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I. Introduction

In this paper we describe the computation of general equilibrium via
a fixed point decomposition procedure similar in spirit to the Dantzig-Wolfe
decomposition algorithm for the splution of linear programming problems
[Dantzig and Wolfe (1961)]. We show that for a general equilibrium model
of a particular structure it is possible to compute equilibria using 'master’
and 'sub' simplices each of a dimensionality smaller than that of the total
problem. The analogues to the common constraints in the Dantzig-Wolfe procedure
are common commodities with common prices, and the block diagonal structure on
non-common constraints is replaced by -an analogous block diagonal pattern of
demands and endowments of agents over non-common goods. The procedure is
guaranteed to terminate at an approximate equilibrium without cycling by the
same argument underlying Scarf's algorithm. In the case of a pure trade
equilibrium we use variations on the traditional Gale Nikaido mapping for label
generation but use dimensions smaller than that of the whole problem. A
natural application of the method is tolinternational trade models with
'traded' and 'non-traded' goods. We use this example for illustration but
regional and intertemporal models would also appear to offer fruitful areas
of application.

The method involves the generation of labels for vertices on a master
simplex through the separate solution of sub-equilibrium problems whose
parameters are determined by the vertex on the master simplex.

Information is passed between a master problem and sub problem as in the
Dantzig-Wolfe algorithm; 'éoefficient generation' for a master linear
programming problem in the Dantzig-Wolfe algorithm is replaced by 'label
generation' for vertices on a 'master' simplex associated with the general

equilibrium problem. We have performed computation with this method for some
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numerical examples using Merrill's algorithm for solution of both full
dimensional problems and the same problems by the decomposition procedure.

A quicker procedure for large models would be to use the recent methods of
vander Laan and Talman (1979), but for comparative purposes the consistent
application of Merrill's algorithm would appear to be adequate. Where a
number of blocs of consumer groups with only partially overlapping excess
demand functions are 1ﬁvolved significant computationalwéains are indicated,
suggesting eventual possible appliéation to empirically oriented large-scale
general equilibrium models of world trade. At least two models in current
use have the same structure of common and non-common goods as examined here;
referred to as 'traded' and 'mon-traded' goods in the international trade
literature. In one Peardorff and Stern (1979)] 18 separate countries appear

and in the other [Whalley (1979)] 4 major trading areas are identified. Our

discussion is exclusively in terms of integer labelling problems; we believe
the extension to vector labelling problems follows naturally but have not

extensively explored the issue.

The economic interpretation of our procedure is that we'decompose the
list of commodities in a general equilibrium problem into 'common' goods traded
among all agents and 'mon-common' goods traded only among a subset of agents.
The allocation of non-common goods to agents can be represented in a bloc
diagonal partition of demands and asset ownership by agent. We use a master
simplex containing informafion on the prices of common goods. The sub-
equilibrium problems use information on the relative prices of common goods
from the master simplex to form a vector of prices for both common goods
and non-common goods in the bloc. Each sub-equilibrium problem takes the
relative prices of common goods as given and determines an.approximate

equilibrium characterized by non-positive excess demands for each non-common

good along with an equilibrium price for a composite common good meeting



a non-negative excess demand condition. The solution for subproblems together
with the common good prices on the master simplex yield an evaluation of
excess demand functions for common goods which generates a label for a vertex
on the master simplex. A completely labelled master simplex along with
associated sub-equilibria yield an approximafion to an equilibrium for the
whole model, which becomes exact in the limit approached by a dense grid.

Each subproblem may be interpreted as an equilibrium problem for a small open
economy with non-traded goods, which takes relative prices of traded goods as
given by world markets and determines an equilibrium in which demand supply
equalities hold for non-traded goods along with an external sector balance
condition. The demonstration of existence of equilibrium for such a trade
model does not appear to be in the literature, but would seem to follow
directly grom the formulation of sub-equilibrium problems we present. An
alternative interpretation is tﬁat we partition the list of commodities in
the model so that we can apply the Hicks-Leontief composite commodity theorem.]
We construct a composite common good for an equilibrium problem for each bloc
involving the single composite common good and all non-common goods specific
to that bloc. 'Sub'equilibrium solutions are communicated back to the 'master’
simplex and used in such a way that 'master' solution implies full solution.

