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Abstract

Cloud computing offers opportunities for organizations to reduce IT costs by using the com-

putation and storage of a remote provider. Despite the benefits offered by cloud computing

paradigm, organizations are still wary of delegating their computation and storage to a cloud

service provider due to trust concerns. The trust issues with the cloud can be addressed by a

combination of regulatory frameworks and supporting technologies. Privacy Enhancing Tech-

nologies (PET) and remote attestation provide the technologies for addressing the trust con-

cerns. PET provides proactive measures through cryptography and selective dissemination of

data to the client. Remote attestation mechanisms provides reactive measures by enabling the

client to remotely verify if a provider is compromised. The contributions of this work are

three fold. This thesis explores the PET landscape by studying in detail the implications of us-

ing PET in cloud architectures. The practicality of remote attestation in Software as a Service

(SaaS) and Infrastructure as a Service (IaaS) scenarios is also analyzed and improvements have

been proposed to the state of the art. This thesis also propose a fresh look at trust relationships

in cloud computing, where a single provider changes its configuration for each client based on

the subjective and dynamic trust assessments of clients. We conclude by proposing a plan for

expanding on the completed work.

Keywords: Trust, Privacy, Security, Cloud Computing, Subjective and Dynamic Trust, Remote

Attestation, Privacy Enhancing Technologies

ii



for my parents



Acknowledgments

I am deeply indebted to my supervisors Dr. Hanan Lutfiyya and Prof. Mark Perry for giving me

an opportunity to work on this field. Dr. Lutfiyya is one of the most patient and humble people I

have ever met. This thesis would not have been possible without her continued support, patient

guidance and encouragement. Prof. Perry was always a Skype call away for any discussion.

His support is deeply appreciated.

I would like to thank my colleagues at DiGS (Distributed and Grid Systems) research group for

fruitful discussions and their help and support for the past 5 years. Thanks to Sharmila Mohan

for collaborating with me in a project for trusted healthcare database.

Special thanks to the Computer Science Department and its amazing staff: Janice, Cheryl,

Dianne and Angie.

To University of Western Ontario for providing such a beautiful and healthy environment to

perform research.

I would also like to acknowledge the Ontario Government for granting scholarship that sup-

ported the final two years.

Ph.D is a long and sometimes a very lonely journey. I would not have made it, if it is not for

my near and dear.

To my friends here in Canada and around the world (in alphabetical order): Achuthan, Aditi,

Anu, Deepak, Dinagar, Gaston, Hareesh, Harpreet, Jananee, Lankesh, Manasi, Mike, Niru-

pama, Prakruti, Rachita, Roopa, Sharmila, Shivangi, Siva, Siya, Sneha, Sriram, Viji, Vijay and

the countless others. Thank you so much for making my travel adventurous.

To my roommates Amit, Esperanza and Javier for accommodating me under the same roof and

being the family in Canada.

To my sister’s folks for their constant motivation and strength.

Finally this thesis is for my parents and my sister Ramya: for always placing my happiness

before yours.

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction 1

1.1 Privacy Enhancing Technologies . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Need for trust: Remote Attestation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Trust Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 The Plumber Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Trust Relationships in Cloud . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 15

2.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Service Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Deployment models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Privacy, Security and Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



vi CONTENTS

2.2.3 Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Risk Vs Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Privacy Enhancing Technologies (PET) . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Remote Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Trusted Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Trusted Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Trusted Platform Module (TPM) . . . . . . . . . . . . . . . . . . . . . 30

2.5.4 Realtime Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.5 Dynamic Root of Trust for Measurement . . . . . . . . . . . . . . . . . 34

3 Chaavi: Webmail with Searchable Encryption 36

3.1 Motivating Example: Webmail Services . . . . . . . . . . . . . . . . . . . . . 37

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Mail Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Privacy Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Pretty Good Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Searchable Encrypted Data . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Browser Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.4 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.5 Mail Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Browser Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Web Application: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



CONTENTS vii

Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Encryption and Decryption . . . . . . . . . . . . . . . . . . . . . . . . 49

Keyword Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Space Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Impact of increase in size on the keyword index . . . . . . . . . . . . . 51

Impact of increase on Final Message size . . . . . . . . . . . . . . . . 52

3.6 Limitations of our implementation . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 A notification based remote attestation framework for IaaS 54

4.1 Related Work - Remote Attestation Infrastructure . . . . . . . . . . . . . . . . 55

4.1.1 Integrity Measurement Architecture (IMA) . . . . . . . . . . . . . . . 55

4.1.2 Privacy Certificate Authority (CA) . . . . . . . . . . . . . . . . . . . . 58

4.2 Virtual Machines based Architectures . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Terra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 HIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.3 In VM measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Certicloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.5 vTPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

myTrustedCloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Implementation of Trusted IaaS using vTPM and Trusted Third Party

(TTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 IaaS Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

IaaS Trust Component . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Trusted Third Party . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Trust Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

RIMM Datastore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.3 RIMM SaaS Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



viii CONTENTS

4.4.4 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.5 VM Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.1 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.3 RIMM policy update . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Establishing a minimal trusted computing base . . . . . . . . . . . . . . . . . . 88

TCB using Debian Package Management (dpkg) . . . . . . . . . . . . 89

4.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8.1 Heartbleed Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8.2 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Booting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.9 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Subjective and Dynamic Trust in SaaS 95

5.1 Configurable Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.1 Storage Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.2 Policy Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.3 Monitoring Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 Application Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

put (data, policy, config info) . . . . . . . . . . . . . . . . . . . . . . . 101

get (data id) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

get tpm quote () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

update (data id, policy, config info, keyclient) . . . . . . . . . . . . . . . 102



CONTENTS ix

delete(data id, is shred) . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.2 Crypto Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

crypt init key (enc type, operation, key, data id) . . . . . . . . . . . . . 102

crypt (data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

get tpm quote () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.3 Storage Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

put(data, data id) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

get(data id) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

delete(data id, is shred) . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.4 Monitoring Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.5 Configuration of Servers . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.1 get tpm quote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.2 put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.3 get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.4 migrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Migration to trust level - 0 . . . . . . . . . . . . . . . . . . . . . . . . 108

Migration to trust level - 0.5 . . . . . . . . . . . . . . . . . . . . . . . 108

Migration to trust level - 1 . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6.1 Performance of Put and Get . . . . . . . . . . . . . . . . . . . . . . . 110

5.6.2 Scalability Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6.3 Performance of Migrate . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7.1 Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7.2 Policy Enforcement Mechanisms in Trusted and Untrusted Clouds . . . 116

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Subjective and Dynamic Trust in IaaS 118



x CONTENTS

6.1 Supporting trust relationships in IaaS . . . . . . . . . . . . . . . . . . . . . . . 118

6.1.1 Scenario 1: User1 moves from trusting the provider to distrusting . . . 119

6.1.2 Scenario 2: User2 starts to trust the provider . . . . . . . . . . . . . . . 120

6.1.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.1 Infrastructure Controller . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.2 Trusted Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.3 Untrusted Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.4 Unallocated Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.5 Resource Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.6 Modifications to Trusted Third Party (TTP) . . . . . . . . . . . . . . . 124

6.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.1 Migration Algorithms in Resource Middleware . . . . . . . . . . . . . 125

6.3.2 Resource allocation algorithms in Controller . . . . . . . . . . . . . . . 126

Migration of VMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Defragmentation Algorithm . . . . . . . . . . . . . . . . . . . . . . . 129

6.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusion 133

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 139

Curriculum Vitae 150



List of Figures

1.1 The Plumber Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Alice and Pixelcloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Core P-RBAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Trusted Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 TPM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Email Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Chaavi - Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Sending and Searching for a Message . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Key Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Encryption and Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Keyword Encryption Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Integrity Measurement Architecture . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 ASCII Runtime Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Privacy CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Privacy CA: Trusted Computing Base . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Terra Architecture [49] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 HIMA Architecture [26] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 In VM measuring framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 Certicloud Architecture Architecture [34] . . . . . . . . . . . . . . . . . . . . 66

4.9 vTPM Architecture [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xi



xii LIST OF FIGURES

4.10 myTrustedCloud Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.11 Trusted Cloud with TTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.12 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.13 IaaS Server Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.14 Trusted Third Party . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.15 Registration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.16 Verification Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.17 RIMM Update Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.18 Heartbleed Detection Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Configuration of the servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 PUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 GET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Put, Get Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Plain Text with concurrent connections . . . . . . . . . . . . . . . . . . . . . . 112

5.7 AES Encryption/Decrpytion with concurrent connections . . . . . . . . . . . . 113

5.8 TPM with concurrent connections . . . . . . . . . . . . . . . . . . . . . . . . 114

5.9 Response time for trust transition . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 IaaS and Trust Relationship: Initial State . . . . . . . . . . . . . . . . . . . . . 119

6.2 IaaS and Trust Relationship: Steps . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Components of the architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 122



List of Tables

4.1 Iterations per second for Setup A and Setup B . . . . . . . . . . . . . . . . . . 93

5.1 Configuration Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xiii



List of Acronyms

List of Acronyms

AES Advanced Encryption Standard

AIK Attestation Identification Key

CA Certification Authority

CSC Cloud Service Client

CSP Cloud Service Provider

DRTM Dynamic Root of Trust for Measurement

IaaS Infrastructure as a Service

IMA Integrity Management Architecture

MTA Mail Transfer Agent

MUA Mail User Agent

PaaS Platform as a Service

PCR Platform Control Register

PET Privacy Enhancing Technology

PII Personally Identifiable Information

P-RBAC Privacy aware Role Based Access Control

xiv



LIST OF TABLES xv

PEKS Public-key Encryption with Keyword Search

RAD Rapid Application Development

RIMM Resource Integrity Measurement Manifest

RSC RIMM SaaS Cloud

SaaS Software as a Service

SMTP Simple Mail Transfer Protocol

TCB Trusted Computing Base

TCG Trusted Computing Group

TPM Trusted Platform Module

TTP Trusted Third Party

TVMM Trusted Virtual Machine Monitor

VM Virtual Machine

vTPM Virtual Trusted Platform Module



Chapter 1

Introduction

Cloud computing represents a model of computing, where consumers can rent a pool of config-

urable resources such as networks, servers, storage and services, from a Cloud Service Provider

(CSP) [25]. There are three main types of cloud offerings: Infrastructure as a Service (IaaS),

Platform as a Service (PaaS) and Software as a Service (SaaS). IaaS offers virtualized instances

of bare machines leaving the installation and customization of softwares including the Operat-

ing System to the cloud computing clients. In PaaS, an application framework is provided to

the clients for developers to develop their software with. A SaaS provider offers a particular

application as a web service, which customers can customize to their needs.

Cloud Service Clients (CSC) can dynamically provision the resources as per the client’s

requirements, using a pay-per-resources business model. Cloud computing enables elasticity

(grow or shrink as per the client’s requirements) of resources, multi-tenancy, maximal resource

utilization and the utility model (pay per use). These new features empower the provider to

leverage large infrastructures through virtualization of resources and optimum job and resource

management.

From the client’s perspective, there are not only cost savings due to the economies of scale

on the service provider side, but also the amount of investment on the client is decreased for

buying the infrastructure upfront. Due to these benefits, users and enterprises are looking to

delegate the storage of data and service execution on resources owned by a cloud providers.

Forrestor (the independent market research firm) estimates that the cloud computing global

market will increase from $40.7 billion USD in 2010 to $241 billion in 2020 [4].

1
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Despite the benefits offered by the cloud computing paradigm, organizations are still wary

of delegating their computation and storage to a cloud service provider. According to a survey

conducted by IDC (a market research firm), the CIOs (Chief Information Officers) of enter-

prises identify security concerns as the top reason for them to not aggressively adopting the

cloud [9]. A Fujitsu Research Institute study on potential cloud customers [21] found that 88%

of potential cloud consumers are worried about who has access to their data, and demanded

more awareness of what goes on in the physical cloud server.

Many clients, such as health-care companies, financial companies and government orga-

nizations require strict privacy and security requirements. A policy is a specification of these

requirements. An example of a specification language that can be used to specify privacy poli-

cies is P-RBAC [86]. To enforce the security and privacy policy, clients need to trust that the

remote cloud provider is not malicious and the provider will comply with the security require-

ments. There is a perceived lack of trust in cloud services, which is hindering some companies

from completely embracing cloud computing.

These privacy, security and trust concerns of the cloud can be addressed by a combination of

regulatory frameworks and supporting technologies [88]. The regulatory frameworks provides

the clients with legal protection against any adversary provider and the supporting technologies

aids the the clients to identify breaches and take any proactive and reactive measures against

possible breach of the clients data.

The chapter starts with a discussion on the supporting technology, Privacy Enhancing Tech-

nologies (PET) with its limitations are presented in Section 1.1. This is followed by a moti-

vation for the need of trust in cloud computing and the introduction of Remote Attestation

in Section 1.2. Section 1.3 describes complex trust relationships by illustrating a real world

example. The contributions of the thesis are enumerated in 1.4 and the scope of the thesis is

discussed in 1.5. The chapter ends with thesis organization in Section 1.6.

1.1 Privacy Enhancing Technologies

Privacy Enhancing Technologies (PET) enable clients to transact with providers securely even

if the clients do not trust the providers. PET denotes the set of tools and mechanisms that
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allow users to protect their privacy online against adversaries. Blarkom et al. [108] defines

PET as a system of information and communication technology measures protecting informa-

tional privacy by eliminating or minimizing personal data thereby preventing unnecessary or

unwanted processing of personal data, without the loss of the functionality of the information

system. Privacy preserving protocols [47], a class of PET, enable users to perform computation

over cryptographically protected data. Homomorphic encryption and searchable encryption

schemes are notable privacy preserving protocols.

Homomorphic encryption is an asymmetric encryption technique, where algebraic opera-

tions are performed directly on the cipher text which represents the encryption of plain text.

This was first introduced by Goldwasser et al. [53], where the authors performed modular

addition of two bits using multiplication of ciphertexts. Craig Gentry [51] designed an homo-

morphic encryption scheme that allows both addition and multiplication on plain text through

their cipher texts.

Searchable encryption allows users to search for particular keywords on encrypted data.

Public Key Encryption with Keyword Search (PEKS) [71] is one of the seminal works in

the area of making encrypted data searchable. The authors of PEKS propose to encrypt the

message using the Public-Private key infrastructure. Along with this cipher text a Public-Key

Encryption with Keyword Search (PEKS) of each keyword (the words that make up the mes-

sage) is appended to the final message. The PEKS of the keyword is used as the keyword index

for searching in the server without revealing the exact plain text keyword (more in Chapter 3).

Although homomorphic encryption and searchable encryption are viable proven ways of

preserving privacy of data in the cloud without compromising on the functionality, cryptogra-

phy increases the computational and storage overhead on the server [94]. Computation over

encrypted data even though theoretically possible is not yet practically feasible [83].

1.2 Need for trust: Remote Attestation

As the solutions proposed by PET are mostly in the theoretical realm, clients are forced to trust

the cloud provider with the data and hope that the provider will not breach that trust. Trust

is defined as “a particular level of subjective assessment of whether a trustee (cloud provider)
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will exhibit characteristics consistent with the role of the trustee” [120]. The client establishes

trust on emotional and cognitive (evidence based) grounds. To enforce the strict security re-

quirements on the server, the trust relationship between the client and server should be formed

more based on cognitive, evidence based grounds. The evidence should be unforgeable and

should assure that the server will not act against the client’s interest.

