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Abstract 

Projected increase in growth temperatures and CO2 may affect carbon balance in Norway 

spruce (Picea abies), a dominant coniferous species of the boreal forest ecosystem. To examine 

the effects of elevated growth temperatures and CO2 on photosynthesis and respiration rates in 

this species, I exposed three-year-old seedlings to six treatments: ambient (400 ppm) and 

elevated (750 ppm) CO2 concentrations combined with three growth temperatures: ambient, 

ambient +4 
o
C, and ambient +8 

o
C. I found that while net growth was generally not affected by 

growth CO2 or temperature, leaf nitrogen concentrations were reduced, mortality rates were 

higher, and needles were shorter and thinner in +8 
o
C treatments, compared to cooler treatments. 

I found that net CO2 assimilation rates and dark respiration acclimated to temperature but not 

CO2, while patterns of acclimation of light respiration in the light varied between years. The 

highest net CO2 assimilation rates were found in trees grown at +4 
o
C combined with elevated 

CO2, which could indicate that a slight increase in growth temperature with elevated CO2 may 

benefit the carbon balance of Norway spruce. However, further warming had negative effects on 

carbon uptake, with trees from the +8 
o
C treatments showing the lowest CO2 assimilation and 

dark respiration rates. The Q10 of light respiration was 35% higher than the Q10 of dark 

respiration, so that the ratio of light respiration to dark respiration increased as leaf temperature 

increased. I conclude that light respiration is not a constant fraction of dark respiration, although 

both parameters are tightly correlated, and this relationship can be used to improve models of 

terrestrial vegetation.  

Key words: Climate change, Norway spruce, Picea abies, temperature, CO2, photosynthesis, 

dark respiration, light respiration, acclimation. 
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1 Introduction 

1.1  Boreal forest and global warming 

 

In the last two centuries, atmospheric CO2 concentrations have risen from 280 ppm to 

400 ppm due to anthropogenic disturbances such as fossil fuel burning and land use change,
 
with 

projections of CO2 concentrations of up to 900 ppm by the year 2100. As a result, the Earth’s 

global mean temperature is expected to rise by 2-4 
o
C (IPCC 2014), and even more extreme 

temperature increases (5.5-10 
o
C) are predicted at high latitudes (IPCC 2014). These climatic 

changes will have strong effects on the world’s largest terrestrial ecosystem, the boreal forest, 

which occupies about 1.3 billion ha (FAO 2000). This ecosystem contains ca 800 Pg carbon (C), 

or one-third of all the terrestrial C stores on the planet (Apps et al. 1993). Recent changes in the 

global C cycle have been attributed to perturbations in the function of high latitude forests and 

the arctic region due to climatic change (Graven et al. 2013). Considering the significance of 

boreal forests on the global carbon cycle, understanding how climate change will affect these 

high latitude forests is important for understanding and predicting future C fluxes from 

vegetation. 

 

1.2 Role of respiration in the global carbon cycle 

 

Net ecosystem C uptake is determined by the balance of C gain from CO2 assimilation 

(A) and C loss via respiration (R). Both processes are co-dependent: R needs the substrate 

provided by A, and A is dependent on ATP and C skeletons from R that are required for sugar 

synthesis. On the global scale, A fixes 120.4 Gt C from the atmosphere every year, whereas 
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about half of this C (~60 Gt C) is lost through plant and soil R (Schlesinger & Andrews 2000, 

Amthor 1995), and leaf R contributes about 50% of this C loss (Atkin et al. 2007). Although 

anthropogenic activities also affect the global C cycle, burning of fossil fuels and land-use 

change only contribute 6.3 and 1.6 Gt C per year, respectively,
 
to the atmosphere (IPCC 2014). 

Given the scale of the C fluxes of A and R globally, even a minor change in either process can 

have an effect
 
on atmospheric CO2 on the order of anthropogenic contributions (Drake et al. 

1999, Lindroth et al. 2008).  

 

1.3 Responses of photosynthesis to elevated CO2 and temperature 

 

Since global climate change is primarily due to increasing CO2 concentrations, research 

on how A and R in terrestrial plants will respond to climate change should include both elevated 

growth temperatures and CO2. The response of A to future climate conditions is relatively well 

studied compared to the responses of R (Xu et al., 2013; Way & Yamori, 2014; Way et al. 2015). 

Elevated CO2 typically stimulates net CO2 assimilation rates (Anet) (Sage & Kubien 2007, Crous 

et al. 2008, Crous et al. 2012, Marshall & Linder 2013) by increasing substrate availability for 

Rubisco (ribulose-1,5-bisphosphate) in the Calvin-Benson cycle. Elevated growth temperatures 

change the temperature response of Anet by increasing the thermal optimum of Anet as plants 

acclimate to the higher growth temperature (Berry & Bjorkman 1980, Way & Sage 2008, 

Yamori et al. 2014). However, Anet measured at the growth temperature may be lower in plants 

that developed at high growth temperatures, offsetting any enhancement of Anet due to a CO2 

effect (Fig. 1.1) (Tjoelker et al. 1998; Benlloch-Gonzalez et al. 2014; Way & Yamori 2014).  
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Figure 1.1 Conceptual figure of how long-term warming may affect net CO2 assimilation 

rates. In A) net CO2 assimilation rates are higher in warm-grown plants compared to control 

plants; in B) net CO2 assimilation rate are suppressed in warm-grown plants compared to control 

plants. Solid lines- plants grown at the control temperature, dashed lines- plants grown at a 

warmer temperature. Vertical lines: long-dashed line represents growth temperature for control 

plants; short-dashed line represents growth temperature for warm-grown plants. Circles indicate 

net CO2 assimilation rates at control (solid) and warmer (open) growth temperatures. Modified 

from Way and Yamori, 2014.  
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1.4 Cellular plant respiration in the light 

 

The response of mitochondrial R to future climates is more complicated than that of Anet, 

mainly because leaf respiration rates are different in the light (Rlight) and in the dark (Rdark). The 

rates of R measured in the dark are usually higher than those in the light, implying that light 

suppresses non-photorespiratory mitochondrial R (Krömer 1995, Kirschbaum & Farquhar 1987, 

Villar 1995, Wang et al. 2001). The reduction in R fluxes in the light may be caused by down-

regulation of pyruvate dehydrogenase and partial inhibition of the citric acid cycle (Tcherkez et 

al. 2008). However, the exact mechanism responsible for a decrease in R in the light remains 

unclear, and the degree of light suppression is not constant. Hurry et al. (2005) highlighted that 

the degree of suppression may fluctuate between 16 and 77%. Other studies have demonstrated 

that light suppression of R varies considerably among plant species (Krömer 1995; Atkin et al. 

1997; Pärnik and Keerberg
 
1995), and is also dependent on leaf age, as younger leaves show less 

inhibition than old ones (Villar et al 1995). Work done by Ayub et al. (2011) suggested that Rlight 

can be estimated as ~0.7 Rdark, which would be a useful simplification for models that predict C-

fluxes of vegetation, because Rlight is not as easily measured as Rdark. However, given the 

uncertainties in the degree of light-suppression of R, further investigation is needed to improve 

our understanding of this phenomenon and the accuracy of these models.  
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1.5 Responses of plant respiration to elevated CO2 and 

temperature 

The responses of R to changes in CO2 and growth temperature reported in the literature 

are variable. Both Rlight and Rdark typically increase exponentially with a linear increase in leaf 

temperature on short time scales (i.e. minutes) (Villar et al. 1995; Atkin et al. 2005; Way & Sage 

2008; Rodriguez-Calcerrada et al. 2010; Silim et al. 2010; Ayub et al. 2011; Crous et al. 2013; 

Slot et al. 2014). However, when higher irradiances (200-2000 μmol photons m
-2 

s
-1

) were used, 

no strong response of Rlight to Tleaf  (6-30˚C) was found (Atkin et al. 2000a).  

Thermal acclimation of Rlight and Rdark can alter the shape of the temperature response 

curve of R to a long-term increase in growth temperature by adjusting leaf anatomy and protein 

composition (Atkin & Tjoelker 2003). Two types of thermal acclimation have been defined, and 

both are characterized by a decrease in R in warm-grown plants. Type I acclimation is described 

as a decrease in the Q10 of R (the relative change in R for every 10 
o
C temperature increase) as a 

result of changes in enzyme regulation, whereas Type II acclimation is characterized by a 

decrease in the intercept of the curve in warm-treated plants (Atkin & Tjoelker 2003; Fig. 1.2). 

In contrast, short –term (i.e. minutes to an hour) changes in CO2 have no significant effect on 

Rlight or Rdark (Tissue et al. 2002; Crous et al. 2012), but higher rates of Rlight and Rdark have been 

observed in plants grown in elevated CO2 (i.e a long-term CO2 effect) compared to those than in 

plants grown in ambient CO2 (Wang et al. 2001; Shapiro et al. 2004). Although the effect of a 

combination of higher growth temperatures and elevated CO2 on R has been studied in a very 

small number of deciduous species (Tjoelker et al. 1999; Tjoelker et al. 2009; Wang et al. 2001; 
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Crous et al. 2012), to our knowledge, this has never been studied on both Rlight and Rdark, nor has 

it been assessed in a coniferous species. 
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Figure 1.2 Conceptual figure of two forms of thermal acclimation in respiration. In Type I 

acclimation, the Q10 is reduced in trees grown at warmer temperatures; in Type II acclimation, 

the Q10 remains the same for both control and warm-grown plants; but the intercept is lower in 

warm-treated trees. Adapted from Atkin and Tjoelker, 2003.  
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1.6 Norway spruce 

 

Norway spruce is an evergreen dominant conifer in Eurasian boreal forests (Eckenwalder 

2009), that can reach a maximal height of 62 m and a stem diameter of 2 m (Tjoelker et al. 