II. A Pure Exchange General Equilibrium Model with a Decomposition
Structure Between Common and Non-Common Goods

We consider a pure exchange general equilibrium model where each
agent has a fixed endowment of common goods and certain of the non-common
goods. The decompositon structure we stress is that common goods are both
demanded and owned initially by all agents while non-common goods are owned

and demanded by only a subset of agents.

1This theorem is discussed in Arrow and Hahn [1971] pp. 6-8.
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The economy consists of K\groups of agents each characterized by
(i) a set of demand functions and (ii) a vector of endowments (of bofh
common and mon-common goods). Market demand functions for the non-common
goods are the sum of the individual demands only within the group involved.
Market demand functions for the cbmmon goods are given by the sum of
demand functions across all agents. The common goods are indexed 1,...,n°;
the non-common goods indexed from n, + 1,...,n1 (bloc 1) n1 + 1,...,n2

N K .

(bloc 2)s..and so on. The model has a total of N = n +;§1(ni~(ni_1+1)) goods.
We consider a price vector m of dimensionalify N which contains prices of
all goods. w?

20 and > 0 for some i for each k; in addition wt =0 for i = n£_1+ Ty000,n

represents the endowment of good i by group k. We assume
wk
i £
and £ # k (zero endowments in group k of non-common goods of other groups of
agents) .
The market demands by group k for the common goods, 1,...,n°, and

non-common goods relevant to the group, nk_1+ 1,}..,nk, are functions only of

the corresponding commodity prices (n],---,n seee,T +12°°T sees)e We

% Pr-1
will use this property later but for'convenience write these functions as g:(ﬂ);
the demands for good i by group k. The demand functions for each group are
assumed to be non-negative, continuous, homogeneous of degree zero in all prices,
and to satisfy a version of Walras' Law defined for that group alone. This implies
that total demand functions satisfy a model wide version of Walras' Law. The
zero homogeneity of demands allows prices of all common and non-common goods
in the economy to be normalized to sum to any non-negative constant;ﬁwe work with

a price simplex all of whose vectors contain coordinates with sum D; X2 m o= D.
i=1

An equilibrium in this model is a vector of prices m* such
that all excess demands are non-positive with zero prices prevailing
for any commodity with strictly negative excess demands. These con-

ditions may be written out explicitly as



Demands by . Endowments of
group 1 Broup 2 ceeceeccseses gRFoup K group 1 .... gronit(p K

§: (%) + Ef (1) + eeevesccsease + E:( (%) < w'} + oeese + W,

common
goods -
: K K
§1 (%) + gz (M) + toevieeeeness +E (%) < w4 ceee + VW
n n n n n
o o o o o
g L. (™) +0 0 s
non- nd¥1 nofi
common
goods of 1 % 1
group 1 E (m) +0 0 < w
™ ™
0 9 000 0000000600000 0008000 0 + én' +‘l (Tﬂ) S W: +1
non- K-1 K-1
common K
goods Of 0 .....'ll.........'..... 0 + é(n (Tﬁ) S Wn
group K K K

with the corresponding n? equalling zero if any inequality holds strictly.
The statement of equilibrium conditions above is visually similar

to the constraint matrix in the Dantzig-Wolfe decomposition algorithm

where a set of common constraints prevailswith the remainder of the constraint
matrix being written in block diagonal form. Here a similar structure applies
to both demands and initial endowments when subscripted by group. One can
clearly use Scarf's (1973) algorithm (applying one of the recent refinements
to reduce execution times such as vander Laan and Talman (1979) and Shamir
(1979)) directly to this N-dimensional model ignoring its special structure.
Our interest is in a co;putational method using a lower dimensionality than

N which takes advantage of this special structure while still preserving the

Lemke-Howson no-cycling argument used by Scarf's algorithm.