Remote attestation provides such evidence by allowing clients to accurately verify if the

remote server’s state is compromised. A server can be trusted if the client can accurately

verify all the software binaries that the server has executed [50]. The veracity of a software

is established through its identity, which is expressed by means of the hash1 of the software

binary. For verification of the server’s state, the measured hash of all the software binaries

(measurement list) is sent to the client. The client performs the comparison against known

software hash values, whose security has been verified. This will enable clients to verify that

the server is free of malware or any unauthorized software.

Remote attestation [50] refers to the process of authenticating and verifying the state of the

remote platform and its operating system outside of the platform. The remote platform can

either be hosted on a physical server or a Virtual Machine (VM) in the physical server or both.

In the context of cloud computing, remote attestation of the cloud server is performed either

by cloud clients or a trusted third party on behalf of the cloud clients.

Based on remote attestation, trusted computing technology was developed by the Trusted

Computing Group (TCG). It provides specifications for securely reporting and verifying a re-

mote platform (i.e. server hardware and software).

Existing work in remote attestation of the server includes: securely collecting and storing

information about the software state (hash values) of the server [50], methods for using the

information on the state locally in the server [17, 30], for conveying the state information to an

external client for remote attestation [106, 98, 34] and for managing the list of software that is

allowed to be executed in the server [60].

In theory, it should be possible to test whether the hardware and the software hosted in

the server are secure and remotely attest if a server is hosting the tested hardware and soft-

ware components. However, remote attestation has several practical limitations. Establishing a

1Hash is the unique short digest of a binary, that is more efficient to communicate than the exact software.
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trusted computing base (TCB), the software and hardware stack that is audited and well tested

for the security of a particular application is challenging. With the advent of technologies such

as Rapid Application Development (RAD), maintaining the latest secure software updates on

remote server is non-trivial. Moreover, economically, a remote attestation infrastructure can be

expensive to the client.

The challenges and costs imposed by PET and remote attestation make them an undesirable

option for clients that trust the provider already without the attestation provisions. This trust

may arise from several subjective factors such as proven history of provider’s strong SLA

compliance with the client. In some context when the client is dealing with insensitive data,

the clients need not completely trust the provider for operations on the data. For example,

clients absolutely need to trust the banking provider for the everyday banking needs, however

they do not really need to trust the social media platform to share their messages with their

friends or followers.

1.3 Trust Relationships

Trust relationships are complex. Trust is subjective. Different clients may perceive the same

provider differently. For example, a forgiving client may be willing to accept more failures

from the provider while a less forgiving may not. Trust is also dynamic. A client’s trust

perception of a server may change over time based on the performance of server. To illustrate

this relationship a societal (real world) scenario is presented through the plumber problem.

1.3.1 The Plumber Problem

The plumber problem is illustrated in Figure 1.1. Morpheus wakes up one day to find a broken

pipe in his house. He needs to call a plumber to fix it. He has the following options: Neo, the

most trusted plumber and the busiest in the town; Cypher, recommended by the government

and Smith, a plumber with a criminal record. Neo chargers more for his services followed by

Cypher and then Smith. Who should Morpheus choose for fixing the pipe?

There is no single right answer to this question. The safest plumber here, Neo, may not be

the one Morpheus calls. The answer is dependent on various factors:
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Most trustworthy
plumber in the town

Recommended by 
Ontario Plumbers 

Assocation

Someone with a
Criminal Record

??
Neo Cypher Smith
$$$$ $$$ $

Figure 1.1: The Plumber Problem

• Trust assessment of Morpheus about the plumbers: The most trustworthy plumber in

the town may not be the most trusted plumber by Morpheus. Morpheus may personally

know and trust Cypher and Smith even though Neo is trusted by the entire town.

• Mechanisms that Morpheus can deploy to work with an untrusted plumber: Morpheus

may have the ability to inspect the working of the plumber directly or remotely inspect

through a camera. This may give him an option to work with an untrusted plumber safely.

• Location of pipe: Morpheus may choose an untrusted plumber to fix the pipe even with-

out the mechanisms in place, if the pipe is located in a distant garage and the plumber

cannot do any damage to the property of Morpheus.

• Economical constraints of Morpheus.

If Smith is someone Morpheus knows in person compared to Neo and Cypher, Morpheus

may choose Smith as the plumber. Morpheus may also choose Smith if he can inspect Smith

when he is plumbing. If Morpheus does not want to take a risk with Smith, he may choose Neo,

paying Neo extra money. Morpheus may choose Cypher if he finds Cypher the right value for

the money.
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Morpheus’s trust assessment of each plumber can be completely different from his friend

Trinity’s, making it a subjective assessment. This is because Trinity may be friends with

Cypher where as Morpheus may be friends with Smith. Moreover, Morpheus may trust a

plumber today and decide not to trust him tomorrow based on the plumber’s performance.

We observe that for a simple question on choosing a plumber there are various subjective and

dynamic parameters that affect making a decision. Despite all this, the process of calling a

plumber and fixing the pipe, in general seem to work.

There are two kinds of trust that influence the decision of Morpheus: personal and imper-

sonal trust [101]. A personal trust requires intimate knowledge of the plumber by Morpheus.

If the plumber is Morpheus’ friend, the trust Morpheus has on the friend is not tied to the

plumber’s actions in the past. It’s a reliance that, the plumber has good intention with respect

to Morpheus and will not act against Morpheus’ interests.

Shapiro et al. [102] studied Impersonal trust elaborately and explored how societies con-

trol trust relationships between entities that are not not influenced by personal relations. Our

society has formed several systems that enable the process of working with entities (in this case

plumbers) of different trust. These systems are referred by Shapiro et al. [102] as guardians

of impersonal trust. There are legal systems in place to punish the criminal conduct of any

entity, and there are recommendation systems (through word of mouth, sites such as yelp.com,

plumbers association of canada) that make people aware of competent and incompetent enti-

ties.

The process of calling a plumber works because we tend to trust these systems more than

people. These systems have become the backbone of our society. One may not trust the

plumber, but may trust the systems that produced the plumber. There are laws that govern the

system that keep the delinquent plumbers in check. There are mechanisms (such as monitor-

ing the plumber while working) in place, that give users like Morpheus and Trinity enough

flexibility to make the decision within the user’s constraints and limitations.
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1.3.2 Trust Relationships in Cloud

In a cloud computing context, the systems that govern computing and the mechanisms that

protect the users are currently evolving. Therefore trust in cloud computing is considered as

largely unidimensional without the subjective and dynamic properties.

To illustrate a cloud computing system with a multidimensional trust, let us consider an

example of a photographer Alice. Alice is a photographer who wants to store her photograph

collection with a provider called Pixelcloud. She has the following privacy requirement: Pic-

tures should only be visible to her and her friends that have permission to view the photographs.

This can be formalized using a P-RBAC [86] like policy specification language as follows:

(FR, ((RD, Catalog), Viewing, OC=Yes, Notify(ByEmail)))

The notation FR is used to denote the role: friends of Alice. The notation (RD,

Catalog) denotes that the users in FR can only execute a read only operation, denoted by

RD, on the photgraph collection, which is denoted by Catalog. The notation Viewing spec-

ifies the policy purpose. The condition, denoted by the notation OC=YES, represents that the

owner needs to give consent before a read operation on the catalog can be carried out. The

obligation’s action is denoted by the notation Notify(ByEmail), which states that Alice is

notified by email for each read access of the catalog.

When the data storage is outsourced to Pixelcloud, Alice may or may not trust Pixelcloud

to enforce the policy. If Alice trusts Pixelcloud, then she can depend on Pixelcloud to enforce

the policy as per the specification. However, if Alice does not trust the Pixecloud, she will take

the sole responsibility for enforcing the policy.

When Alice is uncertain if she can trust Pixelcloud or not, she will have to continuously

monitor to make the Pixelcloud accountable when there is a policy violation. We present these

three scenarios below (Figure 1.2).

The first scenario to be considered is that Alice distrusts PixelCloud. A possible approach to

enforcing the privacy policy is to have Alice encrypt her photograph collection before sending

it to PixelCloud. PixelCloud is not able to read Alice’s photograph collection since the data

is encrypted and PixelCloud is unaware of the keys for decryption. Alice privately shares the

key needed for decryption with her friends. A friend uses the key to decrypt the encrypted
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Alice

Distrusted

Untrusted

Trusted

Encryption

Plaintext

Attestation

Pixelcloud

Figure 1.2: Alice and Pixelcloud

photograph collection in response to a request for the data from PixelCloud. Any unauthorized

access of the encrypted files in Pixelcloud will be futile without having access to keys. Alice’s

friend uses the client software provided by Pixelcloud to stop the friend from using the data

for any other purpose than for what it is intended by not allowing the data to be transmitted or

stored.

When the data is encrypted and keys are with the owner, the data is secure and no policy

violations by the provider can occur. Therefore, an argument could be made that a CSP should

always be considered to be untrusted. However, the performance overhead introduced by such

policy enforcement mechanisms may be prohibitively high [52, 99, 92].

If Alice trusts PixelCloud, she may provide her data unencrypted to PixelCloud and del-

egate the responsibility for policy enforcement to PixelCloud. The performance overhead is

reduced since encryption and decryption operations are not used.

The responsibility of policy enforcement is shared between Alice and PixelCloud when

Alice is not sure if she can trust PixelCloud. Alice requests that PixelCloud encrypts her

catalog. PixelCloud’s records transactions involving Alice’s catalog. The logs with transaction

information can be inspected by Alice to monitor for unauthorized accesses to her catalog.
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When a friend of Alice, Bob, accesses the catalog, PixelCloud decrypts the catalog and presents

it to Bob through client software provided by PixelCloud to Bob. The client software executing

in Bob’s computer will ensure that the picture shared with Bob is used only for the purpose it

is shared. In this scenario of uncertain trust, If PixelCloud is an adversary or has a malicious

insider, then the logging can be circumvented. This is addressed using a Trusted Platform

Module (TPM) with a check of integrity values of the software that is executed in the server.

The performance assuming uncertain trust, is higher than if PixelCloud is trusted but not as

high, if PixelCloud is distrusted.

We observe that Pixelcloud has three different “views” (trusted, distrust and uncertain trust)

and Alice can choose a view based on her trust perception of Pixelcloud.

In industry, unlike the example of Pixelcloud, we do not notice a single provider behaving in

a trusted mode to a client and an distrusted mode to someone else. Google, Facebook, Dropbox

are used even when users do not have complete trust on them. Users who highly suspect these

providers switch to secure (sometimes limiting) alternatives such as Duckduckgo, Diaspora,

Wuala etc.

We propose that there is a need for services to support the subjective and dynamic nature

of trust in general. When trust assessment is performed based on subjective factors, the final

configuration requirements (remote attestation or no attestation) of the provider can vary from

client to client. Therefore the provider needs to let clients choose the final configuration based

on the client’s subjective trust assessment. The clients should be able to accommodate the

dynamic nature of trust: when the trust on the cloud provider changes over time, the clients

should be able to change their configuration.

Current work in the state of the art does not study these trust relationships and the corre-

sponding policy enforcement mechanisms.

1.4 Contributions of Thesis

The contributions of this thesis are illustrated in Figure 1.3. Listed below are the contribution

of the thesis:
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• PET in cloud architectures: This thesis explores the state of the art in PET and proposes

a privacy preserving architecture for a webmail SaaS system without compromising on

the functionality. The prototype is benchmarked and based on the results show the fea-

sibility to architect a privacy preserving solution for webmail systems in a real working

environment. The thesis also discusses the limitations of PET and future work for PET

in cloud architectures extensively.

• Practicality of remote attestation in SaaS and IaaS: A notification based remote at-

testation infrastructure is proposed that supports verification of servers and virtual ma-

chines using a TTP (trusted third party) and RIMM (Resource Integrity Measurement

Manifest). The RIMM maintains a list of known secure software integrity values. The

remote attestation of the server and VM is delegated to a TTP. The software state of the

server and the VM is verified continuously by the TTP in predefined intervals through

polling. The proposed remote attestation infrastructure is studied in a web application

scenario. A known minimal trusted computing base (TCB) is established and its security

implications and overhead of attestation are studied in detail.

• Subjective and dynamic nature of trust for a cloud: The dynamic and the subjective

nature of trust is introduced and its implications to cloud computing is studied in detail

in both the SaaS and IaaS cloud.

For the SaaS cloud, a policy based approach to the implementation of subjective and dy-

namic trust so as to enable privacy policy enforcement in a SaaS cloud is proposed. An

abstract model containing computational, storage and monitoring unit with configurable

elements is introduced and algorithms that reflect how a change of trust influences the

configuration of these elements are described.

In the IaaS context, the server pool is divided into virtual trusted and untrusted pools. The

trusted pools supports the notification based remote attestation infrastructure whereas

the untrusted pool do not have the overhead of the remote attestation infrastructure. We

describe algorithms for the migration of VMs between the pools based on the trust per-

ception and study the overhead of the system.
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1.5 Scope

The NIST definition of cloud computing [80] enumerates the following essential characteristics

of cloud computing:

1. On demand self-service A consumer can dynamically provision services and resources,

as needed without any human intervention.

2. Broad network access The resources can be accessed through standard mechanisms that

enables use of heterogeneous clients such as mobile phones or browsers.

3. Resource Pooling The provider serves clients using multi-tenant model to optimize re-

source usage at the provider’s end.

4. Rapid elasticity The consumers can scale-up or scale-down the resource usage automat-

ically.

5. Measured Service The provider serves resources and services through a pay-per-use busi-

ness model, where computing is treated as utility such as electricity and water.

The proposed architectures in this thesis addresses on demand self service, broad network

access and resource pooling. The architectures do not directly focus on rapid elasticity and

measured service. However, the architectures can be expanded to support rapid elasticity and

measured service in future work.

1.6 Thesis Organization

Chapter 1 presents the introduction for the the rest of the dissertation.

Chapter 2 presents background on Privacy Enhancing Technologies (PET) and Trusted

Computing with focus on remote attestation.

Chapter 3 explores the practicality of PET by presenting a prototype of a web mail system

using searchable encryption. The prototype is benchmarked and its feasibility in a real world

scenario is discussed in detail. This chapter concludes with PET’s disadvantages and the need

for trusted architectures.
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In Chapter 4, a notification based remote attestation infrastructure for a Infrastructure as a

Service (IaaS) cloud is discussed to address the limitations presented in Chapter 3. The chapter

describes the components of the infrastructure along with the protocols and algorithms. A

trusted computing base for hosting a web application in a virtual machine is established and

the system is benchmarked to study its overhead.

Chapter 5 studies the subjective and dynamic nature of trust in detail. It presents a SaaS

cloud, supporting dynamic configuration (using PET and remote attestation) of its services

based on the trust assessment of the client. We describe an architecture and algorithms for

policy mapping that considers viability of trust and present a cloud storage framework that

enforces privacy policy according to the varying trust levels of the CSP. An abstract model

containing computational, storage and monitoring unit with configurable elements is presented.

Algorithms that reflects how a change of trust influences the configuration of elements are

described.

Chapter 6 studies subjective and dynamic trust in the context of an IaaS. Trusted and non-

trusted pools are established and the migration of VMs based on the trust assessment is pre-

sented in detail.

Chapter 7 presents the future work and the dissertation concludes.



