations  

Fluorescent images were collected (15 fps) at 5-20 millisecond (msec) exposure times 

(lower exposure times for faster flow in larger arterioles, and higher exposure times for 

slower flow in smaller arterioles), causing fluorescing RBCs to form streaks in images 

(Fig. 2.1). Arteriolar lumens were divided into “lanes” (lane width was maintained from 

vessel to vessel) based on the number of RBCs spanning the lumen. Multiple streak 

measurements (manual; ImageJ 1.43u, National Institute of Health, USA) were made 

across the vessel lumen within each lane, and average VRBC (n = 5-12 velocity 

measurements in each lane) for each lane were plotted to create VRBC distribution profiles 

for each vessel segment (Fig. 2.2, Panel A).  



46 

 

 

Figure 2.1: Schematic of streak length method technique. 

Epi-fluorescent image of an arteriolar (A) and a venular (V) bifurcation in the rat gluteus 

maximus muscle (red and blue↓: direction of flow); exposure time: 10 msec; 15 fps at 

10. Arteriolar lumen was divided into “lanes” based on number of RBCs spanning the 

RBC column, with RBC width represented by streak width. 
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Figure 2.2: Velocity profiles from binned diameters of arteriolar segments. 

Top to bottom binned diameter ranges: 83+ m, 66-82 m, 50-65 m, 36-49 m, 20-35 

m. Red dashed lines indicate extrapolated data from RS to RC. Blue dashed lines indicate 

extrapolated data from RC to vessel wall (RL). Panel A column: Absolute VRBC 

distributions across normalized arteriolar lumens (-RL to RL, including transition layer). 

Panel B column: Data normalized to VMax across normalized RBC column (-RL to RL, 

including transition layer). Panel C column: Data normalized to VMax with across 

normalized RBC column (-RS to RS). Data represent mean ± SD of repeated VRBC 

measurements (n=5-12 streaks) at each radial (“lane”) placement in lumen. 
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Velocity measurements were taken from fluorescent streaks that satisfied the following 

inclusion criteria: 

1) Streaks must begin and end within the field of view of a single frame.  

2) To ensure velocity measures were from the equatorial plane of the vessel at any given 

radial position (or “lane”): i) prior to epi-illumination, the equatorial plane (center) of 

the vessel was in the plane of focus under bright-field illumination, and ii) only streaks 

with the longest and lowest level of pixel intensity were measured. This excluded 

streaks that may have been travelling closer to the vessel wall, but still in the center 

lane (as indicated by short, bright streaks).  

3) To ensure data were not collected from overlapping fluorescent red cells travelling 

behind one another, only streaks with similar light intensity across the length of the 

streak were included.  

Single VRBC values were calculated by using Equation 2.1. 

Equation 2.1   

𝑽𝑹𝑩𝑪 =
𝑹𝑩𝑪 𝑺𝒕𝒓𝒆𝒂𝒌 𝑳𝒆𝒏𝒈𝒕𝒉 − 𝑹𝑩𝑪 𝑳𝒆𝒏𝒈𝒕𝒉

𝑬𝒙𝒑𝒐𝒔𝒖𝒓𝒆 𝑻𝒊𝒎𝒆
 

With the assumption that the biconcave characteristic of the RBC was preserved [RBC 

thickness was approximated as constant (Canham et al., 1984)] during flow through any 

arteriole, the RBC was modelled as an elliptical cross section (AlMomani et al., 2008). 

RBC width was set to the width of each individual streak and RBC length was calculated 

using Equation 2.2, where ARBC (calculated from average rat red blood cell diameter of 

7.18 m, i.e., 𝐴𝑅𝐵𝐶 = 𝜋𝑟2) is the coronal cross sectional area of the RBC. 
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𝑨𝑹𝑩𝑪 = 𝝅 (
𝑹𝑩𝑪 𝑾𝒊𝒅𝒕𝒉

𝟐
) (

𝑹𝑩𝑪 𝑳𝒆𝒏𝒈𝒕𝒉

𝟐
) 

 

Equation 2.2 

𝑹𝑩𝑪 𝑳𝒆𝒏𝒈𝒕𝒉 =  
𝟒𝑨𝑹𝑩𝑪

𝝅(𝑹𝑩𝑪 𝑾𝒊𝒅𝒕𝒉)
 

    

At the outermost edge of the RBC column (RC), velocity was extrapolated from the 

middle of the outermost streak (RS, centroid of the outermost RBC) to the edge RC (for 

both left and right sides of the profile; Equation 2.3. Indicated in red dashed lines on Fig. 

2.2, Panels A and B). Using experimentally acquired velocity distribution profile plots, 

velocity curves (Equation 2.3) were fit to both left and right side of each profile to 

determine the power “a”, which is also an indicator of profile bluntness within the RBC 

column.   

Equation 2.3   

𝑽(𝒓) = 𝑽𝑪𝒆𝒏𝒕𝒆𝒓 − (𝑽𝑪𝒆𝒏𝒕𝒆𝒓 − 𝑽𝑹𝑺
) (

𝒓

𝑹𝑺
)

𝒂

, 𝟎 < 𝒓 < 𝑹𝑪 

Using Matlab® (R2010a, The MathworksTM, Inc.), the sum of integration (trapezoidal 

approximation) for each profile was performed to calculate flow (



Q


RBC) over the RBC 

column (Equation 2.4). Plasma flow through the cell-free layer (



Q


CFL) was calculated by 

integrating over an assumed linear velocity gradient (between RC and RWall) which also 

satisfied the no-slip condition at vessel wall (V(RWall) = 0) and is indicated by blue 

dashed lines in Fig. 2.2, Panels A and B. Total blood flow through vessel cross section 

was taken as a sum of 



Q


RBC and 



Q


CFL. 
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Equation 2.4 

𝑸̇ = 𝟐𝝅 ∫ 𝑽(𝒓)𝒓𝒅𝒓
𝑹𝑾𝒂𝒍𝒍

𝟎

= 𝟐𝝅 ∫ 𝑽(𝒓)𝒓𝒅𝒓
𝑹𝑪

𝟎

+ 𝟐𝝅 ∫ 𝑽(𝒓)𝒓𝒅𝒓
𝑹𝑾𝒂𝒍𝒍

𝑹𝑪

 

= 𝟐𝝅 ∑ 𝑽(𝒓𝒊)𝒓𝒊∆𝒓
𝒓𝒊=𝑹𝑪

𝒓𝒊=𝟎
+ 𝟐𝝅 ∫ 𝑽(𝑹𝑪)

(𝑹𝑾𝒂𝒍𝒍 − 𝒓)

(𝑹𝑾𝒂𝒍𝒍 − 𝑹𝑪)
𝒓𝒅𝒓

𝑹𝑾𝒂𝒍𝒍

𝑹𝑪

 

= 𝑸̇𝑹𝑩𝑪 + 𝑸̇𝑪𝑭𝑳 

To calculate VMean, calculated blood flow values were divided by vessel cross sectional 

area (AVessel), and corresponding velocity ratios (VRatio) were calculated by dividing VMax 

by VMean.     

𝑨𝑽𝒆𝒔𝒔𝒆𝒍 = 𝝅(𝑹𝑾𝒂𝒍𝒍)
𝟐 

𝑽𝑴𝒆𝒂𝒏 =
𝑸̇

𝑨𝑽𝒆𝒔𝒔𝒆𝒍

 

𝑽𝑹𝒂𝒕𝒊𝒐 =
𝑽𝑴𝒂𝒙

𝑽𝑴𝒆𝒂𝒏
 

 Streak length method validation 

To test the reliability of flow calculations acquired through streak length method, 

mass balance error calculations were performed at bifurcations where theoretically:  

𝑸̇𝑷𝒂𝒓𝒆𝒏𝒕 = 𝑸̇𝑫𝒂𝒖𝒈𝒉𝒕𝒆𝒓𝟏 + 𝑸̇𝑫𝒂𝒖𝒈𝒉𝒕𝒆𝒓𝟐 

𝑴𝒂𝒔𝒔 𝑩𝒂𝒍𝒂𝒏𝒄𝒆 𝑬𝒓𝒓𝒐𝒓 =
|(𝑸̇𝑫𝒂𝒖𝒈𝒉𝒕𝒆𝒓𝟏 + 𝑸̇𝑫𝒂𝒖𝒈𝒉𝒕𝒆𝒓𝟐) − 𝑸̇𝑷𝒂𝒓𝒆𝒏𝒕|

𝑸̇𝑷𝒂𝒓𝒆𝒏𝒕

× 𝟏𝟎𝟎% 
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 Statistical analyses and data presentation 

Systemic measures are presented as mean  SD, unless otherwise stated. Data were 

analyzed using Prism® software (version 4.0a, GraphPad Software Inc., La Jolla, CA, 

USA) and differences were accepted as significantly different at P < 0.05. In an effort to 

discriminate the degree of bluntness in VRBC profiles (specifically for Fig. 2.2), it was 

necessary to discretely bin arterioles into specific ranges of diameters. VRBC profiles 

within each binned diameter range of arterioles were fit to a 2nd order polynomial (Y = 

C2x
2 + C1x + C0), and an F-test was performed for all parameters of the polynomial to 

test whether profiles of a given bin were significantly different from one another 

(performed on profiles from Fig. 2.2, Panel C). Linear regression was performed to 

evaluate the correlation between VRatio and arteriolar diameter for each animal (Fig. 2.4). 

To test bilateral (left and right) symmetry of individual velocity profiles, left and right 

“a” values (see Equation 2.3) were compared using a paired t-test (n = 37 vessels). Linear 

regression was performed to evaluate the correlation between calculated blood flow and 

arteriolar diameter for experimental flow calculations (Fig. 2.3). An experimental power 

law relationship of blood flow as a function of diameter was derived from a linear 

equation (not shown) fit to a log-log plot.  
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Figure 2.3: Relationship between experimental blood flow and arteriolar diameter. 

Log-log plot of pooled experimental blood flow (nL⋅sec-1; calculated from profiles) 

versus diameter (μm) for 37 vessel segments (n = 6 animals); slope of linear regression 

line = 2.63; r2 = 0.96, P < 0.0001.  
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 Results 

 Systemic measures and arteriolar responses to O2 

Animals were normotensive (mean arterial pressure = 94  8 mmHg), and had normal 

systemic Hct levels (42  4%) within and across experiments. In all experiments, 

arterioles were viable as tested by their reactivity to elevated (21%) O2, which resulted in 

a 9  2 m diameter decrease in vessels ranging from 21 to 76 m in diameter.   

 Streak length method validation 

There was 0.6  3.2% error (mean ± SEM., n = 5 bifurcations) in mass balances 

calculated at bifurcations. Post-experiment flow cytometry on systemic blood samples 

confirmed total percentage of labelled cells did not exceed 1%, with total number of 

counted cells (>200,000 RBCs) providing less than 5% coefficient of variation in 

determining exact percentage of labelled cells (Sarelius & McKinlay, 1985). 

Additionally, post-experiment blood samples imaged on a hemocytometer confirmed 

maintenance of fluorescence signal and cellular integrity of labelled cells. 

  In vivo velocity profiles, experimental blood flow 
calculations, and velocity ratios 

A total of 37 profiles were generated from continuous branching arteriolar trees (n = 5-10 

arterioles per network; diameter range: 21-115 m; n = 6 animals). There were no 

significant differences between left and right curve fit values of “a”, indicating symmetry 

across all 37 profiles (with significant effective pairing of left and right values, P < 

0.0001). Profiles within a bin were plotted (n = 37 individual vessels; Fig. 2.2, Panel A), 

and illustrated congruency in VRBC profile shape (in the experimentally measured portion 

of RBC column; -Rs to Rs) among arterioles within the binned diameter range (fit to a 2nd 
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order polynomial; Fig. 2.2, Panel C). Velocity profiles became progressively more blunt 

with decreasing diameter with the quadratic coefficient (C2 from the 2nd order polynomial 

fit) becoming less negative moving from largest (83+ m) to smaller (20-35 m) 

diameters (C2 = -0.42 to -0.27, respectively; Fig. 2.2, Panel C). 

Experimental blood flow values ranged from 1.3 nLsec-1 to 106 nLsec-1 (diameters: 21-

115 m, respectively), and were correlated with diameter in the log-log plot (Fig. 2.3; r2 

= 0.96, P < 0.0001). Experimental blood flow data, as a function of arteriolar diameter (in 

µm), are described by the power equation: Blood Flow = 10-3.43  Diameter2.63.  

There was a positive linear correlation between VRatio and arteriolar diameter. From this, 

the least-squares linear regression of VRatio on arteriolar diameter (D; in m) yielded  

Equation 2.5 

𝑽𝑹𝒂𝒕𝒊𝒐 = 𝟎. 𝟎𝟎𝟕𝟏 × (𝑫) + 𝟏. 𝟏𝟓 

with an r2 of 0.90 (Fig. 2.4, P < 0.0001). VRatio values ranged from 1.35 to 1.98 (obtained 

from diameters ranging from 21-115 m), indicating that profiles across the rat gluteal 

arteriolar network exhibit a wide range of bluntness, and become approximately parabolic 

(VRatio = 2) at diameters 115 m.  
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Figure 2.4: Relationship between velocity ratio and arteriolar diameter. 

Velocity ratios for arterioles with diameters ranging from 21 to 115 μm (5-10 arterioles 

per animal; n = 6 animals). Within all animals, there was a positive correlation between 

diameter and VRatio (r
2 = 0.90; P < 0.0001). For all data, the velocity ratio, as a function of 

arteriolar diameter (in μm), is described by the experimentally-derived equation shown 

below the graph.  
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 Discussion 

In the current study we successfully developed and validated a novel in vivo method for 

characterizing VRBC profiles, VRatio, and blood flow in arterioles with a broad range of 

diameters from microvascular networks in rat skeletal muscle. Furthermore, we derived a 

linear relationship between VRatio and arteriolar diameters (from 21-115 m). From this 

relationship we have derived an equation that may be used in other studies to calculate 

blood flow based on the arteriolar diameter of interest.  

 Measuring VRBC in skeletal muscle arterioles 

In the present study, in vivo velocity profiles across continuously branching skeletal 

muscle arterioles were determined using fluorescent-labelled RBCs and a novel video 

method for determining VRBC. Previously described microscopic video methods for single 

VRBC detection use video playback on conventional video systems and analyses that 

require single RBC tracking from frame to frame. As discussed by Parthasarathi et al. 

these conventional video methods, that generally use cameras with frame rates of 25-30 

Hz, are capable of resolving VRBC of only 2 mmsec-1 or less (Parthasarathi et al., 1999).  

In an effort to overcome this limitation and resolve single particle velocities, specialized 

methods capable of resolving high VRBC (~15-40 mmsec-1) have been presented; 

however, they require specialized strobe illumination (Tangelder et al., 1986), 

asynchronous flash illumination (Pries et al., 1994), or high speed synchronized 

shuttering (Parthasarathi et al., 1999). More recently, Nakano et al. described a technique 

called particle image velocimetry (PIV), which uses an intravital microscope and 

transillumination coupled to an ultra-high speed digital camera (1000 fps) (Nakano et al., 
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2003). Although this method is capable of high-resolution instantaneous VRBC detection, 

it is limited to velocities of 6 mm·sec-1. Furthermore, due to the necessary use of high 

magnification objectives all of these past methods are limited due to a shallow depth of 

focus and thus have an upper limit on the arteriolar diameter (< 50 m) that can be 

studied.  

For the first time, we have measured VRBC in continuously branching arterioles in a broad 

range of diameters from single frame captures using conventional IVVM. With our streak 

length method, we investigated arterioles with diameters ranging from 21 to 115 m and 

were able to measure VRBC greater than 20 mmsec-1 with a maximum detectable VRBC of 

approximately 100 mmsec-1. Using our streak length method VRBC is measured based on 

the exposure time of a single frame, thus eliminating the need for specialised illumination 

or high camera frame rates. It is important to note that our method is limited by the 

sensitivity of the camera to resolve streaks under low exposure times.  

In contrast to other methods, we can effectively resolve VRBC using a low power (10) 

objective. Thus, data can be collected from larger fields of view (facilitating simultaneous 

VRBC measurements at bifurcations) with greater depth of focus (necessary for data 

collection from the equatorial plane in large arterioles). Based on the above, it is implicit 

that our streak length method is capable of measuring VRBC in all vessels (independent of 

diameter), so long as they can be brought into the focal plane. Finally, capturing VRBC 

within single frames enables measurement of rapid changes in VRBC, which may be useful 

for future microvascular studies involving muscle stimulation and/or the administration 

of vasoactive drugs, where blood flow changes occur rapidly.  
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  Arteriolar RBC velocity profiles 

This is the first study to evaluate velocity ratios from in vivo VRBC profiles in skeletal 

muscle for continuously branching arterioles encompassing a large range of diameters 

(21-115 μm). Arterioles within this range represent the major resistance pathways 

responsible for the redistribution of blood flow within tissues (Zweifach et al., 1981). 

Arteriolar velocity profiles demonstrated bilateral symmetry at all levels of the network 

and, as expected, velocity profiles became blunter in descending diameters of arterioles; 

where larger arterioles exhibited a more parabolic profile, and as diameter decreased 

there was a trend towards plug flow (VMean and VMax are equal). In support, velocity 

ratios positively correlated with arteriolar diameter (Fig. 2.4). In accordance with work in 

rabbit mesenteric networks (Tangelder et al., 1986), profiles in a given arteriolar diameter 

range were similar regardless of differing centerline velocities, as indicated by 

normalized velocity distributions (Fig. 2.2, Panels B and C).   

Baker & Wayland first proposed a VRatio of 1.6 for arterioles (Baker & Wayland, 1974), 

which represents a correction made for the instrumental artefacts due to vertical 

averaging of velocity profiles. This correction factor is commonly used for blood flow 

calculations and has been confirmed by other studies (Seki & Lipowsky, 1989; 

Koutsiaris, 2009). Our VRatio values describe the true shape of the velocity profiles that 

were acquired from the equatorial plane of the vessels. Thus, we propose that using the 

generalized VRatio of 1.6 underestimates or overestimates flow calculations by up to 20% 

in arterioles smaller or larger than ~65 m respectively (Fig. 2.4). Even when accounting 

for a maximum systematic error of 3.8% (calculated from mass balance at bifurcations), 

there remains over 16.2% of unresolved error using a VRatio of 1.6.  
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In an effort to account for diameter-dependent differences in VRatio and reduce errors in 

blood flow calculations, we propose a linear equation derived from the relationship 

between velocity ratio and arteriolar diameter (21-115 μm) as measured in vivo (Fig. 2.4). 

Tangelder et al. derived a linear equation describing this relationship for rabbit mesentery 

arterioles; however, due to experimental constraints, their equation is limited to diameters 

in the range of 17 to 32 m (Tangelder et al., 1986). The rat GM preparation represents 

true locomotive striated skeletal muscle and offers several advantages for investigating 

hemodynamics.  

First, arteriolar networks are anatomically arranged such that concurrent evaluation of 

multiple arteriolar levels (from 1st order to terminal arterioles) is conveniently achieved 

within the same focal plane. Second, the vascular anatomy is maintained across animals, 

as has been shown in mice (Bearden et al., 2004) and confirmed in the rat (qualitative 

observations), enabling investigation of the same sets of vessels from experiment to 

experiment. We have outlined the advantages of our streak length method above (see: 

Measuring VRBC in skeletal muscle arterioles), which facilitate the calculation of blood 

flow from the large range of arteriolar diameters that can be observed using the GM 

preparation.  

