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Abstract 

Climate change has been linked to an increasing frequency of inclement weather and 

winter storms. As such, it is important to understand the effects changing weather 

patterns have on avian species. I investigated the effects of recurrent inclement winter 

weather cues on glucocorticoid hormones and behaviour of a native Canadian songbird, 

white-throated sparrows (Zonotrichia albicollis). I used a hypobaric climatic wind tunnel 

to simulate storms by altering barometric pressure and temperature accordingly, and 

measured behavioural responses, body composition, and baseline corticosterone levels in 

birds exposed, or not exposed, to weekly simulated storms. After environmental 

manipulations, experimental birds had significantly higher fat and lean masses. Baseline 

corticosterone levels decreased over time in both groups, and time spent at food cups 

increased over time in both groups as well. Thus, although manipulations did not have a 

detectable effect on baseline corticosterone, it did affect body composition. This research 

provides novel experimental evidence that birds detect changing weather patterns and 

respond appropriately, and indicates that repeated exposure to inclement weather cues 

directly affects birds’ energy reserves. 

Keywords 

Inclement weather, environmental cues, white-throated sparrow, corticosterone, feeding 

behaviour, stress. 
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1 Literature Review and Introduction 

All plants and animals are subject to seasonal and short-term variations in abiotic 

conditions. Abiotic factors are the non-living components that impact ecosystems, such 

as temperature, precipitation, light and nutrient availability. All species have a specific 

tolerance range and limit to abiotic factors that dictates dispersal and colonization, 

geographic distribution, reproductive success, population dynamics, and overall survival 

(Pidwirny 2006). Species thrive in specific geographic locations due to the surrounding 

abiotic factors, however, species’ abilities to tolerate such factors are now being 

compromised as a result of global change. While species have evolved adaptations to 

cope with inclement conditions, climate change may be pushing some species to their 

tolerance limit with respect to climatic abiotic factors, especially depending on the degree 

of variability of different adaptive traits that currently exist in the population. As climate 

change advances, abiotic factors such as temperature, precipitation, wind and storms are 

being impacted and increasing in severity and frequency (NOAA: NCDC 2015). Species 

must now adapt their tolerance limits in order to thrive in their current geographical 

ranges.  

Changing weather patterns can affect most animals, making it an increasingly important 

topic to study with the onset of climate change altering many abiotic factors. The 

following literature review will revolve around avian species and their responses to 

inclement weather and changing weather patterns. I will discuss the environmental 

factors that change during inclement weather and seasonal shifts, the effects that 

inclement weather has on the physiology, morphology and behaviour of birds, and the 
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mechanisms that drive such changes. I will also discuss the cues used to detect oncoming 

inclement weather in birds. 

1.1 Inclement Weather and Climate Change 

Inclement weather is defined as stormy, severe or tempestuous outdoor conditions. In 

most cases, inclement cloudy, wet weather is associated with a low pressure system, and 

fair weather is accompanied by a high pressure system (Ahrens 2012). During winter, the 

most severe storms are associated with a low pressure system and an accompanying cold 

front. A front is a boundary separating two different air masses; during severe winter 

storms in North America, a cold front typically forces a frigid continental Arctic air mass 

to displace a less cold continental, polar air mass, creating extremely cold temperatures. 

These systems cause changes in the air’s moisture content (relative humidity, dew point), 

shifts in wind speed and direction, decreasing barometric pressure, and significant 

snowfall and resultant ice cover (Ahrens 2012).  

Studies of the effects of inclement weather on wild animals are becoming more 

widespread as climate change occurs and inclement weather becomes more common. 

Weather and climate differ in respect to the time period of reference. Weather refers to 

the current outdoor conditions on a daily scale, and climate refers to the atmospheric 

conditions across a long period of time, usually 30 years. Climate change is typically 

characterized by fluctuating air and ocean temperatures, shifts in average precipitation 

totals and patterns, and more severe weather over an extended period of time 

(Environment Canada 2014). In Canada, increased air temperatures and shifts in 

precipitation patterns have already led to a higher frequency of extreme weather events 

than seen in previous years, including heat waves, heavy precipitation and flooding, a 
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sharp increase in thunderstorms and unstable air, and diminishing ice cover (EC 2014). 

Globally, climate change is affecting natural systems and animal populations through 

changes in global temperatures and annual precipitation levels (Easterling et al. 2000; 

Parmesan & Yohe 2003). Forty-one percent of 1598 species of plants and animals 

sampled have already been affected by an increase in average global temperature by just 

0.6 °C (Parmesan & Yohe 2003). This number of affected species has increased since 

2002, as a further increase of global temperatures rose to 0.99 °C above average in 2013 

(NOAA: NCDC 2015). Since records began in 1880, 2014 was the warmest year ever 

recorded (NOAA: NCDC 2015), even though the central and eastern United States and 

Canada experienced record-breaking low temperatures throughout the past few winter 

seasons. Average global temperatures are expected to increase further in coming decades 

(IPCC 2014), leading to further unanswered fundamental questions as to how species can 

respond to these changes (Sutherland et al. 2013).  

Climate change has also been linked to an increase in the frequency and severity of 

violent, unpredictable storms and other extreme weather events at nearly all latitudes 

(Beniston & Stephenson 2004; Easterling et al. 2014; IPCC 2014), which may be a result 

of an impacted jet stream (Francis & Vavrus 2015). Jet streams are fast moving currents 

of air located between the troposphere and stratosphere that typically flow from west to 

east. They are the result of a combination of the earth’s rotation and solar radiation and 

can supply us with accurate meteorological forecasts depending on their location (Saucier 

2003). Jet stream patterns are now weakening due to a greater proportion of warming 

temperatures at lower latitudes and unequal warming patterns across the globe. This 

increases the likelihood of slower moving, high amplitude jet stream patterns that 



4 

 

 

 

ultimately increases the likelihood and duration of extreme weather events occurring 

(Francis & Vavrus 2015). 

Changes in global climate patterns, including increasing temperature, precipitation, and 

frequency of extreme weather events are having profound effects across several taxa. As 

a result of global change, we are now observing changes in migration and behavioural 

patterns, delays or advances in the onset of life history events, diminishing home ranges, 

and an increase in species extinctions (Walther et al. 2002). In many cases, inclement 

weather alone is directly linked to high mortality incidences among species (Newton 

2007), however, even if inclement weather does not directly cause mortality, it can act 

indirectly by negatively affecting the reproductive success of an entire population 

(Wingfield 1985a), food availability (Boyle, Norris & Guglielmo 2010), and/or suitability 

of habitats, leading to further population declines. The following section describes further 

the effects that climate change and inclement weather have on species, and focuses 

particularly on an unanswered fundamental question in ecology (Sutherland et al. 2013): 

in the face of rapid environmental change, what determines whether species adapt, shift 

their ranges, or go extinct? Although there is a plethora of data showing adaptations 

(Nussey et al. 2005; Bradshaw & Holzapfel 2006; Parmesan 2006), range shifts (Thomas 

& Lennon 1999; Zuckerberg et al. 2011; James & Abbott 2014), and extinctions 

(Easterling et al. 2000; Parmesan 2006; Freeman & Class Freeman 2014), there is limited 

research looking at the mechanisms underlying why or how an adaptation, shift, or 

extinction is occurring. There is an overwhelming number of interactions occurring at 

several levels of an ecosystem which lessen the ability to make accurate, scientific 

predictions. 
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The occurrence of inclement weather is natural and often unavoidable, and can affect 

nearly every animal, either directly or indirectly, by impacting foraging behaviour (Boyle 

et al. 2010; Breuner et al. 2013), migratory movement (Newton 2007; James & Abbott 

2014), territorial defense (Carey & Dawson 1999), mate acquisition (Wingfield 1985a; b; 

Vitousek & Romero 2013), and survival (Romero, Reed & Wingfield 2000; Takagi 2001; 

Walther et al. 2002; Parmesan 2006). Thus, detecting and responding appropriately to 

inclement weather is important to overall fitness and survival for most animals. There are 

a plethora of cues that many animals can use to detect an impending storm, including 

cloud cover, barometric pressure, temperature, wind, infrasound, and precipitation (Carey 

& Dawson 1999; Streby et al. 2015). Different cues emerge depending on the timeline of 

the storm’s arrival. Obvious cues that a storm has already arrived are cloud cover, heavy 

winds, and precipitation. If these three cues were the only cues detected, there would be 

little benefit to the observer, as they typically indicate that a storm is already present and 

there would be little-to-no time to prepare. However, prior to the approach of a winter 

storm, there is also a decrease in barometric pressure and a change in temperature; an 

increase or decrease depending on the season and the geographic location of the storm. 

The most reliable cue used by vertebrates to detect an incoming storm is barometric 

pressure (Breuner et al. 2013; Metcalfe et al. 2013). Prior to an incoming storm, 

barometric pressure can decrease anywhere between 2-12 kPa over just 24 h (Ahrens 

2012).  

1.2 Impacts of inclement weather on birds 

Poor weather conditions can have adverse effects on individual species and also entire 

avian assemblages. Inclement weather may account for several billion mortalities among 
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many different bird species in just the past 100 years (Newton 2007). Storms have direct 

and/or indirect effects on all birds; juvenile and adult, terrestrial and marine, migrating 

and non-migrating, large, small, granivores, insectivores, and frugivores (Newton 2007). 

Almost all documented large-scale bird mortalities, up to several thousand at a time, are a 

result of inclement weather either during migration, shortly after arrival at breeding 

territories, or just prior to departure for their wintering territories (Newton 2007). Many 

of the environmental factors associated with winter storms can pose challenges with 

respect to regulating body temperature, locating food sources, maintaining territories, and 

ultimately survival (Carey & Dawson 1999; Parmesan & Yohe 2003). These conditions 

can create life threatening conditions, and may continue to cause lasting problems that 

persist after the storm. 