14 Chapter 1. Introduction

TRUST BASED 
 PRIVACY POLICY ENFORCEMENT 

IN 
CLOUD COMPUTING

Working securely with Untrusted Environments

A SaaS Case study
PET and 

Cloud Computing
(Chapter 3)

Improvements to 
Remote Attestation in

IaaS
(Chapter 4)

Working securely with environments percieved 
as trusted and untrusted at the same time:
Subjective and Dynamic Trust

SaaS architecture
(Chapter 5)

IaaS architecture
(Chapter 6)

Figure 1.3: Contribution



Chapter 2

Background

In this chapter we present the background required for the rest of the thesis. We present the

definition of Cloud Computing and its service models and deployment models in Section 2.1. In

Section 2.2 we discuss privacy, security and trust implications of cloud computing. In Section

2.4, we introduce PET and present searchable encryption in detail. Section 2.5 presents a

primer on remote attestation.

2.1 Cloud Computing

The idea of cloud computing was first proposed in 1963 by J.C.R. Licklider in “Intergalactic

Computer Network” [69]. Licklider envisioned that everyone on the globe to be interconnected

and accessing programs and data from any site, from anywhere. John McCarthy suggested

that the time sharing technology of 1960s might lead to a future where computing power and

applications could be sold as a public utility [87]. Over the years, the cloud computing idea

evolved considerably under the several terms such as grid computing, utility computing and

Service Oriented Architectures (SOA).

The word “cloud” was first used in the above context by Google ex-CEO Eric Schmidt

to describe the business model of services across Internet. Amazon in 2006 launched Elastic

Compute Cloud (EC2) as a commercial web service that allows small companies and individ-

uals to rent virtual machines on which to run the company’s own computer applications. Since

then there have been several definitions for cloud computing [109]. We adopt the definition of

15
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cloud computing by NIST [79] as it covers all the key concepts of cloud computing. The NIST

definition of cloud computing states,

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network ac-

cess to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal man-

agement effort or service provider interaction.

The service models, deployment models and characteristics of the cloud computing are

presented in this section.

2.1.1 Service Models

The configurable computing resources, denoted in NIST definition, are provisioned to cloud

customers in several layers, referred to as service models, each offering discrete capabilities.

The service models provided by cloud computing are the following:

• Infrastructure as a service (IaaS): IaaS refers to the service model where resources

such as the physical/virtual machines from the Cloud Service Provider (CSP) are rented

to the Cloud Service Clients (CSC). The CSP may also enable resource management

capabilities through a public Application Programming Interface (API), which can be

utilized by the CSC for dynamic provisioning. Examples of IaaS include Amazon and

Rackspace.

• Platform as a Service (PaaS): In PaaS, the CSP allows the CSC to develop new applica-

tions using the software stack and runtime environment (platform) provided by the CSP.

Examples of PaaS include Google App Engine and Microsoft Azure.

• Software as a Service (SaaS): The SaaS refers to the delivery model where the provider

implements the application (software) for the client and hosts the client data in a separate

client specific virtual container. In SaaS, the client delegates the application development

and the technical expertise to the host or scales the developed application to the provider.

The CSP uses its infrastructure to provide the services to the client. Examples of SaaS

providers include Salesforce and Google Docs.
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These service models of cloud computing can be deployed in several ways in the cloud

server.

2.1.2 Deployment models

The cloud computing model offers flexibility in its deployment, depending on the security

requirements of the organization, organizational structure and the location of the infrastructure.

The following are the four common deployment models [80]:

• Private Cloud: The cloud infrastructure is owned and managed within a private network

by an organization. The infrastructure is not shared with any other organization.

• Public Cloud: The cloud infrastructure is owned by the cloud provider and the organiza-

tions (CSC) rent the required resources from the provider. The infrastructure is typically

shared between different clients through virtualization of resources.

• Community Cloud: The cloud infrastructure is shared between organizations with shared

interests. It may be owned and managed by one or more organizations in the community.

• Hybrid Cloud: Hybrid clouds are the combination of two or more different cloud de-

ployment models (private, public or community) that are connected together by well

defined secure protocols.

2.1.3 Characteristics

Along with the flexibility of service and deployment models, cloud computing offers the fol-

lowing key functionalities [79]:

• On-demand self service: The client can automatically provision resources from the

server based on its demand without any human intervention.

• Resource pooling: The provider’s computing resources are pooled to serve multiple

clients using a multi-tenant model with different physical and virtual resources dynami-

cally assigned and reassigned according to the client’s demand.
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• Elasticity: Capabilities provided to the client can scale and shrink as per the demand.

• Measured service: Cloud systems automatically control and optimize resource use as

per the requirements of the client. The clients can be charged based on their usage of the

resources (Utility model).

These functionalities and the cost benefits offered by cloud computing due to economies of

scale make cloud computing extremely attractive for businesses and governments.

In terms of security, Small and Medium-sized Enterprises (SMEs) may gain from switching

to a cloud computing provider as the cloud provider may have better security infrastructure and

expertise to maintain them. Moreover, a privacy breach or security incident with respect to a

SME may not be as damaging compared to the benefits offered to the clients by the provider as

the functionality.

However, clients with mission critical applications, such as banking, healthcare and financ-

ing industries, may have stricter privacy and security requirements. Adopting cloud computing

is risky for these enterprises, as they lose control over the data stored in a cloud computing

provider’s infrastructure. Loss of privacy can prove catastrophic for these clients.

To effectively work with the provider, the clients with mission critical applications need to

make these assumptions: The cloud provider has the necessary infrastructure and expertise to

secure the client’s data from privacy breach and the cloud provider will not act against provider

voluntarily or involuntarily against the client’s interests. These assumptions make it necessary

for the clients to trust the cloud provider.

2.2 Privacy, Security and Trust

Privacy, Security and Trust are complex concepts with many definitions. In this section we

present the privacy, security and trust implications in cloud computing.

2.2.1 Privacy

In 1890, Warren et al. [114] defined privacy as the “right to be let alone” with the focus on

protecting individuals. Privacy is recognized in the Convention for the Protection of Human
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Rights and Fundamental Freedoms. Section 8 of the Canadian Charter of Rights and Freedoms

and Section 4 of the Bill of Rights in the USA provides constitutionally enforced privacy rights

for Canadians and US citizens respectively. In democratic societies, the right to privacy is a

fundamental right [74].

In information theory, data privacy is described as the right of the user to know where the

owner’s personal data is transferred to and what it is used for. It is considered as “the inde-

feasible right of an individual to control the ways in which personal information is obtained,

processed, distributed, shared, and used by any other entity” [20].

In today’s technological world, there are several services that aim to enhance people’s lives

by using the personal data of individuals as the main resource. For example, a service can

better target a particular user demographic, by knowing the users’ date of birth and address.

However, these benefits bring alongside new risks such as identity theft, surveillance, fraud,

e-mail spams etc. The client’s data that uniquely identifies the client, referred to as Personally

Identifiable Information (PII), should not be be used for any purpose by the provider that the

client has not authorized for. PII should be strictly bound by the privacy requirements of the

client. A privacy policy is the specification of the privacy requirements. An example language

for specifying privacy policies is P-RBAC [86] which has an XML representation.

P-RBAC has sets of entities: users, roles, data, actions, purposes, obligations and conditions

(Figure 2.1). In P-RBAC, permissions are assigned to roles and users obtain permissions by

being assigned to roles. Data is related to a user and action is the activity that can be performed

on the data. The data is usually bound to a purpose (e.g., data collected for one purpose should

not be used for other purposes without user consent). Obligations refer to actions that need to

be performed after a particular action is executed on the data. Conditions are the pre-requisites

that must be satisfied before performing an action.

Example Privacy Policy: A data owner has the following requirement: The user type re-

searchers, can only read the zipcode field from the data for the purpose of Research, provided

the data owner has given consent for that particular researcher. For every read by a researcher

the owner is notified by their official email. This policy is expressed in P-RBAC as the follow-

ing:
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Purpose

Conditions

Obligations

Data

Actions

Data Permissions

Purpose Binding

Privacy Data Permissions

RolesUsers

Figure 2.1: Core P-RBAC

(RS, ((RD, ZCode), Research, OC=Yes, Notify(ByOfficialEmail)))

There are two types of users: Researchers (RS) and Customers. We assume that there

are also two roles which have the same names. The notation (RD, ZCode) denotes the data

(ZCode for zip code) and action (RD for read only). The notation Research specifies the

purpose. The notation OC=Yes denotes the condition OwnerConsent (the owner needs to give

consent for revealing this data).

The notation Notify(ByOfficialEmail) is the obligation which states that the the cus-

tomer is notified by email for each read access of the zipcode. The policy specification is

independent of any configuration of services needed to support it.

Cloud computing and Privacy: Cloud computing is based on the concept of outsourcing

storage and computing of data (sometimes sensitive data) to a third party. With the increased

market appeal of cloud computing, there is growing concern over issues of data privacy within

the cloud based architectures. In the cloud computing context, the privacy policy is created by

the consumer of the cloud services, client and it is enforced by the server. Pearson et al. [88]

studied the following factors that affect the privacy of a cloud client:
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• Lack of user control of disclosed data with a cloud provider.

• Lack of training and expertise of the provider in handling PII.

• Unauthorized secondary usage of the data shared with the provider.

• Complexity of regulatory compliance in a dynamic cloud infrastructure, where data is

hosted simultaneously in multiple countries with different regulations.

• Addressing transborder data flow restrictions where certain types of data (such as health

information in USA) are not allowed to be transferred to a data center outside of the

country.

• Legal issues such as litigations a CSP may face to handover the data to a third party or

government.

The cloud faces the same privacy issues as other service delivery models, but it magnifies

existing issues due to the innate nature of delegation in cloud. The privacy issues in cloud are

deeply connected to data security.

2.2.2 Security

Security is one of the planet’s oldest activities [101]. It is hardwired into our ancestors for

survival against perceived threats from nature. Over the course of our evolution, security has

taken different forms: Physical security, national security, financial security, home security,

food security, school security, information security are few of them.

Security in information theory [88] is the preservation of confidentiality, integrity and avail-

ability of information. Confidentiality is the assurance that only the intended and authorized

entities have access to the information. Integrity guarantees that the data is not modified in stor-

age or transmission except by authorized entities. Availability ensures information is available

to authorized entities.

Security is a necessary, but not a sufficient condition for privacy [88]. Privacy specifications

allow clients to specify access and usage restrictions on the data, whereas security focuses on

how to prevent unauthorized access to information, while ensuring authorized access.
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Cloud computing and Security: As stated in Chapter 1, a survey conducted by IDC (a

market research firm) found that the Chief Information Officers of enterprises identify security

concerns as the top reason for them to not aggressively adopt cloud technologies [9]. Cloud

Security Alliance (CSA) [59] enumerates the following threats to the data in a cloud computing

environment.

• Sharing of data with an unauthorized party: The cloud provider could compromise

the confidentiality of the client’s data by sharing the data with unauthorized parties. This

can go against the Service Level Agreement (SLA) between the client and provider. The

client may never be aware of such a breach.

• Corruption of data stored: As the cloud provider has root access to physical machines,

the access allows the provider to modify/delete client’s data. The provider could tamper

with the data making the data non-usable or modify the data in a way that the system can-

not detect the modification. This poses a serious threat to the integrity of the application

data.

• Malicious internal users: The employee of a CSP who has root access to these physical

machines, could access the data and use it for their own advantage.

• Data loss or leakage: When a virtual machine is used in an infrastructure, it poses a

variety of security issues [48] which could compromise the data security. Moreover,

when the facility that hosts the user’s data is subjected to a natural calamity, it could risk

the loss of the user’s data.

These security issues need not hinder the clients from adopting cloud computing. Clients

can either deploy mechanisms such as Privacy Enhancing Technologies (PET) to protect their

PII or trust the provider is competent and will not act against the client’s interests.

2.2.3 Trust

The concept of trust spans across several domains. Sociologist Piotr Sztompka stated that “trust

is a bet about future contingent action of others” [105]. In psychology, trust “is believing that

the person who is trusted will do what is expected” [56].
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Computational trust in cloud systems is defined by Yew et al. [120] as “a particular level

of subjective assessment of whether a trustee (cloud provider) will exhibit characteristics con-

sistent with the role of the trustee”. A model that aids in the calculation and analysis of com-

putational trust, is referred to as a trust model. Sabater et al. [97] classified these models as

conceptual models, information sources, direct experiences, witness information, sociological

information and prejudice. Trust is not unidimensional. It has the following properties [120]:

• Quantifiable and Comparable: A trust assessment of a trustor about a trustee can be

converted to a single scalar value which can be compared with the trustor’s assessment

of another trustee.

• Subjective: A trustor’s assessment of the trustee can be completely different to some

other trustor’s trust assessment.

• Dynamic: A trustor’s trust on a trustee can evolve/devolve with time.

• Multidimensional: A trustor may trust a trustee for a specific purpose but for not any

other purpose.

• Reflexive, Non-symmetrical and Non-Transitive.

Trust is essential for every society to work. Bruce Schneier in Liars and Outliers [101]

proposed when there is a lack of trust or dilemma on the part of the trustor several societal

pressures can be introduced to induce trust (cooperation). These social pressures can be cate-

gorized as follows:

• Moral pressure: Pressure arising from an entity’s1 convictions on what is right and

wrong.

• Reputational pressure: Pressure that forces entities to follow group norms so that they

do not get bad reputation.

• Institutional pressure: Rules and laws of a state, ensure institutional pressure. They

induce entities to conform to the rules by imposing penalties and sanctions on defaulters.
1An entity may denote either a person or an organization
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• Pressure introduced through Security systems: Security mechanisms induce cooper-

ation, prevent defection and compel compliance. They include proactive and preventive

systems such as door locks, alarms, tall fences and reactive systems such as forensic and

audit systems.

In this work we study in detail about inducing trust in the cloud service provider through

security systems. We focus on proactive preventive systems such as Privacy Enhancing Tech-

nologies (PET) and reactive systems such as remote attestation that apply social pressures on

the cloud service provider to conform to the accepted SLA. We do not study the calculation

of trust through a trust model. Trust models for clouds not only use performance related at-

tributes (downtime, responsiveness of services) to assess the trustworthiness of a cloud but

also, attributes that represent privacy compliance. We assume that there is a trust model that

will provide the client with trust values.

2.2.4 Risk Vs Trust

A concept that is closely related to trust is risk. Risk is the statistical expected value of an

unwanted event that may or may not occur [55]. Both trust and risk are essential tools used for

making decisions in an uncertain environment [63]. In the context of cloud computing risks

can arise from the following inherent issues in cloud computing [25]:

1. Business Continuity and Service Availability

2. Data Lock-in

3. Performance unpredictability

4. Data confidentiality and other security issues

Each of these inherent issues pose a potential risk to a cloud computing consumer. The

focus of this work is on (4), addressing the data confidentiality and the security issues.
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2.3 Threat Model

Threat models in a cloud computing infrastructure are discussed in the literature by McCune

et al. [77], Bertholon et al. [34] and Bleikerts et al. [35]. Bertholon et al. [34] does not

elaborate on the threats in cloud server and remote adversary. Bleikerts et al. [35] discusses

threats arising from the cloud clients and the end users of the client’s services. We presented

the security threats to data stored in cloud computing by CSA in Section 2.2.2. To concretize

the threat model for the rest of the thesis, we introuduce a model that is very similar to the one

discussed in Mccune et al. [77] in a remote attestation context. The threats from the client and

the end users of client’s services are grouped under remote adversary. Threats for the client in

a cloud computing architecture can arise from the following entities: cloud server or a remote

adversary.