 Relationship between blood flow and arteriolar diameter 

In the current study we derived the following equation to describe the relationship 

between experimentally derived blood flow and arteriolar diameter: Blood Flow = 10-3.43 

 Diameter2.63, where the exponent associated with diameter (2.63) describes the slope of 

the log-log linear relationship. The slope of 2.63 is in close agreement with blood flow 
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data taken from rat cremaster muscle where power law regression yielded an exponent of 

2.73 (House & Lipowsky, 1987). Additionally, the power law exponent of 2.63 is in 

agreement with Murray’s law (Murray, 1926) and other similar studies where 

experimentally-derived exponents from power laws ranged from approximately 2 in 

larger arteries (Zamir et al., 1992) to 3 in arterioles (Mayrovitz & Roy, 1983). 

In conclusion, using the rat GM model we have developed a new method for VRBC 

detection in skeletal muscle arterioles that is compatible with conventional microscopes 

and video systems. Our streak length method eliminates the need for frame-to-frame cell 

tracking that requires specialized illumination, video shuttering, or high-speed cameras. 

By simply altering exposure time, our method is capable of resolving a large range of 

VRBC up to ~100 mmsec-1. From the data generated herein, we have provided a linear 

equation for calculating velocity ratios for arterioles (in skeletal muscle and other tissues) 

ranging from 21 to 115 m in diameter.  

 Conclusion 

We have described a relatively simple means for acquiring VRBC from a broad range of 

arteriolar diameters (from 21-115 µm). Furthermore, a linear relationship was derived 

between VRatio and arteriolar diameter. From which, we present an equation that may be 

used in future studies to more accurately calculate blood flow based on the arteriolar 

diameter. This work provides significant insight to the field of blood flow and single 

RBC dynamics in complete microvascular networks. 
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: 
Taking the “stress” out of shear rate calculations: An 
experimentally-derived shear rate equation for use in 

skeletal muscle microvasculature 
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 Introduction 

Transmural pressure gives rise to forces exerted on the vessel wall, such as 

circumferential and longitudinal stress. Shear stress, a tangential force, is due to the 

viscous friction of RBC laminae brushing past one another, and when blood flows along 

the vessel wall, the friction results in wall shear stress. Shear stress experienced at the 

endothelium, or wall shear stress, is involved in modulating vasoregulatory mechanisms 

such as endothelial-derived nitric oxide release (Kuchan et al., 1994). Shear-mediated 

nitric oxide release in skeletal muscle microcirculation is involved in healthy vascular 

regulation (Koller & Kaley, 1991; Davies, 1995; Boegehold, 1996), and is altered in 

vascular dysfunction conditions associated with peripheral vascular disease, as seen in 

spontaneously hypertensive rats (Koller & Huang, 1995).  

In the skeletal muscle microcirculation, a wall shear rate (or radial velocity gradient) 

exists in the plasma (i.e., cell free layer or CFL)-endothelium interface. Since shear rate is 

dependent on blood flow velocity profiles through vessel segments, the wall shear rate 

can be most accurately described by the slope of blood flow velocity profile evaluated 

over the width of the CFL. Experimentally, under the assumption of steady plasma flow 

and a linear slope in the velocity gradient in the CFL (Namgung et al., 2011), the wall 

shear rate equation is defined as the edge velocity of the red blood cell column over the 

CFL width: 𝛾𝐸 =
𝑉𝐸𝐷𝐺𝐸

𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿
. 

Obtaining the necessary data for computing experimental wall shear rate is difficult and 

time consuming. Thus, many groups have commonly quantified shear rate from 

experimentally-derived mean blood velocity and arteriolar diameter (Hester & Duling, 
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1988; Kurjiaka & Segal, 1995; Welsh & Segal, 1996) using the equation: 𝛾𝑊𝑎𝑙𝑙 =
8𝑉𝑀𝑒𝑎𝑛

𝐷
. 

Mean blood velocity is calculated as: 𝑉𝑀𝑒𝑎𝑛= 
𝑉𝑀𝑎𝑥

1.6
, where a fixed velocity profile along 

the microvascular network is assumed, as indicated by using a constant velocity ratio for 

all diameters [Baker Wayland ratio of 1.6 (Baker & Wayland, 1974)]. However, our 

group has shown that velocity profile in the gluteus maximus muscle microcirculation is 

dependent on the arteriolar diameter [Chapter 2 (Al-Khazraji et al., 2012)] and, as a 

result, previous calculations in skeletal muscle microvascular networks may be subject to 

over- or under-estimation (depending on diameter) of wall shear rate and wall shear 

stress.  

Although a few past studies have calculated shear rate values from velocity profiles, their 

data were limited to narrow ranges of diameters from the mesenteric microcirculation 

(Tangelder et al., 1988) or skeletal muscle arterioles (Ortiz et al., 2014), or estimated 

from computational simulations (Sriram et al., 2014). To date, wall shear rate values 

from experimentally derived velocity profiles in complete, continuously branching, 

skeletal muscle arteriolar trees have not been calculated. Using the rat gluteus maximus 

preparation [GM, adapted from the mouse (Bearden et al., 2004)] and our “streak length” 

method from Chapter 2 (Al-Khazraji et al., 2012) for assessing red blood cell (RBC) 

velocity profiles, the current study was carried out with the following objectives:  

1) Calculate wall shear rate from in vivo RBC velocity profiles in gluteus maximus 

arterioles for a wide range of diameters.  

2) Provide an experimentally-derived and straightforward wall shear rate estimation 

function for use in skeletal muscle microvascular studies (and possibly in other tissues).  
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3) Compare our calculated wall shear rate values to those from conventional wall shear 

rate calculation methods.  

 Materials and methods 

 Data source 

In vivo data were utilized from analysis of previous work involving the assessment of 

RBC velocity profiles for a total of 39 arterioles in the gluteus maximus muscle 

preparation from 6 Sprague Dawley rats, using fluorescently-labeled red blood cells (Al-

Khazraji et al., 2012). Arteriolar lumenal diameters ranged from 0.021 to 0.115 mm, and 

mean velocities were calculated from flow values determined by integrating in vivo 

velocity profiles using trapezoidal rule. In particular, this analysis provided values for the 

thickness of the red blood cell-free layer near the vessel wall and the axial flow velocity 

at the outer edge of the RBC column. This analysis also provided centerline RBC 

velocity and its relation to mean blood velocity. 

 Data analysis: Wall shear rate estimation 

We first estimated experimental wall shear rate, 𝛾𝐸, using experimental edge RBC 

velocities taken from our in vivo red blood cell velocity profiles and assumed a linear 

velocity profile across the cell free layer width, with a boundary condition of zero 

velocity at the wall, 

Equation 3.1 

𝜸𝑬 =
𝑽𝑹𝑩𝑪 𝑬𝑫𝑮𝑬

𝑾𝒊𝒅𝒕𝒉𝑪𝑭𝑳
 



68 

 

where 𝑉𝑅𝐵𝐶 𝐸𝐷𝐺𝐸 is a mean of the most left and right red blood cell velocity values in the 

velocity profile. 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿 is the width of the red blood cell free layer (CFL), determined 

by the difference between the position of the edge red blood cell, and the internal vessel 

lumenal wall, and averaged between both left and right sides of the profile. 𝛾𝐸 was then 

plotted as a function of diameter. 

 Data analysis: Development of an experimentally derived 
and straightforward wall shear rate equation 

In an effort to develop an accurate equation from experimentally acquired velocity 

profiles for use in microcirculatory studies such that minimal experimental input is 

required (i.e. arteriolar diameter and centerline velocity), we first determined 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿, 

𝑉𝑅𝐵𝐶 𝐸𝐷𝐺𝐸 (average velocities of edge red blood cells) and 𝑉𝑀𝑎𝑥 (centerline red blood cell 

velocity) as linear functions of arteriolar diameter. As well, 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿 was normalized to 

arteriolar radius and fitted to a power law equation to obtain a power law relationship 

with arteriolar inner diameter.  

Velocity-diameter relationships were used to determine a conversion factor, which we 

denote 𝑉𝐸𝑑𝑔𝑒 𝐹𝑎𝑐𝑡𝑜𝑟, relating experimental 𝑉𝑀𝑎𝑥 to 𝑉𝑅𝐵𝐶 𝐸𝐷𝐺𝐸.  𝑉𝐸𝑑𝑔𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 should be of 

benefit in experiments that acquire centerline RBC velocity, where it may be difficult to 

acquire edge velocities. 

Equation 3.2 

𝑽𝑬𝒅𝒈𝒆 𝑭𝒂𝒄𝒕𝒐𝒓 =
𝑽𝑹𝑩𝑪 𝑬𝑫𝑮𝑬(𝑫)

𝑽𝑴𝒂𝒙(𝑫)
 



69 

 

Edge velocities, 𝑉𝐸𝑥𝑝𝑡 𝑅𝐵𝐶 𝐸𝑑𝑔𝑒, can then be estimated from experimentally acquired 

centerline velocities, 𝑉𝐸𝑥𝑝𝑡 𝑀𝑎𝑥, using the velocity conversion factor, 𝑉𝐸𝑑𝑔𝑒 𝐹𝑎𝑐𝑡𝑜𝑟, 

Equation 3.3 

𝑽𝑬𝒙𝒑𝒕 𝑹𝑩𝑪 𝑬𝒅𝒈𝒆 = 𝑽𝑬𝒅𝒈𝒆 𝑭𝒂𝒄𝒕𝒐𝒓 × 𝑽𝑬𝒙𝒑𝒕 𝑴𝒂𝒙 

As well, after plotting 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿 as a function of diameter, we tested whether 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿 

values were independent of changes in 𝑉𝑀𝑎𝑥 by plotting the slope of 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿(𝐷) 

against 𝑉𝑀𝑎𝑥. The slope of 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿(𝐷) was determined by evaluating 

Equation 3.4 

𝑺𝒍𝒐𝒑𝒆 𝒐𝒇 𝑾𝒊𝒅𝒕𝒉𝑪𝑭𝑳 =
𝑾𝒊𝒅𝒕𝒉𝑪𝑭𝑳 − 𝒃

𝑫
 

Where 𝑏 is equal to the intercept from the regression fit of 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿(𝐷) plotted as a 

function of arteriolar diameter.  

Therefore Equation 3.1 can be modified to require experimentally acquired arteriolar 

diameter, and in vivo experimental centerline velocity as input variables for estimating 

experimental wall shear rate, 𝛾𝐸𝑥𝑝𝑡 𝑊𝑎𝑙𝑙, in microvascular studies 

Equation 3.5 

𝜸𝑬𝒙𝒑𝒕 𝑾𝒂𝒍𝒍 =
𝑽𝑬𝒙𝒑𝒕 𝑹𝑩𝑪 𝑬𝒅𝒈𝒆

𝑾𝒊𝒅𝒕𝒉𝑪𝑭𝑳(𝑫)
 

Finally, in order to test the experimentally-derived wall shear rate equation, we calculated 

wall shear rate using the derived equation and compared it to the experimentally-acquired 

wall shear rates. 
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 Data analysis: Comparison to other wall shear rate 
calculation methods 

In an effort to compare conventional wall shear rate calculation methods (Hester & 

Duling, 1988) to the wall shear rates estimated from experimentally acquired velocity 

profiles (Equation 3.1), we calculated wall shear rate under the assumption of  a parabolic 

velocity profile with Poiseuille flow characteristics, 

Equation 3.6 

𝜸𝑾𝒂𝒍𝒍 =
𝟖𝑽𝑴𝒆𝒂𝒏

𝑫
 

where 𝐷 is arteriolar diameter, and 𝑉𝑀𝑒𝑎𝑛 is calculated by adjusting centerline velocity 

using an assumed static velocity ratio (𝑉𝑅𝑎𝑡𝑖𝑜). For true parabolic flow 𝑉𝑅𝑎𝑡𝑖𝑜 is 2, where 

𝑉𝑀𝑎𝑥 is two-fold greater than 𝑉𝑀𝑒𝑎𝑛. However, investigators commonly set 𝑉𝑅𝑎𝑡𝑖𝑜 to 1.6  

as a global correction factor for velocity profile blunting [Baker Wayland ratio (Baker & 

Wayland, 1974)].  

Equation 3.7 

𝜸𝑾𝒂𝒍𝒍 =
𝟖𝑽𝑴𝒂𝒙

𝑽𝑹𝒂𝒕𝒊𝒐 × 𝑫
 

However, we have recently shown that 𝑉𝑅𝑎𝑡𝑖𝑜 is dependent on arteriolar diameter [in µm; 

(Al-Khazraji et al., 2012)] where:  

𝑽𝑹𝒂𝒕𝒊𝒐(𝑫) = 𝟎. 𝟎𝟎𝟕𝟏 × (𝑫) + 𝟏. 𝟏𝟓 
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Thus, using Equation 3.7, wall shear rate was calculated for three cases: 1) 𝑉𝑅𝑎𝑡𝑖𝑜 = 1.6, 

2) 𝑉𝑅𝑎𝑡𝑖𝑜 = 2, and 3) 𝑉𝑅𝑎𝑡𝑖𝑜(𝐷) = 0.0071 × (𝐷) + 1.15 [for arteriolar diameters in µm 

(Al-Khazraji et al., 2012)]. 

Our experimentally acquired wall shear rates, 𝛾𝐸, was then compared to the wall shear 

rates calculated for the three cases.  

 Statistical analysis 

To test for differences between the three cases for calculating wall shear rate, a linear 

regression statistical comparison for slope and y-intercepts was conducted. Comparisons 

were made using a linear regression statistical comparison for differences in slope and y-

intercept values. For all linear regression fitting, the dependent variable (y) was 

considered to be linearly related to the independent variable (x) when the slope was 

significantly different from zero. Differences between the various calculation methods 

were accepted when P value was less than α level of significance of 0.05. All data were 

plotted and analyzed using Graphpad Prism (V. 4.0a, La Jolla, CA, USA). 

 Results 

 Wall shear rate estimation from in vivo velocity profiles 

Experimentally acquired wall shear rates, 𝛾𝐸, ranged from 1317 to 3684 sec-1, for 

arteriolar diameters ranging from 0.021 to 0.115 mm, and there was no relationship 

between 𝛾𝐸 and arteriolar diameter (Fig. 3.1). There was a positive linear relationship 

between 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿 and diameter (Fig. 3.2; P<0.05; r2=0.64), for arteriolar diameters 

ranging from 0.021 to 0.115 mm, described by 
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Equation 3.8 

𝑾𝒊𝒅𝒕𝒉𝑪𝑭𝑳(𝑫) = 𝟎. 𝟎𝟐𝟐 × (𝑫) + 𝟎. 𝟎𝟎𝟎𝟕𝟒 

Average cell free layer width (left and right wall lumenal measurements) ranged from 

0.001 to 0.0043 mm, and the mean cell free layer width for the 39 arterioles was 0.00198 

± 0.0007 mm. There was a negative power law relationship between normalized 

𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿values and arteriolar diameter, highlighting the importance of the cell free layer 

with decreasing diameter (Fig. 3.3, r2=0.74).   

RBC velocities at the edge of the velocity profile, 𝑉𝑅𝐵𝐶 𝐸𝐷𝐺𝐸, were positively linearly 

correlated with arteriolar diameter (Fig. 3.4; r2 = 0.44; P<0.05), and are described by  

Equation 3.9 

𝑽𝑹𝑩𝑪 𝑬𝑫𝑮𝑬(𝑫) = 𝟒𝟒 × (𝑫) + 𝟏. 𝟗𝟗 

Centerline RBC velocities, 𝑉𝑀𝑎𝑥, were positively linearly correlated with arteriolar 

diameter (Fig. 3.5; r2 = 0.71; P<0.05) and are described by 

Equation 3.10 

𝑽𝑴𝒂𝒙(𝑫) = 𝟏𝟔𝟔 × (𝑫) + 𝟎. 𝟑𝟗 
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Figure 3.1: Relationship between experimentally acquired wall shear rate and 

arteriolar diameter. 

Calculated wall shear rate values (using edge velocities) as a function of diameter. 

Calculated experimental wall shear rate (𝛾𝐸) were independent of arteriolar diameter. 𝛾𝐸 

values ranged from 1317 to 3684 sec-1, for arteriolar diameters ranging from 0.021 to 

0.115 mm. 
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Figure 3.2: Relationship between cell free layer width and arteriolar diameter. 

Arteriolar diameter ranging from 0.021 to 0.115 mm; r2=0.64; and P<0.05, relationship 

described by 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿(𝐷) = 0.022 × (𝐷) + 0.00074. 
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Figure 3.3: Normalized cell free layer as a function of arteriolar diameter. 

Arteriolar diameter ranging from 0.021 to 0.115 mm (r2=0.74), power relationship 

described by 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿/𝑅𝑎𝑑𝑖𝑢𝑠 = 6.3 × (𝐷)2.3 + 0.003 × (𝐷)−1.04 

 

 

 

 

 

 

 

 



76 

 

 

Figure 3.4: Relationship between profile edge velocity and arteriolar diameter. 

Arteriolar diameter ranging from 0.021 to 0.115 mm, r2=0.44; P<0.05, relationship 

described by 𝑉𝐸𝑑𝑔𝑒 = 44 × (𝐷) + 1.99 
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Figure 3.5: Relationship between centerline velocity and arteriolar diameter. 

Arteriolar diameter ranging from 0.021 to 0.115 mm, r2=0.71; P<0.05, relationship 

described by 𝑉𝑀𝑎𝑥 = 166 × (𝐷) + 0.39 
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 Development of an experimentally-derived and 
straightforward wall shear rate equation 

As both 𝑉𝑅𝐵𝐶 𝐸𝐷𝐺𝐸 and 𝑉𝑀𝑎𝑥 expressed a relationship with arteriolar diameter (P<0.05), 

then the functions can be used to describe 𝑉𝐸𝑑𝑔𝑒 𝐹𝑎𝑐𝑡𝑜𝑟, the conversion factor for 

calculating experimental edge velocities from experimentally-acquired centerline 

velocities. 

𝑽𝑬𝒅𝒈𝒆 𝑭𝒂𝒄𝒕𝒐𝒓 =
𝑽𝑹𝑩𝑪 𝑬𝑫𝑮𝑬(𝑫)

𝑽𝑴𝒂𝒙(𝑫)
=

𝟒𝟒 × (𝑫) + 𝟏. 𝟗𝟗

𝟏𝟔𝟔 × (𝑫) + 𝟎. 𝟑𝟗
 

Finally, in order to ensure that 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿 independent of changes with 𝑉𝑀𝑎𝑥, the slope of 

𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿(𝐷), Equation 3.4 (using y-intercept from Equation 3.8, the regression fit of 

Fig. 3.2; P<0.05) was plotted against 𝑉𝑀𝑎𝑥. 

From Equation 3.8, the 𝑏 term is 0.00074; therefore, the slope of 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿 is 

Equation 3.11 

𝑺𝒍𝒐𝒑𝒆 𝒐𝒇 𝑾𝒊𝒅𝒕𝒉𝑪𝑭𝑳 =
𝑾𝒊𝒅𝒕𝒉𝑪𝑭𝑳 − 𝟎. 𝟎𝟎𝟎𝟕𝟒

𝑫
 

Experimental 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿, and 𝐷 values were used as inputs to determine 

𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿. There was no relationship between 𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿 and 𝑉𝑀𝑎𝑥 

(Fig. 3.6), indicating that 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿  is independent of changes in 𝑉𝑀𝑎𝑥. 
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Figure 3.6: Relationship between change in cell free layer width and centerline 

velocity. 