2008). The optimal climatic conditions for Norway spruce are 6 
o
C annual mean temperatures 

and 490-580 mm of precipitations during the growing season (60-150 days a year depending on 

geographical location) (Shmidt-Vogt 1977). The species survives very low temperatures (to        

-60 
o
C) (Shmidt-Vogt 1977) and growing season frosts of -7 

o
C (Ellenberg 1978). Due to its 

tolerance of cold climates, it forms a dominant part of the canopy in forests across northern 

Europe, including large areas of Scandinavia and Siberia, and in higher altitude regions of more 

southern areas such as Switzerland, Germany, Italy, and the Balkan Peninsula (Tjoelker et al. 

2008). Norway spruce has been also successfully introduced and naturalized in North America, 

from Connecticut to Michigan, including New England. and the southern-eastern regions of 

Canada (Sullivan 1994). In nature, Norway spruce is rarely exposed to high temperatures, but 

mature trees can survive up to +50 
o
C (Schmidt-Vogt 1977). However, young seedlings cannot 

tolerate those temperatures for more than several minutes (Kreeb 1979).  

 

1.7 Objectives and Predictions 

 

In this study, Rlight, Rdark   and Asat (light-saturated net CO2 assimilation rates) were 

measured on Norway spruce seedlings, grown in both ambient and elevated CO2 and at a range 

of growth temperatures; these data were then correlated with leaf biochemical and anatomical 
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traits. My predictions were that: 1) Rdark is suppressed by light in all treatments, so that Rlight< 

Rdark, but both Rlight and Rdark  increase as short-term leaf temperatures rise; 2) Rlight and Rdark 

measured at a given leaf  temperature are lower in plants grown in elevated temperatures due to 

thermal acclimation, but growth at elevated CO2  results in minimal differences across CO2 

treatments; 3) the surface area of mitochondria in leaf cross-sections correlates positively with 

leaf respiration rates, since a greater volume of mitochondria should increase leaf respiration 

capacity; 4) not accounting for the difference between Rlight and Rdark, and the effect of growth 

temperature and CO2 on R, will lead to substantial errors in modelling of R. 

 

2  Materials and methods 

2.1 Experimental design 

 

Three-year-old bare root Norway spruce seedlings were ordered from a nursery (Kendal, 

ON, Canada, 44˚1´ N, 78˚32´ W) in the springs of 2013 and 2014. One seedling was planted per 

pot into 11.3 L pots (Myers Industries Lawn & Garden Group, Middlefield, OH, USA). Pots 

were >10 L, as smaller pot volumes may induce down-regulation of photosynthesis in high CO2 

environments
 
(Wang & Curtis 2002). Pots were filled with Promix BX mycorrhizae soil mix 

(Premier Tech Horticulture, Rivière-du-Loup, QC, Canada) to prevent nutrient deficiency, and 

supplemented with a slow-release fertilizer (Slow Release Plant Food, 12-4-8, Miracle Gro
®

, The 

Scotts Company, Mississauga, ON, Canada). Seedlings were randomly assigned to six climate-

controlled greenhouses, each having a different CO2 by temperature treatment, at Western 

University’s Biotron facility (43˚0´ N, 81˚16´ W). The six treatments were: ambient temperature 
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(AT) coupled with 400 μmol mol
-1

 CO2 (ambient CO2, AC); AT coupled with 750 μmol mol
-1

 

CO2 (elevated CO2, EC); AT+4 
o
C coupled with AC; AT+4 

o
C coupled with EC; AT+8 

o
C 

coupled with AC; and AT+8 
o
C coupled with EC. The AT was calculated from hourly 

temperature averages for the last five years (2008-2012) from the London, ON airport 

meteorological station (Environment Canada). Light intensity fluctuated naturally during the day, 

reaching a maximum of 2056 µmol photons m
-2 

s
-1

 in midsummer. Relative humidity was 

maintained between 60-80%. Seedlings were watered daily as needed to maintain a moist growth 

medium.  

Stem heights and diameters at the soil surface were measured after planting, and at the 

end of each of the 2013 and 2014 growing seasons (November 2013 and 2014). Growth was 

calculated as the change in shoot height and stem diameter over the growth season to focus on 

growth that occurred during the treatments. Mortality rates and bud production were also 

assessed at the end of each growing season.  

 

2.2  Physiological measurements 

 

 For Rlight, Rdark and Asat, gas exchange measurements were conducted in August and 

September of each year on new, fully expanded needles that developed under the treatments, 

using a portable photosynthesis system (Li-Cor 6400XT, opaque and conifer chamber 6400-22; 

Li-Cor Inc., NE, USA). The photosynthesis system contains an open-path infra-red gas analyzer 

for measuring CO2 and water fluxes from leaves as compared to known concentrations of CO2 

and water that enter the cuvette. A branch of each tree with these new needles was placed inside 
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the chamber and carefully sealed to avoid gas leaks from the cuvette. Four trees per treatment 

were measured in the first year (2013) and five in the second (2014). Net CO2 assimilation rates 

(Anet) were measured at different light intensities (1200, 800, 100, 90, 80, 70, 60, 50, 40, 30, 20, 

10, 5 and 0 µmol photons m
-2 

s
-1

) and four leaf temperatures (10 
o
C, 20 

o
C, 30 

o
C, 40 

o
C) at a 

CO2 concentration of 400 μmol mol
-1

 and relative humidity between 50-60%. Leaf temperatures 

were achieved by measuring seedlings inside a walk-in growth chamber with regulated ambient 

temperatures (Environmental Growth Chambers, model M18SI (in 2013) and GR128 (in 2014), 

Chagrin Falls, OH, USA). Rlight was assessed using the Kok method (Kok, 1948), based on the 

assumption that at low light intensities (from ~30 to 80 µmol photons m
-2 

s
-1

), linear 

extrapolation of the light response curve allows estimation of Rlight which cannot be measured 

directly. Rdark was measured at 0 µmol photons m
-2 

s
-1

 after a 25-minute dark period to minimize 

post-illumination CO2 bursts, e.g. light–stimulated Rdark (Atkin et al. 1998), and Asat was 

measured at a saturating irradiance of 1,200 µmol photons m
-2 

s
-1

. All Rlight values were corrected 

for changes in intercellular CO2 (Ci) along the light gradient (Kirschbaum & Farquhar 1987), 

since a reduction in irradiance reduces Anet, and this in turn increases Ci and the substrate for 

photosynthesis, changes in Ci must be corrected for to assess the direct effects of light on Anet. 

Stomatal conductance (gs) was also measured at each irradiance to confirm that gs was not 

limiting CO2 fixation. The temperature where net CO2 assimilation rates were maximal (the 

thermal optimum, Topt) was calculated for all the treatments by fitting the equation:  

Anet = aT
2
 + bT + c          [Equation 1] 

to the data and calculating the temperature (T) where Anet was maximal, with a, b and c 

representing constants. The Q10 values for Rlight and Rdark (i.e. the relative increase in R for a 

10C temperature increase) were calculated according to Atkin and Tjoelker 2003:  
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Q10 = 10
10k

                             [Equation 2] 

where k is the slope of log-transformed R plotted against leaf temperature. 

To investigate the possibility of elevated CO2-induced down-regulation of Anet in the 11.3 

L pots, gas exchange measurements (as Anet versus Ci curves) were conducted in 2013 on two 

trees grown in 11.3 L pots and on two trees grown in a 100 L container. The Anet was measured 

at a range of CO2 concentrations  (50, 100, 200, 400, 800, 1000, 1200, 1500, 1800 µmol mol 
-1

), 

a light intensity of 1200 µmol photons m
-2 

s
-1

, a relative humidity of 50% and a leaf temperature 

of 25 
o
C. Maximum rates of Rubisco carboxylation (Vcmax) and maximum rates of electron 

transport (Jmax) were calculated according to Farquhar et al. (1980). Fresh needles from seedlings 

used for gas exchange were harvested immediately after all the measurements and analyzed for 

projected leaf area and needle lengths by taking a photo of the needles, and then using ImageJ 

software (NIH, Bethesda, MD).  

 

2.3 Carbohydrate and nitrogen analysis 

 

Leaf samples from the measured leaves were taken after the leaf area analysis and dried 

at 70 
o
C to constant mass for dry mass and specific leaf area measurements. Samples were then 

ground with a Wiley mill. 

 Leaf soluble sugars (glucose, fructose, sucrose) were extracted according to Hendrix 

(1993), with slight modifications. Briefly, 1 mL of 80% ethanol was added to 10 mg of dried 

tissue. After 20 minutes of incubation at 80 
o
C, a sample was centrifuged at 12,000 RPM for 2 
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minutes (Centrifuge 5414, S/N 5414 I 12192, Eppendorf, Germany). The process was repeated 

two more times. One mL of supernatant was transferred to a separate microfuge tube, mixed with 

activated charcoal to absorb phenolics and tannins that can interfere with enzymatic analyses, 

and centrifuged at 10,000 RPM for 10 minutes. Sixty µL of the aliquot was pipetted to a 96-well 

plate and left overnight to evaporate ethanol from the samples, leaving the sugars as residues. 