1.2.1 Impacts on migration 

Inclement weather can affect the ability of birds to successfully migrate from breeding 

grounds to wintering grounds, and vice versa. There are two main classifications of bird 

migratory strategy: facultative and obligate. Facultative migration is influenced by 

proximal cues, such as a lack of available food or inclement weather, forcing an 

individual to flee their current home to escape poor conditions in the immediate future, 

regardless of season (Gill 2007). Obligate migration is innate and occurs each calendar 

year in the spring and winter (Newton 2012). Severe weather along obligate migratory 

paths can create obstacles for birds, especially those travelling over water with nowhere 

to stop and take shelter. As a result of poor weather conditions, long-distance obligate 

migrants can undertake facultative migrations during or after their current obligate 

migration (Streby et al. 2015). Billions of avian fatalities can be accounted for by 
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inclement weather along the migratory path (Newton 2007). Strong winds and heavy 

precipitation may push obligate migrants off their path, or force them to land, resulting in 

fatal collisions, drowning if over water, or freezing. A comparative study between eastern 

and western migratory North American songbirds showed the former suffered higher 

mortalities when migrating to their wintering destinations (Butler 2000), possibly due to 

the higher-than-average number of storms along the eastern migrants’ path compared to 

those migrating from the west (Butler 2000). Additionally, significant population 

decreases in the abundance of mourning warblers (Oporornis philadelphia), blackpoll 

warblers (Dendroica striata), and rose-breasted grosbeaks (Pheucticus ludovicianus) 

arriving at their wintering grounds was also directly related to a higher frequency of 

severe storms occurring in the Atlantic Ocean and Gulf of Mexico throughout their fall 

migrations (Butler 2000), further supporting the idea that successful migrations are being 

negatively impacted by the increase in frequency and severity of storms. Although there 

is strong evidence supporting this, radar records of migrating birds shows a 50% decrease 

in the number of birds migrating even on clear days (Gill 2007). This decline of 

migrating species, even on clear days, is still likely due to an increase of inclement 

weather prior to the beginning of migration that is impacting the ability of birds to 

successfully migrate. Although severe weather conditions can negatively impact 

populations, certain weather conditions may actually create ideal conditions for some 

migrants. Strong winds, if travelling in the correct direction, may aid migrants by 

allowing them to travel further with less energy use. Soaring or flying along such 

favourable tail winds can increase the travelling speed and also reduce energy 

expenditure (Shamoun-Baranes & van Gasteren 2011), however, if winds become too 
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strong and tempestuous conditions persist, fatal accidents may occur. Storms are 

becoming more frequent and severe, lessening the likelihood of favourable conditions 

aiding migrants along their path. 

1.2.2 Impacts on reproduction 

Reproduction can be delayed or eliminated as a result of inclement weather prior to 

and/or during the breeding season. Reproductive hormone concentrations can be 

decreased or delayed, or total abandonment of the breeding territory may occur as a result 

of poor weather conditions. For example, male song sparrows (Melospiza melodia) in 

New York were found to experience a delay in testicular development and decreased 

levels of circulating testosterone after a particularly harsh winter season and severe early-

spring storms, but no impact on corticosterone levels (Wingfield 1985a). In addition to a 

disruption of the reproductive cycle, these birds also exhibited an increased overall body 

mass and total fat mass compared to the previous spring under “normal” weather 

conditions. Such changes did not impact corticosterone levels, indicating that although 

changes occurred, it was not necessarily considered “stressful” to male song sparrows 

(Wingfield 1985a). The same severe winter also impacted female song sparrows, 

however, the effects differed. Females also experienced a delay in gonadal development, 

however, overall body mass and fat mass decreased and females experienced an increase 

in corticosterone levels (Wingfield 1985b), indicating the severe winter storm was only  

stressful to females. This indicates that depending on the sex, reproduction may be 

influenced differently as a result of inclement weather. An additional study on Puget 

Sound white-crowned sparrows (Zonotrichia leucophrys pugetensis) found inclement 

early spring weather caused a delay in breeding by one month in addition to a delay of 
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increased circulating reproductive hormones (luteinizing hormone and testosterone; 

Wingfield, Moore, & Farner, 1983), further supporting that inclement weather can 

interrupt the reproductive cycle. 

1.2.3 Impacts on rearing young 

Inclement weather can pose several challenges when birds are trying to successfully raise 

nestlings. Nestling survival increases overall fitness and reproductive success of a 

breeding pair, thus inclement weather can directly reduce fitness. Snow cover can create 

obstacles for successfully rearing young by reducing the ability of ground-feeding species 

to collect food for young. Severe winds can create treacherous conditions for parents to 

navigate and locate food sources, and heavy rain can flood areas and destroy nests (Carey 

& Dawson, 1999). In the same study described above (section 1.2.2), song sparrows were 

additionally impacted after an early-summer storm by negatively impacting their ability 

to successfully feed young. A severe storm that depleted their resources was 

accompanied by a significant decline in body composition and an increase in 

corticosterone levels in males (Wingfield 1985a), which was the opposite of the effects 

observed after the severe winter storm. The same storm affected females differently, 

indicating that life cycles can be impacted differently between sexes due to inclement 

weather. In females, corticosterone levels were not impacted from the early-summer 

storm – the opposite effect of males (Wingfield 1985b). This difference was likely 

observed because males were the main provider of food at the time of the early-summer 

storm, as at this stage females feed themselves but not young. In addition to impacting 

sexes differently during the rearing stage, inclement weather can impact individuals 

differently depending on the time of year and reproductive state (Wingfield et al. 1983; 
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Romero et al. 2000; Romero 2002). In the pre-breeding season, inclement weather had no 

effect on glucocorticoid hormone (corticosterone) levels in three Arctic passerines, 

however, once nestlings were present, corticosterone levels increased, possibly 

corresponding to the inability of the parents to properly feed young (Romero et al. 2000). 

Bull-headed shrikes (Lanius bucephalus) showed a positive correlation between nestling 

deaths and total severe precipitation per day (Takagi 2001), indicating further that rearing 

young becomes more difficult under inclement conditions. Thus, once young are in the 

nest, inclement weather appears to induce a stress response and impair reproduction in 

many songbird species. 

1.2.4 Impacts on extinctions 

Species may become extinct if the rate of climate change is greater than that of 

adaptations occurring to cope with changing abiotic conditions. Extinctions are also 

occurring where there is an inability to respond to increasing temperatures via poleward 

or altitudinal range expansions, whether because of physical geographic barriers, 

insufficient habitat, or a lack of mobility among species (Parmesan 2006).The number of 

extinctions stemming from climate change has been increasing at an alarming rate over 

the past 100 years (Easterling et al. 2000). Polar and mountaintop species are being 

affected the most, as species have gone extinct due to shrinking ranges from climate 

change (Parmesan 2006). Species that are more resilient, or more able to successfully 

respond physiologically, behaviourally, or morphologically, to environmental 

perturbations are less likely to be affected by extirpation or extinction (Wingfield 2013). 

However, in some cases extinction may be unavoidable whether a species is resilient or 

not. For example, species that reside on mountaintops will only be able to undergo 
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altitudinal shifts to a certain extent before they reach the summit of the mountaintop and 

have nowhere else to go. The white-winged robin (Penoethello sigillatus), mountain 

gerygone (Gerygone cinerea), crested satinbird (Cnemophilus macgregorii), and crested 

berrypecker (Paramythia montium) have all shifted their mountaintop ranges to the 

highest altitudinal location possible in their home of New Guinea (Freeman & Class 

Freeman 2014). A further rise in average temperature of 1 °C will lead to the extinction 

of all four species, which is predicted to occur within the next 50 years (Taylor et al. 

2014). By 2100, the extinction of these four tropical birds of New Guinea will be 

inevitable, in addition to another 10-15 bird species pushed to extinction atop the same 

New Guinea mountaintops as a direct result of climate change (Taylor et al. 2014). 

Extirpations are now occurring as a result of the El Niño Southern Oscillation (ENSO), 

which are expected to occur more often and with more severe effects in the years to come 

(NOAA: NCDC 2015). El Niño years give rise to changes in the Pacific Ocean 

temperatures, precipitation patterns, and ocean currents. In addition, ENSO also affects 

weather conditions globally at a smaller scale. Warmer waters from the western Pacific 

flow eastward toward Ecuador and Peru during ENSO years, displacing colder waters 

with much warmer water temperatures (Ahrens 2012). These conditions are creating 

cascading effects across the continent that affect several species. Warm waters off the 

coast of Ecuador and Peru create unsuitable conditions for anchovies – the primary food 

source of local seabirds. A decline in seabirds’ primary food source is leading to 

decreased populations, and in some places, local seabird extinctions. Changes in water 

temperature and precipitation patterns in a particularly bad ENSO year resulted in the 

total extinction of all seabirds on Christmas Island in the Pacific (Gill 2007). It is 
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inevitable that inclement weather will occur, whether climate change is advancing or not, 

and will likely cause harm to many species. It is important to note, however, that 

extirpations and extinctions are occurring at a more rapid rate than any other time in 

recent history, and these numbers have been linked to the rise in global temperatures and 

extreme weather patterns (Parmesan & Yohe 2003). 

1.2.5 Impacts on wildlife in general 

In addition to having an impact on avian species, inclement weather can affect nearly all 

wild animals: terrestrial, freshwater, and marine, both directly or indirectly (Walther et al. 

2002; Parmesan 2006). Like birds, many other animals can sense and detect the onset of 

inclement weather through changes in barometric pressure and temperature and attempt 

to respond accordingly (Lederhouse, Codella & Cowell 1987; Heupel, Simpfendorfer & 

Hueter 2003; Pellegrino et al. 2013).  

In a controlled laboratory setting, decreasing barometric pressure affected pheromone 

emission and mating in both true armyworm moth (Pseudaletia unipuncta) and potato 

aphid (Macrosiphum euphorbiae) females (Pellegrino et al. 2013). Inclement weather can 

be a significant source of mortality to small insects, therefore, avoiding certain 

behaviours during poor weather is advantageous. In some anuran species, calling 

behaviour in prolonged breeders ceases due to climactic conditions, i.e., decreasing 

barometric pressure, low temperature, and low relative humidity than compared to short-

breeding species (Oseen & Wassersug 2002). 

In addition to having an impact on terrestrial animals, inclement weather can also affect 

many marine animals, particularly those residing in shallow waters (Heupel et al. 2003; 

Crinall & Hindell 2004). Some Australian fishes move into shallow salt marshes as 
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barometric pressure starts to decline, likely to feed prior to the incoming storm (Crinall & 

Hindell 2004). Prior to severe tropical storms, juvenile blacktip sharks (Carcharhinus 

limbatus) leave the shallow waters of their nursery area into deeper open water (Heupel et 

al. 2003). The retreat to open water occurs as barometric pressure begins to decline to 

abnormally low levels but prior to severe rainfall, changing tidal level or tidal flow, and 

heavy winds, suggesting elasmobranch species can also detect changes in barometric 

pressure and respond accordingly. 