• Cloud server: A cloud server administrator has not only complete access to all the in-

formation stored in a cloud server but also has physical access to the server’s hardware.

They can execute and modify any binary in the server and have the ability to inject ma-

licious code in an executing binary by modifying the memory. In the extreme case a

malicious administrator has the ability to replace the bios, bootloader and the operat-

ing system with malwares. Physical attacks against the CPU, Trusted Platform Module

(TPM) or the system busses are not considered as part of this threat model.

• Remote adversary: A remote adversary can either attack the cloud server or try to

compromise the communication channel between the server and the client. The remote

adversary has access to the IP address of the cloud server and can deploy state of the art

attacks against the server.

As in any standard secure communication in the Internet, the Dolev-Yao intruder model

[42] is considered for network communication. A network adversary has the ability to analyze,

interject or modify network traffic between cloud server and the client. However, the adversary

cannot break cryptographic primitives.

In a cloud computing infrastructure the focus is largely on the cloud server adversary. Deal-

ing with remote adversary is well studied. A server is protected against remote attacks by in-
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stalling firewalls and Intrusion Detection Softwares (IDS) [96]. It is also common among the

system administrators to follow some of the best practices in industry to secure against remote

attacks. The communication channels are protected using an encrypted SSL based pipeline

[41] for transmitting data in the network.

2.4 Privacy Enhancing Technologies (PET)

Privacy Enhancing Technologies (PET) induces trust on the cloud service provider by pro-

viding with a set of tools and mechanisms that cryptographically protect the clients privacy

online against the cloud service providers. PET is defined by Blarkom et al. [108] as “a

system of information and communication technology measures protecting informational pri-

vacy by eliminating or minimizing personal data thereby preventing unnecessary or unwanted

processing of personal data, without the loss of the functionality of the information system.”.

Privacy preserving protocols [47], a class of PET, enable users to perform computation over

cryptographically protected data.

PET technologies include:

1. Privacy management tools that enable inspection of server-side policies that specify the

permissible accesses to data.

2. Secure online access mechanisms to enable individuals to check and update the accuracy

of their personal data.

3. Anonymizer tools, which will help users from revealing their true identity by not reveal-

ing the PII (Privately Identifiable Information) to the cloud service provider.

Privacy Enhancing Technologies (PET) can be used by the developers of the application to

enhance the individual’s privacy in an application development environment. In this section,

we survey state of the art in PET.

Homomorphic Functions: Homomorphic encryption schemes refer to asymmetric encryp-

tion techniques, where algebraic operations on plain text can be performed directly on a re-

spective cipher text. This was first introduced by Goldwasser et al. [53], where the authors
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performed modular addition of two bits using multiplication of ciphertexts. The two kinds of

homomorphic functions are the following:

1. Partially homomorphic functions and

2. Fully homomorphic functions

Partial homomorphic functions enable either addition or multiplication on plaintexts, but

not both. However, in a fully homomorphic scheme, both operations are supported. Fully

homomorphic functions, allows executions of programs in an untrusted party without revealing

the input to the party. The untrusted party can been seen as a cloud provider.

Craig Gentry [51] described the first fully homomorphic encryption scheme based on lattice-

based cryptography. However performing Google search on encrypted keywords using homo-

morphic encryption based on Gentry’s scheme will increase the computing time by trillion

cycles.

Homomorphic encryption remains in the theoretical realm as more advanced abstractions

need to be created for using homomorphic functions in practical applications.

Privacy By Secure Computation: The objective of secure computation is to evaluate a func-

tion f that takes inputs from two parties A and B without revealing the exact inputs to each

other. Yao’s protocol [119] provides some of the basic techniques to perform a computation in a

secure way without revealing the inputs. Yao’s protocol forces the expression of a computation

problem in terms of logical circuit using gates. The input of each gate is randomly encrypted

and then the final resulting output is decrypted to get the exact answer of the computation. The

encryption and the decryption is done at the client’s end. The expression of a simple problem

using Yao’s protocol is found to be non-trivial. Applications that typically reside in the cloud

(e.g., mail) are too complex to be converted into Yao’s circuits.

Privacy By Encryption: Privacy can be enforced by encrypting all the data that is stored in

the cloud. The main issue is that the cloud can be only used for storage of the data. As the

data will be unrecognizable to the cloud service provider, it will not be possible for the cloud

service provider to process the data nor to perform some number crunching tasks. Searchable
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encryption uses an algorithm, which allows users to encrypt the data and then provides the

server with trapdoor information [36], so that the server can search for a given string through

the searchable encryption algorithm. This part is discussed in detail in Section 3.2.3 of Chapter

3.

Privacy-Preserving Multi-keyword Ranked Search over Encrypted Cloud Data [38] pro-

poses a new encryption scheme for keyword search over encrypted data in cloud computing

environment with privacy and performance requirements.

Although searchable encryption is a proven way of preserving privacy of data in the cloud

without compromising on the functionality of searching, cryptography increases the compu-

tational overhead on the server [94]. Moreover, the use case in which searchable encrpytion

is applicable to is ad-hoc (in this case for searching keywords) and may not be applicable to

complex application scenarios.

2.5 Remote Attestation

Remote attestation is a reactive security system that provides mechanisms for a client to verify

and attest a remote platform. This section presents the necessary background on remote attesta-

tion. The basic concepts of trusted computing and trusted boot is presented in Section 2.5.1 and

Section 2.5.2, respectively. The cryptographic coprocessor, Trusted Platform Module (TPM),

is discussed in detail in Section 2.5.3. This section concludes by presenting several methods of

remote attestation such as realtime measurements and dynamic measurements in Section 2.5.4

and Section 2.5.5.

2.5.1 Trusted Computing

To address the cloud server threat model described in Section 2.3, trusted computing was intro-

duced by Trusted Computing Group (TCG) [106]. Trusted Computing refers to the infrastruc-

ture that behaves consistently based on the expected behavior of the user. The behaviors are

enforced by computer hardware and software through remote attestation. The Trusted Comput-

ing Group is a consortium founded by AMD, CISCO, IBM, HP, Microsoft and Wave Systems

Corp in 2003 to develop technologies and standardized protocols for trusted computing. TCG
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has devised specifications for trusted boot, specifications for a cryptographic co-processor,

Trusted Platform Module (TPM) and protocols for remote attestation of the platform. They are

discussed in detail in the subsequent sections.

2.5.2 Trusted Boot

The server’s state (platform integrity) can be verified only by inspecting the software binaries

that are loaded in the server. The list of software binaries that are loaded into the memory

when booting (BIOS) to the time of verification will enable the client to accurately assess if the

server’s state is compromised. The list also referred to as measurement list, includes the hash

of OS kernel binaries, user binaries, configuration files and all the files that are mapped into

the memory by the OS ordered by their time of launch.

Sn-1BIOS BOOTLOADER KERNEL Sn

MEASUREMENT LISTTRUSTED PLATFORM MODULE

M M

pcr = H(pcr || m) Append m to measurement list

M1 M2 M3 M(n-1)

H(kernel)H(bl) H(S3) H(Sn)

Measurement values (M1,  M2, ...., M(n-1), Mn) are input to TPM and measurement list as m

Figure 2.2: Trusted Boot

To create a measurement list, m, each software binary, S i is responsible for properly mea-

suring and recording the hash measurements, Mi+1 of binary, S i+1, that S i loads in the memory

(i, i + 1 refers to the sequence in which binaries are loaded in the memory) (Figure 2.2).

Hence this forms the chain of trust: that is the verifier trusts each software to have properly

measured and recorded subsequently launched pieces of software. This leads to a condition

where the first program that is loaded to the memory, BIOS (S 0), should be trusted.

However, a BIOS cannot be trusted as the server administrator, who has physical access to

the server, can easily overwrite a BIOS (BIOS flashing) of the compromised server through a
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BIOS rootkit attack [45]. Therefore, there is a need to verify the BIOS before measuring the

entire software stack that is loaded subsequently.

The BIOS is verified by an untamperable hardware root of trust, Trusted Platform Module

(TPM). On first system boot, the TPM calculates the hash value of the BIOS and records it in

its storage before launching the BIOS. The BIOS measures and loads the boot loader and the

boot loader measures and loads the operating system and so on, hence forming a chain of trust.

Such a boot is trusted boot [50].

2.5.3 Trusted Platform Module (TPM)

To provide an untamperable hardware for root of trust, the Trusted Platform Module (TPM), a

cryptographic co-processor chip, is developed using the specifications of Trusted Computing

Group [106]. The TPM chip is shipped with all modern processors and chipsets [22, 23]. TPM

measures the BIOS before loading it into the memory. It also provides the hardware for hashing

the BIOS and the registers to store an aggregated hash of all the measured hash values. The

operations cannot be tampered with, since all operations are peformed in the TPM hardware.

A TPM contains the following components in its architecture (Figure 2.3):

I/O: The input output controller of trusted platform module manages the information flow

over the communication bus of the TPM, by routing messages to appropriate components of

the TPM.

Cryptographic Co-Processor: The cryptographic co-processor, implements cryptographic

operations within the TPM. This includes asymmetric key generation (RSA), encryption/decryption

(RSA), Hashing (SHA-1) and Random Number Generation.

Key generation: This component generates key pairs for the use of RSA algorithm. A TPM

can support up to 2048 bit keys.

Hash-based Message Authentication Code (HMAC) Engine: The HMAC engine is re-

sponsible for the calculation of HMAC as per RFC 2104. HMAC calculation is used to provide
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Figure 2.3: TPM Architecture

proof of data created by TPM and for verifying the HMAC of the data arriving to TPM.

Random number generator (RNG): The RNG component generates random bits that are

used for nonces, key generation and randomness in signatures.

SHA1 Engine: The SHA1 engine is a message digest engine which uses the Secure Hash

Algorithm [33]. This algorithm hashes the data given and produces a 20 byte digest. This

forms the basis of the HMAC engine (Hash based message authentication code) which is used

for computing digital signatures and creates objects necessary for integrity protection. The

hash interfaces are exposed outside the TPM to support measurement during platform boot

phases (measurement of BIOS).

Power Detection: This component manages the power states of TPM in conjunction with

physical server power states. This component identifies reboots in the platform and notifies

TPM of the reset.
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Opt-In: This component provides mechanisms to allow the TPM to be turned on/off.

Execution engine: The execution engine runs program code to execute TPM commands that

are received from the BIOS and TPM driver of the OS. The TPM commands provides TPM

management functions such as starting a TPM, protecting the TPM by a password and also

operational functions such as encryption and decryption of data and storing integrity values in

its registers.

Non-volatile memory: Non-volatile memory is used to store persistent identity information

of the TPM. It stores keys, that are used to authenticate the TPM.

Apart from these components, a TPM has special registers called Platform Configuration

Registers that holds the aggregated hash of integrity values of the loaded applications.

Platform configuration registers (PCR): A platform configuration register is a 160-bit stor-

age for the integrity values. A TPM has a minimum of 16 PCR registers. However, the latest

TPM ship with 24 registers [106]. A PCR is designed to hold an aggregated hash value, Ag,

that can act as the proof of all the measured hash values by a server.

The aggregated hash value at given stage n (value representing the hash of all the softwares

loaded till this stage, n) is given by,

Agn = H(Agn−1 || H(S n)) (2.1)

Every time a software binary, S n is loaded in the memory, its hash value, H(S n) is concate-

nated with Agn−1, the aggregated hash of all the softwares up to S n−1. The new aggregated hash

Agn is given by the hash of the concatenated value, Agn−1 || H(S n). This process is referred to

as extend and is used widely in the architectures that use TPM for remote attestation.

Equation (1) can be further expanded as follows:

Ag = H(H(H( ... H(0 || H(Bios)) ||...) || H(S n−2)) || H(S n−1)) || H(S n))
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The aggregated hash property is not commutative and hence a change in the loading order

of software causes a change in hash values. For example, measuring S i and S i+1 is not the

same as measuring S i+1 and S i. The other hash property is also onewayness, where it is crypto-

graphically impossible for an attacker to determine the input message (hash values of software)

given a PCR value.

The values in PCR are modified only using a PCR Extend command. This command is

invoked by the BIOS or the operating system with the hash of the software binary, H(S n), that

is most recently loaded in the memory and a PCR number that will identify the PCR among the

24 PCRs. PCR Extend replaces the value of the PCR indicated by the PCR number with the

hash of the current value contained in that PCR and hash of the most recently loaded software

binary, H(S n), concatenated together (Equation 1). Hence the PCR value cannot be overwritten

to a known secure hash value by a malicious program, because PCR values are updated only

through the PCR Extend operation.

Signed PCR values are retrieved by the operating system in the server using a T PM Quote

operation. T PM Quote provides the invoker with the cryptographically signed aggregated

hash value with a key that uniquely identifies the TPM. A third party verifier is provided with

the measurement list (Section 2.5.2) and the value of T PM Quote operation. The authenticity

of a measurement list can be verified by calculating the aggregated hash of the values provided

in the list and comparing it with the aggregated hash that is digitally signed by the TPM.

Thus TPM through its PCRs allows platform integrity reporting by creating a nearly un-

forgeable hash-key summary of the hardware and software configuration [TODO]. This hash-

key summary serves as the proof for a third party that the software has not been changed.

2.5.4 Realtime Measurements

The aggregated cryptographic hash allows the client to verify the code identity2 of the software

binary. However, the measured cryptographic hash does not control the behavior of the binary,

as it just verifies if the binary is not modified or corrupted before loading it into the memory.

When an administrator modifies the part of the loaded program memory with malicious code,

the client will not be able to detect it, since the static measurement is made only before loading
2Code identity of a binary allows the user to identify if the binary is modified before loading into the memory.
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of the binary. This can be countered by reporting realtime hash measurements of the binary

to the client. The realtime hash measurements are performed by calculating the hash over the

memory in which the program is loaded rather than the binary image in the disk [43, 121, 26].

We discuss one such architecture in detail, HIMA [26], in Section 4.2.2.

2.5.5 Dynamic Root of Trust for Measurement

In a typical GNU/Linux operating system, reporting the integrity measurement will involve

measuring the hash values of more than 5000 system and configuration files [34]. Establishing

a Trusted Code Base (TCB) among the 5000 files can be very challenging. The different ver-

sions of code for different platforms and the consistent updates of the code only make integrity

measurement management daunting. To address these issues, AMD and Intel extended the x86

instruction set to support dynamic root of trust for measurement (DRTM). A DRTM opera-

tion provides a temporary protected sandbox for a specified sensitive code to execute, where it

cannot be accessed by other executables that are loaded in the memory. This makes a DRTM

operation secure irrespective of the software binaries that are loaded in the real memory.

Invoking DRTM operation, resets the CPU and memory controller to a secure state. In this

state, most of the hardware and software interrupts are disabled and the DMA protections for

the region of memory in which the sensitive code needs to be executed is enabled. The CPU

measures an executable sensitive code for the DRTM operation and extends (Section 2.5.3) it

into the TPM. After the measurement, the sensitive code is executed in that hardware protected

environment. The CPU is resumed to the state it was in before the DRTM operation, once the

execution is terminated.

AMD DRTM is called Secure Virtual Machine (SVM) mode [23] and Intel’s DRTM is

called Trusted eXecution Technology (TXT) [22]. Both AMD and Intel are shipping processors

with these capabilities as of 2010.