The following day, 150 µL of glucose GAHK-20 kit (Sigma-Aldrich Co. LLC.) was added to 

each well, incubated for 30 minutes on a shaker at room temperature, and  NADPH absorbance 

was read at 340 nm using a spectrophotometer to obtain glucose concentrations (Versa max, 

Microplate reader, Molecular Devices, S/N BN02815). Twenty µL of phosphoglucose isomerase 

(1,000 U/mL, Megazyme International Ireland, Bray, Co. Wicklow, Ireland) was added to each 

well to convert fructose to glucose, and the plate was incubated for 20 minutes on a shaker at 37 

o
C before the absorbance was reread at 340 nm. Forty µl of an isomerase solution (150 U/mL in 

100 mM acetate buffer (pH 4.5) 2,000 U/mL, Megazyme) was then added to each well to convert 

sucrose to glucose, the plate was incubated at 37 °C on a shaker for 30 minutes, and the 

absorbance was reread at 340 nm. Using a standard curve, concentrations of glucose, fructose 

and sucrose were then determined. 

  To calculate the percent starch per dry leaf mass, 1 mL of 0.2 M KOH was added to the 

pellet remaining from the soluble sugar extractions, and incubated for 1 hour at 100 
o
C. After the 

sample was cooled to room temperature, pH was lowered to 6.6-7.5, and 200 µL of α-amylase ( 

~23,400 U/mL, Sigma-Aldrich), diluted to ~2600EU/mL in 1.0 M Tris acetate (pH 7.2) was 

added to the sample and incubated for 30 minutes at 80 
o
C. The sample was cooled to room 

temperature, and the pH was lowered to 4.8-5.0. Five hundred µL of diluted to ~250EU/mL in 

100 mM acetate buffer (pH 4.5)  amyloglucosidase ( 3,260 U/mL, Megazyme) was added and 
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incubated for 1 hour at 55 
o
C. To stop enzymatic digestion, the sample was boiled for 4 minutes, 

and 500 µL of the solution was mixed with 1 mL of H2O and centrifuged at 10,000 RPM. Sixty 

µL of the aliquot was pipetted into a 96-well plate and left overnight. The following day, 150 µL 

of GAHK-20 was added and incubated for 30 minutes at room temperature, and the absorbance 

was read at 340 nm. 

 Leaf %N and %C were analyzed on ground leaves with a CN analyzer (NCS 2500, Carlo 

Erba, Milan, Italy) which allows quantifying elemental composition of the sample. Between 3-4 

mg of dry ground tissue was placed into a tin container, and loaded into the combustion reactor 

at 1020 
o
C. Combusted and evaporated elements such as CO2 and N2 were then measured 

through a chromatographic column, and each of elements read separately.  

 

2.4 Leaf anatomy and mitochondrial surface area 

 

Eight to ten needles per tree were collected on September 20, 2013 from the same four 

individuals in each treatment used for physiological measurements. The needles were bundled 

with a cotton thread and cut 2-5 mm from the leaf tip to promote penetration of a mitochondrial 

staining solution (MitoTracker ® Mitochondrion-Selective Probes, Molecular Probes, Inc, 

Eugene, OR, USA). The mitochondrial probe solution was applied for 45 minutes and then 

needles were washed with 0.2 M phosphate buffer with 0.3 M sucrose (pH 6.4). The samples 

were left overnight in buffered paraformaldehyde at 4 
o
C. The next day, samples were washed 

three times with phosphate-sucrose buffer, moved into 70% (V/V) EtOH and transferred to 

Robarts Research Institute, Molecular Pathology Core Facility. Automated ethanol dehydration 
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was processed using a Leica ASP300 (Shandon Histocentre 3, Thermo Electron Corporation), 

and samples were then embedded in paraffin. The paraffin block was trimmed and the surface 

soaked for an hour in an ice bath. Two 5 µm-thick cross-sections were taken using a microtome 

(Leica RM2255). Two additional 5 µm-thick cross-sections were taken at a 200-300 µm distance 

from the first sample. The samples were placed on slides, dried at 40 
o
C overnight, 

deparaffinised with xylene and prepared for microscopy. 

The prepared samples were observed at 1000x magnification using a light microscope 

(Carl Zeiss Z1 Carl Zeiss Imaging and Microscopy, Germany). Photographs were taken in a two-

channel spectrum (DAPI and Alexa 565) with a digital camera (Carl Zeiss AxioCam MR5, Carl 

Zeiss Imaging and Microscopy, Germany). Cross-sectional leaf area and total mitochondrial 

cross-sectional surface areas were calculated using ImageJ software (NIH, Bethesda, MD).  

 

2.5 Modelling 

 

To determine whether the differences in R generated by growth in elevated CO2 and 

temperature need to be accounted for in current models of ecosystem R, I modeled daily R fluxes 

for each treatment and compared them to the fluxes from ACAT seedlings and also to R rates 

derived from 0.7 Rdark. To calculate total diurnal R, I used temperature responses of Rlight and 

Rdark for each of the six treatments, based on the exponential functions fit to the data. These rates 

were then driven by a 24-hour leaf temperature trace that was collected from a representative 

seedling from the ACAT treatment. A diurnal leaf temperature trace was measured with a 

copper-constantan (type T) thermocouple attached to a data logger (Spectrum 1700, Veriteq 
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Instruments, Richmond, BC, Canada) on a needle in the ATAC treatment on October 19, 2013; 

data were collected every 30 seconds and averaged into five-minute periods.  Rlight and Rdark rates 

were calculated for each five-minute period based on the temperature-functions for each growth 

treatment. These treatment-specific Rlight and Rdark were then summed for the 24-hour day for 

each treatment to compare the effect of acclimation of R on daily needle R fluxes.  

 

2.6 Statistical analysis 

 

Data were analyzed with R (R GUI Version 3.0.2 (R Core Development Team, 2013). 

For physiological measurements, two-way ANOVAs (Tgrowth and growth CO2 as factors), three-

way ANOVAs (Tgrowth, growth CO2 and year), and repeated measures ANOVAs (on leaf 

temperature response curves accounting for individual trees, with Tgrowth, growth CO2 and year) 

were applied. Tukey’s Post-Hoc test for comparisons of means was used to investigate 

significant treatment effects.   
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3 Results 

3.1 Growth temperature and CO2 settings 

 

CO2 and temperature treatments began May 20, 2013. Ambient, +4 
o
C, and +8 

o
C 

temperature treatments were successfully maintained in each growing season (Fig. 3.1). CO2 

concentrations generally remained stable during the treatments and the elevated CO2 was 

consistently > 300 ppm greater than the ambient CO2 treatment (Fig. 3.1).  

 

3.2 Mortality rates and growth 

 

Seedlings from 2014 had lower mortality rates than those from 2013 (Table 3.1). There 

was no significant treatment effect (p=0.1) on mortality in 2013, but in 2014, there were 

significantly higher mortality rates observed in the +8 
o
C treatment regardless of the CO2 

treatment. 

Neither growth temperature (Tgrowth) (p=0.5) nor growth CO2 (p=0.09) affected shoot 

height growth in 2013 (Fig. 3.2A), while in 2014, growth CO2 still had no effect on shoot height, 

but warming treatments significantly increased shoot height growth in all the EC treatments (Fig. 

3.2B).  

There was a strong growth CO2 effect on stem diameter growth in 2013 and 2014, in 

contrast to a lack of a CO2 effect on shoot height growth (Figs. 3.2C and 3.2D). In 2013 the stem 

diameter was greater in ATEC treatment compared to ATAC, while in 2014, +4 
o
C and +8 

o
C 
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combined with elevated CO2 treatments increased stem diameter compared to the comparable 

warmed AC treatments.  

Bud production in 2013 showed no significant difference across treatments (p>0.09; Fig. 

3.2E). In 2014, Tgrowth did not affect the number of buds set in the AC treatment, however bud set 

was stimulated by warmer temperatures in the EC treatments (p<0.001; Fig. 3.2F).  
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Figure 3.1 2013 and 2014 growth temperature and growth CO2 conditions for Norway spruce 

seedlings. AT- ambient temperature, +4- ambient temperature +4 
o
C, +8- ambient temperature + 

8 
o
C. AC- ambient CO2, EC- elevated CO2. Data are means of two rooms for each temperature 

treatment and of three rooms for each CO2 treatment.  
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Table 3.1 Mortality rates (% of trees) of Norway spruce seedlings grown at a variety of growth 

temperatures and CO2 concentrations in 2013 and 2014. AT-ambient temperature, +4-ambient 

temperature+4 
o
C, +8-ambient temperature + 8 

o
C. AC-ambient CO2, EC-elevated CO2. Letters 

indicate significant differences of means within a year. 

 Treatment 

Chi-square test 

2013  

(p=0.1) 

2014 

(p<0.001) 

AT/AC 33% (a) 0.05%(bс) 

+4/AC 

+8/AC 

AT/EC 

65% (a) 

72% (a) 

40% (a) 

0%   (с) 

20%  (ab) 

0.03%  (c) 

+4/EC 47% (a)  0.03% (c) 

+8/EC 78% (a) 26%  (a) 
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Figure 3.2 Seedling shoot height and stem diameter growth (where growth represents the 

difference between the initial and final seedling size), and bud set of Norway spruce seedlings 

grown at a variety of growth temperatures and CO2 concentrations in 2013 and 2014. Means ± 

SE, n=4-11 (2013), n=26-35 (2014). Different lower-case letters indicate a significant difference 

between treatments. AT-ambient temperature, +4-ambient temperature +4 
o
C, +8-ambient 

temperature + 8 
o
C. AC-ambient CO2, EC-elevated CO2. 
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3.3  Light-saturated photosynthesis (Asat) 

 

As there was no significant interaction of year with Tgrowth or CO2 (Table S1) for Asat, the 

data were combined for both seasons (Fig 3.3). Asat was highly dependent on Tleaf, rising with 

increasing Tleaf up to a maximum value at the thermal optimum (the leaf temperature where the 

net CO2 assimilation rate was highest) in every treatment (Table 3.2; Fig. 3.3). Asat from all the 

treatments was lowest at a Tleaf of 40 
o
C (Fig. 3.3). In AC treatments, the highest Asat was 

observed in the trees from the AT treatment, but in EC treatments, Asat in the AT trees was lower 

compared to those from the +4 
o
C treatment. Regardless of the CO2 treatment, trees from +8 

o
C 

had the lowest Asat between 10 and 30 
o
C (Table 3.2; Fig. 3.3). Above 30 

o
C, Asat was similar in 

all the AC trees; in EC trees, Asat was lowest in +8 
o
C trees and highest in +4 

o
C trees at these 

high Tleaf values (Fig. 3.3).  

