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Abstract 

Diffusion-weighted noble gas pulmonary magnetic resonance imaging (MRI) provides in 

vivo images with a contrast uniquely sensitive to molecular displacement at cellular and 

sub-cellular length scales. We estimated the external airway radius (R) and internal airway 

radius (r) of the alveolar dimensions to evaluate potential differences in acinar duct 

morphometries in healthy older never-smokers and compared those with a group of ex-

smokers. The acinar duct and alveolar MRI morphometry results were within the 

physiologically-valid range of parameters. Estimated values of internal (r) and external (R) 

airway radius as well as alveolar sheath (h) and mean linear intercept (Lm) for individual 

subjects were similar with low variance. Results showed that MRI measurements of lung 

air space size in healthy older never-smokers were elevated compared to previous results 

reported in younger never-smokers, and lower than in age-matched ex-smokers (p<.05). 

Specifically, older never-smokers had significantly lower external and internal airway 

radius and mean linear intercept, but higher alveolar sheath thickness, alveolar density and 

surface area-to-volume ratio than ex-smokers (p<.05). Such results are compatible with the 

senile emphysematous changes to healthy parenchyma that accompany aging. These 

results demonstrate the potential MRI has with regards to replacing histology and lung 

stereology as the gold standard for measuring pulmonary acinus microstructure. 
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1 CHAPTER 1: INTRODUCTION 

The senile lung can be characterized by a homogeneous enlargement of the alveolar 

airspaces, without fibrosis or destruction of the alveolar walls. The objective of this chapter 

is to provide an introduction to lung aging and the senile lung, as well as to provide an 

overview of the historical and current techniques employed for measuring lung 

morphometry. 

1.1 Overview and Motivation 

Chronic lower respiratory tract disease is the third leading cause of death in people aged 

65 years and older.1 This disease, comprised of asthma, emphysema, chronic bronchitis, 

bronchiectasis and chronic obstructive pulmonary disease (COPD), is more prevalent now 

than ever before as a result of an ever-growing and aging population.  With respect to 

current demographic trends in North America, an understanding of how the body changes 

with age and how this impacts the respiratory system is critical in order to improve the 

quality of life of individuals as they approach old age. Moreover, this knowledge is 

essential for reducing the potentially overwhelming burden that these respiratory diseases 

place on the currently strained healthcare system.  

As individuals age, a variety of structural and functional changes occur, including, but not 

limited to, a reduction in maximal vital capacity and gas exchange, as well as a weakening 

of the respiratory muscles and a deterioration of lung defense mechanisms.2-6 As 

detrimental as the aforementioned issues may sound however, these age-related changes 

rarely present with symptoms on their own. It is true that these changes contribute to an 

older person's reduced ability to do vigorous exercise, but more often than not, the limiting 

factor for undertaking strenuous activities are age-related decreases in heart function.7,8 

Instead, what is most important when considering the changes associated with lung aging 

is not the reduction in maximal function, but rather the increased risk that these changes 

place on older people that make them more vulnerable to respiratory failure and 

hypoxia.9,10 Specifically, the risk of developing pneumonia after bacterial or viral 

infections and the added complications associated with an already weakening set of lungs. 

The fundamental premise for understanding the effects these changes have on an individual 
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is that they disturb health through their ability to exacerbate the effects of heart and lung 

diseases, and further complicate those caused by various environmental hazards such as 

smoking or pollution.  

Current knowledge of the mechanisms that influence pulmonary structure and function 

with age is very limited. Even more limited is our understanding of the structural changes 

that take place on the microstructural or alveolar level (the primary area for gas exchange 

in the human lung).11 Existing measures of lung morphology are highly invasive, relying 

predominantly on excised tissue or cadaveric samples. These techniques, such as lung 

histology and stereology, depend on extensive user input, and as such are prone to 

subjective bias as a result of opinions on topics such as sample selection or specimen 

preparation techniques.12-14 Most importantly, the established techniques cannot provide in 

vivo, individualized information on the nature of lung aging as it is taking place in the body. 

Currently, the microstructural changes observed in the aging lung are referred to as senile 

emphysema, and is characterized by an enlargement of the alveolar space without fibrosis 

or tissue destruction.3 Unfortunately, there is limited information regarding the nature or 

etiology of these changes, as well as their effect on quality of life. Thus, in order to combat 

the impending pulmonary challenges of an aging population, non-invasive, reproducible, 

and accurate methods for measuring lung microstructure are essential in furthering our 

understanding of pulmonary development and deterioration. 

This thesis focuses on the development and application of a direct, non-invasive 

quantitative measurement of alveolar morphometry derived from hyperpolarized helium-3 

(3He) diffusion-weighted magnetic resonance imaging (MRI) in a group of older never-

smokers. This chapter reviews the literature regarding the anatomy of the human lung and 

the physiological changes which occur with normal aging. Specifically, this section will 

focus on the structural and functional changes that occur in the aging human lung, with an 

emphasis on the nature of senile emphysema as it compares to COPD-related emphysema. 

A survey of current lung morphometric tools is also included, with a look at the current 

gold standard lung stereology, as well as two more novel techniques consisting of high-

resolution X-ray micro-computed tomography (micro-CT) and hyperpolarized 3He 

diffusion MRI. Lastly, an overview of the hypotheses tested in this thesis regarding the 
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nature and etiology of senile emphysema and its connection to COPD-related emphysema 

are described, along with a summary of the overall objectives of this study. 

1.2 The Lung 

1.2.1 Anatomy and Microstructure of the Lung 

The human lungs, consisting of both a left and right lung, are the essential organs for 

respiration. The key role of the lungs is to bring oxygen (O2) into the body, and remove 

carbon dioxide (CO2), the primary waste product. Figure 1-1 depicts an overview of the 

main structures involved in the respiratory system.15 A double layered serous membrane 

surrounds each lung, with the outer layer, parietal pleura, attached to the wall of the thoracic 

cavity, and the inner layer, visceral pleura, covering the outside surface of each lung.16 

Between these two layers is a region called the pleural cavity which creates space for the 

lungs to expand into during inhalation. The entirety of the lungs are enclosed in and 

protected by the rib cage.   The right lung is comprised of three lobes (upper, middle, and 

lower lobe), while the left lung is slightly smaller, having only two lobes (upper and lower 

lobe) with an area designated for the heart known as the cardiac notch.  The horizontal 

fissure separates the upper and middle lobes, while the right oblique fissure separates the 

middle and lower lobes in the right lung. In the left lung, the left oblique fissure separates 

the upper and lower lobes.17 

 
Figure 1-1: The Respiratory System. The biological system responsible for the intake 

and exchange of oxygen (O2) and carbon dioxide (CO2).  
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Air first enters the body when inhaled through the nose or mouth. From here, it travels 

through the pharynx and larynx, where it eventually reaches the trachea. The trachea splits 

into the left and right primary bronchus which feed each lung independently. These bronchi 

can be described as large hollow tubes which are kept rigid by a series of cartilaginous 

rings to prevent collapse and/or blockage of airflow to the lungs. The main bronchi branch 

off into secondary bronchi which feed each lobe, and then into tertiary bronchi within each 

lobe.15 Mucus is secreted onto bronchial surfaces via goblet cells which line the inner 

surface of these bronchi.18 Ciliated columnar cells are also present and function together to 

push mucus secreted by goblet cells out of the lungs. This cooperative mechanism, known 

as the mucociliary elevator, enables the lungs to clear away dust, pathogens, viruses, 

bacteria and fungi from the respiratory tract, trapping the contaminants in mucus which are 

then carried by the cilia to the mouth where it is eventually swallowed or coughed up.2,19 

Numerous small bronchioles branch off from the tertiary bronchi in each lobe. These 

bronchioles differ from the preceding bronchi in part due to their smaller size, but most 

significantly in the composition of their inner walls. These airways lack the stiff hyaline 

cartilage rings found in bronchi, and are instead comprised of elastin fibers and smooth 

muscle tissue.20 These characteristics enable the bronchioles to change their diameter 

significantly in response to biological need, such as dilation during exercise or constriction 

when exposed to environmental pollutants. The bronchioles continues to branch until they 

become what are commonly known as terminal bronchioles which are located beginning 

around the 16th generation (Figure 1-2).20,21 These bronchioles are amongst the smallest in 

the lungs and terminate at the alveoli, signaling the end of what is known as the conducting 

zone of the lung, compromised of the trachea, bronchi and conducting bronchioles. 
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Figure 1-2: Human Airway Tree. Schematic of the human airway tree including the 

conducting and respiratory zones. 

Beginning around the 17th generation are the respiratory bronchioles, named as such due 

to the alveoli which line their walls. Alveoli, the functional units of the lung, appear as 

small hollow cavities, which permit gas exchange between air in the lungs and the blood 

in the local capillaries (Figure 1-3).22,23 Inhaled O2 and exhaled CO2 diffuse between the 
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alveolar space and local capillaries as a result of a steep concentration gradient which is 

maintained by a combination of constant breathing and continuous blood flow in the 

capillaries.24 Three major cell types make up the alveolar wall; Type I squamous alveolar 

cells form the main structure of the alveolar wall, while Type II great alveolar cells secrete 

pulmonary surfactant to aid in inflation of the alveoli, and lastly macrophages which 

function to capture and phagocytize pathogens and other foreign material.25,26 By the 20th 

generation, the entire airway is lined with alveoli, and these bronchioles are now referred 

to as alveolar ducts. These ducts end around the 23rd generation in sacs lined with alveoli 

and are consequently referred to as the alveolar sacs. The lungs contain approximately 300-

500 million alveoli, with a total surface area ranging from 50-100 square meters (roughly 

the same size as an outdoor tennis court).22,27 

 

Figure 1-3: Alveoli and Gas Exchange. Alveolar cellular composition and structure. 