The mortality incidence of black swallowtail butterflies (Papilo polyxenes) are indirectly 

affected by inclement weather, due to an increased likelihood of predation (Lederhouse et 

al. 1987). As noted above, inclement weather increases the need for foraging in 

vertebrates, and butterflies are a source of food among many vertebrates, including birds. 

During inclement weather, mortality rates of black swallowtails increased by 25% due to 

an increased rate of predation (Lederhouse et al. 1987). Thus, evidence shows that 

inclement weather can affect many animals both directly and indirectly. 

1.3 Responses of birds to inclement weather 

With global change contributing to higher frequencies of storms and inclement weather, 

avian species must cope with short-term changes, adapt to such changing environmental 

conditions in both the short- and long-term, or go extinct (Beniston & Stephenson, 2004; 

Newman et al., 2011). Such adaptations to environmental changes are key for positive 

fitness and survival in the face of climate change (Newman et al. 2011). There are several 

different responses among individual species to inclement weather, and further, to 

climate change. The severity and duration of the altered environmental state will likely 

determine which type of response occurs – an adaptation, range shift, or extinction. The 
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probability that birds can cope with an increased frequency of inclement conditions will 

depend on the degree of variability of different adaptive traits that currently exist in the 

population and the degree to which there will be active selection relative to the speed at 

which climate change alters natural conditions. 

Surviving winter months for temperate bird species can become a challenge if 

temperatures drop too low or there is a severe shortage of food. It becomes critical for 

birds to make behavioural, physiological, and morphological adjustments when they 

experience severe winter weather, otherwise they may die. There are two main 

mechanisms by which species can respond to climate change or changing weather 

patterns: adaptive evolution and/or phenotypic plasticity. Adaptive evolution involves 

genetic changes that increase reproductive success and survival in a population and are 

passed onto future generations. Evolutionary adaptations are primarily occurring on the 

interior of species ranges to match those on the exterior or most northern limits 

(Parmesan 2006). Phenotypic plasticity involves the ability of a species to change their 

behaviour, morphology, and/or physiology in response to changing environmental 

conditions (Bradshaw & Holzapfel 2006). Determining whether changes in range and/or 

phenology are attributed to adaptive changes in genetic composition or to phenotypic 

plasticity can be difficult as complete genetic analyses are required for each study. This 

section will look at both mechanisms; however, as phenotypic plasticity is more 

commonly observed, it will receive more focus. 

1.3.1 Genetic adaptations 

Adaptive evolution as a direct result of climate change involves genetic changes via 

natural selection. When rapid changes in climate occurs, populations can experience 
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different selection pressures than previously. If the selection pressure is outside the norm 

of a species, species can persist via evolutionary adaptation, which requires genetic 

variation. Variation can already exist in the population, arrive from another population, or 

arise via mutation. Genetic adaptation may not always be possible if the environment has 

progressed negatively during a short period of time and the rate of evolution may not 

occur fast enough for a population to persist. 

Adaptive evolution has been observed across many bird populations (Bradshaw & 

Holzapfel 2006) including great tits (Parus major). Due to warming temperatures, great 

tits’ main food supply (caterpillars) were emerging earlier in the season than normal, 

resulting in a lack of food once nestlings hatched, and ultimately, contributing to the 

inability of adults to feed their young. As a result of differential lifetime reproductive 

success and variation among alleles, there has been a change in great tits’ egg-laying date 

to a more foraging-rich time, at least in some populations (Nussey et al. 2005).  A change 

in the frequencies of laying dates, which are assumed to be under genetic control, 

occurred as a result of differential reproductive success of birds with different laying 

dates. Also due to changing climactic conditions, resource use is rapidly evolving at 

expanding range margins (Parmesan 2006). Also as a result of differential lifetime 

reproductive success, blackcaps (Sylvia atricapilla) have shifted their range to warmer 

territories where breeding and nesting activities are greater. Blackcaps residing in cooler 

regions have evolved genetic differences compared to those birds who are living in 

warmer climate, including earlier gonadal development, earlier arrival to breeding 

grounds, and larger clutches that maximized their fitness (Bearhop et al. 2005).  
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1.3.2 Phenotypic plasticity 

Phenotypic plasticity involves the alteration of behaviour, morphology, and/or 

physiology within an individual’s lifetime to adjust to recent environmental changes. In 

the presence of more severe winter weather, birds must be able to appropriately respond 

to keep warm and dry for survival. Preparing for the cold winter season involves multiple 

complex processes in birds. There are several avian winter strategies for regulating 

thermogenesis to maintain good overall body condition and regulate internal 

temperatures. During winter, birds are able to increase their external cold resistance 

through acclimatizing (Carey & Dawson 1999). Acclimatized birds are able to maintain a 

stable internal temperature in cold conditions approximately 6-7 hours longer than 

compared to summer months (Carey et al. 1989). This means that wintering birds can 

withstand polar temperatures without needing to expend extra energy for 

thermoregulation. During this time, birds also increase their fat stores and lower their 

metabolic rates (Carey & Dawson 1999). Birds are also plastic in the sense that their 

endocrine systems are impacted differently depending on the time of year, availability of 

food, sex, and reproductive state (Wingfield 1985a; b). 

1.3.2.1 Morphological adjustments 

Morphological adaptations are an important type of phenotypic responses also used to 

regulate body temperature. The most important physical attribute for insulation are a full 

coat of down feathers. Down feathers, which are closest to the skin, are the main 

insulating feathers, however, exterior contour feathers do provide a level of insulation to 

birds as well (Gill 2007). Birds produce an oil from the preen gland which, when applied 

to their feathers via the beak, creates a waterproof coating that is resistant to precipitation. 
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By keeping the skin dry, birds are able to conserve additional energy from having to 

further regulate thermogenesis. Prior to each winter season, birds living in 

temperate/arctic climates enter a molting phase to grow a new batch of feathers to 

enhance performance and thermogenic capacity (Gill 2007). Molting is a period of time 

where birds replace older, tattered feathers with fresh, new feathers. This process takes 

place following breeding and again prior to migration. New feathers are advantageous for 

water repellency, thermoregulation, flight efficiency, and mate acquisition/preference. 

Molting is energetically taxing on birds, as they are shedding all their feathers and using 

most of their available protein and energy to regenerate a complete new set (Gill 2007). 

Mid-molt, when feathers have been shed but not yet regrown, insulation can become an 

issue if temperatures drop to abnormal levels or if species live in Arctic regions. Energy 

must be rerouted to heat production rather than feather regeneration, so molt must be 

timed accordingly (Romero et al. 2000). If this is not an option, molting may have to 

occur in stages, which takes a longer period of time and a higher expenditure of energy. 

The large amount of energy expenditure responsible for molting makes avoiding stressors 

throughout this process, when possible, exceedingly important (de Bruijn & Romero 

2013). A study found that corticosterone, the primary glucocorticoid found in birds, 

increased during molt under cold conditions in three sampled Arctic bird species; 

Lapland longspurs (Calcarius lapponicus), snow buntings (Plectrophenax nivalis), and 

redpolls (Carduelis flammea). All three species had increased levels of corticosterone 

during molt due to frigid temperatures and the high amount of expended energy (Romero 

et al. 2000). Although the timing of molting in temperate birds is now shifting as winter 



18 

 

 

 

and spring seasons are shifting in time, it is still critical for birds to be able to undergo 

morphological adjustments at any time needed. 

1.3.2.2 Physiological adjustments 

Throughout both diurnal and seasonal cycles, birds can fluctuate their body mass 

depending on ambient conditions. Throughout the year, variation of weight occurs 

diurnally in birds. In fall and winter, acquired fat reserves diminish earlier and more 

quickly in the evening than compared to in the spring. This corresponds to photoperiod 

and temperature; as it gets darker and colder earlier, the need for energy increases 

(Lehikoinen 1987). Reserves and energy will continue to deplete until morning when 

foraging and activities can resume.  

Birds residing in cold geographic regions during the winter are fatter than they are during 

summer or autumn. This seasonal variation of weight is referred to as ‘adaptive winter 

fattening’ (King 1972). The need for energy is highest during short-wintering days due to 

temperature and snowfall (Lehikoinen 1987). In most small winter passerines, the fat 

reserves created are only large enough to sustain them for up to two days of no food 

(Carey & Dawson 1999) which is why they are sometimes referred to as emergency fat 

reserves. Creating limited reserves only used in emergencies is likely a result of energy 

conservation. Minimum daily fat reserves are maintained throughout the entire winter 

season and subside slowly as spring and summer approach. An increased rate of foraging, 

and therefore additional fat and energy reserves, has several accompanying potential 

costs, including increased expenditure of energy to forage and search for food, increased 

risk of predation by increased exposure, and more difficulty with flight due to heavier 

masses (Carey & Dawson 1999). Another means of staying warm comes via shivering, 
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which is the primary strategy for regulating temperature in most birds (Marsh & Dawson 

1989). When birds get cold, they tense their muscles and begin to shiver, just as 

mammals do. In birds, shivering occurs through the use of the flight muscles: pectoralis 

and supracoracoideus (Marsh & Dawson 1989). These muscles move back and forth and 

create frictional heat and increase oxygen consumption (Gill 2007). Other strategies birds 

employ to keep warm include huddling together, residing in microclimates that may 

include hiding under dense foliage or in cavities, increasing exposure to incoming solar 

radiation, or, in migrating birds, fleeing the area when possible (Carey & Dawson 1999). 

It is important to note that climates in many regions, including those to which many 

migratory birds move, are being altered as a result of recent climate change. Some 

regions are seeing warmer, wetter climates, while others are seeing abnormally frigid, 

snowy conditions. Temperate North American species will be shifting their physiological 

adjustments to compensate for the severe winter weather seasons now occurring. 

Physiological changes are also required during migration. Prior to beginning migratory 

flight, birds must put on a significant amount of weight, mostly in the form of fat. Some 

birds can nearly double their pre-migratory mass to prepare for their long distance flights 

(Gill 2007). The accumulation of fat reserves, which are stored in adipose tissue, 

muscles, and the body cavity, are used throughout the migratory route so birds can 

continue flying without needing to stop and waste additional energy searching for food. 