The thermal optima for Asat were higher in 2014 than in 2013 (Table 3.3; p=0.005). 

Thermal optima of Asat shifted to higher values as Tgrowth increased, but the effect of Tgrowth was 

more pronounced in 2013 (p<0.001), than in 2014 (p=0.09). Growth CO2 had no effect on the 

thermal optima of Asat in 2013 (p=0.18) or 2014 (p=0.77), and there was no interaction of Tgrowth 

x CO2 (2013: p=0.96, 2014: p=0.68).  

There was no significant interaction of year with Tgrowth or CO2 (Table S2) for stomatal 

conductance (gs), so the data were combined for both seasons (Fig. 3.4). No significant 

difference was observed across low, medium and high light intensities (p>0.05, Fig. 3.4). At 10 

o
C in both years, gs was 50% higher in AT treatments compared to +8 

o
C (Tgrowth effect: 

p=0.032). Leaf gs increased with increasing Tleaf, peaking around 20 
o
C and reaching their lowest 

values at 40 
o
C (Table 3.4; Tleaf effect: p<0.001).  The interaction of Tleaf x Tgrowth on gs was 

significant (p<0.001), but growth CO2 had no effect on gs (p=0.87, Table 3.4). 
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Figure 3.3 Light-saturated net CO2 assimilation rates (Asat) measured as a function of leaf 

temperature of Norway spruce seedlings grown at a variety of growth temperatures and CO2 

concentrations in 2013 and 2014. Means ± SE, n=9. AT-ambient temperature, +4-ambient 

temperature +4 
o
C, +8-ambient temperature + 8 

o
C. AC-ambient CO2, EC-elevated CO2. 
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Table 3.2 Repeated measures two-way ANOVA for changes in light-saturated photosynthesis 

(Asat) of Norway spruce seedlings to changes in growth CO2, growth temperature (Tgrowth), and 

leaf temperature (Tleaf), for the combined 2013 and 2014 growth seasons. Significant results are 

bolded. 

 

Df Sum of Squares F Ratio p-value 

CO2 1 1.63 0.46 0.5 

Tgrowth 2 55.8 10.68 0.00015 

Tleaf 3 640.71 452.97 <0.0001 

CO2 X Tgrowth 2 10.8 0.07 0.94 

CO2 X Tleaf 3 3.65 1.2 0.31 

Tgrowth X Tleaf 6 38.37 7.91 <0.0001 

CO2 X Tgrowth X Tleaf 6 1.17 0.25 0.96 
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Table 3.3 Thermal optima of Asat (in degrees 
o
C), Q10 of Rdark and Q10 of Rlight of Norway spruce 

seedlings grown at a variety of growth temperatures and CO2 concentrations in 2013 and 2014. 

Means ± SE, n=4 (2013), n=5 (2014). Different letters indicate significant difference within a 

year (Tukey’s Post-Hoc test). AT-ambient temperature, +4-ambient temperature +4 
o
C, +8-

ambient temperature + 8 
o
C. AC-ambient CO2, EC-elevated CO2.  

      

Thermal optima 2013 2014 

ATAC 11.5±1.9 (c) 19.8±1.2 (a) 

+4/AC 19.4±3.7 (ac) 21±0.9 (a) 

+8/AC 21±1 (ab) 23.7±0.6 (a) 

ATEC 14.3±2.3 (bс) 20.1±0.7 (a) 

+4/EC 21.1±1.5 (ab) 21.3±0.9 (a) 

+8/EC 23.7±0.76 (a) 22±2.4 (a) 

      
Q10 Rdark 

ATAC 1.9±0.07 (a) 1.9±0.09 (a) 

+4/AC 1.8±0.07 (a) 2±0.03 (a) 

+8/AC 2.1±0.19 (a) 1.9±0.1 (a) 

ATEC 2.1±0.14 (a) 2±0.02 (a) 

+4/EC 2±0.06 (a) 2±0.07 (a) 

+8/EC 2±0.09 (a) 2±0.07 (a) 

      
Q10 Rlight 

ATAC 2.6±0.23 (a) 2.4±0.2 (a) 

+4/AC 2.8±0.2 (a) 2.6±0.27 (a) 

+8/AC 2.9±0.39 (a) 2.3±0.25 (a) 

ATEC 3±0.21 (a) 2.7±0.12 (a) 

+4/EC 2.8±0.28 (a) 2.6±0.18 (a) 

+8/EC 2.7±0.4 (a) 2.9±0.41 (a) 
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Figure 3.4 Stomatal conductance measured at 10, 50 and 1200 photosynthetic photon flux 

density (PPFD) of Norway spruce seedlings grown at a variety of growth temperatures and CO2 

concentrations in 2013 and 2014. Means ± SE, n=9. AT-ambient temperature, +4-ambient 

temperature +4 
o
C, +8-ambient temperature + 8 

o
C. AC-ambient CO2, EC-elevated CO2. 
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Table 3.4 Repeated measures two-way ANOVA for changes in stomatal conductance (gs), 

measured at 1200 photosynthetic photon flux density,  of Norway spruce seedlings to changes in 

growth CO2, growth temperature (Tgrowth), and leaf temperature (Tleaf) in 2013 and 2014 growth 

seasons. Significant results are bolded. 

 

 

Df 

Sum of 

Squares 

F 

Ratio p-value 

CO2 1 0.00001 0.02 0.87 

Tgrowth 2 0.021 3.7 0.032 

Tleaf 3 0.043 62.1 <0.0001 

CO2 X Tgrowth 2 0.0023 0.47 0.63 

CO2 X Tleaf 3 0.0006 0.86 0.46 

Tgrowth X Tleaf 6 0.0093 6.71 <0.0001 

CO2 X Tgrowth X Tleaf 6 0.0004 0.26 0.95 
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3.4 Light-stimulated dark respiration (Rdark) 

 

There was no significant difference between the two years in Rdark, nor any interactions of 

year x CO2 or year x Tgrowth  (Table S3), so data were combined for the 2013 and 2014 growth 

seasons (Fig. 3.5). Rdark increased exponentially as Tleaf increased in all treatments (p<0.001; Fig. 

3.5). Trees from +4 
o
C and +8 

o
C treatments had lower Rdark than trees grown in ambient 

temperatures (p<0.05), and growth CO2 had no effect on Rdark (p=0.2). Trees grown in +8 
o
C had 

the lowest Rdark compared to other Tgrowth treatments.  
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Table 3.5 Repeated measures two-way ANOVA for combined 2013 and 2014 growth seasons 

results; response of light-stimulated dark respiration rates (Rdark) of Norway spruce seedlings to 

growth CO2, growth temperature (Tgrowth), and leaf temperature (Tleaf). Significant results are 

bolded. 

 

Df 

Sum of  

Squares F Ratio p-value 

CO2 1 0.19 0.46 0.5 

Tgrowth 2 8.86 10.68 0.00015 

Tleaf 3 112.8 452.97 <0.0001 

CO2 X Tgrowth 2 0.05 0.07 0.94 

CO2 X Tleaf 3 0.3 1.2 0.31 

Tgrowth X Tleaf 6 3.94 7.91 <0.0001 

CO2 X Tgrowth X Tleaf 6 0.12 0.25 0.96 
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Figure 3.5 Light-stimulated dark respiration rates (Rdark) measured as a function of leaf 

temperature of Norway spruce seedlings grown at a variety of growth temperatures and CO2 

concentrations in 2013 and 2014. Means ± SE, n=9. AT-ambient temperature, +4-ambient 

temperature +4 
o
C, +8-ambient temperature + 8 

o
C.  AC-ambient CO2, EC-elevated CO2. 
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3.5 Light respiration (Rlight) measurements 

 

The interaction of year x Tgrowth was significant for Rlight (Table S4), so Rlight data are 

presented separately for both years (Fig. 3.6). Some measurements at a Tleaf of 10 
o
C were 

excluded from the analysis due to negative values at low light intensities. The negative values 

may have been due to low CO2 flux rates that are within the error of the Li-Cor gas exchange 

apparatus; they were not due to stomatal closure, as gs at 10 µmol photons m
-2

 s
-1

 was equal to, or 

even slightly higher than, those measured at 1200 µmol photons m
-2

 s
-1

  (Fig. 3.4).  

Similar to Rdark, Rlight increased as Tleaf increased (p<0.001; Table 3.6 and 3.7). Trees 

grown at ambient temperatures had higher Rlight than trees grown at warmer temperatures. The 

effect of Tgrowth and the interaction of Tgrowth x Tleaf was significant in 2013 (p<0.001; Fig. 3.6A 

and 3.6C) indicating significant acclimation of Rlight to high growth temperatures. In 2014, 

although trees grown at +8 
o
C  appeared to have lower Rlight compared to other growth 

temperatures, the effect of Tgrowth was not significant (p=0.18). Trees grown in elevated CO2 had 

lower Rlight than trees grown in ambient CO2 in 2014 (CO2 effect: p=0.012, CO2 x Tleaf:, p=0.003; 

Fig. 3.6B and 3.6D). The response of Rlight to Tgrowth and CO2 therefore varied across the two 

growing seasons.  