Total surface area available for gas exchange can range from anywhere between 50-100m2. 
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1.2.2 Lung Function 

Efficient ventilation of the lungs relies on the concerted efforts of the diaphragm and both 

the external and internal intercostal muscles. This ventilation depends on the process of 

negative pressure breathing which requires a pressure differential between atmospheric air 

and that inside the alveoli.28 To accomplish this, muscles surrounding the lung expand and 

contract to change the volume of the thoracic cavity. Inhalation (or inspiration) depends on 

the active expansion of the thoracic cavity, in which there is contraction of both the 

diaphragm and external intercostal muscles. These changes effectively lower intrathoracic 

pressure while increasing intraabdominal pressure, ultimately drawing atmospheric air into 

the lungs by raising the rib cage and moving the abdominal contents downwards and 

outwards.20,26 In contrast to inhalation, exhalation is a predominantly passive process, 

relying on the elasticity of pulmonary tissues to reduce the thoracic cavity size and expel 

air from the lungs, with the assistance of the internal intercostal muscles during deep 

exhalation.29 

Total lung capacity (TLC) of a typical adult human is between 4-6 litres, with variations 

depending on the combined effects of height, age, gender, and respiratory health.30,31 

Figure 1-4 shows standard lung volumes resulting from normal and forced respiration. The 

average human respiratory rate is 12-20 breath per minute.32 With each breath, 

approximately 0.5 litres of air is moved into or out of the lungs, referred to as the tidal 

volume, which equates to roughly 6-10 litres of air exchanged per minute.11,32 A resting 

midpoint of the lungs is achieved when the inward elastic force reaches equilibrium with 

the outward force of the thorax. This volume (approximately 2-3 litres in an average young 

adult) is consistent with the functional residual capacity (FRC) of the lungs, and is the 

volume of air present at the end of a normal tidal breath. During forced 

inhalation/exhalation, or what is known as deep breathing, the volume of air exchanged 

with each breath can reach anywhere from 3 to 5 litres, also known as the vital capacity 

(VC) of the lungs.33,34 Regardless of the forcefulness of breathing, there remains at all times 

approximately 1 litre of air in the lungs, referred to as the residual volume (RV).33 
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Figure 1-4: Lung Volumes. Lung volumes of a healthy adult can be measured using 

plethysmography and include vital capacity, tidal volume, expiratory reserve volume, 

residual volume, inspiratory reserve volume, functional residual capacity and total lung 

volume.  

1.3 Lung Aging 

1.3.1 Structural Changes 

The lungs undergo significant and crucial developmental changes over the first two 

decades of life. By the age of 12, the maximal number of alveoli has been reached, and 

over the following decade the respiratory system rapidly approaches optimal functional 

capacity. Unfortunately, after this period of accelerated growth (25 years for males, 20 

years for females), the lungs begin a progressive decline in performance until death.35  The 

major physiological changes that occur in the aging respiratory system may reflect several 

mechanistic/structural changes such as: 1) diminished lung elasticity; 2) increased stiffness 

of the chest wall; 3) a reduction in respiratory muscle strength; and 4) an overall change in 

the shape and structure of the lung.5,36,37  

Specifically, previous work by Knudson et al showed that there was decreased lung 

elasticity with age in a group of never-smokers, aged 25-75.38 The cause of these changes 
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is not well established since the concentrations of elastin and collagen do not change with 

age. Specifically, lung elastin remains relatively stable over time, with a typical longevity 

approaching decades.39 The reduced elastic recoil and diffusing capacity of the lung (a 

measure of the transfer of gas from the lungs to the surrounding blood vessels) is believed 

to be a result of stress relaxation of elastin-fibers as evidenced by an apparent increase in 

thickness along with the appearance of more loosely associated fibers.40 A disruption in 

collagen fibers leading to an increase in intermolecular crosslinks has also been postulated 

to result in diminished elastic recoil; however there is limited and conflicting evidence to 

support this theory at present.41  

Another factor contributing to the deterioration of lung function with age is decreased chest 

wall compliance. As the body ages, the rib cage along with various associated points of 

articulations experience calcification resulting in increased stiffening.3,42 Additionally, 

osteoporosis can also lead to changes in the shape of the thorax, resulting in a phenotype 

commonly known as a “barrel chest”. The changes in chest wall compliance along with the 

kyphotic curvature of the spine with age both contribute to the deformation of the 

diaphragm leading to a reduction in its force-generating capabilities.5,42 The general 

reduction in overall muscle mass, specifically type II fast twitch fibers, as well as a loss of 

peripheral motor neurons and corresponding alterations in neuromuscular junctions also 

contributes to a significant reduction in respiratory muscle strength.43  

With regard to lung development and maturation, the large airways remain relatively stable 

in terms of abundance and diameter. Smaller airways however begin to narrow, and there 

is actually a loss in the number of total airways present in the lung.44  The disappearance 

of smaller airways appears related to a loss of supporting connective tissue which results 

in frequent collapse of weakened alveolar ducts.3 A number of structural changes occur 

within the aging alveoli as well. Studies have shown that the average distance between 

airspace walls increases (Lm, mean linear intercept) and alveolar pores become much 

larger45, while the alveoli themselves become much shallower.3 These changes are also 

associated with an increase in alveolar septal thickness, leading to a uniform pattern of 

airspace dilation and overall reduction in total lung surface area.46  
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1.3.2 Functional Changes 

The underlying structural changes that occur in the aging lung affect all levels of lung 

function, including dynamic flow rates, static lung volumes and alveolar gas exchange 

rates. Most of what is known regarding changes in lung function with age comes from 

cross-sectional studies which rely on pulmonary function tests (PFTs). Our current 

understanding of lung function decline with aging stems from work done by Fletcher et al 

in 1977. This work showed a continuous decline in the forced expiratory volume in 1 

second (FEV1) at a rate of roughly 42 ml/yr beginning between the ages of 25 and 30 

(Figure 1-5).47  Various more recent longitudinal cross-sectional studies have validated 

these findings and shown that the rate of loss is greater in males than in females.42 

Additionally, forced vital capacity (FVC) has been shown to steadily decrease to around 

75% of peak-value. Together with the age-related changes in FEV1, this results in an 

overall decrease in the FEV1/FVC ratio to around 70-75% by the age of 70, as FEV1 

declines more rapidly than FVC.48,49  

 

Figure 1-5: Pulmonary Function Declines in Normal Aging and COPD. Lung function 

declines in COPD hypothesized as an accelerated form of aging. Adapted from work by 

Fletcher & Peto and Ito & Barnes.47,50 

With regards to static lung volumes, the age-dependent reduction in elastic recoil has been 

shown to lead to an increase in RV as a result of gas trapping, by approximately 50% up to 



   11 

 

 

the age of 70.51 The combination of the chest wall becoming less compliant along with 

lungs becoming more distensible has also been shown to increase FRC. This increase in 

residual capacity cause older subjects to breath at higher lung volumes than normal which 

places an additional burden on the respiratory muscles.52 Studies in elderly subjects have 

shown that during resting tidal breathing these changes can result in a 20% increase in 

breathing-related energy expenditure as compared with a 20 year-old subject.42 

Interestingly, TLC does not change significantly with age, as stiffening of the chest wall 

has been shown to counterbalance the decrease of elastic recoil in the lungs.5,53  

The diffusing capacity of the lung has also been shown to decrease markedly with age.54 

Recent studies have shown a decline in the diffusing capacity of the lungs for carbon 

monoxide (DLCO) to values approximately two-thirds of those predicted for otherwise 

healthy young adults.53,54 Several factors are thought to explain this drastic drop in 

diffusing capacity, with the most common theories being a decrease in the efficiency of 

pulmonary ventilation and a loss of alveolar surface area combined with reduced blood 

flow in pulmonary capillaries. Studies have shown however that the density of pulmonary 

capillaries remains unchanged with age, and thus the most significant factor influencing 

this decline appears to be the reduction of alveolar surface area.55,56 

1.3.3 Imaging Studies of the Aging Lung 

Presently, there is limited literature available in the field of pulmonary imaging of older 

never-smokers. The majority of studies have predominantly applied non-invasive imaging 

tools to differentiate ex-smokers with COPD from control groups of older never-smokers. 

These studies aimed to develop a deeper understanding of lung structure and function of 

the diseased lung, while ignoring the unique characteristics and traits of the presumably 

healthy aged lung. A number of reasons may exist for the lack of data in older subjects, 

with one explanation being the added difficulty in working with elderly patients as opposed 

to younger subjects. Specifically, simple positioning of the patient requires more time, and 

often patients need assistance and increased supervision.57 This need for more time and 

staff limits the practicality of research in the elderly. In addition to these constraints, age-

related factors such as poor renal function limit the use of many contrast agents when 

performing computed tomography (CT) or MRI, due to the increased risk of nephrogenic 
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systemic fibrosis.58 Further complicating matters are the presence of contra-indicators such 

as cardiac pace makers or older ferromagnetic surgical material which severely restrict the 

use of imaging techniques such as MRI.57 

When studying the elderly, it is especially important to separate the normal process of aging 

from the presence of disease itself. In some cases, differentiation may not be possible 

without extensive imaging or invasive procedures. Normative structural or functional 

values are sparse or not well described in the literature, with age-related changes in airspace 

size and fibrosis typically described as moderate.  

One example of the ambiguity regarding normal aging and disease is the common finding 

of moderate basal lung fibrosis, which may be due to age-related changes or interstitial 

lung disease.3,57 A differentiation of these findings is important as it can mean the 

difference between a specific treatment and a non-interventional approach as would be the 

case with simple age-related changes. Therefore, close correlation between the 

morphological extent of the fibrotic changes, clinical history, and observation of associated 

changes is essential. Another example of the ambiguity between disease and the normal 

aging occurs in the case of airspace enlargement evident using a number of imaging 

modalities such as CT and noble gas MRI. The finding of senile emphysema is usually not 

accompanied by the clinical findings of COPD-linked emphysema, such as breathlessness 

on exertion, and these difference are further outlined in Chapter 1.3.4. 