III. A Decomposition Algorithm for Equilibrium Computation

In the Dantzig-Wolfe decomposition procedure a full dimensional linear
programming problem with common constraints and a bloc diagonal structure for
other constraints is rewritten as an equivalent problem requiring only one
constraint for eacn of the diagonal blocs in the constraint matrix of the
original problem. This problem involves all the (unknown) vertices associated
with the constraint set for each of the diagonal blocs in the non-common
portion of the constraint set. Columns are generated for the simplex tableau
of the reduced dimension equivalent problem by solving sub LP problems
generating a vertex for each bloc with the smallest entry for the objective
function in the tableau. Vertices are successively added through the column
generating procedure which sub problem solutions provide. Pivot steps in the
master tableau in turn provide coefficients for the objective function in sub
problems. When all sub problems produce non-positive solutions, all tableau
entries for coefficients in the objective function associated with vertices of
the constraint sets are non-negative and a maximum to the linear programming
problem must have been determined. The method allows a large dimensional linear
programming problem to be solved through a sequence of smaller dimensional
problems without any necessary requirement that all vertices describing con-
straint sets for diagonal blocs be evaluated. The no-cycling argument in
the traditional form of the simplex method is preserved.

In our fixed point decomposition procedure, we first rewrite the general
equilibrium conditions aPove as two interdependent sets of conditions which if
they jointly hold at the same set of prices ensure equilibrium. Our procedure
involves passing information between a master simplex to sub simplices until
both sets of conditions are satisfied. The labelling rule used for vertices on

the master simplex .guarantees that in the limit associated with a dense grid being
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used to solve both master and subproblems the same price vectors must occur

at the two solution sets.

Our equivalent statement of equilibrium conditions involves rewriting
c 1 K c
the price vector m as (M 47 ,.+0,7 ) where ™ refer to prices of common
K )
goods and n1,...,n are the prices of non-common goods. for each group. We

note that the demand functions Eﬁ(n) of group k can be rewritten as §:(nc,nk).

We partition the equilibrium conditions, written-in full above, and
characterize a 'common good' equilibrium (Master Equilibrium) as a vector

* K*
! ,eee,m ) such that excess demands are non-positive for each

= (ﬂc*,n

common good, i.e.

* k¥ k .. e _
E(E‘;(ﬂc ,T ) - Wi) <0 (=0 if m >0) i=1,...,0_

'Non-common' good equilibria (Sub Equilibria) are characterized in terms of
c* k*

a vector (m ,rr ) for any group k such that excess demands are non-positive

for each non-common good, i.e.

k, c* k* k . k*
§i(nc T ) - LA 0 _ (=0 if m >0) i=nk_]+1,...,nk.

We note that from Walras' Law and the property that non-common goods
cannot be traded across groups, the Xalue of excess demands for common goods

0O % * Lk
equals zero for each group, i.e., X ni (§,1].(_(11'c ,nk ) - w?) = 0.
i=1

If each of these sets of equilibrium conditions simultaneously holds at
the same sets of prices then full equilibrium must prevail. While it may seem
an indirect procedure to partition the équilibrium conditions in order to
characterize two 'partial' equilibria which jointly imply the general
equilibrium conditions a.potential computational saving is suggested by this
device. If, in some way, the common goods prices can be assumed to be fixed

to solve for sub-equilibria and the non-common goods prices calculated in

this way used in determining master equilibria, a procedure which passes



information between alternative equilibrium problems offers a possibility of
a solution method which exploits the special bloc diagonal structure of
excess demand functions. The Hicks-Leontief composite commodity theorem
suggests that aggregating quantit;es within a partition yields a composite
commodity which can be analytically treated as equivalent to a single
commodity. We exploit this by arguing that given any fixed relative prices
for common goods, there exist prices for the composite commodity and non-
common goods for the bloc that satisfy non-positive excess demand conditions.
We thus solve sub-equilibria using the composite commodity and communicate
prices of non-common goods back to the master simplex for an evaluation of
excess demands of common goods. By reducing the dimensionality of each
problem in this way, the hope is that by determining subsets of equilibrium
prices with equilibrium holding for a composite of the common goods a
complete equilibrium can be determined and yield computational gains over
full solution. Our method shows that this is possible and initial computational
experience suggests that computational éains of some potential significance

are possible.