 

3.6 Rlight : Rdark ratio as a function of Tleaf, and Rlight to Rdark 
relationship 

 

The Q10 values for R were similar in both years (Rlight: p=0.25; Rdark: p=0.47), and there 

was no significant treatment effect on the Q10 (p>0.1, Table 3.3). The Q10 of Rlight was about 35% 
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higher than the Q10 of Rdark (Q10 of Rdark = 2 ± 0.03; Q10 of Rlight = 2.7 ± 0.08, Table 3.3, 

p<0.001).  

Because the Q10 of Rlight was larger than that of Rdark, the ratio of Rlight/Rdark increased as 

Tleaf increased. The Rlight:Rdark ratio was >1 in AT and +4 
o
C treatments at the highest Tleaf  values 

in 2013 (Fig. 3.7A and 3.7C), and in +8
o
C/EC in 2014 (Fig. 3.7D), which means that Rlight was 

not suppressed by the light in those cases, but was instead enhanced. When Rlight was plotted 

versus Rdark, a strong relationship was seen (R
2
=0.95; p<0.001; Fig. 3.8) regardless of the 

treatment or year. 

 

3.7 Asat : Rdark ratio as a function of Tleaf 

 

To determine the CO2 fraction lost during Rdark from Asat, as an index of how much fixed 

carbon was available for processes other than respiration, I plotted Asat : Rdark ratio as a function 

of Tleaf. Ratios of Asat to Rdark exhibited a linear decrease as Tleaf increased in all the treatments in 

both years (Fig. 3.9; p<0.001). The ratio of Asat:Rdark was higher from 10 to 30 
o
C in 2014 than in 

2013 (Tleaf x year effect: p=0.002). There was no effect of either growth CO2, or Tgrowth 

treatments on Asat/Rdark (p>0.1; Fig. 3.9).  
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Figure 3.6 Light respiration rates (Rlight) as a function of leaf temperature measured in Norway 

spruce seedlings grown at a variety of growth temperatures and CO2 concentrations in 2013 and 

2014.  Means ± SE, n=4, except for 10 
o
C where n=1-4 (2013); n=5 (2014), except for 10 

o
C 

where n=1-4 (no data points for +4/AC and +8/AC), and except for 20 
o
C where n=3-5. AT-

ambient temperature, +4-ambient temperature +4 
o
C, +8-ambient temperature + 8 

o
C. AC-

ambient CO2, EC-elevated CO2. 
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Table 3.6 Repeated measures two-way ANOVA results for 2013 growth season of Norway 

spruce seedlings; response in light respiration rates (Rlight) to changes in growth CO2, growth 

temperature (Tgrowth), and leaf temperature (Tleaf). Significant results are bolded. 

 

 

Df 

Sum of  

Squares F Ratio p-value 

CO2 1 0.56 2.11 0.16 

Tgrowth 2 8.5 16.01 0.0001 

Tleaf 3 84.52 161.76 <0.0001 

CO2 X Tgrowth 2 0.28 0.53 0.6 

CO2 X Tleaf 3 0.38 0.72 0.54 

Tgrowth X Tleaf 6 7.55 7.22 0.00001 

CO2 X Tgrowth X Tleaf 6 0.34 0.32 0.92 
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Table 3.7 Repeated measures two-way ANOVA results for 2014 growth season of Norway 

spruce seedlings; response in light respiration rates (Rlight) to changes in growth CO2, growth 

temperature (Tgrowth), and leaf temperature (Tleaf). No measurements for Tleaf = 10 
o
C included. 

Significant results are bolded. 

 

Df 

Sum of  

Squares F Ratio p-value 

CO2 1 3.16 6.54 0.017 

Tgrowth 2 1.41 1.46 0.25 

Tleaf 2 45.76 219.89 <0.0001 

CO2 X Tgrowth 2 0.56 0.57 0.57 

CO2 X Tleaf 2 1.13 5.44 0.007 

Tgrowth X Tleaf 4 0.14 0.34 0.85 

CO2 X Tgrowth X Tleaf 4 0.45 1.08 0.38 
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Table 3.8 Repeated measures two-way ANOVA results for the response in Rlight/Rdark to changes 

in growth CO2, growth temperature (Tgrowth), and leaf temperature (Tleaf) of Norway spruce 

seedlings in 2013. Significant results are bolded. 

 

DF Sum of Squares F Ratio p-value 

CO2 1 0.94 6.18 0.02 

Tgrowth 2 0.022 0.07 0.9 

Tleaf 2 5.66 87.29 <0.0001 

CO2 X Tgrowth 2 0.36 1.2 0.32 

CO2 X Tleaf 2 0.013 0.2 0.82 

Tgrowth X Tleaf 4 0.71 5.46 0.001 

CO2 X Tgrowth  X Tleaf 4 0.27 2.12 0.093 
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Table 3.9 Repeated measures two-way ANOVA results for the response in Rlight/Rdark to changes 

in growth CO2, growth temperature (Tgrowth), and leaf temperature (Tleaf) of Norway spruce 

seedlings in 2014. No measurements for Tleaf = 10 
o
C included. Significant results are bolded. 

 

DF 

Sum of 

Squares F Ratio p-value 

CO2 1 1.1 6.85 0.015 

Tgrowth 2 0.011 0.036 0.96 

Tleaf 2 6.2 81.25 <0.0001 

CO2 X Tgrowth 2 0.42 1.32 0.29 

CO2 X Tleaf 2 0.006 0.07 0.93 

Tgrowth X Tleaf 4 0.83 5.43 0.0011 

CO2 X Tgrowth X Tleaf 4 0.21 1.4 0.25 
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Ratios of Asat to Rdark decreased as Tleaf increased in all the treatments in both years 

(p<0.001). The ratio of Asat:Rdark was higher at 10, 20, and 30 
o
C in 2014 than in 2013 (Tleaf x 

year effect: p=0.002). There was no effect of either growth CO2, or Tgrowth treatments on 

Asat/Rdark (p>0.1; Fig. 3.9) Asat:Rdark ratio for all the treatments and both years plotted vs Tleaf 

demonstrated strong relationship (Fig. 3.9; R
2
=0.96; p<0.001).  
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Figure 3.7 The ratio of light respiration to dark respiration (Rlight/ Rdark) as a function of leaf 

temperature measured in Norway spruce seedlings grown at a variety of growth temperatures and 

CO2 concentrations in 2013 and 2014. Means ± SE, n=4 (2013), except for 10 
o
C where n=1-4; 

n=5 (2014), except for 10 
o
C where n=1-4 (no data points for +4/AC and +8/AC), and 20 

o
C 

where n=3-5. AT-ambient temperature, +4-ambient temperature +4 
o
C, +8-ambient temperature 

+ 8 
o
C. AC-ambient CO2, EC-elevated CO2. Solid horizontal line indicates when Rlight equals to 

Rdark; the grey area shows where Rlight/Rdark equals to 0.7.  
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Figure 3.8 Light respiration (Rlight) versus light-stimulated dark respiration (Rdark) in Norway 

spruce seedlings grown at a variety of growth temperatures and CO2 concentrations in 2013 and 

2014. Means ± SE, n=4 (2013), except for 10 
o
C where n=1-4; n=5 (2014), except for 10 

o
C 

where n=1-4 ( no data points for +4/AC and +8/AC), and 20 
o
C where n=3-5. AT-ambient 

temperature, +4-ambient temperature +4 
o
C, +8-ambient temperature + 8 

o
C. AC-ambient CO2, 

EC-elevated CO2. 
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Figure 3.9 The ratio of light-saturated net CO2 assimilation rate (Asat) to light-stimulated dark 

respiration (Rdark) as a function of leaf temperature measured in Norway spruce seedlings grown 

at a variety of growth temperatures and CO2 concentrations in 2013 and 2014. Means ± SE, n=9 

(2013 and 2014). AT-ambient temperature, +4-ambient temperature +4 
o
C, +8-ambient 

temperature + 8 
o
C. AC-ambient CO2, EC-elevated CO2. 

 

 



42 

 

3.8 CO2 assimilation in trees grown in 11.3 and 100 liter soil 
volumes 

 

Trees grown in 11.3 L pots had a higher Vcmax (p=0.037) than trees grown in 100 L 

containers, and Jmax values were not significantly different between pots and containers (p=0.27), 

indicating that there was no evidence for CO2-induced down-regulation of photosynthesis. 

Across all the growth temperatures, there was no significant interaction of Tgrowth x soil volume 

effect on either Vcmax or Jmax (p> 0.05; Fig. 3.10).  

 

3.9 Biochemical and anatomical leaf traits 

 

The percentage of total leaf non-structural carbohydrates (NSC = glucose, fructose, 

sucrose and starch) varied between years, such that trees from 2014 had higher NSC than trees 

from 2013. However, there was no significant interaction of year x CO2 or year x Tgrowth on NSC 

concentrations (p>0.05, Table S6), so the data were combined for both years (Table 3.11). The 

NSC concentration in leaves was not significantly different between treatments, as neither CO2 

nor growth temperature significantly affected NSC concentrations (Tables 3.10 and 3.11). 

There was no significant interaction of year x CO2 or year x Tgrowth on leaf %N (p=0.53, 

p=0.95, Table S7), so the data were combined for 2013 and 2014. The %N in dry leaf mass was 

generally similar across treatments, but %N was lower in +8 
o
C  trees, in both CO2 treatments, 

and lower in EC than AC trees (Tgrowth effect: p=0.002, CO2 effect: p=0.007, Tables 3.11 and 

3.12).  