Plot of centerline RBC velocity, VMax and 𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿 (r2=0.008), where there 

was no relationship. 
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As CFL width exhibited a linear relationship with arteriolar diameter (Fig. 3.2; P<0.05), 

then the linear relationship 𝑊𝑖𝑑𝑡ℎ𝐶𝐹𝐿(𝐷) = 0.022 × (𝐷) + 0.00074 can be used as an 

input function in Equation 3.5 for calculating experimental wall shear rate, 𝛾𝐸𝑥𝑝𝑡 𝑊𝑎𝑙𝑙, 

using centerline velocities (in mm·sec-1) and arteriolar diameters (in mm) as inputs. 

Recall, Equation 3.1 as a function of arteriolar diameter, 𝐷, and centerline velocity, 𝑉𝑀𝑎𝑥, 

can be modified to Equation 3.5 

𝜸𝑬𝒙𝒑𝒕 𝑾𝒂𝒍𝒍 =
𝑽𝑬𝒙𝒑𝒕 𝑹𝑩𝑪 𝑬𝒅𝒈𝒆

𝑾𝒊𝒅𝒕𝒉𝑪𝑭𝑳(𝑫)
 

As previously described, experimental centerline velocity can be converted to edge 

velocity using the following equation 

𝑽𝑬𝒙𝒑𝒕 𝑹𝑩𝑪 𝑬𝒅𝒈𝒆 = 𝑽𝑬𝒅𝒈𝒆 𝑭𝒂𝒄𝒕𝒐𝒓 × 𝑽𝑬𝒙𝒑𝒕 𝑴𝒂𝒙 

𝑽𝑬𝒅𝒈𝒆 𝑭𝒂𝒄𝒕𝒐𝒓 =
𝟒𝟒 × (𝑫) + 𝟏. 𝟗𝟗

𝟏𝟔𝟔 × (𝑫) + 𝟎. 𝟑𝟗
 

𝜸𝑬𝒙𝒑𝒕 𝑾𝒂𝒍𝒍 =
𝑽𝑬𝒅𝒈𝒆 𝑭𝒂𝒄𝒕𝒐𝒓 × 𝑽𝑬𝒙𝒑𝒕 𝑴𝒂𝒙

𝟎. 𝟎𝟐𝟐 × (𝐃) +  𝟎. 𝟎𝟎𝟎𝟕𝟒
 

Equation 3.12 

∴ 𝜸𝑬𝒙𝒑𝒕 𝑾𝒂𝒍𝒍 =
(

𝟒𝟒 × (𝑫) + 𝟏. 𝟗𝟗
𝟏𝟔𝟔 × (𝑫) + 𝟎. 𝟑𝟗

) × 𝑽𝑬𝒙𝒑𝒕 𝑴𝒂𝒙

𝟎. 𝟎𝟐𝟐 × (𝐃) +  𝟎. 𝟎𝟎𝟎𝟕𝟒
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Equation 3.12 can be used in microvascular skeletal muscle experiments, requiring only 

arteriolar diameter (in mm) and centerline velocity (in mm·sec-1), to calculate wall shear 

rate without the assumption of parabolic velocity profiles, and without requiring the use 

of a constant velocity ratio (e.g., commonly used Baker Wayland ratio of 1.6). 

As previously mentioned, there was no relationship between wall shear rate calculated 

using Equation 3.1 and arteriolar diameter (Fig. 3.1). As well, there were no differences 

in slopes and y-intercept values for the regression lines of both values calculated (Fig. 

3.7) using the experimentally-derived wall shear rate equation (Equation 3.12) and our 

experimentally-acquired wall shear rates (Equation 3.1). 
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Figure 3.7: Comparison of experimental and calculated wall shear rates. 

Comparison of estimated wall shear rates from experimentally-derived velocity profiles, 

𝛾𝐸 (using Equation 3.1), versus calculated wall shear rates from the experimentally-

derived equation, 𝛾𝐸𝑥𝑝𝑡−𝑑𝑒𝑟𝑖𝑣𝑒𝑑 (using Equation 3.12). There were no differences 

between the slopes or y-intercepts of the two lines, and each set of wall shear rate values 

had no relationship with diameter. r2 for 𝛾𝐸 is 0.0005; r2 for 𝛾𝐸𝑥𝑝𝑡−𝑑𝑒𝑟𝑖𝑣𝑒𝑑 is 0.04. 
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 Comparison of wall shear rate calculation methodologies 

There was no relationship between wall shear rate and arteriolar diameter (calculated 

using Equation 3.6) for 𝑉𝑅𝑎𝑡𝑖𝑜 = 1.6 and 𝑉𝑅𝑎𝑡𝑖𝑜 = 2 (Fig. 3.8). However, there was a 

relationship between wall shear rate and arteriolar diameter when 𝑉𝑅𝑎𝑡𝑖𝑜(𝐷) = 0.0071 ×

(𝐷) + 1.15, which is described by 𝛾𝑊𝑎𝑙𝑙 = −5579 × (𝐷) + 1235 (Fig. 3.8; r2 = 0.24; 

P<0.05). There was no significant difference between the slopes of the linear regressions 

for the three cases; however, there was a significant difference in y-intercept values 

(P<0.05). 

Upon comparison of each of the three cases with our experimental wall shear rates (from 

Equation 3.1; Fig. 3.8), experimental wall shear rate values were different from wall 

shear rate calculated from any one of the three cases for velocity ratio. Upon comparing 

values (percent change) evaluated at 0.021 mm and 0.115 mm using the fitted regression 

lines between wall shear rates when 𝑉𝑅𝑎𝑡𝑖𝑜(𝐷) and when 𝑉𝑅𝑎𝑡𝑖𝑜 = 1.6 (Equation 3.6), 

there was a 20% and 25% over- and under-estimation, respectively. 
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Figure 3.8: Comparison of wall shear rates (WSR) using different velocity ratios. 

Wall shear rate as a function of arteriolar diameter for 1) experimental wall shear rate, 𝛾𝐸, 

(black closed circles; no relationship with diameter), 2) 𝑉𝑅𝑎𝑡𝑖𝑜 = 1.6 (red open squares 

with red regression line; no relationship with diameter), 3) 𝑉𝑅𝑎𝑡𝑖𝑜= 2 (black triangles with 

black regression line; no relationship with diameter), and 4) 𝑉𝑅𝑎𝑡𝑖𝑜(𝐷) = 0.0071 ×

(𝐷) + 1.15 (black open circles with blue regression line; positive linear relationship 

described by 𝑊𝑆𝑅(𝐷) = −5579 × (𝐷) + 1235; r2 = 0.24; P<0.05). Y-intercepts are 

significantly different between the three linear regressions. 𝛾𝐸 values were greater than 

the other three cases with varying 𝑉𝑅𝑎𝑡𝑖𝑜 values (P<0.05).  
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 Discussion 

The salient findings of the study herein are: 1) estimated wall shear rate calculated from 

experimentally-acquired velocity profiles does not have a relationship with arteriolar 

diameter (Fig. 3.1), 2) a straightforward wall shear rate equation has been derived from 

the relationship of experimental hemodynamic parameters with arteriolar diameter 

(Equation 3.12), and this equation yields wall shear rate calculations that are the same as 

our experimental values (Equation 3.1; Fig. 3.7), 3) our estimated wall shear rate (Fig. 

3.1), 𝛾𝐸, was significantly greater than wall shear rate values evaluated under Poiseuille 

parabolic flow assumption, regardless of the velocity ratio value (Fig. 3.8).  

 Wall shear rate estimation 

Experimental data on the width of the microvascular cell free layer are limited; with 

conflicting findings showing both diameter-independent cell free layer width values as 

reported in cat cerebral microvessels (Yamaguchi et al., 1992), as well as diameter-

dependent cell free layer width values as seen in the human red blood cell perfused rabbit 

mesentery (Soutani et al., 1995). In the study herein, using our estimated shear rate 

equation (Equation 3.1), we show that shear rate/stress is diameter independent (Fig. 3.1). 

This finding is in accordance with an extension on Murray’s law (Murray, 1926), where it 

was shown that shear stress is independent of vessel diameter (Zamir, 1977). This process 

of maintaining constant shear stress would involve adjustments to diameter; that is, if 

blood flow changes within a vessel, the vessel diameter would respond accordingly to the 

increases in shear, and the shear stress is returned to normal baseline levels (Reneman et 

al., 2006). 
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We provide novel evidence on the cell free layer-arteriolar diameter relationship for a 

wide range of arteriolar diameters (0.021 to 0.115 mm; Fig. 3.2) in an in vivo skeletal 

muscle preparation. The mean cell free layer width for the 39 arterioles was 0.00198 ± 

0.0007 mm, and was in agreement with previous reported values of 0.0016 ± 0.0013 mm 

in the rat mesentery (Pries et al., 1989), and  0.0008 to 0.0029 mm in the rat cremaster 

muscle (Kim et al., 2007). As well, normalized CFL width values (Fig. 3.3) were in 

accordance with both experimental and theoretical values, as summarized by Sriram et al. 

(Sriram et al., 2014).  

The majority of in vivo data on cell free layer width and shear rate/stress have been 

collected from the rat cremaster muscle preparation (Kim et al., 2007; Ong et al., 2010; 

Ong et al., 2011). To our knowledge, the study herein is the first to report these 

hemodynamic parameters from a microvascular network in true locomotive skeletal 

muscle. 

 Development of an experimentally derived and 
straightforward wall shear rate equation 

We have also provided an equation which can be used to calculate wall shear rate using 

experimental inputs of arteriolar diameter and 𝑉𝑀𝑎𝑥 (Equation 3.12), both of which are 

parameters that are easily acquired from in vivo skeletal muscle microvascular studies.  

This equation can also be used to calculate wall shear stress, as the gradient of the 

velocity profile is evaluated over the width of the CFL, thereby only requiring plasma 

viscosity for wall shear stress calculations. Using these profiles, we have provided 

equations describing relationships between edge and maximum velocities as functions of 

diameter (Figs. 3.4 and 3.5, respectively), which can be used as a conversion factor when 
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using experimental 𝑉𝑀𝑎𝑥 values for shear rate calculations. Additionally, experimental 

arteriolar diameter values can be used as inputs to calculate CFL, when it is not 

experimentally feasible to collect such data.  

Recently, a wall shear stress correction factor has been described which corrects the 

conventional widely-used wall shear stress calculation which relies on Poiseuille’s law, 

and only requires the additional input of discharge hematocrit, 𝑉𝑀𝑎𝑥, and vessel radius 

(Sriram et al., 2014). While this correction factor adjusts for important parameters that 

would certainly influence wall shear rate calculations, its utility is limited by 1) the 

assumption of parabolic Poiseuille flow profiles, and 2) the difficulty in acquiring in vivo 

discharge hematocrit measurements.  

In the equation we propose for wall shear rate (Equation 3.12), there is no assumption of 

velocity profile shape as only the edge velocities were used to develop the equation, 

which would indirectly imply a diameter dependent velocity profile shape (Al-Khazraji et 

al., 2012) as edge velocities are linearly correlated with arteriolar diameters (Fig. 3.4). As 

our wall shear rate equation depends on edge velocities and the cell free layer width, then 

our shear rate values can easily be converted to wall shear stress by multiplying the 

computed shear rate values by plasma viscosity. As plasma viscosity remains relatively 

constant throughout the microvasculature, as it is primarily affected by plasma protein 

content (Kesmarky et al., 2008), our wall shear rates are a direct indication of wall shear 

stress for the full range of arteriolar diameters.  
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 Comparison of wall shear rate calculation methodologies 

We have shown in our previous study (Al-Khazraji et al., 2012) that velocity ratios are 

diameter-dependent. Upon computing wall shear rates using our diameter-dependent 

velocity ratio, there was an over- and under-estimation of wall shear rate calculation 

compared to shear rates calculated using a fixed velocity ratio of 1.6. As well, upon 

comparison of our experimental wall shear rates (using Equation 3.1) against the wall 

shear rates computed using Poiseuille based wall shear rate equations under the three 

cases of velocity ratio, our experimental data were greater than all of the three cases. 

Despite utilizing a diameter-dependent velocity ratio in Poiseuille based wall shear rate 

equations, the computed wall shear rates did not adjust for computational error as data 

remained significantly less than our experimental wall shear rates.  

Pseudoshear rate, or mean shear across a vessel lumen, is defined as: 
𝑉𝑀𝑒𝑎𝑛

𝐷
, and is 

directly proportional to Poiseuille based calculations of wall shear rate (Equation 3.6). 

Thus, previous accounts of wall shear rate in microvascular studies that have utilized 

Equation 3.6 were greatly underestimating wall shear rate values and were indirectly 

reporting values proportional to mean shear rates, rather than the intended wall shear 

rates.  

Shear rate is lowest (approximately zero) in the center of the vessel, and highest near the 

inner wall; thus, our method of computing shear rate that only involves shear rate 

evaluation over the thickness of the CFL provides a better estimate of wall shear rate than 

values that are computed over the entire lumen diameter. While data on CFL width, and 

RBC column edge velocities are difficult to obtain, we provide a straightforward equation 
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that can be adapted to other studies, and is derived from in vivo velocity profile data. In 

support, shear rate values calculated from in vivo velocity profiles in the rabbit mesentery 

were approximately 2 times higher than the values that would have been estimated under 

the assumption of a parabolic flow profile (Tangelder et al., 1988).  

It has been shown that wall shear stress is dependent on vascular diameter in the rat (Pries 

et al., 1995a) and cat mesentery (Lipowsky et al., 1978) and the rat cremaster (Koller & 

Kaley, 1991). Under the assumption of a fixed plasma viscosity (i.e., wall shear rate 

values are in direct proportion to wall shear stress), the relationship between our 

experimental wall shear rates and arteriolar diameter is in accordance with the above 

previous studies, where there is minimal dependence of shear stress values on arteriolar 

diameter for arterioles greater than 15 µm. Finally, Zamir concluded that while the 

“constant shear” arising from acceptance of Murray’s law is invalid across the entire 

circulatory system, it may certainly hold validity in groups of vessels (i.e., capillaries, 

arterioles, etc.), in which the major determinant regulating blood vessel radii is attributed 

to shear forces acting on the endothelium (Zamir, 1977). These concepts, presented 4 

decades ago, now have some experimental support from our work on arteriolar diameters 

and calculated wall shear stress. 

 Conclusion 

The acquisition of in vivo velocity profiles in fast-flowing arterioles using our 

fluorescently-labeled red blood cell velocity measurement technique has provided the 

ability to estimate wall shear rate without the assumption of fixed velocity profile shape. 

The optimized wall shear rate equation provided in the study herein can easily be adapted 

to use in several studies investigating wall shear rate. The equations provided in the study 
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herein are easily adaptable to use with other velocity measurement techniques in order to 

collect wall shear rate and (in cases where plasma viscosity is known) stress from skeletal 

muscle preparations for a wide range of arterioles.  
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 Introduction 

The sympathetic nervous system (SNS) promotes tonic vasoconstriction in skeletal 

muscle microvascular beds (Clifford & Hellsten, 2004; Segal, 2005) via neuronal release 

of norepinephrine (NE), neuropeptide Y (NPY), and adenosine-5'-triphosphate (ATP), 

which act on their respective receptors (i.e., α1R and α2R, Y1R, and P2X1R) located 

extraluminally on arteriolar vascular smooth muscle cells (Kiowski et al., 1983; Ruffolo 

et al., 1991; Malmstrom et al., 1997; Burnstock, 2007). Vasoconstriction to SNS 

stimulation varies among arterioles due to arteriolar size and branch order (Marshall, 

1982; Boegehold & Johnson, 1988; Dodd & Johnson, 1991). Arteriolar network geometry 

(i.e., topology) is a primary determinant of baseline network resistance (Pries et al., 

1995a); therefore, acute control of arteriolar diameter must coordinate with topology in 

order to effectively regulate microvascular blood flow and red blood cell (RBC) 

distribution.  

Past and recent investigators of α-adrenoreceptor (i.e., α1R and α2R) arteriolar control of 

the rat cremaster (Faber, 1988; Ohyanagi et al., 1991) and mouse gluteus maximus 

muscle (Moore et al., 2010), concluded that proximal arterioles [i.e., first order (1A) to 

third order (3A)] are dominated by adrenergic control. This is in contrast to both NPY 

(Ekelund & Erlinge, 1997) and ATP (Gitterman & Evans, 2000), where peak responses 

have been reported to act at the distal pre-capillary terminal arterioles. However the scope 

of such studies is limited, as experimental past approaches enabled interrogation of 

partial networks (i.e., 1A to 3A arterioles at best) or discrete vessels. In an effort to reveal 

how the SNS regulates blood flow distribution in skeletal muscle microvasculature, the 

development of a preparation with access to a complete branching arteriolar trees is 
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necessary. To date, no studies have systematically and comprehensively defined the 

relationship between arteriolar order, activation of receptors for sympathetic 

neurotransmitters, and hemodynamics in skeletal muscle networks.  

We recently developed a novel rat gluteus maximus (GM) preparation [Chapter 2, (Al-

Khazraji et al., 2012); adapted from the mouse (Bearden et al., 2004)], which enables the 

investigation of sympathetic control in complete branching arteriolar trees. The aim of 

this study was to characterize topologically-dependent SNS modulation along arteriolar 

trees in the rat GM, and investigate the consequent hemodynamics. Thus, the objectives 

of this study were to: 1) systematically determine the arteriolar responses to specific 

sympathetic receptor activation as a function of branch order (i.e., from 1A to 5A), and 2) 

input these responses into an in-house developed computational blood flow model to 

estimate the functional consequence(s) of order-dependent sympathetic control on total 

blood flow and red blood cell distribution within the arteriolar tree. We predict that 

adrenergic control will be greatest in proximal arterioles, with progressive attenuation 

with increasing arteriolar order. Conversely, we predict that peptidergic and purinergic 

control will be greatest in distal arterioles, with progressive attenuation with decreasing 

arteriolar order. Finally, we anticipate that theoretical estimates of hemodynamic 

consequences will differ based on predicted topologically-dependent SNS control.  
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 Materials and methods 

 Animal care and use 

Experimental protocols were approved by The Council on Animal Care at the University 

of Western Ontario. Experiments were performed using 27 male Sprague–Dawley rats 

(six to seven weeks old; mass: 170 ± 12 g, mean ± SD), purchased from Charles River 

Laboratories (Saint-Constant, Quebec, Canada), and housed on site for at least one week 

prior to the study. Rats were housed in animal care facilities of the University of Western 

Ontario, at 24°C on a 12–12 hour light–dark cycle with access to food and water ad 

libitum. At the end of the experiment, the anesthetized rat was euthanized with an 

overdose of α-chloralose and urethane cocktail mix (intraperitoneal injection), and 

cervical dislocation. 

 Anesthesia and skeletal muscle preparation  

A more detailed description can be found elsewhere (Al-Khazraji et al., 2012). Briefly, 

the rat was anesthetized with a cocktail of α-chloralose (80 mg⁄ kg) and urethane (500 mg⁄ 

kg) using intraperitoneal injection. The fur of the neck and lower back region were 

shaved, and the animal was tracheotomized and cannulated in both the jugular (for 

continuous intravenous drug delivery) and the carotid (for blood pressure recordings). 