The Flicker project [76] used the Intel TXT support to implement on demand DRTM based

secure execution. It allowed the currently executing module to pause to execute a measured

sensitive piece of code to run. Once completed, the previous environment was resumed to

run with full access. The context switches in Flicker was found to be costly. Trustvisor [77]
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improved on Flicker project by implementing a hypervisor and a VM to provide DRTM func-

tionality to applications thereby minimizing context switch overhead.



Chapter 3

Chaavi: Webmail with Searchable

Encryption

The last chapter (Chapter 2) presented the privacy, security and trust challenges in cloud com-

puting. Section 2.4 introduced Privacy Enhancing Technologies (PET) as one of the solutions

to counter these challenges. This chapter proposes a webmail architecture using PET tech-

nologies, in which users can retain their mail in the servers of their service providers in a

cloud without compromising functionality (searchability of mails) or privacy. We benchmark

our system and provide the results showing that it is feasible to architect a secure solution for

webmail systems using a PET.

This chapter also details the limitations of our proposed webmail system and the speci-

ficity of the webmail solution in addressing the general issue of privacy, security and trust in

cloud computing. This chapter concludes with the motivation for remote attestation in cloud

computing.

Section 2.3 presented the threat model for cloud computing. This chapter addresses the

threats arising from the cloud adversary and a remote adversary. The proposed work in this

chapter addresses the class of cloud services that stores data and provide searching as its pri-

mary functionality. This includes services such as webmail, collaborative document authoring

(Google documents) and private blogs. The example used throughout this chapter is our web-

mail system, Chaavi.

The rest of the chapter is organized as follows. A motivating example of webmail services

36
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is described in Section 3.1. Section 3.2 reviews background and related work for searching on

encrypted data. Section 3.3 presents the architecture of Chaavi system. The implementation

details are discussed in Section 3.4. Section 3.5 presents the experiments conducted to study

the system and we conclude by stating the limitations of our system in Section 3.6. Section 3.7

concludes the chapter with discussion on the need of remote attestation.

3.1 Motivating Example: Webmail Services

Webmail services offer user convenience. A username and password are not tied to any partic-

ular equipment or location. Webmail services primarily offer the following functionality:

1. Mail Storage

2. Organization of mail

3. Keyword Searching

For (1) and (2), the service provider need not know the exact content of the mail. However,

for performing a plaintext keyword search on email the cloud provider needs to know the

content of the mail, so that the provider’s infrastructure can be used to index the mail content,

which can in turn be used for the search process. The use of webmail services, has the following

shortcomings:

1. The need to trust the service provider (e.g., Google, Yahoo, or Microsoft) as the mail

is stored as plain-text in the service providers’ servers (or using single key encryption).

The mail is then prone to insider attacks (anyone with the access control will be able to

read the mails).

2. There is an assumption that the provider is honest and the security level is sufficient.

3. When the mail is transferred from one domain to another, it is transmitted through SMTP

[93]. SMTP as a protocol does not support encryption. Technologies like Transport

Layer Security [41] are used to transfer mail to other domains. However, the data is still

protected only up to the layer at which it reaches the target mail server. Once it reaches

the target mail server, the mail is again prone to insider attacks in the new domain.
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To address such problems, various client encryption systems, such as Pretty Good Pri-

vacy (PGP) [122], have been developed. However, encryption using PGP make the mail non-

searchable in the web server.

3.2 Background

In this section, we review the basic elements common to webmail infrastructures. We also

present an introduction to PGP and searchable encryption.

3.2.1 Mail Architecture

The webmail infrastructure is responsible for end-to-end delivery of email. Figure 3.1 presents

architectural components and protocols typically used to support webmail applications.
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Mail User Agent
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Figure 3.1: Email Architecture

Components

This subsection describes the architectural components.

• Mail User Agent: The Mail User Agent (MUA) is used to manage a user’s email. It

acts on behalf of the user to send and receive mail from the Mail Transfer Agent (MTA).

Popular MUAs include Microsoft Outlook, Mozilla Thunderbird, Apple Mail. In a web-

mail system, the MUA runs in the server and the pages are rendered as HTML pages for

the browser.
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• Mail Transfer Agent: The Mail Transfer Agent (MTA) transfers messages from one

server to another. It receives email either from another MTA or MUA. The transmission

of email follows standardized protocols for message transfers.

• Protocols: The following protocols are commonly used in a mail architecture.

– Simple Mail Transfer Protocol (SMTP): SMTP refers to the standard for the trans-

fer of messages from one server to another. It is used by MUA to relay mail through

the MTA and it is also used by the MTA to send and receive mail between other

MTAs. SMTP as a standard does not encrypt messages (unless Transport Layer

Security encryption is used).

– Post Office Protocol (POP) / Internet Mail Access Protocol (IMAP) POP/IMAP

are email retrieval protocols that specify standards for downloading messages from

the MTA for MUA. Examples of use is found with support for POP version 3 and

IMAP as provided by Gmail.

Privacy Threats

In webmail systems, there is a server for webmail introduced into the standard mail system

(Figure 3.1). It acts as the Mail User Agent for a number of users and manages email for all

the users. The MUA, unlike the standard model (Figure 3.1), is centralized at the server. The

webmail server uses POP/IMAP to download messages from MTA.

There are several privacy concerns with respect to email systems. If the connection to the

webmail server is not secured using Hypertext Transfer Protocol Secure (HTTPS) all the data

between a user’s browser and the server will be in plain text. SMTP, unless used with the

Transport Layer Security (TLS) layer, is insecure. Even if the TLS layer is used, the mail

will still be accessible by the owner of the MTA, through which the mail is routed. This is

because TLS is designed to protect data in an insecure network (like Internet) and not from the

communicating parties. Some of the security threats involved in email systems are identified

by Kangas et al. [64], and Kaufman et al. [66]. These are listed below.

• Eavesdropping: When email is unencrypted, potential hackers who have access to net-

work packets flowing through the network will be able to read the email sent. This can
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be achieved by enabling the promiscuous mode on ethernet cards.

• Identity Theft: If the user’s username and password is obtained, then hackers have full

access to all the email content. Password information can be obtained by eavesdropping

on the network.

• Invasion of Privacy: The recipient of the mail is able to get more information from the

email header information than what the sender intends to reveal. For example, the header

will reveal the sender’s SMTP IP address and subject of the email sent.

• Message Modification: Anyone who has administrator access to the webmail server

can modify the messages stored in the server. It is not always possible for a recipient to

determine that email has been tampered with.

• False Messages: It is relatively easy to create false messages and send it as if it is from

any person (as evidenced by spam).

• Message Replay: Akin to message modification, the message created by a user can be

saved and sent again and again.

• Unprotected Backups: Messages are stored in plain-text on SMTP servers, and backups

will also contain complete copies of the messages. Even when the user deletes a message

from the server, the backup will still hold the content.

• Repudiation: As email messages can be forged (for example see your spam box), there

is no way of validating that the email has been in-fact sent by a particular person. This

has serious implications in business communications, electronic commerce.

3.2.2 Pretty Good Privacy

PGP was created by Zimmermann et al. [122], in 1991 to address the security issues with

email. PGP encryption uses a serial combination of hashing, data compression, symmetric-key

cryptography, and public-key cryptography. Each public-key is bound to an email address. It

serves as the verification mechanism for the origin of the email. As the email is encrypted
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using the private key of the user and the encrypted version is sent into the network, it addresses

many security issues of the email infrastructure. For webmail systems, software such FireGPG

[6] provide a browser extension that implements PGP. As PGP support enhances the security

of the email system by encrypting the mails, the mail becomes unreadable by the server. Hence

the server cannot perform keyword searches on the mail.

3.2.3 Searchable Encrypted Data

Searchable encrypted data enables the client to protect the privacy of their mails without com-

promising on the keyword search functionality on the mail. Public Key Encryption with Key-

word Search (PEKS) [36] is one of the seminal works in the area of making encrypted data

searchable. The authors of PEKS propose to encrypt the message (e-mail message in our case)

using the Public-Private key infrastructure. Along with this cipher text a Public-Key Encryp-

tion with Keyword Search (PEKS) of each keyword (the words that make up the message)

is appended to the final message. To send a message M with keywords W1, W2, ... Wm the

following information is transmitted to the storage server, that performs the PEKS search:

EApub(M) GPEKS (Apub,W1) G... GPEKS (Apub,Wm)

where Apub is the public key of the user, EApub(M) is the encrypted message, PEKS is the

function that encrypts the keywords using Apub. To test whether a word W is a part of the

message, a user supplies PEKS (Apub,W) along with a trapdoor function Tw to the server. As

the function PEKS is probabilistic the value of the PEKS (Apub,W) changes randomly every

time and a straightforward comparison of encrypted keywords will fail. The trapdoor function

enables the user to test if two different cipher texts are formed using the same input keyword

(W) to PEKS function. Thus Tw can effectively test whether PEKS (Apub,W) = C′, C′ being

the encrypted keyword that is stored in the server. If PEKS (Apub,W) , C′ the server learns

nothing more about W or W ′ that was used to create C′ using PEKS (Apub,W ′).

Public Key Encryption with Keyword Search Revisited [29] identifies some of the issues

with the original PEKS and proposed a provably secure algorithm. The authors argue that

if in PEKS the server starts learning the trapdoor then there can be a categorization of mail

formed just based on the learned trapdoor information. The trapdoor information is the extra
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information sent to the server along with the encrypted keyword for the server to test for the

existence of a keyword.

The authors also identify that in PEKS there is an assumption that the communication

channel between the sender and the server is secure. To enable secure communication through

insecure channels the authors propose a Secure Channel Free Public Key Encryption with

Keyword Search (SCF-PEKS), that uses a server’s public-private key pair for communication.

In our work we achieve privacy for a webmail system by using a modification of the PEKS

[71] scheme. The email messages are encrypted using the traditional public-private key en-

cryption. The keywords from the email messages are extracted and each keyword is encrypted

using a deterministic symmetric encryption: AES without random Intialization Vector (IV)

[40]. The deterministic nature of the encryption increases the chances of chosen plaintext at-

tacks over our encryption scheme. However, our focus is to analyze how these encryption

schemes can be engineered in a real working environment and study their performance impli-

cations.

3.3 Architecture

This section describes the various components of Chaavi. Figure 3.2 gives the overall architec-

ture of the system.
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Figure 3.2: Chaavi - Architecture
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3.3.1 Browser

The browser is responsible for rendering the pages created by the web application. Its de-

fault behavior can be modified or enhanced by using extensions or plugins in the browsers.

Modern browsers such as Mozilla Firefox, Google Chrome provide functionality to write ex-

tensions/plugins and install the extensions locally.

3.3.2 Browser Extension

A browser extension is used in Chaavi to encrypt the secure message sent to the server. It is

also used to decrypt the messages that are sent from the server. Additionally it has key genera-

tion and key management functionality. The extension is composed of the following modules.

Public-Private Key Generation: As stated earlier, Chaavi uses a public/private key model for

securely communicating messages. In a public/private key model, a public-private key pair is

generated when the system is initiated for the first time, for a particular user. The messages are

encrypted by a symmetric key. The symmetric key is encrypted by the public key and can be

decrypted only by use of a private key. The encrypted message is appended with the encrypted

symmetric key and is transmitted as a message. The public key as the name implies is shared

in a public forum.

Keyword Encryption Key Generation: Public-Private key pair is used for secure message

communication. A symmetric key is also generated to encrypt the individual keywords present

in the mail. A symmetric algorithm (unlike the Public-Private key) is used here as the keywords

need not be decrypted by anyone else other than the sender of the message.

Key Management: Key management is performed using a graphical user interface (GUI).

The GUI enables the user to add or delete the public keys of the recipients with whom the user

wants to communicate through mails.

Encryption: The functionality of the encryption module is to encrypt the messages that are

sent to the server from the browser. It also extracts and encrypts the individual keywords in the

message. The encryption module is triggered from the web application when the user submits

a mail to send it to the web server. This module encrypts the message using the recipients’s

public key and the keywords with the keyword encryption key.
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Decryption: When an encrypted message is sent from the server to the browser, the decryp-

tion module decrypts the messages using the user’s private key that is generated during system

initialization.

3.3.3 Web Application

The webmail application provides graphical user interfaces for the users to read, send and

search messages. It comprises of both email server and client-side (browser) functionality.

When a user sends a message from the web application (Figure 3.3), the Encryption module

encrypts the message and extracts and encrypts the keywords. The web application sends the

encrypted message and keywords to the web server. On receiving the encrypted message and

the keywords, at the server-side the application saves the encrypted message alongside the

encrypted keywords in a database for future retrieval. The application then transfers the mail

to the Mail Server (SMTP server) for the mail to be be delivered to recipient.

When the user wants to search for a particular keyword in their inbox, the encrypted key-

word is sent to the server-side. The web application then searches for the mails corresponding

to that particular encrypted word and then sends the encrypted mails back to the user.

3.3.4 Database

The mail storage and organizational functionality is already handled by the web application

provided by Squirrelmail. One custom table, search is added to the database, which stores the

< message id, encrypted keyword > pair. This database is looked up when the user performs

a keyword search.

3.3.5 Mail Server

The mail server sends and receives email communicated to it through the Internet. The mail

server functionality is not modified by our system. The web application communicates with

the mail server to send and receive messages.



3.4. Implementation 45

Browser Browser 
Extension

Webserver + 
Database

Mail 
Server

Plaintext 
Message

Encrypted 
Message + 
Encrypted 
Keywords

Encrypted 
Message

Sending 
Message

Search 
Message

Plaintext 
Keyword Encrypted 

Keyword

Corresponding 
Encrypted 
MessagePlaintext 

Message

Figure 3.3: Sending and Searching for a Message

3.4 Implementation

The following software is used to implement the different components in the system:

• Browser - Google Chrome

• Browser Extension - Google Chrome using Javascript

• RSA encryption/decryption library from hanewin.net [8]

• AES encryption library [7]

• Web Application - Squirrelmail over PHP and MySQL

• Mail Server - Using the POP3 interface of the csd.uwo.ca mail server

The implementation details of individual modules of the system are detailed below.
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3.4.1 Browser Extension

Public-Private Key Generation: The RSA algorithm [95] is used for the creation of keys.

The key requires two large prime numbers as the input along with a random seed. All of

these inputs are created by the extension randomly and provided as input for key generation.

The keys are then stored locally along with the user name, for future retrieval in the local

browser database. The key generation is implemented using the RSA libraries available from

hanewin.net [8].

AES Key Generation: The symmetric AES key algorithm is used to encrypt the message

and individual keywords present in the mail. The AES key generation algorithm takes as input

a random seed, which is provided by requesting that the user move the mouse over the browser

window. That generates some random coordinates, which is then used to generate the key.

AES is a natural choice for the symmetric key algorithm as it has been analyzed extensively

and used worldwide [115]. However, unlike PEKS [29], AES algorithm does not support

trapdoor and hence it is susceptible to chosen plaintext attacks (The attacker has the capability

to choose arbitrary plaintext and the corresponding cipher texts). Moreover the encryption of

the keywords under AES negates the possibility of performing range searches (e.g., 10 < b <

20) or similarity searches (name staring with ‘ka’).

Key Management: The GUI for key management (Figure 3.4) is developed using the options

functionality provided by the Chrome extension framework. It is used to insert the public keys

of the recipients with whom the user wants to communicate. The private key of the user cannot

be managed using this interface (the system automatically generates it when the user logs in

for the first time). The keys are stored in the local storage database provided by HTML5. The

local storage enables key-value storage locally managed by browser.