Sketch of the Procedure

Taking a simplex of full dimensionality containing all N commodity
prices ni,(i=1,...,N), we reduce the dimensionality of this simplex to n

by retaining only the prices of common goods. We term this the master simplex.

Using a regular grid to represent the subdivision of the master simplex,
we separately construct a simplex on which we search for a sub-equilibrium for
each group where simplices for sub problems are all associated with the vertex
of the subdivision of the master simplex from which they are derived. These
associated simplices are each of dimension equal to the number of non-common
goods for the group concerned plus one. For convenience, all the coordinate
sums for vertices on associated simplices are taken to be equal to that of

vertices on the master simplex.



We compute 'sub-equilibria' for each group using these simplices and
assuming the relative prices of common goods from the vertex on the master
simplex to be fixed. The equilibrium conditions in these problems are
limited to the non-positive excess demand for the composite of common goods
constructed using the relative common goods prices from the master simplex,
rather than requiring each excess demand to be non-positive as in full
equilibrium. In any sub-equilibrium we thus determine market clea?ing prices
of non-common goods and a scalar multiple for all common goods prices giving
non-positive excess demands for the composite common good using the fixed
relative prices from the vertex on the master simplex as weights.

We return our sub-solution to the vertex on the master simplex and
list the prices of non-common goods along with the common goods prices.

We use the derived price vector to evaluate excess demand functions, and

our labelling rule for any vertex on the master simplex involves the excess
demands for common goods. A completely labelled simplex of dimension n

in the subdivision of the master simpléx (along with the associated approximate
sub-equilibria) will characterize an approximation to an equilibrium for the

entire general equilibrium system.

Description of 'master' and 'sub' simplices

We define the master simplex of dimension n as So and consider
a subdivision of this simplex to be represented by the vertices Sg. Each
vertex Sg will be written as

2 .

I ™

.
!
o

‘:’1
' i=1
™
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For convenience, we will restrict ourselves to subdivisions of S° characterized
by a regular grid with mesh size given by the integer D.

Corresponding to each vertex Sg, we also define K-simplices SJ,Sg,...,Sé

(one corresoonding to each group) such that the sums of coordinates on those
simplices are also given by D. Wé consider simplicial subdivisions of each

simplex S'},...,Sj

X in addition to the subdivision of So represented by the

jh

k is

vertices Sg. The hth vertex of the subdivision of the-kth simplex S

written as

o where k=1,2,,.,,.,K and the superscript j

“h corresponds to the jth vertex Sg.

Characterization of Sub-Equilibrium Problams

Corresponding to any vertex Sih in a subdivision of Si we determine

a vector of prices of common and non-common goods using the relative prices
jh
k 1

of common goods ng,...,ni from Sg, the sum of common goods prices from §

o

and the prices of non-common goods nJh +1,...,n§2 from Sgh . We represent
-1

this by the functionvﬁih(sg,sih) where

A g g

~dh o ojhy _ jh jh
B sl = (5 5 e = et ).
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The function ﬁih(sg,Sih) determines prices of both common and non-common goods
for group k where the relative prices of common goods are consistent with correspond-
ing values from the vertex Sg on the master simplex. The relative prices of the non-
common goods are given by the vertex Sgh on the simplex associated with the subproblem.

The sum of the prices of common goods is constrained to equal Cih, the last element of

the vector defining the vertex Sih. Cgh can be zero in which case the terms
h
.CJh ng 'Cg
Tk o020 are all zero.
D D

For any group k, a 'sub-equilibrium problem' is constructed whose equilibrium

* *
solution is defined as a vector ﬁg (sg,si*) associated with a vector Si on the simplex
Si such that
(1) GG - v <0 01w >0 e H,...n)
n 1 | 1 T-q " lose ooy
o .
; . O k i*
(ii) 151 D(gi(ﬂk ) -~w )s 0 (=0 if ¢ > 0).
D

In this problem common goods are aggregated at the fixed prices ng. Equilibrium
prevails when both non-positive excess demands summed across all consumers in group k
occur for the composite of common goods and for each non-common good. Cé* can be
interpreted as the equilibrium price for the composite of common goods (constructed
using the fixed relative prices ng:---,"ﬂ as weights) relative to each of
the non-common goods for group k. °

Solution of Sub-Equilibrium Problems

Using the vector function n (Sj,Sj ) for any vertex Si we can apply
Scarf's algorithm (or one of the recent extensions mentioned earlier) to

* 3% *
compute an approximation to a sub-equilibrium Sg = (nJ qoecesT Cj ).