Creating fat reserves for migratory paths can also become important if inclement weather 

is experienced along the route and birds are forced to undergo facultative migrations 

along obligate migratory paths. 
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1.3.2.3 Range shifts 

Phenotypic plasticity is exhibited in the ability of some avian species to shift both in 

space (e.g., range) and in time (e.g., earlier migration). Such shifts are made in response 

to fluctuating environmental conditions and survival. Most migrating avian species that 

have been studied to date show advances in their breeding and migration patterns as a 

result of changing environmental conditions (Charmantier & Gienapp 2014). There is 

strong evidence showing northward range shifts of temperate species being directly 

related to rising temperatures (Thomas & Lennon 1999; Walther et al. 2002; Parmesan 

2006; Smith et al. 2012; Taylor et al. 2014). Northward range shifts have been observed 

among several taxa including butterflies, mammals, amphibians, birds, and plants 

(Parmesan 2006). More than half of 1598 total species sampled in one study showed 

northward or altitudinal shifts in their range in the past 30 years (Parmesan & Yohe 

2003). In Britain, the northward range of breeding bird species shifted an average 18.9 

km over a 20 year period (Thomas & Lennon 1999), corresponding directly to the rate of 

increasing temperatures occurring in that region. Taylor et al. (2014) found shifts in the 

hybrid zone between black-capped chickadees (Poecile atricapillus) and Carolina 

chickadees (Poecile carolinensis). Between 2002-2012, this hybrid zone shifted north at a 

rate of 0.97 km/year, which directly corresponds to an increase in winter temperatures in 

the original hybrid zone. While several temperate-zone species are able to expand their 

range and shift northward, some tropical mountainous species are forced to shift their 

ranges to higher elevations. In New Guinea, the annual mean temperature has raised 1 °C 

over the last 50 years. During this time period, 87 bird species shifted their altitudinal 

ranges by an average of 113 m (Freeman & Class Freeman 2014). To a certain extent, 

temperate species are able to shift their ranges northward more easily than mountainous 
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tropical species, assuming these species are not already residing at the poles and 

appropriate habitat is available. As tropical species shift up mountains, there is less 

available habitat, and eventually the summit of the mountain is reached. When compared 

to temperate species, the response of tropical species to increased temperatures are 

stronger and more significant, indicating tropical species may be more profoundly 

affected by climate change (Freeman & Class Freeman 2014). This, however, does not 

reduce the importance of the shifts currently being observed in temperate species. 

1.3.2.4 Phenology shifts 

The timing of seasonal life history events, or phenology, is also shifting among species 

across a global scale (Parmesan & Yohe 2003). Changing environmental cues, such as 

temperature, precipitation and photoperiod are responsible for shifts in phenology. Spring 

warming is now occurring earlier and fall cooling is occurring later (Parmesan 2006). An 

earlier arrival of spring means birds arrive at their breeding grounds sooner than normal, 

singing begins earlier in the season, as well as egg-laying, nesting periods, and fledging 

(Walther et al. 2002). As of 2006, over 800 species had already advanced spring life 

history events, and/or shifted their range (Parmesan 2006), and this number has continued 

to rise within the last decade. The magnitude to which species are affected by earlier-

occurring seasons correlates to the ability of the individual to adapt appropriately to 

changes in life history events (Parmesan 2006). Mexican jays (Aphelocoma wollweberi) 

are laying eggs 10 days earlier across a time span of 26 years. These data correspond 

again with increases in average temperatures in the egg-laying range (Brown, Li & 

Bhagabati 1999). Earlier seasons are also causing some species to advance the onset of 

migration and breeding by an average of 2.3 days per decade (Parmesan & Yohe 2003). 



22 

 

 

 

Crick et al. (1997) found mean egg-laying dates of 20 temperate bird species advanced 

by an average 8.8 days over 24 years. Thus, changes in weather as a result of global 

change have already caused several shifts in phenology to occur across many avian 

species. 

1.3.2.5 Maladaptive responses 

Species may also respond maladaptively to climate change. This means phenotypic 

plasticity can occur in response to one changing variable, for example declining 

temperature. Such an adaptation, however, could result in a negative outcome with 

respect to another variable, for example successful migration. In blackcaps, responses to 

earlier hatching dates are maladaptive under global warming conditions, as an earlier 

hatching date significantly prolonged the duration of molt and advanced autumn 

migration (Coppack et al. 2001). Earlier autumn migration in this species is leading to 

premature deaths, and the extended molting process is exhausting energy and nutritious 

reserves. Maladaptive adaptations support the idea that even though populations are 

present, there are indicators that such populations are stressed and may not persist 

indefinitely. 

1.4 Inclement weather and stress 

Drastic changes in environmental surroundings can be a source of stress to birds. 

Although definitions of stressors are often vague, one common definition of a stressor is 

anything that is perceived as a threat to the well-being or survival of an organism 

(Wingfield & Ramenofsky 1997). However, extreme conditions may not necessarily act 

as stressors if they are predictable.  Many species are able to prepare for extreme 
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conditions if there are cues that reliably predict such conditions. A single storm may act 

as an acute stressor to birds, however, an increased frequency of storms may act 

cumulatively as a chronic stressor and induce a longer-term endocrine stress response. 

Prior work has shown that frequent, repeated acute stressors can cumulatively create a 

condition of chronic stress (Busch et al. 2008). Thus, more frequent recurrences of 

inclement weather have the potential to act as a chronic stressor, impacting the 

individual’s overall health and fitness. 

Stressors typically involve conditions that are unpredictable in time and/or space 

(Wingfield & Ramenofsky 1997). For example, birds may prepare for extreme winter 

weather in response to changes in photoperiod, but rapid, short term fluctuations such as 

storms are less predictable and may act as a stressor. Even a short-term change in air 

temperature of just 3 °C in European starlings (Sturnus vulgaris) was a significant 

enough change to act as a stressor and cause an increase in heart rate, corticosterone 

levels, and perch hopping behaviour (de Bruijn & Romero 2011). 

1.4.1 HPA Axis 

With seasonal changes and fluctuations in weather conditions, birds are often exposed to 

different stressors.  When birds encounter a stressor, such as abnormal fluctuations in 

temperature or precipitation, or an increased abundance or severity of inclement weather 

conditions, both physiological and behavioural responses are activated. Varying hormone 

levels play a large role in the ability of species to modify behaviour and physiology in 

response to changes in climate, or environmental conditions. Hormones also play a large 

role in seasonal changes in birds, including molting, migration and breeding (Wingfield, 

O’Reilly & Astheimer 1995). Glucocorticoids are mainly responsible for the overall 
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condition or health of individuals. The primary glucocorticoid found in birds is 

corticosterone (Holmes & Phillips, 1976). Typically, glucocorticoid levels represent a 

scale or index of stress, in addition to a reliable measure of overall health as a result of 

changing environmental conditions. Exposure to stressors activate the avian stress 

response; a cascade of responses via the hypothalamic-pituitary-adrenal (HPA) axis 

(Rivier & Vale 1983). First, the stressor must be perceived and processed by the 

hippocampus, amygdala, and the hypothalamus. This recognition stimulates the 

paraventricular nucleus (PVN) of the hypothalamus to secrete corticotropin releasing 

hormone (CRH). CRH is detected by the anterior pituitary, and stimulates release of 

adrenocorticotropin releasing hormone (ACTH) which in turn stimulates the adrenal 

cortex to release corticosterone (Holmes & Phillips, 1976). The secretion of 

corticosterone stimulates two negative feedback loops to the anterior pituitary and the 

hypothalamus. The HPA axis can take just minutes to activate (Rivier & Vale 1983), 

depending on the severity of the stressor, and will retreat when the stressor is no longer 

present.  

Elevated corticosterone has a variety of physiological and behavioural effects that allow 

the organism to cope with a stressor; generally resources are diverted from growth and 

maintenance to facilitate short-term survival. Corticosterone levels can rise within 

minutes of exposure to a stressor, such as unsuccessful foraging, defending a territory, the 

presence of intruders, fleeing from a predator, or inclement weather conditions (Rivier & 

Vale 1983; Romero et al. 2000). Corticosterone levels can fluctuate depending on the age 

and sex of the species, the severity of the stressor, and the time of year (Wingfield et al. 

1983; Wingfield 1985a; b; Romero et al. 2000). In white-crowned sparrows, 
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corticosterone levels rose in response to storms when adults were feeding young, but not 

after the young had fledged the nest (Wingfield et al. 1983). Increases in corticosterone 

during feeding periods also led to an increase in the amount of abandoned nests during 

this time (Wingfield et al. 1983). As noted above (section 1.4), even a short-term change 

of 3 °C activated the HPA axis in European starlings (Sturnus vulgaris). This slight 

change in temperature caused an increase in heart rate, corticosterone levels, and perch 

hopping behaviour (de Bruijn & Romero 2011). As higher frequencies of storms are 

causing increased baseline corticosterone levels, further studies must be conducted to 

determine whether higher baseline stress levels will also weaken immunity, cause organ 

failure, or lead to premature death, in addition to documenting changes in glucocorticoids 

over time. 

1.5 Predicting inclement weather and the cues used 

As extreme weather can pose several challenges to birds, it is important that birds are 

able to detect the onset of storms in order to properly prepare themselves. Birds can 

visually detect cloud cover and precipitation (Carey & Dawson 1999), however, once 

these cues are detected, the storm is likely already present in the area, allowing limited 

time, if any, to prepare. As discussed previously, a reliable cue that a winter storm is 

approaching is a steady decline in both temperature and barometric pressure. Birds can 

predict and respond to oncoming inclement weather by detecting changes in barometric 

pressure and temperature (Breuner et al. 2013; Metcalfe et al. 2013) and respond 

accordingly. The mechanism surrounding how birds can detect oncoming storms through 

declines in barometric pressure, however, still remains unknown. It is suggested that the 

paratympanic organ (PTO), a sensory organ in the middle ear, likely plays a role (Breuner 
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et al. 2013; Metcalfe et al. 2013). The PTO was discovered over 100 years ago in birds 

(Vitali 1911), but its function and origin are still largely unknown. Further study of the 

paratympanic organ is required to determine if it is responsible for the detection of 

fluctuating barometric pressure, and if so, how. It has recently been suggested that birds 

may also have the ability to detect infrasound from storms (Streby et al. 2015), however, 

there is not strong enough support in the literature to support this. 