Encryption: The user is provided with a HTML form from the web application, which con-

tains input fields to enter the recipient email address, subject and the contents of the mail.

The form submission event (onsubmit event) is associated with a custom submit event handler,
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Figure 3.4: Key Management

which is hooked to the encryption module. The encryption module encrypts the contents of

the mail using the user’s public key and replaces the value in the field (contents of the mail)

with the encrypted message. Along with this, the keywords in the message are extracted by the

keyword extraction function and each keyword is encrypted using the AES key and stored in

an object. This object is serialized in JSON (Javascript Object Notation) and sent to the server

along with the encrypted message.

Decryption: When an encrypted message is sent from the server to the browser the server

adds the attribute value post − deencrypt to attribute class. The extension identifies these

messages and decrypts the messages using the private key of the user. This decrypted message

replaces the original encrypted message in the html page so that the user can see the message

in the encrypted mail.

3.4.2 Web Application:

An open source web application (Squirrelmail) is identified and it is modified for our applica-

tion. Squirrelmail is responsible for storage and organization of the mails. Our custom module

is developed in PHP and added to Squirrelmail to save the encrypted messages alongside the

encrypted keywords and for the retrieval of the messages based on the given encrypted key-

word.
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3.5 Experiments

The performance of algorithms used in Chaavi (Privacy Preserving Web Mail with Keyword

Searches) is studied in terms of space and time consumed by the algorithm in the local client

system. Even though the performance of the encryption algorithms has been studied before,

we focus on the performance of our system. The results presented in this section are intended

to provide some insight on the overhead provided by the algorithms in a browser based exten-

sion environment. Since encryption and decryption is performed in the client browser system,

the encryption and decryption is independent of the number of users currently using the sys-

tem. Hence, we focus on the performance of the encryption algorithms for a browser-based

extension environment.

All the experiments are executed in a Pentium IV Core 2 Duo processor using Google

Chrome 5.0.375.99 beta.

3.5.1 Time Complexity

The following algorithms are studied with respect to the execution time.

• Key Generation

• Encryption and Decryption (RSA Algorithm)

• Keyword Encryption (AES Algorithm)

Key Generation

Key generation is expensive since it involves finding two large random prime numbers and

finding a product of the prime numbers based on the given random seed. The length of keys

(as measured by bits) can be of sizes: 128, 256, 512, 1024. The higher the number of bits

used, the more difficult it is to break the key (According to Schneier et al. [100], for breaking

AES with key size greater than or equal to 256-bit through brute force will require fundamental

breakthroughs in physics and understanding of universe). However, generating larger keys is

time consuming. We present the average time taken for key generation for different bit sizes in

Figure 3.5.
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Figure 3.5: Key Generation

As can be seen the keyword bit size increases the creation time exponentially. The 1024 bit

key generation takes around 41 seconds. However, as this is a one time activity (when the user

sets up the system) the usability and inconvenience is minimal.

Encryption and Decryption

When the user wants to send an email the encryption module is executed each time, and the

decryption module is activated when the user wants to read an email. This is a frequent ac-

tivity and therefore more computation time spent on these modules will impact usability. The

encryption and decryption algorithm is run over random data (which represents an email mes-

sage) set using the Javascript library in Chrome browser. As described in Section 3.4.1, the

encryption and decryption has two steps:

1. Encryption/decryption of the symmetric key using private key.

2. Encryption/decryption of message using the symmetric key.

The performance of RSA algorithm is studied for encryption/decryption of symmetric key

here in a browser environment. Five trials of experiments show at an average a 512 bit key
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takes 48 microseconds for encryption and 53 microseconds for decryption, respectively.

The following are the results for the encryption and decryption of a message using AES

encryption (Figure 3.6).

Figure 3.6: Encryption and Decryption

It can be seen that at a relatively larger message size, around 212 KB, the time taken for

encryption and decryption is less than 2 seconds. However as the message size increases in the

order of megabytes, the time is around 16 seconds. A 67 MB message takes around 16 seconds

to encrypt and 9 seconds to decrypt, which is still acceptable for sending such a large message.

Moreover, most webmail systems have a limit of 10 MB on message sizes.

Keyword Encryption

In this phase the performance of AES algorithm is studied (Figure 3.7). Each word from the

message is extracted and is encrypted using the AES algorithm. There is no decryption phase

here, as the encrypted words are checked against each other.

It can been seen that there is a linear relationship between the message size and time taken

for encrypting keywords. It has to be also noted that when there are duplicate words the en-

cryption is not done twice. However, in these experiments each word was generated at random
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Figure 3.7: Keyword Encryption Time

with a random size (with maximum as 25 bytes). The probability of the same word repeating

is very low for this case.

3.5.2 Space Complexity

In our study of the space complexity, we were interested in the following:

1. Increase in size of the keyword index

2. Increase in the size of the final mail

Impact of increase in size on the keyword index

The AES algorithm is executed over the generated keywords and the impact of the size of the

encrypted keywords on execution time is examined. The results are in line with AES algorithm

space complexity where there is no increase in the size of the message.
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Impact of increase on Final Message size

Here we study the total increase in the email size. The email that is sent to the server of the

recipient will be in the concatenation of the message encrypted by symmetric encryption and

and key encrypted by asymmetric encryption. Any increase in size, will increase the overall

network traffic.

As noticed with the keyword index, there was no change in the encrypted message size.

However there is a very negligible constant increase in the size of 512 bit (64 byte) key to 524

bytes as it uses asymmetric encryption.

3.6 Limitations of our implementation

We proposed a privacy preserving architecture for our webmail system, that enables secure

communication of messages using a public/private key model and privacy preserving keyword

search functionality using AES key encryption algorithm.

Our approach requires every client to install an extension to their browser and the cloud

computing provider to modify their webmail application to support encrypted keyword search.

Even though technically this is a possible solution, economically a cloud provider might not

prefer this approach. Most of the business models in web applications are built around the

contextual advertising model, where the cloud provider relies on the user’s data to deliver the

relevant advertisements to the user. In our case as the data is encrypted in the server, the

cloud provider will not have access to the user’s data. Work such as Toubiana et al. [107], try

to address this problem by offloading the keyword extraction in contextual advertising to the

client browser. These approaches [107] need to be modified for our architecture so that our

system remains economically viable.

Unlike in PEKS [29], our system does not use a probabilistic trapdoor function. The trap-

door is implemented by using deterministic synchronous encryption. This makes our system

susceptible to chosen plaintext attacks. If a recipient of a mail is also a potential attacker, the

recipient can eavesdrop the encrypted keyword information sent from the sender to the server,

and make a guess on what keyword represents the encrypted cipher by analyzing a number of

mails sent to the recipient (attacker) from the same sender. However, our contribution is the
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proposal of the framework. The encryption algorithms used can be modified to utilize more

secure alternatives in our architecture.

Our system makes an assumption that the browser and the browser extension framework

is trustworthy. We believe it is a fair assumption, as the user can control and monitor the

browser activity and any aberration of browser functionality can be detected by the user (at-

least theoretically).

We have also not implemented the functionality to add the incoming messages to the en-

crypted search database. Future work should address this. Future work also involves detailed

study on the strength of the encryption, support to range and similarity searches, improvements

to the algorithms used whilst maintaining performance.

3.7 Conclusion

We observe from our results that the searchable encryption is a feasible way of preserving

privacy of data in the cloud without compromising the functionality. However, the solution

presented in this chapter addresses only searching, which is one of the many possible scenarios

in a cloud computing environment.

Consider an e-commerce SaaS cloud such as Amazon.com. For authorizing a client’s trans-

actions and sending the orders to the cloud client, the cloud server may have to know the per-

sonal details of the client, including their credit card number, name and address. Any kind of

encryption of this data will render the data unusable for the server. To secure this information,

the cloud clients need to have guarantees that the cloud server will not use the information for

any malicious purpose.

Similar to the e-commerce example, the cloud clients may have complex workflow and

scenarios requirements that need to be executed in a privacy preserving way in the cloud server.

The solutions offered by PET do not address these requirements of cloud clients.

Therefore, in many such scenarios, the clients are forced to trust the cloud provider with

the data and hope that the provider will not breach that trust. Clients rely on the pressures intro-

duced by the security systems (Chapter 2) to induce the client for cooperation and compliance.

The rest of the thesis will heavily focus on one such security system, remote attestation.



Chapter 4

A notification based remote attestation

framework for IaaS

Remote attestation provides mechanisms for the cloud clients to remotely verify and attest the

cloud server. In the previous chapter (Chapter 3) we concluded that cryptographic method-

ologies provide privacy preserving solution for ad-hoc scenarios such as keyword searches.

But, remote attestation can be used to verify the server’s state independent of the scenarios as

long as the application and the platform on which the application is hosted on known in ad-

vance to the verifier. The verifier can either be the client or a third party who is entrusted with

the verification of the platform. Chapter 2 extensively focused on the background of remote

attestation.

In this chapter we present the state of the art in remote attestation infrastructures in the

cloud and identify two major issues: complexity in the management of software measurement

values by the verifier and the client’s need to add verification workflow in its transactions.

To address these issues, we propose a notification based remote attestation framework for an

Infrastructure as a Service (IaaS) that supports the verification of domain controllers and the

virtual machines by a trusted third party (TTP). The TTP allows clients to register their Virtual

Machines (VMs) and their corresponding IaaS controllers for attestation. The software state of

the VMs and their domain controllers are verified continuously by TTP in predefined intervals

through polling. Thus after delegating the verification to a trusted TTP, the client is concerned

only with the managing of the application in the VMs. In the event of any malware attack in the

54
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IaaS domain controller or VM, the TTP will notify the client and the client can take necessary

actions to counter the attack.

This chapter is organized as the following. Section 4.1 introduces the state of the art in

remote attestation infrastructure. Section 4.2 focuses on the virtual machine (VM) based in-

frastructures in the literature. Gap analysis and our contribution to the literature is discussed in

Section 4.3. The proposed architecture and its components are described in Section 4.4. Sev-

eral scenarios in the proposed architecture are presented in Section 4.5. Section 4.6 discusses

the steps adopted for establishing a minimal trusted computing base. The implementation de-

tails are presented in 4.7. Section 4.8 describes the experiments and the results and this chapter

concludes with future work in Section 4.10.

4.1 Related Work - Remote Attestation Infrastructure

This section describes the infrastructures built using technologies introduced in Chapter 2.

Mechanisms of collecting and reporting integrity values are discussed in Integrity Measure-

ment Architecture (IMA) [98]. PrivacyCA [91] presents a framework for verifying if the mea-

surements emerge from a valid TPM.

4.1.1 Integrity Measurement Architecture (IMA)

Sailer et al. [98] proposed the Integrity Measurement Architecture (IMA) as an implementation

of TCG standards in GNU\Linux. The IMA is designed to collect the integrity measurements

of all the files before each file is loaded into the memory and executed by the operating system

and then store integrity measurements in a secure location. Figure 4.1 presents the architecture

of IMA.

The IMA architecture is hosted on the server that needs to be remotely attested. The IMA

has the following components: Challenger, Attestation Service, Measurement Agents, Mea-

surement List and TPM. The hash of the BIOS (trusted BIOS measurements), along with the

hash values of all the files are collected and stored in the measurement list by the measurement

agents. To secure the measurement list against tampering, the aggregated hash associated with
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the loading of the last software binary is stored in one of the Platform Configuration Registers

(PCR).

Kernel + Run - Time + File Systems

Measurement Agents Attestation Service

Trusted Platform Module

Platform Con�guration Register 0

Platform Con�guration Register n

Measurement List

Trusted 
BIOS 

Measurements

Report

Report

Store
4. Retrieve

2. QuoteRequest

3. QuoteResponse

Challenger
1. Integrity Challenge

5. Integrity Response

6. Validate
Response

Figure 4.1: Integrity Measurement Architecture

When a client (challenger) wants to verify the state of the server, it requests the integrity

values from the server by invoking the attestation service hosted in the server through the

integrity challenge (Figure 4.1). The attestation service retrieves the measurement list along

with the aggregated hash from the PCR and sends it back to the challenger. The aggregated

hash is cryptographically signed by the TPM and is verifiable by the client. The client validates

the integrity values against its local datastore of known secure values and then makes a decision

on whether or not the server’s state is “healthy”, i.e, not corrupted by any malicious software.

Sailer et al. [98] does not explain how the known secure values of software binaries are

collected. However, the TCG specification for remote attestation [14] presents the Remote

Integrity Measurement Manifest (RIMM) for storing the secure hash values. The authors of

the TCG specification state that a software is audited and tested for a period of time before

adding it into the RIMM repository.

When the server executes an unknown software binary, the hash of the binary is recorded

in the measurement list. During the integrity challenge, the server’s state will be classified as
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unsecure because of the unknown binary’s hash value in the measurement list as there will be

no record of it in the verifier’s local repository.

IMA Message Format: If a TPM is in the server that needs to be verified the measure-

ments of the BIOS are written into the bios measurements file in the /sys/kernel/security/tpm0

directory of the server’s filesystem. The measurements of individual files are written into a

binary runtime measurements file in the /sys/kernel/security/ima directory. The GNU/Linux

kernel mounts the security file system in /sys/kernel, where only the kernel can modify the data

in the directory.

The IMA can be configured using ima-policy in which the type of files that needs to be

measured are specified.

10 23de2aff5055a8c8e22f7bfa9c5991cda6dae0a8 ima 24397111529ff7abb0b04c55eaa638c983c29e13 boot_aggregate

10 fe6550ffc0f455d0699200823b18c3d643fb3c70 ima f6585d3d8fcec483efcd3c4741f81a94f3977030 /etc/init.d/mysql

10 bd2b6cdca6bc6f1369675a20c54991e4859382de ima 0a2e3beed68a10ea999c50eb087cd7514ba59646 hotplugpath.sh

10 64f392df673f0f164e476dd98c232ab9635af59f ima 2d7ce8c3a4d2bc68ad72ae954c09b3416f109110 init-functions

10 079e2b094aa849506adda43666562ea93a7b1a2b ima 89a259594978ae70388e35746ebff1b1b6b8e7d6 /bin/run-parts

10 987341a885f00fae89f0d57665d6fbb16c02a14f ima 254b19e8c5257c07df740e7a2b76bf6b06fea05b ld-2.13.so

10 2186f7d904a0197dcd4809dfca1553f15240dc54 ima 2a0beab00650843e54b97a7353104aa91130cf5d /usr/sbin/atd

10 f4b36068201709f27c3a58a3a7606979d0c5868c ima 2115209e18d9659ddc5560d29a749fb88a3776ab ld.so.cache

10 3553ded0d2ed8025ba8b5ad827e3c9fde5b9df8d ima 29d1df13fb8104b1e37bb09ba0895f9d5c682147 xend

10 580d139b73d9bc99731f006d977294125fe48175 ima 67656486e37794a1d878197c236e8e801ed2ff38 /bin/mkdir

Figure 4.2: ASCII Runtime Measurements

IMA supports several templates for representing measurements. The default template type,

ima, is used for the ascii measurements log in Figure 4.2. The first column in the ima template

(Figure 4.2) represents the PCR in which the hash values of the file are extended, in this case

PCR 10. The second column represents the hash value of the file data. The third column

indicates the template type of the measurement, ima. The fourth column contains the hash of

the file meta data (UID/GID labels of the file along with Linux Security Module1 (LSM) labels).

