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Abstract 

The hypothesis underlying all of neuroecology proposes that natural selection can modify 

cognition and its neural mechanisms if these modifications enhance fitness. I tested for 

sex and seasonal differences in cognition and the brain of brood-parasitic brown-headed 

cowbirds (Molothrus ater) and the closely related non-brood-parasitic red-winged 

blackbird (Agelaius phoeniceus) to determine whether cognitive and neural patterns were 

associated with space use and singing in the wild. Cowbirds show a reversal of sex-

typical space use often seen in mammals with only female cowbirds parasitizing, 

searching for, and revisiting host nests. Cowbird and blackbird males sing more than 

females, especially in breeding condition, but female blackbirds sing, whereas female 

cowbirds do not sing at all. I tested cowbirds on a foraging task that required them to 

move through the testing environment in Chapter 2 and stationary spatial and colour 

memory touchscreen tasks in Chapter 3. I then examined sex and seasonal differences in 

the brain regions involved in spatial memory, the hippocampus, (Chapter 4) and singing 

behaviour, the HVC (proper name) and the robust nucleus of the arcopallium (RA), 

(Chapter 5) of cowbirds and blackbirds. Female cowbirds outperformed males on the 

foraging task and female cowbirds and blackbirds had a larger hippocampus relative to 

the telencephalon than male cowbirds and blackbirds, regardless of breeding condition. 

Female cowbirds had higher doublecortin immunoreactivity (DCX+), a measure of 

neurogenesis, in the hippocampus than male cowbirds, but no sex difference existed in 

blackbirds. However, male cowbirds outperformed female cowbirds on the spatial 

touchscreen task, demonstrating that females have enhanced spatial memory only on 



 

 

iii 

 

tasks resembling their behaviour in the wild. Male and female cowbirds performed better 

on the spatial touchscreen task than on the colour touchscreen task, suggesting that 

cowbirds may have enhanced spatial memory relative to other forms of memory. Indeed, 

cowbirds had a larger hippocampus with higher DCX+ than blackbirds. Finally, the size 

of HVC and RA were positively associated with singing and DCX+ in HVC was 

negatively associated with singing. In conclusion, my results support the central tenet of 

neuroecology, namely that the brain and cognition are specialized for an organism’s 

ecology.  

Keywords:  brood parasitism, brown-headed cowbird, hippocampus size, hippocampal 

neurogenesis, Molothrus ater, navigation, operant conditioning, sex differences, seasonal 

differences, song control nuclei, spatial memory   
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Chapter 1 

1. General introduction1 

 The main objectives of this thesis were to examine sex and seasonal differences in 

1) spatial memory of brood-parasitic brown-headed cowbirds (Molothrus ater), 2) 

hippocampus of cowbirds and a closely-related non-parasitic relative, red-winged 

blackbirds (Agelaius phoeniceus), and 3) song control nuclei of cowbirds and blackbirds. 

I will first provide an overview of spatial memory and its influence on fitness, followed 

by an introduction to the field of neuroecology. Next, I will present a brief literature 

review of sex and seasonal differences in spatial memory and the hippocampus of birds 

and mammals. I will then summarize the ecology of obligate brood parasites and previous 

findings on their spatial cognition and hippocampus. Finally, I will explain why sex and 

seasonal differences in the singing rate of cowbirds and red-winged blackbirds are 

predicted to reflect differences in the song control nuclei. I will finish with detailed thesis 

objectives. 

1.1 The importance of spatial memory 

Natural selection can result in the evolution of traits that influence survival and 

reproduction. Spatial memory, an often neglected trait in biology, can determine whether 

an individual will survive and reproduce (Sherry 2006, Roth and Pravosudov 2009). 

                                                      
1 This chapter has not been published. 
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Food-storing birds must remember the location of their cache sites to survive in harsh 

climatic conditions and brood parasites must remember the location of suitable host nests 

in which to lay their eggs (Sherry 2006). Presumably, Clark’s nutcrackers (Nucifraga 

columbiana) that forgot the location of their seed caches succumbed during the frigid 

alpine winters and female cowbirds that forgot the location of suitable host nests in the 

darkness of the brief pre-dawn laying period were unsuccessful at reproducing. In both 

cases, these individuals with a weaker spatial memory would have failed to meet their 

potential for passing their genes on to the next generation, creating selection for 

individuals with enhanced memory. In other words, memory may have evolved to 

enhance fitness and thus, information that is relevant to reproduction and/or survival may 

be better retained (Nairne and Pandeirada 2008). Unfortunately, the mechanisms by 

which selection affects memory remain unclear.  

1.2 Neuroecology  

According to DF Sherry (2006, p. 168), “Neuroecology is the study of adaptive 

variation in cognition and the brain.”   The underlying hypothesis in neuroecology 

proposes that natural or sexual selection can modify cognition and its underlying neural 

mechanisms if these modifications enhance survival or reproduction (i.e., fitness; Rozin 

and Kalat 1971, Krebs et al. 1989, Sherry et al. 1989). Neuroecology makes extensive use 

of the comparative method (Sherry 2006). Frequently, a closely-related species that does 

not display the trait of interest is included in the study, along with the species of interest 

(e.g., Jacobs et al. 1990, Brodbeck and Shettleworth 1995, Hoshooley and Sherry 2007). 

Garland and Adolph (1994) critique such two-species comparisons as lacking statistical 
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power because the sample size is essentially two; any two species are liable to vary in 

virtually any physiological trait and there is a 50% chance that the variation will occur in 

the predicted direction. Ideally, at least three species should be included to determine 

whether the trait is the ancestral or derived state (Garland and Adolph 1994 for more 

details); a study should include the species of interest, a closely-related species without 

the trait, and a sister species to both taxa so that the state of the common ancestor of the 

first two species can be inferred. The state of the common ancestor is essential to infer 

that variation in the physiological system that occurs in parallel with the trait is derived 

rather than ancestral. Indeed, Garland and Adolph (1994) argue that the true sample size 

for any such study is the number of species and any such comparison should include 

numerous species analyzed with a robust phylogeny. However, it is rarely logistically 

feasible to incorporate multiple species within a single study on neuroecology. To 

provide broad support for a neuroecological hypothesis, it is necessary to compare 

multiple studies and it is only with consistent results across species that one can conclude 

cognition and the brain are adapted for a specific behaviour in the wild (Sherry 2006).  

 Spatial memory in food-storing birds is the most extensively studied subject in 

neuroecology. The hippocampus is a brain region important for spatial memory, as 

hippocampus lesions cause a decline in spatial memory but not colour memory (Sherry 

and Vaccarino 1989, Hampton and Shettleworth 1996) and memory for cache sites is 

hippocampus-dependent (Sherry and Hoshooley 2010). Many phylogenetic analyses 

across a large number of bird families have supported the hypothesis that food-storing 

produced an enlargement of the hippocampus (Krebs et al. 1989, Sherry et al. 1989, 

Garamszegi and Eens 2004, Lucas et al. 2004). Pravosudov and Clayton (2002) 
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introduced the Adaptive Specialization Hypothesis (ASH), which states that food-storing 

animals should have a larger hippocampus, relative to overall brain size, than non-

caching relatives and outperform these relatives on spatial memory tests, whereas no 

difference should exist on non-spatial memory tests. Pravosudov and Clayton (2002) only 

related the ASH to food-storers, although presumably the ASH could be applied to a 

variety of systems, including systems in which sexual selection can drive variation in 

cognition and the brain (see the vole examples below). The ASH is poorly defined and 

this nomenclature is not frequently used by other neuroecologists.  

Recently, hippocampal neurogenesis, in addition to hippocampal volume, has 

been found to correlate with space use. In birds, hippocampal neurogenesis is a process 

during which new neurons are generated by mitosis in the subventricular zone and 

migrate into the hippocampus where they may mature and become integrated into 

functional circuits (Sherry and Hoshooley 2010). Individuals who rely more on spatial 

memory have more hippocampal neurogenesis, such as food-storing (Hoshooley and 

Sherry 2007) and migratory (LaDage et al. 2011) birds. In addition, food-storing in 

chickadees is correlated with the recruitment of new neurons into the hippocampus and 

neural recruitment is enhanced when chickadees are given the opportunity to store food 

(Patel et al. 1997). Hippocampal neurogenesis may allow individuals to encode new 

information about their surroundings and may help accommodate a greater spatial 

memory load (Barnea and Pravosudov 2011), although support for this hypothesis is 

lacking.  

Space use in the wild may also influence cognition. Because seeds are difficult to 

find at some times of the year, such as winter when snow covers the ground, many seed-
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eating birds store their food in caches that they then consume at a later date. These 

species use spatial memory to re-locate stored food. For instance, some corvids create 

thousands of caches in the autumn and then relocate these caches throughout the winter. 

Clark’s nutcrackers recovered caches better, performed better on a modified radial-arm 

maze and performed better at a spatial memory task in an operant chamber than non-

caching western scrub-jays (Aphelocoma californica) (Balda and Kamil 1989, Kamil et 

al. 1994, Olson 1991). Furthermore, food-storing nutcrackers performed better than non-

food-storing scrub jays and Mexican jays (Aphelocoma wollweberi) on a spatial task, but 

not a colour task, demonstrating that selection in storing corvids has favoured spatial 

memory, and is not the consequence of a superior more generalized memory (Olson et al. 

1995). Similarly, short-term food-storers, such as coal tits (Parus ater) performed better 

than closely-related non-food-storing great tits (P. major) and blue tits (P. caeruleus) 

(McGregor and Healy 1999). Another short-term food-storer, the black-capped chickadee 

(Poecile atricapillus) performed better on a spatial touchscreen task than on a colour 

touchscreen task whereas non-food-storing dark-eyed juncos (Junco hyemalis) performed 

equally well on both tasks (Brodbeck and Shettleworth 1995). In sum, long-term and 

short-term food-storers have better spatial memory than non-food-storers and have 

enhanced spatial memory relative to other types of memory. 

Individuals within a species may show differences in cognition and the brain, 

based on their ecology. For example, chickadees from a harsher climate that presumably 

rely more on stored food have a larger hippocampus with more neurons, and perform 

better on a spatial task than individuals from milder climates (Roth and Pravosudov 

2009). In addition, chickadees from harsher climates have higher hippocampal 
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neurogenesis (Chancellor et al. 2011). Thus, differences in spatial memory load in the 

wild can produce differences in cognition and the brain between species, but also within a 

species. 

In sum, short-term and long-term food-storers consistently have a larger 

hippocampus and perform better on a variety of spatial memory tasks than non-food-

storers. Food-storers also have higher levels of neurogenesis in their hippocampus. These 

differences in spatial memory and hippocampus volume and neurogenesis are also 

observed within a food-storing species with individuals varying in reliance on stored 

food. These findings support the hypothesis that a heavy memory load in the wild is 

accompanied by an evolutionary enlargement of the hippocampus relative to the size of 

the telencephalon and enhanced spatial memory relative to other types of memory (Krebs 

et al. 1989, Sherry et al. 1989, Brodin and Lundbord 2003, Sherry 2006).  

Neuroecology studies normally incorporate non-model organisms because model 

organisms, such as fruit flies (Drosophila spp.), laboratory mice (Mus musculus), and 

laboratory rats (Rattus norvegicus) have recently undergone artificial selection by 

humans to facilitate laboratory based experiments. Regardless, mice and rats have a 

hippocampus that is anatomically homologous to the avian hippocampus, although it is 

located deep within the brain as opposed to the surface of the brain like in birds 

(Colombo and Broadbent 2000, Jarvis et al. 2005). The rodent hippocampus plays an 

important role in spatial memory and orientation and lesions of the rodent hippocampus 

disrupts performance on spatial memory tasks (reviewed in Morellini 2013). Arthropods 

and annelids, such as fruit flies, do not have a hippocampus, but they do possess a 

specialized brain region for learning and memory. The mushroom body is responsible for 
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olfactory learning and memory and receives olfactory information from the antennal lobe 

(Strausfeld et al. 1998).  Thus, the mushroom body, like the hippocampus of birds and 

mammals, provides organisms with the ability to execute voluntary actions in response to 

inputs from their environment. Mushroom body size varies across species and may reflect 

adaptive specialization, analogous to variation in Hp with respect to food storing 

(Strausfeld et al. 1998). In conclusion, specialized brain regions in a variety of taxa 

influence cognitive processes, which in turn influences survival of these organisms. 

1.3 Sex differences in spatial memory and the 

hippocampus 

Sex differences in space use are associated with differences in spatial memory and 

the hippocampus. Studies examining sex differences in space use have primarily been 

conducted on mammals, as most mammals are polygynous and a sex difference in home 

ranges may lead to a sex difference in space use (Sherry et al. 1992). For example, 

meadow voles (Microtus pennsylvanicus) are polygynous, with males having home 

ranges 4-7 times larger than females, but pine voles (Microtus pinetorum) are 

monogamous, with no sex difference in home range size (Gaulin and FitzGerald 1986, 

1989). Consistent with this difference in home range size, male meadow voles have a 

larger hippocampus than females and perform better on a spatial memory test, whereas no 

sex differences exist in pine voles (Gaulin and FitzGerald 1986, 1989, Jacobs et al. 1990). 

Female meadow voles have higher levels of neurogenesis in the dentate gyrus, the part of 

the hippocampus with the highest levels of adult neurogenesis in mammals, although this 
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sex difference is dependent on breeding condition (Galea and McEwen 1999). However, 

male Richardson’s ground squirrel (Urocitellus richardsonii), which are also polygynous, 

have a larger relative hippocampus with more neurogenesis than females (Burger et al. 

2013, Burger et al. 2014). Thus, in mammals, the sex with the larger home range (usually 

males) also has the larger hippocampus, but patterns of neurogenesis relative to home 

range size are not as consistent (Galea and McEwen 1999, Sherry et al. 1992, Burger et 

al. 2014). 

Sex differences in spatial memory can be specific to the type of task. In humans, 

males outperform females on mental rotation and navigational tasks but females 

outperform males on stationary spatial working memory tasks involving the memory for 

the location of objects in a spatial array (Voyer et al. 1995, Silverman et al. 2000, Postma 

et al. 2004, Voyer et al. 2007, Hampson 2008). Mental rotation tasks require subjects to 

visualize three-dimensional images whereas spatial working memory refers to temporary 

storage and processing of spatial information (Hampson 2002).  

Like in mammals, sex differences in spatial memory exist in birds.  Male 

hummingbirds (Sephanoides sephanoides) are better than females at remembering the 

location of high quality nectar sources (González-Gómez et al. 2014).  However, unlike 

mammals, 90% of birds are socially monogamous and provide bi-parental care (Mock 

and Fujioka 1990). As such, we would expect sex differences in space use and spatial 

memory to be more frequent in mammals than in birds, although research in this field of 

study is lacking. 
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1.4 Seasonal changes in spatial memory and the 

hippocampus 

Breeding condition can influence spatial memory. Changes in breeding condition 

affect circulating levels of testosterone, which in turn can influence learning of spatial 

tasks and performance on these tasks (Oberlander et al. 2004, Hodgson et al. 2008, Bailey 

et al. 2013). The songbird hippocampus expresses high levels of aromatase, resulting in 

high levels of local estrogen synthesis from testosterone and enhanced spatial memory 

acquisition and performance (Oberlander et al. 2004, Saldanha et al. 2004, Bailey et al. 

2013). Thus, testosterone, which increases in breeding condition, can enhance spatial 

memory in songbirds.  

Although breeding condition can influence spatial memory, there are no 

consistent seasonal patterns in hippocampus size or neurogenesis. One study showed that 

hippocampus size increased by 40% in the autumn in chickadees, relative to the spring, 

and corresponded to the first half of the food-storing season (Smulders et al. 1995). 

However, subsequent studies were unable to replicate these results and one study actually 

reported a larger hippocampus from February to April (Hoshooley and Sherry 2007). 

Two more studies found no change in hippocampal volume throughout the year 

(Hoshooley and Sherry 2004, Hoshooley et al. 2007). In support of Smulders et al. 

(1995), Barnea and Nottebohm (1994) reported that hippocampal neurogenesis was also 

at its peak in the autumn, but Hoshooley and Sherry (2004) found no seasonal variation in 

the production of new neurons and concluded that results from Barnea and Nottebohm 

(1994) could only be explained by seasonal differences in the survival of new neurons. 
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Thus, the seasonality of total size and recruitment of new neurons into the hippocampus 

varies among studies, suggesting that food-storing birds may respond to annual changes 

in food storing itself, which is in turn influenced by factors such as food availability, 

energy balance, and flock dominance structure (Sherry and MacDougall-Shackleton 

2014).  

Breeding condition has also been reported to influence spatial memory in 

mammals. Male meadow voles and deer mice show better spatial learning than females in 

breeding condition only (Galea et al. 1995, 1996). Depending on the task, natural 

fluctuations in estrogen levels in female humans can either increase or decrease spatial 

memory. For example, females perform better on mental rotation tasks during the 

menstrual phase of their menstrual cycle, when estrogen levels are at their lowest 

(Hampson 2002). However, high levels of estrogen are associated with better 

performance on object location memory tasks (Hampson and Morley 2013).  

Hormones, which change with breeding conditions in mammals, also influence 

the hippocampus. Male meadow voles with high levels of testosterone, which simulated 

breeding condition, had a larger hippocampus than females with low estradiol levels, 

whereas that difference disappeared in male voles with low levels of testosterone (Galea 

et al. 1999). In addition, wild and laboratory female meadow voles had the highest levels 

of neurogenesis in their dentate gyrus in the non-breeding season and these high levels of 

neurogenesis were associated with lower levels of corticosterone and estradiol (Galea and 

McEwen 1999, Ormerod and Galea 2001, Galea et al. 2013). Richardson’s ground 

squirrels are polygynous but males had a larger hippocampus in the non-breeding season, 

which may reflect male-only caching in the non-breeding season (Burger et al. 2013). In 
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a follow up study, Burger et al. (2014) reported that hippocampal neurogenesis was 

highest in the non-breeding condition and that the dentate gyrus was larger in the 

breeding season when males are mating with multiple females within their larger home 

range. Thus, the extent to which these hippocampal changes reflect space use in ground 

squirrels is unclear, but could reflect a combination of seasonal changes in caching 

behaviour and mating (Burger et al. 2013, 2014). 

 How do hormones affect behaviour and the hippocampus? In rodents, elevated 

levels of estradiol, which can be produced from testosterone via the enzyme aromatase, 

increase the number of dendritic spines and the number of synapses onto these spines in 

hippocampal neurons (Woolley and McEwen 1994, Murphy and Segal 1996, Yankova  et 

al. 2001). In rodents, estrogens enhance synaptic transmission in the hippocampus and 

improve spatial memory performance (Gibbs 1998, Woolley et al. 1997). Less is known 

about the effect of hormones on the avian hippocampus, but several studies have shown 

that aromatase is enriched in the hippocampus in several species of songbirds (Shen et al. 

1994, Saldanha et al. 1998, Metzdorf et al. 1999, Fusani et al. 2000). Aromatization of 

testosterone produces high levels of estradiol in the hippocampus which likely maintains 

the integrity and function of circuits within the hippocampus. Indeed, the songbird 

hippocampus expresses high levels of estrogen and androgen receptors, providing a direct 

site for sex steroids to act on hippocampal function, including spatial memory (Hodgson 

et al. 2008). 
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1.5 Avian brain nomenclature 

Some birds are just as intelligent as some mammals and even rival the great apes 

in many cognitive tasks (Emery 2006). For example, some bird species are known to 

have episodic-like memory, tool use, the ability to pass knowledge via social learning, the 

ability to learn vocally, or high capacity for learning-based sound localization (Jarvis et 

al. 2005, Emery 2006). Nonetheless, conventional nomenclature for the avian brain was 

developed by Ludwig Edinger in the 19th century based on the belief that mammalian 

brain morphology was evolutionary newer and more sophisticated. Edinger used the 

suffix “striatum” to describe regions of the brain that were associated with basal ganglia 

in mammals, and applied those terms to the avian cerebrum. Jarvis et al. (2005) proposed 

renaming bird brain morphology to portray birds as more comparable to mammals in 

their cognitive ability as we now know that supposedly primitive regions of bird brains 

are comparable in their genetic and biochemical machinery to mammals and capable of 

complex neural processes homologous to regions in mammals (Jarvis et al. 2005). 

Indeed, the avian and mammalian hippocampi are homologous (Colombo and Broadbent 

2000, Jarvis et al. 2005). Realization of avian intelligence has been an important part of 

recent research and has inspired studies like this thesis to integrate the study of cognition 

and the brain with other fields, such as behavioural ecology. 
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1.6 Obligate brood parasites 

1.6.1 Ecology and phylogeny 

Brown-headed cowbirds (Molothrus ater) are ideal for testing the adaptive 

specialization of memory, as they experience both sex and seasonal differences in spatial 

memory load. Brown-headed cowbirds and red-winged blackbirds, the non-parasitic 

control species used in my thesis, shared a common ancestor less than 5 million years ago 

(Sorenson and Payne 2002, Mermoz and Ornelas 2004, Kruger 2007). This most recent 

non-parasitic ancestor gave rise to two icterid groups: the Molothrus spp., which includes 

brown-headed cowbirds and all other cowbird species, and the Agelaius spp., which 

includes red-winged blackbirds. Therefore, brown-headed cowbirds and red-winged 

blackbirds are evolutionary close enough that potential differences in cognition and the 

brain could be linked to differences in behaviour rather than divergent phylogeny.  

Brown-headed cowbirds are obligate brood parasites that rely on approximately 

150 bird species to raise their young (Davies 2000). Only female cowbirds search for the 

nests of these host species in the breeding season. Female cowbirds parasitize nests 

during a brief one-hour window before sunrise when it is still dark, so they must find a 

suitable host nest at least one day before parasitism (Rothstein et al. 1986). In addition to 

finding these nests, females must monitor their nesting stages to ensure that parasitism 

occurs by early incubation, allowing enough incubation time for the cowbird eggs to 

hatch (White et al. 2009). Female cowbirds will also revisit some nests they have 

parasitized, or they are about to parasitize, to remove a host egg (Sealy 1992, Guigueno 

and Sealy 2011). Thus, female cowbirds make multiple visits to a given host nest and are 
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under strong selection to remember the locations of these nests and their nesting stage to 

increase the probability that their eggs hatch and that their young are successfully raised 

by the hosts (Rothstein et al. 1986, Gates and Evans 1998, White et al. 2009).  

A long history of field research on brown-headed cowbirds has shown that their 

mating system varies among populations and can be monogamous, promiscuous, 

polygynous, or polyandrous (Lowther 1993). The cowbird mating system may be 

influenced by population density and sex ratio, with monogamy occurring most 

frequently in low density populations when males can easily attend mates (Lowther 

1993). Although variable among populations, monogamy with promiscuity is the most 

frequently documented mating systems in cowbirds (Yokel 1986, Yokel 1989, Maguire et 

al. 2013). At the beginning of the breeding season, females establish large breeding 

territories based on the location of host nest sites and males engage in a competitive 

scramble for reproductive opportunities (Rothstein et al. 1984). Each male identifies a 

receptive female and sings intensively to her (West et al. 1981, Rothstein et al. 1986). 

Individual males will follow their female in their host nest territory in the morning to 

mate-guard (Davies 2000). This monogamous mating system can become promiscuous 

for two main reasons. First, freed from parental care, females can become serial 

monogamists over the course of the breeding season. Second, males may mate with other 

females if host nest territories overlap (Davies 2000). In the afternoon, both female and 

male cowbirds leave the forested host nest territories and travel, sometimes several 

kilometres, to short-grass feeding areas (Rothstein et al. 1984). In sum, female cowbirds 

show a pattern of space use requiring a heavier memory load than males, with only 

females parasitizing host nests before sunrise when it is dark (Rothstein et al. 1986) and 
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females leading host nest visitations in the morning (Davies 2000). Thus, cowbirds are a 

rare example of a species demonstrating a reversal of typical sex-differences in spatial 

memory load (Sherry et al. 1992). 

1.6.2 Brain 

Associated with sex differences in spatial memory load, female brown-headed 

cowbirds were found to have a larger hippocampus relative to males in the breeding 

season in one study (Sherry et al. 1993), but not another (Lattanzio 2007). A female-

biased sex difference in hippocampus size was also reported in shiny cowbirds (M. 

bonariensis), a South American relative in which, like brown-headed cowbirds, only 

females search for nests (Reboreda et al. 1996). In screaming cowbirds (M. rufoaxillaris), 

males assist in nest searching and no sex difference in hippocampus size was observed 

(Reboreda et al. 1996).  

The hippocampus in multiple cowbird species varies seasonally. Clayton et al. 

(1997) found that South American shiny and screaming cowbirds had a larger 

hippocampus in the breeding season relative to the non-breeding season and that female 

shiny cowbirds had a larger hippocampus than males. Additionally, previous work 

reported that female brown-headed cowbirds had a larger hippocampus early in the 

breeding season (April), when nest searching is frequent, than later in the summer (July), 

after breeding has ended, whereas male hippocampus size did not change seasonally 

(Lattanzio 2007). Similarly, the number of new neurons recruited into the hippocampus 

was greater in April than July in females, but no seasonal difference occurred in males, 

suggesting that neurogenesis facilitated a higher spatial memory load in females.  
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Lattanzio (2007) did not include a non-brood-parasitic relative in her study, which is an 

important component of the comparative method in neuroecology (see above). In sum, 

the hippocampus of multiple cowbird species seem to vary seasonally, with a larger 

hippocampus during the breeding season, although only two studies have found seasonal 

differences in hippocampus size. No researcher has made a connection between seasonal 

change in hippocampus size and cognition. 

1.6.3 Cognition 

I am not aware of any previous study addressing seasonal changes in cognition in 

any brood parasite. Some studies examining sex differences in cognition have generated 

puzzling results.  

No sex difference was recorded in shiny cowbirds in an experiment testing the 

speed of food recovery when food rewards were associated with specific locations or 

colours (Astié et al. 1998). Females but not males, however, learned to recover food 

faster when it was associated with a colour (Astié et al. 1998). Therefore, no sex 

difference was reported for the spatial test in which a sex difference was expected, but a 

sex difference was reported for the non-spatial test in which no difference was expected.   

In a previous touchscreen experiment, female brown-headed cowbirds 

outperformed males on a touchscreen spatial memory task, whereas both sexes performed 

equally well on a colour memory task (delayed-matching-to-sample; Lattanzio 2007).  

However, a few issues arose during this study.  First, cowbirds performed just over 

random performance, suggesting that the cowbirds may have had difficulty learning the 

task. Also, cowbirds would periodically cease responding in the middle of a trial, leading 
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to less than 20 total trials in a session (Lattanzio 2007), suggesting they were not 

motivated to complete a large number of trials. Typically, sessions of at least 20 trials are 

considered sufficient (Hodgson et al. 2008). Cowbirds were not tested seven days a week 

which could have played a role in them performing poorly and completing a low number 

of trials per session. Finally, the effect of breeding condition on spatial memory was not 

tested in this study (Lattanzio 2007). Therefore, consistent patterns of sex and seasonal 

changes in the hippocampus and spatial memory of cowbirds have yet to be found.  