Among birds, a main driver in responding to decreasing barometric pressure, and thus a 

storm, is the availability of food for survival (Breuner & Hahn 2003; Boyle et al. 2010). 

A study of white-ruffed manakins (Corapipo altera) showed that birds residing in higher 

elevations were more likely to migrate down the mountain when exposed to declining 

pressure, as the availability or accessibility of food is greater and more predictable at 

lower levels. Birds of the same species that resided further down the mountain were 

seemingly unaffected by approaching storms, since food abundance is plentiful in their 

home ranges (Boyle et al. 2010). Also as a response to decreasing barometric pressure, 

captive sparrow species increased their overall feeding and decreased their feeding 

latency (Breuner et al. 2013; Metcalfe et al. 2013). Sparrows are typically ground-

feeding species, so storms, particularly those with significant precipitation, can deplete 

food sources leading to an increase in feeding prior to storms. Birds can be impacted 

differently depending on their geographic location and their foraging abilities, but storms 

can have negative impacts on all birds, making it essential for them to be able to 

accurately detect the onset of inclement weather. 
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1.6 New methods for an emerging field 

As the presence of climate change and the new realm of extreme weather is being 

observed across the globe, novel experiments are required to understand how species are 

responding at many different levels. Several studies have looked at the effects that natural 

storms have on many species (Wingfield 1985a; Romero et al. 2000; Heupel et al. 2003), 

however, there have been limited experiments among birds that have directly 

manipulated barometric pressure and temperature in a controlled setting to recreate 

natural storm conditions. Manipulation studies in controlled settings allow for further 

insight into how species respond to storms, as the researchers are in control of changing 

environmental conditions and are able to keep track of all subjects, which is a highly 

unlikely scenario in the field. Such studies have only emerged from 2013 onward, but 

advancing technologies offer the likelihood of an increase among controlled manipulation 

studies. For example, Breuner et al. (2013) manipulated barometric pressure among 

captive white-crowned sparrows to identify the effects it had on physiology and 

behaviour over a short-term period. Within these two subsets, they looked specifically at 

activity, food intake, metabolic rates and corticosterone levels. As barometric pressure 

was experimentally decreased, there was no effect on metabolic rate or in the level of 

steroid stress hormones, however, there was an increase in feeding behaviour and overall 

activity. The presence of low pressure systems typically brings precipitation and since 

these birds are ground feeding species, the probability of unpredictable foraging 

conditions are increased. Increased feeding prior to storms further supports that birds are 

able to detect changes in barometric pressure (Breuner et al. 2013). A second study that 

looked at white-throated sparrows (Zonotrichia albicollis) had similar findings (Metcalfe 
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et al. 2013). Experimentally decreasing barometric pressure led to a decrease in feeding 

latency, however, this experiment was also a short-term manipulation only lasting 2 

weeks. Regardless, this study presents further evidence supporting the ability of birds to 

detect and respond to incoming low pressure systems. Similar to white-crowned 

sparrows, white-throated sparrows are also ground-feeding birds affected by precipitation 

during inclement weather. 

Prior research has focused on how birds cope with cold winter weather (Lehikoinen 

1987; Carey & Dawson, 1999) and their ability to predict oncoming inclement weather 

(Breuner et al. 2013; Metcalfe et al. 2013), but little to no research has expanded upon 

how birds respond, both physiologically and behaviourally, to higher frequencies of 

recurrent inclement winter storms over a long-term period. Of the limited short-term 

manipulation experiments described previously, none have looked at the long-term 

effects that continuous inclement weather cues have on physiological or behavioural 

responses. Previous studies have focused on a drastic decline in barometric pressure 

which occurred between 30 minutes to 3 hours, and both studies spanned a short-term 

timeline. Although these novel studies supported the ability of birds to respond directly to 

changing barometric pressure, further long-term manipulation studies of inclement 

weather are important as climate change is advancing and the frequency and severity of 

storms is increasing (IPCC 2014; NOAA: NCDC 2015). Such studies will add to global 

change datasets and contribute to future conservation and management strategies. In 

order to create and implement such strategies, we must first understand the mechanisms 

behind how species are coping and, ultimately, responding to changing weather 
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conditions. This will require data from several layers of interactions among species, as 

the complexity of relationships and interactions is highly intertwined. 

1.7 Objective, hypotheses, and predictions 

Recent experimental work has shown that birds do respond to changes in barometric 

pressure, however, these birds have only been tested under one exposure of the condition. 

Under natural conditions, animals are subjected to repeated exposure of inclement events 

throughout the season, which is why I chose to subject birds to repeated manipulations to 

test how they responded to sequential events. The main objective of my thesis was to 

determine how birds respond to an increased frequency of simulated winter weather cues 

with respect to physiology and behaviour in a controlled setting. In particular, I looked at 

changes in body composition (overall mass, fat mass, lean mass) and baseline 

glucocorticoid (corticosterone) levels, and I measured overall movement and feeding 

duration during simulated storms compared with those birds that were not undergoing 

additional simulated storms. By simulating repeated exposure to inclement winter 

weather cues, it provides insight from a more realistic ecological perspective and is of 

importance for understanding how increases in inclement weather may affect species. 

I hypothesized that an increased frequency of recurrent inclement weather cues should act 

as a cumulative chronic stressor for birds, resulting in physiological and behavioural 

stress responses. When birds perceive and process a stressor, the HPA axis is activated, 

which increases the production of corticosterone. Inclement weather can act as an acute 

stressor, but I predict that recurrent inclement weather cues over a long-term period 

would no longer act as just an acute stressor, but act as a chronic stressor on birds. As a 
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result, I predicted that birds exposed to additional inclement weather cues would exhibit 

increased levels of baseline corticosterone levels. 

I also hypothesized that birds would respond to recurrent inclement weather cues by 

altering their overall body composition and increase their fat composition and overall 

body mass. When an impending storm is perceived, birds respond accordingly in an 

attempt to successfully survive throughout the duration of inclement weather. Inclement 

weather can create an unpredictable food supply, which emphasizes the importance of 

foraging prior to the onset of the storm (Carey & Dawson 1999). In winter, birds create 

additional fat reserves as an emergency response system. Storms can deplete food 

resources and create unpredictable foraging conditions, so by creating additional fat 

reserves, birds are able to ensure energy sources over the next few days. 

Finally, I predicted that birds would increase their overall feeding duration as they were 

exposed to additional inclement winter weather cues. This prediction ties in with the 

previous prediction of creating additional fat stores. As birds sense declining barometric 

pressure and temperature, they should be spending more time feeding to obtain additional 

reserves.  
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2 Materials and Methods 

2.1 Study species 

White-throated sparrows are an excellent species with which to study responses to 

inclement weather cues in captivity, as they experience both winter and spring storms in 

their natural habitats and home ranges. White-throated sparrows spend their summers in 

the Canadian boreal woodlands, stretching from the west coast to the east coast (Sauer et 

al., 2014). They winter throughout the eastern United States, from southern Ontario to the 

Gulf of Mexico (Figure 1) (Falls & Kopachena, 2010; Sauer et al., 2014). As predicted 

by the general increased frequency of storms as a result of climate change, the wintering 

and spring range of this species is also undergoing a change in the weather patterns it 

experiences. For example, an abnormal winter storm occurred in Atlanta, Georgia during 

the 2014 winter season, which is an area with a highly concentrated population of white-

throated sparrows. Over 2 inches of snow fell in a 24 h period, while the average annual 

snowfall is only 2.1 inches (NOAA 2015). In addition to commonly experiencing winter 

storms, white-throated sparrows also adapt particularly well to captive settings and are 

thus well suited for experimental studies (Falls & Kopachena, 2010). 
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a)                                         b) 

 

Figure 1: a) The summer breeding grounds of white-throated sparrows in North 

America from Breeding Bird Survey (BBS) data. b) The wintering grounds of white-

throated sparrows in North America from Christmas Bird Count (CBC) data 

(Sauer et al., 2014). 
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I caught 24 white-throated sparrows during their fall migration using mist nets and seed-

baited Potter traps at the experimental field site of Western University in October 2013. 

Both traps and nets were checked every 30 minutes between 7:30 a.m. and 10:00 a.m., as 

the highest amount of activity is observed just after dawn.  

Birds were brought to the Advanced Facility for Avian Research at the University of 

Western Ontario and housed in individual cages (13” X 14.5” X 15”) at 11 °C and 

provided an ad libitum source of a 50:50 mixture of ground Mazuri Small Bird 

Maintenance Diet (catalogue number 56A6, Brentwood, MO, U.S.A.) and premium 

budgie seed. Upon capture, birds were banded and weighed. Unfortunately, clear 

identification of morph or age of each bird was not possible as visual identification is 

difficult when birds are in winter plumage. White-throated sparrows have two different 

morphs within the same species: white-striped or tan-striped (Lowther, 1961). These 

morphs exhibit negative assortative mating, with over 90% of the time, white-striped 

individuals of both sexes mating with tan-striped individuals of both sexes (Falls & 

Kopachena, 2010). In addition to the median crown being a different colour, differences 

have also been observed in size and behaviour of each morph. White-striped birds are 

typically more aggressive than tan-striped birds, in addition to being about 2-3% larger 

(Falls & Kopachena, 2010). Tan-striped birds also exhibit more parental care compared 

to white-striped morphs (Tuttle 1990). Unfortunately, clear identification of white-striped 

and tan-striped morphs is difficult when birds are in basic (winter) plumage, and I could 

not identify morph with certainty. Similarly, identifying the age of birds as being hatch-

year birds (birds born in 2013) or older was not certain based on plumage. Because I 

could not identify morph and age with certainty, I recorded each bird’s mass and wing 
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length upon capture and assigned birds to treatment groups (see section 2.2 below) 

pseudorandomly to counterbalance by size and plumage characteristics. Sex was 

determined genetically using a small blood sample collected from each bird. Further 

protocol on genetic sexing can be found in section 2.2.5. 

The birds’ cages were kept on racks within an environmental chamber at 11 °C and under 

daylight settings matching that of the natural sunrise/sunset schedule outside. The 

photoperiod was adjusted once per week to reflect outdoor conditions so birds would 

enter wintering conditions. After being held in captivity for approximately 14 weeks, 

birds were randomly separated into experimental and control groups of 12 birds each. 