Temperature was maintained at 37°C (rectal probe) using a customized temperature 

controlled platform. With the animal shaved and skin prepared, under microscopic 

guidance the GM muscle was cut from its origin along the spine and along its rostral and 

caudal borders. With great care taken to preserve its neurovascular supply, the muscle 

flap was gently reflected away from the rat, spread evenly onto a transparent Sylgard 

(Sylgard 184; Dow Corning, Midland, MI, USA) pedestal to approximate in situ 
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dimensions and pinned to secure edges. The exposed tissue was superfused continuously 

(4–5 ml/min) with bicarbonate-buffered PSS (35°C at tissue, pH 7.4) of the following 

composition: NaCl 137 mM, KCl 4.7 mM, MgSO4 1.2 mM, CaCl2 2 mM, NaHCO3 18 

mM, and equilibrated with 5% CO2 ⁄ 95% N2. 

 Intravital video microscopy (IVVM) 

Upon completion of microsurgical procedures, the preparation was transferred to the 

stage of the intravital microscope (Olympus BX51, Olympus, Tokyo, Japan). The 

preparation was equilibrated for approximately 30 minutes, during which time the 

arteriolar network was observed for experimental sites of observation (vasomotion was 

not observed). Microvessels were imaged under Kohler illumination using a long 

working distance condenser (NA = 0.80) and a long working distance water immersion 

objective (Olympus LUMPLFL: 10× NA = 0.30; depth of field ~9 m) with illumination 

from a 100-Watt halogen light source. The optical image was coupled to an EMCCD 

camera (Qimaging Rolera EMC2, Qimaging, Surrey, BC, Canada), viewed using 

specialized imaging software (MetaMorph 7.6, Molecular Devices Inc., Sunnyvale, CA, 

USA), and stored on a hard drive for offline analysis. Following equilibration, the 

baseline internal vessel lumen diameter was recorded and arterioles were tested for 

oxygen sensitivity by elevating superfusate O2 from 0% to 21% (5% CO2, balance N2) for 

5 minutes, and recording arteriolar diameter (Table 4.1). Equilibration with 5% CO2–95% 

N2 was restored for the duration of experimental procedures. Bright-field video (.tiff) 

images were collected (17 fps) under Kohler bright-field illumination for off-line analysis 

of internal vessel lumen diameters using ImageJ software (Schneider et al., 2012). 
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 Experimental protocols 

All working solutions of drugs were prepared fresh daily and dissolved in the gassed and 

warmed PSS solution. The highest dose of drug was initially prepared, followed by 

preparation of the other concentrations of drug using a dilution series with logarithmic 

increments (dissolved in gassed PSS). Each concentration level was independently stored 

in its own tightly-sealed storage bottle, and placed in a heated water bath to maintain 

solution temperature of 37°C. Two water jacketed reservoir units (Radnoti LLC, CA, 

USA) were set up: 1) one provided warmed and gassed PSS that was gravity fed from a 

larger reservoir bottle, and 2) the other was used only for drug delivery. Each solution 

was then poured into the heated reservoir unit, and was topically applied to the 

preparation via gravity feed. Once the arteriolar responses for a given drug concentration 

were recorded, the solution in the reservoir was replaced with the next higher dose of 

drug solution. This procedure was repeated throughout concentration–response 

determinations. All solutions were pre-gassed prior to mixture, and received continuous 

bubbling of gas within the chamber to ensure continuous and homogenous gassing of the 

solution. For treatment with antagonists, the desired concentration was similarly prepared 

as a combined solution of agonist and antagonist.  

Protocol 1: Regional activation of α1R, α2R, Y1R, and P2X1R 

Five groups of animals were used to evaluate arteriolar responses to phenylephrine (PE; 

α1R specific agonist; Sigma Aldrich, MO, USA), UK 14,304 (α2R specific agonist; 

Tocris Biosciences, MO, USA), neuropeptide Y (NPY; Tocris Biosciences, MO, USA), 

and ATP (Sigma Aldrich, MO, USA). ATP has been shown to exhibit both 

vasoconstrictor [via P2X1R activation; (Hopwood & Burnstock, 1987)] and vasodilator 
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(Hellsten et al., 1998) effects; therefore, in an effort to isolate ATP-mediated 

vasoconstriction (Buckwalter et al., 2004), we conducted a separate set of experiments 

with a fifth group of animals receiving α,β-methylene ATP (αβ-meATP; potent P2X1 

receptor agonist; Sigma Aldrich, MO, USA), a stable non-degradable ATP analogue. All 

experiments were conducted in the rat GM arteriolar network, with one agonist evaluated 

per animal. Arteriolar responses were recorded at log increments (PE: 10-9 to 10-4 M; UK 

14,304: 10-9 to 10-5 M; NPY: 10-13 to 10-8 M; ATP: 10-9 to 10-4 M; αβ-meATP: 10-9 to 10-

5 M), and were evaluated when diameter responses stabilized and remained static for a 

minimum of 5 to 10 minutes. 

 Selection of agonist concentrations 

In all cases, the concentrations selected for each agonist application ranged from 

physiological resting levels to supra-physiological levels in an attempt to maximize 

constriction responses. The ranges selected for PE and UK 14,304 were based off of 

resting plasma levels of norepinephrine [1 to 4 nM (Mortensen et al., 2012)], and high 

intensity exercise [~50 nM (Stratton & Halter, 1985)]. The range selected for NPY 

concentrations were from resting conditions (~1 pM), to high physiological stress such as 

high intensity exercise (10 pM), or vaginal birth delivery (~10 nM) (Hirsch & Zukowska, 

2012).  

In an effort to characterize ATP’s baseline activity as a vasoconstrictor (Galligan et al., 

2001; Gitterman & Evans, 2001; Erlinge & Burnstock, 2008), as well as its role in 

vasodilation as seen in exercise concentrations [2 M (Hellsten et al., 1998)], we selected 

ATP concentrations which represented interstitial skeletal muscle levels ranging from 

resting conditions [~100 nM (Mortensen et al., 2011)] to those noted during heavy 
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exercise (Hellsten et al., 1998). The range selected for αβ-meATP encompassed the 

above ATP range, and is similar with the range used in a previous study (Buckwalter et 

al., 2004).  

 Experimental data collection 

Arteriolar responses at varying branch orders (from 1A to 5A) were recorded at each log 

increment of agonist concentration. The tissue was then superfused with PSS and 

arteriolar diameters were restored to that of baseline. Finally, maximal diameter 

responses to superfused sodium nitroprusside (SNP, 10-5 M) were recorded (Table 4.1). 

At baseline and during all drug interventions, continuously branching sets of arteriolar 

trees were scanned and imaged from 1A to 5A. Next, the same arteriolar tree was scanned 

and imaged from 5A to 1A to confirm that vessel responses were stable and there were no 

temporally-dependent alterations in responses during image scans. The total 

scanning/imaging time (1A to 5A, then from 5A to 1A) was under 30 seconds. In all 

cases, the responses at the beginning and end of imaging did not differ, indicating that 

there were no changes in responses over the scanning period.  

Protocol 2: Selectivity of α1R, α2R, Y1R, and P2X1R agonist 

To confirm specific functional responses to agonists, agonist data were also collected in 

the face of specific receptor antagonist delivery (α1R antagonist: prazosin at 2x10-8 M; 

α2R antagonist: yohimbine at 10-6 M; Y1R antagonist: BIBP3226 at 2x10-8 M; and 

P2X1R antagonist: NF023 at 10-6 M). Concentrations of antagonists were selected based 

on pilot work conducted in our laboratory that showed successful blockade at EC50 

values of agonist. 
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 Tissue viability and inclusion criteria 

Preparations were evaluated for oxygen sensitivity as a means to test for vascular 

responsiveness. As well, responses to oxygen (before beginning agonist delivery 

protocol) and SNP (after completion of experimental protocol) were used as a metric 

(independent of the tested variables) to determine repeatability between preparations. 

Preparations that did not respond to either oxygen or SNP were discarded from data 

inclusion. All 27 animals used in this study responded physiologically to both O2 and 

SNP (Table 4.1). 

 Arteriolar order classification 

The arteriolar network was classified using the centrifugal arteriolar classification method 

(Ellsworth et al., 1987), as follows: the first order (1A) was set as the first bifurcation 

coming off the feed vessel that entered the proximal end of the tissue. Each large 

bifurcation following thereafter was classified as the next generation of arterioles; e.g., 

second order (2A) daughter vessels bifurcated off a 1A vessel, etc. (Wiedemann, 1962; 

Boegehold & Johnson, 1988; Moore et al., 2010).  

To normalize arteriolar order classification across experiments and to avoid bias, we used 

the following criteria to define changes in branch order: 1) branch angle between two 

arterioles at a bifurcation must be less than 90° and greater than 15, 2) bifurcations 

coming off of 1A to 3A must not bifurcate directly into a capillary bed, but rather give 

rise to another bifurcation (i.e., a bifurcation coming off a 3A is labeled a 4A arteriole and 

should give rise to 5A vessels, instead of a capillary bed), and 3) the diameters of the two 

arterioles at a bifurcation must be less than 80% of parent vessel diameter. As reported in 

other preparations (Murrant & Sarelius, 2000), the larger bifurcations (1A to 3A) of the 
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GM preparation were observed to be paired with the venular tree, while the smaller 

orders (4A to 5A) did not run alongside the venular tree. 

In an effort to ensure only continuously branching arteriolar trees were analyzed, we 

outlined the arteriolar tree considered for observation and subsequent analysis was 

outlined using the following criteria: 1) each order must give rise to a subsequent 

interconnected series of bifurcations (i.e., a tree was outlined by selecting a 1A that is 

followed by 2A, etc. until 5A), and 2) similarly, each order, with the exception of 1A, 

must have bifurcated in line with a parent vessel that was within the same connected 

series of arterioles. For example, 4A vessel data were only accepted if that 4A bifurcation 

originated from a 3A vessel included in the original chosen arteriolar tree path.  

 Computational modelling 

Computational modelling is useful in integrating measurements of diameter changes at 

various levels in the arteriolar tree to determine the resulting changes in overall network 

resistance and blood flow (Pries et al., 1994). This is particularly important when seeking 

to compare the overall effects of SNS receptor activation between proximal and distal 

arterioles. Modelling is also useful in determining how measured diameter changes 

coordinate to alter flow distribution within the arteriolar tree, which requires having an 

accurate representation of in vivo network geometry. Thus, in an effort to estimate the 

hemodynamic consequences arising from SNS receptor activation along the branching 

arteriolar tree network, we incorporated our experimental findings into an in-house 

developed computational flow model.  
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We consistently observed high network homology across all rat GM preparations; thus, 

our model was developed from a single rat GM preparation that represented the 

topological mean of all experimental animals observed at baseline. Certainly, network 

homology has been reported in the mouse GM preparation (Bearden et al., 2004). For 

blood flow simulations, arteriolar tree geometry was determined from vascular 

reconstructions using IVVM image montages of the rat GM and consisted of 27 

unbranched (outlet) vessels. The arteriolar tree was discretized into 111 segments with a 

mean length of 33 μm and blood flow was calculated assuming a fixed pressure drop (7 

mmHg) between the inlet segment (1A arteriole) and all the outlet segments (4A and 5A 

arterioles). At the inlet segment the discharge hematocrit was set to 0.42 (the normal 

value for blood sample hematocrit in these animals). Arteriolar orders were 

mathematically determined to best represent the ordering scheme used in the 

experimental analysis (order increasing at bifurcations when a vessel had a diameter 

<80% of parent, or a bifurcation angle > 15). 

A previously described two-phase (RBCs, and plasma) continuum blood flow model was 

used (Goldman & Popel, 2000, 2001). Based on the in vivo rheological model of Pries et 

al. (1994, 1990) the two-phase continuum flow model was used to calculate the steady-

state distribution of total blood flow (Q) and discharge hematocrit (HD) throughout the 

arteriolar tree. The flow model uses conservation equations for blood and RBC volume 

flow into each node j: 

∑ 𝑄𝑖𝑗𝑖 = 0, 

∑ 𝐻𝐷𝑖𝑗𝑄𝑖𝑗𝑖 = 0, 
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where each vessel segment ij is labeled by its end nodes and the sums are over all nodes i 

connected to node j. The flow in segment ij is given by the pressure difference (Δpij) 

along the segment divided by the hydrodynamic resistance of the segment. The pressure-

flow relationship is described by 

𝑄𝑖𝑗 =
𝜋𝑅4∆𝑝𝑖𝑗

8𝜇𝑝𝑙𝜇𝑟𝑒𝑙𝐿
 

where L and R are the length and radius of the vessel segment being considered, μpl is the 

viscosity of plasma, and μrel is the relative viscosity of blood which depends on both 

radius and hematocrit [Fahraeus-Lindqvist effect; (Pries et al., 1990)]. The nonlinear 

relationship between RBC flow distribution at vessel bifurcations and overall blood flow 

distribution [plasma skimming effect; (Pries et al., 1994; Goldman & Popel, 2000)] is 

also included in the model. The nonlinear rheological effects included in the model make 

it necessary to solve the steady-state equations using an iterative method (Pries et al., 

1994; Goldman & Popel, 2000). For the arteriolar geometries considered, the Matlab 

flow simulation code typically required ~30 steps and <10 seconds to converge to a fixed 

solution for all node pressures, segment flows and hematocrits. 

For baseline blood flow calculations, the arteriolar diameters used in the model were 

those measured under control conditions (i.e., in the absence of any SNS agonists or 

antagonists in the superfusion solution). In a separate set of experiments (n = 39 vessels), 

the computational model was validated against in vivo blood flow measurements, using 

the “streak length” method (Al-Khazraji et al., 2012), in continuously branching 

arteriolar trees from the rat GM preparation under baseline control conditions. 
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To computationally determine hemodynamic consequences from experimental data, 

constriction levels for the various cases were input into the model as a function of both 

vessel order and drug concentration (evaluated from in vivo changes in constriction at PE, 

UK 14,304, ATP at 10-9 to 10-6 M, and NPY at 10-13 to 10-10 M). These data were used to 

alter diameters throughout the model arteriolar tree, based on a vessel ordering consistent 

with the experimental approach, and then the flow model described above was used to 

calculate the resulting hemodynamics. Total network flow, resistance, and RBC flow 

heterogeneity (coefficient of variation of RBC volume flow, i.e., standard deviation 

divided by mean) at each order were calculated for the given reconstructed network. 

 Data presentation and statistical analyses 

Experimental data are presented as mean ± SEM, except where otherwise stated. 

Summary data for baseline diameters, responses to O2 (O2 Response = DO2 - DBaseline; in 

µm) and SNP (SNP Response = DSNP - DBaseline; in µm) are summarized in Table 4.1. For 

constriction responses, values were calculated as changes from baseline diameter [% 

constriction = (DBaseline – DResponse) / DBaseline x 100%]. Reactivity between orders was 

determined as percent change differences [((% constrictionA - % constrictionB) / % 

constrictionA) x 100%, where A and B correspond to two different arteriolar orders]. At 

each concentration of agonist, a one-way ANOVA was conducted, to observe the effect of 

arteriolar order on level of arteriolar constriction, with alpha level of 0.05 for statistical 

significance. For each agonist-antagonist plot, individual t-tests were conducted at each 

concentration of drug to evaluate the effect of the antagonist on constriction for each 

order. In the event of unequal variance, a Welsh correction was applied to the t-test. 
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Data for each agonist treatment were fit to a variable-slope sigmoid and, where sigmoidal 

convergence was possible, compared. Due to dichotomous (vasodilatory and 

vasoconstrictor) responses to ATP application and variable responses among arteriolar 

orders to αβ-meATP application, data did not converge and sigmoidal (LogEC50) 

analyses were not possible. 

To compare concentration-response curves (LogEC50) with differing absolute maximum 

constriction responses (EMax), data for PE, UK 14,304, and NPY were transformed using 

Graphpad Prism. Responses were normalized to their respective EMax, where the 

minimum and maximum (y-axis) values were set to 0 and 100% respectively and the x-

axis was converted to a logarithmic scale. LogEC50 values were then compared across all 

orders using a one-way ANOVA with alpha level of 0.05 for statistical significance, 

followed by Tukey’s HSD post-hoc test. 
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Table 4.1: Summary values for 5 arteriolar orders. 

Responses are reported as change (O2 Response = DO2 - DBaseline; SNP Response = DSNP - 

DBaseline) from baseline values. Data reported as mean ± S.E.M. 

Arteriolar Order Baseline Diameter 

(m) 

O2 Response  

(m) 

SNP Response 

(m) 

1A 93  2 -11  1 24  3 

2A 70  2 -9  1 22  3 

3A 55  1 -8  1 22  2 

4A 42  1 -7  1 12  1 

5A 35  1 -5  1 11  1 
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 Results 

Protocols 1 & 2: Activation and selectivity of α1R, α2R, Y1R, and P2X1R agonist 

To confirm the receptor-mediated effects of the sympathetic agonists used in this study, 

we conducted a subset of experiments in the face of antagonist delivery. In all cases, 

antagonism of receptors for sympathetic neurotransmitters abolished vasoconstriction to 

respective sympathetic agonists.  

 Phenylephrine data 

There was an order-dependent effect of PE on arteriolar constriction (Fig. 4.1, Top panel; 

N=8 rats). Arteriolar constriction at maximum PE concentration (10-4 M) was greatest at 

1A which progressively decreased with increasing arteriolar order, such that 1A were 

85% more reactive than 5A. Constriction to maximum PE concentration (10-4 M) was 

blocked by prazosin (P<0.05), confirming that responses were due to 1R activation. 

Phenylephrine LogEC50 values were different across arteriolar orders (Fig. 4.1, Bottom 

panel; P<0.05), where the LogEC50 values (M) were: 1A, -6.23; 2A, -6.42; 3A, -6.43; 

4A, -6.00; 5A, -5.86. Specifically, LogEC50 for 2A was greater than 4A and 5A, and 

LogEC50 for 3A was greater than 4A and 5A (P<0.05).  
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Figure 4.1: Arteriolar responses to α1R activation at 5 arteriolar orders. 

Top: Percent change in arteriolar constriction (from baseline) for 5 arteriolar orders (1A 

through 5A, n = 8-17 arterioles) at increasing concentrations (M) of phenylephrine (PE). 

Data presented as mean  S.E.M. * indicate different from 1A, # indicate different from 

2A, † indicate different from 3A and § indicate different from 4A (P<0.05). Constriction 

responses to peak concentrations of PE were blocked by prazosin (% indicates difference 

between responses with and without antagonist at PE 10-4 M, P<0.05) for all orders. 

Bottom: Normalized constriction responses fit to sigmoids. LogEC50 values reported in 

legend for each arteriolar order. LogEC50 values for 2A and 3A were greater than 4A 

and 5A (P<0.05). 
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 UK 14,304 data 

There was an order-dependent effect of UK 14,304 on arteriolar constriction (Fig. 4.2, 

N=5 rats). Arteriolar constriction at maximum UK 14,304 (10-5 M) was greatest at 1A, 

2A, and 3A, such that these arteriolar orders were up to 85% more reactive than 5A. 

Constriction to UK 14,304 at 10-7 to 10-6 M was blocked by yohimbine at all orders, and 

UK 14,304 at 10-5 M was blocked by yohimbine at 3A to 5A (P<0.05), confirming that 

responses to were due to 2R activation. 

UK 14,304 LogEC50 values were similar across arteriolar orders (Fig. 4.2, Bottom 

panel), where the LogEC50 values (M) were: 1A, -7.07; 2A, -7.02; 3A, -7.26; 4A -7.19; 

5A, -6.68. 