1.7 The song control nuclei 

 The focus of my thesis was on spatial memory and the hippocampus, the neural 

control for spatial memory. However, I also applied the principles of neuroecology to 

examine whether differences in the ecology of icterids—specifically different use of song 

between sexes, seasons and species—lead to differences in the song control nuclei. The 

nuclei of interest, HVC (proper name) and the nucleus robust nucleus of the arcopallium 

(RA), are important for song production in songbirds (Nottebohm et al.1976) and likely 

also for song learning and perception, although this latter function is unclear (Scharff and 

Nottebohm 1991). Sex and seasonal patterns of HVC and RA are more consistent across 

studies and species than with the hippocampus. Male songbirds, who generally sing more 

than females, have a larger HVC and RA than females (reviewed in MacDougall-

Shackleton and Ball 1999). HVC and RA are also larger in breeding males and this 

pattern is associated with a seasonally higher rate of singing (Tramontin and Brenowitz 

2000). Neurogenesis levels are highest in non-breeding in HVC, when birds are 

practicing and modifying their song for the upcoming breeding season (Tramontin and 
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Brenowitz 2000). There is no neurogenesis in RA as neuron numbers do not change 

seasonally (Tramontin and Brenowitz 2000, Wada et al. 2014). 

 Seasonal changes in HVC and RA growth are driven in part by testosterone (T), 

although the physiological mechanisms underlying these seasonal changes are not fully 

understood. In breeding condition, song stereotypy and song rate are at the highest, when 

plasma T concentrations are also high, whereas song stereotypy, song rate, and plasma T 

are lowest in non-breeding condition (Wingfield and Farner 1978, Smith et al. 1997). 

Administration of exogenous T to castrated and non-breeding males induces growth of 

song control nuclei and to female canaries induces singing and the growth of song control 

nuclei (Nottebohm 1980, Bernard and Ball 1995, Smith et al. 1997, Strand and Deviche 

2007). T can be converted, irreversibly, to dihydrotestosterone (DHT) and 17β-estradiol 

(E2) by the enzymes 5α-reductase and aromatase, respectfully, in the brain of songbirds, 

which expresses both of these enzymes (Soma et al. 2003). DHT and E2 then bind to 

androgen and estrogen receptors, which are expressed in the HVC and RA (Harding et al. 

1984, Gahr et al. 1993, Kolvenbag et al. 1998, Soma et al. 1999). T can also bind to 

androgen receptors, but with 100-200 times less affinity (Kolvenbag et al. 1998). 

Administration of DHT, E2, and DHT+E2 to castrated white-crowned sparrows increases 

the volumes of HVC and RA as much as the administration of T (Tramontin et al. 2003). 

Therefore, the effects of T on the seasonal plasticity of HVC and RA are likely mediated 

by DHT and E2, agonists for androgen and estrogen receptors, respectfully.  

 Neurogenesis in the HVC plays in important role in the seasonal growth of this 

song control nucleus. Binding of E2 to estrogen receptors upregulates the expression of 

vascular endothelial growth factor receptor-2 (VEGF-R2) in vascular endothelial cells in 
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HVC capillaries (Louissant et al. 2002). Binding of T to androgen receptors up-regulates 

the production of vascular endothelial growth factor (VEGF) in the HVC neurons 

(Louissant et al. 2002). Upregulating VEGF-R2 and VEGF increases the production of 

brain-derived neurotrophic factor, a neurotrophin that plays a direct role in the 

differentiation and survival of new HVC neurons (Rasika et al. 1999; see Figure 3 in 

Robertson et al. 2014). 

 Sex and seasonal differences in singing rate, which are mediated by HVC and 

RA, exist in my two study species, brown-headed cowbirds and red-winged blackbirds. 

Both male red-winged blackbirds and brown-headed cowbirds sing more than females 

and males sing more frequently in breeding condition than in non-breeding condition 

(Nero 1956, Beletsky 1983, Kirn et al. 1989, Hamilton et al. 1997, reviewed in Hall et al. 

2010). However, female red-winged blackbirds do sometimes sing whereas female 

brown-headed cowbirds do not sing at all (Hamilton et al. 1997). In addition, because 

brown-headed cowbirds are brood parasites, males develop their song in winter flocks, 

several months after leaving the nest of their host (King and West 1988), whereas red-

winged blackbirds start learning their song in the nest (Marler et al. 1972, Yasukawa et 

al. 1980). Both red-winged blackbirds and cowbirds are open-ended learners and their 

song varies year to year (Marler et al. 1972, King and West 1988). However, female 

choice likely plays a more important role in male song in cowbirds, as males modify their 

song in response to stimulation by females (King and West 1988, Hamilton et al. 1997). 

In blackbirds, male-male competition has a stronger influence on song repertoires than 

female choice (Marler et al. 1972, Yasukawa et al. 1980). Blackbirds and cowbirds, 
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although closely related, differ in various aspects of their song and thus are excellent 

candidates to study sex and seasonal changes in their song control nuclei. 

1.8 Thesis objectives 

 My thesis is separated into two parts. The first part examines sex and seasonal 

differences in spatial memory in cowbirds (Chapters 2 and 3), whereas the second part 

examines sex and seasonal difference in the brain of cowbirds and blackbirds, namely the 

hippocampus (Chapter 4) and two song control nuclei, HVC and RA (Chapter 5). 

 My first objective was to determine whether female cowbirds are consistently 

better across spatial tasks and whether spatial performance differs between breeding 

conditions. I tested female and male cowbirds on two types of spatial tasks. The first task 

required subjects to find a single baited cup either 1 h or 24 h after initially being exposed 

to the location of the baited cup (Chapter 2). Retention intervals of 1 h and 24 h were 

meant to simulate female cowbirds returning to a host nest later in the morning after 

parasitism to remove a host egg (1 h) and females monitoring nests daily to assess 

whether the nesting stage is appropriate for parasitism (24 h). The second task required 

the birds to peck a shape on a touchscreen that was in the same location as a shape 

displayed 15- 60 s earlier (Chapter 3). The food cup task required subjects to move 

through an open spatial environment whereas the touchscreen task did not. Thus, the food 

cup task was more ecologically-relevant than the touchscreen task. However, the 

touchscreen task, unlike the food cup task, was automated, which allowed me to collect 

data over more trials and also test non-spatial (colour) memory as a control. For both 
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tasks, I varied the photophase of the photoperiod to change the subjects’ breeding 

conditions and test peak performance in breeding and non-breeding condition. 

 The second part of my thesis dealt with the brain. Chapter 4 focused on the part of 

the brain responsible for spatial memory, the hippocampus. My goal was to determine 

whether sex and seasonal patterns of spatial memory measured in Chapters 2 and 3 

correlated with sex and seasonal patterns of hippocampus size and neurogenesis. In 

addition, red-winged blackbirds were included as the non-brood-parasitic comparison 

species. Chapter 5 focused on two song control nuclei, HVC and RA. Although sex and 

seasonal differences in the size of song control nuclei have been extensively studied in a 

variety of songbirds, few studies have simultaneously examined sex and seasonal 

differences in the volume and neurogenesis of song control nuclei. In addition, my 

research incorporates data on cowbirds and blackbirds, two species that differ in song 

development and sex differences in song rates.  

 My thesis incorporates data on female and male cowbirds and red-winged 

blackbirds. I did not included a third species (a sister species to both cowbirds and red-

winged blackbirds) as called for my Garland and Adolph (1994) because doing so would 

not have allowed me to thoroughly investigate sex and seasonal differences in cognition 

and the brain. Therefore, data from my thesis would need to be compared to past and 

future studies addressing similar questions in cowbirds to determine if observed 

differences are consistent and are adaptations, just like extensive research has showed 

that food-storing has produced an evolutionary enlargement of the hippocampus and 

enhanced spatial memory. 
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Chapter 2 

2. Female cowbirds have more accurate spatial 

memory than males2 

2.1 Introduction 

Memory can have profound effects on fitness and survival, but it is unclear 

exactly how natural selection has affected the evolution of memory. The predominant 

hypothesis in neuroecology, the adaptive specialization hypothesis (ASH), proposes that 

the brain and cognition are adaptively specialized to solve specific ecological problems 

(Sherry 2006, Roth and Pravosudov 2009). For example, mating systems may favour 

greater spatial abilities in one sex over the other. Polygynous male voles (Microtus spp.) 

have a larger home range, a larger hippocampus, and outperform females on a spatial 

memory task, whereas no sex differences exist in monogamous voles (Gaulin and 

Fitzgerald 1986, 1989, Jacobs et al. 1990).  

 Brown-headed cowbirds (Molothrus ater) provide a strong test of the ASH 

                                                      
2 A version of this chapter has been published:  

Guigueno, M. F., Snow, D. A., MacDougall-Shackleton, S. A., & Sherry, D. F. (2014). 

Female cowbirds have more accurate spatial memory than males. Biology Letters, 

10, 20140026.  
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because they exhibit a sex difference in space use that is the reverse of most species, with 

females having a greater spatial memory load. Cowbirds are obligate generalist brood 

parasites. Only females locate, monitor, and revisit the host nests they parasitize; female 

reproductive success depends on spatial ability (Rothstein et al. 1986). Females locate 

host nests by searching the canopy, watching host nest building activity and attempting to 

flush incubating hosts from their nests (Norman and Robertson 1975).  Female cowbirds, 

which spend their mornings in their egg-laying range either alone or followed by males, 

parasitize nests before sunrise when it is still dark, and must, therefore, have an accurate 

memory of the locations of potential host nests (Rothstein et al. 1986, Gates and Evans 

1998). Female brown-headed cowbirds have a larger hippocampus than males, whereas 

no sex difference exists in related species that are not brood parasites (Sherry et al. 1993, 

Rothstein et al. 1996, Clayton et al. 1997). This difference in the hippocampus size 

between males and females may be present only in the breeding season (Clayton et al. 

1997). Sex and seasonal differences in spatial cognition in cowbirds, however, are not 

well understood (Astié et al. 1998).  

I tested female and male cowbirds’ spatial memory in breeding and non-breeding 

conditions using a delayed-matching-to-sample (DMTS) spatial memory task. Birds re-

located a single covered cup containing food among 25 cups after a retention interval (RI) 

of 1 h or 24 h. Although the rewarded cup was not a host nest and did not contain eggs, I 

took the ability to return to a baited cup location as a general test of memory for spatial 

location (Gaulin and Fitzgerald 1986). The 1 h RI mimicked the interval between laying 

an egg and returning to remove a host egg (Sealy 1992). The 24 h RI mimicked the 

interval between discovering a potential host nest, monitoring it daily, and parasitizing it 
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(Sealy 1995, White et al. 2009). I hypothesized that in response to the cognitive demands 

placed on female cowbirds by brood-parasitic breeding, females would make fewer errors 

than males and that the sex difference would be most pronounced in breeding condition, 

when females search for host nests in the wild. 

2.2 Methods 

2.2.1 Capture and maintenance of cowbirds 

Female (n = 7) and male (n = 7) brown-headed cowbirds were captured at 

Queen’s University Biological Station near Elgin, Ontario (5 of each sex) and at Long 

Point Bird Observatory near Port Rowan, Ontario (2 of each sex). After several months of 

habituation to captivity, I food deprived birds to maintain them at 85% of their ad libitum 

weight in captivity in order to motivate them to perform the food-rewarded spatial task. 

Eighty-five percent of ad libitum captive weight was similar to the birds’ free-living body 

weight (i.e., body weight at capture from the wild). Birds did not have any prior 

experience with the apparatus or any other form of training. 

2.2.2 Photoperiod manipulation 

 Birds were first tested in photorefractory non-breeding condition after being 

housed on a long day photoperiod for 5 months (16 h L: 8 h D). Following this, I 

maintained birds on a short-day (8 h L: 16 h D) photoperiod for 60 d to induce 

photosensitivity, then switched them to long days (14.5 h L: 9.5 h D) to induce 

photostimulated breeding condition (Dawson 2003). Following photostimulation, I re-
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tested all birds using 5 practice trials and 10 testing trials for both the 1 and 24 h RI. To 

confirm that birds were in non-breeding and breeding condition I collected blood samples 

during both periods of testing.   

2.2.3 Blood sampling 

 Blood samples were collected within 30 min of entering the housing room on 

days that birds were not food deprived or tested. I collected approximately 300 μL of 

blood via brachial venipuncture into heparinized capillary tubes, centrifuged blood at 

13,000×g for 10 min and stored the separated plasma at -30 °C until hormone assay.  

2.2.4 Androgen assay 

Plasma androgen concentration was assayed using a testosterone enzyme 

immunoassay previously validated for a variety of bird species including songbirds (EIA; 

Cat. #1-2402, Salimetrics; Washburn et al. 2007). Testosterone has been shown to 

increase in breeding condition for both female and male brown-headed cowbirds (Dufty 

and Wingfield 1986 a,b). I followed the kit directions except that plasma samples were 

diluted five times. To validate the assay for cowbirds I followed Newman et al. (2008) 

and assayed a serial dilution of cowbird plasma and compared it to the standard curve 

using an ANCOVA.  A non-significant interaction term (R2 = 0.84, no significant 

interaction, F1,9 = 0.42, p = 0.54) indicated the slopes were similar and that the assay was 

suitable for cowbirds. Intra-assay variation was 9.43%. Inter-plate variation, based on a 

pooled cowbird plasma sample and low and high controls was 9.41%. The sensitivity of 

our assay was 1 pg/ml (two standard deviations from the average value of zero on my 
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four standard curves). Samples below 1 pg/ml were assigned a value of 0.5 pg/ml for 

analyses. 

2.2.5 Song recording and laparotomies 

I also recorded song frequency in the cowbird housing room from 10:00 to 13:00 

EDT in the middle of testing in non-breeding condition, three times during breeding and 

once after testing. Sentinel cowbirds housed in the same room as the test subjects were 

laparotomized during non-breeding and breeding condition testing.  Birds were 

anesthetised with isoflurane and a small incision was made on the left flank to allow 

visual assessment of gonad size (MacDougall-Shackleton et al. 2006). 

2.2.6 Testing 

I tested cowbirds in a 180 X 180 cm wire mesh enclosure (75 cm in height) with a 

door on each of the four sides. During training and testing, I food-restricted subjects to 

maintain them at 85% of their free-feeding weight, which was similar to their free-living 

body weight (i.e., body weight at capture from the wild). Twenty-five cups formed a 5x5 

square array on the floor with 10 cm between cups (Figure 2.1).  In the sample phase of 

each trial, a bird entered the apparatus through one of the four doors determined at 

random and was then free to search the array of open cups to locate the one cup baited 

with millet and mealworms. I used food as a reward because males will not search for 

nests or eggs (Z. Torok, unpublished data). The baited cup was randomly selected on  
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Figure 2.1.  Diagram of the testing apparatus. Possible rewarded cups are shaded.  
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each trial to be one of the eight interior cups, excluding the centre cup (Figure 2.1). Once 

the food was located, the bird was permitted to eat for two minutes. Following a 1 h or 24 

h RI in its home cage, the bird re-entered the apparatus for the matching phase of the 

trial, again through one of the four randomly assigned doors. During this phase the baited 

cup was in the same location, but all of the cups were individually covered with white 

paper lids. The bird’s task was to find the cup that matched the location of the cup that 

was baited in the sample phase. To reduce the possible use of olfactory cues to locate the  

baited cup, all cups were shaken with millet inside for 15 sec. Once the food was located, 

the bird was given five minutes to eat the food as a reward. If a bird did not find the 

baited cup within 20 min, the trial was ended and scored as unsuccessful.  

To assess memory in the matching phase for the location of the baited cup, I 

measured the number of errors before finding the baited cup and the time and path length 

between uncovering the first cup and uncovering the baited cup. Tortuosity of search was 

estimated as path length divided by the shortest possible path between entering the 

enclosure and the baited cup (the arc-chord ratio, equal to the inverse of the straightness 

index; Benhamou 2004).  The expected number of errors to the first success is 25 if birds 

search at random and repeated visits to the same cup are scored as errors (i.e., sampling 

with replacement). If birds learn that only the 8 interior cups are ever baited, the expected 

number of errors to the first success, scoring revisits as errors, would be 8. Because birds 

frequently revisited cups they had already opened, and these revisits were scored as 

errors, these values seem the best estimates of the number of errors expected by chance.  

If we assume instead that birds never revisit cups they have already opened (i.e. sample 

without replacement), then the number of errors expected by chance, based on the 
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negative hypergeometric distribution, is13 if birds searched all 25 cups and 4.5 if they 

searched only the interior 8 cups. 

Birds were tested every day; a full 24 h RI trial required two days to complete and 

a 1 h RI trial, a single day. Birds were tested first in non-breeding condition with the 1 h 

RI followed by the 24 h RI, and then re-tested in breeding condition with the 1 h RI 

followed by the 24 h RI. Birds learned the task during the 1 hr RI in non-breeding 

condition and were given 10 practice trials before the 10 testing trials. During the 24 h RI 

in non-breeding condition and 1 h and 24 h RIs in breeding condition, cowbirds were 

given 7, 5, and 5 training trials, respectively, before 10 testing trials. Acquisition was 

measured as the number of errors made across trials and the proportion of individuals 

who successfully completed the matching phase within the 20 min trial duration.   

Non-breeding and breeding conditions were induced by manipulation of 

photoperiod and breeding condition was verified by hormone assay and measurement of 

singing rates and gonads. Performance and acquisition data were analyzed using linear 

mixed models with PROC MIXED in SAS 9.3 (SAS Institute, Cary NC) with repeated 

measures for each subject across breeding conditions. 

2.3 Results 

2.3.1 Plasma androgens 

 There was a significant effect of breeding condition on androgen concentrations 

for females (F1,6 = 35.34, p  = 0.001) and males (F1,6 = 26.86, p  = 0.002), with higher  

androgen levels in breeding condition (Figure 2.2).   
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Figure 2.2 Changes in androgen levels between breeding conditions. Females and males 

had higher androgen levels in breeding condition than in non-breeding condition. 

Asterisks indicate p ≤ 0.05. 

  

* 

* 
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2.3.2 Song frequency 

Song frequency in non-breeding condition (147 songs per hour) was about a tenth 

of the frequency recorded in breeding condition (1224, 1098, and 969 songs per hour). 

After the testing was completed and the birds moulted, song frequency decreased to a 

non-breeding level (72 songs per hour). 

2.3.3 Laparotomies 

I performed laparotomies on sentinel birds during non-breeding and breeding 

conditions to record changes in gonadal development. I measured the testes of three 

males twice in non-breeding condition (range 1.5-2 mm) and two males twice in breeding 

condition (range 3-4 mm), confirming that testes had developed. The ovaries of three 

females examined twice in non-breeding condition were granular and showed no follicle 

hierarchy. I did not perform laparotomies on females in breeding condition because a 

change in gonadal development in females is generally only seen a few days before egg-

laying (SM-S, pers. obs.). However, near the end of testing in breeding condition, three 

females in my colony laid eggs for one to 14 consecutive days, confirming that females 

also underwent gonadal development. 

 2.3.4 Task acquisition  

Birds were trained on the 1-hr RI in non-breeding condition. There was a significant 

effect of session number (F19,201= 14.96, p < 0.0001), but no significant effect of sex 

(F1,12= 0.51, p = 0.49) and no sex by session interaction (F19,201= 0.25, p = 1.00), with 

birds achieving better than chance performance (fewer than 8 errors) on trial 2 of the 1 hr 
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RI in non-breeding condition with no effect of sex or sex by trial interaction (Figure 2.3). 

Over the 20 total trials (10 practice, 10 testing trials) on the 1 h RI in non-breeding 

condition, there was a significant increase in success across trials (F19, 219 = 1.77, p = 

0.03). There was no effect of sex (F1, 12 = 0.23, p = 0.64), or sex by trial interaction (F19, 

219 = 0.69, p = 0.83). The proportion of successful individuals in the 10 testing trials did 

not differ among the four testing conditions (1 h and 24 h RIs, non-breeding and 

breeding; F9,117 = 0.67, p = 0.73). 

2.3.5 Performance 

Errors across RIs and breeding conditions 

Birds improved as testing progressed (F3,38 = 6.98, p = 0.0007, Figure 2.4A). 

Performance in the first condition (1 h non-breeding) was significantly different from the 

last three conditions probably because task acquisition continued during this initial 

condition (Tukey’s tests: 24 h non-breeding, t38 = 3.56, p = 0.005; 1 h breeding, t38 = -

3.59, p = 0.005; 24 h breeding, t38 = 4.03, p = 0.001). Because performance was likely to 

be still improving during testing for the 1 h RI in non-breeding, the remainder of my 

analyses are based on the 24 h RI only.  

Number of errors 

There was a significant effect of sex, with females making fewer errors than males 

(Table 2.1, Figure 2.4B). There was no effect of breeding condition or interaction 

between breeding condition and sex (Table 2.1, Figure 2.4B).   
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Figure 2.3 Acquisition of the spatial memory task. Cowbirds learned the task with a 1-hr 

RI during non-breeding condition. 
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Figure 2.4 A) Number of errors made by male and female brown-headed cowbirds 

combined across retention intervals (RI) and breeding conditions in testing order. 

Performance improved after the first condition (1 h non-breeding; asterisk indicates p 

≤0.05).  B) Number of errors before rewarded cup was opened during the 24 h RI. C) 

Time required to find rewarded cup once searching commenced during the 24 h RI. D) 

Path tortuosity: length of the path taken by the bird from the enclosure entrance to the 

correct cup divided by the shortest possible path from the entrance to the correct cup 

during the 24 h RI. Females are in light grey whereas males are in dark grey (B-D). 

Asterisks indicate a main effect of sex (B-D). All values are means ± SE. 
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Figure 2.2 
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Table 2.1. Summary of statistical effects of sex, breeding condition (BC), and their 

interaction at the 24 h RI for each measure of performance during the matching phase of 

the search task.  Significant factors are in bold. 

 

Factors F df p-value 

Number of errors    

Sex 11.46 1,12 0.005 

BC 0.33 1,11 0.58 

Sex*BC 0.52 1,11 0.49 

 

Search time    

Sex 1.48 1,12 0.25 

BC 0.01 1,11 0.91 

Sex*BC 0.00 1,11 0.95 

 

Path tortuosity    

Sex 6.26 1,12 0.03 

BC 0.02 1,11 0.89 

Sex*BC 0.00 1,11 1.00 
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Search time 

There was no effect of sex, breeding condition, or interaction between sex and 

breeding condition (Table 2.1, Figure 2.4C).  

 Path tortuosity 

There was a significant effect of sex, with females having a less tortuous path 

than males (Table 2.1, Figure 2.2D). There was no effect of breeding condition or 

interaction between breeding condition and sex (Table 2.1, Figure 2.4D). 

2.4 Discussion 

Females made fewer spatial memory errors than males and took more direct paths 

to the rewarded cup (Table 2.1, Figures 2.4B, 2.4D). There was no effect of sex for 

search time (Figure 2.4C) indicating that females did not differ from males in motivation 

to search for the baited cup. This sex-specific effect may reflect an adaptation for brood 

parasitism because only females monitor host nests daily in the breeding season to 

appropriately time the parasitism event and maximize fitness (Rothstein et al. 1986, Gates 

and Evans 1998, Sealy 1992, White et al. 2009). We did not find a significant effect of 

breeding condition for any of the factors measured (Table 2.1 and Figure 2.4). However, 

because captivity may differentially affect the hippocampus I cannot preclude the 

existence of seasonal differences in free-living birds (Day et al. 2008). Regardless, where 

sex differences in spatial cognition are found in animals, it is usually males who have 

better spatial ability (Gaulin and Fitzgerald 1986). In contrast, I show superior female 

spatial ability in a system with sex-role-reversed use of space. 
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 Although my spatial memory task did not specifically test memory for host nests, 

it likely tested for common underlying cognitive mechanisms which tap into the abilities 

that females use to re-visit host nests. Using food as a reward was necessary to ensure 

that both sexes would perform the task. Laboratory tests of spatial memory allow us to 

perform controlled tests of cognitive abilities that animals may use in their natural 

environment.  

Female brown-headed cowbirds have a larger hippocampus than males, unlike 

related species that are not brood parasites (Sherry et al. 1993, Reboreda et al. 1996). 

Here, I show that this difference in brain morphology is associated with superior spatial 

memory in females as predicted from behavioural sex differences observed in the wild 

(Rothstein et al. 1986, Gates and Evans 1998). Female superiority in memory for spatial 

locations in brown-headed cowbirds suggests that spatial ability in this species has been 

adaptively modified for a brood-parasitic mode of reproduction. 
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Chapter 3 

3. Sex differences in spatial memory in   

brown- headed cowbirds: Males outperform 

females on a touchscreen task3 

3.1 Introduction 

Some animals show adaptive specialization of spatial ability (Sherry 2006, 

Smulders et al. 2010, Mettke-Hofmann 2014). Food-storing birds remember the locations 

of large numbers of scattered food caches. Spatial memory differs between food-storing 

and non-storing species (Balda et al. 1996, Shettleworth and Hampton 1998) and between 

populations of the same food-storing species that differ in their reliance on stored food 

(Pravosudov and Roth 2013). Adaptive specialization can also lead to sex differences in 

                                                      
3 A version of Chapter 3 has been accepted for publication:  

Guigueno, M. F., MacDougall-Shackleton, S. A., & Sherry, D. F. Sex differences in 

spatial memory in brown-headed cowbirds: males outperform females on a 

touchscreen task. PloS One.  
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spatial ability. Polygynous male meadow voles (Microtus pennsylvanicus) have larger 

home ranges, better spatial memory, and a larger hippocampus than females, sex 

differences that are not found in monogamous species of Microtus where females and 

males have similar home ranges (Gaulin and Fitzgerald 1986, Gaulin and Fitzgerald 

1989, Gaulin et al. 1990, Jacobs et al. 1990, Sherry et al. 1992). Similar sex differences in 

spatial memory occur in polygynous deer mice (Peromyscus) (Galea et al. 1996, 

Jašarević et al. 2012) and laboratory mice (Bettis and Jacobs 2013).   

Sex differences in spatial ability are not, however, simply a matter of better or 

poorer performance by one sex or the other. Female and male laboratory rats and mice 

use different dissociable kinds of spatial information for orientation and navigation 

(Wiliams et al. 1990, Bettis and Jacobs 2013). Male mice and rats rely predominantly on 

geometric information (i.e., distant landmarks), whereas females use predominantly 

feature information (i.e., local landmarks; Williams et al. 1990, Rodríguez et al. 2011, 

Bettis and Jacobs 2013). Consistent with the use of different landmarks between the 

sexes, male mice, rats, and humans outperform females on spatial tasks requiring 

navigation through space or the visualization of three-dimensional or directional 

information, whereas females outperform males on smaller scale spatial tasks relating to 

object location (Williams et al. 1990, Silverman et al. 2000, Voyer et al. 2007, Rodríguez 

et al. 2011, Bettis and Jacobs 2013). Sex differences in the kind of information used for 

orientation are an organizational effect of exposure to gonadal steroids during 

development (Williams and Meck 1991). 

 Sex differences in spatial ability also occur in birds.  Male hummingbirds 

(Sephanoides sephanoides) are better than females at remembering the location of high 
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quality nectar sources (González-Gómez et al. 2014) and female brood parasitic brown-

headed cowbirds (Molothrus ater) are better than males at remembering the location of a 

previously baited food source (Chapter 2, Guigueno et al. 2014).  Astié et al. (1998) 

found, in contrast, that female shiny cowbirds (Molothrus bonariensis) performed better 

than males when a colour cue indicated the location of food, but not when spatial location 

alone was associated with food. Sex differences in the use of spatial information, 

however, do not always occur in birds. Females of three species of hummingbirds 

(Selasphorus rufus, Hylocharis leucotis, Eugenes fulgens) have the same preference for 

spatial cues over featural cues that is found in males (Tello-Ramos et al. 2014) and the 

same is true of great tits (Parus major) (Hodgson and Healy 2005).  

Some birds use spatial information differently depending on context. Noisy 

miners (Manorina melanocephala) revisit sites where they have not previously found 

food more often when searching for invertebrates than when searching for nectar 

(Sulikowski and Burke 2010). European greenfinches (Carduelis chloris) predominantly 

use colour cues to relocate a food site they have encountered only once previously, but 

switch to spatial cues after repeated encounters with food at the same site (Herborn et al. 