+
Pr-1 oy
This provides an approximation to an equilibrium to the kth sub=problem which

is used in the labelling procedure for the vertex Sg on the master simplex

in a way to be described later.
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The equilibrium computation differs in the sub-problems from the ap-
plication of Scarf's algorithm to a standard.exchange economy only in a small
modification in the use of the Gale-Nikaido mapping to determine labels for
vertices oﬁ each simplex Si. The conventional labelling procedure for an N com-
modityvexchange equilibrium problem defined on an N dimensional price simplex
calls for selecting as the label to any vertex m the index of the first
coordinate for which fi(ﬂj)-ﬂg >0 (i=1,...5N), where-fi define the well-~
known Gale-Nikaido transformation .of the excess demand functions which produce
a continuous mapping of the unit simplex into itself.

In the solution of each sub-problem we use a related mapping of

a (m - nk-l) dimensional simplex into itself given by

h ~o
oty M/ + maxl{o & (@Y - w®)]
0% "k jih, k Co “i ik
1+ z max[O,(El;(F'i )-wi)] +max([0, = -i(é;(?i) -W'i.)]
i=n,__,# i=1 0

for i='n.k_1+1 seeesly

=}

o
o
Cih/-'n + max[0, ;j"‘ (T!ﬂ) v )]
gc (ni (Sg’slih = — nk - ) n -n-j
o] .. .
"1 4+ = max[O,(El;(r“%h) —wt.?')]+max[0, z -I-)]-'-(gl;(?i) -wlé)]
imny g+ i=1 % T

IIM

The label of vertex Sihin the kth sub-problem is taken as the first i
for which the image g};('ﬁf(h (Sg,sih)) exceeds one over D multiplied by its
corresponding coordinate on Silh. A completely labelled simplex will have all
the labels 1,..., (nk- nk-l) including a label derived from the transformation of

the excess demand for the composite good. The modification to the Gale-

Nikaido transformation incorporates the feature that a composite of excess
demands is involved for the common goods. The starting and termination

procedures are as in any other application of Scarf's algorithm.
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Iabelling Rules for Vertices on the Master Simplex

While solutions to sub-equilibrium problems corresponding to a vertex
Sg on the master simplex will yield approximations to the equilibrium conditions
required for all non-common goods, they will not typically result in market
excess demands for each of the.common goods being less than or equal to zero.
We therefore construct a labelling rule for any vertex Sg on the master simplex
such that for a completely labelled simplex in a subdivision of So this will
be the case. The labels are selected from integers 1,...,no and for a
completely labelled simplex an approximation to an equilibrium for the entire
general eduilibrium problem will be obtained. This approximation becomes
exact in the limit as the mesh of vertices defining the subdivision becomes

everywhere dense on the simplex So.

We begin with the solution to the first sub-equilibrium problem

and construct the wvector

a1y _ 33 3% i _g*
M= 0f o reeen] 0

(o]
j
my

*
o

non-common goods prices from the solution of the first sub-equilibrium

e B

i

* *
where Ag is defined as and "g +1""’"ﬂ define the sub-equilibrium
(i]

1

problem.

Where a non-dense grid is used for a sub-equilibrium problem the non-

* * *
common goods prices nﬁ +1"“’“ﬂ together with Ci may be taken from the mid
o ;

point of the completely.labelled simplex in the subdivision of the simplex
associated with the subproblem. In the finite grid case Cf*cannot equal zero, in
the limiting case of a dense grid )g may approach infinity if Cf*approaches zero,
A.construction we use in our labelling rule below guarantees that even if Ca*
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approaches zero for all K sub-problems, a limit vector on the master simplex
with zero common éoods prices but some non-zero non-common goods prices will
be approached through a convergent subsequence.