 Neuropeptide Y data  

There was an order-dependent effect of NPY on arteriolar constriction (Fig. 4.3, Top 

panel; N=8 rats). Arteriolar constriction at maximum NPY concentration (10-8 M) was 

greatest at 5A, which progressively decreased with decreasing arteriolar order, such that 

5A were 121% more reactive than 1A. Constriction to NPY at maximum concentration 

(10-8 M) was blocked by BIBP3226 (P<0.05), confirming that responses were due to Y1R 

activation. 

NPY LogEC50 values were similar across arteriolar orders (Fig. 4.3, Bottom panel), 

where the LogEC50 (M) values were: 1A, -10.04; 2A, -10.28; 3A, -10.02; 4A -10.23; 5A, 

-10.59. 
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Figure 4.2: Arteriolar responses to α2R activation at 5 arteriolar orders. 

Top: Percent change in arteriolar constriction (from baseline) for 5 arteriolar orders (1A 

through 5A, n = 6-22 arterioles) at increasing logarithmic concentrations (M) of UK 

14,304. Data presented as mean  S.E.M. # indicate different from 2A, and † indicate 

different from 3A (P<0.05). Constriction responses to peak concentrations of UK 14,304 

were blocked by yohimbine (% indicate difference between responses with and without 

antagonist at UK 14,304 10-5 M, P<0.05) for all orders. Bottom: Normalized constriction 

responses fit to sigmoids. LogEC50 values are reported in legend, and were similar 

across arteriolar orders. 
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Figure 4.3: Arteriolar responses to Y1R activation at 5 arteriolar orders. 

Top: Percent change in arteriolar constriction (from baseline) for 5 arteriolar orders (1A 

through 5A, n = 8-17 arterioles) at increasing logarithmic concentrations (M) of 

neuropeptide Y (NPY). Data presented as mean  S.E.M. * indicate difference from 1A, 

# indicate difference from 2A, and † indicate difference from 3A (P<0.05). Constriction 

responses to peak concentrations of NPY were blocked by BIBP3226 (% indicate 

difference between responses both with and without antagonist, P<0.05) for all orders. 

Bottom: Normalized constriction responses fit to sigmoids. LogEC50 values are reported 

in legend, and were similar across arteriolar orders. 

 



113 

 

 ATP data 

ATP produced concentration-dependent dichotomous arteriolar responses (Fig. 4.4). 

Lower ATP concentrations (10-9 M to 10-7 M) evoked arteriolar constriction, with the 

following branch orders having the greatest level of constriction at each concentration: 

10-9 M of ATP, 4A>1A and 3A; 10-8 M, 4A>1A; and 10-7 M, 4A>1A and 2A (P<0.05). 

ATP evoked maximum arteriolar constriction at 10-8 M, with the following constrictor 

responses: 1A, 3.5%; 2A, 8%; 3A, 9%; 4A, 15%; 5A, 11%. These data indicate that 4A 

are the most responsive to ATP’s constrictor effects. 

At concentrations >10-6 M, all orders dilated, with peak responses to maximal 

concentration of ATP 10-4 M as indicated: 1A, 18%; 2A, 22%; 3A, 24%; 4A, 17%; 5A, 

21% (Fig. 4A). 

Constriction to ATP at 10-9 to 10-7 M was blocked by NF023 (Fig. 4.5, P<0.05) indicating 

that responses to ATP were due to P2X1R activation. 

 α,β-methylene ATP data 

All arteriolar orders constricted for the full concentration range of αβ-meATP (Fig. 4.6). 

Since αβ-meATP is P2X1R specific, these data support that the dilation effects of ATP 

(shown in Fig. 4.4) were not P2X1R mediated. Furthermore, constriction effects of -

meATP were blocked by NF023 (10-6 M) (P<0.05, Fig. 4.6).  
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Figure 4.4: Arteriolar responses to ATP application at 5 arteriolar orders. 

Percent change in arteriolar constriction (from baseline) for 5 arteriolar orders (1A 

through 5A, n = 6-22 arterioles) at increasing logarithmic concentrations (M) of 

adenosine triphosphate (ATP). Data presented as mean  S.E.M. A negative constriction 

is determined as a dilatory response. * indicate difference from 1A, # indicate difference 

from 2A, and † indicate difference from 3A (P<0.05).  
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Figure 4.5: Arteriolar responses to ATP application with P2X1R blockade at 5 

arteriolar orders. 

Percent change in arteriolar constriction (from baseline) for 5 arteriolar orders (1A 

through 5A, n = 5-20 arterioles) at increasing logarithmic concentrations (M) of 

adenosine triphosphate (ATP) in the face of NF023 (P2X1R antagonist). Data presented 

as mean  S.E.M. A negative constriction is determined as a dilatory response. Data 

presented as mean  S.E.M. Constriction responses to ATP were blocked by NF023 for 

ATP concentrations of 10-9 M (* indicate difference in constriction responses for 2A-5A 

with and without antagonist, P<0.05), 10-8 M (# indicate difference in constriction 

responses for 3A-5A with and without antagonist, P<0.05), and 10-7 M († indicate 

difference in constriction responses for 4A-5A with and without antagonist, P<0.05). 
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Figure 4.6: Arteriolar responses to αβ-meATP application at 5 arteriolar orders. 

Percent change in arteriolar constriction (from baseline) for 5 arteriolar orders (1A 

through 5A, n = 5-15 arterioles) at increasing logarithmic concentrations (M) of alpha-

beta-methylene-ATP (-meATP). Data presented as mean  S.E.M. Constriction 

responses to -meATP were blocked by NF023 for -meATP concentrations of 10-6 

M (*indicates difference in constriction responses for 2A, 4A-5A with and without 

antagonist, P<0.05), and 10-5 M (#indicates difference in constriction responses for 4A 

with and without antagonist, P<0.05). 
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 Computational analysis: Calculating hemodynamic 
consequences from spatially-dependent SNS receptor 
activation 

An arteriolar tree was modeled from in vivo network geometry, with centrifugal branch 

orders mathematically determined in the same way and represented using the same 

nomenclature (1A-5A) as in our experimental data analysis (Fig. 4.7). Comparison 

between computational calculations for baseline blood flow did not differ from 

experimental blood flow calculations, as slopes and intercepts between the two regression 

lines were similar (Fig. 4.8). 
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Figure 4.7: Computational network reconstruction schematic. 

Numbers indicate arteriolar diameters (µm) on photomontage, and branch order on 

reconstructed network. The large vessel (inlet) is 1st order (1) and the smallest vessels 

(outlets) are 5th orders (5). Network is color-coded based on baseline (control) blood 

flow through vessel segments (from red being high flow to blue being low flow values). 
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Figure 4.8: Validation of computational flow data with experimental flow data. 

Comparison of blood flow values calculated from the computational model versus blood 

flow values calculated from experimental protocol. There was no significant difference 

between the slopes or the intercepts for both linear regressions. Experimental Flow: 

𝐿𝑜𝑔(𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐵𝑙𝑜𝑜𝑑 𝐹𝑙𝑜𝑤) = (2.64 × 𝐿𝑜𝑔(𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟)) − 3.44; r2 = 0.96, P<0.05. 

Computational Flow: 𝐿𝑜𝑔(𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐵𝑙𝑜𝑜𝑑 𝐹𝑙𝑜𝑤) = (2.79 × 𝐿𝑜𝑔(𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟)) −

3.65; r2 = 0.76, P<0.05. 
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This reconstructed arteriolar tree was used in our hemodynamic calculations to obtain 

network flow (Fig. 4.9), total resistance (Fig. 4.10), and RBC flow heterogeneity at 2A-

5A (Fig. 4.11). There was a progressive decrease in total flow within the simulated 

network with increasing concentrations of PE, UK and NPY (Fig. 4.9). Correspondingly, 

there was a progressive increase in total network resistance within the simulated network 

with increasing concentrations of PE, UK and NPY (Fig. 4.10). In parallel with the 

constriction data, ATP exhibited an effect on total flow and network resistance which was 

opposite to that of the other ligands; that is, ATP increased total flow with increasing 

concentration, and decreased network resistance with increasing concentration. Our 

group as well as our collaborators have previously shown that these results are attributed 

to ATP acting as a dilator at higher concentrations (Hellsten et al., 1998; Nyberg et al., 

2013).  
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Figure 4.9: Calculated total network flow during baseline, and sympathetic receptor 

activation. 

Calculated total network flow for baseline; PE, UK 14,304 (UK), and ATP from 10-9 to 

10-6 M; NPY from 10-13 to 10-10 M. There was a progressive decrease in calculated total 

network flow with increasing concentration of agonist, with the exception of ATP as 

dilation occurs at higher concentrations. 
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Figure 4.10: Calculated total network resistance during baseline, and sympathetic 

receptor activation. 

Calculated total network resistance (PRU, peripheral resistance units) for baseline; PE, 

UK 14,304 (UK), and ATP from 10-9 to 10-6 M; NPY from 10-13 to 10-10 M. There was a 

progressive increase in calculated total network resistance with increasing concentration 

of agonist, with the exception of ATP as dilation occurs at higher concentrations. 
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To calculate changes in RBC flow heterogeneity, baseline heterogeneity was used as the 

reference value, and any changes from baseline heterogeneity were reflected as positive 

(increase in heterogeneity) or negative (decrease in heterogeneity) changes from baseline. 

This fractional change was calculated for each order (1A-5A) of the reconstructed 

network (Fig. 4.11). For 2A vessels, there was minimal change in RBC flow 

heterogeneity for all concentrations of the four ligands, with a maximum of 5% increase 

in heterogeneity exhibited by addition of 10-6 M UK 14,304. For 3A vessels, there was a 

10-24% increase in RBC flow heterogeneity exhibited by PE and UK 14,304 at all 

concentrations, with smaller (~1-12%) effect of ATP and especially NPY. For 4A vessels, 

there was a progressive increase in RBC flow heterogeneity with increasing 

concentrations of PE and UK 14,304, and the greatest effect on heterogeneity (~50% 

increase) with 10-6 M concentration of UK 14,304. The changes in heterogeneity for 5A 

vessels do not follow a distinct pattern for each of the concentrations of UK 14,304 and 

ATP; however Fig. 4.11 serves to highlight two important outcomes: 1) PE and NPY have 

opposing effects on heterogeneity at 5A (increasing PE decreases heterogeneity while 

increasing NPY increases heterogeneity), and 2) while PE has a large impact on blood 

flow heterogeneity in the larger vessels (2A-4A), it decreases heterogeneity at 5A vessels. 
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Figure 4.11: Change in RBC flow heterogeneity at 2A to 5A during sympathetic 

receptor activation. 

The coefficient of variation of RBC flow heterogeneity as a function of agonist is 

normalized to baseline RBC flow heterogeneity. Heterogeneity is calculated for the 

following agonist concentrations: PE, UK 14,304 (UK), and ATP from 10-9 – 10-6 M; 

NPY from 10-13 – 10-10 M. Increase in heterogeneity is shown as a positive value, whereas 

decrease in heterogeneity is shown as a negative value. 
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 Discussion 

Herein we provide a comprehensive topological evaluation of sympathetic modulation in 

branching skeletal muscle arteriolar networks. This work provides much needed new data 

describing concentration- and order-dependent vasoconstrictor effects of adrenergic (α1R 

and α2R), peptidergic (Y1R), and purinergic (P2X1R) receptor activation in complex 

skeletal muscle arteriolar trees. Furthermore, we have applied these experimental data to 

our computational blood flow model and described the hemodynamic consequences of 

heterogeneous modulation of receptors for sympathetic neurotransmitters across a 

skeletal muscle network. Our data support and build on the classic “adreno-centric” view 

of sympathetic vascular control, but most importantly illustrate equipotent roles for 

peptidergic and purinergic sympathetic components in skeletal muscle arteriolar 

hemodynamics. 

 Experimental findings: Topologically-dependent 
sympathetic control along arteriolar trees 

 Visualization and imaging of arteriolar networks 

One of the prominent features of the rat GM muscle is its 2-dimensional planar geometry 

(Al-Khazraji et al., 2012), whereby complete arteriolar networks can be quickly scanned 

and imaged with minimal changes in focal depth. For the present study, this enabled 

simultaneous and systematic evaluation of the topologically-dependent effects of 

sympathetic receptor activating receptors for sympathetic neurotransmitters along 

branching arteriolar trees (from 1A to 5A). 
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 Topologically-dependent vasoconstrictor responses to 
adrenergic control 

Prior studies describing differential α-adrenergic control in branching arterioles were 

limited to selected small groupings of arterioles in non-locomotive muscle (i.e., rat 

cremaster) (Faber, 1988; Ohyanagi et al., 1991) or locomotive skeletal muscle arteriolar 

networks of limited branch orders (Moore et al., 2010). In the rat cremaster, Faber (1988) 

binned groups of arterioles (based on luminal diameter) as either large or small. Where 

large arterioles were comprised of 1A and 2A (mean diameter of 100 µm) and small 

arterioles were comprised of 3A vessels (mean diameter of 25 µm). Ohyanagi et al. 

(1991) also used binning, but categorized large arterioles (mean diameter of 120 µm) as 

1A, and terminal arterioles (mean diameter of 13 µm) as 3A vessels. Although their 

approach provided meaningful data, their binning approaches limited spatial resolution, 

which precludes topologically based analyses.  

In the current study, arteriolar responses to PE were order-dependent, where 1A and 2A 

were 27% to 317% more reactive than 4A and 5A for the entire range of PE 

concentrations. As well, arteriolar constriction elicited by the highest PE concentration 

(10-4 M) was completely blocked by prazosin (α1R antagonist; 2x10-8 M) (Fig. 4.1, Top 

panel). Although our data support many of the findings of Moore et al. (2010) on mice, 

we observed that 1A were most responsive to PE application, where they reported that 3A 

were most responsive to PE application. Although we cannot preclude species differences 

(i.e., rat versus mouse), such discrepancies are likely attributed to fundamental 

differences in experimental protocol. Specifically, Moore et al. applied a narrow PE 

concentration range (10-9 to 10-6 M) that did not elicit plateaus in arteriolar response 
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curves, suggesting that responses did not reach maximum constriction. In contrast, we 

employed a broader PE concentration range (10-9 to 10-4 M), resulting in maximum 

arteriolar constriction (i.e., plateau responses). Applying higher PE concentrations (10-5 

and 10-4 M), we demonstrated that 1A and 2A constrict greater than 3A (Fig. 4.1, Top 

panel).  

Since EC50 represents the potency of ligands on arteriolar responses and since efficacy 

(EMax) differed among arteriolar orders, then arteriolar responses were normalized and 

plotted as concentration-response curves. In response to PE, LogEC50 differed among 

orders (Fig. 4.1, Bottom panel; P<0.05), where LogEC50 of 2A and 3A were greater than 

4A and 5A. Our data show that PE has greater potency (i.e., LogEC50) and efficacy 

(EMax; Fig. 4.1, Top panel) in proximal versus distal arterioles. These data suggest that 

proximal arterioles may have either greater receptor density and/or binding affinity; 

however, conclusions describing receptor density and/or binding affinity are beyond the 

scope of this study.  

Arteriolar responses to UK 14,304 (α2R activation, Fig. 4.2, Top panel) were order 

dependent, where (at 10-8 to 10-5 M) 2A was 87% to 261% and 3A was 78% to 289% 

more reactive than 5A vessels (P<0.05). EMax values in 2A and 3A were 87% and 78% 

greater, respectively, than EMax in 5A (Fig. 4.2, Top panel). Since all arteriolar orders 

received the same range of agonist concentrations and reached plateaus in response, these 

EMax data illustrate the profound efficacy of UK 14,304 in proximal versus distal 

arterioles. In contrast, there were no differences in LogEC50 values across arteriolar 

orders in response to UK 14,304 (Fig. 4.2, Bottom panel), illustrating its similar potency 

among all arteriolar orders.  
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As previously discussed, Faber (1988) and Ohyanagi et al. (1991) binned arterioles 

(based on luminal diameter), which is fundamentally different than the ordering scheme 

used in the current study. Despite differences in arteriolar nomenclature, strictly 

comparing based on diameters instead of orders, our data are in alignment with Faber and 

with Ohyanagi et al., in that we too found that “larger” arterioles (~100 µm) responded 

more to α2R activation than “smaller” arterioles (~25 µm). However, strictly comparing 

based on arteriolar orders, we were not able to resolve differences among 1A-3A for α2R 

activation.  

Recently, Moore et al. (2010) reported that 1A (versus 2A and 3A) were most responsive 

to α2R activation (via UK 14,304) in the GM of the C57BL/6 mouse. This is in contrast 

to our current data where we observed the greatest responses to UK 14,304 in 2A and 3A 

vessels in the GM of the rat. Albeit, our findings are in direct alignment with work 

completed in the cremaster of the C57BL/6 mouse by Moore et al. (2010). These findings 

highlight the complexity in arteriolar control among different species and experimental 

preparations. Notably, topological differences in microvascular networks between 

different species may contribute to such discrepancies in comparison and interpretation. 

To illustrate, our laboratory has recently published that there are at least 4 orders of 

arterioles (from 1A to terminal arterioles) in the same C57BL/6 mouse (Novielli & 

Jackson, 2014). In contrast, we reported up to 6 orders of arterioles (from 1A to terminal 

arterioles) in the Sprague-Dawley rat GM (Al-Khazraji et al., 2012). The 

microvasculature is designed to provide adequate O2 delivery to the muscle tissue, yet the 

geometry is constrained by the dimensions of the capillary bed (as capillary size does not 

scale with species (West et al., 1997)); therefore, the pre-capillary arterioles should 
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behave the same despite the difference in species. Based on noted differences in network 

complexity, it could be argued that a 4A arteriole in the mouse should be similar 

hemodynamically to a 5A or 6A arterioles in the rat; however this remains to be tested. If 

SNS control of arteriolar networks is order-dependent, then we would expect subtle 

differences in control among species and preparations with differing arteriolar network 

complexities.   

 Topologically-dependent vasoconstrictor response to 
peptidergic control 

In the current study, arteriolar responses to NPY were order-dependent, where 5A was 

70% to 151% more reactive than 1A and 2A (Fig. 4.3, Top panel; P<0.05). As well, 

arteriolar constriction elicited by the highest NPY concentration (EMax; 10-8 M) was 

completely blocked by BIBP3226 (Y1R antagonist; 2x10-8 M) (Fig. 4.3, Top panel; 

P<0.05). EMax values in 4A and 5A were 124 and 71% greater than EMax in 1A and 2A 

respectively (Fig. 4.3, Top panel). Since all arteriolar orders received the same range of 

agonist concentrations and reached plateaus in responses, these EMax data illustrate the 

profound efficacy of NPY in distal versus proximal arterioles. However, there were no 

differences in LogEC50 values across arteriolar orders in response to NPY (Fig. 4.3, 

Bottom panel), illustrating its similar potency among all arteriolar orders.  

Our data are the first to show differential responses to Y1R activation as a function of 

arteriolar order. To date, there have been few studies that have directly investigated the 

effects of NPY on branching skeletal muscle arteriolar trees (from 1A to pre-terminal 

arterioles). Although we believe we are the first to describe NPY effects in locomotive 

skeletal muscle arteriolar networks, Joshua (1991) was the first to examine NPY-induced 
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arteriolar tree vasoconstriction in the rat cremaster studied by IVVM (Joshua, 1991). 