2011). 

Brown-headed cowbirds are obligate brood parasites and spatial ability likely 

plays a major role in the reproductive success of females. To successfully reproduce, 

females must find host nests and then re-visit these nests to assess the stage of completion 

of the host clutch, to lay their own eggs, and to remove host eggs (Norman and Robertson 

1975, Rothstein et al. 1986, Gates and Evans 1998, White et al. 2009, Guigueno and 

Sealy 2011). Male brown-headed cowbirds do not search for or visit host nests. Females 
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might be expected to perform better than males on spatial memory tasks and indeed, 

female brown-headed cowbirds outperform males when searching for food hidden in 

baited cups within a large room (Chapter 2, Guigueno et al. 2014). The hippocampus is 

larger in female than in male brown-headed cowbirds (Sherry et al. 1993) and shiny 

cowbirds, another brood-parasitic species in which only females search for host nests 

(Reboreda et al. 1996). In screaming cowbirds (Molothrus rufoaxillaris), a related species 

of cowbird in which both sexes search for nests, females and males have a similar-sized 

hippocampus (Reboreda et al. 1996). The sex difference in favour of females in both 

navigational spatial ability and relative size of the hippocampus found in brown-headed 

cowbirds is thus the reverse of that usually found in mammals.   

Female cowbirds only search for host nests during the breeding season. Changes 

in breeding condition influence hormone levels in both female and male brown-headed 

cowbirds (Chapter 2, Guigueno et al. 2014) and both testosterone and estradiol can 

influence acquisition and performance of spatial tasks (Oberlander et al. 2004, Hodgson 

et al. 2008, Bailey et al. 2013).  

In the current study, I used operant conditioning to compare performance of 

female and male brown-headed cowbirds on a delayed-matching-to-sample (DMTS) 

touchscreen task. This task, unlike the task used by Guigueno et al. (2014) (Chapter 2), 

does not involve movement though a spatial environment but instead memory for a 

location in the immediate visual field. I investigated whether female cowbirds perform 

better than males in general or if superior female performance is associated only with 

tasks that resemble females’ search for nests. I also compared performance between 

breeding and non-breeding conditions, inducing breeding condition by manipulation of 
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photoperiod. Finally, I compared memory for both spatial and colour cues on the 

touchscreen.   

I predicted that if female cowbirds have better spatial ability than males in 

general, then females would perform better than males on the spatial but not on the colour 

DMTS touchscreen task. In contrast, spatial ability may depend on the nature of the task, 

like in rodents and humans. Because female cowbirds outperformed males on a previous 

spatial task that required movement through space (Chapter 2, Guigueno et al. 2014), I 

predicted that, if sex differences in cowbirds are task-dependent, performance on the 

spatial touchscreen task would be similar between the sexes or may favour males.  

3.2 Methods 

3.2.1 Subjects  

I captured eight female and eight male cowbirds in April 2011 at the Queen’s 

University Biological Station near Elgin, Ontario, Canada and transported them to the 

University of Western Ontario. I housed the birds indoors in individual cages and fed 

them ad libitum for two months until the beginning of training. During this two-month 

period, birds reached their captive free-feeding weight. Food consisted of a mix of seeds 

(50% Living World® Premium seed mix for budgies: 50% white millet), fruits, 

vegetables, a modified Bronx Zoo diet for omnivorous birds (eggs, carrots, molasses, 

brown rice, wheat germ, dog food, exotic gamebird starter, and turkey starter) and oyster 

shells. 
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3.2.2 Breeding condition manipulation and measurement 

Photoperiod manipulation 

Subjects were tested in non-breeding and breeding conditions (Table 3.1). 

Subjects were exposed to varying photophase lengths at different points throughout the 

study to induce photosensitive and photorefractory states (Dawson et al. 2000). Subjects 

in non-breeding condition had been housed on days with long photophases (16 h: 8 h 

light:dark [L:D] cycle) for several months, had moulted before testing began, and were 

thus in a non-reproductive photorefractory state (Dawson et al. 2000). The long 

photophase was maintained during the entire non-breeding testing period. I then switched 

birds to a short photophase (8 h L: 16 D) for 60 d to induce photosensitivity. During this 

period, I did not test birds and they were fed ad libitum. Next, I photostimulated birds 

with a moderately long photophase (14.5 h L: 9.5 h D) to bring them into breeding 

condition. Training to criterion began a week later.  I confirmed birds were in non-

breeding and breeding condition when photorefractory and photostimulated, respectively, 

by assaying blood samples from test subjects, noting the frequency of song in the housing 

room, and examining the gonads of other cowbirds housed in the same room. 

Song recording and laparotomies 

I recorded song frequency in the cowbird housing room from 10:00 to 13:00 EDT 

in the middle of testing in non-breeding condition, three times during breeding and once 

after testing. Sentinel cowbirds were laparotomized during non-breeding and breeding 

condition testing. Birds were anesthetised with isoflurane and a small incision was made 

on the left flank to allow gonad measurement. 
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Table 3.1. Sequence of testing conditions for all birds. Spatial and colour delayed-

matching-to-sample (DMTS) tasks were performed in non-breeding condition (unshaded) 

and breeding condition (shaded) at varying retention intervals. 

 

NON-BREEDING  

  

Spatial DMTS Training to criterion 

 Progressive retention intervals: 15 sessions  

Randomized retention intervals: 11 sessions + 3 testing sessions 

  

Colour DMTS Training to criterion 

 Progressive retention intervals: 15 sessions  

Randomized retention intervals: 11 sessions + 3 testing sessions 

  

BREEDING  

  

Spatial DMTS Training to criterion 

 Progressive retention intervals: 15 sessions  

Randomized retention intervals: 11 sessions + 3 testing sessions 

  

Colour DMTS Training to criterion 

 Progressive retention intervals: 15 sessions  

Randomized retention intervals: 11 sessions + 3 testing sessions 
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Blood sampling 

Touchscreen testing did not occur on blood sampling days, and subjects were not 

food deprived. For each breeding condition, two blood samples were taken during spatial 

testing and two more during colour testing, for a total of four samples from each subject 

per condition. Blood samples were collected within 30 min of entering the housing room. 

I punctured the brachial vein with a 26-gauge needle and collected approximately 300 μL 

of blood into heparinized capillary tubes. Blood was kept cool and then centrifuged at 13 

g for 10 min within 5 h of collection. The plasma was frozen in glass vials and stored in a 

freezer until hormone assay. For each breeding condition, two samples taken during 

spatial testing were pooled, as were the two samples taken during colour testing, for a 

total of two large samples per subject per breeding condition. 

Androgen assay 

Androgen concentration was assayed using a testosterone enzyme immunoassay 

(EIA; Cat. #1-2402, Salimetrics).  Because the antibody in this kit cross-reacts with 

dihydrotestosterone and other androgens, I refer to measures as androgen levels. This kit 

has been validated in songbirds (Washburn et al. 2007). I diluted plasma samples five 

times and followed Newman et al. (2008) to validate the assay for cowbirds. I assayed a 

serial dilution of cowbird plasma and compared it to the standard curve using ANCOVA.  

A non-significant interaction term (F1,9 = 0.42, p = 0.54) indicated the slopes were similar 

(R2 = 0.84) and that the assay was suitable for cowbirds. Inter-plate variation, based on a 

pooled cowbird plasma sample and low and high controls, was 9.41%. Intra-assay 

variation, based on variation between duplicates, was 9.43%. The sensitivity of my assay 

was 1 pg/mL (two standard deviations from the average value of zero on my four 
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standard curves). Samples below 1 pg/mL were assigned a value of 0.5 pg/mL for 

statistical analyses.  

3.2.3 Touchscreen apparatus, training and software 

Touchscreen chambers were 31 cm deep, 36 cm wide, and 34 cm high, and were 

housed in sound-attenuating booths (Eckel Noise Control Technologies, Morrisburg ON). 

Subjects pecked a computer monitor that made up one side of the chamber, and was 

surrounded by a CarrollTouch infrared touchscreen frame (Elo Touch Solutions®, 

Rochester NY).  Each monitor and touchscreen frame was connected to a computer that 

presented stimuli and recorded responses using Experimentor Software, a program that I 

helped create (McCarter 2012).  

During training and testing for the touchscreen tasks, I food-restricted subjects to 

maintain them at 85% of their free-feeding weight, which was similar to their free-living 

body weight (i.e., body weight at capture from the wild). Naïve subjects were first placed 

in the operant chamber with the food hopper in the elevated position until the birds were 

feeding from the hopper. The hopper was then moved up and down randomly until the 

birds became habituated to the equipment noise and were feeding from the moving 

hopper. I then manually shaped the birds to peck a shape on the touchscreen to access the 

food hopper. I adhered a clear tape with seeds on the shape to encourage the birds to 

peck. It took between one to four 45-min hand-shaping sessions for all the birds to learn 

to peck a shape to bring the food hopper to the elevated position. Finally, I trained birds 

to peck progressively longer sequences of shapes until the full sequence for the task was 

reached. 
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3.2.4 Spatial and colour delayed-match-to-sample (DMTS) tasks 

A fixation point was displayed until the bird initiated a trial by pecking it, after 

which this fixation point disappeared and a sample square (black outline – spatial task, 

coloured – colour task) was presented for a maximum of 90 seconds (Figure 3.1, Table 

3.2). As soon as the bird pecked the sample square (usually less than 90 seconds), it 

disappeared and a retention interval (RI) of 5, 15, 30, 45, or 60 s with a blank white 

screen was displayed. After the RI, a second fixation point was presented for up to 5 s. 

Once pecked, the second fixation point disappeared and was replaced with a choice with 

three squares appearing for up to 10 s. If the sample square, the second fixation or a 

choice were not pecked within the allocated time, the trial was considered abandoned, a 

white screen was presented for 5 s and the first fixation point was displayed again to 

initiate a new trial.  

All stimuli were presented within an 85 X 80 mm rectangle on the 340 X 270 mm 

screen. Fixation points were circles with 30 mm diameter and centred on the screen. The 

sample and choice (match and distractor stimuli) squares were 25 X 25 mm. Sample 

squares could appear anywhere around the fixation point, with a consistent distance of 30 

mm between the middle of the fixation point and the middle of the sample square. The 

matching and distractor stimuli appeared 55 mm equidistant from each other rotated 

randomly around the fixation point and 35 or 65 mm from the sample square for the 

colour task (see section below for more details). Apart from this constraint, matching and 

distractor squares could appear at random anywhere around the fixation point except on 

the spatial task in which one stimulus always occupied the same location as the sample 

stimulus. The match and distractor stimuli could be no closer to each other than to the  
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Figure 3.1.  Spatial (top) and colour (bottom) delayed-matching-to-sample (DMTS) 

touchscreen tasks. Every trial began with a fixation point (first image from left), followed 

by a sample square (second image from left). The bird had to remember either the 

location (spatial DMTS) or the colour (colour DMTS) of the sample square. After 

pecking the sample square, it disappeared and a retention interval (RI) of 5, 15, 30, 45 or 

60 s with a blank white screen was displayed. After the RI, a second fixation point (third 

image from left) was displayed. The bird had to peck the second fixation point to have a 

choice of three squares displayed (last image). The correct square was either in the same 

location (spatial DMTS) or the same colour (colour DMTS) as the sample square. A 

correct choice resulted in 5 s of food access with a blank white screen and an incorrect 

choice resulted in 5 s without food access with a blank black screen. 
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Table 3.2. HTML codes for the colours used in the colour DMTS task. 

 

Colour name HTML code 

Green #55AA2B 

Red #FF0000 

Blue #0000FF 

Fuchsia #FF00FF 

Orange #CC6600 

Purple #800080 

Olive #808000 

Dark blue green #4C7D7E 

Brown  #A52A2A 

Gold #EAC117 
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comparison stimuli. Colour stimuli for the colour DMTS task could have one of 10 

colours. Colours were drawn from HTML codes (Table 3.2).   

I tested subjects first with a spatial DMTS task, then a colour DMTS task in non-

breeding and breeding conditions (Table 3.1). A correct choice was rewarded with 5 s of 

food access and an incorrect choice was followed by a black screen that darkened the 

chamber for 5 s. Each subject was tested in 1.5 h daily sessions during which subjects 

completed as many trials as possible (from 20 to over 200 trials, depending on RI length) 

to generate the most accurate measure of performance (proportion correct). The 

illumination level of the white screen on which stimuli were presented was 116.3 lux and 

the illumination level of the black screen was 2.2 lux measured at the position of the bird 

in the chamber.   

Subjects were trained on a 0-s RI task and had to complete at least 5 sessions and 

reach a criterion of two sessions with ≤ 10% variation and accuracy of at least 10% above 

random performance (Training to criterion phase; see Table 3.1). Once criterion at a 0 s 

RI was reached, the RI was increased progressively every fourth session for 15 sessions 

(Progressive RI phase; see Table 3.1) with a sequence of RIs as follows: 5, 15, 30, 45 and 

60 s. The Progressive RI phase was followed by 14 sessions in which the same RI (except 

5 s) occurred in a random sequence within each session (Randomized RI phase). The 

Progressive RI phase and the first 11 sessions in the Randomized RI phase were 

considered training sessions prior to the subjects reaching their peak performance before 

subsequent testing for each task type (spatial and colour) and for each breeding condition 

(non-breeding and breeding) as performance significantly improved over these sessions 

(Table 3.1). Analyses of the Progressive RI phase were not the focus of this chapter, but  
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are included in the results. Only the last three sessions in the Randomized RI phase were 

used as testing sessions to assess the subjects’ peak performance described in the sections 

“DMTS tasks” and “Comparison between spatial and colour tasks” below. In the section 

“Transition between the spatial and colour tasks”, I used data from the absolute first three 

sessions on the colour task (Training to criterion phase in Table 3.1) and the first three 

sessions in the Progressive RI phase of the colour task, both in non-breeding condition 

(described in more detail below; Table 3.1).  

Each subject thus had extensive training by the onset of the testing sessions, in 

order to minimize the effects of order of testing (spatial before colour, and non-breeding 

before breeding; Table 3.1). One female subject did not reach criterion for the colour task 

in non-breeding and breeding conditions, therefore I only include her data for the spatial 

task in non-breeding and in breeding conditions. Removing this female from the analyses 

did not change the main conclusions of the study. For spatial testing in breeding 

condition, data were absent for two out of the 8 males because one male died and the 

other fell ill and could not be used for testing during that period. For colour testing in 

breeding condition, data were missing from the male that previously died and a female 

that died during that period. Final sample sizes were as follows: non-breeding spatial: 8 

females, 8 males; non-breeding colour: 7 females, 8 males; breeding spatial: 8 females, 6 

males; breeding colour: 6 females, 7 males. In addition to analyzing performance of 

females and males for each task type (spatial and colour), I analyzed differences in 

performance between the spatial and colour tasks for each sex.  
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3.2.5 Transition between spatial and colour DMTS tasks and 

breeding conditions 

I determined whether the spatial location of the rewarded square affected the 

subjects’ choice on the colour test. The squares used in the spatial DMTS task were 

always white with a black outline and so cowbirds could not use colour to solve the 

spatial DMTS task. Cowbirds could have persisted in using spatial location of the sample 

during the colour DMTS task, however, so I ensured the cowbirds were sufficiently 

trained on the colour DMTS task before colour testing began. To determine whether 

location affected the cowbirds’ choice during colour testing, I recorded the distance 

between the location of the sample square presented immediately after fixation point one 

and the location of the correct matching square during the choice phase. I then 

determined whether distance influenced the probability of making a correct choice. The 

correct square was never presented in the same location as the sample square for the 

colour task. The distance between the sample and correct squares could either be “near” 

or “far” because the three choice squares were always equidistant from each other and 

centered around the fixation point, but shifted either 60º (“near”) or 120º (“far”) from the 

original location of the sample square (Figure 3.1). With this information, it was possible 

to measure the influence of distance on the probability of making a correct choice.  
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To ensure that performance was not affected by the order of testing of non-breeding and 

breeding conditions, birds repeated the entire sequence of training to criterion followed 

by Progressive Retention Interval (RI) training before Randomized RI testing began for 

both spatial and colour tasks (see Table 3.1). 

3.2.6 Statistical analyses 

I analyzed my data with linear mixed models (PROC MIXED in SAS 9.3; SAS 

Institute, Cary NC) because the dependent variables were continuous, repeated measures, 

and data were missing at random due to the loss of some subjects during the experiment 

(see above). I used a compound symmetry covariance structure because the model AIC 

values were lower than with the default variance components covariance structure (see 

also Jenrich and Schluchter 1986). Data were appropriately transformed for analyses (see 

details below) to produce normally distributed residuals. However, to facilitate 

interpretation, data in figures are presented as untransformed means ± SE, except for 

significant interactions for the spatial and colour DMTS tasks, which are presented as 

transformed least squares means ± SE. I analyzed all two-way interactions as factors in 

the models. Significant effects were further analyzed using Fisher’s LSD post-hoc tests. 

Androgen concentrations 

I used a linear mixed model with sex, breeding condition, and task type as fixed 

factors and subject as a random variable to analyze androgen concentrations. Data were 

log-transformed for analyses to produce normally-distributed residuals.  
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DMTS tasks 

  I used a linear mixed model for each task type (spatial and colour) with RI (15 s, 

30 s, 45 s, and 60 s), breeding condition (non-breeding and breeding), and sex (female 

and male) as fixed factors and subject as a random variable to analyze the proportion of 

correct responses, which were arcsine square root transformed for the analyses to produce 

normally-distributed residuals (Sokal and Rohlf 1995). The dependent variable was peak 

performance (i.e., the last three sessions) from the Randomized RI phase (Table 3.1). 

Comparison between spatial and colour tasks 

I used a linear mixed model with task type (spatial and colour) and sex (female 

and male) as fixed factors and subject as a random variable to analyze the proportion of 

correct responses in the testing sessions, which were arcsine square root transformed for 

the analyses to produce normally-distributed residuals. The dependent variable was peak 

performance (i.e., the last three sessions) from the Randomized RI phase for the spatial 

and colour tasks (Table 3.1). 

Transition between the spatial and colour tasks 

  Birds performed the spatial task before the colour task first in non-breeding 

condition and then again in breeding condition (Table 3.1).  To determine whether birds 

attempted to use a spatial matching strategy to solve the colour matching task, I measured 

the distance between the sample and the correct square for each trial during the first three 

training to criterion sessions on the colour task (RI = 0 s) and during the first three 

sessions in the Progressive RI phase (RI = 5 s) of the colour task in non-breeding 

condition.  For all birds, this was the first transition from the spatial to the colour task 

(Table 3.1). I used linear mixed models for the first three sessions during the initial 
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training and Progressive RI phases with distance between the sample and chosen stimuli 

and sex as fixed factors and subject as a random variable to analyze the proportion of 

correct responses. The proportion of correct responses were log arcsine square root 

transformed for the initial training phase and arcsine square root transformed for the 

Progressive RI phase to produce normally-distributed residuals. 

3.3 Results 

3.3.1 Confirmation of breeding condition 

Song frequency 

Song frequency in non-breeding condition (147 songs per hour) was about a tenth 

of the frequency recorded in breeding condition (1224, 1098, and 969 songs per hour).  

After the DMTS testing was completed and the birds moulted, song frequency decreased 

to a non-breeding level (72 songs per hour). 

Laparotomies 

I performed laparotomies on sentinel birds (i.e., birds not used in the DMTS tasks) 

during non-breeding and breeding conditions to record changes in gonadal development.  

I measured the testes of three males twice in non-breeding condition (range 1.5-2 mm) 

and two males twice in breeding condition (range 3-4 mm), confirming testicular 

development. The ovaries of three females examined twice in non-breeding condition 

were granular and showed no follicle hierarchy. I did not perform laparotomies on 

females in breeding condition because a change in gonadal development in females is 

generally only seen a few days before egg-laying (SMS, pers. obs.). Near the end of 
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testing in breeding condition, however, three females in the colony laid eggs.  One bird 

laid a single egg, another laid three eggs and one laid one egg per day for 14 consecutive 

days, confirming that females underwent gonadal development. 

Androgen levels 

There was a significant effect of breeding condition, with the highest circulating 

levels of androgens in breeding condition (F1,14 = 120.63, p < 0.0001), whereas there was 

no main effect of sex (F1,14 = 2.82, p = 0.12), or task type (F1,14 = 1.08, p = 0.32; Figure 

3.2). There was a significant sex by breeding condition interaction (F1,14 = 22.61, p = 

0.0003), with a greater effect of breeding condition in males (t14 = 11.02, p < 0.0001) 

than in females (t14 = 4.45, p = 0.0005; Figure 3.2). There was also a significant task type 

by breeding condition interaction (F1,14 = 5.95, p = 0.03), with a greater change in 

androgen concentration between breeding conditions for the spatial task (t13 = 9.59, p < 

0.0001) than for the colour task (t13 = 5.98, p < 0.0001; Figure 3.2). There was no 

significant interaction between sex and task type (F1,14 < 0.01, p = 0.99). 

3.3.2 Acquisition: Progressive RI 

Spatial memory 

Performance decreased as RI increased (F4,52 = 67.69, p < 0.0001). Sex, breeding 

condition, and all interactions were non-significant (Table 3.3, Figure 3.3). 

Colour memory 

 Subjects performing better in breeding condition than in non-breeding condition 

(F1,12 = 47.11, p  < 0.0001). Performance decreased as RI increased (F4,52 = 22.33, p < 

0.0001).  Sex and all interactions were non-significant (Table 3.4, Figure 3.3). 
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Figure 3.2. Plasma androgen concentrations in female and male brown-headed cowbirds 

between breeding conditions and performance on spatial and colour tasks. Means are 

presented with ± SE. Asterisks indicate p ≤ 0.05. 
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Table 3.3. Summary of statistical effects of sex, breeding condition (BC), retention 

interval (RI) and their interactions during the 15 practice sessions from the Progressive 

RI phase and the 3 test sessions from the Random RIs phase for the spatial delayed-

matching-to-sample task. Significant effects are in bold. 

 

Factors F d.f. p 

Spatial  

Progressive RI – 15 practice sessions 

Sex 0.31 1,14 0.59 

BC 1.48 1,14 0.24 

RI 67.69 4,56 <0.0001 

Sex*BC 1.86 1,14 0.19 

Sex*RI 1.51 4,56 0.21 

BC*RI 1.61 4,60 0.18 

Randomized RI – 3 test sessions 

Sex 1.77 1,14 0.20 

BC 0.49 1,12 0.50 

RI 0.70 3,42 0.56 

Sex*BC 11.66 1,12 0.005 

Sex*RI 4.15 3,42 0.01 

BC*RI 0.02 3,39 1.00 
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Figure 3.3. Mean performance ± SEM on the Progressive RI spatial (top) and colour 

(bottom) delayed-matching-to-sample tasks in non-breeding and breeding conditions. The 

retention interval was progressively increased after three sessions at a given retention 

interval. 

Spatial 

Colour 
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Table 3.4. Summary of statistical effects of sex, breeding condition (BC), retention 

interval (RI) and their interactions during the 15 practice sessions from the Progressive 

RI phase and the 3 test sessions from the Random RIs phase for the colour delayed-

matching-to-sample task. Significant effects are in bold. 

 

Factors F d.f. p 

Colour 

Progressive RI – 15 practice sessions 

Sex 0.67 1,13 0.43 

BC 47.11 1,12 <0.0001 

RI 22.33 4,52 <0.0001 

Sex*BC 0.21 1,12 0.65 

Sex*RI 0.57 4,52 0.68 

BC*RI 1.79 4,49 0.15 

Randomized RI – 3 test sessions 

Sex 0.00 1,13 0.98 

BC 10.91 1,11 0.007 

RI 6.01 3,39 0.002 

Sex*BC 13.68 1,11 0.004 

Sex*RI 0.30 3,39 0.82 

BC*RI 1.86 3,36 0.15 
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3.3.3 Testing: Randomized RI  

Spatial memory 

There were no main effects of sex, breeding condition, or RI and no significant  

breeding condition by RI interaction on performance (Table 3.3, Figure 3.4A).There was,  

 however, a significant sex by breeding condition interaction (F1,12 = 11.71, p = 0.005; 

Figure 3.4B). Breeding males performed better than breeding females (t12 = 2.42, p = 

0.03; Figure 3.4B). Males performed better in breeding condition than in non- breeding 

condition (t12 = 2.70, p = 0.02) whereas females performed nearly significantly better in 

non-breeding condition than in breeding condition (t12 = 2.11, p = 0.06; Figure 3.4B). 

There was also a significant sex by RI interaction (F3,42 = 4.06, p = 0.01), with males 

performing better than females at the 15 s RI (t42 = 2.57, p = 0.01; Figure 3.4C). Males 

performed more poorly at the 60s RI compared to the 15 s RI (t42 = 3.19, p = 0.003), 

whereas females’ performance remained stable (t42 = 1.67, p = 0.10; Figure 3.4C). 

Colour memory 

There was a significant main effect of breeding condition (F1,11 = 8.60, p = 0.01; 

Figure 3.5A). However, a significant sex by breeding condition interaction (F1,11 = 12.41, 

p = 0.005) indicated that only females performed better in breeding condition than in 

non-breeding condition (t11 = 4.40, p = 0.001), with males’ performance showing no 

difference between breeding conditions (t11 = 0.44, p = 0.67; Figure 3.5A). There was 

also a significant main effect of RI, with performance decreasing as RI increased There 

was also a significant main effect of RI, with performance decreasing as RI increased 

(F3,39=5.52, p = 0.003; Figure 3.5A). There was no effect of sex and all other interactions 

were not significant (Table 3.3).  
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Figure 3.4. A) Peak performance on the spatial delayed-matching-to-sample touchscreen 

task. Performance was calculated from the last three sessions of the with randomized 

retention intervals phase. Means of raw data are presented with ± SE. Proportion correct 

expected by chance equals 0.33. Two males were only tested in non-breeding condition 

and elevated raw means in this condition more heavily than the linear mixed models, for 

which least squares means of significant interactions are presented in B and C. B) 

Summary by sex and breeding condition of data shown in A), with data arcsine square 

root transformed with least squares means ± SE. Breeding males were significantly better 

than non-breeding males, but there was no difference between non-breeding and breeding 

females. In addition, breeding males performed significantly better than breeding 

females. C) Summary of data shown in A) by retention interval (RI), with data arcsine 

square root transformed with least squares means ± SE. Males performed significantly 

better than females at the 15 s RI. Males performed significantly worse at the 60 s RI than 

at the 15s RI. Females are in light grey and males are in dark grey. Asterisks indicate p ≤ 

0.05. 
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Figure 3.5. A) Peak performance on the colour delayed-matching-to-sample touchscreen 

task. Performance was calculated from the last three sessions of the randomized retention 

intervals phase. Means of raw data are presented with ± SE. Proportion correct expected 

by chance equals 0.33. One female and one male were only tested in non-breeding 

condition and these missing points were corrected for in the linear mixed model, for 

which the only significant interaction is shown in B. B) Summary of the data shown in A) 

by sex and breeding condition, with data arcsine square root transformed with least 

squares means ± SE. Females performed significantly better in breeding than in non-

breeding condition, with no effect of breeding condition for males. Asterisks indicate p ≤ 

0.05. 
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Figure 3.5 
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3.3.4 Comparison between spatial and colour tasks 

Performance differed significantly between task types (F1,13 = 310.20, p < 

0.0001), with cowbirds performing better on the spatial task than on the colour task 

(Figure 3.6). There was no significant main effect of sex (F1,14 = 1.22, p = 0.29) and no 

significant sex by task interaction (F1,13 = 1.10, p = 0.31; Figure 3.6). 