A recent study by Copley et al. aimed to describe thin-section pulmonary CT features in a 

group of asymptomatic elderly subjects. Their results showed that there were a large 

number of elderly asymptomatic adults (> 75 years) with centrilobular emphysematous 

changes in CT imaging as compared to a younger control group (< 55 years).59 In the same 

study, interstitial changes of the lung with a sub-pleural reticular pattern was found in 60% 

of the elderly patients, which was completely absent in the younger group.  Additionally, 

25% of the elderly asymptomatic patients showed small cysts. A related study by Lee et al. 

also using thin-section CT showed an increase in air trapping with age, with a significant 

proportion of subjects (50%) being asymptomatic.60 
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More recently, a study by Sheikh et al. looked to utilize noble gas MRI to better understand 

the determinants and physiological consequences of ventilation defects in older never-

smokers. To do so, they evaluated pulmonary function and cardiopulmonary exercise test 

measurements (CPET) in a group of 52 older-never smokers (mean age 71 years). This 

study represents the first large imaging study of healthy older never-smokers without a 

history of chronic heart or lung disease. Interestingly, the study found that while a minority 

of subjects reported occupational exposures, most subjects had visually obvious ventilation 

defects that were not resolved following administration of salbutamol.61 The ventilation 

defects were modest (~5%) and predominantly observed along the periphery of the lung 

suggesting that terminal airway closure or narrowing may be a normal age-related 

pulmonary finding. Additionally, there were no differences in CPET or dyspnea 

measurements between subjects with and without ventilation defects, supporting the notion 

that cardiovascular, and not respiratory factors, dominate exercise limitations.8 From these 

findings, it is evident that there are physiological changes occurring in the aging lung that 

are poorly understood, and as such would benefit from a more thorough evaluation of 

pulmonary microstructure. 

1.3.4 Senile Emphysema and COPD-related Emphysema 

The senile lung can be characterized by a homogeneous enlargement of the alveolar 

airspaces, without fibrosis or destruction of the alveolar walls. Morphometric studies have 

shown that in subjects with senile emphysema, there is an increase in the mean linear 

intercept as well as a decrease in the surface area of airspace wall per unit of lung volume 

(S/V) as shown in Figure 1-6.46,52 Classical studies of the age-associated changes in lung 

structure in 1958 found that these changes only became clinically demonstrable after the 

age of 80 and were predominantly associated with women.62 A more recent study by 

Gillooly and Lamb in 1993 however, found evidence of increased airspace enlargement 

with age in all subjects.63 Additionally, there is homogeneous degeneration of the elastic 

fibers around the alveolar duct starting around the age of 50, as well as reduction in 

supporting tissue which results in premature closure of small airways during normal 

breathing and can potentially cause air trapping and hyperinflation.9,63 
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Figure 1-6: Histopathology in Masson Trichrome Stained Human Lung Parenchyma 

Showing Alveolar Space. Normal lung tissue with Lm=0.279mm (left) and senile lung with 

Lm=0.532mm (right) at 6x magnification. Adapted with permission.3 

The term senile emphysema is often considered to be a misnomer, as subjects do not 

express the symptoms of clinical emphysema, and hence this condition is more correctly 

referred to as senile lung. Importantly, subjects with senile lung appear to have sufficient 

lung function for their normal day-to-day activities.62  These changes do however increase 

the risk of breathlessness and respiratory failure in the elderly when compromised, and 

further complicate health when combined with cardiac impairment or respiratory 

infection.9,10,64 Specifically, these age-dependent structural and functional changes can 

reduce sensitivity of the respiratory centres in the presence of hypoxia or hypercapnia, 

resulting in a diminished ventilatory response in cases of heart failure or aggravated 

airways obstruction.5,10,65 

In contrast to the senile lung, emphysema, as first described by Laennec in 1834, is 

characterized by the dilation and destruction of lung tissue in regions following the terminal 

bronchioles.66  In emphysema, the alveoli become deformed, changing into large irregular 

pockets with reduced surface area for gas exchange with the pulmonary capillaries.67 Two 

common forms of emphysema are frequently described in smokers. The first, and most 

typical form, is called centrilobular emphysema, which is defined by an uneven pattern of 

tissue destruction predominantly in the upper lobes.68-70 The second form is known as 

panlobular emphysema, and is conversely defined by a more homogeneous pattern that is 

more closely related to genetic disorders as opposed to smoking history or environmental 

exposures.69,70 COPD-related emphysema is typically quantified and diagnosed using CT 
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measures of attenuation. Specifically, this technique uses a cut-off threshold of -950 

Hounsfield units for separating emphysematous tissue from normal healthy tissue.71,72  

It is important to note that current guidelines for COPD based on the Global Initiative for 

Obstructive Lung Disease (GOLD) lists a post-bronchodilator FEV1/FVC < 70% as the 

threshold for diagnosis of airflow obstruction. The classical epidemiologic studies of 

Fletcher and Peto demonstrated that death and disability from COPD were related to an 

accelerated decline in lung function with time, with a loss of 50 to 100 mL in FEV1 per 

year, but even in healthy volunteers there is a loss of 20 mL per year with aging resulting 

in the aforementioned drop in FEV1/FVC to around 70-75% by the age of 70 (Figure 1-

5).50 In this sense, many subjects will be classified as having airways obstruction by the 

age of 70 simply as a result of the normal aging process. 

Although the changes associated with senile emphysema are histologically different from 

COPD related emphysema, they result in similar changes in lung compliance and function. 

A consequence of the reduction in supporting tissues around the airways is a tendency for 

the smaller airways to collapse. As a result, premature closure of these airways (<2mm) 

becomes common during normal tidal breathing. Furthermore, the flattening of the internal 

surface of the alveoli is associated with a reduction in alveolar surface (75 m2 at age 30 yrs 

and 60 m2 at age 70 yrs, ~ -0.27 m2/yr).5,42 To date, a number of advanced techniques have 

been developed and implemented to better measure and visualize pulmonary 

microstructure. These techniques, which are detailed in the following section, provide an 

opportunity to better understand the unique changes in alveolar microstructure which occur 

in the aging lung. 

1.4 Techniques for Measuring Lung Morphometry 

1.4.1 Lung Stereology 

Stereology, the gold standard technique for measuring lung morphometry, is the 

quantitative characterization of three-dimensional (3D) objects based on measurements 

made from two-dimensional (2D) cross-sections.73 One of the defining characteristics of 

this technique is that it does not depend on any assumptions regarding the shape, size, 

orientation, or spatial distribution of the object being studied. The technique is founded on 
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the principles of stochastic geometry and relies on sampling structures with geometric 

probes.74,75 The first implementation of these principles occurred in 1843 by mining 

geologist Delesse who developed a stereological technique to determine volume fraction 

from area fraction on sections.  

Stereology consists of two important stages: sampling and measurement. With regards to 

sampling, unbiased techniques must be applied at all levels of the analysis. Randomization 

of both orientation and location of each specimen is also imperative for accurate and precise 

measurements. The measurements at the final level of sampling are performed using 

geometric probes as described in Table 1-1. The basic rule is that the dimension of the 

parameter of interest plus the dimension of the geometric probe used for measurement has 

to sum to three or greater, according to the values assigned in Table 1-1.73 

Table 1-1: Relationship of Structural Quantities and Stereological Properties 

Parameter 

Appearance 

in 2D Space Probe Event Measurement 

Density 

Estimate 

Volume, 

𝑽𝒗 (3) 
Area (2) 

Point, PT 

(0) 

Point lies in 

volume 

Point count, 

P(x) 

𝑉𝑣(𝑥)

= 𝑃(𝑥) 𝑃𝑇⁄  

Surface 

Area, 𝑺𝒗 

(2) 

Boundary (1) 
Line, 𝐿𝑇 

(1) 

Line 

intersects 

surface 

Intersection 

count, I(x) 

𝑆𝑣(𝑥)
= 2 ∙ 𝐼(𝑥) 𝐿𝑇⁄  

Length, 𝑳𝒗 

(1) 
Point (0) 

Plane, 

𝐴𝑇 (2) 

Plane 

transects 

line 

Transect 

count, Q(x) 

𝐿𝑣(𝑥)

= 2 ∙ 𝑄(𝑥) 𝐴𝑇⁄  

Number, 

𝑵𝒗 (0) 
- 

Volume, 

𝑃𝑇−𝑡 (3) 

Dissector 

volume 

'hits' 

particle top 

Top count, Q-

(x) 

𝑁𝑣(𝑥)

= 𝑄−(𝑥) 𝑃𝑇−𝑡⁄  

Stereology has seen use in a broad array of disciplines, from geology (i.e. measuring the 

fraction of quartz in a rock sample) to medical science (i.e. estimating the total length of 

capillaries per unit volume of tissue and measuring alveolar density of pulmonary tissue). 

In fact, the adage that the human lungs have a surface area equivalent to that of an average 
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tennis court was first derived using stereological methods. Datasets for lung stereology are 

typically acquired using light or electron microscopy, but can also be collected using other 

imaging modalities such as immune-electron microscopy,76 micro-computer tomography77 

and scanning laser optical tomography.78  

Both the American Thoracic Society  (ATS) and the European Respiratory Society (ERS) 

have defined standards for quantitative assessment of lung morphometry using 

stereological techniques.79 Of particular note however, is the use of stereological 

techniques to measure and assess various forms of pulmonary disease. Emphysema has 

routinely been studied using stereological techniques such as those shown in Figure 1-7, 

however most work has ignored the effects of septal destruction, and looked solely at 

airspace enlargement.80 Typically this omission is due to the ease in which stereological 

parameters for airspace enlargement can be acquired. Generally, mean linear intercept (Lm), 

or mean linear chord length, is used to measure and asses changes in alveolar space. 