The final column is the filename of the file that is being measured. The filename is restricted to

1LSM labels are xattr attributes of a file, used by SELinux for implementing mandatory access controls for the
GNU/Linux filesystem.
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255 characters. This IMA log file can be sent to a verifier to check if the applications that are

hosted in the host machine are valid.

IMA also supports other template types: ima-ng and ima-sig. The ima-ng template

allows the measurements to represent the filename without restricting it to 255 characters and

the ima-sig template presents the file signature along with the file data hash.

IMA is supported from Linux 2.6 onwards.

4.1.2 Privacy Certificate Authority (CA)

The remote attestation infrastructure as implemented in IMA requires the server (attestant) to

send a detailed description of its system state to the client (attester). The attestant also provides

the attester with the Attestation Identification Key (AIK)2 certificate which guarantees that

the AIK is owned and secured by a TPM that enforces TCG specified policies. The TCG

specifications [106] define the PrivacyCA service to issue these AIK certificates to the attestant.

The certification process is presented in Figure 4.3.

PRIVACY CA

SERVER CLIENT

Attestant Attester
1. Create AIK via TPM

2. Send AIK and
    credentials

4. Issue AIK cert.

3. Inspect credentials

5. Request system con�guration report

6. Report TPM Quote and AIK cert.

7. Query AIK cert. validity

8. Con�rm validity

Figure 4.3: Privacy CA

The server initially registers its TPM’s AIK with PrivacyCA and receives the AIK certifi-

cate. The AIK certificate is encrypted with the TPM’s public key by the TPM. Only the TPM

can decrypt the AIK certificate. When the client requests the server’s current system configu-

ration, the server sends the AIK certificate along with the aggregated hash value, T PM Quote
2Attestation Identification Keys are special keys produced by the TPM for the purpose of securing the integrity

values while transmitting to the clients.
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(Section 2.5.3). The client sends the AIK certificate for verification to the PrivacyCA and after

verification uses the TPM Quote.

Piker et al. [91] presented the following set of guidelines to implement a secure Privacy

CA as a third party:

1. Virtualization: The Privacy CA is hosted as a VM in a hypervisor of the third party’s

infrastructure to isolate the trusted services in a compartment of their own.

2. Restrict Trusted Computing Base to a minimum: The platform (OS and its compo-

nents) over which the Privacy CA is run is kept to the required minimum number of

applications to ensure easy verification of the platform.

3. Formal methods to prove the security: The cryptographic protocols are formally veri-

fied.

4. Use of safe programming language: A safer programming language such as Java that

does not allow direct memory access through pointers (such as C, C++) is used for them

implementation of the service.

5. Source code made available to public: The application source code is made public for

evaluation and improvement.

6. Use Trusted computing: Clients should be able to remotely attest Privacy CA using

trusted computing.

Based on these guidelines Pinker et al. developed a self-contained image of Privacy CA

that can be executed stand alone or over Xen. A custom ASCII-text based communication

protocol is used against XML to counter the overhead of XML. The TCB is kept to a minimum

as shown in Figure 4.4.

The Privacy CA implemented by Pinker et al. supports the following operations:

• aik create: This operation creates AIK certificate as specified in TCG [106].

• aik validate: This operation in PrivacyCA validates the AIK certificates issued by Pri-

vacyCA. The certificates are provided for validation by the clients.
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PrivacyCA application

JVM/JRE

OS runtime support

OS kernel

Platform & TPM

Figure 4.4: Privacy CA: Trusted Computing Base

• aik locate: This operation searches for a particular AIK certification given an identifier

for AIK

• aik revoke: This revokes the individual certificate for future validation

• tcb quote: This asks the PrivacyCA to integrity measurement of itself. This is used to

remotely attest the PrivacyCA.

The infrastructure presented in this section describes how to effectively collect and report

measurements to a third party and how to authenticate a TPM. The TCG specifications are the

basis of the implementation of several other trusted platforms [37, 72, 68, 117]. The principles

of remote attestation are also applied in embedded systems such as Automatic Teller Machines

[90] and mobile phones [85, 44].

4.2 Virtual Machines based Architectures

This section presents the state of the art in VM based remote attestation architectures. There

are a variety of approaches adopted in the literature for using remote attestation in VM based

architectures: semantic division of VMs as secure and insecure [49], real-time measurement as

described in Section 2.5.4, measurement within the VM [70] and multiplexing a single physical

TPM to multiple vTPMs [18]. We present some of these architectures in this section.
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4.2.1 Terra

Garfinkel et al.’s Terra [49] represents one of the earliest works in VM based architectures

for remote attestation. It implements a VM monitor called TVMM (Trusted Virtual Machine

Monitor) that partitions a TPM into multiple isolated VMs. Each VM can either be an open

box or a closed box. This partition is made to provide the functionality of running the sensitive

applications along with traditional applications. The open box is a general traditional platform

without any trusted computing protocols and closed box is an opaque special-purpose platform

that protects the privacy and integrity of the software using trusted computing.

Using a TVMM, existing OS and utility applications are run in a standard VM (open box).

The applications that require strict privacy protection are executed in a closed box, where the

running software stack (including the OS, all the applications) is cryptographically authenti-

cated to remote parties through attestation.

TVMM

Hardware Platform TPM

Email,
Web
Apps

Commodity
OS

SETI@Home
Client

Commodity
OS

Online
Game

Thin
OS

Management
VM

Thin
OS

Figure 4.5: Terra Architecture [49]

The Terra architecture is presented in Figure 4.5. The TVMM is hosted on the hardware

platform (TPM) that supports attestation. The hardware platform should be able to attest the

booted operating system and the TVMM. The TVMM is secure from tampering not only from

the platform user but also by the platform owner because of remote attestation mechanisms. It

will neither falsely attest the VM’s contents nor will it allow tampering of closed box VMs.

Garfinkel et al. [49] also studied two different types of attestation: Ahead of time attestation
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and optimistic attestation. Ahead of time attestation is similar to IMA (Section 4.1.1), where

each stage in the boot process is responsible for signing the hash of the next stage before

invoking it (hash before load). Optimistic attestation works at a individual disk block level,

wherein, each hard disk block of the VM is checked when read from the disk (The hash values

of each block is stored by the TVMM for verification).

The TVMM supports two abstractions of the VM: closed box and open box. The closed

box VMs are shown in gray in Figure 4.5. The content of a closed box cannot be modified or

inspected by the owner of the server that hosts Terra. A remote client can verify that the closed

box applications have not been modified by checking the measurement list of the closed box

VM. The closed box may run a special trusted OS with a set of applications specially designed

for it.

Figure 4.5 also depicts one open box VM that runs commodity OS and applications (Email,

Web Apps) and a management VM. The management VM is responsible for granting storage

and memory to other VMs. It also allows users to connect, start and stop a VM.

Garfinkel et al. [49] prototyped Terra in VMWare server with Debian GNU\Linux. Their

prototype was not implemented over a trusted hardware device, as the authors believed the

operations with the TPM device are well defined and hence the implementation will be super-

fluous. For experiments, the open source game Quake was run in the closed box as a standalone

application without user shell. Booting the quake closed box without any attestation took 26.6

seconds, ahead of time attestation took 57.1 seconds and optimistic attestation took a total of

27.3 seconds without encryption and 29.1 seconds with encryption. Hence the authors con-

cluded optimistic attestation to be ideal for Terra.

4.2.2 HIMA

One of the major issues with attestation is the Time of Check to Time of Use (TOCTTOU)

vulnerability, where the platform is subject to attack after the verification is performed by the

client. The adversary may wait until the verifier has received the attestation before rebooting

the platform in order to boot a malicious software image. Under traditional attestation methods

it is not possible to detect if the platform has been tampered with between the verification
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and the execution of a software binary, as there will be always a time difference between the

verification and the usage of the server. To address the TOCTOU issue, Ahmed et al. [26],

proposed HIMA with two key functionalities: active monitoring of guest VM kernel events

and guest VM memory protection. The former ensures that the integrity values are refreshed

when the memory layout changes and the latter does not allow any program to bypass HIMA

before execution.
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Guest kernel
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measurement list
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measurement list
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Interrupt 
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Figure 4.6: HIMA Architecture [26]

The HIMA architecture is presented in Figure 4.6. The trusted components in the archi-

tecture are depicted in gray. HIMA is isolated from the measurement targets (Guest VM1 and

Guest VM2) and it is transparent to the VMs. The hypervisor’s code is modified to place hooks

where guest VMs kernel events are handled. HIMA intercepts all events including hypervisor

service events, system calls and hardware interrupts. Using these intercepts, HIMA keeps the

measurements lists fresh by actively monitoring the memory map of guest VMs for any change

(This will include page faults, context switches, etc.).

The other important functionality of HIMA is guest memory protection, which ensures

only the measured binaries are executed by Guest VM. This is achieved by setting a page

protection flag on all the logical pages on the guest VM. Setting the protection flag traps into

the hypervisor every time there is a guest memory access. At this stage, the hypervisor can

check if the page is measured and is allowed to be executed.
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Thus the guest memory protection and active monitoring of the memory enables HIMA to

achieve TOCTTOU.

HIMA prototype was developed using Xen hypervisor and experiments were conducted

using Unixbench and application benchmarks (gzip and bzip2 compression). Except for

process creation system calls such as execl and shell scripts HIMA introduced around 5%

overhead. The execl and shell scripts introduced 75% overhead and 99% overhead respec-

tively.

4.2.3 In VM measurement

HIMA and Terra had modules to measure the VM from the hypervisor. This approach is also

called out−o f −V M monitoring. These architectures suffer from major performance overhead

because of context switching between the hypervisor and VM. Qian et al. [70] proposed an

In-VM secure measuring framework for improving the performance of VM attestation.
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Figure 4.7: In VM measuring framework

Figure 4.7 presents the In-VM measurement framework proposed by Qian et al.. The server

hosting the framework has a Trusted Platform Module (TPM). Each guest OS has a measure-

ment module. The measurement module is responsible for storing the hash values of the ap-
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plications that are loaded in the VM’s memory. The measurement module transfers the new

measurements to the measurement table of the trusted virtual machine (Dom 0). The frame-

work also extends the new values to the PCR. The safe trusted hash values of the applications

that are run in Guest VM are are stored in the reference table. The memory watcher module in

the hypervisor periodically verifies the measurement module in the guest OS and recalculates

the hash value to check if the values are secure by comparing them against the reference table

values.

Qian et al. [70] implemented the In-VM framework using Xen VM. The hash value was

measured using the struct security_operations hook in the kernel. Experiments were

performed by running the framework both in Dom 0 and Dom 1 under three benchmarks from

Stanford applications for shared memory [103]. The authors found the framework introduced

very low performance overhead in the order of 8.79% in DOM1 and 4.13% in DOM0.

4.2.4 Certicloud

Benoit et al.’s Certicloud [34] proposed another “In VM measuring architecture” through two

protocols TCRR and VerifyMyVM. These protocols guarantee integrity of the remote server and

detects tampering attempts on its VM, on-demand.

TPM-based certification of remote resource (TCRR) allows the cloud user to verify only

authorized code is running in the remote server. The protocol has three actors: user U, remote

resource or node N and the associated TPM. The user U prior to the initialization of the protocol

has the knowledge of the secure state of remote resource N. There are two phases to this

protocol: Node integrity check and User session key exchange. In node integrity check, a user

requests for the aggregated hash value, T PM Quote (Section 2.5.3) from the TPM of the node

N. The TPM returns the hash of the PCR (Platform Configuration Register) values to the user.

The user checks the PCR values against the known value. This comparison permits the user U

to conclude if the remote node is secure. The user after checking the remote node, sends across

a session key to the IaaS cloud, encrypted by the public key of the TPM so that only the TPM

can decrypt it. The session key is then used for any future transactions.

Certicloud was designed based on the TCRR protocol to protect IaaS platforms. It is pre-
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User IaaS Cloud

Figure 4.8: Certicloud Architecture Architecture [34]

sented in Figure 4.8. In this architecture, the user prepares a VM with known hash values and

deploys it in IaaS cloud. To deploy securely, the following steps are proposed:

1. The user create a private key Ku and encrypts the user’s VM image, V MIu.

2. The encrypted image is sent to the IaaS cloud.

3. The TCRR protocol is invoked to verify the integrity of IaaS provider. Once the check is

completed, the user shares the key Ku with the TPM of the cloud VM manager.

4. The cloud VM manager creates a new emulated TPM (virtual TPM) for the user image

V MIu.

5. The emulated TPM acts as the TPM for the user image and contains the PCRs of V MIu.

6. V MIu is deployed as a new virtual machine in IaaS.

7. The integrity of V MIu is checked on demand by the user of the VerifyMyVM protocol.

VerifyMyVM provides the user with the hash values of the VM through the emulated TPM.

The user checks the hash values against the known values to identify if the VM is tampered

with.
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Benoit et al. [34] implemented the Certicloud prototype using the Xen VM environment.

TCRR took a total of 9.28 seconds and VerifyMyVM took 15.69 seconds to complete.

4.2.5 vTPM

Certicloud proposed two protocols to safely deploy the custom prepared VM by the user in the

remote architecture. They also emulated TPMs in individual VMs. However, Stefan et al.’s

virtual TPM (vTPM) [18] is considered to be seminal work on sharing TPM across multiple

VMs. vTPM multiplexed a physical TPM as multiple virtual TPMs, providing each with an il-

lusion of trust for enabling remote attestation. A modified implementation of vTPM is adopted

by Xen and KVM.

Requirements: The requirements identified by Stefan et al. [18] for a vTPM are the follow-

ing:

1. vTPM should provide the same command set to an OS, as a hardware TPM. The OS

should be able to run on vTPM in the same way as it does over TPM without or minimal

code change.

2. On migration of VMs, vTPM’s needs to be migrated along with VM to maintain strong

association.

3. During migration vTPM’s should maintain an association with the underlying trusted

computing base (TCB). The challenger while remote attestation should be able to follow

the trust chain from the TCB (that includes the hardware TPM and VMM) to vTPM.

4. The remote party should be able to distinguish from a vTPM and a TPM, as both offer

different security properties3.

Architecture: The vTPM architecture is presented in Figure 4.9. The architecture consists

of a vTPM manager hosted in a separate management VM consisting of vTPM instances. Each

3A vTPM’s correct functioning relies on the TCB, hence the remote party should be able to identify that.
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VM that needs a TPM functionality is assigned its own vTPM instance by the vTPM manager.

vTPM implements TCG TPM specifications [106].

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

T

v

VM

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

TT

vT
PM

In
st

an
ce

vT
PM

In
st

an
ce

…

…
… …

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

T

v

VM

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

TT

vT
PM

In
st

an
ce

vT
PM

In
st

an
ce

…

…
… …

Figure 4.9: vTPM Architecture [18]

The VM communicates with its vTPM instance hosted by the vTPM manager, through the

VM’s client side TPM driver (denoted by red lines in Figure 4.9). VMs host the IMA enabled

kernels (Section 4.1.1). The VM maintains measurement lists rooted by the aggregated hash

stored in the vTPM instance hosted in vTPM manager.

The vTPM manager in itself communicates with the hardware TPM and is used to store the

aggregated hash of the software hosted in management VM. Hence a trust chain relationship

is formed between the hardware TPM and vTPM manager, and vTPM instances hosted by the

vTPM manager and the VMs hosting the applications.