3.3.5 Transition between spatial and colour tasks 

During the initial transition from the spatial to the colour task (i.e., in non-

breeding condition), birds were more likely to respond correctly when the correct colour 

match was near the spatial location of the sample than when it was further away (F1,13 = 

43.96, p < 0.0001) (Figure 3.7A). There was no main effect of sex (F1,13 = 0.60, p = 0.45; 

Figure 3.7A), but there was a nearly significant interaction between sex and distance  

(F1,13 = 4.42, p = 0.06), with distance affecting males (t13 = 6.32, p < 0.0001) more than 

females (t13 = 3.13, p = 0.008; Figure 3.7A).  

When birds were trained on the Progressive RI in non-breeding condition, 

following two weeks of colour training and the birds had reached criterion for the colour 

task, there was no longer an effect of distance on performance (F1,13 = 0.28, p = 0.61; 

Figure 3.7B).  There was no main effect of sex (F1,13 = 0.90, p = 0.36) and no significant 

sex by distance interaction (F1,13 = 0.36, p = 0.56; Figure 3.7B). Thus, birds initially used 

a spatial strategy to solve the colour task, but by the beginning of Progressive RI training 

on the colour task, they no longer did so. 
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Figure 3.6. Comparison of performance between the spatial and colour tasks during the 

testing sessions (see Table 3.1). Female and male cowbirds performed better on the 

spatial task than on the colour task. Performance of both males and females was 

significantly better than chance, indicated by the dashed line. Means are presented with ± 

SE. Asterisks indicate p ≤ 0.05. 

  

* * 
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Figure 3.7. Transition from spatial to colour delayed-matching-to-sample touchscreen 

tasks. The figure shows the proportion of trials correct in the colour task when the correct 

match was near or far from the spatial location of the sample. A) In the first three 

sessions on the colour task (retention interval [RI] = 0 s), both males and females were 

more likely to make the correct colour choice when the matching stimulus was near the 

location the sample had occupied. During this phase of training, there was only one 

distractor presented in the choice phase, therefore random performance was 0.5 

(indicated by dashed line). B) After two weeks of testing, when the Progressive RI testing 

phase began (RI = 5 s), the location of the matching colour stimulus had no effect on 

performance. During this testing phase, two distractors were presented in the choice 

phase therefore random performance was 0.33 (indicated by dashed line). Means are 

presented with ± SE. Asterisks indicate p ≤ 0.05 for the spatial versus colour comparison. 
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Figure 3.7 
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3.4 Discussion 

Male cowbirds were more accurate than females on the spatial touchscreen task in 

two ways: first, males performed better than females at a short RI (15 s) and second, 

breeding males performed better than breeding females (Figure 3.4). On the colour task,  

females performed better in breeding than in non-breeding condition, whereas males’ 

performance remained stable between breeding and non-breeding conditions (Figure 3.5). 

Finally, females and males both performed better on the spatial task than on the colour 

task (Figure 3.6). 

Order effects could have potentially influenced differences in performance 

between tasks and between breeding conditions, because cowbirds were tested on the 

spatial task before the colour task and in non-breeding condition before breeding 

condition (Table 3.1). However, I found that order effects were negligible for task order 

because spatial location did not influence performance during the Progressive RI phase of 

the colour task, several sessions before colour testing began (Figure 3.7). This lack of 

order effects was likely due to extensive practice on the colour task before testing began 

(Table 3.1). In a similar fashion, birds were trained once again to asymptotic performance 

in breeding condition before the onset of the Progressive RI phase so that birds began 

training with increasing RI while at their peak performance at a 0 s RI (Table 3.1). I 

would expect birds of both sexes to perform better in breeding condition on both tasks if 

order effects were the main factors influencing differences between breeding conditions. 

However, males’ performance remained stable between breeding conditions on the colour 

task (Figure 3.5) and females performed nearly significantly better in non-breeding 

condition than in breeding condition on the spatial task (Figure 3.4). I cannot fully 
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disentangle breeding condition versus non-breeding condition from the passage of time 

and any other factors potentially correlated with time. These other explanations are 

possible, but I find them unlikely. 

3.4.1 Spatial memory 

In contrast to the results of the current study, female cowbirds had more accurate 

spatial memory than males when navigating through a room to find baited food cups 

(Chapter 2, Guigueno et al. 2014). Although the task in that prior study and the 

touchscreen task described here were both DMTS tasks assessing spatial memory, the 

two tasks differed in spatial scale (180 cm X 180 cm versus 8.5 X 8 cm) and retention 

interval (24 h versus 5-60 s). Furthermore, the tasks differed in the response required of 

the birds; approaching and feeding from a cup versus pecking a symbol on a screen. 

Thus, whether or not a sex difference in spatial memory in cowbirds is observed depends 

on the spatial task.  

Sex differences in spatial ability can be task-dependent. Males, especially in 

mammals, perform better than females on a variety of spatial tasks and a consistent 

feature of their enhanced performance is the use of spatial cues (geometric properties of 

the environment, distance, and direction) and feature cues while females prefer to use 

only feature cues (Gaulin et al. 1986, Gaulin et al. 1989, Silverman et al. 2000, Postma et 

al. 2004, Jozet-Alvez et al. 2008). However, recent work in birds showed that preference 

for spatial cues is not restricted to males but depends on the value of a cue to the solution 

of the task (Hodgson and Healy 2005, Tello-Ramos et al. 2014). Female cowbirds may 

have had a preference for spatial cues over feature cues on the task in (Guigueno et al. 
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2014), but this preference was reduced or absent in the current task. Selection may have 

led to flexibility in cue use in cowbirds rather than consistently superior spatial ability by 

one sex or the other (Hodgson and Healy 2005, Tello-Ramos et al., 2014). Finally, 

females performed equally well, and above chance, across retention intervals while male 

performance declined significantly with retention interval (Figure 3.4). Females may be 

relatively unaffected in general by retention interval. In the wild, females probably 

remember the locations of potential host nests for at least 24 h and females outperformed 

males at the 24 h retention interval tested in Chapter 2 (Guigueno et al. 2014). 

 Why did male cowbirds outperform females in breeding condition? From a life-

history perspective, there could be a trade-off associated with specialization in a 

particular form of memory. Enhanced cognitive function has metabolic and life-history 

costs (Hasentaub et al. 2010, Burns et al. 2011, Cole et al. 2012, Healy 2012). Improved 

ability in one type of spatial memory may come at the cost of another type of spatial 

memory. Female cowbirds did better on an allocentric task in which they moved through 

their environment and this ability may help females find and relocate host nests (Chapter 

2, Guigueno et al. 2014). Enhanced performance by female cowbirds in allocentric spatial 

tasks may come at a cost in the performance of egocentric tasks such as my spatial 

touchscreen task in the current study. It is also possible that there is differential selection 

on males – for unknown reasons – for the ability to remember the location of objects in a 

spatial array in their immediate visual field.  Finally, it is possible there is some 

functional incompatibility (Sherry and Schacter 1987) – again for reasons that are not 

known – between different kinds of spatial ability involved in orientation and navigation 

and remembering the location of objects in an array. In humans, men outperform women 
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on several measures of wayfinding through a wooded area or a large indoor environment 

(Silverman et al. 2000, Postma et al. 2004) but women outperform men on stationary 

object location memory tasks (Voyer et al. 2007, Hampson 2008). In cowbirds, observed 

sex differences on these different kinds of spatial memory are reversed relative to 

humans. 

A proximate explanation for superior male performance in breeding condition 

could be their sex steroid hormone levels. Although androgen concentrations increased in 

both sexes between breeding conditions, males’ concentration increased a great deal more 

between non-breeding and breeding conditions (Figure 3.2). Male deer mice show better 

acquisition of spatial maze performance than females in breeding condition only, when 

their testosterone levels are highest (Galea et al. 1996). In a task similar to mine, 

exogenous androgens improved performance on a delayed-non-matching-to-sample 

touchscreen task in great tits (Hodgson et al. 2008). In situ hybridization shows 

expression of androgen and estrogen receptor genes in the hippocampus of tits and 

testosterone and estrogen could influence spatial memory by binding to these receptors 

(Hodgson et al. 2008). The songbird hippocampus expresses high levels of aromatase, 

resulting in high levels of local estrogen synthesis from testosterone and enhanced spatial 

memory acquisition and performance (Saldanha et al. 2004, Oberlander et al 2004, Bailey 

et al. 2013). Enhanced performance on the DMTS spatial task by male cowbirds could 

thus have been caused by elevated testosterone levels.   
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3.4.2 Colour memory 

Why might colour memory improve in breeding condition for females, but not for 

males (Figure 3.5)? One ultimate explanation could be that improved colour memory is 

related to mate choice. The plumage of male cowbirds that are nutritionally stressed has a 

lower brightness, hue, and saturation than the plumage of males that are fed ad libitum 

(McGraw et al.2002). Females generally prefer to mate with males exhibiting the 

brightest ornaments (Olson and Owens 1998) and female colour memory during breeding 

may contribute to successful mate choice.  

Another ultimate explanation may be that females use colour cues to find suitable 

host nests to parasitize. Although cowbirds are considered host generalists, they do show 

host selectivity (Lowther 1993, Woolfenden et al. 2003). In some populations, cowbirds 

parasitize preferred hosts first, but switch to less preferred hosts when others are 

unavailable (Woolfenden et al. 2003). Hosts themselves and host eggs vary in colour 

(Lowther 1993) and colour may influence nest selection. 

A proximate explanation for better performance by females on the colour task in 

breeding condition could be that colour vision differs between the sexes and may vary 

with breeding condition. Female cowbirds have poorer chromatic visual resolution than 

males (Fernández-Juricic et al. 2013). Based on their time of capture, the birds examined 

by Fernández-Juricic et al. (2013) were probably in non-breeding condition. There may, 

thus, be differences between male and female cowbirds in colour vision and the nature of 

this difference may vary with breeding condition 
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3.4.3 Spatial versus colour memory 

 Both female and male cowbirds performed better on the spatial task than on the 

colour task (Figure 3.6). I showed that birds did not use a spatial strategy to solve the 

colour task early in the Progressive RI phase, several sessions before colour testing 

(Figure 3.7). This result suggests that the effect of order (spatial before colour) was 

minimalized or possibly eliminated with extensive practice on the colour task, although I 

cannot completely rule out potential order effects. 

Better performance on the spatial task relative to the colour task may simply be 

the result of how spatial and colour memory was tested and not a general difference 

between spatial and colour memory in cowbirds. The colour task may have been more 

difficult because of the difference in perceptual space between the correct match and 

distractors, or the colour samples may have been less memorable. Alternatively, species 

that have strong demands for spatial memory may perform better on spatial than colour 

tasks. For example, food-storing black-capped chickadees (Poecile atricapillus) 

performed better on a spatial touchscreen task than on a colour touchscreen task whereas 

non-food-storing dark-eyed juncos (Junco hyemalis) performed equally well on both 

tasks (Brodbeck and Shettleworth 1995). Enhanced performance on the spatial task in 

chickadees was proposed to be related to the chickadees’ reliance on memory for the 

location of stored food in the wild (Brodbeck and Shettleworth 1995). Other food-storing 

species are better than non-food-storers on spatial DMTS touchscreen tasks similar to 

mine (McGregor and Healy 1999). Free-living cowbirds, both males and females, may 

rely more heavily on spatial information than on colour information in behaviours 

resembling my DMTS task, such as foraging for seeds or invertebrates on the ground. It 
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is also possible that sex-specific selection acting on females for enhanced spatial memory 

has affected males.  Many genes are obviously shared between the sexes and this genetic 

correlation can cause a trait favored in one sex to occur in both (Lande 1980, Wyman et 

al. 2013). A test of this hypothesis would be to compare performance of male and female 

icterids that are not brood parasites on the spatial and colour DMTS tasks and the 

orientation task used in (Chapter 2, Guigueno et al. 2014).  

3.4.4 Conclusions 

 Sex differences in spatial memory abilities in brown-headed cowbirds depend on 

the task used to assess spatial ability. Females performed better than males in a related 

study in which birds moved through their testing environment to return to a remembered 

spatial location. However, male cowbirds performed better than females on a stationary 

spatial task in the current experiment. This task-dependent sex difference in spatial 

memory is the reverse of that observed in humans and could be due to trade-offs between 

different forms of spatial memory, differential selection, or functional incompatibility. 

Colour memory was found to improve in females from non-breeding condition to 

breeding condition and may play a role in mate choice or host nest selection. Finally, 

males and females alike were better on the spatial task than on the colour task, suggesting 

that memory for spatial information may be more accurate than memory for colour 

information in both sexes in some contexts in their natural environment. 
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Chapter 4 

4. Sex and seasonal changes in hippocampus 

volume and neurogenesis of brown-headed 

cowbirds and red-winged blackbirds4 

4.1 Introduction 

The brain can be specialized to maximize fitness by accommodating behavioural 

demands an organism routinely encounters in the wild (Sherry 2006, Smulders et al. 

2010). This specialization has been demonstrated in the hippocampus, partly because the 

hippocampus is strongly associated with spatial memory and navigation, which are 

behaviours that can be easily measured. For instance, the hippocampus varies in size 

according to space use in a variety of organisms, and lesions of the hippocampus 

selectively disrupt spatial memory (Sherry and Vaccarino 1989, Hampton and 

Shettleworth 1996, Broadbent and Colombo 2000, Shiflett et al. 2003). In addition to 

hippocampus size, hippocampal neurogenesis may be involved in spatial memory, 

                                                      
4 This chapter has not been published. David Sherry and Scott MacDougall-Shackleton 

will be co-authors when this chapter is published as they were involved in the conceptual 

development, experimental design, and editing of the manuscript. 
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especially if an individual must encode new information about its surroundings (Barnea 

and Pravosudov 2011). An organism’s environment is constantly changing and new 

neurons might help form new memories and replace old neurons that contain information 

from the past that may cause interference (Barnea and Pravosudov 2011). Thus, 

organisms that must rely more on spatial memory to reproduce and/or survive may have 

evolved a larger hippocampus with more neurogenesis. 

The hippocampus of food-storing and migratory birds is frequently larger with 

greater hippocampal neurogenesis than non-food-storing and non-migratory birds. Birds 

belonging to families in which some species store food, such as Paridae and Sittidae, 

have a larger relative hippocampus than birds from non-food-storing families (Krebs et 

al. 1989, Sherry et al. 1989). Phylogenetic comparisons have shown that relative 

hippocampus size is positively related to food-storing behaviour (Garamszegi and Eens 

2004, Lucas et al. 2004). Within a food-storing species, hippocampus size (Roth and 

Pravosudov 2009) and hippocampal neurogenesis (Chancellor et al. 2011) are greater in 

populations that depend more on stored food due to harsher environmental conditions 

(Roth and Pravosudov 2009). Migratory sub-species of white-crowned sparrows 

(Zonotrichia leucophrys) have a larger hippocampus (Pravosudov et al. 2006) and higher 

hippocampal neurogenesis (LaDage et al. 2011) than non-migratory sub-species. 

Hippocampal neurogenesis is also higher in a migratory Old World Acrocephalus warbler 

than a closely-related non-migratory species (Barkan et al. 2014). In sum, hippocampus 

size and neurogenesis are closely associated with patterns of space use across songbird 

species.  
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Although there are patterns of hippocampus size and neurogenesis relating to 

space use among species, seasonal changes in the hippocampus within species have 

yielded conflicting results. In chickadees, Smulders et al. (1995) reported a peak in 

hippocampus volume in October, which corresponds roughly to the first half of the food-

storing season. In support, Barnea and Nottebohm (1994) reported that neurogenesis was 

also at its peak at that time. However, Hoshooley and Sherry (2004) used the exogenous 

cell birth marker bromodeoxyuridine (BrdU) and found no seasonal variation in the 

production of new neurons in the hippocampus. In addition, Hoshooley and Sherry 

(2004) found no seasonal variation in apoptosis of mature neurons. Thus, the results from 

Barnea and Nottebohm (1994) could only be explained by seasonal differences in the 

survival of new neurons. Likewise, subsequent studies were unable to replicate the results 

from Smulders et al. (1995). Two studies found no change in hippocampal volume 

throughout the year (Hoshooley and Sherry 2004, Hoshooley et al. 2007), while a third 

reported results opposite to those of Smulders et al. (1995) in which chickadees had a 

larger hippocampus from February to April than from October to November (Hoshooley 

and Sherry 2007). Sherry and MacDougall-Shackleton (2014) proposed that hippocampal 

volume and neurogenesis in chickadees, and thus discrepancies between studies, could be 

explained by the year-to-year food-storing experience of chickadees (food availability, 

flock size, temperatures, etc.). Unlike the hippocampus, there is a clear photoperiodically-

induced pattern of neurogenesis in other brain regions, such as the song control nuclei 

(Tramontin and Brenowitz 2000). The song control nucleus HVC undergoes a peak in 

neurogenesis in the autumn when some species of songbirds modify their song for the 

upcoming breeding season (Tramontin and Brenowitz 1999, Nottebohm 2004). Clear 
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seasonal patterns of neurogenesis in the hippocampus do not seem to exist in the same 

manner as they do with HVC. However, seasonal changes in the volume and 

neurogenesis of the hippocampus have not been studied in birds other than food-storers. 

In addition to the species and seasonal differences described above, sex 

differences in hippocampus size and neurogenesis have been reported in mammals. For 

instance, meadow voles (Microtus pennsylvanicus) are polygynous and males have home 

ranges that are 4-7 times larger than the home ranges of females, whereas there is no sex 

difference in space use in monogamous pine voles (M. pinetorum; Gaulin and FitzGerald 

1986, 1989). Consistent with these sex and species differences in space use, the 

hippocampus is larger in male meadow voles than females, but no sex difference exists in 

pine voles (Jacobs et al. 1990). In Richardson’s ground squirrels (Urocitellus 

richardsonii), which are also polygynous, males have a larger hippocampus with more 

neurogenesis than females (Burger et al. 2013, Burger et al. 2014). The hippocampus in 

mammals is evolutionarily homologous to that in birds (Colombo and Broadbent 2000, 

Jarvis et al. 2005). Thus, I would expect trends in birds to mirror those in mammals, and 

as 90% of birds are socially monogamous and provide bi-parental care (Mock and 

Fujioka 1990), I would expect few sex differences in hippocampus size or neurogenesis 

in bird species.  

Although sex differences are not expected in most bird species, previous work on 

avian brood parasites has found sex differences in hippocampus size and spatial memory, 

in addition to seasonal differences in hippocampus size. In brown-headed cowbirds 

(Molothrus ater), only females repeatedly visit dozens of host nests per breeding season 

to assess the stage of completion of their clutches, to lay their own eggs, and to remove 
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host eggs (Norman and Robertson 1975, Rothstein et al. 1986, Gates and Evans 1998, 

White et al. 2009, Guigueno and Sealy 2011). Female cowbirds performed better than 

males on a spatial task requiring birds to find hidden food in a large room, with 

performance remaining stable across breeding conditions (Chapter 2, Guigueno et al. 

2014). Female brown-headed cowbirds have also been found to have a larger 

hippocampus relative to the telencephalon than males (Sherry et al. 1993), however 

seasonal effects were not studied. A sex difference in hippocampus size was also 

observed in shiny cowbirds (M. bonariensis), a South American relative in which, like 

brown-headed cowbirds, only females search for nests (Reboreda et al. 1996). However, 

no sex differences were found in screaming cowbirds (M. rufoaxillaris), a brood parasite 

in which males assist in nest searching (Reboreda et al. 1996). In a seasonal comparison, 

(Clayton et al. 1997) both shiny and screaming cowbirds had a larger relative 

hippocampus size in the breeding season, but a sex difference only existed in shiny 

cowbirds. The sex difference in hippocampus size in favour of females found in shiny 

and brown-headed cowbirds is thus the reverse of that usually found in mammals.  In 

sum, few studies have simultaneously examined sex and seasonal differences in the 

hippocampus size of brood parasites and none have incorporated hippocampal 

neurogenesis.  

In the current study, I tested for potential sex differences and seasonal changes in 

hippocampal volume and neurogenesis in brown-headed cowbirds (hereafter “cowbirds”) 

and a close relative that is not a brood parasite, the red-winged blackbird (hereafter 

“blackbirds”, Agelaius phoeniceus). Like most other birds, blackbirds normally provide 

bi-parental care and females and males have similar home ranges (Yasukawa and Searcy 
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1995). I hypothesized that the hippocampus of cowbirds is specialized for their brood-

parasitic mode of reproduction. Specifically, I predicted that cowbirds would have a 

larger hippocampus with more neurogenesis than blackbirds and that a sex difference 

would exist in cowbirds only, with female cowbirds having a larger hippocampus with 

more neurogenesis than male cowbirds. Due to conflicting results from studies on food-

storers and other cowbird species, my seasonal predictions were uncertain. I predicted 

neurogenesis would be heightened in the autumn, like with song control nuclei. Because 

spatial performance of brown-headed cowbirds on a navigational task did not vary 

seasonally (Chapter 2, Guigueno et al. 2014), I predicted that relative hippocampus 

volume would remain stable between breeding conditions. However, in other organisms 

such as deer mice (Peromyscus maniculatus), a sex difference in spatial performance 

only existed in breeding condition when spatial memory load was at its highest (Galea et 

al. 1996) and South American cowbirds have a larger hippocampus in breeding condition 

(Clayton et al. 1997). Therefore, if the hippocampus volume was not seasonally stable as 

I predicted, I expected a female-biased sex difference to be greatest in breeding condition 

when female cowbirds search for host nests in the wild.  

4.2 Methods 

4.2.1 Subjects 

Female and male cowbirds and blackbirds were collected in breeding and post-

breeding conditions (Table 4.1). I collected birds in breeding condition between mid-     
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Table 4.1. Number of brains collected from each experimental group. Brains were 

collected the day after the birds were captured from the field. 

 

Breeding condition Brown-headed cowbird Red-winged blackbird 

 Female Male Female Male 

Breeding 15 16 8 16 

Post-breeding 8 8 8 8 
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March and mid-May 2013 and birds in post-breeding condition between mid-September 

and mid-November 2013.  All birds were captured using ground traps and mist nets at  

various sites near Port Rowan, Ontario, Canada. Mean body weights ± SE were as 

follows: 39.62 g ± 0.63 (female cowbirds; n = 22), 50.33 g ± 0.97 (male cowbirds; n = 

23), 42.49 g ± 0.66 (female blackbirds; n = 16), and 65.29 g ± 0.98 (male blackbirds; n = 

23). After capture, birds were transported to the Advanced Facility for Avian Research at 

the University of Western Ontario where they were housed overnight in individual cages 

with food and water.  

4.2.2 Blood sampling 

I collected blood samples in the field to confirm breeding condition. I punctured 

the brachial vein of each bird with a 26-gauge needle. I collected all the samples within 

30 min, except for 14 out of 88 samples that were taken 30-92 minutes after capture. 

There was no statistically significant correlation between androgen concentration and 

time, therefore I kept these data points in the analyses. I collected approximately 400 µL 

of blood into heparinized capillary tubes and centrifuged the blood for 10 min at 

13,000×g. Finally, I extracted the plasma from the tubes with a Hamilton syringe and 

froze the plasma at -30 °C until the hormone assay.  

4.2.3 Androgen assay 

Testosterone increases in the breeding season for both female and male brown-

headed cowbirds (Chapters 2 and 3; Dufty and Wingfield 1986 a,b). I assayed plasma 

androgen concentration using a testosterone enzyme immunoassay previously validated 

for a variety of bird species (EIA; Cat. #1-2402, Salimetrics; [Washburn et al. 2007]). I 
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previously validated the assay in cowbirds (see Chapters 2 and 3). To validate the assay 

for blackbirds, I used the same protocol as in Chapters 2 and 3 and Newman et al. (2008) 

and I assayed a serial dilution of blackbird plasma and compared measured levels of 

testosterone in the dilutions to the standard curve using an ANCOVA. A non-significant 

interaction term (F1,10 = 0.01, p = 0.94) indicated that the slopes were similar and that the 

assay was suitable for blackbirds. Intra-assay variation was 8.85%. Inter-plate variation, 

based on a pooled red-winged blackbird plasma sample and low and high controls was 

3.79%. The sensitivity of the assay was 5 pg/mL (two standard deviations from the 

average value of zero on the standard curves). Samples below this level were assigned a 

value of 2.5 pg/mL for the analyses. 

4.2.4 Brain collection 

 The day after capture, I deeply anesthetized the birds using isoflurane. I then 

transcardially perfused the birds with heparinized saline, followed by 4% 

paraformaldehyde. The brains were removed from the skull and then placed in 4% 

paraformaldehyde for 24 h, followed by 30% sucrose in phosphate-buffered saline (PBS) 

for 48-72 h (until the brains sunk to the bottom of the vial). Finally, I froze the brains on 

crushed dry ice and stored them in aluminum foil at -80 °C until the start of 

immunohistochemistry.  

4.2.5 Immunohistochemistry 

I sectioned the brains into 40 µm coronal sections using a cryostat. Two 

alternating sets of brain sections, each set ten sections apart, were collected for NeuN and 

doublecortin (DCX) immunoreactivity. NeuN is a protein expressed in most mature 
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neurons (Mullen et al. 1992) and was used to calculate the volume of the hippocampus. 

To measure hippocampal neurogenesis, I examined DCX immunoreactivity. DCX is a 

microtubule-associated endogenous protein only expressed in migrating and 

differentiating immature neurons (Francis et al. 1999, Gleeson et al. 1999) and is a 

reliable marker of neurogenesis (Balthazart and Ball 2014a,b). Each run consisted of a 

random sample of brains from different groups (Table 4.1).  

I used the following steps for NeuN immunohistochemistry. First, I washed free-

floating sections twice in 0.1M PBS then incubated the sections in 0.5% hydrogen 

peroxide for 30 min. Next, I washed sections three times in PBS then incubated the 

sections in 10% normal goat serum (Vector, Burlingame, CA, USA) that was diluted in 

0.3% Triton in PBS (PBST) overnight. I replaced the diluted goat serum with primary 

monoclonal antibody (made in mouse, MB377, Millipore, Billerica, MA, USA) diluted 

1:2000 in 0.3% PBST and incubated overnight.  Next, I washed the sections three times 

in 0.1% PBST and incubated the sections for 1 h in biotinylated secondary antibody (goat 

anti-mouse IgG, Vector) diluted 1:250 in 0.3% PBST. Then, I washed the sections three 

times in 0.1% PBST and incubated the sections for 1 h in avidin-biotin horseradish-

peroxidase complex (VectaStain Elite ABC Kit) diluted 1:200. I washed the sections 

three times in 0.1% PBST and visualized the sections by exposing them to 

diaminobenzidine solution (Sigma Fast-DAB), followed by four washes in PBS. I 

mounted the sections onto gelatin-coated slides, dehydrated them gradually with 

increasing ethanol concentrations, cleared them in solvent (Harleco Neo-Clear, EMD 

Chemicals, Billerica, MA, USA), and cover slipped the slides using Permount (Fisher 

Scientific, Pittsburgh, PA, USA).  
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The DCX immunohistochemistry protocol was similar to the NeuN protocol, 

except for the following differences. First, the sections were incubated in 0.5% hydrogen 

peroxide for 15 min instead of 30 min. Second, the sections were incubated in 10% 

normal horse serum (Vector, Burlingame, CA, USA) instead of goat serum and were 

incubated for 1 h instead of overnight. Finally, the primary antibody that I used was made 

in goat against DCX (polyclonal, Santa Cruz Biotechnology, Santa Cruz, CA, USA) 

diluted 1:250 and the secondary was biotinylated horse anti-goat IgG (Vector) diluted 

1:400.   