Unfortunately, these parameters can be influenced by various factors such as inflation 

pressure during fixation and tissue shrinkage after excision. Many morphometric 

parameters can be easily misinterpreted or skewed if sample preparation is not highly 

controlled.81 Loss of elastic recoil, a common physiological change in emphysematous and 

aging lungs, can further complicate the measurement of airspace size as inflation pressure 

will have a greater effect on alveolar expansion during specimen fixation. This 

complication can lead to erroneous evidence of emphysema, even in the absence of disease, 

as any reduction in the elastic properties of the lung may result in increased airspace 

volume.82 Besides the aforementioned inflation related difficulties, serial sectioning of 

multiple thin slices from tissue specimen is slow, expensive, and can distort the 

microanatomy. These problems are further exaggerated by fixation techniques which have 

the potential to alter lung tissue, and denature proteins such as collagen and elastin prior to 

analysis. 
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Figure 1-7: Quantitative Assessment of Morphometric Parameters in Emphysema. 

A) combined estimation of alveolar luminal (A), ductal airspace (D), and septal (S) volume 

as well as alveolar septal surface area; B) point-sampled intercepts method; C & D) 

estimation of the Euler number. Adapted with permission.82 

1.4.2 High-resolution X-ray Micro-computed Tomography 

Since its introduction in the 1970’s, x-ray CT has rapidly become the gold standard imaging 

tool for evaluating pulmonary microstructure. This technique offers the possibility of 

studying lung microstructure on the basis of the inherent contrast offered by the radio-

density differences of tissue structures to air. Briefly, x-ray CT collects a series of image 

slices compromised of a matrix of pixels (voxels), which are then assigned a specific value 

(Hounsfield unit; HU) based on the x-ray attenuation signal as compared to that of 

water.83,84 Studies of COPD subjects with emphysema agree with histological 

measurements, presenting evidence of increased airway wall area dimensions85-87 as well 

as increased percentage of low attenuation areas.88,89 Unfortunately, due to the limitation 
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of standard clinical CT scanners, the smaller airways (<2mm) cannot be resolved. This 

limitation is quite significant as the small airways are the major site of airflow obstruction 

in COPD. As such, the applicability of standard CT for measuring alveolar microstructure 

is quite limited.71 

Micro–computed tomography (micro-CT) has rapidly emerged as an imaging technique 

with the potential to measure lung microstructure on length scales much smaller than 

previously possible with clinical CT scanners. Depending on the x-ray source, focus size, 

voltage, sample volume, geometric magnification of the optical system, and resolution of 

the charge-coupled device camera, a spatial resolution of 1-2 μm may be obtained.90,91 This 

technology consequently offers the ability to analyze acinar morphometry without the need 

for physical segmenting, thus maintaining an undamaged, 3D structure.92  

Recent work by Tsuda et al. and Schittny et al. in 2008 demonstrated the potential of micro-

CT to measure alveolar septa in rats93,94, while its ability to visualize and quantify lung 

morphometry has also been demonstrated in both mouse95 and pig models.96 A number of 

studies have also recently assessed the practicality of this technique using cadaveric human 

lung specimens; however, most are conducted with a minimal sample size and/or the 

omission of any quantitative analysis (Figure 1-8).97,98 

  
Figure 1-8: Micro-CT of Human Lung Parenchyma. Normal lung parenchyma (left), 

and centrilobular emphysema (right) showing enlarged alveoli and absent alveolar septa. 

Field of view is 4mm. Adapted with permission.97 
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With micro-CT imaging, acquiring a complete digital data set of a human lung specimen 

is now possible. As a non-destructive approach, micro-CT allows analysis of acinar 

characteristics such as volume, branching, branch length, and surface, over the entire area 

of interest. Unfortunately, due to the long exposure time and high dose associated with this 

technique, scanning living organisms is difficult, if not altogether impossible, limiting this 

modality to use in either ex vivo or small animal model studies. When used to study human 

lungs, the required radiation dose can only be safely applied to isolated lung samples, while 

the cost of the procedure itself limits its use to only a small number of total specimens. 

Various inflation and fixation techniques also introduce a variety of error and/or subjective 

biases when using this technique.98 Furthermore, when stretching the limits of the system, 

it can become difficult to determine whether airways with diameters smaller than the 

achievable resolution are in fact non-existent or simply too narrow to detect via CT.99 These 

barriers make micro-CT a highly invasive imaging modality that is unable to capture 

longitudinal in vivo measurements of the aging lung.  

1.5 Measuring Lung Morphometry with MRI 

1.5.1 Magnetic Resonance Imaging 

MRI relies on the magnetic properties of specific nuclei (most commonly hydrogen 

protons) in order to create structural or functional images. When these nuclei are placed in 

a magnetic field and stimulated by radio waves of a particular frequency, they emit radio 

signals, which can then be used to create an image. Although MRI has a number of 

advantages over CT, specifically a lack of ionizing radiation and increased soft tissue 

contrast, the lungs pose a number of unique difficulties for this technique. Since healthy 

lungs are comprised of 70% air, there is an especially low hydrogen density, making it 

extremely difficult to acquire any information using conventional proton MRI.100,101 In 

addition to this limitation, cardiac and respiratory motion, as well as artifacts resulting from 

countless air/tissue interfaces hamper the ability of proton MRI to provide novel visual or 

functional information.102 Acquiring images under specific breath-hold conditions can help 

mitigate some of these motion artifacts, however they put severe constraints on image 

acquisition duration. New proton-based imaging techniques have been designed to help 

navigate many of these imaging obstacles. One such technique is ultra-short echo time 
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(UTE) MRI, which limits signal loss in lung parenchyma due to the exceedingly short 

apparent transverse relaxation time (T2*).103,104 By utilizing faster pulse sequences that 

employ shorter echo times (TE), MR images can be acquired with diagnostic quality 

comparable to that of CT.105 

1.5.2 Hyperpolarized Noble Gas MRI 

Hyperpolarized noble gas MR techniques have been studied for the past two decades, and 

were first developed in 1994 by Albert et al.106 This technique relies on the use of either 

hyperpolarized 3He or 129Xe gas as a contrast agent for functional MR imaging of the lung. 

3He, with a gyromagnetic ratio of 32.4MHz/T, has long been the contrast agent of choice, 

with the potential to provide significant signal intensity after sufficient polarization.  

In recent years, 3He MRI has been used to study both pulmonary structure and function in 

a variety of diseases such as COPD107-109, asthma110-112, cystic fibrosis113-115 and lung 

cancer116. The technique primarily focuses on two major measurements, ventilation defect 

percent (VDP)61,117 and apparent diffusion coefficient (ADC).118-121 In particular, ADC 

measures helium diffusivity in the lungs due to Brownian motion, with alveoli representing 

the elementary geometrical unit. The first demonstration of diffusion spectroscopy was 

performed in 1965 by Stejskal and Tanner.122 They showed that in the presence of two 

opposite-polarity gradient pulses, nuclear spins suffer a net phase shift that is proportional 

to their displacement during the length of the applied pulse plus lobe separation (diffusion 

time), resulting in a decreased signal amplitude. In the case of free (Gaussian) diffusion 

(D0), the MR signal decays according to equation (1): 

 𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑆𝑖𝑔𝑛𝑎𝑙0exp⁡(−𝑏⁡𝐷0), (1) 

where Signal0 is the MR signal intensity in the absence of diffusion-sensitizing gradients. 

In the presence of internal barriers, such as alveolar walls within the lung, diffusive motion 

of the gas is restricted and the MR signal decay is described in terms of the ADC as in 

equation (2): 

 𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑆𝑖𝑔𝑛𝑎𝑙0exp⁡(−𝑏⁡𝐴𝐷𝐶) (2) 
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Unlike the free diffusion scenario, the ADC for restricted diffusion depends on a 

combination of molecular properties of the gas, tissue structure and shape of the gradient 

waveform. The b value is proportional to the gyromagnetic ratio of the gas (𝛾), gradient 

lobe amplitude (𝐺𝑚), ramp up/down time (𝜏), duration of the lobe (𝛿), and the diffusion 

time (Δ) according to equation (3)123,124: 

 𝑏 = (𝛾𝐺𝑚)
2 [𝛿2 (Δ −

𝛿

3
) + 𝜏 (𝛿2 − 2Δ𝛿 + Δ𝜏 −

7

6
𝛿𝜏 +

8

15
𝜏2)] (3) 

Studies using this technique have shown that as the lungs age, structural changes occur and 

result in an annual increase in the ADC of 0.0015cm2/s for subjects between 20 and 70 

years of age from a baseline ADC of 0.20cm2/s in healthy young adults.125,126 The 3He 

ADC technique has also been shown to be highly reproducible127-129, with a significant 

correlation with both CT measurements of emphysema111,130,131 and histological 

measurements of airspace size.132 Studies of asymptomatic smokers without COPD have 

shown elevated ADC measurements, suggesting that the 3He MR technique may provide a 

sensitive measure of lung tissue destruction before the onset of clinically detectable 

symptoms.131,133 Recent studies have developed this technique even further, collecting 

multiple diffusion weighted images in order to measure geometric parameters 

(morphometry) within the alveolar space itself.134-140 

The 3He MR morphometry technique relies on previous work by Weibel and Haefeli-

Bleuer who describe the structure of acinar airways as branching trees.141,142 In this model, 

the airway tree begins at the trachea, and proceeds through the bronchi and bronchioles to 

the terminal bronchioles which feed each acinus. Gas ventilation in the conducting airways 

occurs predominantly by bulk flow (convection), whereas diffusion is the primary 

mechanism of ventilation beyond the terminal bronchioles in the acinus.20 The acinus is 

commonly defined as the largest airway unit in which all airways participate in gas 

exchange, and represents the complex of all airways distal to the terminal bronchiole, 

beginning with the primary respiratory bronchioles. A number of studies have adapted and 

simplified the Weibel model. This adapted model, known as the ‘cylinder model’, is 

commonly used in the 3He MR morphometry technique, and describes the airways within 
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the acinus as cylinders covered by alveolar sleeves, due to the high concentration of alveoli 

decorating the walls of these airways (Figure 1-9).134,142-145 

 

Figure 1-9: Schematic Structure of Two Levels of Acinar Airways. Geometrically, 

each acinar airway can be considered a cylindrical tube surrounded by an alveolar sleeve. 