Despite fundamental differences in approach, and that their data were limited to only 3 

generations of arterioles, their findings are in close agreement with those in the current 

study.  

To test the effect of NPY on vascular resistance in the cat gastrocnemius muscle, Ekelund 

& Erlinge (1997) used arterially infused NPY and indirect estimations of resistance 

changes from pressure/bulk flow relationships. Although their data lacked spatial 

resolution (i.e., detailed topology) and simply indicated that NPY provided preferential 

vasoconstriction in small-bore (<25 m) compared to large-bore (>25 m) arterioles, our 

findings are in general agreement.  

Our data further corroborate previous work which showed NPY’s prominent role in 

regulating distal microvasculature (Joshua, 1991; Jackson et al., 2004; Evanson et al., 

2012). However, these past studies were limited in scope and did not provide any 

information on network topology or order dependency. For example, Evanson et al. 

(2012) limited their investigation to isolated 1A vessels from rat gastrocnemius muscle, 

Jackson et al. (2004) made generalized inferences from bulk blood flow profiles 

measured at the femoral artery of rats, and Joshua (1991) limited findings to 3 arteriolar 

orders in non-locomotive skeletal muscle (cremaster).  

 Topologically-dependent vasoconstrictor response to 
purinergic control: Dichotomous effects of ATP  

In the current study, arteriolar responses to ATP were order-dependent, where 4A was up 

to 333% more reactive than 1A (for 10-9  to 10-7 M), 285% more reactive than 2A (at 10-7 

M) and 189% more reactive than 3A (at 10-9 M). ATP exhibited vasoconstriction (at low 
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concentrations) and vasodilation (at high concentrations) (Fig. 4.4). ATP-mediated 

vasoconstriction was primarily a result of P2X1R activation (Fig. 4.5), as vasoconstrictor 

effects were completely blocked by application of NF023 (a specific P2X1R antagonist; 

10-6 M) (Fig. 4.5, P<0.05). While ATP has been more commonly described as a 

vasodilator (Hellsten et al., 1998; Clifford & Hellsten, 2004; Mortensen et al., 2009), the 

vasoconstriction elicited by ATP in this study is in agreement with work reported from 

experiments in the rat tail and hindlimb (Johnson et al., 2001), and the rat heart 

(Hopwood & Burnstock, 1987).  

ATP acts on P2X receptors, located on the abluminal smooth muscle of the vessel (Hirst 

& Jobling, 1989), as well as P2Y receptors (responsible for dilation), located on the 

intraluminal endothelium (Burnstock, 1996). In the current study, ATP promoted 

vasoconstriction in all arteriolar orders at 10-9 and 10-8 M, (Fig. 4.4, P<0.05). However, 

with progressive increases in ATP concentration (10-6 and 10-5 M), we observed 

vasodilation in all arteriolar orders (P<0.05). Interestingly, similar ATP concentrations in 

exercising human skeletal muscle have been reported, where interstitial ATP levels 

(measured from intramuscular microdialysate) ranged between 2 to 5 x 10-6 M, 

depending on exercise intensity (Hellsten et al., 1998).  

During micropipette application of ATP to arterioles in the hamster cheek pouch 

preparation, the vasodilator effect of interstitial ATP was suggested to be mediated (in 

part) by the formation of adenosine (from ATP degradation) via 5’-ectonucleotidase 

activity (Duza & Sarelius, 2003). This mechanism of ATP-mediated dilation (via 

breakdown to adenosine) would then differ from intravascular ATP-mediated dilation 

which is solely based on ATP binding onto P2Y receptors residing on the endothelium 
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(and is independent of adenosine’s vasodilatory effects). While Duza and Sarelius applied 

ATP at concentrations of 10-7 M to10-3 M, we used lower concentrations of ATP (10-9 to 

10-7 M), which elicited vasoconstriction. Our conditions correspond to interstitial ATP 

concentrations measured with intramuscular microdialysis at baseline in humans 

(Mortensen et al., 2011). The results from the current and past experiments suggest that 

5’ectonucleotidase is either not active at low concentrations of ATP, or that the 

breakdown of ATP to adenosine does not override the vasoconstrictor effects of ATP for 

these concentrations.  

We recently reported that vasodilation, and ensuing blood flow changes, in response to 

high ATP concentrations (10-6 and 10-5 M) can be abolished by L-NA and indomethacin 

in the rat GM. Thus, the vasodilator effects of high abluminal ATP concentrations are best 

explained by NO and prostanoid formation, respectively (Nyberg et al., 2013). Certainly, 

ATP can diffuse from the interstitial space into the vessel lumen and to invoke P2Y-

mediated vasodilation; however a 50-fold difference in ATP concentration difference 

across the vessel wall is required for this cross over to occur (Mo & Ballard, 2001). 

Notably, the whole blood concentration of ATP in the Sprague Dawley rat is 3 to 510-6 

M (Jagger et al., 2001), which would lead to no net flux of ATP from the interstitium to 

the blood in the current study. Thus, vasodilation induced by 10-6 to 10-5 M [ATP] in our 

study cannot be due to diffusion and subsequent P2Y activation.  

When applying ATP in the face of P2X1R blockade, ATP acted as a vasodilator at all 

concentrations (Fig. 4.5, P<0.05). These data suggest that ATP-induced vasodilation 

buffers its vasoconstrictor effects at all (physiologically relevant) concentrations. This 

was further corroborated by the pure vasoconstrictor effect of -meATP (Fig. 4.6) (also 
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blocked by NF023, highlighting vasoconstriction was specific to P2X1R activation), an 

ATP analogue that does not degrade at the same rate as ATP with high affinity for P2X1R 

receptors.  

Based on our findings and that of previous work, we conclude that ATP acts as a 

vasoconstrictor in skeletal muscle so long as it 1) is not degraded to adenosine, 2) cannot 

cross over into the lumen to act on P2Y receptors, and/or 3) is available at low 

concentrations, as high concentrations of ATP induce NO and prostacyclin formation 

(Nyberg et al., 2013) which masks ATP’s capacity to vasoconstrict (Fig. 4.5). The 

dichotomous roles of ATP may serve to optimize resistance and perfusion pressure in 

contracting muscle (in areas of lower concentration) and, in areas of high concentration, 

participate in localized exercise-induced functional sympatholysis (Kirby et al., 2011). 

 Computational findings: Total network resistance and flow 
changes as a result of a differential distribution of 
receptors for sympathetic neurotransmitters 

The inlet, or 1A, vessel to the arteriolar network provides the bulk flow to the outlets (or 

all the 5A vessels); therefore, having access to tree geometry allows for calculation of 

“upstream” and “downstream” effects on hemodynamics as a result of topologically-

dependent differential responses of arterioles to activation of receptors for sympathetic 

neurotransmitters. The ability to assess the “up/downstream” effects is unique to network 

analysis, and underscores the benefit of analyzing networks of interconnected 

bifurcations, as opposed to acquiring data from single sites of observation (Pries et al., 

1995c).  
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In our previous work, we speculated that Y1R blockade (via BIBP3226) modulated 

downstream systemic vascular resistance, as shown by changes in diastolic conductance 

of the rat hindlimb (Jackson et al., 2004). A remarkable outcome of our present 

hemodynamic calculations was that NPY greatly contributed to total network resistance. 

NPY decreased calculated network flow to the same degree as PE (Fig. 4.9); however, 

NPY operated in a range of concentrations that were 1000x lower than PE. Per mole of 

concentration, it can be stated that NPY is a more potent vasoconstrictor, and therefore 

greatly contributes to resistance, when compared to either PE or UK 14,304 alone. As 

previously stated, this highlights the importance of understanding the consequent 

implications of neurotransmitter contribution, despite its concentration in the interstitial 

milieu. Microvascular surface area increases with progressively increasing arteriolar 

order, with the greatest level of surface area exhibited by the capillaries (Poole et al., 

2013).  

 Order and diameter-dependent changes in RBC 
heterogeneity as a result of a differential distribution of 
receptors for sympathetic neurotransmitters 

Progressing down the arteriolar network, there is an increase in the number of arteriolar 

bifurcations, and a progressive decrease in hematocrit of single vessels for a given order 

(compared to parent orders) (Pries et al., 1986). This assists in providing a baseline level 

of heterogeneous RBC delivery to capillary beds, where RBC flow preference is given to 

the daughter with the greater diameter (or path of lower resistance). It follows that small 

changes in resistance at the smaller (distal) arterioles, will result in robust changes in 

hematocrit (Pries et al., 1990).  
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Traditionally, dilatory mechanisms have been put forth as the primary means for RBC 

distribution within the microvasculature (Clifford & Hellsten, 2004). From our 

experimental data, we illustrate that sympathetic ligands can promote differential and 

topologically-dependent changes in resistance for a wide range of ligand concentrations. 

We postulate that this is carried out through differential SNS control across the 

microcirculation. A topologically-dependent arrangement of sympathetic control would 

enable the SNS to coordinate with intrinsic dilatory mechanisms to precisely titrate RBC 

delivery throughout the network. With regards to the concept of phase separation, where 

blood flow fraction delivery is more sensitive to changes in resistance of smaller 

compared to larger arterioles (Pries et al., 1990), topologically-dependent SNS receptor 

activation warrants large hemodynamic consequences in terminal arterioles feeding into 

capillary beds. 

 Conclusion 

To conclude, we have comprehensively and systematically determined network responses 

to cumulative concentrations of specific sympathetic agonists among 5 arteriolar orders, 

and used these responses to mathematically determine the functional consequence(s) of 

heterogeneous sympathetic receptor distribution on network hemodynamics. We have 

shown differential responses to sympathetic ligands along the arteriolar tree, such that 

proximal arterioles are largely under adrenergic control, while distal arterioles are largely 

under peptidergic and purinergic control. Using computational modelling, we calculated 

that the adrenergic component of blood flow regulation is mainly responsible for 

maintaining total flow to the tissue, while the peptidergic and/or purinergic component(s) 

contribute both to total network resistance/flow and to RBC flow distribution within the 
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network. Finally, we have indicated that alongside the adrenergic system, the peptidergic 

and purinergic components of the SNS carry out integral roles in sympathetically-

mediated microvascular control.  

Our theoretical model illustrates that, due to topologically-dependent modulation, the 

SNS affects RBC heterogeneity differentially at each arteriolar order (Fig. 4.11). Under 

baseline healthy conditions, such control would contribute to setting baseline resistance 

and RBC distribution. At the onset of both healthy aging (Narkiewicz et al., 2005) and 

cardiovascular diseases (Malpas, 2010), there exist concomitant increases in SNA, which 

may then act to exaggerate blood flow heterogeneity (Jackson et al., 2010) and further 

exacerbate microvascular dysfunction, perhaps via upregulation of any or all of the 

receptors for sympathetic neurotransmitters. Certainly, in high stress conditions, Y1R is 

upregulated in microvessels of injured carotid arteries (Li et al., 2005); as well, 

hypertensive patients have shown increased P2X1R activation (Steinmetz et al., 2000; 

Hollah et al., 2001). Our model flow calculations showed that (compared to PE and UK) 

NPY and ATP produced higher RBC flow heterogeneity (relative to baseline) in distal 

(5A) vessels (Fig. 4.11), indicating that heightened SNS receptor activation, as in disease 

conditions, would elicit detrimental consequences to RBC delivery.  
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 Development of the gluteus maximus skeletal muscle 
preparation 

The investigation of in vivo skeletal muscle hemodynamics is greatly limited by 

inaccessibility to vascular networks of interest, and a lack of effective methods for 

acquiring in vivo hemodynamic parameters. In the thesis herein, we introduced a novel 

rat gluteus maximus (GM) skeletal muscle preparation which allows the greatest level of 

access to a microvascular network compared to any other published skeletal muscle 

preparation (i.e., widest range of reported vessel diameters, and orders). This high level 

of accessibility comes as a result of 3 characteristics intrinsic to the preparation: 1) there 

is an inherently large microvascular network (compared to mouse GM) due to a large 

mass of skeletal muscle which requires a greater blood supply, 2) the GM muscle is a 

highly active locomotive muscle which requires dense vasculature for maintaining 

adequate tissue metabolic integrity (Bearden et al., 2004), and 3) the GM tissue is a thin 

muscle which allows for easy tissue transillumination, where its microvasculature is 

optimally positioned such that the entire network (arteriolar/venular trees, capillaries) is 

in a single focal plane (with minimal adjustment in fine focusing). 

Through use of this GM preparation, we were able to nearly simultaneously scan multiple 

orders of arterioles for characterizing red blood cell velocity profiles as a function of 

vessel diameter, and evaluate vasoconstrictor responses from sub- to supra-physiological 

concentrations of 4 different sympathetic nervous system receptor agonists in multiple 

sequentially connected arteriolar orders. We took advantage of the planar layout of the 

vasculature and collected overlapping microscopic images of the arteriolar network such 

that we were able to computationally reconstruct an arteriolar network while preserving 
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its native in vivo geometry. This reconstructed network served as the basis for calculating 

hemodynamic parameters (e.g., blood flow, resistance, and red blood cell flow 

heterogeneity) as a consequence of topologically-dependent activation of sympathetic 

nervous system receptors for neurotransmission. 

The utility of the GM preparation has begun to receive recognition, as it has been recently 

used alongside cellular and human data to show that interstitial ATP-mediated dilation in 

the microvasculature is dependent on prostanoid and nitric oxide formation in the rat GM 

muscle (Nyberg et al., 2013). Additionally, the GM preparation was adapted for use in 

the hamster, where its data were compared to those from the rat cremaster which showed 

prostaglandins were involved in contraction-induced vasodilation in microvascular 

networks that were not secondary to the presence of extraluminal adenosine (Murrant et 

al., 2014). As the GM preparation is one of the few true locomotive skeletal muscle 

microvascular preparations, it is foreseeable that it will continue to serve as a standalone 

microvascular preparation, or at least, accompany data collected from other in vivo 

preparations as a form of data validation or correlation.  

 Development of a method for calculating blood flow in 
fast-flowing arterioles 

While blood flow techniques have been greatly improved upon, pushing past some of the 

previous limitations, the acquisition of centerline velocity via dual sensor technique, and 

assuming the Baker Wayland ratio of 1.6 (Baker & Wayland, 1974) for blood flow 

calculations remains to be the most utilized method for calculating in vivo blood flows in 

skeletal muscle microvascular networks (Duling et al., 1982; Segal & Duling, 1987; 

Hester & Duling, 1988; VanTeeffelen & Segal, 2006; Jackson et al., 2010).  
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The wide use of the Baker Wayland ratio of 1.6 is a direct consequence of limited data 

characterizing in vivo skeletal muscle velocity RBC profile shapes, as use of this ratio has 

been criticized for introducing errors in velocity, and therefore blood flow calculations 

(Pittman & Ellsworth, 1986; Tangelder et al., 1986). These limitations arise as a result of 

both utilizing skeletal muscle preparations which provide access to a narrow range of 

vessel diameters, and the lack of a blood flow measurement technique which can be used 

to acquire in vivo velocity profile shapes for a large range of diameters.  

Following the development and refinement of the GM preparation, we employed use of 

fluorescently-labeled red blood cells to act as tracers within the microvascular network in 

the GM muscle. As these labeled red blood cells maintained their intrinsic characteristics 

(e.g., biconcavity, and deformability), and the fraction of injected labeled red blood cells 

(1% of total blood volume) did not affect total hematocrit within the system, these 

fluorescent red blood cells acted as flow tracers which were representative of the native 

red blood cell flow patterns found within the microvasculature. Limiting the in vivo 

labeled fraction of red blood cells to 1% allowed for high contrast imaging between the 

labeled and unlabeled red blood cells. We then took advantage of our dual bright-

field/epi-fluorescent microscopy system by optimizing camera exposure time during data 

acquisition. This allowed for these labeled red blood cells to form “streaks” of light along 

the vessel, displaying distance traveled in the time that the camera shutter was opened 

and closed, thus providing a way to measure in vivo red blood cell velocities. With the 

increase in network visibility provided by the GM preparation, we were able to measure 

these velocities across the vascular lumen, for an entire arteriolar tree spanning multiple 

branch orders. These data are the first of their kind for providing much needed 
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information on velocity profile shapes in skeletal muscle microvasculature that can be 

immediately implemented in blood flow calculations. 

For true parabolic velocity profiles, the fixed velocity ratio (VMax/VMean) would be 2, as 

the centerline velocity would be twice that of the mean velocity through the vessel. Baker 

and Wayland (Baker & Wayland, 1974) discovered that the average velocity profile 

through glass tubes had a blunted velocity profile shape where the centerline velocity was 

1.6 times greater than the mean velocity averaged over the lumen. While Baker and 

Wayland assumed a parabolic velocity profile, the resulting velocity ratio factor of 1.6 

comes as a consequence of spatial averaging that is inherent to the dual sensor red blood 

cell velocity measurement technique. Certainly, in vivo findings collected from the rabbit 

mesentery preparation have contradicted a constant velocity ratio for all diameters, as 

these velocity ratios were determined to be diameter-dependent (Tangelder et al., 1986).  

The consequences of assuming a fixed velocity ratio are striking, as subsequent blood 

flow calculations would thereby over- or under-estimate blood flow values compared to 

using a diameter-dependent velocity ratio value. Specifically, our data show that using a 

velocity ratio of 1.6 for calculating blood flow in arterioles with diameters less than or 

greater than ~65 μm would result in under- and over-estimation of blood flow by up to 

20%, respectively. Similar to Tangelder et al, in the thesis herein, we also developed a 

diameter-dependent velocity ratio equation; however, the equation we provide, to our 

knowledge, is the first to describe diameter-dependent velocity ratios for skeletal muscle 

arterioles for a wide range of arteriolar diameters encompassing feed to pre-terminal 

arterioles (compared to a range of 17-32 µm in the rabbit mesentery (Tangelder et al., 

1986)). As well, the velocity ratio equation provided in this thesis (Chapter 2) 



147 

 

encompasses a large range of diameters, allowing it to be accessible for use in other 

microvascular preparations. As previously mentioned, data acquisition via use of the dual 

sensor technique is widely accepted, with many fundamental advancements in the field of 

microcirculatory hemodynamics made through its use. Certainly, we do not suggest that 

the dual sensor technique (or other red blood cell velocity measurement techniques) be 

replaced by use of our fluorescently-labeled red blood cell velocity measurement 

technique. We do recommend that our diameter-dependent velocity ratio equation be 

used, in conjunction with these measurement techniques, to determine an appropriate 

velocity ratio for use in blood flow calculations, as opposed to utilizing a constant 

velocity ratio such as the Baker Wayland ratio of 1.6. It should be noted that we 

recommend that the experimentally-derived velocity ratio equation be constrained for use 

in arteriolar diameters within the appropriate diameter range (21-115 µm). 

Indeed, there are other groups who have identified a velocity ratio equation that varies 

with hemodynamic parameters. For instance, in the seminal work carried out by Pittman 

and Ellsworth (1986) in the arterioles and venules of the hamster retractor muscle, a 

velocity profile bluntness parameter (“B”) was estimated as a function of both diameter 

and the centerline dual sensor velocity. This parameter has been beneficial in determining 

velocity ratios for use in mathematical modelling of the rat mesentery (Pries et al., 1989); 

however, as highlighted in their conclusions (Pittman & Ellsworth, 1986) their study was 

not based on absolute in vivo velocity calibrations such that any estimates made using 

their bluntness factor are subject to confounding variables that are inherent in the use of 

the dual sensor technique. Despite the fact that their bluntness parameter was not based 

on in vivo velocity calibrations, use of this parameter in calculation of velocity ratios is 
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far more advantageous than assuming a fixed velocity ratio. Our velocity ratio equation, 

described in the thesis herein, was derived from in vivo red blood cell velocity 

calibrations and only requires diameter as an input variable which can easily be collected 

from intravital experiments.  