4.2.6 Microscopy 

I used the NeuN-labelled sections to measure the volume of the hippocampus 

(Figure 4.1). I identified the boundary of the hippocampus by the presence of different 

cell densities and cell sizes relative to the hyperpallium apicale (HA), a region adjacent 

and lateral to the hippocampus. I captured images of the hippocampus with a Spot Idea 5-

megapixel digital camera (Diagnostics Instruments) mounted on a Zeiss Axiophot 

microscope using a 1.25X objective lens. Only bird ID was assigned to each photo, 

therefore the images were analyzed without reference to sex, species, or season. The 

perimeter of the hippocampus was traced in ImageJ software (NIH). I summed the frusta 

volumes (truncated cone) between sections (400 µm) to estimate the total volume of 

hippocampus in both hemispheres. I captured images of the telencephalon with a high- 

resolution (2400 dpi) flatbed scanner with a transparency adapter and I traced the 

perimeter of every tenth telencephalon section with ImageJ. I used the frustum formula 
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Figure 4.1. NeuN staining used for volume analyses, with the hippocampus boundary 

indicated by arrows. 
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and summed the frusta volumes between each tissue section (400 µm) to estimate total 

telencephalon volume in both hemispheres. The hippocampus and telencephalon volumes 

used in the analyses for each bird were the average between hemispheres. I adjusted the 

sampling interval and used the next nearest section if a section was damaged or lost. 

Sample sizes for volume analyses are found in Table 4.1. I used DCX-labelled sections to 

quantify immunoreactivity, which was interpreted as neurogenesis (Figure 4.2). I 

captured images of DCX immunoreactive (DCX+) round and fusiform cells and 

projections with a Leica DFC 420C camera mounted to a Leica DM5500B microscope 

(Figure 4.2). I chose three sections (rostral, medial, and caudal) from the hemisphere that 

was most intact and best stained. The rostral section was located 800-1200 µm after the 

rostral edge of the hippocampus (moving rostro-caudally through the brain) and the 

caudal section was located 1200-2000 µm before the caudal end of the hippocampus. The 

beginning and end of the hippocampus were identified by searching for a lack of a 

boundary between hippocampus and HA as described above. The medial section was 

chosen to be in between and approximately equidistant to the rostral and caudal sections, 

near the coronal plane of the anterior commissure. For each section, I chose the following 

sampling fields: 1) three fields inside the hippocampus; one in the ventral position, the 

second in the medial position, dorsal to the ventral field of view (as in Wada et al. 2014), 

and the third lateral to the medial field of view (medial section only), 2) two fields 

outside the hippocampus to serve as covariates for the interior hippocampus analyses; one 

in the HA and one in the telencephalon, lateral to the interior hippocampus ventral field 

of view and 3) three sampling fields in the subventricular zone (SVZ) in the ventral, 

medial, and lateral (medial section only) positions, which included half of the field of  
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Figure 4.2 . (A) Doublecortin staining, used to quantify neurogenesis, with the fields of 

view used in the analyses. Images were captured inside the hippocampus, with the 

hyperpallium apicale (HA) and the telencephalon (Tel) as covariates, and in the 

subventricular zone (SVZ), with the half of each field of view (telencephalon) acting as 

the covariate. V-Ventral, M-Medial, L-Lateral. (B) An example of a field of view in the 

SVZ, with the hippocampus in the upper half (dependent variable) and the telencephalon 

(covariate) in the lower half of the image. (C) Example of thresholding to measure the % 

doublecortin immunoreactive cover within a field of view. (D) Examples of round (top 

arrow) and fusiform (bottom arrow) cells. 
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Figure 4.2 
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For each field of view from the DCX images, I captured z-stack images in 0.63 µm steps 

through the focal planes with a 40X objective lens. These images were then compiled 

using the montage mode in the Leica Application Suite software, which produced an 

image that displayed all DCX+ cells and projections in focus. I used the threshold feature 

in ImageJ to calculate the percent coverage by DCX+ cells and projections. Both 

fusiform and round cells were present, which are normally interpreted as migrating and 

recently differentiated neurons, respectively (Balthazart and Ball 2014a,b). Thus, I 

counted and analyzed these cell types separately. I was not able to quantify DCX+ in 

some birds due to poor staining, therefore sample sizes differ from Table 4.1 in the two 

following groups: breeding blackbird males (n = 14) and post-breeding cowbird males (n 

= 6). 

4.2.7 Data analysis 

All statistical analyses were performed in SAS (version 9.3, SAS Institute Inc., 

Cary, NC, USA). I used different analyses, depending on the data collected. 

For the androgen analysis, I used a general linear model (PROC GLM) with 

species, sex, and breeding condition, and all interactions as explanatory variables, with 

androgen concentration as the dependent variable. I log-transformed the androgen 

concentrations to produce normally-distributed residuals. 

For the volume analyses, I used a general linear model (PROC GLM) with 

species, sex, breeding condition, and all interactions as explanatory variables, 

telencephalon volume (minus the hippocampus) as a covariate, and hippocampus volume 

as the dependent variable. I also tested for volume changes in the telencephalon. I used a 
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general linear model (PROC GLM) with species, sex, breeding condition, and all 

interactions as explanatory variables. I log-transformed the volume data to produce 

normally-distributed residuals if they were not already normally distributed.  

For the DCX analyses, the fields of view inside the hippocampus (ventral, medial, 

and lateral) were assigned the HA and telencephalon fields of view as covariates and 

were analyzed separately from the fields of view in the SVZ. The covariate (HA or 

telencephalon control) that produced the lowest AIC value was included in the final 

model. The telencephalon half of the SVZ field of view was the covariate for the SVZ 

analyses. Subject was set as a random factor and the explanatory variables were species, 

sex, breeding condition, area sampled and all interactions. To analyze % DCX+ cover, I 

used a linear mixed model (PROC MIXED) because I took multiple measurements from 

each subject (see details above). I log arcsine square root transformed proportions from 

the %DCX+ cover data. For the round cell analyses, I used generalized linear mixed 

models (PROC GLIMMIX) and specified a Poisson distribution as I had count data, 

which most frequently fits a Poisson distribution. For fusiform cell analyses, the model 

did not converge because some brain areas regions had too many zero data points 

(leading to a standard deviation and mean of zero for certain regions for many sexes and 

species). I therefore merged data from all areas and ran a general linear model with a 

Poisson link function (PROC GENMOD).  

Although data were transformed for analyses, data were not transformed in the 

figures displaying the raw means ± SE to ease visualization. However, figures displaying 

significant interactions for the DCX analyses show least squares means ± SE of the 
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transformed data. Significant interactions were further analyzed using Fisher’s LSD post-

hoc tests. Results were considered significant if p ≤ 0.05.  

4.3 Results 

4.3.1 Androgens 

 There was a significant main effect of breeding condition, with higher androgen 

levels for birds in breeding than post-breeding condition, and a significant main effect of 

sex, with males showing higher levels than females (Table 4.2, Figure 4.3). Thus, 

cowbirds were in the correct breeding condition. Species and all other interactions were 

non-significant (Table 4.2).  

4.3.2 Volume 

 For relative hippocampus size, there was a significant main effect of species, with 

cowbirds having a larger hippocampus than blackbirds and a significant main effect of 

sex, with females having a larger hippocampus, relative to the telencephalon size, than 

males (Table 4.3, Figures 4.4A, 4.5). Breeding condition and all interactions were non-

significant (Table 4.3). Once breeding and post-breeding data were merged, female  

cowbirds had the largest hippocampus of all four groups (female cowbirds, male 

cowbirds, female blackbirds, and male blackbirds), with female cowbirds having a larger   

hippocampus than male cowbirds (one-tailed post-hoc test: t82 = 1.64, p = 0.05), but 

female blackbirds also having a larger hippocampus than male blackbirds (t82 = 2.07, p = 

0.02; Figures 4.4, 4.5).  
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Table 4.2. Summary of statistical effects of species, sex, breeding condition (BC) and 

their interactions on the concentration of circulating androgens. Results are from a 

general linear model. Significant effects are in bold.  

 

Factors  F  d.f. p-value 

Androgens    

   Species 3.10 1,79 0.08 

   Sex 3.85 1,79 0.05 

   BC 24.55 1,79 <0.0001 

   Species x Sex 0.32 1,79 0.57 

   Species x BC 0.29 1,79 0.59 

   Sex x BC 3.04 1,79 0.08 

   Species x Sex x BC 0.19 1,79 0.67 
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Figure 4.3. Mean ± SE androgen concentrations in female and male brown-headed 

cowbirds (BHCO) and red-winged blackbirds (RWBL) in breeding and post-breeding 

conditions. 
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Table 4.3. Summary of statistical effects of species, sex, breeding condition (BC) and 

their interactions on the volume of the hippocampus and the telencephalon. Results are 

from a general linear model. Significant effects are in bold. 

 

Factors  F  d.f. p-value 

Hippocampus volume    

   Species 19.10 1,78 <0.0001 

   Sex 6.17 1,78 0.01 

   BC 0.79 1,78 0.38 

   Species x Sex 0.32 1,78 0.57 

   Species x BC 0.68 1,78 0.41 

   Sex x BC 1.35 1,78 0.25 

   Species x Sex x BC 0.09 1,78 0.76 

   Telencephalon (covariate) 91.53 1,78 <0.0001 

Telencephalon volume    

   Species 96.82 1,79 <0.0001 

   Sex 24.40 1,79 <0.0001 

   BC 21.82 1,79 <0.0001 

   Species x Sex 5.53 1,79 0.02 

   Species x BC 0.01 1,79 0.90 

   Sex x BC 0.89 1,79 0.35 

   Species x Sex x BC 0.45 1,79 0.50 
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Figure 4.4. Mean ±SE hippocampus (Hp) and telencephalon volumes of brown-headed 

cowbirds (BHCO) and red-winged blackbirds (RWBL) and breeding and post-breeding 

conditions.  
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Figure 4.5. Hippocampus volume relative to the telencephalon volume in female and 

male brown-headed cowbirds (BHCO) and red-winged blackbirds (RWBL). The 

trendlines fits the data as follows: top dotted line - female BHCO, lower dotted line - 

female RWBL, top solid line - male BHCO, and bottom solid trendline - male RWBL.   
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For the telencephalon, there were significant main effects of 1) breeding 

condition, with birds having a smaller telencephalon in post-breeding condition, 2) sex, 

with males having a larger telencephalon than females, and 3) species, with blackbirds 

having a larger telencephalon than cowbirds (Table 4.3, Figure 4.3B). However, a 

significant sex by species interaction indicated that the effects of sex and species above 

were mainly driven by the blackbirds, with male blackbirds having a larger telencephalon 

than female blackbirds (t79 = 4.98, p < 0.0001), but male cowbirds only had a nearly 

significantly larger telencephalon than female cowbirds (t79 = 5.70, p = 0.06). 

4.3.3 Doublecortin 

 Data from neurogenesis analyses (Tables 4.4-4.8) are presented in detailed format 

by area (Figures 4.6-4.11) and by significant interactions between sex, species, and 

breeding condition (Figures 4.12-4.13). 

Percent DCX+ cover 

Inside the hippocampus, there was a significant effect of area, with the ventral 

fields of view in the medial and caudal sections having the highest immunoreactivity, 

relative to outside the hippocampus (Table 4.4, Figure 4.6). There was a significant 

species by breeding condition interaction, with immunoreactivity being greater in post-

breeding condition in cowbirds (t75 = 1.97, p = 0.05), but greater in breeding condition in 

blackbirds (t75 = 2.00, p = 0.05) (Table 4.4, Figures 4.6, 4.12). There was also a 

significant species by area interaction, with cowbirds having higher immunoreactivity 

than blackbirds in the ventral field of view in the medial section (t449 = 3.33, p = 0.0009) 

(Table 4.4, Figure 4.6). Finally, there was a significant sex by breeding condition by area  
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Table 4.4 Summary of statistical effects of species, sex, breeding condition (BC), area 

and their interactions on the percent doublecortin (DCX) coverage inside the 

hippocampus (Hp). Results are from a linear mixed model. Significant effects are in bold. 

Factors  F  d.f. p-value 

%DCX+ cover inside Hp    

   Species 2.83 1,75 0.10 

   Sex 1.95 1,75 0.17 

   BC 0.01 1,75 0.94 

   Area 83.86 6,449 <0.0001 

     Species x Sex 1.09 1,75 0.30 

     Species x BC 8.00 1,75 0.006 

     Species x Area 2.78 6,449 0.01 

     Sex x BC 0.75 1,75 0.39 

     Sex x Area 1.03 6,449 0.41 

     BC x Area 0.71 6,449 0.64 

       Species x Sex x BC 1.38 1,75 0.24 

       Species x Sex x Area 0.80 6,449 0.57 

       Sex x BC x Area 2.25 6,449 0.04 

       Species x BC x Area 1.53 6,449 0.17 

          Species x BC x Area x Sex 1.48 12,449 0.18 

ControlTel (covariate) 37.54 1,449 <0.0001 
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Table 4.5 Summary of statistical effects of species, sex, breeding condition (BC), area 

and their interactions on the % doublecortin immunoreactive (DCX+) cover in fields of 

view in the subventricular zone (SVZ). Results are from a linear mixed model. 

Significant effects are in bold. 

 

Factors  F  d.f. p-value 

%DCX+ cover in SVZ    

   Species 16.07 1,75 0.0001 

   Sex 0.88 1,75 0.35 

   BC 0.30 1,75 0.59 

   Area 21.00 6,449 <0.0001 

     Species x Sex 4.35 1,75 0.04 

     Species x BC 10.96 1,75 0.001 

     Species x Area 2.17 6,449 0.05 

     Sex x BC 0.08 1,75 0.77 

     Sex x Area 1.21 6,449 0.30 

     BC x Area 0.75 6,449 0.61 

       Species x Sex x BC 0.68 1,75 0.41 

       Species x Sex x Area 0.88 6,449 0.51 

       Sex x BC x Area 1.90 6,449 0.08 

       Species x BC x Area 1.51 6,449 0.17 

          Species x BC x Area x Sex 1.25 12,449 0.28 

Telencephalon in SVZ(covariate) 34.35 1,449 <0.0001 
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Table 4.6 Summary of statistical effects of species, sex, breeding condition (BC), area 

and their interactions on the number of round cells per field of view in the hippocampus 

(Hp). Results are from a generalized linear mixed model with a Poisson distribution. 

Significant effects are in bold. 

 

Factors  F  d.f. p-value 

# round cells in Hp    

   Species 0.64 1,75 0.43 

   Sex 1.04 1,75 0.31 

   BC 3.09 1,75 0.08 

   Area 21.17 6,449 <0.0001 

     Species x Sex 1.01 1,75 0.32 

     Species x BC 0.01 1,75 0.94 

     Species x Area 1.55 6,449 0.16 

     Sex x BC 0.08 1,75 0.78 

     Sex x Area 1.79 6,449 0.10 

     BC x Area 1.76 6,449 0.11 

       Species x Sex x BC 0.59 1,75 0.44 

       Species x Sex x Area 1.74 6,449 0.11 

       Sex x BC x Area 1.77 6,449 0.10 

       Species x BC x Area 1.02 6,449 0.41 

          Species x BC x Area x Sex 1.47 12,449 0.19 

ControlHA (covariate) 19.71 1,449 <0.0001 
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Table 4.7 Summary of statistical effects of species, sex, breeding condition (BC), area 

and their interactions on the number of round cells per field of view in the subventricular 

zone (SVZ). Results are from a generalized linear mixed model with a Poisson 

distribution. Significant effects are in bold. 

 

Factors  F  d.f. p-value 

# round cells in SVZ    

   Species 0.1 1,75 0.75 

   Sex 0.71 1,75 0.40 

   BC 0.62 1,75 0.43 

   Area 5.53 6,449 <0.0001 

     Species x Sex 1.94 1,75 0.17 

     Species x BC 2.74 1,75 0.10 

     Species x Area 2.2 6,449 0.04 

     Sex x BC 0 1,75 0.97 

     Sex x Area 0.36 6,449 0.90 

     BC x Area 1.93 6,449 0.07 

       Species x Sex x BC 0.82 1,75 0.37 

       Species x Sex x Area 0.68 6,449 0.66 

       Sex x BC x Area 0.67 6,449 0.67 

       Species x BC x Area 1.03 6,449 0.40 

          Species x BC x Area x Sex 0.41 12,449 0.87 

Telencephalon in SVZ(covariate) 8.28 1,449 0.004 
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Table 4.8 Summary of statistical effects of species, sex, breeding condition (BC), area 

and their interactions on the number of fusiform cells per field of view in the 

hippocampus (Hp). Results are from a Poisson regression analysis. Significant effects are 

in bold. 

 

Factors  χ  d.f. p-value 

# fusiform cells in Hp    

   Species 6.54 1 0.01 

   Sex 5.27 1 0.02 

   BC 2.06 1 0.15 

     Species x Sex 5.23 1 0.02 

     Species x BC 0.12 1 0.73 

     Sex x BC 1.05 1 0.31 

        Species*Sex*BC 1.56 1 0.21 

ControlTel (covariate) 13.55 1 0.0002 
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Table 4.9 Summary of statistical effects of species, sex, breeding condition (BC), area 

and their interactions on the number of fusiform cells per field of view in the 

subventricular zone (SVZ). Results are from a Poisson regression analysis. Significant 

effects are in bold. 

 

Factors  χ  d.f. p-value 

# fusiform cells in SVZ    

   Species 4.40 1 0.04 

   Sex 1.50 1 0.22 

   BC 4.61 1 0.03 

     Species x Sex 3.85 1 0.05 

     Species x BC 0.53 1 0.47 

     Sex x BC 3.54 1 0.06 

        Species*Sex*BC 2.19 1 0.14 

Telencephalon in SVZ(covariate) 34.24 1 <0.0001 
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Figure 4.6. Mean % doublecortin immunoreactive (DCX+) cover ± SE in fields of view inside the hippocampus (Hp) with covariates 

in the telencephalon (ControlTel) and the hyperpallium apicale (ControlHA) in the rostral, medial, and caudal regions of the brains of 

female and male brown-headed cowbirds and red-winged blackbirds in breeding and post-breeding conditions.  
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Figure 4.6  
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Figure 4.7. Mean % doublecortin immunoreactive (DCX+) cover ± SE in fields of view in the subventricular zone (SVZ), with the 

hippocampus (Hp) edge acting as the dependent variable and the telencephalon (Tel) edge acting as the covariate in the rostral, medial, 

and caudal regions of the brains of female and male brown-headed cowbirds and red-winged blackbirds in breeding and post-breeding 

conditions. 
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Figure 4.7  
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Figure 4.8. Mean number of round cells ± SE per field of view inside the hippocampus (Hp) with covariates in the telencephalon 

(ControlTel) and the hyperpallium apicale (ControlHA) in the rostral, medial, and caudal regions of the brains of female and male 

brown-headed cowbirds and red-winged blackbirds in breeding and post-breeding conditions. 
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Figure 4.8  
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Figure 4.9. Mean number of round cells ± SE per field of view in the subventricular zone (SVZ), with the hippocampus (Hp) edge 

acting as the dependent variable and the telencephalon (Tel) edge acting as the covariate in the rostral, medial, and caudal regions of 

the brains of female and male brown-headed cowbirds and red-winged blackbirds in breeding and post-breeding conditions. 
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Figure 4.9  
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Figure 4.10. Mean number of fusiform cells ± SE per field of view inside the hippocampus (Hp) with covariates in the telencephalon 

(ControlTel) and the hyperpallium apicale (ControlHA) in the rostral, medial, and caudal regions of the brains of female and male 

brown-headed cowbirds and red-winged blackbirds in breeding and post-breeding conditions. 
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Figure 4.10  
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Figure 4.11. Mean number of fusiform cells ± SE per field of view in the subventricular zone (SVZ), with the hippocampus (Hp) edge 

acting as the dependent variable and the telencephalon (Tel) edge acting as the covariate in the rostral, medial, and caudal regions of 

the brains of female and male brown-headed cowbirds and red-winged blackbirds in breeding and post-breeding conditions. 
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Figure 4.11 
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Figure 4.12 Significant interactions between sex (female and male), species (brown-

headed cowbird and red-winged blackbird), and breeding condition (breeding and post-

breeding) for % doublecortin immunoreactive (DCX+) cover inside the hippocampus (A) 

and on the hippocampus edge of the subventricular zone (SVZ) (B and C). Data 

presented are least square means adjusted to the covariate ± SE. The covariate for (A) 

was the field of view in the telencephalon in the respective brain region whereas the 

covariate for B and C was the respective telencephalon edge for each SVZ field of view. 

The proportions of DCX+ cover were log arcsine square root transformed for analyses 

and for the figure. Asterisks indicate p ≤ 0.05.  
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Figure 4.13 Significant interactions between sex (female and male) and species (brown-

headed cowbird and red-winged blackbird) for the number of fusiform cells per field of 

view inside the hippocampus (A) and on the hippocampus edge of the subventricular 

zone (SVZ) (B). Data presented are least square means adjusted to the covariate ± SE. 

The covariate for (A) was the field of view in the telencephalon in the respective brain 

region whereas the covariate for B was the respective telencephalon edge for each SVZ 

field of view. Asterisks indicate that female red-winged blackbirds have significantly 

fewer cells per field of view than any other group (p ≤ 0.05). 



 

 

149 

 

interaction, with males having higher immunoreactivity than females in breeding 

condition in the medial field of view of the rostral section (t449 = 2.18, p = 0.03),  

whereas no sex difference existed in post-breeding condition (t449 = 0.89, p = 0.37; Table 

4.4, Figure 4.6).  

In the SVZ, there were multiple significant effects (Table 4.5). The following 

main effects were statistically significant: 1) species, with cowbirds having higher 

immunoreactivity than blackbirds and 2) area, with the ventral field of view in the caudal 

section having the highest immunoreactivity of all (Table 4.5, Figure 4.7). The following 

two-way interactions were statistically significant: 1) species by sex, with female 

cowbirds having more immunoreactivity than male cowbirds (t75 = 2.17,  p = 0.03), but 

there was no sex difference in blackbirds (t75 = 0.80, p = 0.43), 2) species by breeding 

condition, with immunoreactivity being higher in post-breeding condition in cowbirds (t75 

= 2.77, p = 0.007), but nearly significantly higher in breeding condition in blackbirds (t75 

= 1.89, p = 0.06), 3) species by area, with cowbirds having more immunoreactivity than 

blackbirds in the medial field of view in the rostral section (t449 = 4.36, p < 0.0001) and 

the ventral field of view in the medial section (t449 = 3.35, p = 0.0009) (Table 4.5, Figures 

4.7, 4.12). All other interactions were not significant (Table 4.5, Figure 4.7). 

Round cells 

Inside the hippocampus, area was the only statistically significant factor, with the 

ventral fields of view in the medial and caudal sections having the highest number of 

cells (Table 4.6, Figure 4.8).  

In the SVZ, area was statistically significant, with the medial fields of view in the 

medial and caudal sections having the highest number of cells (Table 4.7, Figure 4.9). 



 

 

150 

 

Species by area was also statistically significant, with cowbirds having more cells per 

field of view than blackbirds in the medial field of view in the rostral section (t449 = 2.16, 

p = 0.03), and in the ventral field of view in the medial section (t449 = 2.07, p = 0.04) 

(Table 4.7, Figure 4.9). 

Fusiform cells 

 Inside the hippocampus, there was a significant effect of species, with cowbirds 

having more cells per field of view than blackbirds, and a significant effect of sex, with 

males having more cells per field of view than females (Table 4.8, Figures 4.10, 4.13). 

There was a significant sex by species interaction, with female blackbirds having 

significantly fewer cells per field of view than male blackbirds (z = 2.72, p = 0.006), but 

there was no sex difference in cowbirds (z = 0.03, p = 0.98) (Figure 4.13). Female 

blackbirds drove the main effects of sex and species as this group also had a lower 

number of cells per field of view than male cowbirds (z = 2.85, p = 0.004) and female 

cowbirds (z = 2.88, p = 0.004) (Figure 4.13).  

 In the SVZ, there was a significant main effect of species, with cowbirds having 

more fusiform cells than blackbirds, and a significant effect of breeding condition, with 

more fusiform cells in post-breeding birds than in breeding birds (Table 3.9, Figure 4.11). 

There was also a significant sex by species interaction, with female blackbirds having 

fewer cells per field of view than male blackbirds (z = 2.13, p = 0.03), but there was no 

sex difference in cowbirds (z = 0.56, p = 0.58) (Figure 4.13). Female blackbirds also had 

fewer cells per field of view than female cowbirds (z = 2.66, p = 0.008) and male 

cowbirds (z = 2.17, p = 0.03) (Figure 4.13).  
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4.4 Discussion 

 Sex and seasonal patterns of hippocampus size and neurogenesis levels were 

consistent with my hypothesis that the hippocampus of cowbirds is specialized for brood 

parasitism. Cowbirds had a larger hippocampus, relative to the telencephalon, than 

blackbirds, and females had a larger hippocampus than males, with female cowbirds 

having the largest hippocampus of all groups tested (Table 4.3, Figures 4.4 and 4.5). 

Consistent with these hippocampal volume results, DCX immunoreactivity in the SVZ 

was higher in cowbirds than blackbirds and higher in female cowbirds than in male 

cowbirds with no sex difference in blackbirds (Table 4.5, Figures 4.7, 4.12). Cowbirds 

had higher % DCX+ cover and more round (immature differentiating) cells than 

blackbirds in some areas inside the hippocampus and in the SVZ (Tables 4.4, 4.5, 4.7 and 

Figures 4.6, 4.7, 4.9). With all areas pooled, cowbirds had more fusiform (migrating) 

cells than blackbirds inside the hippocampus and in the SVZ (Tables 4.8, 4.9, Figures 

4.10, 4.11, 4.13). Although female blackbirds and cowbirds had a larger hippocampus 

than male blackbirds and cowbirds (Table 4.3, Figures 4.4, 4.5), female blackbirds had 

the fewest number of fusiform cells inside the hippocampus and in the SVZ of all groups 

(Tables 4.8, 4.9, Figures 4.10, 4.11). Unlike with hippocampus size, breeding condition 

had an effect on neurogenesis, with % DCX+ cover inside the hippocampus and in the 

SVZ, as well as the number of fusiform cells in the SVZ, being higher in post-breeding 

condition than breeding condition in cowbirds, but remaining stable or being higher in 

breeding condition in blackbirds (Tables 4.5, 4.6, 4.9, Figure 4.12, 4.13). In sum, patterns 

of hippocampus size and neurogenesis were similar, except for seasonal effects. 
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4.4.1 Volume 

 Cowbirds had a larger hippocampus than blackbirds, just like food-storers have a 

larger hippocampus than non-food-storers. The hippocampus in birds, as well as in 

mammals, is involved in spatial memory (reviewed by Colombo and Broadbent 2000). 

This association between the hippocampus and spatial memory has led to the hypothesis 

that enhanced spatial memory is accompanied by an evolutionary enlargement of the 

hippocampus relative to the size of the telencephalon in food-storing birds (Krebs et al. 

1989, Sherry et al. 1989, Brodin and Lundbord 2003). In a meta-analysis of distantly 

related bird species, including brown-headed cowbirds and red-winged blackbirds, the 

relative volume of the hippocampus was positively related to the degree of food-storing 

specialization, after controlling for brood parasitism (Garamszegi and Eens 2004). Food 

storing places selection on both females and males for enhanced spatial memory, whereas 

brood parasitism, in which only females search for host nests, places selection on only 

half the population, therefore I would expect the effect of food storing to be stronger than 

brood parasitism. However, the larger hippocampus size, relative to telencephalon size, 

of cowbirds compared with blackbirds, suggests that selection on only one sex can 

generate species differences present in both sexes (Figure 4.5). Female and male 

cowbirds share all genes except the sex chromosomes and this genetic correlation can 

cause a trait favoured in one sex to occur in both (Lande 1980, Wyman et al. 2013). 