DT, transverse diffusion; DL, longitudinal diffusion; L, alveolar length; R, external airway 

radius; r, internal airway radius; h, alveolar sheath. 

The technique for measuring alveolar microstructure was pioneered by Yablonskiy and 

Sustanskii which considers airways, as opposed to alveoli, as the elementary geometrical 

units.134 Diffusion within the airways is anisotropic (direction-dependent), resulting in 

diffusion rates along and across terminal airways to be independently determined by 

equation (4)146: 

 𝐴𝐷𝐶(𝛼) = (𝐷𝐿 cos
2 𝛼 + 𝐷𝑇 cos

2 𝛼), (4) 

where α is the angle the principal axis is tilted from the field gradient direction, DL is the 

longitudinal diffusion coefficient, and DT the transverse diffusion coefficient. This angle, 

α, is crucial as impediments along the airway (longitudinally) are much smaller than those 

across (transverse). The alveolar walls, ducts, and other branches of the airway tree act as 

obstacles to the diffusing helium 3He atoms. However, with a spatial resolution in the 

millimetres currently achievable with 3He MRI, each imaging voxel contains hundreds of 



   24 

 

 

airways of various orientations. Thus, with these limitations, the model assumes that acinar 

airways are isotropically distributed over a given imaging voxel, and consequently 

microscopically anisotropic but macroscopically nearly-isotropic.  

For each airway, the signal attenuation is exponential with respect to the b-value. Due to 

the dependence of ADC on orientation angle however, the signal decay becomes non-

exponential when summing the signal from all airways within a given voxel. Sustanskii 

and Yablonskiy compare this mathematical problem to that of water diffusion in randomly 

oriented uniaxial layers as described by Callaghan in 1991.146 The large number of airways 

within each voxel allows the orientation distribution function to be assumed uniform, with 

signal described by equation (5): 

 𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑆𝑖𝑔𝑛𝑎𝑙0 exp(−𝑏𝐷̅) (
𝜋

4𝑏𝐷𝑎𝑛
)

1
2⁄

exp (
𝑏𝐷𝑎𝑛

3
)𝛷 [(𝑏𝐷𝑎𝑛)

1
2⁄ ] (5) 

where Φ(x) is the error function, and the quantities 𝐷̅ (mean ADC) and 𝐷𝑎𝑛 (anisotropy of 

ADC) are described by equations (6) and (7) based on geometrical the characteristics of 

acinar airways147: 

 𝐷̅ = ⁡
1

3
𝐷𝐿 +

2

3
𝐷𝑇 (6) 

 𝐷𝑎𝑛 = 𝐷𝐿 − 𝐷𝑇 (7) 

It is important to note that when using this technique to measure pulmonary microstructure, 

the diffusion time must be selected such that the root mean squared diffusion in one 

direction is larger than the average alveolar radius, but smaller than the mean length of a 

typical alveolar duct. In doing so, gas atoms are expected to diffuse away from their 

originating alveoli, yet remain in the same alveolar duct during the duration of the diffusion 

sensitizing gradient.140 This constraint recognizes acinar airways, including respiratory 

broncheoli, alveolar ducts and alveolar sacs, as the elementary geometrical units 

contributing to the gas diffusion MR signal. Under these conditions, larger conducting 

bronchioles play little role in the diffusion MR signal formation. Equation (5) assumes that 

all airways in a given voxel have the same geometric parameters and diffusion coefficients. 
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As such, in order to minimize the number of parameters, the model assumes that the DL 

and DT for each voxel already represent averaged values.  

A detailed description of the 3He MR morphometry procedure is shown in Figure 1-10. 

Briefly, the technique relies on fitting equations (5), (6), and (7) to multiple b-value 

measurements of the 3He diffusion-attenuated MR signal which in turn make it possible to 

evaluate mean geometrical parameters using a number of phenomenological expressions 

previously derived through Monte Carlo simulations.147,148 These equations connect 𝐷𝐿 and 

𝐷𝑇 ⁡to the characteristic diffusion length in one dimension (L1) of 3He in the lungs, as well 

as morphometry parameters of external airway radius (R) and internal airway radius (r) as 

described in figure 1-9 and equations (8)-(10). 

 
𝐿1 = (2𝐷0∆)

1 2⁄  
(8) 

 
𝐷𝐿

𝐷0
= 𝐹𝐿 (𝑏𝐷0,

𝑟

𝑅
,
𝑅

𝐿1
) (9) 

 𝐷𝑇

𝐷0
= 𝐹𝑇 (𝑏𝐷0,

𝑟

𝑅
,
𝑅

𝐿1
) 

(10) 

From these values, other physiological parameters can be calculated using equations (11)-

(14) from Yablonskiy et al.135: 

 𝐿 = 2𝑅 sin
𝜋

8
 (11) 

 𝑆
𝑉⁄ =

2𝜋𝑅 · 𝐿 + 2𝜋 · (𝑅2 − 𝑟2) + 16(𝑅 − 𝑟) · 𝐿

𝜋𝑅2𝐿
, (12) 

 𝐿𝑚 = 4 · 𝑉 𝑆⁄  (13) 

 𝑁𝑎 = 1 (𝜋𝑅2𝐿)⁄  (14) 

where L is alveolar length, 𝑆 𝑉⁄  is the surface area (S)-to-volume (V) ratio of the alveoli, 

Lm is the mean linear intercept, 𝑉 𝑆⁄  is the volume (V)-to-surface area (S) ratio, and Na is 

alveolar density. Previous studies have shown a close agreement between alveolar 
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parameters obtained using the 3He MRI lung morphometry technique and those 

measurements found by direct histological analysis.134,135,139  

 

Figure 1-10: Process Diagram for Deriving Physiological Parameters from 3He 

Diffusion-weighted MRI. All threshold and fitting procedures were performed using a 

custom-built IDL 6.4 algorithm. b0, non-diffusion-weighted image;⁡𝐷̅, mean diffusion 

coefficient; 𝐷𝑎𝑛, anisotropic diffusion coefficient; 𝐷𝐿, longitudinal diffusion coefficient; 

⁡𝐷𝑇, transverse diffusion coefficient; R, external airway radius; r, internal airway radius; h, 

alveolar sheath; L, alveolar length; S/V, surface area-to-volume ratio; Lm, mean linear 

intercept; Na, alveolar density 

1.6 Research Hypothesis and Objectives 

The hypothesis that we test in this thesis is that older never-smokers will have a 

significantly increased external airway radius (R) and mean linear intercept (Lm), as well 
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as decreased alveolar sheaths (h) similar to ex-smokers with mild COPD. The primary 

objective of this thesis was to generate and evaluate 3He MR morphometry measurements 

in a group of older never-smokers in order to build upon previous hyperpolarized noble gas 

lung imaging studies of the senile lung.  The aim was to develop and apply a non-invasive 

method for measuring lung morphometry in a group of older-never smokers. By applying 

the 3He diffusion weighted technique, I acquired estimates of alveolar airspace dimensions 

and compared those to values calculated for a comparator group of ex-smokers. Previous 

studies observed that there were mild peripheral ventilation defects in a large number of 

older never-smokers. However, these defects did not contribute to decreased exercise 

capacity or dyspnea. The current study aims to take a closer look at alveolar microstructure 

and assess the structural and functional changes that occur in normal lung aging and 

determine their relationship with standard pulmonary function measurements.  

The last chapter of this thesis will provide an overview and summary of the important 

findings and conclusions of Chapter 2. The study specific limitations as well as general 

limitations of the use of hyperpolarized gas MRI will be discussed in addition to the 

potential alternatives or solutions to these issues. Finally, based on the findings and 

limitations discussed, a roadmap for future hyperpolarized noble gas MRI studies for use 

in assessing alveolar microstructure will be addressed. 
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2 CHAPTER 2: MULTIPLE B VALUE 3HE MRI OF 

OLDER NEVER SMOKERS 

To better understand the senile lung and the morphometric changes that occur with age, 

here we evaluated a group of older never-smokers as well as a small group of ex-smokers 

using hyperpolarized 3He diffusion weighted MRI to provide quantitative measurements of 

lung morphometry. 

2.1 Introduction 

Senile emphysema is characterized by distal airway enlargement without obvious fibrosis 

or alveolar wall destruction.1  Other structural components of senile lung include the loss 

of elastic fibers, thickening of alveolar walls1, and diminished pulmonary elastic recoil.2-4  

In concert with the pathological changes that accompany aging, increased residual volume 

(RV), functional residual capacity (FRC) 5, and decreased diffusing capacity of carbon 

monoxide (DLCO) 5, forced expiratory volume in 1 sec (FEV1), and forced vital capacity 

(FVC) 6 are also observed.  

Senile emphysema is often considered to be a misnomer, as subjects do not express the 

same clinical symptoms of emphysema, and this condition is more appropriately referred 

to as the senile lung. 7 Specifically, emphysema as found in chronic obstructive pulmonary 

disease (COPD) is differentiated structurally from senile lung by the deformation of alveoli 

as a result of fibrosis and tissue destruction, resulting in reduced surface area for gas 

exchange.8 Importantly, subjects with senile lung appear to have sufficient lung function 

for their normal day-to-day activities.9  These changes do however increase the risk of 

breathlessness and respiratory failure in the elderly when compromised, and further 

complicate health when combined with cardiac impairment or respiratory infection.10-12 

Specifically, these age-dependent structural and functional changes can reduce sensitivity 

of the respiratory centres in the presence of hypoxia or hypercapnia, resulting in a 

diminished ventilatory response in cases of heart failure or aggravated airways 

obstruction.5,10,13 
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Although the changes associated with senile emphysema are histologically different from 

COPD- related emphysema, they result in similar changes in lung compliance and function. 

A consequence of the reduction in supporting tissues around the airways is a tendency for 

the smaller airways to collapse. As a result, premature closure of these airways (<2mm) 

becomes common during normal tidal breathing.  