Each group was housed in a separate environmental chamber, with each bird still held in 

their own individual cage. Throughout the duration of the time spent in captivity, all birds 

were held at a constant 11 °C under ambient barometric pressure and kept under a short-

winter photoperiod (~10L:14D) reflecting natural outdoor conditions. Across their 

wintering grounds in the eastern United States, 11 °C is a realistic average temperature 

during the wintering months for white-throated sparrows (NOAA, 2015), however, this 

temperature can fluctuate widely depending on storm systems passing through the region.  

2.2 Experimental design 

All birds were given the same amount of food each day throughout the duration of the 

experiment. Prior to the beginning of manipulations, the minimum required food for a 24 

h period was measured. Birds ingested, on average, 6 g of premium finch seed and 

Mazuri over 24 hours, so a fixed allotment of 8 g was given to each bird per day. This 

was done so that birds had sufficient food to not be food restricted, but so that they would 

not perceive food availability to be unnaturally unlimited.  
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I assigned birds to two groups (experimental and control) counterbalanced based on wing 

length and plumage characteristics in an attempt to have age class, morph, and sex evenly 

distributed between groups.   

2.2.1 Experimental Birds 

Over a 9-week period beginning in January 2014 at the Advanced Facility for Avian 

Research, inclement winter weather cues were simulated once per week using a 

hypobaric climatic wind tunnel. The hypobaric climatic wind tunnel allows for 

manipulations of temperature, barometric pressure, humidity, and wind. The tunnel can 

control temperature values between -15 °C and 30 °C and barometric air pressure from 

ambient (average ~101 kPa) down to ~37 kPa (equivalent to ~7000 m in altitude). By 

combining specific values of temperature, barometric pressure, humidity, and wind we 

are able to recreate a typical low pressure system accompanied by a cold front, which 

usually represents the most severe winter storms (Ahrens, 2012). 

Once per week for 9 weeks I subjected experimental birds to a simulated storm (a low 

pressure system with an associated cold front). All 12 experimental birds were transferred 

from their home environmental chamber into the wind tunnel plenum in their individual 

cages for a 24 h period. Prior to bringing birds in, the conditions in the tunnel were 

replicated to match those of their environmental chamber, i.e. 11 °C, ambient barometric 

pressure, and ~60 % humidity. Throughout the 24 hour period of being in the tunnel, 

birds would experience a decrease in temperature from 11 °C to 1 °C and a decrease in 

barometric pressure from ambient to 96.19 kPa at constant relative humidity. These 

manipulations were meant to simulate inclement winter weather passing through the 

region. The environmental changes occurred over a rapid yet realistic time frame that a 
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severe winter storm would occur on their wintering grounds (NOAA: NCDC 2015). On 

average, the air temperature declined at a rate of 1.9 °C per hour for approximately 6 

hours until values declined from 11 °C to 1 °C. The temperature was held around 1 °C for 

approximately 14 hours, at which time temperature values increased at approximately 3 

°C per hour until the holding temperature of 11 °C was reached. Barometric pressure 

declined at a continuous rate of approximately 1 kPa per hour, however, the duration of 

the decline depended on the ambient barometric pressure conditions in London, ON at 

that time. If London, ON was dominated by a high pressure system on the day of 

experiments, then barometric pressure would take longer to decline than on days which 

the study site was dominated already by a low pressure system. The same holds true for 

the total time it took to return to ambient barometric pressure – the dominating ambient 

pressure system determined how many hours it took to resume ambient conditions. After 

the 24 hour experimental period, conditions returned to 11 °C and ambient barometric 

pressure, birds were transferred back to their home environmental chambers and 

remained undisturbed for the remainder of the day. Figure 2 shows the environmental 

manipulations that occurred across the experimental timeframe between January and 

March 2014. 

  



37 

 

 

 

 

Figure 2: Barometric pressure experienced by experimental white-throated 

sparrows across 9 weeks. The black line indicates ambient barometric pressure 

conditions experienced by control birds throughout the experiment and 

experimental birds when they were not in the wind tunnel. The red line depicts the 

manipulated barometric pressure values experienced by experimental birds across 

time. 
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2.2.2 Control Birds 

Control birds were held in identical environmental conditions throughout the duration of 

the experiment of 11 °C, ambient barometric pressure, ~60% humidity, and on short-

wintering days matching natural outdoor photoperiods. To eliminate any differences in 

stress between the two groups due to changing physical surroundings, control birds were 

also transferred to the hypobaric climatic wind tunnel once per week for a 24 h period 

over the 10 week duration. Once in the tunnel, the birds were held at the control 

temperature of 11 °C and under ambient barometric pressure. After 24 h, birds were 

brought back to their environmental chambers and left alone for the remainder of the day. 

2.2.3 Body Composition 

The body composition of each bird was measured using Quantitative Magnetic 

Resonance (QMR) scans. QMR scans are a painless, noninvasive way to obtain fat mass, 

lean mass, and total body water in about 3 minutes. Every second week, each bird was 

weighed and immediately placed in a small plastic tube and inserted into the QMR 

instrument. The instrument uses nuclear magnetic resonance relaxometry in different 

tissues to determine the spin relaxation rates. Lean tissue has the largest spin relaxation 

rate, followed by water, fat, and free water (Mcguire & Guglielmo 2010). Calibration of 

the instrument occurred each day of scans using 5 and 94 g standards of canola oil to 

ensure accurate readings to the nearest 0.001 g (Gerson & Guglielmo 2011; Guglielmo et 

al. 2011). After the scan was completed approximately 150 seconds later, the bird would 

be released back into its individual cage.  
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2.2.4 Baseline corticosterone  

To quantify chronic stress, I measured baseline corticosterone levels in blood samples 

taken from each bird every other week. Baseline corticosterone levels reflect the relative 

condition or health of an individual over an extended period of time and increase when 

vertebrate animals are exposed to cumulative stressors (e.g., recurrent unpredictable 

environmental perturbations) over a long-term period (Bonier et al. 2009). On weeks 

where blood samples were taken, they were collected 5-6 days (depending on the group) 

after birds returned to their home chambers to allow birds to recover from the potential 

acute stress of being transported to and from the wind tunnel. To decrease handling 

stress, birds that underwent QMR scans one week did not have blood samples taken the 

same week, and vice versa, as shown in Figure 3. Of the 12 birds in each group, 6 would 

undergo a QMR scan and the remaining 6 would get a blood sample taken, alternating 

each week. This ensured that each individual was only subject to one blood sample every 

other week to reduce the likelihood of baseline levels increasing as a result of continuous 

handling or numerous blood sample collections. Bi-weekly sampling was chosen to 

capture variation in corticosterone over the course of the experiment while minimizing 

handling stress. 

Blood samples were obtained within 3 minutes of entering each environmental chamber 

to ensure that corticosterone was at baseline levels (Romero & Romero 2002). Blood was 

taken directly from the alar vein found along the wing. Once feathers were removed to 

reveal the vein, the alar vein was punctured with a 26-gauge needle and approximately 10 

µL of blood was collected in heparinized microhematocrit tubes. Bleeding was stopped 

by applying pressure to the alar vein with a small cotton ball and birds were released back 
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into their cages once bleeding stopped. Blood samples were immediately put on ice and 

within 30 minutes of collection were spun down for approximately 10 minutes using an 

IEC Micro-MB centrifuge to separate red blood cells from plasma. Hematocrit 

percentage was recorded, and plasma was immediately removed from red blood cells. 

Plasma samples were put into a -30 °C freezer for storage until all samples were obtained 

over the 9 week experiment. Upon collection of all blood samples, radioimmunoassays 

(RIA) were run to obtain baseline corticosterone levels. 

Corticosterone was quantified from obtained plasma using a 125I radioimmunoassay that 

has been previously validated for songbirds (Newman et al. 2008) and has been used in 

white-throated sparrows (Metcalfe, unpublished). Radioimmunoassays measure hormone 

(antigen) levels in plasma by use of antibodies. Plasma was diluted with steroid diluents 

at a 1:50 ratio and samples were analyzed by adding 50 µL of diluted plasma to each 

tube. A known quantity of antigen was made radioactive with 125I. The radioactive 

antigen was then mixed with a known antibody for that antigen and they bind together. 

My plasma samples were added and competed to bind with the same antibody. The 

higher concentration of the sample increases the binding affinity to the antibody and 

displaces the radioactive antigen. The intra-assay coefficient of variation was 8.6% for a 

low control and 3.3% for a high control.  
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Figure 3: A timeline depicting 1 week of methodology in a) experimental and b) 

control groups. On day 1, half of each group had a blood sample drawn, while the 

remaining half underwent a Quantitative Magnetic Resonance (QMR) scan. The 

following week, the roles were switched so each bird did not undergo a blood sample 

and QMR in the same week. Each cycle was repeated 9 times for a total of 9 weeks. 
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2.2.5 DNA extraction and genetic sexing 

Each bird was sexed genetically by using a small blood sample obtained at the same time 

that baseline corticosterone samples were collected from the alar vein. Once collected, a 

drop of blood was blotted onto a small square of filter paper and left to dry. DNA was 

extracted using an ammonium-based protocol to salt out proteins, modified from Laitinen 

et al. (1994). The DNA concentration was quantified using a NanoDrop 2000 

Spectrophotometer (Thermo Scientific) and diluted with TE to make a stock usable in 

subsequent polymerase chain reactions (PCR). 

The DNA sexing technique targets the chromobox-helicase-DNA-binding gene (CHD-

W), the only W chromosome found in birds. The W sex chromosome occurs in females 

(ZW) but not in males (ZZ), therefore detection of the W chromosome will determine the 

sex of the individual. I used primers P2 and P8 to amplify portions of the CHD-W gene 

and CHD-Z gene (Griffiths et al. 1998). The gel electrophoresis showed either one band 

for males or two bands in females.  

2.2.6 Behavioural analysis 

Behaviour was recorded during the time birds were in the wind tunnel, but not during the 

other 6 days per week they were in their home environmental chambers. To quantify 

feeding behaviour, Noldus EthoVision XT cameras and software were installed in the 

wind tunnel plenum. A total of 4 cameras were set up to record the movement and 

behaviour of 8 of the 12 total birds per group. Cameras recorded the overall movement 

and the number of approaches made to the food cup during daylight hours (12PM to 

5PM; 7AM to 12PM). Each of the 8 birds being analyzed were identified by the software 

by using the grey-scale technique. Grey-scaling tracks the darkest image in the frame and 
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is able to record the overall movement and document the number of approaches to the 

food cup. The software also records the duration of time that each bird spent in its food 

cup. I used the software to extract the following variables: distance moved over time and 

feeding duration. Behavioural analyses did not begin until week 5 of the experiment. 