Genetic correlation may explain why possible sex-specific selection on female cowbirds 

has resulted in species differences in hippocampus size between brood-parasitic and non-

brood-parasitic species, like species differences that exist between food-storers and non-

food-storers. 
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 In addition to a significant difference between species, I also found a significant 

effect of sex, with female blackbirds and cowbirds having a larger hippocampus than 

male blackbirds and cowbirds (Table 4.3, Figure 4.5). In contrast, Sherry et al. (1993) 

found that female cowbirds had a larger hippocampus than male cowbirds but no 

significant sex differences was detected in red-winged blackbirds and common grackles 

(Quiscalus quiscula), another icterid. My sample size was larger than the earlier study (n 

= 32 total subjects spread over three species in Sherry et al. 1993 versus n = 87 spread 

over two species in the current study) and Sherry et al. (1993) analyzed cowbirds and 

blackbirds separately, so similar results (i.e., main effects of species and sex) may have 

been reported with a larger dataset and if all data were analyzed simultaneously. 

Furthermore, the telencephalon was much larger in male blackbirds than in female 

blackbirds in my study, whereas telencephalon size was slightly (but not significantly) 

smaller in males in the earlier study (Sherry et al. 1993). Ecological or methodological 

differences may account for some of the differences between my study and the earlier 

study; however, given my larger sample size, I am confident that my results are 

representative of conditions within my own study site and year.   

Why did I observe an overall sex difference as opposed to only observing a sex 

difference in cowbirds, as I had originally predicted? Cowbirds have only been parasites 

for about half the time than older parasites, such as cuckoos in Europe and Asia 

(Rothstein et al. 2002) and many life-history characteristics long believed to be brood 

parasitic adaptations (e.g.: shorter incubation period and faster growth rate) were actually 

inherited from a nonparasitic ancestor (Mermoz and Ornelas 2004). Thus, cowbirds likely 

have few specific adaptations to brood parasitism and their ancestor (and extant closely-
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related species) likely already possessed traits that facilitated brood parasitism. For 

instance, perhaps the female nonparasitic ancestor of the cowbirds had a larger 

hippocampus than the male, a pre-adaptation to brood parasitism, and once cowbirds 

became brood parasites, selection on females to remember the location of host nests 

resulted in both sexes of cowbirds having a larger hippocampus than blackbirds. In 

addition to a female-biased sex difference in hippocampus size, red-winged blackbirds 

display other traits that resemble cowbirds, such as exaggerated begging behaviour 

(Rivers et al. 2013) and greater auditory sensitivity in females, which is not present in 

any other passerine (Gall et al. 2011); the icterid family may therefore be pre-adapted for 

brood parasitism (Mermoz and Ornelas 2004).  

However, sex patterns for hippocampus size are not consistently female-biased in 

icterids. Specifically, red-winged blackbirds (current study), brown-headed cowbirds, and 

shiny cowbirds had a female-biased sex difference in relative hippocampus size while no 

sex difference was reported in common grackles, red-winged blackbirds (Sherry et al. 

1993), bay-winged cowbirds and screaming cowbirds (Sherry et al. 1993, Robereda et al. 

1996, Clayton et al. 1997). Nonetheless, breeding screaming cowbird females tended to 

have a larger relative hippocampus size than males. The sample size was only 12 

individuals and so the study may have lacked the statistical power to detect a difference 

(Robereda et al. 1996; Clayton et al. 1997). To provide conclusive support that 

hippocampus size is female-biased generally in icterids, clearly more data are required 

from a larger number of icterid species, especially with large sample sizes for each 

species repeated across years and seasons.   
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   No seasonal effects were present in hippocampus size, but they were present in 

whole telencephalon size. Unlike shiny and screaming cowbirds (Clayton et al. 1997), 

brown-headed cowbirds did not have a larger relative hippocampus in the breeding 

season (Table 4.3, Figure 4.4). However, the absence of a seasonal effect on relative 

hippocampal volume is consistent with brown-headed cowbirds performing equally well 

in non-breeding and breeding conditions on a large-scale spatial task (Chapter 2, 

Guigueno et al. 2014). Although there was no seasonal effect on hippocampus size 

relative to the telencephalon, the telencephalon itself was smaller in post-breeding 

condition (Table 4.3, Figure 4.4). Similar results in birds were reported in a meta-analysis 

by Smulders (2002) and more recently by De Groof et al. (2009) using magnetic 

resonance imaging with repeated measures. Changes in telencephalon volume could be 

caused by mechanisms that are not mutually exclusive, such as changes in neuropil, cell 

bodies and/or extracellular space (De Groof et al., 2009). Cell numbers could also change 

seasonally, although there is little support for this possibility. Functionally, decreasing 

brain matter in post-breeding condition could reduce the costs of maintaining 

energetically expensive brain tissue at a time when food is scarce (Yaskin 1984, 

Smulders 2002). In sum, regarding volume, brown-headed cowbirds have a seasonally 

stable hippocampus that is larger than the hippocampus of a non-parasitic relative, but, 

like previous studies, the whole telencephalon decreases in size in post-breeding 

condition.    
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4.4.2 Neurogenesis 

 DCX is a novel but reliable endogenous marker of neurogenesis (Balthazart and 

Ball 2014a, b). Few studies have simultaneously examined sex and seasonal changes in 

DCX+ in the hippocampus of any organism. In the current study, I assessed neurogenesis 

levels by quantifying DCX+ cells and fibres in fields of view inside the hippocampus and 

in the SVZ. Therefore, I could only compare the density of DCX+ cells and fibres per 

field of view between groups and not the total number of cells in the hippocampus. 

Birds that rely more on spatial memory to reproduce and/or survive may have 

more hippocampal neurogenesis, especially if they need to encode new information about 

their surroundings (Barnea and Pravosudov 2011). In fact, food-storing black-capped 

chickadees have greater hippocampal neurogenesis, as measured by the exogenous 

marker BrdU, than non-food-storing house sparrows (Hoshooley and Sherry 2007). In 

addition, black-capped chickadees from harsher climates that rely more heavily on 

cached food have higher hippocampal neurogenesis than chickadees from milder climates 

(Chancellor et al. 2011). Finally, neurogenesis may be crucial for migrating birds that 

have been shown to have a larger hippocampus with more neurons than non-migrating 

birds (Pravosudov et al. 2006). The mechanism underpinning these species differences in 

hippocampus size and neuron number is likely increased neurogenesis, which is higher in 

migratory white-crowned sparrows than the non-migratory sub-species (LaDage et al. 

2011). Migratory and food-storing birds may need to be equipped with a hippocampus 

that can accommodate heavier memory loads than non-migratory and non-food-storing 

birds (Barnea and Pravosudov 2011).  
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 Brood parasites, like food-storing and migratory birds, may need a brain that can 

handle a heavier memory load. Thus, I predicted that cowbirds would have more 

neurogenesis than blackbirds. Indeed, relative to blackbirds, cowbirds had 1) higher 

%DCX+ cover in the medial region inside the hippocampus (Table 4.4, Figure 4.6), 2) 

higher %DCX+ cover in the SVZ overall, but specifically in the medial and rostral 

regions (Table 4.5, Figure 4.7) , 3) more differentiating immature neurons in the SVZ in 

the medial and rostral regions (Table 4.7, Figure 4.9), and 4) more migrating neurons 

both inside the hippocampus (Table 4.8, Figure 4.13A) and in the SVZ (Table 4.9, Figure 

4.13B). The patterns of %DCX+ cover in the SVZ were similar to the volume results, as 

cowbirds had higher %DCX+ cover than blackbirds. In addition, female cowbirds 

showed more hippocampal neurogenesis than male cowbirds, with no sex difference in 

blackbirds (Tables 4.3, 4.5). This significant sex by species interaction provides the 

strongest support for the hypothesis that the hippocampus of female cowbirds is 

specialized for brood parasitism (Figure 4.12).  In sum, female cowbirds, the group in my 

experimental design with the highest predicted memory load, had the most hippocampal 

neurogenesis. 

 Although hippocampal neurogenesis was most pronounced in female cowbirds, it 

was either similar between female and male blackbirds (%DCX+ cover) or least 

pronounced in female blackbirds (migrating neurons). Inside the hippocampus and in the 

SVZ, female blackbirds had fewer migrating neurons per field of view than male 

blackbirds, female cowbirds, and male cowbirds (Tables 4.8, 4.9, Figures 4.10, 4.11, 

4.13). Therefore, although female blackbirds and cowbirds had a larger hippocampus, 

relative to the telencephalon, than male blackbirds and cowbirds, (Table 4.3) female 
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blackbirds and female cowbirds differed greatly in their levels of hippocampal 

neurogenesis. Perhaps the larger hippocampus size coupled with high levels of 

hippocampal neurogenesis are associated with the more accurate spatial memory needed 

for brood parasitism. 

 Hippocampal neurogenesis varied by breeding condition (Tables 4.4, 4.5, 4.9), 

even though hippocampal volume did not (Table 4.3). Neurogenesis was generally higher 

in post-breeding condition in cowbirds, whereas it was either stable or slightly higher in 

breeding condition in blackbirds (Figure 4.12, 4.13). In addition, neurogenesis in the 

rostral area inside the hippocampus was actually lower in females than in males in 

breeding condition (Table 4.4, Figure 4.6).These results seem counterintuitive as spatial 

memory load is expected to be highest in breeding condition, especially in females. 

However, as mentioned above, neurogenesis replaces old cells which may erase 

memories (Barnea and Pravosudov 2011); neurogenesis regulates forgetting in altricial 

and precocial rodents (Akers et al. 2014). It follows that cowbirds should replace old 

neurons at a time of the year when they no longer need to rely on old memories and 

replace them with new neurons required for new information to be encoded (Hoshooley 

and Sherry 2007, Barnea and Pravosudov 2011). Similarly, the song control nucleus 

HVC undergoes a peak in recruitment of new neurons in the autumn, a time at which 

some songbirds modify their song for the upcoming breeding season (Tramontin and 

Brenowitz 1999, Nottebohm 2004). Barnea and Nottebohm (1994) were the first to report 

seasonal variation in recruitment of new neurons into the hippocampus, however, further 

studies found no seasonal differences and Hoshooley and Sherry (2004) concluded that 

the results from Barnea and Nottebohm (1994) could only be explained by differences in 
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neuron survival. I did not measure the number of mature neurons in the hippocampus of 

cowbirds and blackbirds, therefore it is not known if neuron numbers changed seasonally. 

I can conclude, however, that hippocampal plasticity is greatest in the post-breeding 

condition, especially for female cowbirds that need to prepare their brains for a 

particularly high spatial memory load involving new information (i.e., the location of 

new host nests). 

4.4.3 Summary and conclusions 

 Female brown-headed cowbirds are brood parasites that search for and parasitize 

host nests; male cowbirds do not search for nests. In contrast, no female-biased sex 

difference in spatial memory load exists in their nonparasitic relatives, red-winged 

blackbirds. I showed that the behaviour of cowbirds in the field is related to their 

neuroanatomy and neuronal plasticity.  

Cowbirds had a larger hippocampus, relative to the telencephalon, than 

blackbirds, and females of both species had a larger hippocampus than males. Female 

cowbirds had the largest hippocampus of all four groups, but female blackbirds also had a 

larger hippocampus than males blackbirds. Stronger support for the specialization of the 

hippocampus for brood parasitism would have been a significant sex by species 

interaction, with female cowbirds having a larger hippocampus than male cowbirds and 

no sex difference in blackbirds.  

Two alternative hypotheses for the patterns I observed in hippocampus size, 

beyond brood parasitism, are migratory patterns and differences in the telencephalon. 

Many bird species, including at least one species of icterid, have differential migratory 
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patterns whereby one sex migrates farther than the other. In the case of common grackles 

(Quiscalus quiscula), females tend to migrate farther than males (Dolbeer 1982). This 

pattern of longer migration in females may also exist in closely-related blackbirds and 

cowbirds. Furthermore, perhaps cowbirds have a more complex migration strategy that 

requires a larger hippocampus than blackbirds. Indeed, cowbirds tend to migrate further 

than blackbirds (Dolbeer 1982). However, I do not believe migration to be the reason 

behind the species and sex differences in hippocampus size that I reported in this study 

because shiny cowbirds, which are South American residents, also show female-biased 

sex difference in hippocampus size. In addition, brood-parasitic shiny and screaming 

cowbirds had a larger hippocampus than the non-parasitic bay-winged cowbird, which 

are all non-migratory (Reboreda et al. 1996). Alternatively, perhaps the trends are not 

driven by variation in hippocampus size but rather variation in telencephalon size (the 

covariate) such that males of both species have an ecological need for a larger 

telencephalon but similar needs for a hippocampus. However, I do not believe that to be 

the case as I know of no reason why blackbirds or males would require a larger relative 

telencephalon than cowbirds or females across breeding conditions, respectively. The 

song control nuclei, which are part of the telencephalon, are largest in the breeding 

season in males, so, I would have recorded a smaller hippocampus in breeding male 

blackbirds and cowbirds if the hippocampus trends were driven by the telencephalon size. 

Patterns of neurogenesis into the hippocampus provided the strongest support for 

hypothesis that the hippocampus is specialized for a brood-parasitic lifestyle. In the SVZ, 

female cowbirds had higher %DCX+ coverage than males, whereas no sex difference 

existed in blackbirds. Hippocampal neurogenesis was highest in female cowbirds and 
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lowest in female blackbirds when counting migrating DCX+ cells per field of view, 

therefore female cowbirds had a combination of a large hippocampus and high 

hippocampal neurogenesis. Hippocampal neurogenesis was highest in post-breeding 

condition in cowbirds, which may ensure that old memories are purged at a time of the 

year when they are no longer necessary. In conclusion, patterns of hippocampal 

neurogenesis and hippocampus size among both sexes of two icterid species support the 

hypothesis that the brain of brood parasites is specialized for such behaviour in the wild. 
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Chapter 5 

5. Sex and seasonal differences in the volume 

and neurogenesis of song control nuclei in 

brown-headed cowbirds and red-winged 

blackbirds5 

5.1 Introduction 

The song control system (SCS) in the brain of songbirds is comprised of 

interconnected brain nuclei that control song production and learning. The SCS is 

comprised of two pathways: the caudal motor pathway and the anterior forebrain 

pathway. The caudal motor pathway, which is critical for song production, begins with 

the nucleus HVC, which sends projections to the robust nucleus of the arcopallium  (RA), 

which in turn innervates the tracheosyringeal portion of the hypoglossal nucleus, 

followed by the syrinx, the song production organ (Nottebohm et al. 1976). The anterior 

                                                      

5 This chapter has not been published. David Sherry and Scott MacDougall-Shackleton 

will be co-authors when it is published as they were involved in the conceptual 

development, experimental design, and editing of the manuscript. 
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forebrain pathway, which is important for song learning and perception, also begins with 

HVC, but ends with RA, with three other nuclei along the pathway between HVC and 

RA (Scharff and Nottebohm 1991).  

Two distinct and consistent observations regarding HVC and RA have been 

reported across studies and in a variety of species. First, males, who generally sing more 

than females, have a larger HVC and RA, and the sex differences in HVC and RA 

volumes correlate with the sex differences in the rates of singing and song complexity 

(MacDougall-Shackleton and Ball 1999, Hall et al. 2010). Second, HVC and RA increase 

drastically in size in breeding condition and are associated with increased singing rate 

and song stereotypy in some species (Tramontin and Brenowitz 2000). For example, the 

volume of HVC can be two to three times larger in breeding condition than in post-

breeding condition (Smith 1996). Few studies have simultaneously examined sex and 

seasonal differences in the size of song control nuclei of at least two species differing in 

song development. Even fewer studies have also incorporated measures of neurogenesis. 

An important mechanism behind seasonal changes in HVC volume is 

neurogenesis. Neuron numbers change seasonally with HVC volume in a variety of 

species (Tramontin et al. 2000, Smith et al. 1997, Smith et al. 1995, Tramontin et al. 

1998). Song sparrows (Melospiza melodia), for example, have nearly double the number 

of neurons in HVC during the breeding season relative to the non-breeding season 

(Tramontin and Brenowitz 1999). As circulating testosterone and estrogen increase after 

the winter solstice, the survival of new neurons and the total number of neurons in HVC 

increase, whereas the rate of neurogenesis decreases (Rasika et al. 1994, Hidalgo et al. 

1995, Tramontin and Brenowitz 1999). Neurogenesis is at its peak in the autumn when 
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there is a reduction in song stereotypy and song rate, although song can be functional at 

this time of year in many species (Kirn et al. 1994, Tramontin and Brenowitz 1999, 

2000). Neurogenesis is not involved in seasonal RA volume increases because cell 

numbers in this nucleus do not change (Tramontin and Brenowitz 2000, Wada et al. 

2014). Axons and dendrites in RA grow in breeding condition, along with changes in cell 

soma size and spacing (DeVoogd and Nottebohm 1981). In sum, there are seasonal 

changes in neuron number and neurogenesis in HVC, but none in RA. 

Although a clear seasonal pattern of HVC neurogenesis has been reported across 

studies, few studies have examined sex differences in neurogenesis. Two studies reported 

sex differences in doublecortin immunoreactivity (DCX+; Balthazart et al. 2008, Hall and 

MacDougall-Shackleton 2012). Doublecortin (DCX) is a microtubule-associated protein 

that has recently been used as an endogenous marker of neurogenesis (Balthazart et al. 

2008, Hall et al. 2012, Balthazart and Ball 2014a,b). With DCX, two immature cell types 

can be identified: fusiform cells, which are in the process of migrating to their final 

destination and round cells, which are immature differentiating neurons that have reached 

their final destination (Balthazart and Ball 2014a,b). In canaries (Serinus canaria) 

females have fewer fusiform cells than males (Balthazart et al. 2008), but in European 

starlings (Sturnus vulgaris) females have more fusiform and round cells than males (Hall 

and MacDougall-Shackleton 2012), even though females of both species sing less than 

males (reviewed in Hall et al. 2010). Thus, there is no clear pattern of sex differences in 

DCX+, as it varies according to species and likely also with season. Males in post-

breeding condition sing less and have higher levels of neurogenesis than breeding males 

(see above) and male canaries that are housed with a female sing less and have more 
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DCX+ than males that are housed either alone or with another male  (Balthazart et al. 

2008, Alward et al. 2014). It seems that lower neurogenesis may be associated with less 

singing.  

 In the current study, I examined both sex and seasonal differences in HVC and 

RA volumes and DCX+ in HVC in brown-headed cowbirds (hereafter “cowbirds”; 

Molothrus ater) and red-winged blackbirds (hereafter “blackbirds”; Agelaius 

phoeniceus), two closely-related icterid species. Both species are open-ended learners 

(Marler et al. 1972, Yasukawa et al. 1980, King and West 1988, Brenowitz and Beecher 

2005), but their song development and sexual differences in song differ. Cowbirds are 

obligate brood parasites, therefore cowbird nestlings are not exposed to a tutor of their 

own species. However, isolated males develop a normal song that is innately preferred by 

females (West et al. 1981). In the wild, young males likely develop their songs in winter 

roost flocks (King and West 1988). About 85% of yearling male songs are plastic 

between November to December, whereas only 20% of songs are plastic in February 

(King and West 1988). Male cowbirds modify their song in response to stimulation by 

females (King and West 1988, Hamilton et al. 1997). Male song likely plays a strong role 

in male fitness because females observed in the wild only mated with their partner after 

being courted by up to 14 males (Yokel 1986, Yokel and Rothstein 1991).  Thus, female 

choice in cowbirds is likely a strong feature of such sexual selection. Female cowbirds do 

not sing at all (King and West 1990, Hamilton et al. 1997) whereas female blackbirds 

sing, although less than males (Nero 1956, Beletsky 1983, Kirn et al. 1989; reviewed by 

Hall et al. 2010). Male blackbirds that are acoustically isolated develop abnormal songs 

with some normal elements (Marler et al. 1972). New song types may be added to the 
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males’ repertoires, which have likely evolved in response to male-male competition as 

opposed to female choice (Marler et al. 1972, Yasukawa et al. 1980).  

 The goal of this study was to investigate sex, species, and seasonal differences in 

the volumes of HVC and RA and neurogenesis in the HVC to determine whether patterns 

of volume and neurogenesis could reliably predict differences in song rate. Because 

males of both species sing more than females, especially during the breeding season, and 

that neurogenesis in the HVC is inversely related to signing rate in some birds, I 

predicted that males would have larger HVC and RA volumes with lower levels of HVC 

neurogenesis than females. In addition, I predicted that seasonal effects in volume and 

neurogenesis would be greater in males than in females, with larger HVC and RA 

volumes in breeding condition but more HVC neurogenesis in post-breeding condition. 

RA is primarily involved in the caudal motor pathway of the SCS, therefore I predicted 

that sex differences in RA size would be greater in cowbirds than in blackbirds because 

female cowbirds do not sing at all. Also, because female blackbirds sing, but female 

cowbirds do not, I predicted that female blackbirds would have larger or more 

discernable HVC than female cowbirds, especially in the breeding season, and that 

seasonal effects in HVC neurogenesis would be greater in female blackbirds. However, 

the HVC is involved in both the caudal motor pathway and the anterior forebrain pathway 

of the SCS and female song perception may be more important in cowbirds than in 

blackbirds. Therefore, it was also possible that no species differences in HVC volume 

and neurogenesis would exist between females, depending on the importance of song 

production versus perception in the HVC. 
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5.2  Methods 

5.2.1 Subjects 

I collected cowbirds and blackbirds of both sexes in breeding and post-breeding 

conditions (Table 5.1). Birds were the same as those used in Chapter 4. Birds from the 

breeding group were collected between mid-March and mid-May 2013 and birds from the 

post-breeding group were collected between mid-September and mid-November 2013.  I 

captured all birds using ground traps and mist nets at various sites near Port Rowan, 

Ontario, Canada. Mean body weights ± SE were as follows: 39.62 g ± 0.63 (female 

cowbirds; n = 22), 50.33 g ± 0.97 (male cowbirds; n = 23), 42.49 g ± 0.66 (female 

blackbirds; n = 16), and 65.29 g ± 0.98 (male blackbirds; n = 23). After capture, I 

transported the birds to the Advanced Facility for Avian Research at the University of 

Western Ontario in London, Ontario, where they were housed overnight in individual 

cages with food and water.  

5.2.2 Blood sampling 

I collected blood samples in the field to confirm breeding condition. I used the 

same birds as in Chapter 4, therefore I will refer to the table and figure summarizing 

androgen concentrations from that chapter. I took a blood sample from each bird by 

puncturing the brachial vein with a 26-gauge needle. Nearly all the samples were taken 

within 30 min, however 14 out of 88 samples were taken 30-92 minutes after capture. 

The correlation between androgen concentration and time was not statistically significant,  
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Table 5.1. Number of brains collected from each experimental group for the % 

discernable HVC, volume analyses measured by NeuN immunohistochemistry for HVC 

and RA, and neurogenesis (HVC only), measured by doublecortin 

immunohistochemistry. Brains were collected the day after the birds were captured from 

the field in breeding (March-May) and post-breeding (September-November) conditions.  

 

Breeding condition Brown-headed cowbird Red-winged blackbird 

 Female Male Female Male 

HVC 

Discernability (total) 
    

Breeding 40% (15) 100% (16) 100% (8) 100% (15) 

Post-breeding 25% (8) 88% (8) 38% (8) 88% (8) 

HVC  

(Volume) 
    

Breeding 6 16 8 15 

Post-breeding 2 7 3 7 

HVC 

(Neurogenesis) 
    

Breeding 6 16 8 16 

Post-breeding 2 6 3 7 

RA, Telencephalon 

(Volume) 
    

Breeding 15 16 8 16 

Post-breeding 8 8 8 8 
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therefore I kept these data points in the analyses. I collected approximately 400 µL of 

blood into heparinized capillary tubes and centrifuged the blood for 10 min at 13,000×g. 

Finally, I extracted the plasma from the tubes with a Hamilton syringe and froze the 

plasma at -30 °C until the hormone assay.  

5.2.3 Androgen assay 

Circulating androgen levels increase in breeding cowbirds (Dufty and Wingfield 

1986 a,b, Guigueno et al. 2014, Chapters 2-3). I assayed plasma androgen concentration 

using a testosterone enzyme immunoassay previously validated for a variety of bird 

species (EIA; Cat. #1-2402, Salimetrics; [Washburn et al. 2007]). I previously validated 

the assay in cowbirds (Chapters 2-3, Guigueno et al. 2014; see also Newman et al. 2008) 

and I used the same protocol to validate the assay for blackbirds. The validation below is 

identical to the one in Chapter 4 because I used the same birds for both chapters. I 

assayed a serial dilution of blackbird plasma and compared measured levels of androgens 

in the dilutions to the standard curve using an ANCOVA.  A non-significant interaction 

term (F1,10 = 0.01, p = 0.94) indicated that the slopes were similar and that the assay was 

suitable for blackbirds. Intra-assay variation was 8.85% and inter-plate variation, based 

on a pooled blackbird plasma sample and low and high controls was 3.79%. The 

sensitivity of the assay was 5 pg/mL (two standard deviations from the average value of 

zero on the standard curves), so undetectable levels were assigned a value of 2.5 pg/mL 

for the statistical analyses. 
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5.2.4 Brain collection 

 I deeply anesthetized the birds using isoflurane the day after capture. I 

transcardially perfused the birds with heparinized saline, followed by 4% 

paraformaldehyde. The brains were then carefully removed from the skull and placed in 

4% paraformaldehyde for 24 h, followed by 30% sucrose for 48-72 h (until the brains 

sunk to the bottom of the vial). Finally, I froze the brains on powdered dry ice and stored 

them in aluminium foil at -80 °C until the start of immunohistochemistry.  

5.2.5 Immunohistochemistry 

I sectioned the brains into 40 µm sections in the coronal plane using a cryostat. 

Two sets of brain sections, each set two sections apart throughout the HVC and RA, were 

collected for NeuN and DCX immunohistochemistry. NeuN is a protein expressed in 

most mature neurons (Mullen et al. 1992) and was used to delineate HVC and RA to 

calculate their volume (Newman et al. 2008), whereas DCX is a protein expressed by 

migrating and immature differentiating neurons (Francis et al. 1999, Gleeson et al. 1999), 

and was used to quantify neurogenesis (Balthazart and Ball 2014a,b). Each run consisted 

of a randomly-selected sample of brains from different groups (Table 5.1). I ran NeuN 

and DCX immunohistochemistry using the protocols described in Chapter 4. 

5.2.6 Microscopy 

I used the NeuN-labelled sections to measure the volumes of HVC and RA. I 

captured images of HVC and RA with a Spot Idea 5-megapixel digital camera 

(Diagnostics Instruments) mounted on a Zeiss Axiophot microscope using a 1.25X 
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objective lens. Only a random bird ID was assigned to each photo, therefore the images 

were analyzed without reference to species, sex, or season. The perimeters of HVC and 

RA were traced in ImageJ software (NIH) (Figure 5.1). I summed the frusta volumes 

(truncated cone) between sections (80 µm) to estimate the total volumes of HVC and RA 

in both hemispheres. I used the same telencephalon measurements as those used in 

Chapter 4. HVC, RA, and telencephalon volumes used in the analyses for each bird were  

the average between hemispheres. I adjusted the sampling interval and used the next 

nearest section if a section was damaged or lost. In some groups HVC was indiscernible, 

especially in female cowbirds and in post-breeding female blackbirds. For one male 

breeding blackbird, tissue was too damaged to measure its HVC volume. One brain was 

damaged during the sectioning and could not be used for any volume measurement, 

hence the total sample size for RA and telencephalon volumes (n = 87) is one fewer than 

the total sample sizes for androgen measurements (n = 88). Final sample sizes for HVC, 

RA, and telencephalon volume according to experimental group are found in Table 5.1.  