Moreover, the diameter-blood flow relationships acquired using our “streak length” 

velocity measurement technique was in accordance with diameter-blood flow 

relationships for both the rat cremaster muscle (Mayrovitz & Roy, 1983; House & 

Lipowsky, 1987), and the theoretical “cubic law” first described by Murray (Murray, 

1926). Therefore, we prescribe use of our velocity ratio equation over others as it is 

derived from in vivo red blood cell velocity measurements, and the diameter-blood flow 

relationship derived in our study is in agreement with that found by other groups.  

 Use of in vivo red blood cell velocity profiles for 
estimating wall shear stress 

Shear rate, or as commonly referred to pseudoshear rate, estimates the average shear rate 

across a vessel lumen, and requires input of mean velocity across lumen and lumenal 

diameter. At low shear or pseudoshear rates, red blood cell aggregation increases and 

effective viscosity increases, attributing to the shear-thinning non-Newtonian behavior of 

blood (Chien et al., 1967). Similar to blood flow calculations, the Baker Wayland ratio is 

used to convert centerline red blood cell velocity to acquire mean velocity values for use 

in calculating wall shear rate and stress and pseudoshear rate in microvascular 

preparations. In the thesis herein, we showed that using a constant velocity ratio, such as 

the Baker Wayland ratio of 1.6, would result in up to 25% difference in calculated values 
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compared to using our diameter-dependent velocity ratio function (Al-Khazraji et al., 

2012). 

The widely accepted method for calculating wall shear rate, and wall shear stress, is 

dependent upon the assumption that the fluid flowing through a vessel segment is 

Newtonian (shear rate independent), follows a parabolic velocity profile as predicted by 

Poiseuille’s law flow behaviour, and that this velocity profile shape is constant across the 

entire vascular network (Hester & Duling, 1988). It has been shown that the acceptance 

of these assumptions causes errors in wall shear stress calculations (Reneman et al., 

2006; Katritsis et al., 2007); however, these assumptions are required due to the difficulty 

in acquiring in vivo velocity profile data. The techniques developed in the thesis herein 

allowed for computation of wall shear rates from in vivo velocity profiles for a range of 

arteriolar diameters (21-115 µm). These wall shear rates were 2-3× greater than those 

calculated from conventional approaches (Chapter 3, Fig. 3.8), and we were able to 

resolve differences between the various calculation methodologies.  

It may be argued that any error resulting from conventional wall shear rate calculations is 

carried through; therefore, the absolute values of shear stress are not as important as the 

relative changes in shear rate between groups or for a given treatment. However, it is 

imperative to recognize that the discrepancy between calculated values is dependent upon 

the strong assumption that velocity profile shape is independent of diameter, and profile 

blunting can be incorporated into hemodynamic calculations by using a velocity ratio of 

1.6. In fact, the calculation error is not linearly carried through for all diameters, as there 

is an under- and over-estimation of shear rate calculations depending on the arteriole of 

investigation (when comparing values calculated using a constant velocity ratio against 
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values calculated from use of diameter-dependent velocity ratios). Moreover, despite 

modifying the conventional wall shear rate equation to include velocity ratios as a 

function of diameter, the computation of wall shear rates under Poiseuille parabolic 

assumptions greatly underestimates wall shear rates compared to those derived from in 

vivo velocity profiles. With these reasons in mind, the discrepancy in values become 

more meaningful as they are grounded by assumptions which are deemed invalid by both 

theoretical (Sriram et al., 2014) and experimental evidence (Reneman et al., 2006; 

Reneman & Hoeks, 2008). Overall, the wall shear rate values calculated using our 

velocity profiles were significantly greater than the values calculated using conventional 

methods.  

Certainly, the acquisition of velocity profiles required for the evaluation of in vivo wall 

shear rate and stress is challenging. With the “streak length” velocity measurement 

technique, we were able to acquire in vivo velocity profile data across numerous arteriolar 

orders; however, the most salient finding from this analysis was the development of a 

straightforward function for use alongside other velocity measurement techniques. 

Similar to the practical function we provided earlier, describing the relationship between 

arteriolar order and the velocity ratio required for in vivo blood flow calculations 

(Chapter 2, Equation 2.5), we described an equation which relates arteriolar diameter and 

centerline velocity to wall shear rate (Chapter 3, Equation 3.12). The utility of this 

equation can be extended to numerous aforementioned velocity and diameter 

measurement techniques that have been regularly used in in vivo experiments 

investigating control of skeletal muscle microcirculation. As well, due to the derivation of 

the equation (i.e., confined to the red blood cell free layer located between the edge of the 
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red cell column and the inner lumenal wall), plasma viscosity is required for calculating 

wall shear stress. Plasma viscosity is mostly dependent on protein content (Kesmarky et 

al., 2008), rather than vessel diameter, therefore it is acceptable to use a constant plasma 

viscosity value for calculating wall shear stress from wall shear rate values (Namgung et 

al., 2011).  

 Recent use of “streak length” method in skeletal muscle 
microvascular studies 

As previously mentioned, from the time of its development, the rat GM preparation has 

since been put to use by groups investigating skeletal muscle microvascular control 

mechanisms in both the rat (Nyberg et al., 2013) and hamster GM muscles (Murrant et 

al., 2014). In our collaborative study with Nyberg et al., we also implemented the “streak 

length” red blood cell velocity measurement technique and were able to calculate changes 

in blood flow responses as a result of superfusion of ATP corresponding to interstitial 

ATP concentrations found during exercise. We were then able to recover these responses 

by blocking endothelial-mediated prostanoid and nitric oxide formation via superfusion 

of indomethacin and L-NA, respectively.  

The results from this study demonstrate, for the first time, that increasing ATP 

concentration of skeletal muscle interstitial fluid, to concentrations measured in human 

and animal skeletal muscle interstitium during muscle contractions, results in both 

vasodilation and ensuing increases in blood flow within the skeletal muscle. This study 

was greatly strengthened by use of the GM and the “streak length” method for reasons 

described by: 1) experimental data were collected from a locomotive muscle resembling 

that of human muscle, 2) infusion of ATP via dialysis probes into human skeletal muscle 
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only results in local hemodynamic changes; therefore blood flow responses are 

undetectable, whereas the GM preparation coupled with the use of the “streak length” 

technique was able to provide detectable changes in blood flow responses, and 3) the GM 

preparation allowed for direct observation of vasodilation and blood flow responses, 

thereby confirming that ATP’s actions are located within the microvasculature. These 

findings greatly contribute to and corroborate findings in the human and rat 

microvascular endothelial cell data, and provide insight to the mechanisms associated 

with the interstitial ATP vasodilation response. 

More recently, our laboratory has for the first time described the blood flow responses 

associated with the attenuation of vasodilation found in the skeletal muscle of pre-

diabetic mice under electric field stimulation. Under both single tetanic and rhythmic 

muscle contraction paradigms, blood flow responses in branching arterioles of the pre-

diabetic mouse GM muscle were attenuated by 50 to 80%, respectively, compared to that 

of control (Novielli & Jackson, 2014).  

The use of fluorescently-labeled red blood cells in these experiments provides 

noteworthy advantages over the traditional method of solely collecting diameter data, 

followed by inferences made on changes in blood flow. Previously, the assumption was 

that the velocity profile shape (and therefore the velocity ratio) is not only diameter 

independent for baseline values, but is also independent of diameter changes that 

accompany vasodilation responses to muscle contraction. As previously stated, we found 

a strong linear relationship between arteriolar diameter and velocity ratio (a surrogate for 

velocity profile shape), therefore assuming a fixed velocity ratio of 1.6 would result in 

over- and/or under-estimation of hemodynamic responses to contraction both within and 
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between control and pre-diabetic groups; and 2) use of the “streak length” velocity 

measurement technique provided instantaneous hemodynamic data collection alongside 

the collection of geometrical data both during and after muscle contraction. This novel 

advancement in data collection provides insight on the time-course associated with blood 

flow responses to contraction. With our intravital video microscopy setup, we are able to 

acquire high frame rates, which allowed for minimal time spent on acquiring fluorescent 

red blood cell data, in between tracking arteriolar diameter changes throughout both 

contraction paradigms.  

 Use of “streak length” method for the validation of an in-
house computational flow model 

Finally, in vivo blood flow calculations determined by using the “streak length” technique 

have been used to validate our in-house computational flow model blood flow 

calculations. The planar geometry of the rat GM allowed for direct mapping and 

reconstruction of network geometry, which was used for network flow analysis by 

incorporating our computational flow model. The computational flow model assumed a 

fixed pressure drop across the reconstructed arteriolar network, and calculated blood flow 

based on resistance values calculated with input of arteriolar diameter measurements. 

When compared as functions of diameter, the slope and y-intercept values for the 

computational versus experimental blood flow calculations were similar, thereby 

validating the calculated outputs of our computational model. As this validation using 

data collected under baseline conditions, we were able to estimate hemodynamic changes 

that accompany changes in arteriolar diameters under the activation of sympathetic 
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nervous system receptors by incorporating the calculated levels of resistance from 

vasoconstrictor experimental data (Chapter 4). 

Moreover, the benefit of validating our computational flow model is that we can now 

compute hemodynamic parameters that are otherwise difficult to acquire experimentally. 

For instance, while mapping the network geometry under bright-field microscopy is 

straight-forward (under stable hemodynamic conditions), acquiring “streak” velocity data 

for the entire network may prove to be challenging as there is a finite amount of 

fluorescent exposure the muscle can endure prior to being subject to fluorescent leakage 

from the labeled red blood cells. Fluorescent leakage is problematic as it results in a 

drastic decrease in contrast between the labeled red blood cells and the background. As 

we have collected experimental blood flow values for a large range of arteriolar 

diameters, the validation of the computational model implies that the model can 

interpolate blood flow values, for a greater number of vessel segments than what would 

be experimentally feasible. 

The computational flow model can also be used to estimate flow changes during 

application of superfused agonists. The model relies on the input of diameter values at 

each node (i.e., one end of a finite vessel segment) of the reconstructed network, inlet 

hematocrit, and both inlet and outlet pressure values. Arteriolar diameters are acquired 

from in vivo data collection, inlet hematocrit is approximated to be near systemic values, 

with an assumed fixed pressure drop across the network. From these hemodynamic 

parameters, resistance is measured for each vascular segment, followed by calculation of 

theoretical blood flow values. In the thesis herein, we evaluated vasoconstrictor responses 

to several sympathetic nervous system receptor agonists across multiple consecutively 
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branching arteriolar orders. Our computational flow model was able to estimate changes 

in total resistance and blood flow throughout the entire reconstructed network, as well as 

red blood cell flow heterogeneity at each order in response to each receptor agonist. 

 Use of the rat GM for investigating SNS receptor 
functionality in branching arteriolar trees 

The findings from this thesis include topologically-dependent responses to the activation 

of 4 SNS receptors in 5 consecutively branching arteriolar orders of the rat GM muscle. 

The collected data highlighted in this thesis represent the most comprehensive evaluation 

of SNS receptor activation in skeletal muscle arteriolar networks to date. Indeed, our 

work builds upon and is in agreement with other studies (Faber, 1988; Joshua, 1991; 

Ohyanagi et al., 1991; Ekelund & Erlinge, 1997; Gitterman & Evans, 2000; Moore et al., 

2010) whose findings are summarized by Fig. 1.1 (Chapter 1); however, the work herein 

is the first of its kind to assess the topological dependence of adrenergic, purinergic, and 

peptidergic receptor activation in branching arteriolar segments of skeletal muscle 

microvasculature. Moreover, we are the first to estimate the ensuing changes in 

hemodynamic parameters as a result of topologically-dependent responses to SNS 

receptor activation.  

Classically, the role of the SNS on skeletal muscle microvascular regulation has been 

understood to be primarily carried out through adrenergic control. This view has evolved 

from several experimental designs; namely: 1) upon either sympathetic neuronal 

stimulation (Marshall, 1982), or activation of adrenergic receptors via sympathetic 

agonist delivery (Faber, 1988; Ohyanagi et al., 1991; Moore et al., 2010), the sites of 

observation used in other studies for assessing vasoconstrictor responses were acquired 
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from proximal arterioles (1A to 3A) and did not include data from distal (4A to terminal) 

arterioles, and 2) while activation of purinergic P2X1 receptor (Buckwalter et al., 2003) 

or NPY Y1R (Jackson et al., 2004), via infusion of specific SNS receptor agonists, 

resulted in substantial increases in downstream resistance, activation of both Y1R and 

P2X1R have not been investigated using IVVM experiments; thus, it was unclear 

whether increases in resistance were due to vasoconstrictor responses at the feed artery, 

or downstream within the distal microcirculation. 

The first experimental limitation was due to either a deliberate design in experimental 

protocol such that data were collected up until 3A vessels, or a significant increase in 

difficulty acquiring data beyond 3A vessels. In the case that the experimental protocol 

had been designed to limit data collection to 3A vessels, then importance was not placed 

on data collection beyond 3A. However, if data collection did not go beyond 3A vessels 

due to a lack of adequate visibility, then it is necessary to develop a preparation which 

allows for appropriate visibility of all vessels. 

The second experimental limitation is also due to the lack of an appropriate skeletal 

muscle model for investigating the purinergic and peptidergic responses. However, 

similar to previous adrenergic data, the observation of purinergic and peptidergic 

vasoconstrictor responses were nevertheless possible at 1A-3A vessels. To our 

knowledge, there is a finite number of studies evaluating purinergic and peptidergic 

(Joshua, 1991) vasoconstrictor responses in skeletal muscle microvasculature; thus, 

limited purinergic and peptidergic responses may have been limited due to a lack of 

investigation.  
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 Topologically-dependent SNS receptor activation and 
ligand contribution 

We showed that proximal (1A to 3A) arterioles are more responsive to α1R and α2R 

activation than distal arterioles. Interestingly, the LogEC50 among the 5 arteriolar orders 

was different during α1R activation (with phenylephrine, specific α1R agonist, being 

least potent in 5A arterioles). There was no difference in LogEC50 among the 5 arteriolar 

orders during UK 14,304 delivery (specific α2R agonist). The maximal efficacy to each 

of phenylephrine and UK 14,304 was significantly greater for proximal versus distal 

arterioles.  

We showed that for a wide range of concentrations, ATP elicited a dichotomous response 

in arterioles: constriction at low concentrations (10-9 to 10-8 M), and dilation at higher 

concentrations (>10-6 M) of ATP. Finally, we showed that distal arterioles are more 

responsive to Y1R activation than proximal arterioles. The LogEC50 among the 5 

arteriolar orders was not different during Y1R activation; however, the maximal efficacy 

to NPY was significantly greater for distal versus proximal arterioles.  

By strict comparison of agonist concentration, NPY is approximately 1000x more potent 

than the other SNS receptor agonists. Certainly, norepinephrine would cause a maximal 

efficacy much greater than that of phenylephrine and UK 14,304 (Moore et al., 2010); 

however, despite the lack of norepinephrine data, we predict NPY would remain more 

potent even if these key data had been collected. The potency of NPY is evident even at 

physiological resting concentrations, where it is available at a 1000× lower concentration 

than that of norepinephrine (Abd-Allah et al., 2004; Hirsch & Zukowska, 2012). In terms 

of equivalent concentrations, the baseline levels of norepinephrine (10-9 to 10-8 M) would 
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correspond to the concentration of NPY during high stress conditions such as during 

hemorrhaging shock in the rat (Hirsch & Zukowska, 2012). While the current dogma 

upholds adrenergic control as the primary determinant of microvascular regulation, our 

data strongly support considering a shift in this paradigm. Explicitly, although the 

absolute baseline concentration of norepinephrine is higher than that of NPY, the 

potential contribution of NPY is greater than that of norepinephrine; thus, it is necessary 

to revisit the classic “adreno-centric” model of SNS-mediated regulation of skeletal 

muscle microvasculature.  

 Importance of collecting data from microvascular 
networks 

Using the rat gluteus maximus muscle, we were successful in evaluating adrenergic, 

purinergic, and peptidergic receptor activation for arteriolar orders beyond 3A. This is 

due to the aforementioned clear visibility provided by the preparation itself, coupled with 

intravital video microscopy and adequate care of the muscle during experimentation (e.g., 

constant superfusion of physiological salt solution with maintained temperature) in order 

to uphold tissue integrity. Vasoconstrictor responses due to adrenergic receptor activation 

have been evaluated in the mouse GM preparation (Moore et al., 2010), although this 

study did not consider responses beyond 3A arterioles.  

Our laboratory has recently investigated the effects of pre-diabetes in response to muscle 

contraction on branching arterioles in the mouse GM muscle. Data from this study were 

from branching arteriolar tree segments that included 4A arterioles, where the 4A 

arterioles were represented as terminal or pre-capillary arterioles which immediately 

preceded capillary networks (Novielli & Jackson, 2014). In fact, one of the key findings 
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of this study was that reactivity of these 4A vessels was most affected in pre-diabetic 

conditions, thereby having the greatest impact on red blood cell distribution to capillaries 

(Pries et al., 1989). Similarly, in the thesis herein, the vasoconstrictor responses to SNS 

receptor activation is an integrated response to change in resistance throughout the 

network. These findings underscore the importance of evaluating complete arteriolar 

trees, as fundamental data predicting red blood cell distribution can be understood from 

analyzing hemodynamic data at arteriolar orders beyond 3A. 

 Future Studies 

 Experimental values of hematocrit 

By fluorescently labeling red blood cells, we are able to single out a red blood cell as it 

travels through the vessel segment of interest. Theoretically, use of flow cytometry 

should allow us to calculate how many red blood cells are represented by a single 

fluorescently-labeled red blood cell (i.e., what fraction of total red blood cells does a 

single fluorescent cell represent?). Thereafter, quantifying the number of fluorescent cells 

across a vessel segment is straightforward, as the fraction of labeled cells is low, allowing 

for high contrast between labeled and unlabeled portions. Once a finite number of labeled 

cells are quantified, the data from flow cytometry can be used to determine the total 

number of red blood cells present in the vessel segment of interest.  

While this approach is simple to follow in theory, it is difficult to put into practice. A 

vessel segment is assumed to be modeled by a cylindrical geometry, where the wall 

buckling phenomenon (Davis, 2005) is considered negligible in classical blood flow 

calculations. Using intravital video microscopy, we observe a single plane through a 
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blood vessel, where the longitudinal height of that plane is limited to the focal depth. 

While it may seem simple to count the number of fluorescent red cells in a given plane, 

the fundamental limitation with calculating experimental hematocrit using the described 

method would be the potential leakage of fluorescent signal from red blood cells outside 

of the plane of interest. The issue of fluorescent signal leakage would raise concern 

because it would result in inaccuracies (i.e., an over-estimation) in hematocrit 

calculations.  

Future in vivo studies involving use of the “streak length” method should include data 

that scans through the entire depth of the vessel segment, in addition to focusing on the 

center plane where the most accurate measure of diameter can be made. By scanning 

through the depth of the entire vessel lumen, one can approach hematocrit counts by two 

proposed methods: 1) Acquire finite number of video segments at each incremental step 

through each of the planes of the vessel segment (plane width can be user-defined), 

followed by off-line analysis of fluorescent red blood cell incidence in each of the frames 

for each plane. The total number of labeled cells can be used to determine total number of 

red blood cells via use of flow cytometry. 2) Acquire a single video spanning the entire 

depth of the vessel segment, and recreate this video using z-stacking software. Thereafter, 

the labeled red cells would be quantified and through use of flow cytometry the total red 

cell fraction through that segment can be calculated.  