Unfortunately, the installation of the Noldus software was untimely for the beginning of 

my experiment. Due to additional unforeseen technical difficulties in week 6, control 

birds were placed in the wind tunnel on day 2 and experimental birds entered on day 3 

(opposite shifts occurred, see Figure 3). Behavioural analyses were not able to take place 

on week 6 for control birds but experimental birds were still recorded in week 6. I was 

still able to collect behavioural data for all experimental birds week 5 to 9, and for control 

every week omitting week 6. This is still enough data to observe changes in behaviour, 

although it would have been ideal to observe the entire 10 week duration. 

2.2.7 Statistical analysis 

Data were analyzed using IBM SPSS Version 22. The effects that recurrent inclement 

winter weather cues had on baseline corticosterone concentration, body composition, 

time at the food cup, and overall activity levels were all examined using linear mixed 

models.  Time, group, and their interaction were entered as fixed effects for all models. 

Individual bird ID was entered as a random effect, although once determined that 

individual bird ID did not have a significant interaction, random effects were omitted 

from models. Age and morph were omitted from models as visual observation from 

feathers were not reliable outside of the breeding season. Sex was omitted as only 2 

individuals were female in the entire sample size (n=24).  
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3 Results 

White-throated sparrows were either exposed, or not exposed, to changes in 

environmental conditions, including temperature and barometric pressure. After 

environmental manipulations, experimental birds had a significantly higher fat mass, lean 

mass, and overall mass. Baseline corticosterone levels decreased in time across groups, 

and feeding duration increased over time among both groups as well. 

3.1 Body composition 

Over the 10 week experiment, body composition was significantly altered between 

control and experimental groups. Individuals exposed to repeated storms had a significant 

increase in overall body mass compared with control (Figure 4; F1,80 = 8.911, p = 0.004). 

The increase in overall body mass is attributed to an increase in fat mass (Figure 5; F1,80 = 

4.597, p = 0.035) compared to control at the end of the treatment, with no main effect of 

time (F7,80 = 1.231, p = 0.296), and an increase in total lean mass (Figure 6; F1,80 = 5.89, p 

= 0.017), with no difference across time (F7,80 = 1.164, p = 0.333). Thus, simulating 

recurrent inclement winter weather cues caused a change in body composition, including 

increased fat mass, lean mass, and overall mass values. 

3.2 Baseline corticosterone 

There was a significant decline in baseline corticosterone concentrations across weeks, 

however, there was no significant difference between groups. Baseline corticosterone 

significantly declined over time (F1,79.922 = 7.510, p = 0.008), however, no differences in 

baseline levels were observed between groups (Figure 7; F1,95.671 = 0.848, p = 0.360).  



45 

 

 

 

3.3 Behavior 

3.3.1 Time spent feeding 

The time spent feeding significantly increased over time (F4,63 = 8.455, p < 000), 

however, was not affected by treatment (F1,63 = 0.007, p = 0.934). Thus, the total feeding 

duration increased across time (Figure 8). 

3.3.2 Distance moved 

The overall distance moved was not different between groups or across time (Figure 9). 

There were no significant effects of total distance moved with respect to time (F4,64 = 

1.237, p = 0.304), group (F1,64 = 0.002, p = 0.968), or their interaction (F2,64 = 0.184, p = 

0.833). Thus, total distance moved was not affected by changes in barometric pressure or 

temperature. 
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Figure 4: Mean overall body mass of white-throated sparrows exposed, or not 

exposed, to weekly simulated winter storms. Points indicate weekly means and error 

bars represent 1 SE of the mean. The asterisk indicates a significant difference 

between groups (p=0.004). 
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Figure 5: Mean fat mass of white-throated sparrows exposed, or not exposed, to 

weekly simulated winter storms. Points indicate weekly means and error bars 

represent 1 SE of the mean. The asterisk indicates a significant difference between 

groups (p=0.035). 
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Figure 6: Mean lean mass of white-throated sparrows exposed, or not exposed, to 

weekly simulated winter storms. Points indicate weekly means and error bars 

represent 1 SE of the mean. The asterisk indicates a significant difference between 

groups (p=0.017). 

 

  



49 

 

 

 

 

Figure 7: Baseline plasma corticosterone concentration measured in white-throated 

sparrows exposed, or not exposed, to weekly simulated winter storms. Points 

indicate weekly means and error bars represent 1 SE of the mean. The asterisk 

indicates a significant decrease in values across time (p=0.008).  
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Figure 8: Time spent feeding was measured across time in white-throated sparrows 

exposed, or not exposed, to weekly simulated storm cues. Feeding time increased 

across time (p<0.0001). Bars indicate mean feeding duration and error bars 

represent 1 SE of the mean. 
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Figure 9: Overall distance moved was measured across time in white-throated 

sparrows exposed, or not exposed, to weekly simulated storm cues. There were no 

significant relationships with respect to overall distance moved. Bars indicate mean 

distance moved and error bars represent 1 SE of the mean.  
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4 Discussion 

Over the 10 week experimental period, baseline corticosterone levels, body composition, 

and feeding behaviour were all assessed in white-throated sparrows in response to 

simulated inclement winter weather cues. Birds that were exposed to recurrent simulated 

winter weather cues did respond, however, not all predictions were met. Recurrent 

simulated winter weather cues caused an increase in overall mass, lean mass, and fat 

mass. However, baseline corticosterone levels, the time spent feeding and overall 

movement while in the wind tunnel were not significantly impacted between groups. The 

cues associated with one additional storm system per week were enough to elicit a 

physiological change in body composition, however, these cues did not appear to act 

cumulatively as a chronic stressor to induce a change in baseline corticosterone levels or 

behaviour. Thus, this study provides further evidence that birds can sense changes in 

barometric pressure and temperature as reliable cues of inclement weather and respond 

accordingly. 

One variable that could not be controlled for was ambient weather experienced in 

London, ON. It would have been ideal for birds not to detect any ambient changes in 

barometric pressure, however, that could not be achieved. Additionally, changes in 

ambient conditions could not be controlled for as all individuals were experiencing 

changes equally, making it impossible to distinguish between changes over time or 

changes as a result of changing barometric conditions. It was assumed, however, that 

since birds of both groups were equally experiencing changes in ambient pressure that it 

should not have had an adverse effect on either group.  
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4.1 Body composition 

Birds that experienced recurrent environmental manipulations had significantly altered 

body compositions compared to birds that did not undergo environmental changes. 

Experimental birds had increased fat mass, lean mass, and overall mass. These results 

provide further evidence that changes in environmental conditions, including barometric 

pressure and temperature, can impact energy reserves. These changes likely allow birds 

to respond to new weather conditions. In the winter, a low pressure cold front can bring 

precipitation in the form of snow through most of white-throated sparrows’ wintering 

range. Since these birds are a ground feeding species, they need to forage prior to the 

onset of the storm as food may become less available once the ground is covered in snow. 

Creating fat stores is a common wintertime response to the onset of inclement winter 

weather to prepare against unpredictable future foraging (Carey & Dawson 1999). My 

results further validate the hypothesis that inclement winter weather cues will elicit an 

increase in fat mass, even by just one additional simulated storm per week. Interestingly, 

lean mass was also higher in experimental birds. The increase in lean mass observed by 

individuals experiencing winter storm cues could be explained by physiological changes 

from winter acclimatization. Increased thermogenic capacity can cause variation in the 

size of whole organ mass, or lean mass (Carey et al. 1989). In most birds, shivering is the 

primary means of regulating thermogenesis (Carey & Dawson 1999), which involves the 

movement of the large supracoracoideus and pectoralis breast muscles. Through winter 

acclimatizing, the flight muscles are often enlarged to be able to more effectively carry 

out this function (Swanson 2001) which would result in an increase in lean mass content. 

Shivering is an energetically costly task, requiring an outlet of additional energy while in 
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the wind tunnel. The main energy substrate for shivering, and thermogenesis in general, 

comes from fatty acids (Carey & Dawson 1999), which was likely pulled from the 

increase in fat mass content also observed. The change in lean mass in my study was 

likely attributed to the decline in temperature that birds experienced, and not affected by 

decreases in barometric pressure, however, this remains untested. Overall, changes in 

body composition indicate that experimental birds sensed the decline in barometric 

pressure and temperature and underwent physiological changes that could aid in survival. 

4.2 Baseline corticosterone 

I predicted that an increased frequency of inclement winter weather cues would 

cumulatively act as a chronic stressor, as each individual simulated storm should have 

acted as an acute stress event. Since baseline glucocorticoid levels were not significantly 

different between groups, I did not find evidence that the environmental manipulations 

acted as a chronic stressor in this situation. It is possible that no significant difference 

between groups was observed due to the severe winter season already occurring at the 

site of experiments in London, ON. Experimental manipulations occurred during the 

2013-2014 winter season which was dominated by the polar vortex and an altered path of 

the North American jet stream. Continental polar and continental Arctic air masses 

dominated southwestern Ontario throughout the winter season, causing unseasonably 

frigid temperatures and a higher number of severe weather events. Although the birds 

housed indoors would not experience outdoor cold temperatures, they may have 

responded to low pressure systems passing through London. Figure 2 shows the ambient 

conditions experienced at the study site. Birds were already exposed to a higher than 

average number of low pressure systems thus even my control birds may have had 
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elevated baseline corticosterone compared to birds that could have had consistently high 

barometric pressure. 

On the other hand, it may be that birds adjust body composition without adjusting 

baseline corticosterone. Breuner et al. (2013) also experimentally altered barometric 

pressure to simulate storms and found similar results in white-crowned sparrows, a sister 

species to white-throated sparrows. Levels of corticosterone were not affected by acute 

changes in barometric pressure, indicating that a short term change in barometric pressure 

is not significant enough to act as a cumulative stressor. Similarly, a previous study in my 

lab on white-throated sparrows did not detect a change in baseline corticosterone 

following acute pressure manipulations (J. Metcalfe, unpublished honours thesis). 

In the wild, changes in barometric pressure and temperature are a reliable indicator that a 

storm is approaching and food sources may soon become sparse or unpredictable. 