I used DCX-labelled sections to quantify neurogenesis in HVC (Figure 5.2). I captured 

images of % DCX+ cover (cells and projections) and DCX+ round and fusiform cells 

with a Leica DFC 420C camera mounted to a Leica DM5500B microscope (Figure 5.3). I 

chose five sections 80 µm apart and centered in the larger part of the HVC from the 

hemisphere that was most intact and best stained. I analyzed two fields of view per 

section. One field of view was positioned in the centre of the HVC, whereas the other 

was positioned just outside and ventral to HVC (in the nidopallium; see Wada et al. 2014 

for schematic drawing). I averaged results from all five sections for the analyses. I did not 

analyze DCX+ cells in RA because previous work has shown that there is little to 
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Figure 5.1 NeuN labeled brain sections with HVC (top) and robust nucleus of the 

arcopallium (RA) (below) indicated by arrows. 
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Figure 5.2 Doublecortin labelled brain sections with HVC indicated by arrows for 

breeding (top) and post-breeding conditions (bottom) in female (A) and male (B) brown-

headed cowbirds (Molothrus ater) and female (C) and male (D) red-winged blackbirds 

(Agelaius phoeniceus).

Breeding 

Post-breeding 
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Figure 5.3 Fields of view in doublecortin-labeled sections, with an example of each type of measurement taken: thresholding to 

measure the % doublecortin immunoreactive cover (top), number of round cells, indicated by arrows (bottom left) and number of 

fusiform cells, indicated by arrows (bottom right) 
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no immunoreactivity in this song control nuclei in other passerines (Boseret al. 2007, 

Balthazart et al. 2008, Wada et al. 2014). For each field of view, I captured z-stack 

images in 0.63 µm steps through the focal planes with a 40X objective lens. Following 

Hall et al. (2010), I compiled these images using the montage mode in Leica Application 

Suite software, which resulted in an image that displayed all DCX+ cells and projections 

in focus. I used the threshold feature in ImageJ to calculate the % coverage by DCX+  

cells and projections. I counted and analyzed fusiform cells and round cells separately. I 

was not able to quantify neurogenesis in some birds due to poor staining, therefore 

sample sizes from the DCX analyses differed from those for the volume analyses (see 

Table 5.1). 

5.2.7 Data analysis 

I conducted all statistical analyses in SAS (version 9.3, SAS Institute Inc., Cary, 

NC, USA). HVC was not always discernable in females (Table 5.1), therefore I ran 

Fisher exact tests to determine whether the proportion of females with discernable HVC 

changed between the breeding conditions for blackbirds and for cowbirds. For the 

volume analyses, I used general linear models (PROC GLM) with species, sex, breeding 

condition, and all interactions as explanatory variables, telencephalon volume (minus 

HVC or RA) as a covariate, and HVC and RA volumes as the dependent variables. I also 

tested whether telencephalon volume differed between species, sex, breeding condition 

with a general linear model (with all interactions). To analyze the average %DCX+ 

cover, number of round cells, and number of fusiform cells inside the HVC, I used 

general linear models, with species, sex, breeding condition, and all interactions as 
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explanatory variables, and the respective DCX+ measurements in the nidopallium as the 

covariate. To produce normally distributed residuals, I arcsine-transformed proportions 

from the %DCX+ cover data and log-transformed the remaining data if the residuals were 

not already normally distributed. Significant interactions were further analyzed using 

predetermined Fisher’s LSD post-hoc tests. Data are presented as means ± SE and results 

were considered significant if p ≤ 0.05.  

5.3 Results 

5.3.1 Androgens 

 There was a significant main effect of breeding condition, with higher androgen 

levels in breeding condition than in post-breeding condition, and a significant main effect 

of sex, with males showing higher levels than females (same data as Chapter 4). Species 

differences and all interactions were not significant (Chapter 4). 

5.3.2 Discernable HVC in females 

 A 4 X 2 Fisher exact test indicated there was a significant difference in the 

frequency of discernable HVC across breeding and post-breeding female blackbirds and 

cowbirds (p = 0.008; Table 5.1). I used 2 X 2 Fisher exact tests for pairwise comparisons. 

Breeding female blackbirds had more discernable HVC than breeding female cowbirds (p 

= 0.007; Table 5.1). Female blackbirds had more brains with a discernable HVC in 

breeding condition than in post-breeding condition (p = 0.03; Table 5.1). Finally, in 

female cowbirds, there was no significant difference in the proportion brains with a 
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discernable HVC between breeding condition and post-breeding condition (p = 0.66; 

Table 5.1). It was only possible to include data from the birds with a discernable HVC for 

the volume and neurogenesis analyses below (Table 5.1).  

5.3.3 Volume 

 Males had a larger HVC than females and the relative HVC volume was larger in 

breeding birds than in post-breeding birds, whereas there was no main effect of species 

(Table 5.2, Figure 5.4A). There was a significant sex by breeding condition interaction, 

with males having a larger HVC in breeding condition than in post-breeding condition 

(t55 = 4.53, p < 0.0001), with no seasonal change in females (t55 = 0.27, p = 0.78) (Table 

5.2, Figure 5.4A). All other interactions were not significant (Table 5.2) 

 Males had a larger relative RA volume than females and RA was larger in 

breeding birds than in post-breeding birds, whereas there was no main effect of species 

(Table 5.2, Figure 5.4B). There was a significant sex by breeding condition interaction, 

with males having a larger RA in breeding condition than in post-breeding condition (t78 

= 5.08, p < 0.0001), with no seasonal change in females (t78 =1.84, p = 0.07) (Table 5.2, 

Figure 5.4B).  There was a significant species by sex interaction, with the sex difference 

in cowbirds (t78 = 23.15, p < 0.0001) being greater than the sex difference in blackbirds 

(t78 = 14.25, p < 0.0001) (Table 5.2, Figure 5.4B). Finally, there was a significant species 

by breeding condition interaction with a greater effect of breeding condition in blackbirds 

(t78 = 4.81, p < 0.0001), than in cowbirds (t78 = 2.00, p = 0.05) (Table 5.2, Figure 5.4B). 

The three-way interaction between species, sex, and breeding condition was not 

statistically significant (Table 5.2). 
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Table 5.2. Summary of statistical effects of species, sex, breeding condition (BC) and 

their interactions on the volumes of the HVC, RA, and the telencephalon. Results are 

from a general linear model. Significant effects are in bold. 

 

Factors  F  d.f. p-value 

HVC volume    

Species 0.71 1,55 0.40 

Sex 42.36 1,55 <0.0001 

BC 5.08 1,55 0.03 

  Species x Sex 0.15 1,55 0.70 

  Species x BC 1.85 1,55 0.18 

  Sex x BC 8.23 1,55 0.006 

     Species x Sex x BC 0.03 1,55 0.86 

Telencephalon (covariate) 15.25 1,55 0.0003 

RA volume    

Species 0.27 1,78 0.61 

Sex 603.67 1,78 <0.0001 

BC 21.20 1,78 <0.0001 

  Species x Sex 16.26 1,78 0.0001 

  Species x BC 5.13 1,78 0.03 

  Sex x BC 5.65 1,78 0.02 

     Species x Sex x BC 1.78 1,78 0.19 

Telencephalon (covariate) 22.38 1,78 <0.0001 

Telencephalon volume    

Species 96.82 1,79 <0.0001 

Sex 24.40 1,79 <0.0001 

BC 21.82 1,79 <0.0001 

  Species x Sex 5.53 1,79 0.02 

  Species x BC 0.01 1,79 0.90 

  Sex x BC 0.89 1,79 0.35 

     Species x Sex x BC 0.45 1,79 0.51 
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Figure 5.4. Mean ± SE volumes of HVC, RA, and telencephalon in female and male 

brown-headed cowbirds (BHCO) and red-winged blackbirds (RWBL) in breeding and 

post-breeding conditions. Overall, males had larger HVC and RA relative to 

telencephalon volume than females. 
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 For the telencephalon, there was a significant effect of species, with blackbirds 

having a larger telencephalon than cowbirds (Table 5.2, Figure 5.4C). There were also 

significant effects of sex, with males having a larger telencephalon than females, and of 

breeding condition, with breeding birds having a larger telencephalon than post-breeding 

birds (Table 5.2, Figure 5.4C). There was a significant species by sex interaction, with 

male blackbirds having a larger telencephalon than female blackbirds (t79 = 4.98, p < 

0.0001), whereas there was only a nearly significant effect of sex in cowbirds (t79 = 1.90, 

p = 0.06) (Table 5.2, Figure 5.4C). 

5.3.4 Doublecortin    

 In HVC, females had higher %DCX+ levels than males, whereas there were no 

significant effects of species and breeding condition (Table 5.3, Figure 5.5). There was a 

significant sex by breeding condition interaction, with %DCX+ levels being higher in 

males in post-breeding condition in males (t55 = 4.14, p = 0.0001), but higher in females 

in breeding condition (t55 = 1.46, p = 0.02) (Table 5.3, Figure 5.5). All other interactions 

were not significant (Table 5.3). 

 Females had more round cells than males per field of view, whereas there were no 

main effects of species or breeding condition (Table 5.3, Figure 5.6). There was a 

significant sex by breeding condition interaction, with males having more round cells per 

field of view in post-breeding condition than in breeding condition (t55 = 3.56, p = 

0.0008), whereas there was no seasonal effect in females (t55 = 0.17, p = 0.86) (Table 5.3, 

Figure 5.6). All other interactions were not significant (Table 5.3, Figure 5.6). 
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Table 5.3. Summary of statistical effects of species, sex, breeding condition (BC) and 

their interactions on the doublecortin immunoreactivity (DCX+) in the HVC of female 

and male brown-headed cowbirds and red-winged blackbirds in breeding and post-

breeding conditions. DCX+ is a measure of neurogenesis.  Results are from a general 

linear model. Significant effects are in bold. 

 

Factors  F  d.f. p-value 

%DCX+ cover    

Species 3.76 1,55 0.06 

Sex 71.40 1,55 <0.0001 

BC 0.01 1,55 0.92 

  Species x Sex 0.51 1,55 0.48 

  Species x BC 0.60 1,55 0.44 

  Sex x BC 19.52 1,55 <0.0001 

     Species x Sex x BC 1.02 1,55 0.32 

Telencephalon (covariate) 42.81 1,55 <0.0001 

Round cells    

Species 0.71 1,55 0.40 

Sex 30.62 1,55 <0.0001 

BC 3.08 1,55 0.08 

  Species x Sex 3.32 1,55 0.07 

  Species x BC 2.37 1,55 0.13 

  Sex x BC 4.13 1,55 0.05 

     Species x Sex x BC 0.08 1,55 0.78 

Telencephalon (covariate) 11.17 1,55 0.002 

Fusiform cells    

Species 0.03 1,55 0.86 

Sex 5.10 1,55 0.03 

BC 1.33 1,55 0.25 

  Species x Sex 10.89 1,55 0.002 

  Species x BC 4.64 1,55 0.04 

  Sex x BC 7.90 1,55 0.007 

     Species x Sex x BC 3.32 1,55 0.07 

Telencephalon (covariate) 28.32 1,55 <0.0001 
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Figure 5.5. Mean ± SE %DCX+ cover in fields of view inside (A) and outside (B) the 

HVC in female and male brown-headed cowbirds (BHCO) and red-winged blackbirds 

(RWBL) in breeding and post-breeding conditions. Means were calculated from five 

fields of view inside the HVC and five fields of view outside the HVC over five coronal 

sections centered in the middle of the HVC. Overall, females had higher levels of 

doublecortin immunoreactivity inside the HVC relative to outside the HVC than males. 
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Figure 5.6. Mean ± SE number of round cells per field of view inside (A) and outisde (B) 

the HVC in female and male brown-headed cowbirds (BHCO) and red-winged blackbirds 

(RWBL) in breeding and post-breeding conditions. Means were calculated from five 

fields of view inside the HVC and five fields of view outside the HVC over five coronal 

sections centered in the middle of the HVC. Overall, females had more round cells per 

field of view inside the HVC relative to outside the HVC than males. 
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Females had more fusiform cells than males per field of view, whereas there were 

no effects of species and breeding condition (Table 5.3, Figure 5.7). There was a 

significant sex by breeding condition interaction, with males having more fusiform cells 

per field of view in post-breeding condition than in breeding condition (t55 = 3.80, p = 

0.0004), whereas there was no seasonal effect in females (t55 = 0.93, p = 0.36) (Table 5.3, 

Figure 5.7). There was a significant species by sex interaction, with female blackbirds 

having more fusiform cells per field of view than female cowbirds (t55 = 2.03, p = 0.05), 

but male cowbirds having more fusiform cells than male blackbirds (t55 = 2.98, p = 

0.004) (Table 5.3, Figure 5.7). Finally, there was a significant species by breeding 

condition interaction, with blackbirds having more fusiform cells per field of view in  

post-breeding condition than in breeding condition (t55 = 2.70, p = 0.009), whereas no 

seasonal effects exist in cowbirds (t55 = 0.67, p = 0.51) (Table 5.3, Figure 5.7). The three-

way interaction was not significant (Table 5.3). 

5.4 Discussion 

I found multiple effects of sex, season, and species in the volume and 

neurogenesis analyses of song control nuclei. Female blackbirds, which sing more than 

female cowbirds, did not have a significantly larger HVC, but had more discernable HVC 

than female cowbirds, especially in breeding condition (Table 5.1). As predicted, males, 

which sing more than females, had larger HVC and RA than females and their HVC and 

RA were greater in volume in breeding condition, when rates of singing are highest 

(Table 5.2, Figures 5.4A, 5.4B). Consistent with my prediction, there was a greater sex 

difference in RA volume in cowbirds than in blackbirds, likely because female cowbirds 
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Figure 5.7. Mean ± SE number of fusiform cells per field of view inside (A) and outisde 

(B) the HVC in female and male brown-headed cowbirds (BHCO) and red-winged 

blackbirds (RWBL) in breeding and post-breeding conditions. Means were calculated 

from five fields of view inside the HVC and five fields of view outside the HVC over 

five coronal sections centered in the middle of the HVC. Overall, females had more 

fusiform cells per field of view inside the HVC relative to outside the HVC than males. 
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do not sing at all (Hamilton et al. 1997; Table 5.2, Figure 5.4B). Breeding condition had a 

greater influence on RA volume in blackbirds than in cowbirds, a seasonal effect that I 

had not predicted (Table 5.2, Figure 5.4B). Because female starlings had higher levels of 

neurogenesis in their HVC than males and that neurogenesis in the HVC of male canaries 

was inversely related with singing rate which varies according to breeding and housing 

conditions, I predicted that lower singing rate would be associated with higher 

neurogenesis. Indeed, females had higher neurogenesis, as indicated by the density of 

DCX+ cells and fibres, in HVC than males and males had higher neurogenesis levels in 

post-breeding condition (Table 5.3, Figures 5.5, 5.6, and 5.7). Female neurogenesis 

patterns were similar between breeding conditions, except for %DCX+ cover, which was 

higher in breeding condition than in post-breeding condition, a seasonal difference in an 

unexpected direction.    

5.4.1 Volumes 

 HVC and RA volume results were consistent with female blackbirds singing less 

than males with singing being most frequent in breeding condition (Nero 1956, Beletsky 

1983, Kirn et al. 1989) and female cowbirds not singing at all (King and West 1990, 

Hamilton et al. 1997). Projections from HVC to RA are part of the caudal motor pathway 

of the SCS required for song production and I found species differences in females for 

both of these nuclei. First, breeding female blackbirds a higher proportion of brains with 

a discernable HVC than breeding female cowbirds and female blackbirds showed an 

increase in the proportion of brains with a discernable HVC from post-breeding to 

breeding condition (Table 5.1). Second, for RA volume, the effect of breeding condition 
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was greater in blackbirds, suggesting that both male and female blackbirds underwent an 

increase in RA volume whereas this effect of breeding condition was dampened in 

cowbirds because only male cowbirds underwent an increase in RA volume (Figure 

5.4B). Finally, for RA volume, there was a greater sex difference in cowbirds than in 

blackbirds, which I expected because both sexes of blackbirds sing whereas only male 

cowbirds sing (Table 5.2). Together, these volumetric differences between species 

suggest that female blackbirds produce more song in breeding condition than in post-

breeding condition and sing more than female cowbirds, which is consistent with 

previous studies on song rates (Nero 1956, Beletsky 1983, Kirn et al. 1989, King and 

West 1990). 

 Males had larger HVC and RA than females (Table 5.2, Figures 5.4A, 5.4B), 

which was previously reported in blackbirds (Kirn et al. 1989) and in cowbirds (Hamilton 

et al. 1997). Male blackbirds and cowbirds sing more than females and multiple studies 

have shown a positive correlation between sex differences in singing rate and sex 

differences in song control nuclei (Ball et al. 1994, Brenowitz 1997), even after taking 

phylogenetic relationships into account (MacDougall-Shackleton and Ball 1999). In 

addition, the female/male HVC size ratio increases as the female/male singing ratio 

increases from species in which females do not sing at all (i.e., cowbirds) to species in 

which females sing but males sing more (i.e., blackbirds) to duetting species (i.e., wrens) 

(Hall et al. 2010).  

 The relative size of HVC and RA decreased in post-breeding condition (Table 5.2, 

Figures 5.4A, 5.4B) and that was especially true in males, which has been reported in 

blackbirds (Kirn et al. 1989), but has not been previously investigated in cowbirds. 
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Nottebohm (1981) was the first to show this dramatic seasonal increase HVC and RA, 

which are due to changes in cell sizes, cell spacing and cell numbers (Tramontin and 

Brenowitz 2000). I found that, in males, HVC increased by 196% in cowbirds and 243% 

in blackbirds whereas RA increased by 143% in cowbirds and 224% in blackbirds 

(Figure 5.4). The increase in HVC volume in blackbirds is similar to the 288% increase 

in HVC size in spotted towhees (Pipilo maculatus), which is among the greatest 

volumetric increase reported in a song control nucleus (Smith 1996). Indeed, this 

seasonal brain plasticity in songbirds is likely the most pronounced of any adult 

vertebrate and the volume of the song control system and singing behaviour have been 

shown to be seasonally plastic in every seasonally breeding songbird studies so far 

(reviewed by Tramontin and Brenowitz 2000). The mechanism that stimulates this 

seasonal plasticity is increasing day length that begins at the end of winter, which 

stimulates gonadal recrudescence and increases circulating levels of gonadal sex steroids, 

particularly testosterone (Smith et al 1997, Bernard and Ball 1997). Indeed, testosterone 

mediates seasonal changes in the song control nuclei (Tramontin and Brenowitz 2000). 

HVC and RA contain steroid receptors (Arnold et al. 1976, Brenowitz and Arnold 1992, 

Smith et al. 1996) and castration greatly decreases seasonal increases in these nuclei 

(Gulledge and Deviche 1997, Smith et al. 1997), whereas exogenous testosterone re-

establishes these volumetric increases in castrated males (Nottebohm 1980, Bernard and 

Ball 1997). Finally, seasonal patterns of circulating testosterone mirrors the seasonal 

growth of song control nuclei (Smith 1996, Smith et al. 1997, Brenowitz et al. 1998), 

which I showed in blackbirds and cowbirds (Tables 5.2, Figure 5.4, Chapter 4).  
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Telencephalon volume decreased in post-breeding condition (Table 5.2, Figure 

5.4C). A meta-analysis by Smulders (2002) and more recently a study by De Groof et al. 

(2009) using magnetic resonance imaging showed similar results. Functionally, 

decreasing brain matter in post-breeding condition could reduce the costs of maintaining 

energetically expensive brain tissue at a time when food is scarce (Yaskin 1984, 

Smulders 2002). It is unlikely that cell numbers change seasonally in the telencephalon, 

therefore changes in telencephalon volume could be caused by changes in neuropil, cell 

bodies and/or extracellular space, all mechanisms that are not mutually exclusive 

(Smulders 2002, De Groof et al., 2009). However, no study that I am aware of has found 

support for possible proximate and ultimate causes for these reported decreases in 

telencephalon volume in post-breeding condition.   

5.4.2 Neurogenesis 

 DCX has only recently been used extensively to measure neurogenesis in the 

adult avian brains, however it is accepted as a reliable endogenous marker of 

neurogenesis (Balthazart and Ball 2014a, b). Very few studies have simultaneously 

examined sex and seasonal changes in neurogenesis in general, or with DCX in 

particular. In the current study, I measured the density of DCX+ cells and fibres in fields 

of view within the HVC. However, without stereology looking at the entire HVC, I 

cannot conclude that the total number of cells in the HVC differs between groups relative 

to outside the HVC.  

My results on sex differences in DCX+ are opposite from those previously 

reported in canaries in which males had more DCX+ migrating cells than females 
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(Balthazart et al. 2008, Balthazart and Ball 2014b). Female blackbirds and cowbirds had 

higher levels of neurogenesis than males, based on all three DCX+ density measurements 

(%DCX+ cover, number of round cells, and number of fusiform cells; Table 5.3, Figures 

5.5, 5.6, 5.7), a female-biased sex difference that is also present in starlings (Hall and 

MacDougall-Shackleton 2012). A negative correlation between singing rate and 

neurogenesis was also reported in male canaries that sing less in the presence of females, 

but show more neurogenesis in HVC (Balthazart et al. 2008, Alward et al. 2014). The 

telencephalon, which includes HVC, broadly and highly expresses DCX, therefore the 

default neurogenesis levels in the telencephalon of blackbirds and cowbirds may be high 

(Boseret et al. 2007). More neurogenesis in HVC is thus associated with less singing, 

which is consistent with the lower rate of singing in female blackbirds relative to males 

(Nero 1956, Beletsky 1983, Kirn et al. 1989) and no singing in female cowbirds (King 

and West 1990). Male canaries had higher DCX immunoreactivity inside the HVC than 

just outside ventral to the HVC (Balthazart and Ball 2014 a,b), whereas %DCX+ cover 

was generally greater outside the HVC than inside in male blackbirds and cowbirds 

(Figures 5.2, 5.5). Thus, patterns of sex differences in neurogenesis and neurogenesis 

levels inside the HVC relative to outside the HVC seem to be species-specific.  

Neurogenesis levels in male blackbirds and cowbirds were highest in post-

breeding condition (Table 5.3, Figures 5.5, 5.6, 5.7). My results are consistent with 

previous studies showing that ongoing neurogenesis in HVC causes seasonal increases in 

neuron number, along with volume, and neurogenesis is at its peak in the autumn 

(Tramontin and Brenowitz 2000). Elevated testosterone and estrogen levels reduce the 

turnover rate of neurons in HVC and increase the survival of new neurons, thus 
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increasing the number of total neurons in HVC in the breeding season (Rasika et al. 1994, 

Hidalgo et al. 1995, Tramontin and Brenowitz 1999). Neurogenesis in HVC generates 

new RA-projecting neurons and interneurons, replacing old cells (Paton et al. 1985, Kirn 

and Nottebohm 1993).  Peak neuron turnover in the autumn coincides with a peak in song 

learning and a reduction in song stereotypy in the canary, an open-ended song learner 

(Kirn et al. 1994). However, this seasonal peak in neuron turnover and a drop in song 

stereotypy is also present in an age-limited learner that does not change its song in 

adulthood (Tramontin and Brenowitz 1999), suggesting that peak neuron turnover may be 

more closely associated with song stereotypy only or that neuron turnover may be 

necessary for song learning, but not sufficient on its own (Tramontin and Brenowitz 

2000). Both cowbirds (King and West 1988) and blackbirds (Marler et al. 1972, 

Yasukawa et al. 1980) are open-ended learners, so the post-breeding season may be a 

time during which song modification is at its maximum. Male cowbirds had more 

migrating cells in their HVC than male blackbirds (Table 5.3, Figure 5.7). This species 

difference in neuronal recruitment may be explained by cowbird males continuously 

modifying their song in response to stimulation by females (King and West 1988, 

Hamilton et al. 1997), whereas female input has not been reported to influence male 

blackbird song. In contrast, blackbirds had more migrating cells in post-breeding 

condition than in breeding condition, whereas no seasonal effect was present in cowbirds 

(Table 5.3, Figure 5.7). In sum, although neurogenesis peaked in post-breeding males of 

both species, it may be more concentrated in post-breeding condition in blackbirds than 

in cowbirds. 
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 In contrast to males, the density of differentiating and fusiform cells in females 

remained similar between breeding conditions, but %DCX+ cover was greater in 

breeding condition (Table 5.3, Figures 5.5, 5.6, 5.7). This seasonal effect in %DCX+ 

cover was mainly driven by female blackbirds (Figure 5.5). Female blackbirds sing two 

song types; one is for pair-bond maintenance and the other is apparently territorial 

(Beletsky 1983). Unlike males that use their song to attract mates and thus would require 

peak song performance established before the breeding season commences, female 

blackbirds may need to modify their pair-bonding song during the breeding season based 

on the mate they choose for that year. Song modification in breeding female blackbirds 

may be the reason why female blackbirds have more migrating cells per field of view 

than female cowbirds (Table 5.3, Figure 5.7).  

5.4.3 Summary and conclusions 

 Female blackbirds and cowbirds sing less than males and had smaller HVC and 

RA with higher levels of neurogenesis in HVC relative to the adjacent nidopallium. In 

male cowbirds and blackbirds, the volumes of HVC and RA increased in breeding 

condition when androgen levels were high and neurogenesis in HVC was greatest in post-

breeding condition, when androgen levels were low. Larger volumes of HVC and RA in 

breeding males may allow them to sing frequently to attract mates, whereas higher levels 

of neurogenesis in post-breeding males allow them to modify and prepare their songs for 

the upcoming breeding season. Although the volumes of HVC and RA did not change 

seasonally in females, breeding female blackbirds had more discernable HVC with more 

HVC neurogenesis than non-breeding female blackbirds, suggesting that the function of 

song in female blackbirds may be different than in males. Female blackbirds may need to 



 

 

203 

 

show the most song plasticity in breeding condition, especially to accommodate pair-

bonding. Female cowbirds do not sing at all and thus fewer cowbird females had a 

discernable HVC than female blackbirds. In conclusion, song control nuclei volume and 

neurogenesis change with sex and season in two icterid species and reflect differences in 

song rate, song function, and song plasticity, closely connecting behaviour with the brain. 
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Chapter 6 

6. General Discussion6 

6.1 Summary 

 In this thesis, I found that cognition and the brain of a brood parasite were closely 

associated with its behavioural ecology, results that are consistent with the underlying 

hypothesis in neuroecology (Table 6.1).  