Additional vectors ﬁzj,...,ﬁKj can be constructed in a manner similar
tp that for ﬁlj using solutions to the other sub-equilibrium problems. The

~

vectors T j,...,ﬁKj together with the common goods prices "%”"’“g from Sg

provide the analogue of the vector functions ﬁih from éﬁb-problems. Thé

common goods prices are taken ffoﬁ the master simplex, prices of non-common
goods come from sub-equilibrium solutions but are multiplied by a scalaf Aa
for each group k such that prices of common goods are the same on the master

simplex and at each sub-equilibrium problem. We write the vector (“2""’“3 ’
o

RE K .

nlJ,...,ﬁ j) as ﬁj which we in turn normalize to sum to D. We note that the
vector ﬁj contains all sub-equilibrium solution vectors for both common and
non-common goods transformed by a scalar for each group; the relative prices

of common and non-common goods for each group remain unaltered between sub-

equilibria and the master problem. If a limit is approached for the case of a

3*
k

normalized vector ﬁj will appoach gzero.

dense grid for which C; approaches zero for all k, the first n entries of the

For the n dimensional master simplex we use the traditional Gale-
Nikaido mapping to produce a continuous mapping of the simplex into itself
whose fixed points along with associated sub-equilibria meet the required
equilibrium conditions. We note that by Walras' Law and the features of non-
common goods, the value of excess demands for all common goods must equal zero.
The mapping is given by the well known transformation of the excess demand

functions for common goods evaluated at the vector ﬁj and summed over all

groups

]
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K .
/D + max(0, Z (5@ - wp)
(3 1y = L] (i=1 n)
gi ﬂ'l’.o’,ﬂn n K geeey o L3
° ° k, i, _k
1+ Z max(0, Z (Ei(n )- Wi))
i=1 k=1

The label z(sg) for verticés on the master simplex is determined
as follows:
(i) 1If any element of Sg is zero, Z(Sg) is the index value of the first
zero entry.
(ii) 1If Sg is strictly positive, the label is determined as the first index

i for which the image 8i(ﬂi,---,ﬂi ) exceeds %'multiplied by the corres-
. o '

ponding coordinate  on Sg, Eor i=1,...,no).

Demonstration of Equilibrium Conditions
It remains to argue that a completely labelled simplex in the subdivision

of So will be an approximation to an equilibrium of the entire general equilibrium
model by a similar argument to that given in Scarf (1973) for a traditional
general equilibrium model. There is a unique way to start the computational
procedure on the master simplex as in Scarf's original algorithm and subsequently
on each simplex in any sub?problem, and the Lemke-Howson no-cycling argument |

applies in exactly the same manner.

In order to argue that an approximation to an equilibrium for the
entire problem will be found which becomes exact as the mesh corresponding to
subdivisions of So (and the corresponding simplices for sub-equilibrium
problems) becomes finer and finer it remains to show that a completely labelled
simplex in the subdivision of the master simplex will ‘imply that all equilibrium
conditions must hold.

The demonstration of this uses the same p£ocedure as with a traditional

Gale Nikaido mapping where a fixed point under this mapping can be shown to
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imply the equilibrium conditions for a pure trade economy. A completely ;abelled
simplex in the subdivision of the master simplex in the limiting case of a dense
grid yields a price vector at which all excess demands for common goods are non-
positive, common good prices are zero if any excess demand is strictly negative.
A completely labeilgd simplex in the subdivision of each associated simplex for
sub-problems yields a price vector at which excess demands for non-common goods
are non-positive with non-common goods prices being zero if any excess demand
is strictly negative. Both of £hese arguments use the property mentioned
earlier that Walras Law together with the restriction that non-common goods
cannot be traded across groups of consumers implies that fhe value of excess
demands for common goods must equal zero, and similarly equals zero for each
bloc of non-common goods. The equilibrium price vectors at master and sub-
eéuilibria are related by a scalar for each group and from the zero homo-
geneity of demand functions the prices of common and non-common goods at
sub-equilibria .can be transformed to be identical to those characterizing

a master equilibrium. Thus both master and sub-equilibrium conditions hold

at the same set of prices and an equilibrium to the entire model must have

been determined.