Hyperpolarized inhaled noble gas magnetic resonance imaging (MRI) provides non-

invasive measurements of lung function and structure 14-19 showing those regions of the 

lung that participate in ventilation and those that do not.19,20 In addition, the MRI apparent 

diffusion coefficient (ADC) for an inhaled gas is sensitive to changes in the lung 

microstructure and airspace size correlating well with age 17, spirometry 21, DLCO 22, and 

x-ray computed tomography (CT) measurements of emphysema 23.  Previous studies have 

shown a close agreement between alveolar parameters obtained using the 3He MRI lung 

morphometry technique and those found by direct histological analysis.24 Many of these 

studies have shown a close link between elevated alveolar sheath dimensions and mean 

linear intercept with pulmonary function measurements, in mild to severe cases of 

COPD.24-26 As such, we hypothesize that older never-smokers will have a significantly 

increased external airway radius (R) and mean linear intercept (Lm), as well as a decreased 

alveolar sheath (h) as compared to younger never-smokers, that is similar to ex-smokers 

with mild-to-moderate COPD. 

2.2 Methods 

2.2.1 Study Subjects and Design 

Participants provided written informed consent to the study protocol approved by the local 

research ethics board and Health Canada. An older never-smoker group of subjects (60-90 

years of age) with ≤ 0.5 pack year smoking history and without acute or chronic respiratory 

disease, as well as a comparator ex-smoker group, were evaluated using spirometry, 

plethysmography, hyperpolarized 3He MRI and CT during a single visit.  
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2.2.2 Pulmonary Function Measures 

Spirometry was performed to acquire the forced expiratory volume in one second (FEV1), 

forced vital capacity (FVC), and FEV1/FVC according to American Thoracic Society 

(ATS) guidelines (MedGraphics Corporation, St. Paul, Minnesota, USA).27 Body 

plethysmography was performed for the measurement of lung volumes, and DLCO was 

measured using the gas analyzer (MedGraphics, St. Paul, MN). 

2.2.3 Image Acquisition Parameters 

MRI was performed on a whole body 3T MRI system (MR750 Discovery, GEHC, 

Milwaukee, WI) with broadband imaging capability. All 3He MRI employed a whole body 

gradient set with maximum gradient amplitude of 4.8 G/cm and a single-channel, rigid 

elliptical transmit/receive chest coil (RAPID Biomedical GmbH, Wuerzburg, Germany). 

The basis frequency of the coil was 97.3 MHz and excitation power was 2 kW using an 

AMT 3T90 RF power amplifier (GEHC). Subjects were positioned supine in the scanner 

and for both 1H and 3He MRI, subjects were instructed by a pulmonary function 

technologist to inhale a gas mixture from functional residual capacity (FRC), and image 

acquisition was performed under breath-hold conditions.  Proton MRI and 3He static 

ventilation images were acquired as previously described.18  The data for in vivo lung 

morphometry were acquired using a multi-slice 2D gradient echo diffusion weighted 

sequence with a matrix size of 128x80, for each of seven 30mm coronal slices (flip angle 

θ = 4°, TE = 1.2 ms, TR=4.7 ms, b= 0, 1.6, 3.2, 4.8, 6.4 s/cm2); the diffusion-sensitization 

gradient pulse ramp up/down time = 500 μs with a diffusion time = 1460 μs and no gap 

between lobes. All five interleaved sets of images were acquired during a single breath-

hold.   

Thoracic CT was acquired on a 64-slice Lightspeed VCT scanner (GEHC) (64 × 0.625 

mm, 120 kVp, 100 effective mA, tube rotation time of 500 msec, and a pitch of 1.0). A 

single spiral acquisition of the entire lung was acquired from the apex to the base with 

subjects in the supine position and in breath-hold after inhalation of a 1.0 L 4He/N2 mixture 

from FRC. Images were reconstructed using a slice thickness of 1.25 mm with a standard 

convolution kernel. The total effective dose for an average adult was 1.8 mSv. 
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2.2.4 Image Analysis 

Ventilation defect percent (VDP) measurements were generated by one observer using 

semi-automated segmentation software as previously described.28 3He MRI ADC analysis 

was performed using MATLAB R2013b (MathWorks, Natick, MA). To ensure that ADC 

was generated for voxels corresponding to ventilated lung regions, a k-means clustering 

algorithm, developed previously for 3He MRI segmentation28, was applied to the 

nondiffusion-weighted images (b= 0 s/cm2)  to obtain a binary mask for each slice. The 

resulting binary masks were then applied to the corresponding diffusion-weighted images 

(b= 1.6 s/cm2), and the ADC maps were generated on a voxel-by-voxel basis. The relative 

area of the CT density histogram with attenuation values less than −950 Hounsfield units 

(RA950) was determined using Pulmonary Workstation 2.0 (VIDA Diagnostics Inc., 

Coralville, IA). A CT density threshold for emphysema of RA950 greater than 6.8% was 

used based on a previous study that reported this value as the upper 95% limit of predicted 

normal values.29 

2.2.5 Lung Morphometry Calculation 

As previously described30, external (R) and internal (r) airway radius parametric maps were 

computed from diffusion-weighted data on a pixel-by-pixel basis using a custom-built IDL 

6.4 algorithm which searched for the global minimum to determine longitudinal (𝐷𝐿) and 

transverse (𝐷𝑇) diffusion coefficients from mean (𝐷̅) and anisotropic (𝐷𝑎𝑛)  diffusion 

coefficients. To extract diffusion coefficients, the conditions 𝑏𝑚𝑎𝑥𝐷𝑎𝑛>1 and 𝑏𝑚𝑎𝑥𝐷𝑇 > 1 

must be met, where 𝑏𝑚𝑎𝑥 is the maximum b-value in the experiment. These constraints 

define the minimal gradient strength necessary for extracting the diffusion coefficients DL 

and DT from the multiple b-value MR experiments, while maintaining a constant diffusion 

time for each b-value acquisition.31 The free diffusion coefficient of 3He gas in lung 

airspaces (D0) was determined to be concentration-independent and assumed to be 0.84 

cm2/s. All morphometry modelling was performed within the physiological range of 

r/R>0.4. Estimates of alveolar density (𝑁𝑎), surface area-to-volume ratio (S/V) and mean 

linear intercept (𝐿𝑚) were also generated as previously described.24 
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2.2.6 Statistical Analysis 

Measurement comparisons were performed using a Wilcoxon matched-pairs two-tailed t-

test using IBM SPSS Statistics 20.00 (SPSS, Chicago, IL). Multiple comparisons were 

evaluated using the Kruskal-Wallis test with Dunn’s correction while relationships 

between morphometry and spirometry measurements were evaluated using linear 

regression (R2) analysis (least squares method) performed using GraphPad Prism 4.01 

(GraphPad Software, La Jolla, CA; 2004); best fit lines and the corresponding 95% 

confidence intervals were determined. Results were considered statistically significant 

when the probability of making a Type I error was less than 5% (p < 0.05). 

2.3 Results 

2.3.1 Subject Demographics and Pulmonary Function Measurements 

Forty-two older never-smokers (73±6yrs, 19 males) and a comparator group consisting of 

25 age-matched ex-smokers (71±10yrs, 18 males) were enrolled in the study. Table 2-1 

shows subject demographics as well as pulmonary function test results for all subjects. 

Significant differences were observed between the two groups for FEV1 (p=.001), 

FEV1/FVC (p<.001), RV (p=.009) and DLCO (p<.001). There were no significant 

differences (p>.05) in Age, BMI, FVC, TLC and RV/TLC between the two groups.  

Table 2-1: Subject Demographics 

Parameter 

(SD) 

Older Never-Smokers 

(n=42) 
Ex-Smokers 

(n=25) 

Significance 

of difference 

(p-value) 

Sex (male) 19 18 - 

Age (yrs) 73 (6) 71 (10) ns 

BMI (kg · 𝑚−2) 27 (4) 28 (5) ns 

FEV 1%pred 107 (17) 88 (28) .001 

FVC %pred 103 (15) 97 (21) ns 

FEV1/FVC % 77 (6) 66 (14) <.001 

RV %pred 98 (22) 118 (39) .009 

TLC %pred 101 (13) 100 (27) ns 

RV/TLC %pred 97 (16) 108 (35) ns 

DLCO %pred 90 (16)* 67 (26) <.001 

SD, standard deviation; BMI, body mass index; FEV1, forced expiratory volume in 1 

second; %pred, percent predicted;  FVC, forced vital capacity; RV, residual volume; TLC, 

total lung capacity; DLCO, diffusing capacity of the lung for carbon monoxide. *n=39 
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2.3.2 Imaging Measurements 

Figure 2-1 shows the central coronal 3He static ventilation and morphometry maps for a 

representative older never-smoker and an ex-smoker. Difference in shape of static 

ventilation images as compared to morphometry maps can be explained by differences in 

slice thickness between static ventilation and diffusion-weighted images. Table 2-2 shows 

3He MR measurements as well as the CT surrogate measure of emphysema (RA950) for all 

subjects.  All 3He ventilation (VDP), diffusion (ADC,⁡𝐷𝐿, and 𝐷𝐿) and morphometry (R, r, 

h, Lm, Na, S/V) measurements, as well as CT-derived RA950 were significantly different 

between the two groups. In addition, when compared to literature reported values for a 

small group of younger never-smokers, using both CT and the 3He morphometry technique, 

older never-smokers appeared to have a greater acinar duct radius (R= 330 and 300µm 

respectively) and mean linear intercept (h=240 and 210µm), although sample size was not 

large enough to show significance.24,32 
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Figure 2-1: 3He Centre Slice Static Ventilation and Morphometry Maps. 