In Chapters 2 and 3, I tested brown-headed cowbirds (Molothrus ater) on two 

types of spatial tasks in non-breeding and breeding conditions. In Chapter 2, I used a 

large-scale foraging task that required subjects to move through their environment and 

remember a specific location for 24 h, like cowbirds would in the wild. I found that 

females made fewer errors and took more direct paths to the rewarded location than 

males. There was no effect of breeding condition on either females or males. In Chapter 

3, I used operant conditioning to test both spatial and colour memory with touchscreens, 

which required birds to remember a location or a colour for just a few seconds. The 

touchscreen task differed from the foraging task in spatial scale, retention interval, and in 

the response required of the birds (i.e., approaching a cup versus pecking a shape on a 

screen). The touchscreen task was meant to test whether female cowbirds have overall 

better spatial memory than males or if sex differences in spatial memory in cowbirds is  

                                                      
6 This chapter has not been published. 
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Table 6.1. Summary of sex (F = females, M = males) differences in cognition and the 

brain of brown-headed cowbirds (BHCO) and red-winged blackbirds (RWBL). For 

brevity, only one measure of neurogenesis was included: % doublecortin immunoreactive 

(DCX+) cover, with a higher percentage indicating higher neurogenesis. 

 

Cognitive or neural variable Sex difference? Species difference? Chapter # 

Spatial memory: Food cups1  BHCO: F > M n/a 2 

Spatial memory: Touchscreens2 BHCO: M > F n/a 3 

Colour memory: Touchscreens2 BHCO: F = M3 n/a 3 

Hippocampus : Volume BHCO and 

RWBL: F > M 

BHCO > RWBL 4 

Hippocampus : %DCX+ cover BHCO: F > M 

RWBL: F = M 

BHCO > RWBL 4 

HVC : Volume BHCO and 

RWBL: M > F 

BHCO = RWBL 5 

RA : Volume BHCO: M > F4 

RWBL: M > F 

BHCO = RWBL 5 

HVC : %DCX+ cover BHCO and 

RWBL: F > M 

BHCO = RWBL 5 

1. Task required subjects to move through space and locate a previously-baited food cup. 

2. Task required subjects to remember a location or a colour in their immediate visual 

field. 

3. Both females and males performed better on the spatial task than on the colour task. 

4. The effect of sex is greater in cowbirds than in blackbirds. 
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task-dependant. On the spatial touchscreen task, males performed better than females in 

two ways. First, breeding males outperformed breeding females. Second, at the shortest 

retention interval, males outperformed females. There was no sex difference on the non-

spatial (colour) task, however, a seasonal effect was observed in females only, with 

performance increasing from non-breeding to breeding conditions. Both females and 

males performed better on the spatial touchscreen task than on the colour touchscreen 

task. 

In Chapter 4, I studied the neural basis of spatial memory, the hippocampus. I 

studied the effects of sex, season, and species on hippocampal volume and neurogenesis. 

Unlike Chapters 2 and 3, I was able to include a nonparasitic relative, the red-winged 

blackbird (Agelaius phoeniceus) in my analyses. I found that hippocampal size, relative 

to the telencephalon, was greater in cowbirds than in blackbirds and greater in females 

than in males. Similarly, doublecortin immunoreactivity (DCX+), an endogenous marker 

of neurogenesis, was higher in the hippocampus of cowbirds than that of blackbirds, 

relative to the telencephalon. However, unlike the volume analyses, there was a 

significant sex by species interaction in %DCX+ cover, with neurogenesis being greater 

in female cowbirds than in male cowbirds, but no sex difference in blackbirds. Breeding 

condition did not affect the size of the hippocampus, but it did affect neurogenesis, which 

was highest in non-breeding cowbirds with no seasonal effects in blackbirds.  

In Chapters 2-4, I examined the cognitive and neural aspects of spatial memory, 

whereas Chapter 5 focused on the neural basis of bird song. I measured the size of the 

HVC and the robust nucleus of the arcopallium (RA) and neurogenesis in HVC to 
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determine whether these variables vary with signing rate in breeding and post-breeding 

female and male cowbirds and blackbirds. HVC and RA were larger in males than in 

females and in males and HVC and RA were larger in breeding condition than in non-

breeding condition. High levels of neurogenesis in HVC were associated with lower 

singing rates; females, who sing less than males, had more HVC neurogenesis and non-

breeding males, who sing less than breeding males, also had more HVC neurogenesis. 

Breeding female blackbirds, who sing, had more discernable HVC than female cowbirds, 

who do not sing at all.  

There are many novel features presented in this thesis. First, this is one of few 

studies examining spatial memory in a brood parasite and the only study to examine both 

sex and seasonal changes in spatial memory in a brood parasite. This is only the second 

study to examine cognition in a parasite using operant conditioning with touchscreens. 

Third, this is one of few studies to simultaneously examine sex and seasonal changes in 

the size and neurogenesis of the hippocampus and song control nuclei. Fourth, this is one 

of few studies to use doublecortin as a marker of neurogenesis and the only study to use 

doublecortin in a brood parasite or an icterid. In all, my thesis has made a multi-faceted 

contribution to the field of neuroecology. 

6.2 Seasonal stability in spatial memory and the 

hippocampus 

 Spatial memory and hippocampus size and neurogenesis were enhanced in 

females and in cowbirds and, except for neurogenesis, were seasonally stable. Female 
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cowbirds performed better than males on the food cup task in Chapter 2, regardless of 

breeding condition. Similarly, in Chapter 4, hippocampus size remained stable across 

breeding conditions, with cowbirds and females having a larger hippocampus, relative to 

the telencephalon, than blackbirds and males, respectively. Species differences in 

hippocampal neurogenesis were similar to those of hippocampal volume, with cowbirds 

having more hippocampal neurogenesis than blackbirds. However, only female cowbirds 

had more hippocampal neurogenesis than male cowbirds as opposed to females of both 

species having a larger hippocampus than males. Spatial memory and hippocampus 

volume in brown-headed cowbirds were not plastic as I had initially predicted. Although 

this thesis alone cannot conclude that cowbirds, especially females, have adaptively 

specialized hippocampi and spatial memory for their brood-parasitic mode of 

reproduction, the results are consistent with this hypothesis. I only included cowbirds in 

Chapter 2 whereas, in Chapter 4, I included cowbirds and a closely-related non-parasite, 

the red-winged blackbird, in the analyses. As Garland and Adolph (1994) noted, 

however, at least three species should be included in studies that aim to determine 

whether a trait is an adaptation. Studies like this thesis, along with future studies 

addressing similar questions, could together provide a clear picture of adaptations of the 

brain and cognition in brood parasites. 

6.3 Resemblance to food-storing songbirds 

 Patterns of spatial cognition and hippocampus volumes in cowbirds resemble 

patterns reported in food-storing birds (Table 6.1). A seasonally stable hippocampus 

volume has also been reported in food-storers (Hoshooley and Sherry 2004, Hoshooley et 
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al. 2007). Smulders et al. (1995) reported a larger hippocampus in chickadees in the 

autumn, although no other study has been able to replicate these findings. In addition to a 

seasonally stable hippocampus, food-storers have a larger hippocampus than non-food-

storers (Krebs et al. 1989, Sherry et al. 1989, Hampton et al. 1995, Garamszegi and Eens 

2004, Lucas et al. 2004) and perform better on various types of spatial memory tasks 

(Balda and Kamil 1989, Kamil et al. 1994, Olson 1991, Olson et al. 1995, McGregor and 

Healy 1999). Non-food-storers also generally perform equally well on spatial and non-

spatial (i.e., colour) tasks, whereas food-storers perform better on spatial memory tasks 

(Brodbeck and Shettleworth 1995). Although I did not include a non-parasitic relative in 

my cognitive tests, cowbirds performed better on the spatial touchscreen task than on the 

colour touchscreen task (Chapter 3), suggesting that their spatial memory, like in food-

storers, may be enchanced relative to other forms of memory (Brodbeck and Shettleworth 

1995). In support, cowbirds also had a larger hippocampus than blackbirds (Chapter 4). 

Selection on one sex (i.e., females) can generate species differences. Indeed, because 

female and male cowbirds share most of their genes, a trait favored in one sex can occur 

in both (Lande 1980, Wyman et al. 2013). However, female cowbirds performed better 

on the foraging task, which more closely resembled host nest searching in the field. Thus, 

although spatial memory in general may be enhanced in both male and female cowbirds 

relative to other forms of memory, which is associated with a larger relative hippocampus 

(Chapters 3 and 4), the specialized form of spatial memory that may be required to 

remember the location of host nests appears to be enhanced in females only (Chapter 2). 
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6. 4 Sex differences are dependent on task type 

 Unlike food-storers that outperform non-food-storers on a variety of tasks, sex 

differences in cowbird spatial cognition are dependent on task type (Table 6.1). Females 

performed better than males on the food cup task (Chapter 2), whereas males performed 

better than females on the touchscreen task (Chapter 3). Selection for enhanced spatial 

memory for cache sites acts on both sexes in a food-storing species, whereas selection for 

enhanced spatial memory of host nests likely only acts on females. Thus, the effect of 

food-storing on spatial memory and the hippocampus is expected to be stronger that of 

brood parasitism.  

 Like female cowbirds, male mammals perform better than females on spatial tasks 

requiring movement through space (Hampson 2002). Male humans, meadow voles, and 

laboratory rats perform better than females on spatial memory tasks in which the subject 

or the external stimuli are in motion (Gaulin and Fitzgerald 1986, Williams et al. 1990, 

Silverman et al., 2000, Postma et al., 2004). From an ultimate perspective, this male 

advantage in spatial navigation is thought to stem from males ranging more widely than 

females (Gaulin and Fitzgerald 1986, Hampson 2002, 2008). The Fertility and Parental 

Care Theory proposes that females must maintain a threshold body fat to maintain 

ovulatory competence and to preserve the implanted embryo, which both promote 

reproductive success (Sherry and Hampson 1997, Hampson 2002). To maintain this 

required body fat, females must reduce long distance ranging that is more typical of 

males (Hampson 2002). In addition, mammals are usually polygynous and thus males 

navigate longer distances than females (Hampson 2002, Gaulin and Fitzgerald 1986). In 

cowbirds, it is not the mating system that influences space use, but the need for females 
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to remember the location of suitable host nests within their egg-laying range (Rothstein et 

al. 1986). In sum, space use and spatial memory in female cowbirds resembles those of 

male mammals. 

 Like male cowbirds, female humans outperform males on stationary spatial 

memory tasks (Hampson 2002). Females consistently perform better than males when 

there is no dynamic change in the objects or the subject and dynamic positions of the 

objects do not need to be visualized. This sex difference is normally shown when the 

subject is presented with an array of objects in their immediate visual field and is asked 

which objects changed positions after a retention interval. Multiple studies have reported 

such a female-bias in object location memory (Eals and Silverman 1994, James and 

Kimura 1997, McBurney et al. 1997, Voyer et al. 2007). Why might female humans be 

better at object location memory? Females, who may not range long distances to 

maximize reproductive fitness (see above), may be adapted to foraging near their home 

and navigate in a familiar setting where landmarks are reliable spatial cues (James and 

Kimura 1997, Hampson 2002). Indeed, females rely more on landmarks for spatial 

navigation in humans and rodents (Galea and Kimura 1993, Sandstrom et al. 1998, 

Williams et al. 1990; reviewed in Hampson 2002). Thus, male cowbirds outperform 

female cowbirds on a task in which female humans normally excel at relative to males. 

 In cowbirds, I reported a reversal of typical sex differences in spatial memory 

generally reported in mammals. Female cowbirds were better at the spatial memory task 

requiring movement through space (Chapter 2), like male mammals, whereas male 

cowbirds were better at a stationary object location memory task (Chapter 3), like female 

mammals. Space use in female cowbirds (host nest visits) is analogous to space use seen 
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in male mammals (visiting multiple mates, foraging longer distances) and thus, likely 

explains the female-biased sex difference I reported in Chapter 2. However, the basis for 

the male-biased sex difference in Chapter 3 is more difficult to understand. From an 

ultimate prospective, there may be a trade-off associated with specialization in a 

particular form of memory because enhanced cognitive function has metabolic and life 

history costs (Hasenstaub et al., 2010, Burns et al., 2011, Cole et al. 2012). Enhanced 

performance by female cowbirds on large-scale navigational tasks may come at a cost to 

stationary spatial task. Alternatively, there could be functional incompatibility between 

these two types of spatial memory (Sherry and Schacter 1987). From a proximate 

perspective, improved male spatial performance on the touchscreen task could be due to 

increased androgen concentrations. Androgen concentrations in males increased a great 

deal more between non-breeding and breeding conditions than in females and it was only 

in breeding condition that males outperformed females (Chapter 2). Elevated androgens 

has been shown to increase spatial memory performance in mammals and songbirds, 

which may have also caused male cowbirds to increase their spatial performance from 

non-breeding to breeding condition and outperform breeding female cowbirds (more 

details below; Galea et al. 1996, Hodgson et al. 2008). In conclusion, I have 

demonstrated a reversal of sex-typical spatial memory performance in a species with sex-

role-reversed use of space. 
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6.5 Seasonal changes in stationary spatial memory 

and hippocampal neurogenesis 

 Although breeding condition did not affect spatial memory of female and male 

cowbirds on the food cup task (Chapter 2) and females on the touchscreen task (Chapter 

3), it did affect performance of males on the touchscreen task. Males had more accurate 

spatial memory when they were in breeding condition and when their circulating 

androgen levels (mainly testosterone) were at their highest (Chapter 3). Enhanced spatial 

memory or acquisition of a spatial task has been associated with high testosterone levels 

in both mammals and birds (Galea et al. 1996, Hodgson et al. 2008). Breeding male deer 

mice (Peromyscus maniculatus) showed better acquisition of a spatial task than females, 

when their testosterone levels are highest, whereas no sex difference existed in non-

breeding condition (Galea et al. 1996). In a spatial touchscreen task similar to my study, 

great tits improved their performance after they were administered exogenous 

testosterone (Hodgson et al. 2008). The hippocampus of songbirds expresses high levels 

of the enzyme aromatase, which converts testosterone into estradiol (Saldanha et al. 

2004). Aromatase produces high levels of local estradiol in the hippocampus, which 

binds to estrogen receptors and enhances spatial memory acquisition and performance 

(Oberlander et al. 2004, Hodgson et al. 2008, Bailey et al. 2013). Thus, enhanced spatial 

performance by breeding male cowbirds is probably caused by elevated testosterone, 

which is converted to estradiol in the hippocampus.   

 Although breeding condition did not affect the volume of the hippocampus, it did 

affect hippocampal neurogenesis, especially in cowbirds (Chapter 4). Neurogenesis 
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peaked in non-breeding condition, when cowbirds are not searching for host nests and 

memory load is low. Barnea and Nottebohm (1994) also reported a peak hippocampal 

neurogenesis in black-capped chickadees in the autumn, however this peak coincided 

with a time of the year when spatial memory load was presumed to be at a peak. There 

have been inconsistencies with seasonal differences in hippocampal neurogenesis in 

food-storers as Hoshooley and Sherry (2004) found no seasonal variation in the 

production of new neurons. Hippocampal neurogenesis in food-storing birds could vary 

between years and more specifically relate to factors such as food availability, energy 

balance, and flock dominance structure (Sherry and MacDougall-Shackleton 2014). 

Seasonal changes in hippocampal neurogenesis in cowbirds from the current study 

resemble patterns exhibited by the polygynous Richardson’s ground squirrel (Urocitellus 

richardsonii) (Burger et al. 2014). Although home ranges are larger in the breeding 

season, especially for males that mate with multiple females within their home range, 

hippocampal neurogenesis is at a peak in non-breeding condition (Burger et al. 2014). 

Hippocampal neurogenesis in the cowbirds also resembles a consistent pattern of 

seasonal neurogenesis observed in male songbirds. Neurogenesis into the song control 

nuclei HVC is at a peak in the non-breeding season (reviewed by Tramontin and 

Brenowitz 2000). Singing rate peaks in the breeding season, therefore neurogenesis in 

non-breeding may allow birds to practice and prepare their song for the upcoming 

breeding season (Tramontin and Brenowitz 2000). Similarly, heightened hippocampal 

neurogenesis in non-breeding cowbirds may allow them to refresh their memory and 

prepare their brains for new spatial information in the upcoming breeding season. 
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6.6 Song control nuclei 

 Although the relative hippocampus size was larger in female blackbirds and 

cowbirds (Chapter 4), the relative size of the song control nuclei, HVC and RA, were 

larger in male blackbirds and cowbirds (Chapter 5). This male-biased sex difference is 

correlated with higher singing rates in males than in females (reviewed by Hall et al. 

2010). Various studies, across many species have shown a positive correlation between 

sex differences in song control nuclei sizes and sex differences in singing rate (Ball et al. 

1994, Brenowitz 1997), even after taking phylogenetic relationships into account 

(MacDougall-Shackleton and Ball 1999). Female cowbirds do not sing at all (King and 

West 1990, Hamilton et al. 1997), whereas female blackbirds sing, but less than males 

(Nero 1956, Beletsky 1983, Kirn et al. 1989). Consistent with this species difference in 

females, 1) fewer female cowbirds had an HVC that was discernable from the 

surrounding telencephalon than female blackbirds, especially in the breeding season and 

2) there was a greater sex difference in RA volume in cowbirds than in blackbirds 

(Chapter 5).  

 Female blackbirds and cowbirds had higher relative neurogenesis in HVC than 

males, which is consistent with previous work on starlings (Hall and MacDougall-

Shackleton 2012) but opposite from previous work in canaries (Balthazart et al. 2008). 

However, in male canaries, a lower singing rate was associated with higher HVC 

neurogenesis (Alward et al. 2014). So, it follows that female blackbirds and cowbirds, 

that sing less than males, would have higher HVC neurogenesis. However, hippocampal 

neurogenesis was also higher in females than males, but females, especially female 

cowbirds, have higher a spatial memory load than males (Chapter 4). Thus, sex 
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differences in neurogenesis and how they relate to the use of the brain region in question 

are not fully understood. 

There was strong seasonal plasticity in the volumes of HVC and RA (Chapter 5). 

HVC and RA were approximately twice as large in the breeding season relative to the 

non-breeding season (Chapter 5). Breeding condition had a greater effect on RA volume 

in blackbirds than in cowbirds, which points to two non-mutually-exclusive mechanisms. 

First, the effect of breeding condition is dampened in cowbirds because only male 

cowbirds, the only sex that sings, undergo a volumetric increase in RA. Second, female 

choice is a strong feature of sexual selection of song in cowbirds (King and West 1988, 

Hamilton et al. 1997) whereas male-male competition is the stronger feature of sexual 

selection in blackbirds (Marler et al. 1972, Yasukawa et al. 1980). Male-male 

competition of territories in blackbirds occurs solely in the breeding season whereas male 

cowbirds can modify their song in response to stimulation by females at any time of the 

year.  

Like the cowbird hippocampus (Chapter 4), I found that neurogenesis in the HVC 

was highest in non-breeding condition (Chapter 5). So, in both HVC and the 

hippocampus, cowbirds produce new neurons at a time of the year when these brain 

regions are used the least. Although seasonal patterns of hippocampal neurogenesis are 

not consistent across studies, increases in HVC neurogenesis are quite consistently in the 

non-breeding season, when birds are practicing and modifying their songs (reviewed by 

Tramontin and Brenowitz 2000). 
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6.7 Neurogenesis: forgetting or acquisition of new 

memories? 

  The HVC of male blackbirds and cowbirds and the hippocampus of cowbirds, 

especially females, are presumably less relied upon in post-breeding condition. However, 

neurogenesis was at a peak at this time of year in the HVC of male blackbirds and 

cowbirds and in the hippocampus of cowbirds. These results suggest that seasonal 

fluctuations of neurogenesis in an individual regulates forgetting. If the role of 

neurogenesis was primarily to allow acquisition of new memories, neurogenesis would 

have peaked in the breeding season. Neurogenesis replaces old cells which may erase 

memories at a time of the year when past memories are no longer required (Barnea and 

Pravosudov 2011, Tramontin and Brenowitz 1999). Purging past memories will 

presumably reduce interference when new memories must be acquired in the breeding 

season (Hoshooley and Sherry 2007, Barnea and Pravosudov 2011). Indeed, in mice, 

reducing neurogenesis increased memory persistence (Akers et al. 204). Forgetting 

indirectly allows male blackbirds and cowbirds, which are open-ended learners, to 

produce a newly perfected song and female cowbirds to remember the location of new 

host nests independently from last year’s experiences.  

6.8 Previous cognitive and neural work on cowbirds 

 A previous thesis, Lattanzio (2007), examined sex differences in spatial and 

colour memory of brown-headed cowbirds on touchscreens like in Chapter 3, but did not 

test cowbirds on a spatial navigational task like Chapter 2. Also, unlike my thesis, 
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Lattanzio (2007) did not vary breeding condition. Although Lattazio (2007) did not find a 

sex difference on the colour task, like with my thesis, she found that females 

outperformed males on the spatial touchscreen task. This discrepancy is difficult to 

explain, especially considering that my thesis and hers found significant effects of sex in 

opposite directions. One difference between my thesis and Lattanzio (2007) may be 

motivation. The birds in Lattanzio (2007) were not tested 7 days a week, frequently 

ceased to respond during testing, and performed only slightly above chance. In addition, 

Lattanzio (2007) did not food deprive her birds at the same level as I did, which may 

have played an important role in causing differences in motivation between her study and 

mine. Finally, Lattanzio (2007) used fewer birds and, due to stochastic events, may have 

led to a Type I error.  Nonetheless, as my thesis has demonstrated, our understanding of 

sex differences in avian cognition remains imperfect and there may be other factors that 

we do not yet understand that account for differences between the two studies. 

 Sherry et al. (1993) previously reported that breeding female cowbirds had a 

larger hippocampus than breeding males whereas no sex difference existed in blackbirds. 

However, Lattanzio (2007) did not report a sex difference in the hippocampus volume of 

cowbirds. Although I recorded a significant female-biased effect of sex in cowbirds, this 

effect of sex was also present in blackbirds. In the South American congeneric shiny 

cowbird, females have a larger hippocampus than males (Reboreda et al. 1996), however, 

these results have not been replicated as Clayton et al. (1997) used the same individuals 

in their seasonal study. Thus, patterns of sex differences in the hippocampus size of 

brood-parasitic and non-brood-parasitic species are not as consistent as patterns in food-

storing and non-food-storing birds. 
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I did not record an effect of breeding condition on hippocampus size, even with a 

large sample size relative to previous studies on cowbirds (Lattanzio 2007, Clayton et al. 

1997). However, Lattanzio (2007) found that female brown-headed cowbirds had a 

smaller hippocampus later in the summer, when breeding was nearly done, than at the 

peak of breeding in the spring, whereas no seasonal effect was reported in males. 

Similarly, the congeneric shiny cowbird has a larger hippocampus in the breeding season 

than in the non-breeding season (Clayton et al. 1997). Thus, seasonal differences in the 

hippocampus size of cowbirds are not consistent across studies. 

Similar to my study, female cowbirds in Lattanzio (2007) had more hippocampal 

neurogenesis than males, however, unlike my study, hippocampal neurogenesis was 

greatest in breeding condition. I recorded high hippocampal neurogenesis in non-

breeding condition (Chapter 4), just like the song control nuclei HVC (Chapter 5). No 

other study has investigated seasonal and sex effects of hippocampal neurogenesis in 

cowbirds and thus further work is needed.   

 The volumes of the HVC and RA have previously been shown to be larger in 

males than females (Hamilton et al. 1997, Lattanzio 2007) and larger in males in the 

breeding season (Lattanzio 2007). Thus, sex and seasonal patterns of song control nuclei 

sizes are consistent across studies, including mine. Sex and seasonal changes in HVC 

neurogenesis had not been previously examined in cowbirds, but are consistent with data 

on other songbirds (Tramontin and Brenowitz 2000).  
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6.9 Future work 

My thesis has made a solid contribution to the field of neuroecology. However, 

many other unanswered questions remain. To test whether brood parasitism has 

specifically caused an evolutionary enlargement of the hippocampus and increased 

hippocampal neurogenesis, we need to conduct large-scale phylogenetic analyses like 

those that exist for food-storing behaviour (e.g., Garamszegi and Eens 2004, Lucas et al. 

2004). Thus, we should include other brood parasites such as Eurasian cuckoos (family 

Cuculidae), honeyguides (Piciformes), and whydahs (Viduidae) in a large-scale study. In 

addition, hippocampal measurements should be taken across breeding conditions. To 

increase power, it would be very useful to develop magnetic resonance imaging (MRI) 

techniques to allow for repeated measures across breeding conditions and eliminate the 

necessity of euthanizing individuals. MRI would also allow researchers to investigate 

cognition in conjunction with brain work.  

Data on detailed space use in the wild is lacking in cowbirds. Cowbirds are too 

small to carry global positioning system (GPS) loggers that record fine-scale habitat use 

with high temporal resolution. With time, smaller and better technology may become 

available. For now, a radio-receiver array could be used to track the movement of female 

and male cowbirds in their egg-laying ranges. We could determine precisely how 

frequently female cowbirds visit host nests before, during and after parasitism. The use of 

MRI described above would be highly valuable, as we could take repeated measure of the 

hippocampus volume throughout the breeding season to see if hippocampus volume is 

correlated with spatial memory load of a given individual or even between individuals. 
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Females that make more visits to more host nests and that navigate in more spatially 

complex terrain may have larger hippocampi.  

In my thesis, I did not count the number of neurons in the hippocampus, which 

could change seasonally within individuals or by sex or species between individuals. 

Indeed, changes in cell number may help explain more subtle changes in behaviour that 

volume cannot detect (Roth et al. 2010). To better understand the neural mechanisms of 

memory and evolution, volume, in conjunction with cell numbers, should be incorporated 

into hippocampal analyses (Roth et al. 2010). 

6.10 Conclusions 

 I used an integrative approach to determine the effects of sex and breeding 

condition on cognition and the brain of the brood-parasitic brown-headed cowbird and a 

nonparasitic relative, the red-winged blackbird. Studies outlined in my thesis contribute 

many new findings to the fields of cognition, neuroscience, and physiology. In cowbirds, 

I showed (i) a female-biased sex difference on a navigational memory task resembling 

host nest visits, (ii) a female-biased sex difference in hippocampus size and neurogenesis, 

and (iii) that both cognitive and relative hippocampus size measures were stable between 

breeding conditions. On a touchscreen spatial memory task, breeding males had both the 

highest performance and the highest androgen levels of all groups, suggesting that 

hormones may regulate cognitive abilities. Female and male cowbirds performed better 

on this spatial task than on a similar colour task, suggesting that cowbirds may have 

enhanced spatial memory relative to other forms of spatial memory. Consistent with this 

finding, cowbirds had a larger hippocampus with more neurogenesis than blackbirds. 
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Finally, sex and seasonal differences in the size and neurogenesis of song control nuclei 

were positively and negatively associated with singing rate, respectively. In sum, sex and 

seasonal differences in cognition and the brain were closely associated with spatial and 

singing behaviours observed in the wild.  
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Appendix 1: Animal Use Protocol Approval for 

Chapters 2-5 

2007-001-03::7: 

AUP Number: 2007-001-03 

AUP Title: Neurogenesis, Spatial Memory, and Animal Cognition 

 

 
Yearly Renewal Date: 08/01/2014 

The YEARLY RENEWAL to Animal Use Protocol (AUP) 2007-001-03 has been 

approved, and will be approved for one year following the above review 
date. 

1. This AUP number must be indicated when ordering animals for this project. 
2. Animals for other projects may not be ordered under this AUP number. 
3. Purchases of animals other than through this system must be cleared through 

the ACVS office. 
Health certificates will be required. 

REQUIREMENTS/COMMENTS 

Please ensure that individual(s) performing procedures on live animals, as described 
in this protocol, are familiar with the contents of this document. 

The holder of this Animal Use Protocol is responsible to ensure that all associated 

safety components (biosafety, radiation safety, general laboratory safety) comply 

with institutional safety standards and have received all necessary approvals. Please 
consult directly with your institutional safety officers. 

Submitted by: Kinchlea, Will D  
on behalf of the Animal Use Subcommittee  
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