Changes in corticosterone concentration are often associated with the absence of a food 

source (Pravosudov et al. 2001; Boyle et al. 2010). In the winter, white-throated sparrows 

can be faced with snow covering the ground and obscuring their food sources. In my 

experiment birds were given a fixed amount of food sufficient to maintain body mass. 

Thus, it is possible that birds in the wild may elevate corticosterone in response to storm 

cues when they have limited food but that birds in captive studies may limit their stress 

response when plentiful food is visible. To test this idea a future study should simulate 

inclement weather cues over a shorter time span and give different amounts of food to 

each group of birds. It would not be ethical to completely eliminate a food source, but 

food restriction could occur for a short amount of time. By simulating storms over a 



56 

 

 

 

short-term period, one group of birds could be given an unlimited supply of food while 

other birds are food restricted. 

Although baseline glucocorticoids were not significantly different between groups, 

baseline corticosterone did decrease across time. Glucocorticoid concentrations fluctuate 

depending on the time of the year. In most small passerines, baseline corticosterone 

concentrations are relatively low in the winter season and begin to increase at the onset of 

spring migration and the breeding season at the end of March into mid-May (Romero 

2002). Throughout my experiment, birds were kept on natural daylength cycles. 

Manipulations began at the end of January and ran until mid-March, marking the 

beginning of spring migration. Birds were likely preparing for spring migration at this 

time, especially as some individuals began singing towards the end of the experiment. As 

such, it is surprising that a decline in baseline corticosterone was observed, as the 

beginning of the breeding season is usually marked with an increase in baseline 

corticosterone concentration. 

These results suggest that one simulated storm per week was not a strong enough 

frequency to act as a chronic stressor given the severe winter season birds were 

experiencing in ambient conditions. The environmental manipulations may still have 

acted as acute stressors to increase circulating glucocorticoid levels while the birds were 

in the wind tunnel, but I would not have detected this as blood collection occurred 5-6 

days following the manipulation. To test this, future studies may look at fecal 

corticosterone levels to determine if concentrations are changing during manipulations. 

Additional studies can increase the frequency of simulated inclement weather cues from 

once per week to two or three additional simulations per week and determine the 
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threshold of the number of storms required to act as a chronic stressor. Future studies 

could also lessen the frequency of storm cues to make them less predictable by only 

subjecting birds to inclement weather cues on alternating weeks, since predictability is 

often a reason why birds are less stressed (Romero 2002; Romero & Romero 2002). 

4.3 Behaviour 

4.3.1 Time spent feeding 

Since inclement weather can negatively affect successful foraging, I expected that 

experimental birds would increase their overall feeding duration as barometric pressure 

and temperature were declining, however, this relationship was not observed. The amount 

of time birds spent at their food cups was analyzed across the entire duration of the 24 h 

spent in the wind tunnel, however, I focused on the first 5-6 h of birds entering the wind 

tunnel as the most important response of birds are predicted to occur as environmental 

changes are in progress. Constant environmental conditions (i.e. barometric pressure, 

temperature, humidity, wind) do not act as signals to birds to respond physiologically or 

behaviourally (Carey & Dawson 1999). For experimental birds, the average time it took 

barometric pressure to decline to 96.19 kPa and for temperature to drop from 11 °C to 1 

°C was 5-6 h. During this time period I did not observe any differences in time at the 

food cup between groups, even though there was an increase in overall, fat, and lean mass 

content among birds. It is possible that there were differences in feeding behaviour during 

other times I did not observe the birds, i.e. the remaining 6 days of the week in their 

home chambers. A change in metabolism or energy expenditure may also have occurred 

to account for increased masses. Increasing barometric pressure and temperature, as 

observed in the final 5-6 hours spent in the wind tunnel, also did not elicit a change in 
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physiology in behaviour for birds, which was expected. In most cases, a high pressure 

warm front is dominated by calm, clear weather which does not pose as a threat to the 

survival or well-being of birds. Metcalfe et al. (2013) found that increasing barometric 

pressure increased the time it took birds to begin feeding, indicating that increasing 

barometric pressure did not act as a signal to prepare for the onset of poor weather. 

Previous studies that also experimentally decreased barometric pressure found that birds 

decreased their latency to feed and increased the feeding amount (Breuner et al. 2013; 

Metcalfe et al. 2013). This effect was not observed in my study, however, both studies 

mentioned previously were conducted over a much shorter time span. Abrupt changes in 

barometric pressure and temperature will likely elicit an immediate response, however, 

once changes in barometric pressure and temperature become consistent across time, 

birds may be able to respond and adapt better to such changes as environmental changes 

are becoming more predictable. A predictable stressor allows concentrations of baseline 

corticosterone to adjust and not elicit any behavioural changes, whereas unpredictable 

stressors cause sharp changes in baseline corticosterone which activates other 

physiological and behavioural pathways (Romero 2002). 

Increased levels of corticosterone can lead to an increased rate of foraging (Breuner & 

Hahn 2003), however, since corticosterone levels were not affected by my environmental 

manipulations, it is perhaps not surprising that there was also no impact on feeding 

duration. Captive white-crowned sparrows showed little activity around their food cups 

when food was available ad libitum, but activity at the food cup increased once food was 

removed (Astheimer, Buttemer & Wingfield 1992). Since food was available to birds at 

all times, there may not have been a strong response to immediately forage once 
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environmental changes were detected. Despite the lack of difference in time spent at the 

food cups in my study, it is possible that birds may have been differentially feeding 

during these times. Visual observations throughout the duration of the experiment 

showed that every food cup of experimental birds were nearly, if not completely, empty 

after the 24 hours spend in the wind tunnel. When control birds finished their 24 hours in 

the wind tunnel, all food cups still had remaining seed in them. Since this was an 

experiment spanning over a 2 month period, feeding behaviour may have been altered in 

a way not observable on the video camera. If feeding behaviour was observed 

concurrently over the entire duration of the experiment, there may have been changes in 

the overall, long-term feeding duration. It is difficult to assume that feeding behaviour 

was not altered by limiting observations to 5 hours per week, even if this was the period 

that environmental manipulations were occurring. A change in feeding behaviour had to 

occur at some point during the experiment because I did observe an increase in overall, 

fat and lean masses between groups. Additional studies branching off from this one 

should weigh food cups before and after environmental manipulations take place to 

determine if birds were eating at a faster rate but spending the same amount of time at 

their food cups. 

Although feeding duration was not significantly different between groups, overall mass, 

fat mass, and lean mass were significantly higher in those birds undergoing 

manipulations, indicating that winter fattening was still occurring. The higher frequency 

of storm cues occurring did affect how food was stored and metabolized after ingested, 

however, it did not affect the overall time birds spent feeding during the manipulations. 

As seen in Figure 8, it is important to note the significant increase in feeding duration on 
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weeks 7, 8, and 9 in both groups. This is likely a seasonal change, as week 7 marked the 

beginning of spring migration. Prior to the onset of migration, birds increase foraging 

rates and create additional energy stores to prepare for long, energetically taxing 

migrations. 

4.3.2 Distance moved 

Interestingly, birds did not increase their overall movement while in the wind tunnel. As 

mentioned previously, free access to food likely inhibited an increased response. Despite 

the fact that white-throated sparrows migrate, this ground feeding species still deal with 

snow in the winter months. Unpredictable foraging conditions as a result of heavy 

precipitation can cause birds to increase overall activity and travel to areas that are 

unaffected by snow (Wingfield & Ramenofsky 1997). Access to food, although limited to 

a predetermined amount, was still a reliable factor across the duration of the experiment. 

Increased locomotor activity was likely inhibited due to the constant availability of food. 

Overall movement may not have been affected between groups because of the higher 

than average number of storms detected by control and experimental birds at the study 

site, further indicating that the severe winter season already occurring as ambient 

conditions significantly impacted this study. In a similarly designed study, Metcalfe et al. 

(2013) found that white-throated sparrows moved more often as barometric pressure was 

declining. They only observed behavioural changes immediately following dawn and not 

over a recurrent extended period of time, suggesting further that birds may have adapted 

to the presence of high frequency, recurrent winter weather cues across the duration of 

the experiment. Although white-throated sparrows migrate in the fall to avoid severe 

winter weather, they are not long-distance migrants. Their wintering grounds still receive 
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snow and inclement winter weather, even more so within the past few years with the 

dominance of the polar vortex along the entire eastern seaboard of the United States, 

closely coinciding with their range. Thus, white-throated sparrows may not induce an 

increase in their overall movement as alternate strategies are being employed.  

A common response to small passerines to inclement winter weather involves hiding in 

microclimates and taking shelter (Carey & Dawson 1999), assuming significant fat and 

energy stores are available. It is possible that an escape strategy was not attempted 

because birds in this study had increased fat and lean mass content, and therefore 

restlessness (overall movement) was not impacted. As mentioned previously, the storm 

cues may have become predictable due to the high frequency of storms already present 

from ambient outdoor conditions. 

4.4 Overview 

Birds can use changes in barometric pressure and temperature as reliable cues that 

inclement winter weather is approaching. I report, for the first time to my knowledge, the 

impacts of experimental recurrent inclement winter weather cues on the behavior and 

physiology of songbirds. Previous findings indicate that a change in barometric pressure 

is the most influential and reliable cue that indicates the presence of a storm (Ahrens, 

2012; Metcalfe et al., 2013), allowing the changes observed in a laboratory to accurately 

represent responses that would also occur in the wild. The data in this study show that 

birds may not be as affected by inclement winter weather as previously thought. They 

also support that certain predictions regarding behaviour and baseline stress levels may 

not apply under certain scenarios, either indicating a need for further manipulation 

studies or a different theoretical approach. This study, and continuing those like it, are 
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important as extreme weather events, including winter storms, are forecasted to increase 

in frequency and severity across time (NOAA:NCDC 2015). Understanding the 

physiological and behavioural changes observed in individual species as a result of 

changing weather patterns will ultimately enhance the ability to more accurately predict 

the long-term survival of species and create future conservation plans. As this study 

focused on the long-term effects of recurrent inclement cues, I did not determine the 

effects observed across smaller time scales, i.e. between weeks 1-3. Future studies could 

focus on the short-term effects and whether birds are habituating to manipulations at 

specific time scales, as there appeared to be different responses during the course of this 

long-term experiment. Overall, this study has contributed to the limited body of work 

surrounding global change manipulation studies. I have documented physiological and 

behavioural responses that have not been previously observed. 
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