Year had no effect on specific leaf area (SLA) (p=0.14), and SLA did not vary across 

treatments (p>0.1, Table 3.11).  
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Figure 3.10  Vcmax and Jmax measured at Tleaf of 25 
o
C in Norway spruce seedlings grown in 11.3 

L and 100 L soil volume across three growth temperatures and elevated CO2 concentrations. 

Means ± SD, n=2. AT-ambient temperature, +4-ambient temperature +4 
o
C, +8-ambient 

temperature + 8 
o
C. EC-elevated CO2. 
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Table 3.10 Two-way ANOVA results for changes in non-structural carbohydrates of Norway 

spruce trees to changes in growth CO2 and growth temperature (Tgrowth) for 2013 and 2014. 

Significant results are bolded. 

 

DF 

Sum of 

Squares F Ratio p-value 

CO2 1 0.94 0.601 0.49 

Tgrowth 2 2.27 0.724 0.442 

Tgrowth X CO2 2 0.85 0.27 0.764 
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Table 3.11 Biochemical and anatomical leaf traits. Total non-structural carbohydrates (% per dry 

leaf mass, %NSC), nitrogen concentration per dry leaf mass (%N), and specific leaf area (SLA) 

of Norway spruce seedlings grown at a variety of growth temperatures and CO2 concentrations in 

2013 and 2014.Different letters indicate significant differences (Tukey’s Post-Hoc test). AT-

ambient temperature, +4-ambient temperature +4 
o
C, +8-ambient temperature + 8 

o
C. AC-

ambient CO2, EC-elevated CO2.  

 

Treatment %NSC %N SLA (cm
2 

g
-1

) 

ATAC 2.18±0.52 (a) 2.5±0.12 (a) 107±10.8 (a) 

+4/AC 2.03±0.34 (a) 2.56±0.05 (a) 108±13.3 (a) 

+8/AC 2.0±0.31 (a) 2.13±0.07 (b) 101±6.8 (a) 

ATEC 2.78±0.46 (a) 2.31±0.11 (ab) 89±6.8 (a) 

+4/EC 2.23±0.47 (a) 2.2±0.08 (ab) 120±11.1 (a) 

+8/EC 1.99±0.36 (a) 2.0±0.11 (b) 93±6.5 (a) 
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Table 3.12 Two-way ANOVA results for 2013 and 2014 growth seasons of change in leaf 

nitrogen concentrations of Norway spruce trees to changes in growth CO2 and growth 

temperature (Tgrowth). Significant results are bolded. 

 

 

DF 

Sum of 

Squares F Ratio p-value 

CO2 1 0.675 7.931 0.00703 

Tgrowth 2 1.239 7.277 0.00174 

Tgrowth X CO2 2 0.128 0.75 0.4778 
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Needle length decreased as Tgrowth increased (Table 3.18; p<0.001, but CO2 had no effect 

on needle length (p=0.12). The cross-sectional area of needles decreased as Tgrowth increased 

(p<0.001) in both ambient and elevated CO2 treatments, but CO2 had no effect (p=0.69; Fig. 

3.11; Table 3.13). In trees grown in ambient CO2, cross-sectional leaf area was 130 % greater in 

AT trees than in +4 
o
C and +8

o 
C trees; EC trees demonstrated a similar pattern, with a more 

gradual, but not statistically significant decrease (24-56 %) in cross-sectional area from ambient 

to warmer Tgrowth treatments (Tgrowth x CO2 effect: p<0.001).  

The highest mitochondrial cross-sectional area was also found in trees grown in ambient 

temperatures (p<0.001). Mitochondria occupied between 7-10% of the cross-sectional leaf area 

in AT and +4 
o
C treatments, which is less than the 12% occupied in the +8 

o
C treatments (Tgrowth 

effect: p<0.001; Table 3.13). In EC trees, the mitochondrial area in a leaf cross-section was 

slightly higher in AT treatment compared to +4 
o
C and +8 

o
C (Table 3.13). 

 

 

 

 

 

 

 

 

 

 

 



48 

 

 

A cross-sectional area cross-sectional area  

 

 

 

 

 

 

 

 

Figure 3.11 Representative microscope images of needle cross-sections of Norway spruce 

seedlings grown at A) ATAC and B) +8 
o
C/AC. Scale bar = 100 µm. Orange staining indicates 

mitochondria. AT- ambient temperature, +8 
o
C-ambient temperature + 8 

o
C. AC-ambient CO2. 
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Table 3.13 Cross-sectional leaf area, mitochondrial cross-sectional area, and needle length for 

Norway spruce seedlings grown at a variety of growth temperatures and CO2 in 2013. Means ± 

SE, n=23 (ATAC) n=21 (ATEC, +8/EC), n=9 (+4/AC) and n=2 in mitochondria count, n=16 

(+4/EC), n=20 (+8/AC); needle length: n=33-47. Letters indicate multiple comparisons of means 

(Tukey’s Post-Hoc test).  AT-ambient temperature, +4-ambient temperature +4 
o
C, +8-ambient 

temperature + 8 
o
C. AC-ambient CO2, EC-elevated CO2. 

 

 

Leaf cross-

sectional  

area (µm
2
) 

Mitochondrial 

cross- 

sectional area 

(µm
2
) 

%Mitochondria 

per  

cross- 

sectional leaf  

area 

Needle length 

(mm) 

ATAC 431.26±23.5 (a) 31.75±1.74 (a) 7.45±0.26 (c) 13.9±0.5 (a) 

+4/AC 177.68±3.62 (c) 12.44±3.35 (c) 6.97±1.74 (bc) 10.47±0.57 (b) 

+8/AC 190.49±5.56 (c) 22.0±0.94 (bc) 11.59±0.43 (ab) 8.34±0.36 (c) 

ATEC 350.4±26.87 (b) 34.34±3.4 (a) 9.66±0.55 (b) 12.91±0.38 (a) 

+4/EC 282.01±15.64 (bc) 27.5±2.75 (b) 9.71±0.63 (b) 10.76±0.38 (b) 

+8/EC 224.53±14.75 (b) 26.35±1.31 (b) 12.07±0.57 (a) 7.5±0.26 (c) 
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3.10 Modelling 

 

To model the total daily CO2 lost through R, I calculated the rate of R at each temperature 

point during a 24-hour period, using Rdark in the night hours and Rlight during the light hours. Leaf 

temperature fluctuated during the day, peaking at 1 pm at 15.4 
o
C and decreasing to a minimum 

of 9 
o
C at 12 am the next day (Fig. 3.12).  

I used these leaf temperatures to model Rlight during the day for each treatments, based on 

results from Figure 3.6 and also for the model where Rlight = 0.7 Rdark, using data from Figure 3.5. 

I also modeled Rdark for the night hours from Figure 3.5 and added these with the modeled Rlight 

to generate 24-hour R C-losses. 

 In 2013 and 2014, AT treatments showed the highest total daily R, while +4 
o
C and +8 

o
C trees had 14-56% lower Rlight rates compared to the ATAC treatment (Table 3.14). When R 

for the light hours were calculated from Rdark, using Rlight ~0.7 Rdark, diurnal R was overestimated 

by 11-65% (Table 3.14).  
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Figure 3.12 Representative 24-hour leaf temperature trace for a Norway spruce grown at 

ambient temperature and ambient CO2. Grey areas represent dark periods. 
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Table 3.14 Total C-loss (µmol CO2 m
-2

 day
-1

) of Norway spruce through R, calculated for a 24-

hour period for all the treatments for 2013 and 2014.  AT-ambient temperature, +4-ambient 

temperature +4 
o
C, +8- ambient temperature + 8 

o
C. AC-ambient CO2, EC-elevated CO2.   

     2013 

 

Total 24-hour R 

(using Rlight during 

the light hours) 

Total 24-hour R 

(using 0.7 Rdark 

during the light 

hours) 

Difference in 

24-hour R 

models (%) 

% of total 

R 

compared 

to ATAC 

ATAC 117.77 154.1 30.8 

 +4/AC 77.88 86.85 11.2 66 

+8/AC 61.43 69.94 13.9 52 

ATEC 101.59 119.1 17.2 86 

+4/EC 85.77 111.88 30.4 73 

+8/EC 66.13 89.52 35.4 56 

                                                            2014 

 

 

Total 24-hour R 

(using Rlight during 

the light hours) 

Total 24-hour R 

(using 0.7 Rdark 

during the light 

hours) 

Difference in 

24-hour R 

models (%) 

% of total 

R 

compared 

to ATAC 

ATAC 103.82 125.71 21.1 

 +4/AC 48.32 54.6 13 47 

+8/AC 56.25 92.68 64.76 44 

ATEC 83.87 108.4 29.2 81 

+4/EC 80.77 109.65 35.76 78 

+8/EC 50.84 71.67 41 49 
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4 Discussion 

4.1 Mortality rates and growth 

 

The 20-39% higher mortality rates in the +8 
o
C trees compared to spruce grown in the 

ambient conditions, were likely due to heat stress. In their native ecological niche, Norway 

spruce are more frequently exposed to extreme low temperatures rather than to high 

temperatures. Young seedlings transferred to temperatures close to their survival limits (~35 
o
C) 

are especially sensitive to this temperatures change because of their unlignified shoots (Kreeb 

1979). Although +8 
o
C treatments enhanced early growth (including bud burst and new branch 

formation) compared to other temperature regimes, some of the seedlings started to die despite 

ample of water. I can therefore conclude that much higher than ambient temperatures have a 

negative effect on survival of Norway spruce. However, the seedlings that survived grew equally 

well across the treatments, which implies there may be little effect of growth temperature on tree 

growth across the warming scenarios used here (Lavola et al. 2012; Teskey & Will 1999).  