Hyperpolarized 3He static ventilation and morphometry maps for an older never-smoker 

(f, 77yr) and an ex-smoker (f, 67yr). R, external airway radii; r, internal airway radii; h, 

alveolar sheath; Lm, mean linear intercept; Na, alveolar density. 
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Table 2-2: 3He MRI Ventilation, ADC, Lung Morphometry and CT measurements 

Parameter 

(SD) 

Older Never-Smokers 

(n=42) 
Ex-Smokers 

(n=25) 

Significance of 

difference  

(p-value) 

VDP (%) 3 (2) 15 (11) <.001 

ADC 0.29 (0.03) 0.34 (0.06) <.001 

𝐷𝐿 0.81 (0.17)* 0.59 (0.19) <.001 

𝐷𝑇 0.32 (0.07)* 0.46 (0.08) <.001 

R (µm) 327 (4)* 336 (14) <.001 

r (µm) 205 (3)* 227 (12) <.001 

h (µm) 122 (4)* 109 (16) <.001 

Lm (µm) 244 (4)* 272 (14) <.001 

Na (mm-3) 103 (3)* 95 (14) .003 

𝑆 𝑉⁄  (cm-1) 163 (3)* 147 (7) <.001 

RA950 (%) 0.73 (0.75) 7.4 (9.1) <.001 

VDP, ventilation defect percent; ADC, apparent diffusion coefficient;⁡⁡𝐷𝐿, longitudinal 

diffusion coefficient; ⁡𝐷𝑇, transverse diffusion coefficient; R, external airway radius; r, 

internal airway radius; h, alveolar sheath; Lm, mean linear intercept; Na, alveolar density; 

S/V, surface area-to-volume ratio; RA950, relative area under -950 Hounsfield units. *n=40 

 

As shown in Figure 2-2, for older never-smokers (NS), external airway radius (R) was 

significantly smaller (p<.05), alveolar sheath (h) was significantly greater (p<.05), and 

alveolar density (𝑁𝑎) was significantly greater (p<.05) than that of ex-smokers without 

emphysema (ES (w/oE)), but was not significantly different from ex-smokers with CT 

evidence of emphysema (ES (E)). Internal airway radius (r) and mean linear intercept (𝐿𝑚) 

were both significantly smaller in NS than either ES (E) (p<.05 and p<.01 respectively) 

and ES (w/oE) (p<.0001 and p<.0001 respectively) which were not different from each 

other. Finally, surface area-to-volume ratio (S/V) was significantly greater in NS than both 

ES (E) (p<.01) and ES (w/oE) (p<.0001). 
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Figure 2-2: 3He Magnetic Resonance Morphometry Measurements. NS, older never-

smokers; ES, ex-smokers; E, emphysema; w/o E, without emphysema. For all plots the box 

extends from the 25th to 75th percentiles while the whiskers are min and max values.  

Never-smokers, n=40, ex-smokers without emphysema, n=17, and ex-smokers with 

emphysema, n=7. 
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*Significance of difference (p<.05) determined using Kruskal-Wallis test along with 

Dunn’s correction. 

2.3.3 Morphometry Relationships with Pulmonary Function and CT 

The Pearson correlation coefficients between 3He morphometry measurements (R, r, h, 

Lm, Na, and S/V) and both FEV1/FVC and DLCO for both older never-smokers and ex-

smokers are shown in Table 2-3. External airway radius (R) was significantly correlated 

with FEV1/FVC (r=0.50, p<.05) and DLCO (r=0.58, p<.01) in the ex-smoker group only. 

Internal airway radius (r) was significantly correlated with FEV1/FVC (r=0.46, p<.01) 

only in the never-smoker group. Alveolar sheath (h) was not significantly correlated with 

FEV1/FVC or DLCO in either group. Mean linear intercept (Lm) was significantly 

correlated with FEV1/FVC (r=0.44, p<.01) and in the never-smoker group only. 

Analogous to R, alveolar density (Na) was significantly correlated with FEV1/FVC (r=-

0.48, p<.05) and DLCO (r=-0.54, p<.01) in the ex-smoker group only. Lastly, similar to r, 

surface area-to-volume ratio (S/V) was significantly correlated with FEV1/FVC (r=-0.43, 

p<.01) in the never-smoker group only. 

Table 2-3: 3He MR Morphometry Correlations with Pulmonary Function Measures 

 Pearson Correlation Coefficients, r (p-value) 

 Older Never-Smokers (n=40) Ex-Smokers (n=25) 

 FEV1/FVC DLCO FEV1/FVC DLCO 

R (µm) ns ns 0.50(<.05) 0.58(<.01) 

r (µm) 0.46(<.01) ns ns ns 

h (µm) ns ns ns ns 

Lm (µm) 0.44(<.01) ns ns ns 

Na (mm-3) ns ns -0.48(<.05) -0.54(<.01) 

𝑆 𝑉⁄  (cm-1) -0.43(<.01) ns ns ns 

FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; DLCO, diffusing 

capacity of the lung for carbon monoxide percent predicted; R, external airway radius; r, 

internal airway radius; h, alveolar sheath; Lm, mean linear intercept; Na, alveolar density; 

S/V, surface area-to-volume ratio 

Figure 2-3 shows linear regressions for the longitudinal (DL) and transverse (DT) diffusion 

coefficients with FEV1/FVC and DLCO for both older never-smokers and ex-smokers 

independently. Both DL and DT were significant predictors of FEV1/FVC in the older 

never-smokers (R2=0.19, p<.01, R2=0.13, p<.05) and the ex-smoker groups (R2=0.31, 

p<.01, R2=0.40, p<.01) respectively. DL was also determined to be a significant predictor 
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of DLCO in the ex-smoker group (R2=0.55, p<.0001), but was not a significant predictor in 

the older-never smoker group. Likewise, DT was a significant predictor of DLCO in the ex-

smoker group (R2=0.56, p<.0001) only. 

 

Figure 2-3: Relationships between 3He Diffusion Coefficients with Pulmonary 

Function Test Measurements. Scatterplots show linear regressions for longitudinal (DL) 

and transverse (DT) diffusion coefficients with FEV1/FVC and DLCO for both older never-

smokers and ex-smokers. Dotted lines indicate the 95% limits of agreement. 

2.4 Discussion and Conclusions 

To better understand the senile lung and the morphometric changes with age, we evaluated 

a group of older never-smokers as well as a small group of ex-smokers using 

hyperpolarized 3He diffusion weighted MRI and made the following observations: 1) older 

never-smokers appeared to have increased airway radius and mean linear intercept as 
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compared to literature reported values for younger never-smokers, 2) older never-smokers 

had significantly lower external and internal airway radius and mean linear intercept, but 

higher alveolar sheath thickness, alveolar density and surface area-to-volume ratio than ex-

smokers, 3) DLCO was not significantly related to morphometry measurements in older 

never-smokers, while FEV1/FVC was significantly related, and, 4) both DL and DT were 

significant predictors of FEV1/FVC in the older never-smokers, but not DLCO. 

As expected, older never-smokers had relatively normal pulmonary function measurements 

based on percent predicted values (FEV1/FVC=70%, FEV1/FVC%pred=103%). When 

compared to literature reported values for younger never-smokers, we observed increased 

ADC,17,33 lower alveolar depth and greater Lm in this group of older never-smokers.24 The 

low variance in morphometry measurements among older never-smokers as compared to 

ex-smokers in this study supports the notion that senile emphysema affects all healthy 

aging adults to a similar extent when exposed to minimal environmental hazards. 

Although elevated compared to literature values for younger never-smokers, the older 

never-smokers in this study presented with smaller airspaces as compared to the ex-smoker 

group, which was evident by a lower mean ADC and RA950 measurement for all subjects. 

Further supporting these findings is the fact that older never-smokers had a greater alveolar 

depth than the ex-smoker group, as well as a higher S/V and lower Lm (Table 2-2 & Figure 

2-4). Interestingly, when comparing never-smokers with ex-smokers with, and without, CT 

evidence of emphysema, these observations remained significant, and we observed the 

same differences in morphometry measurements with the exception of h, which was not 

different between the never-smoker and ex-smoker with emphysema groups. Although 

alveolar depth was not significantly different, this may be due to the small sample size of 

ex-smokers with emphysema in this study, as the difference between the two groups was 

not significant by a very fine margin, and may have been exaggerated by an outlier with 

abnormally large h in the ex-smoker group. As the 3He lung morphometry technique is 

used to determine acinar geometry, there are several potential mechanisms for the observed 

loss of alveolar depth in ex-smokers as compared to healthy older subjects.  

Emphysematous enlargement of the acinar duct can produce flattening of the alveolus and 

retraction of the alveolar septa.34 The increased alveolar depth and S/V in older never-
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smokers as compared to younger never-smokers35 can presumably be attributed to a loss 

of elastin or change in collagen content, organization and/or distribution with age.36,37 

Moreover, these differences may be explained by the active inflammatory response present 

in patients with COPD, as would be expected in this group of ex-smokers. This 

inflammatory component could lead to a thickening of the alveolar walls and septa, 

effectively reducing the alveolar depth. In addition, the increased acinar duct radius in this 

group of ex-smokers could indicate an increase in the number and size of pores in the 

alveolar walls, as they would allow for increased diffusion between adjacent alveoli and 

acinar ducts.38 Taken together, these findings suggest that in the senile lung, there may be 

no active inflammatory component, or change in size or quantity of pores of Kohn 

(fenestrae) as seen in emphysematous lungs.  

 
Figure 2-4: Schematic of Airway Parameters for a Representative Older Never-

smoker and Ex-smoker. Comparison of internal (r) and external (R) airway radius, as well 

as alveolar sheath depth (h), showing diminished alveolar depth in ex-smokers. 

While DLCO in older never-smokers was not significantly related to any of the 

microstructural parameters measured, three in particular (r, Lm, and S/V) were significantly 

related to FEV1/FVC. The lack of correlation with DLCO in this study is not too surprising 

as the older never-smokers may have lacked the gross tissue destruction present in COPD-

related emphysema that could reduce the gas exchange area sufficiently to alter the 

diffusive capacity of the lung.34 Furthermore, the apparent normalcy of DLCO in this group 

of older never-smoker subjects (approximately 90% predicted) implies that this technique 

has the potential to be used to detect significant changes in acinar airway geometry, even 
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in individuals with clinically normal pulmonary function results. By the same token, the 

especially low RA950 values for these older never-smokers, in the presence of elevated Lm 

as compared to younger never-smokers, implies that the 3He lung morphometry technique 

has greater sensitivity to early emphysematous changes (airspace enlargement) than does 

traditional chest CT scoring practices. 