From these two proposed approaches to calculating experimental hematocrit, the first 

approach, although more methodical, is predicted to be more experimentally feasible to 

carry through compared to the second approach. The second approach assumes that the 

final z-stacked vessel segment would be temporally equivalent throughout the segment; 
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however, each frame throughout the volume reconstruction of the segment would in fact 

be temporally out of sync with the subsequent collected frame. This assumption is not 

necessary nor is it implied in the first approach, whereas the individual video segments 

from the first approach would resolve any temporal issues as data are averaged 

throughout the video segment, and does not rely on a single frame to be representative of 

the flow behavior throughout the segment. 

With hematocrit values, it would then be possible to calculate viscosity and develop an 

experimentally-derived tube hematocrit to discharge hematocrit relationship (originally 

theoretically derived by Pries et al.) that would be specific to skeletal muscle arterioles. 

As well, the Fahraeus effect, describing how hematocrit changes with diameter, can be 

derived experimentally and be purposeful for validation of computational flow analysis. 

As well, with the collection of experimental hematocrit values, it would be beneficial to 

assess the plasma skimming effect across the vascular network, primarily focusing on 

blood flow from pre-terminal arterioles to capillaries. In vivo hematocrit data would 

introduce the opportunity to assess numerous other hemodynamic questions, such as (but 

not limited to): What is the effect of arteriolar diameter on shear rate variability? How 

does the activation of SNS receptors affect RBC distribution?  

 Sympathetic nervous system co-transmission of 
neurotransmitters 

Our analysis evaluated vasoconstrictor responses due to activation of one SNS receptor at 

a time. While these findings highlight essential information regarding the topologically-

dependent nature of SNS receptor functionality, the experimental design does not model 

the physiological case of co-transmitter release. To build upon our findings, future 
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experiments should entail the evaluation of vasoconstrictor responses to co-delivery of 

norepinephrine and/or ATP, and/or neuropeptide Y, as well as the combined delivery of 

all three agonists. 

 Other topics of interest 

Future studies should aim to answer the following: 1) characterizing homology in 

vascular topology and geometry in rat GM preparations [as previously shown in the 

mouse GM (Bearden et al., 2004)], 2) acquisition of outlet data at numerous terminal 

arteriolar segments for input in the computational flow model, 3) the shear rate values in 

arteriolar diameters under SNS-mediated vasoconstriction and the resolution between 

shear-mediated dilation and imposing SNS constriction, 4) characterizing purinergic 

mediation of vasoregulation (constriction and dilation) by delivering combinations of 

adenosine, ATP, ADP, as well as the appropriate blockade experiments, and 5) 

conducting SNS neuronal stimulation studies, in the face of antagonist delivery, 

alongside conducting in situ molecular characterization of receptor density at each level 

of the tree (i.e., immunohistochemistry and/or Western blotting on vessel sections from 

varying branch orders). Finally, it would be of great interest to estimate the effect(s) of 

the glycocalyx (a glycoprotein-polysaccharide that is tethered to the luminal surface of 

the endothelium and extends into the vessel lumen) on the velocity profile shape within 

the red blood cell free layer, and how the presence of the glycocalyx adjusts wall shear 

rate calculations. With the resolution used in the thesis herein, the dimensions of the 

glycocalyx are not resolvable; however, its dimensions can be approximated from 

literature and incorporated into wall shear rate calculations. 
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Appendix C: An automated cell-counting algorithm for 

fluorescently-stained cells in migration assays 
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Background  

Traditionally, in vitro cell-counting methodologies consist of manual counts through use 

of a hemacytometer (Kukulski et al., 2007; Ricardo & Phelan, 2008). Generally, cell 

migration experiments are conducted using modified Boyden chambers, whereby the 

cells of interest migrate through a porous membrane and are stained for counting. Such 

migratory cells are commonly labelled on the membrane with a crystal violet stain (Chien 

et al., 2011; Jones et al., 2012), Trypan Blue dye (Kuo et al., 2010), or hematoxylin (Jee 

et al., 2007; Zhu et al., 2007; Wedel et al., 2011), and quantified manually. Although it 

remains the gold standard, manual cell counting is very time-consuming and may 

introduce experimenter bias, thus increasing the potential for measurement errors (Piuri 

& Scotti, 2004).  

In an effort to increase efficiency and mitigate potential sources of bias/error associated 

with manual cell counting, a number of commercially available software suites provide 

automated cell counting from microscopic images. These software packages enable users 

to collect cell counts from random fields of view within specimens of interest. 

Unfortunately, these software suites contain proprietary algorithms (making them 

inadaptable), are generally expensive, and often require powerful computers, making 

them an unfeasible option for many research laboratories. 

Whole membrane quantification has been accomplished through spectrophotometric 

methods using absorbance microplate readers (Denholm & Stankus, 1995; Mu et al., 

2006; He et al., 2010). These microplate readers are able to detect total stained (if using 

dyes/stains) or fluorescence signal, where output values are a direct indication of total 
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migrated cells. Although absorbance microplate readers allow for an expeditious analysis 

of migration assays, they are costly and do not provide a record of membrane images 

should manual confirmation or further analysis be required. 

In the current study, we sought to develop a feasible, valid, and reliable algorithm 

designed to automate cell counting using stored images from cell migration experiments. 

In an effort to validate our algorithm we: 1) compared automated cell counts with manual 

counts from a blinded experimenter; and 2) determined the effect of objective power 

(2.5, 5, and 10) and increasing the number of cells in images on our algorithm’s 

ability to accurately resolve and quantify cells. 

Results  

Cell-Counting Algorithm 

Matlab software was used to create an algorithm (Appendix A) for counting 4',6-

diamidino-2-phenylindole (DAPI)-stained 4T1 (murine breast cancer) cells from cell 

migration assays. DAPI nucleic stain provided images with high contrast between nuclei 

and background (Figure 1, Panel A). Our algorithm consisted of three main components 

(in order) for automated counting: 

1) Image thresholding: Original images (Figure 1A) were read into the algorithm, and 

through use of the Matlab command graythresh, Otsu’s method for global 

thresholding (Otsu, 1979) was applied for selection of a threshold level used to 

convert the original image into a binary image. Briefly, Otsu’s method segments an 

image by maximizing the separability of the two populations in a histogram. Three 
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conditions must be met in order to maximize use of Otsu’s method: a) minimum 

variability in grey levels of foreground objects, b) minimum variability in background 

grey levels, c) maximum variability between background and foreground objects grey 

levels. These conditions are met by the DAPI-nucleic stained images used in this 

study.  

2) Pixel intensity values greater than threshold level were assigned a value of 1 (white; 

Figure 1, Panel B), and values lower than threshold level were assigned a value of 0 

(black). 

3) Calculating average cell nucleus area: The command regionprops (measures properties 

for image regions) was then used to sequentially (from left to right of image) label each 

object at its centroid (Figure 1, Panel C), and to measure area (pixel2) of each object in 

the binary image. The trimmed mean (command trimmean) of the constructed area array 

was calculated with a chosen percent value of 10%. As such, for a given image, 5% of the 

highest and lowest values from the area cell array were not included in calculation of the 

mean cell nucleus area. Average cell area (mean  S.E.M.) at 2.5, 5, and 10 power 

was 20.9  0.6 pixels2, 62.4  1.1 pixels2, and 256.1  18.9 pixels2, respectively, and was 

independent of total number of seeded cells.  

4) Determining final cell count: Each value in the area cell array was divided by the average 

cell nucleus area and rounded to the nearest integer (using command round). The sum of 

the integers then provided the total number of cells for a given image. Final counts were 

saved as a text file and exported into Microsoft® Excel® software (Version 12.2.8) for 

column statistics and data organization. 
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Figure 1: Flow Chart of Algorithm Processes.  

Panel A: original image (2.5×) read by algorithm; B: post-thresholding using Otsu's 

method for selection of threshold level. C: thresholded image with each object 

numerically labeled. 
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Algorithm Outputs Compared to Manual Counts 

A blinded experimenter conducted manual cell counts using ImageJ software (ImageJ 

1.43u, National Institute of Health, Bethesda, Maryland, USA), which required them to 

manually place a marker on each cell. A total of 47 images from varying fields of view 

within each membrane (for 10,000 and 100,000 total seeded cells) were read in as a series 

of images (.tif series) based on sequential file name order. Using our algorithm, total 

computing time for 47 images was 14.5 seconds, which was 596 times faster than manual 

counting [total manual counting time for 47 images = 8640 seconds (2.4 hours)]. Linear 

correlation between manual and automated cell counts from 47 images images taken 

using 2.5×, 5×, and 10× objectives illustrated near perfect correlation and congruency (r2 

= 0.99, P < 0.0001, Slope = 1.02, Y intercept = 2.2; Figure 2). 
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Figure 2: Manual versus Automated Cell Counts. Linear regression of manual versus 

automated cell counts for 47 images, with a correlation of r2 = 0.99, P < 0.0001. Dotted 

lines represent 95% confidence interval for slope and y-intercept. 
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Algorithm Outputs Compared to Manual Cell Counts Based on Objective Power and 

Total Seeded Cells 

To determine the effect of objective power on the software’s ability to resolve migrated 

cells, a single 2.5 image (centered on the membrane) was captured for experiments that 

used 10,000 and 100,000 seeded cells, followed by images of the same membrane area at 

5, and then 10. Multiple 5 and 10 images were assembled into a photomontage (all 

image resolutions were collected and maintained at 150 dpi) to reconstruct exact 

membrane area covered by the single 2.5 image. At each number of total seeded cells 

(10,000 and 100,000 cells), manual counts (in triplicate) were performed on the single 

2.5 image, 5 photomontage, and the 10 photomontage (Figure 3). It is important to 

note that during cell migration experiments not all seeded cells migrate through the 

membrane, thus cell counts are lower than the total number of seeded cells. 
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Figure 3: Manual versus Automated Cell Counts Based on Objective Power. 

Comparison of manual versus automated cell counts for varying objective power (2.5 ×, 5 

× montages, and 10 × montages) and total seeded cells (10,000 and 100,000 cells). 

Within each group of total seeded cells, RM ANOVA confirmed no significant difference 

between manual and automated counts at all objective powers. 
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Discussion  

In the current study, an automated cell counting algorithm was created to quantify 

resultant migratory 4T1 breast cancer cells in cell migration assays that used 10,000 and 

100,000 total seeded cells. The algorithm was only tested in migration assays conducted 

in modified Boyden chambers using DAPI-stained 4T1 breast cancer cells. For a total of 

47 images, automated cell counts had strong correlation with manual counts (r2 = 0.99, P 

< 0.0001; Figure 2). To highlight the congruency between methods, the y-intercept for 

the linear regression line (Fig. 2) indicated that our automated method overestimated an 

average of only 2 cells under all experimental and imaging conditions. Furthermore, there 

were no differences in cell counts between methods regardless of experimental conditions 

(number of cells seeded) or objective power (Fig. 3).      

Our results support the notion that manual cell counting is time consuming (47 images; 

manual counting time = 2.4 hours versus automated computing time = 14.5 seconds) and 

subject to operator bias (hence our experimenter was blinded). Further, it is difficult to 

reproduce exact measurements using manual methods (hence variability in our manual 

cell counts, Fig. 3), which is likely due to disparate criteria under which manual cell 

counting is performed from image to image. Our automated method processes and counts 

all images using set criteria making it immune to the aforementioned sources of error. 

Upon multiple independent screening of the same 47 images, zero variability was still 

obtained. 

Quantification of migrated cells from cell migration experiments are generally limited to 

objective powers ranging from 5 to 200 (Alge-Priglinger et al., 2009) and thus require 
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3 (Du et al., 2010) to 10 (Kusuma et al., 2012) fields of view in an effort to capture a 

representative sample of the membrane. The consistency in computed cell counts among 

different objective magnifications highlights our algorithm’s ability to accurately resolve 

and count cells even under low magnification; thus enabling the user to analyze larger 

proportions of total membrane surface area in one field of view. This is due to the 

thresholding portion of our algorithm, which optimizes contrast between cell nuclei and 

the image background (Fig. 1).  

Conclusions  

We have successfully developed a feasible algorithm for automated cell counting within 

cell migration assays. Automated cell counts agreed favorably with manual counts for all 

objective powers and for different levels of total seeded cells. As well, in contrast to 

manual counting, our automated algorithm counted cells quickly and independent of bias, 

and presented zero variability for counting cells multiple times within single images. 

Materials and methods 

Cell Culture 

4T1 cells, a gift from Dr. Fred Miller (Wayne State University, Michigan USA), were 

cultivated in high glucose Dulbecco’s Minimal Essential Medium (DMEM) 

supplemented with 10% sterile FBS. Cells were incubated at 37ºC and 5% carbon 

dioxide. At approximately 80% confluency, cells were washed with HBSS and passaged 

using 0.25% trypsin-EDTA treatment for dissociation. 
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Migration Assays 

Migration assays were conducted using a modified Boyden chamber apparatus with a 12-

well plate and cell culture inserts with polyethylene terephthalate membranes (8 μm 

pores, BD Biosciences). 4T1 cells were plated in the upper chamber in serum-free media 

(10,000 and 100,000 cells). Serum-containing media (10% fetal bovine serum) was added 

to the bottom chamber as a chemoattractant. After 24 hours of incubation, non-migrated 

cells were scraped from the top of the membrane with a cotton swab; migrated cells (on 

the bottom of the membrane) were then fixed in methanol and stained with DAPI. The 

mounted on slides, and imaged using fluorescence microscopy at 2.5, 5 and 10 

magnification (Zeiss Axiovert 200, Zeiss Axiocam HRc camera). Image exposure time 

was consistent at each magnification (2.5: 581 ms; 5: 206 ms, 10: 49 ms). 

Image Assembly 

To reproduce single 2.5 fields of view at higher objective powers, photomontages (.tif) 

of overlapping fields of view taken at the 5 and 10 power objectives were assembled in 

Adobe Photoshop CS3 [(version 10.0.1), no changes were made to the original image 

files].  

Statistical Analysis and Data Presentation 

All data are presented as mean  S.D., unless stated otherwise. Statistical analysis was 

performed using Prism Software (version 4, GraphPad Software Inc, La Jolla, CA, USA) 

and differences were accepted as statistically significant when P < 0.05. Manual versus 

automated cell counts for all 47 images (Fig. 2) were plotted using linear regression 
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analysis. To analyze the effects of objective power and manual versus automated counts 

within a given level of seeded cells, a repeated measures analysis of variance (RM 

ANOVA) was conducted (Fig. 3). 
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Appendix D: Cell counting algorithm 

%%Automated Cell Counting Algorithm.  

    %%Created by Baraa Al-Khazraji,  

    %%The Jackson Laboratory, Department of Medical Biophysics, 

Schulich School of Medicine & Dentistry, The University of Western 

Ontario. PROPERTY OF Dr. DWAYNE N. JACKSON, FREE FOR ACADEMIC USE ONLY 

 

close all 

clear all 

clc 

% p = ('/Users/dwaynejackson/Jackson Lab Exp Files renamed for 

matlab/SNAP-0001.tif'); 

% filelist = dir([fileparts(p) filesep 'SNAP-00*.tif']); 

% fileNames = {filelist.name}'; 

%  

% % file = '/Users/dwaynejackson/Desktop/Jackson Lab Exp Files renamed 

for 

% % matlab/SNAP-00*.tif'; 

% I = imread(fileNames{1}); 

% [mrows,ncols] = size(I); 

% totalimages = length(fileNames); 

FoldertoRead = '/Users/dwaynejackson/Desktop/now reading'; 

Pattern_of_files = fullfile(FoldertoRead, '*.tif'); 

tif_Files = dir(Pattern_of_files); 

 

for i = 1:length(tif_Files) 

    baseFileName = tif_Files(i).name; 

    fullFileName = fullfile(FoldertoRead, baseFileName); 

    fprintf(1, 'Now Reading %s\n', fullFileName); 

     

  %%Open individual .tif file for analysis 

    I = imread(fullFileName); 

     

  %%Show current .tif file that is being analyzed 

    figure 

    imshow(I) 

  %%Turn image into a binary image, with a variable threshold value 

    B = im2bw(I,0.32); 

    figure 

    imshow(B) 

  %%Label each object in the binary image 

    bw = bwlabel(B); 

  %%Quantify each labeled object; choosing 'all' means that all 

parameters 

  %%(majoraxislength, perimeter, centroid, etc.) are analyzed 

    measures = regionprops(B, 'all'); 

    numberOfitems = size(measures, 1); 

  %%Label each object in the binary image at its centroid, in the order 

that it is analyzed, and make the font pink, and size 12   

        for k = 1 : numberOfitems % Loop through all items. 

            itemCentroid = measures(k).Centroid; % Get centroid. 

                     % Write item number over item at its centroid. 

            text(itemCentroid(1), itemCentroid(2), num2str(k), 'Color', 

[1 0.3 0.5], 'fontsize',12); 

        end 
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  %%Convert each measurement from regionprops output into cells     

    convertstruct2cell = struct2cell(measures); 

   

  %%Take fluorescent area of each object and convert it to a matrix, 

then 

  %%take the sum of total fluorescent area for each image 

    Area = convertstruct2cell(1,:); 

    Area_array = cell2mat(Area); 

    TotalArea = sum(Area_array(1,:)); 

   

  %%Take the mean of fluorescent area in each image 

    normalmean = mean(Area_array); 

     

  %%Take the mean of fluorescent area in each image, then cleave off 

outliers within 10% of the mean   

    trimmedmean = trimmean(Area_array,10); 

 

  %%Take the Area matrix and divide each value by by the mean 

fluorescent 

  %%area, then round to the nearest integer. Done using normal mean, 

and 

  %%the "trimmedmean" (outliers removed) 

    WholeCells = round(Area_array/normalmean); 

    WholeCellstrimmed = round(Area_array/trimmedmean); 

     

  %%Add up all the integers to calculate total cells in each image   

    TotalWholeCells(i) = sum(WholeCells); 

    TotalWholecellstrimmed(i) = sum(WholeCellstrimmed); 

 

    % NumberofCells_highrange = TotalArea/17; 

    % NumberofCells_lowrange = TotalArea/20; 

    % Averagenumber_fromhighandlowrange(i) = (NumberofCells_highrange + 

NumberofCells_lowrange)/2; 

     

  %%Convert the row to a column (transpose it)   

    Totalwholecells_usingtrimmedmean = TotalWholecellstrimmed'; 

    Totalwholecells_usingnormalmean = TotalWholeCells'; 

        

    % ConvertFileName = char(baseFileName); 

    % FileName = ConvertFileName'; 

    trimmean_mean = trimmedmean'; 

    normal_mean = normalmean'; 

    % Averagenumber_from_highandlowrange = 

Averagenumber_fromhighandlowrange'; 

     

     

  %%Create a dataset of results 

    T1_25000cells_5x = dataset(Totalwholecells_usingtrimmedmean, 

Totalwholecells_usingnormalmean,normal_mean,trimmean_mean); 

     

  %%Export dataset to a text file, and name the text file 

    export(T1_25000cells_5x) 

end 
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