 

4.2 Thermal and CO2 acclimation of light –saturated photosynthesis 

 

In this experiment, I excluded the possibility of Asat down-regulation that is often 

associated with smaller soil volumes, by measuring photosynthetic capacity (Vcmax and Jmax). I 

found that trees grown in pots had consistently equal or higher Vcmax and Jmax than trees grown in 

a 10-fold bigger soil volume (Fig. 3.10). Based on the results, I conclude that seedlings grown in 

the field would have similar CO2 responses to the experimental trees. While elevated CO2 can 
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down-regulate photosynthesis (Leakey et al. 2009, Way et al. 2015), in this experiment I found 

that across different Tgrowth treatments, there was no significant CO2 effect on Asat (Table 3.2). 

Interestingly, in the 4 
o
C treatment combined with elevated growth CO2, the higher Tgrowth 

enhanced CO2 assimilation rates (Figure 3.3), from a Tleaf of 10 to 40 
o
C, which implies that a 

slight increase in Tgrowth plus higher growth CO2 may be beneficial for Norway spruce.  

This experiment showed strong thermal acclimation of Asat: the Asat versus Tleaf curve in 

trees grown in higher Tgrowth generally had lower rates of Asat (with the exception of +4 
o
C 

combined with elevated growth CO2), and simultaneously the thermal optimum (Topt) was found 

at a higher Tleaf (higher Tgrowth = higher Topt). When Tleaf > Topt, a sharp decline in Asat was 

observed in all the treatments. It was proposed that at very high temperatures, Rubisco activity is 

severely reduced (Sage & Kubien 2007; Way & Yamori 2013; Yamori et al. 2014). The lower 

photosynthetic rates observed in trees grown at higher Tgrowth may be explained by their lower 

leaf N content, which likely reflects lower Rubisco content and lower photosynthetic enzymes 

concentrations (Tjoelker et al. 2009; Yamori et al. 2005).  Indeed, our results showed that trees 

grown at +8 
o
C had a lower % N in leaves than the trees from other treatment groups. 

 

4.3 Thermal acclimation of Rdark and Rlight  

 

The responses of Rdark and Rlight to a short-term change in Tleaf (minutes to hours) are well 

studied (Atkin et al. 2000b; Teskey &Will 1999; Slot & Kitajima 2015, Way et al. 2015), 

growing membrane fluidity and increases in specific enzyme functions make R increase 

exponentially (Amthor 1984, Ryan 1991). My results showed similar trends in both types of R, 
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as R rates rapidly increased in trees from all the treatments as Tleaf   rose. The upper thermal 

threshold of R is usually beyond 40 
o
C, where R reaches a high temperature threshold and then 

decreases as a result of reductions in enzymatic activity (e.g. adenylate kinase) (Atkin et al. 

2005, Igamberdiev & Kleczkowski 2006). 

Plasticity allows plants to acclimate non-photorespiratory mitochondrial respiration to 

changes in ambient temperatures (Atkin & Tjoelker, 2003). This ability to adjust the shape of the 

temperature response curve to a temperature change is related to alterations in leaf anatomy (e.g. 

changes in leaf density) and protein composition (Atkin et al. 2005). Long- term (weeks to 

month) exposure to elevated growth temperature had different effects on Rdark and Rlight 

contingent on the year. In 2013 I found a similar response of both types of R to the warming. 

However, in this study, only Rdark showed a consistent acclimation response to long-term 

warming during both years (Tables S3 and 3.5). First, I will discuss long-term thermal 

acclimation of Rdark. 

When plants were grown at warmer temperatures, Rdark was reduced (Fig. 3.5). This 

acclimation allows a plant to control optimal ATP and C-skeleton balance, and to minimize C 

lost under warmer conditions. To validate the degree of thermal acclimation, I used the equation 

from Loveys et al. 2003: 

AcclimsetTemp= (Rcontrol at set T / Rwarm at set T)             [Equation 3] 

where AcclimsetTemp is acclimation at a set temperature, Rcontrol is R of a control plant at this leaf 

temperature, and Rwarm is R of a warm-grown plant at the same set leaf temperature. 
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When AcclimsetTemp > 1, thermal acclimation has taken place. The values were consistently 

greater than 1 (Acclim@20 (AT->+4) = 1.29; Acclim@20 (AT->+8) = 1.69). As I discussed previously, 

there are two types of thermal acclimation for R: Type I and Type II (see Fig. 1.2). In this 

experiment, the Q10 remained stable across the treatments (2±0.03), which confirmed that the 

spruce trees demonstrated Type II acclimation. To calculate whether the acclimation reached a 

perfect homeostasis, I used the equation (Loveys et al. 2003): 

AcclimHomeo= (Rcontrol at Tcontrol / Rwarm at Twarm)            [Equation 4] 

where AcclimHomeo is a degree of homeostasis due to thermal acclimation, Rcontrol at Tcontrol is R of 

control plant at its growth temperature, Rwarm at Twarm is R of warm-grown plant at its growth 

temperature. When AcclimHomeo equals 1, there is a perfect homeostasis. In our study, Rdark 

demonstrated almost perfect homeostasis in +4 
o
C and +8 

o
C treatments (AHomeo (AT-> +4) = 0.93; 

AHomeo (AT-> +8) = 1.08). A higher degree of acclimation of R to temperature was found previously 

in conifers compared to deciduous species (Tjoelker et al. 1999, Teskey & Will, 1999), which 

supports my findings. 

Rlight, similarly to Rdark, thermally acclimated in 2013, but the homeostasis of Rlight was 

less perfect than Rdark (AcclimHomeo (AT-> +4) = 0.85; AcclimHomeo (AT-> +8) = 0.88). The Q10 of Rlight 

also remained stable across the treatments (2.7±0.08) which validated Type II thermal 

acclimation. 
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4.4 Rlight acclimation to growth CO2 

 

In contrast to 2013, in 2014 there was no acclimation of Rlight to Tgrowth, but instead, there 

was evidence of acclimation to elevated CO2 (Fig. 3.6). Rlight was significantly decreased when 

growth CO2 concentration was elevated in AT and +4 
o
C trees. These lower rates of Rlight are 

associated with higher Asat than was observed in this season compared to 2013.  

 

4.5 Rlight : Rdark ratio and modelling total diurnal R 

     

Across two years and in all treatments, the Q10 of Rlight was consistently 35% higher than 

the Q10 of Rdark, therefore Rlight : Rdark increased with an increase in Tleaf. This allows me to 

conclude that the Rlight : Rdark ratio is dictated by the Q10, and is not constant. A change in the 

Rlight : Rdark  ratio as Tleaf increases has also observed in other species (Way & Sage 2008; Way & 

Yamori, 2014).  Considering all of the above, the assumed conversion rate of 0.7 Rdark to 

estimate Rlight (Ayub et al. 2011) cannot be used when modelling C fluxes. Indeed, in this 

experiment, the Rlight= 0.7 Rdark only matched the data when R was measured at a Tleaf of 22-27 

o
C (Fig. 3.7, grey area). As such, earlier results indicating that Rlight is 0.7 Rdark may be due to 

measuring both fluxes at room temperature. However, I propose that in Norway spruce, Rlight can 

be calculated at every Tleaf based on the equation explaining the relationship of both (Fig. 3.8). 

The total R for 24-hour period was overestimated up to 65% when the equation Rlight = 0.7 Rdark 

was used instead of the real Rlight values measured during the light hours (Table 3.14). This 

overestimation may significantly skew C fluxes calculations on an ecological scale.  
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4.6 Asat : Rdark ratio 

 

Asat and Rdark are co-dependent processes, as A needs the adenylates produced by Rdark, 

and R needs the substrate from A (Krömer 1995). Looking at a short-term temperature response, 

leaves at very high temperatures utilize much more substrate in R than Asat can provide and the 

ratio of Asat to Rdark decreases (Fig. 3.9), consequently reaching zero at a high Tleaf of ~45 
o
C. A 

similar effect was found by Gifford (1995) in wheat (Triticum aestivum) grown across 15-30 
o
C, 

by Ziska & Bunce (1998) in soybean (Glycine max) grown at 20-35 
o
C, (2006), and by Way & 

Sage (2008) in black spruce (Picea mariana) grown at 22-30 
o
C. This decline implies the leaf is 

unable to balance total C on these timescales. However, in contrast to this idea, Atkin et al. 

(2006) found that while alpine Plantago species had the same A/Rdark decrease seen there, 

lowland Plantago species maintained a constant A/Rdark ratio.   

When Asat and Rdark acclimate to Tgrowth, it is logical to propose that the Asat : Rdark ratio 

should show similar patterns across the treatments. Indeed, when the Asat : Rdark ratio of all the 

treatments from both years were plotted against Tleaf, there was  a strong positive correlation 

(R
2
= 0.96; Fig. 3.9).  

 

4.7 Leaf anatomy and biochemical traits of acclimation 

 

When trees acclimate to Tgrowth, resulting in lower Asat and R rates in the +8
o
C treatment 

compared to the AT, we expect to see anatomical and biochemical changes. While growth, SLA 

and NSC were not significantly affected by Tgrowth, I observed thinner and shorter needles in the 



59 

 

+8 
o
C treatment (Fig. 3.11, Table 3.13), which supports the theory of anatomical adjustment 

when thermal acclimation occurs (Atkin et al. 2005). This may explain why trees on one hand 

assimilated less C, but on the other hand, also lost proportionally less C.  