Altogether, these findings do not rule out the possibility that environmental factors may 

play a role in accelerating these changes. For that reason, the technique has considerable 

potential as an outcome measure for the study of environmental agents such as tobacco 

smoke or various other pollutants, as well as pharmaceuticals and potential disease 

therapies or treatments.  

In summary, in this small study of older never-smokers, we observed enlarged airspaces as 

compared to younger never-smokers, while not quite as enlarged as that of ex-smokers. 

These results, along with a greater observed alveolar density, greater alveolar depth and 

greater S/V in older never-smokers compared to ex-smokers, support the notion that senile 

lung does not involve fibrosis or tissue destruction. It implies that the mean airspace size 

increases with age throughout adult life and is larger in current and past smokers than in 

healthy never-smokers. The divergence of ex-smokers from older never-smokers is likely 

a result of accumulated alveolar wall damage and the partial merging of alveoli due to 

environmental aggravation over time. Ultimately, these results demonstrate that MRI has 

the potential to replace histology and lung stereology as the gold standard for non-invasive 

measurements of pulmonary acinus microstructure. 
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3 CHAPTER 3: CONCLUSIONS AND FUTURE WORK 

In this final chapter, I will provide an overview and summary of the important findings 

and conclusions of Chapter 2. I will also address the limitations of the hyperpolarized 

gas MRI lung morphometry technique presented and provide some potential solutions. 

Finally, based on the findings and limitations discussed, I will outline a roadmap for 

future studies. 

3.1 Overview and Summary 

Senile emphysema is characterized by distal airway enlargement without obvious fibrosis 

or alveolar wall destruction.1  Other structural components of senile lung include the loss 

of elastic fibers, thickening of alveolar walls1, and diminished pulmonary elastic recoil.2-4  

As patients do not present with the clinical symptoms of emphysema, senile emphysema 

is more correctly identified as senile lung.5 Emphysema, as linked to chronic obstructive 

pulmonary disease (COPD), is unique from senile lung in that the presence of fibrosis and 

tissue destruction leads to deformation of the alveoli.6  

Subjects with senile lung appear to have sufficient lung function for their normal day-to-

day activities,7 however these changes tend to increase the risk of breathlessness and 

respiratory failure in the elderly when compromised. Further complications in health result 

when these changes are concomitant with cardiac impairment and/or respiratory infection.8-

10 These age-dependent structural and functional changes can reduce sensitivity of the 

respiratory centres to hypoxia or hypercapnia, resulting in a diminished ventilatory 

response in cases of heart failure or airway obstruction.8,11,12 As a consequence of the 

reduction in supporting tissues and tethering forces around the airways with age, there is a 

tendency for the smaller airways to collapse. Accordingly, premature closure of these 

airways becomes common during normal tidal breathing.  

Stereological techniques have historically been used to measure pulmonary morphometry, 

and as such the technique has become the gold standard for exploring the structural changes 

associated with various pulmonary diseases. Emphysema has commonly been studied 

using these techniques, however most work has ignored the effects of septal destruction, 
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and looked solely at airspace enlargement.13 Alternatively, micro–CT has rapidly emerged 

as an imaging technique with the potential to measure lung microstructure on length scales 

much smaller than previously possible with clinical CT scanners. This technology 

consequently offers the ability to analyze acinar morphometry without the need for 

physical segmentation, thus maintaining an undamaged, three-dimensional (3-D) 

structure.14 Unfortunately, due to the long exposure time and high dose associated with this 

technique, scanning living organisms is difficult, if not altogether impossible. 

Unfortunately, with both of these techniques, choice of inflation and fixation techniques 

introduce a number of errors and biases.15 As such, a non-invasive imaging method that 

can evaluate both lung structure and function without the use of ionizing radiation or tissue 

fixation/preparation is required. 

Hyperpolarized inhaled noble gas MRI provides non-invasive measurements of lung 

function and structure 16-21 showing those regions of the lung that participate in ventilation 

and those that do not.21,22 In addition, the MRI ADC for an inhaled gas is sensitive to 

changes in the lung microstructure and airspace size correlating well with age 19, 

spirometry 23, DLCO 24, and CT measurements of emphysema 25.  Previous studies have 

shown a close agreement between alveolar parameters obtained using the 3He MRI lung 

morphometry technique and those measurements found by direct histological analysis.26 

In Chapter 2 we quantitatively evaluated a group of 42 older never-smokers and 25 ex-

smokers using hyperpolarized 3He diffusion weighted MRI. The acinar duct morphometry 

results were found to be within the physiological range reported in literature. Calculated 

values of internal (r) and external (R) airway radius as well as mean linear intercept (Lm) 

for individual subjects were similar with low variance. Results showed that MRI 

measurements of lung airspace size in healthy older never-smokers were elevated 

compared to previous results reported in younger never-smokers. Such results are 

consistant with senile emphysematous changes to healthy parenchyma that accompanies 

aging. Furthermore, this study showed that there was a greater observed alveolar density, 

greater alveolar depth and greater surface area-to-volume ratio in older never-smokers as 

compared to ex-smokers, supporting the notion that senile lung does not involve fibrosis 
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or tissue destruction. These results suggest MRI has the potential to replace lung stereology 

as the gold standard for measuring pulmonary acinus microstructure. 

3.2 Limitations of Current Work 

A number of limitations currently affect the potential clinical translation of this technique.  

Firstly, 3He MRI requires unique expertise and equipment. There is an extremely limited 

supply of helium gas, making further follow-up studies and clinical implementation of this 

technique questionable. With regards to the polarization itself, the process is dependent on 

expensive equipment that relies heavily on highly skilled operators who can handle, 

prepare, and administer the gas in a time-sensitive manner.  

In addition to the physical limitations, there is still room for improvement in modelling 

pulmonary morphometry. As was evident in this study, algorithm optimization is still 

required as not all diffusion data could be successfully fit to the model each subject. 

Furthermore, although more time efficient than lung stereology, MRI morphometry still 

requires manual observer interaction and is computationally intense. The model itself 

typically requires between 2-3 hours of runtime per subject per slice, depending on the 

complexity of the data. Fortunately, multiple instances of the program can be run in 

parallel, significantly shortening the overall processing time for large data sets.  

Specific to this technique, the morphological equations are quantitatively valid in the 

physiologically important range of the airways parameters characteristic of healthy lungs 

and those with mild emphysema. However, when acinar airways deviate significantly from 

this range, in the case of severe emphysema, the “cylindrical” model is expected to fail. In 

lungs with advanced emphysema, our results might provide only the “apparent” diffusion 

characteristics. Furthermore, for lungs with substantial degeneration of the acinar walls, 

the model requires further generalization in order to account for the expansion of large air 

cavities in which 3He diffusion is much less restricted. A further limitation results from the 

assumption at the base of the diffusion/morphometry relationship (R, r, and h) which 

presumes that the diffusing 3He atoms cannot penetrate through alveolar walls. In reality 

though, alveolar walls have pores, however their effects on DL and DT are considered 

negligible in healthy subjects due to the small number of microscopic (<10 μm) pores 
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present.27 In the emphysematous lung, this assumption weakens, as more pores of variable 

size (>20 μm) occur in alveolar walls, ultimately increasing the transverse and longitudinal 

ADCs .28 These effects fall beyond the scope of this study, and will need to be addressed 

in future studies. All things considered, these measures are still capable of providing a 

wealth of information regarding emphysematous progression when interpreted in the 

context of disease severity.  

One other limitation of this study is the lack of data collected from other imaging modalities 

or techniques in conjunction with 3He MRI. Both micro-CT and stereological data could 

have been used to validate the measurements acquired using this technique, however these 

procedures were infeasible due to their highly invasive nature and would have required 

biopsies or cadaveric samples. 

3.3 Future Work 

The results and discussions presented in this thesis provide some important insights 

regarding the use and applicability of the hyperpolarized 3He morphometry technique in 

developing a deeper understanding of the structural and functional changes that occur 

during the normal lung aging process.  In order for this technique to supplant the current 

invasive gold standard of lung stereology, there is a need for further development into the 

automation and removal of all user interaction with processing the diffusion weighted 

image data. 

Additionally, due to the limited availability and high cost of 3He gas, its clinical translation 

will become increasingly difficult in the coming years. As such, future studies comparing 

3He-derived morphometry measurements with 129Xe-derived measurements will be of 

great importance. 129Xe gas is more abundant and as such substantially cheaper than 3He, 

hence making it a more realistic option as an imaging agent in clinical applications.  Recent 

studies have begun assessing pulmonary microstructure using 129Xe in healthy young 

subjects and those with mild COPD29, however, due to the differences in the physical 

properties between the two gases, it is not known how these results would differ when 

assessing an older never-smoker population. Furthermore, application of a 129Xe diffusion 

weighted technique will provide unique information on the relationship between lung 
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morphometry and pulmonary perfusion. The unique property of 129Xe to perfuse from the 

acinus into the surrounding capillaries would provide a better understanding of the relative 

stability of DLCO with age even in the presence of senile emphysema. 

Finally, while this work has focused on mean values of 3He diffusion morphometry values, 

this approach ignores a major benefit of the imaging technique, namely the ability to 

acquire regional pulmonary information or data from follow-up texture analysis 

information. The heterogeneity of disease across the lung has been shown previously in 

subjects with asthma and COPD, and thus having a regional understanding of senile lung 

may help elucidate the nature and potential patterns present in the age-related increase in 

airspace. Future efforts to analyze this distribution would likely be informative, potentially 

enabling identification of different senile lung phenotypes based on patterns of lung 

abnormalities. 
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