Iv. A Numerical Example and Some Initial Computational Experience

Although we have described our pracedure in terms of Scarf's original
algorithm, the procedure can be easily adapted\to extensions of .Scarf's
algorithm due to Merrill (1971), vander Laan and Talman (1979) and others.

We have adapted Merrill's algorithm to this.procedure and solved some numerical
examples by this method. A computational point of some significance with the
application of a decomposition procedure in such circumstances is the

ability through a restart method to refine the grids for master and subsimplices

at different speeds, an option not available with solution of the full problem.
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We have programmed.the decomposition procedure described above and
solved a number of numerical examples both by this method and by solution
of the corresponding full dimensional problem. While further imporvements
in efficiency of coding may be pogsible, our initial egperience suggests
that if the decomposition structure is sufficiently strong, significant
computational savings are possible if that structure is exploited.

We consider a sequence of economies each with 2 common goods and
an increasing number of blocs of non-common goods. Each bloc of non-common
goods is of dimensionality 2 and each group of consumers corresponding to a
bloc is of size 2. We consider each consumer in each group to have a CES
preference function defined over common goods and non-common goods for that
group. As we add blocs the general equilibrium problem increases by 2 goods
and 2 consumer groups in dimensionality. Our parameter sets involve prefer-
ence weightings which differ between consumers (although not markedly), and

endowments which in aggregate are similar for each group.

We solve the same problem by both a full solution method and the
decomposition method described above. We use Merrill's algorithm for full
solution. We then adapt Merrill's algorithm to the decomposition procedure
by using an artificial layer for both master and subsimplices. The same
initial guess is used in both procedures. The recent method developed by
vander Laan and Talman could also be used and would almost certainly be
quicker for both methods, probably by a common factor approximated by the
range vander Laan and Talman suggest of 3-5. For comparative purposes the
consistent use of Merrilf's algorithm for full and decomposition solution
seems to provide the indications we seek that the potential gains from a
decomposition approach increase as the decomposition structure becomes more

and more evident.
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Table 1 reports execution times as the sequence of economies extends
by the addition of further consumer blocs. Increasingly improved relative
performance by the decomposition procedure is evident as more blocs are added.
We have not exploited the use of differential speeds of grid refinement
between mastér'and.sub-problems'which could yield further computational
gains. Computational costé increase less sharply with the overall problem dimen-
sion with the decomposition method than under full solutiom;, an approximation which
does not seem too far off is that execution times under full solution are
proportional to the third power of the number of blocs while the decomposition
execution time is proportional to the third power of the total number of goods
(which ‘increases more slowly). Comparisons in terms of the number of replacement
operations required are also possible although we have not reported them. While
this experience is only sugéestive and may not hold for other examples, it does
indicate a potential computational gain through exploitation of decomposition

structure.

V. Conclusion
In this paper we present a decomposition procedure for general

equilibrium computation in models where a partition of the commodities into
common and non-common goods is possible. The similarity of the
computational method outlined in this paper to the Dantzig-Wolfe decom-
position algorithm for the solution of linear programming is the ability

to solve a large-scale general equilibrium problem through the separate
solution of a sequence of smaller dimensional problems. Revisions to

the master problem in D;gtzigJWolfe through coefficient generation are
replaced by label generation for vertices on a master simplex.

Initial indications are that differences .in computational cost

between solution by the procedure described and full dimensional
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solution become increasingly significant as the decomposition structure
becomes more pronounced and we report our experience in a comparative table.
We suggest eventual application of this procedure may be possible to
'empirically' oriented large-scéle general equilibrium models of world trade
where the required structure is present. At least two such models incor-
porating traded and non-traded goods [Deardorff and Stern (1979), and
Whalley (1979)] are in current use and others may follow in future develop-

ments.

)
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