In this experiment I found that the mitochondrial density was highest in +8 
o
C treatments 

regardless of CO2. It might be suggested that reduced R rates in this treatment group cannot be 

supported by these findings. However, the effects of environmental stresses on mitochondrial 

anatomy had been seen in previous studies when plant mitochondrial shape (Kiwimänempää et 

al. 2001) and functionality (Armstrong et al. 2006) may change during a short period of time 

(hours to days) according to the cellular needs for energy. Due to the fact that the harvest and 

microscopy analysis was done only once, it is difficult to conclude whether mitochondrial 

density reflects my physiological findings.  
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5 Conclusion 

 

Norway spruce, a dominant European coniferous species, was used as a model in this 

study, describing how boreal forest species will respond to projected growth temperatures and 

CO2. I have found that in the +4 
o
C warmer and elevated CO2 concentration climate, Norway 

spruce will likely fix more CO2, but this will not necessarily lead to better growth. On the other 

hand, much greater warming (+8 
o
C), although harmful for the young seedlings as shown by 

higher mortality rates, will trigger acclimation: Anet and Rdark will simultaneously be reduced in 

the new climate conditions. However, the response of Rlight to projected climate conditions 

remains unclear and requires further investigation, but I propose that neither elevated CO2 nor 

higher than current Tgrowth will reduce Rlight rates. 

                 My work has shown the importance of using measured Rlight values in models of R. 

Considering the difficulty of measuring of Rlight, I propose to use the equation explaining the 

Rlight to Rdark relationship, and not the conversion rate of 0.7, when modelling C fluxes from 

vegetation.    
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7 Appendices 

 

Table S1. Repeated measures three-way ANOVA results for yearly changes in light-saturated 

photosynthesis (Asat) of Norway spruce seedlings to changes in CO2, growth temperature (Tgrowth) 

and leaf temperature (Tleaf) for the combined 2013 and 2014 growth seasons. Significant results 

are bolded. 

  

 

Df 

Sum of  

Squares F Ratio p-value 

CO2 1 1.48 0.2 0.66 

Tgrowth 2 54.53 3.65 0.034 

Year 1 127.51 17.07 0.00017 

Tleaf 3 635.74 189.14 <0.0001 

CO2 X Tgrowth 2 10.43 0.7 0.5 

CO2 X Year 1 2.77 0.37 0.55 

Tgrowth X Year 2 6.54 0.44 0.65 

CO2 X Tleaf 3 3.96 1.18 0.32 

Tgrowth X Tleaf 6 39.29 5.84 <0.0001 

Year X Tleaf 3 13.11 3.9 0.01 

CO2 X Tgrowth X Year 2 2.64 0.18 0.84 

CO2 X Tgrowth X Tleaf 6 1.08 0.16 0.99 

CO2 X Year X Tleaf 3 4.77 1.42 0.24 

Tgrowth X Year X Tleaf 6 6.64 0.99 0.44 

CO2 X Tgrowth X Year X Tleaf 6 4.02 0.6 0.73 
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Table S2. Repeated measures three-way ANOVA results for yearly changes in stomatal 

conductance (gs) of Norway spruce seedlings to changes in  CO2, growth temperature (Tgrowth) 

and leaf temperatures (Tleaf) measured at 1200 photosynthetic photon flux density for the 

combined 2013 and 2014 growth seasons. Significant results are bolded. 

 

Df 

Sum of 

Squares F Ratio p-value 

     

CO2 1 0.000067 0.051 0.82 

Tgrowth 2 0.018 6.82 0.003 

Year 1 0.05 38.27 < 0.0001 

Tleaf 3 0.04 67.19 <0.0001 

CO2 X Tgrowth 2 0.0023 0.86 0.43 

CO2 X Year 1 0.0014 1.06 0.31 

Tgrowth X Year 2 0.007 2.71 0.08 

CO2 X Tleaf 3 0.0006 0.93 0.43 

Tgrowth X Tleaf 6 0.0093 7.25 <0.0001 

Year X Tleaf 3 0.0028 4.3 0.006 

CO2 X Tgrowth X Year 2 0.0022 0.85 0.44 

CO2 X Tgrowth X Tleaf 6 0.00036 0.28 0.94 

CO2 X Year X Tleaf 3 0.001 1.54 0.21 

Tgrowth X Year X Tleaf 6 0.0016 1.24 0.29 

CO2 X Tgrowth X Year X Tleaf 6 0.001 0.79 0.58 
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Table S3. Repeated measures three-way ANOVA results for yearly changes in light-stimulated 

dark respiration rates (Rdark) of Norway spruce seedlings to changes in CO2, growth temperature 

(Tgrowth) and leaf temperature (Tleaf) for the combined 2013 and 2014 growth seasons. Significant 

results are bolded. 

  

 

Df 

Sum of  

Squares F Ratio p-value 

CO2 1 0.19 0.45 0.5 

Tgrowth 2 8.86 10.52 0.0002 

Year 1 1.48 3.51 0.068 

Tleaf 3 112.8 453.52 <0.0001 

CO2 X Tgrowth 2 0.054 0.064 0.94 

CO2 X Year 1 0.206 0.49 0.49 

Tgrowth X Year 2 0.358 0.425 0.66 

CO2 X Tleaf 3 0.298 1.2 0.31 

Tgrowth X Tleaf 6 3.938 7.92 <0.0001 

Year X Tleaf 3 0.694 2.79 0.043 

CO2 X Tgrowth X Year 2 0.17 0.2 0.82 

CO2 X Tgrowth X Tleaf 6 0.123 0.25 0.96 

CO2 X Year X Tleaf 3 0.122 0.49 6.9 

Tgrowth X Year X Tleaf 6 0.562 1.13 3.5 

CO2 X Tgrowth X Year X Tleaf 6 0.129 0.26 0.95 
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Table S4. Repeated measures three-way ANOVA results for yearly changes in light respiration 

rates (Rlight) of Norway spruce seedlings to changes in CO2, growth temperature (Tgrowth), and 

leaf temperature (Tleaf) for the combined 2013 and 2014 growth seasons. Significant results are 

bolded. 

  

  

 

Df 

Sum of  

Squares F Ratio p-value 

CO2 1 3.037 

 

9.17 0.004 

Tgrowth 2 7.704 

 

11.63 <0.001 

Year 1 2.99 

 

9.03 0.004 

Tleaf 3 155.2 

 

383.11 <0.0001 

CO2 X Tgrowth 2 0.5 

 

0.75 0.48 

CO2 X Year 1 0.31 

 

0.93 0.34 

Tgrowth X Year 2 2.18 

 

3.29 0.047 

CO2 X Tleaf 3 1.44 

 

3.57 0.016 

Tgrowth X Tleaf 6 4.68 

 

5.77 <0.0001 

Year X Tleaf 3 1.43 

 

3.53 0.017 

CO2 X Tgrowth X Year 2 0.24 

 

0.37 0.7 

CO2 X Tgrowth X Tleaf 6 0.75 

 

0.92 0.48 

CO2 X Year X Tleaf 3 0.5 

 

1.25 0.3 

Tgrowth X Year X Tleaf 6 3.14 

 

3.87 0.0014 

CO2 X Tgrowth X Year X Tleaf 6 0.13 

 

0.16 0.99 
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Table S5. Repeated measures two-way ANOVA results for the response in Rlight/Rdark to changes 

in growth CO2, growth temperature (Tgrowth), and leaf temperature (Tleaf) of Norway spruce 

seedlings in 2013 and 2014. Significant results are bolded. 

 

 

DF 

Sum of 

Squares F Ratio p-value 

CO2 1 3.04 9.17 0.0042 

Tgrowth 2 7.7 11.63 0.000096 

Year 1 2.99 9.03 0.0045 

Tleaf 3 155.2 383.11 <0.00001 

CO2 X Tgrowth 2 0.5 0.75 0.48 

CO2 X Year 1 0.31 0.93 0.34 

Tgrowth X Year 2 2.18 3.29 0.047 

CO2 X Tleaf 3 1.44 3.57 0.016 

Tgrowth X Tleaf 6 4.68 5.77 0.000024 

Year X Tleaf 3 1.43 3.53 0.017 

CO2 X Tgrowth X Year 2 0.24 0.37 0.7 

CO2 X Tgrowth X Tleaf 6 0.75 0.93 0.48 

CO2 X Year X Tleaf 3 0.5 1.25 0.3 

Tgrowth X Year X Tleaf 6 3.14 3.87 0.0014 

CO2 X Tgrowth X Year X Tleaf 6 0.13 0.16 0.99 
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Table S6. Three-way ANOVA results for yearly changes in non-structural carbohydrates (NSC) 

of Norway spruce trees to changes in growth CO2 and growth temperature (Tgrowth) in 2013 and 

2014. Significant results are bolded. 

  

 

DF 

Sum of 

Squares F Ratio p-value 

CO2 1 0.0001 1.143 0.291 

Tgrowth 2 0.0001 1.376 0.294 

Year 1 0.004 48.073 <0.00001 

Tgrowth X CO2 2 0.00004 0.514 0.602 

Tgrowth X Year 2 0.00001 0.127 0.881 

CO2 X Year 1 0.00002 0.183 0.671 

Tgrowth X CO2 X Year 2 0.00003 0.365 0.696 
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Table S7. Two-way ANOVA results for yearly changes in leaf nitrogen concentration of 

Norway spruce trees to changes in growth CO2, growth temperature (Tgrowth), and leaf 

temperature (Tleaf) in 2013 and 2014. Significant results are bolded. 

 

DF 

Sum of 

Squares F Ratio p-value 

CO2 1 0.6751 9.948 0.003 

Tgrowth 2 1.2389 9.127 0.0005 

Year 1 0.7755 11.426 0.0016 

Tgrowth X CO2 2 0.1277 0.941 0.398 

Tgrowth X Year 2 0.0863 0.636 0.534 

CO2 X Year 1 0.0002 0.003 0.954 

Tgrowth X CO2 X Year 2 0.3735 2.751 0.075 
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