The vTPM manager supports creation, deletion and setting up of vTPM instances. It also

aids the vTPM migration during the VM migration.

The authors implemented the architecture using Xen hypervisor. Indeed Xen 4.3 [16] on-

wards has started supporting vTPM based on the work form Stefan et al..

Some of the architectures that uses vTPM at its core are presented below.
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myTrustedCloud

vTPM proposed a complete overall architecture for virtualizing TPMs to share a single phys-

ical TPM across multiple VMs. Wallom et al.’s myTrustedCloud [110] explored a use case

for trusted computing system with vTPMs in a complete cloud infrastructure for a real world

scenario. The authors integrated trusted computing into Eucalyptus (an open source implemen-

tation of cloud infrastructure) for the UK energy industry.

The use case involved different energy operators in the UK that share sensitive data within

each other. The shared data has different access and usage privileges, across a known set of

operators. The ownership and the integrity of the data must be trusted. The authors used trusted

computing to enforce the access and usage privileges and to protect the integrity of the data.
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Figure 4.10: myTrustedCloud Architecture

Based on the use case, myTrusted cloud proposed an architecture with node controllers

(NC) and storage controllers (SC) (Figure 4.10). The node controllers are responsible for the

controlling the VMs that are computational units of the system. Each VM has a vTPM to

measure its files. The hypervisor hosting the vTPM is measured by the hardware TPM.

The storage controller hosts Elastic Block Storage (EBS) that is responsible for file storage.

The storage controller is measured by the physical TPM in its server.

For the framework to be trusted, NC, SC and the VMs needs to be attested. When a client
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requests the measurements from the framework, an iterative attestation is adopted. Instead of

sending attestation values from three different attestation sessions (for NC, SC and VM), in

a single session, an attestation ticket combining PCR values from the three different TPMs is

sent back to the client.

The authors implemented the system using QEMU and Kernel Virtualization Module (KVM)

of Ubuntu based Eucalyptus cloud. The Open Platform Services (OpenPTS) [10] are used to

implement the VM attestation procedure by the client. In experiments authors found that the

framework has significant overhead during boot time (3.18 minutes for TPM based cloud com-

pared 57 sec for non tpm based cloud). However there was negligible operational overhead, as

most of the measurement happens when the system is rebooted.

Implementation of Trusted IaaS using vTPM and Trusted Third Party (TTP)

The frameworks suggested Terra [49], HIMA [26], Certicloud [34] and myTrustedCloud [110]

focused on an attestation framework, in which the verification is performed by the client or the

user of the services. However, this requires the client to have a record of all the measurements

of the secure versions of the software that are executed in the cloud and the cloud configuration

to be disclosed to the user.

Li et al. [67] proposed a trusted IaaS framework which involves a trusted third party that

is responsible for attestation (Figure 4.11). Usage of TTP minimizes the cloud configuration

disclosure to the user. Moreover, the user need not be aware of the measurements of secure

versions of the software. The authors proposed a protocol that uses a TTP for VM verification.

The architecture of the system proposed by Li et al. is presented in Figure 4.11. The

IaaS cloud consists of several nodes (servers) and is controlled by a cloud manager. The users

interact with the cloud manager for using their services. The TTP is responsible for remotely

attesting the state of the nodes in the cloud manager.

The software configuration of the framework in the node is inline with myTrustedCloud.

The server hosts vTPM capable hypervisor (such as Xen or KVM) with IMA enabled VM in

the nodes. The VM also hosts a collection agent that transmits the measurement values of the

VM to the TTP.

Before starting any session with a node in the cloud, the users request that the TTP verify
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Figure 4.11: Trusted Cloud with TTP

the state of the cloud using their custom attestation protocol. The TTP invokes the attestation

service from the cloud manager which in turn returns the measurement values to the TTP by

calling the node collector service of the requested node’s measurement value. The TTP verifies

if the measurement values are secure and then it sends the result to the user. If the result is

successful the user initiates the new connection with the cloud manager.

The authors prototyped the system using KVM based hypervisor. Similar to myTrust-

edCloud they used OpenPTS [10] services for transacting between the cloud and TTP. The

experiments using the protocol showed a very little overhead while in operation (2% to 5%

overhead). The booting overhead is not shared by the authors.

4.3 Our Work

In our experiments we found that a minimal server running Debian GNU\Linux without any

VMs and extra applications requires at least 360 packages. Each package contains at an average

of 5 to 10 files (Section 4.8). The verifier needs to be aware of these files and their measurement

values for effective verification. A typical IaaS server can host hundreds of software packages.

A major challenge in adopting remote infrastructure is the management of these software with

its multitude of versions and updates that needs to be measured and maintained by the verifier.
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None of the work we surveyed dealt with this problem.

Separation of concerns4 is one of the design principles of software architecture design. In

almost all of the work we surveyed the cloud client is responsible for two concerns simulta-

neously; transacting with the cloud provider for utilizing the provider’s services and the veri-

fication of the cloud provider’s state. We propose there is a need for a trusted third party. The

cloud client can delegate the functionality of the remote attestation to the trusted third party.

The delegation enables the clients to focus on consuming the provider’s services and not on

the complexities involving verification of the provider. Li et al. [67] proposed an architecture

involving TTP. However, in that architecture, the clients are pro-actively required to verify the

cloud provider’s state through the TTP before initiating any connection with the provider. This

introduces additional steps to the transaction workflow of the client. Moreover, there are no

guarantees to the state of the cloud provider when the client is not actively communicating with

the provider.

In this work, we address the software hash maintenance challenges of secure software by

proposing an infrastructure ecosystem. This infrastructure is built on the design principle of

separation of concerns. Our work does not require the client to modify their transaction work-

flow. The verification is performed at predefined intervals by the TTP and in the event of

verification failure, the client is notified of the failure.

4.4 Architecture

The proposed infrastructure has five different entities as depicted in Figure 4.12: client, Trusted

Third Party (TTP), IaaS cloud, RIMM Saas Cloud and Software vendors. The arrows in the

Figure 4.12 denote the dataflow in the infrastructure. Adhering to the principle of separation

of concerns, each entity in the infrastructure is responsible for one distinct functionality. These

are listed below.

• Client: The client transacts with the IaaS server and VM for the delegation of function-

ality.

4Separation of concerns allows a module or a design to be split into distinct sections, such that each section
addresses a separate section.
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• IaaS Server: The IaaS server provides services for clients and allow remote attestation

by providing measurement values to the TTP. All the servers in the IaaS infrastructure

are referred to as IaaS servers.

• Trusted Third Party (TTP): The TTP verifies the measurement values provided the by

IaaS cloud against the values provided by RIMM SaaS cloud and the client.

• RIMM SaaS Cloud: The RIMM SaaS cloud audits and maintains hash values of all

valid software and its updates.

• Software Vendor: Software vendors provide fixes and notify the RIMM SaaS cloud

with valid values.

The client registers the IaaS server hosting the virtual machine and the virtual machine

(target) for verification with the Trusted Third Party (TTP). The TTP polls the target machines

in a predefined interval and gets the measurement list from the target machines. Resource

Integrity Measurement Manifest (RIMM) SaaS cloud is the repository of the valid integrity

values (hash) of all the software binaries that are allowed to be executed in a server hosted in

IaaS Cloud. The TTP uses these integrity values from the RIMM and verifies them against

the integrity values obtained from the IaaS. When the verification fails, TTP notifies the client

about it. The integrity values of RIMM are updated by authenticated software vendors. The

proposed infrastructure assumes the following cardinality of the entities.

• The client and IaaS server have a many to one relationship. There can be many clients

transacting with one IaaS server.

• The client and TTP have a many to one relationship and the TTP and the IaaS server has

one to many relationship.

• The TTP and RIMM SaaS cloud have many to one relationship. There is only one RIMM

SaaS cloud.

• There is one RIMM SaaS cloud to ensure a centralized auditing and verification system

of software.
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In this section, we detail the functionalities of the each component and the protocols used

in between them for communication.

CLIENT
TRUSTED

THIRD
PARTY

RIMM SaaS Cloud

IaaS Cloud
RIMM REPOSITORIES

IaaS SERVERS

Software
Vendors

Figure 4.12: Architecture

4.4.1 IaaS Cloud

The IaaS is a cloud service model where resources such as the physical/virtual machines from

the cloud provider are rented to the cloud client (Section 2.1.1). The IaaS cloud is composed

of several IaaS servers. Each IaaS server hosts a domain controller that is responsible for

creating and managing the server’s virtual machines. For the rest of the discussion IaaS server

and domain controller are used interchangeably. The IaaS sever has a predefined software and

hardware platform.

The components of the IaaS server are presented in Figure 4.13. Along with the standard

hardware such as processors, harddisk and memory, the IaaS server has a Trusted Platform

Module (TPM) that serves as the root of trust. The IaaS server uses the Integrity Measurement

Architecture (IMA) enabled GNU\Linux kernel [98]. The IMA kernel measures all the files

before they are mapped (mmap system call) into the memory for execution. The hash values

are stored in a secure measurement list in the server’s file system. The aggregated hash value

(Chapter 2) of the measurements are stored securely in a PCR of the untamperable TPM. The
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IaaS Trust Component is responsible for relaying the measurement list along with the TPM

PCR values to the trust verifier, hosted by the TTP. The server hosts a domain controller and

other supporting applications that are used for managing the VMs.
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Figure 4.13: IaaS Server Components

The VMs are allowed to host only IMA enabled kernels. This can be verified through

remote attestation. The virtual TPMs [18] act as the root of trust device for the VM-IMA. Each

instance of the VM has a VM Trust Component, that relays the measurement list from the VM

to the same trust verifier, hosted by the TTP.

IaaS Trust Component

The IaaS and the VM trust components provide interfaces to securely transfer and validate the

measurement list. The trust components transact with the trust verifiers hosted by TTP, through

services.

Services hosted by the IaaS Trust Component:

The IaaS trust component hosts the service request_ml() that is used to retrieve the

measurement list of the domain controller.

request_ml(): The service reads the measurement log created by the IMA kernel of the

domain controller and sends it to the TTP along with the aggregated hash from the PCR of
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TPM signed by the TPM’s Attestation Identity Key (AIK). The measurement list is a collection

of the following information:

{id, hash value}

where id is the unique identifier representing the software binary and the hash value is the

integrity measurement.

Services hosted by the VM Trust Component:

The services hosted by the VM trust component are used to validate the state of the VM.

The following are the services hosted by the VM trust component:

• init_ml(ml): This service is invoked by the logged in client user from the a freshly

created VM in the IaaS server. It executes the following functions:

1. Invokes the service request_ml of the controller and forwards it to the service

verify_controller_ml of the trust verifier (Section 4.4.2) to check if the con-

troller is in a safe state.

2. Invokes the service init_vm_ml with the VM’s measurement list of trust verifier

(Section 4.4.2) to check the initial state of the VM and to register the VM.

• request_ml(): This service has the same functionality as the IaaS server’s request_ml.

4.4.2 Trusted Third Party

The trusted third party hosts the trust verifier and the Resource Integrity Measurement Manifest

(RIMM) datastore (Figure 4.14). The trust verifier registers the IaaS server’s domain controller

and the VM, and verifies the state of the controller and VM in predefined intervals. The verifi-

cation of the state is performed by comparing the software measurements from the IaaS server

and VM against the reference software integrity values stored in the RIMM datastore.

The RIMM datastore is updated with valid integrity values of safe software either from the

RIMM SaaS cloud or by the client. The domain controller of the IaaS server is verified only

using the values provided by the RIMM SaaS cloud. In other words, the IaaS is only allowed

to execute software that is approved by the community managed RIMM SaaS cloud.
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The verification of the VM can either be done by the values provided by the RIMM SaaS

cloud or by the client. This allows the clients to deploy their own custom trusted applications

on the VM.

The software stack of a TTP can be limited to known software as the TTP has a well-defined

API. For example, if the TTP is exposing its services using XML web-services, the TTP can

be restricted to run a minimal GNU\Linux OS with Java Runtime Environment and Tomcat

Apache web server. Therefore the state of the TTP can be in turn verified by any external

entity. However, to avoid complexity at the TTP level, we will assume that the the TTP does

not need verification and is trusted by the client and IaaS.

RIMM
Datastore

TRUST
Verifier

Figure 4.14: Trusted Third Party

Trust Verifier

The trust verifier is responsible for attesting the state of the IaaS server’s domain controller and

VM. It offers the following services:

• register_vm(vm, controller, vm_policy): This service is invoked by the client

to register a new vm and controller with a policy with the TTP. This service registers the

domain controller referred by the variable controller and the virtual machine hosted

by the IaaS server (domain controller), referred by the variable vm for verification with

a policy specified in the variable vm_policy. In an IaaS scenario, a controller can be

shared with multiple clients (multi-tenancy support). Hence a controller could be already
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registered for verification by a different client. If the variable controller is not already

registered by a different client, this service invokes the service request_ml from the

IaaS trust component to verify the server’s state and then it adds the variable controller

and vm in its local controller verification list. The variable vm_policy specifies a set of

software versions allowed to be executed in the VM and the predefined interval for the

polling of the IaaS server. Section 4.4.5 discusses the policy in detail and Section 4.5.1

details the registration scenario.

• verify_controller_ml(ml): This service is invoked by the VM to verify its con-

troller. The service verifies the measurement list, ml against the valid values of the

controller and returns true, if the verification was successful.

• init_vm_ml(ml): This service is invoked by the service init_ml of the VM trust com-

ponent during registration of the VM with the TTP (Section 4.4.1). The measurement

list, ml is verified against the policy specified by the client while registration.

• verify(target): Invokes the service requst_ml of the target machine. It can be either

IaaS server’s domain controller or a VM. The trust verifier verifies if the ml has valid

values by comparing it with the reference values from RIMM datastore. The verification

scenario is detailed in Section 4.5.2.

RIMM Datastore

The RIMM datastore is the repository of all the valid integrity measurement values of the soft-

ware binaries. The RIMM datastore updates its database from two different sources: RIMM

SaaS and client. RIMM SaaS is a community maintained database of all safe software values.

The client provides the integrity values if they want to host their own custom developed appli-

cations that are not approved by the RIMM SaaS5. The measurement values from RIMM SaaS

cloud are used as the reference values for comparison with the values from the controller and

VM. The client provided measurement values are used as reference values for the comparison

with the values only from the client owned VM. The RIMM datastore stores the software hash

values in the following format:
5The client may not want to submit the application to the RIMM SaaS due to Intellectual Property (IP) concerns
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{id, version, hash value, origin, client id}

The variable id is the unique identifier representing the software binary, the variable version

denotes the version of the software, the variable hash value indicates the hash of the binary

and the variable origin takes two values: global or client. When the variable hash value is

global, the hash value is managed by the RIMM SaaS cloud and when it is client, the client

specifies the hash values for this software binary. The variable client id stores the client’s

unique identifier and the variable client id is relevant only if the hash value is client.

The integrity values are updated using the following service:

publish_client(software_info): The RIMM SaaS cloud or the client notifies the

TTP’s RIMM datastore of software updates that were subscribed by the TTP. This service

appends the new software update hash values in the datastore and alerts the clients when the

IaaS servers and VM do not update their software as recommended by the vendors or clients.

The variable software_info contains the following information:

{so f tware id, prev version, version, update type}

The so f tware id is the unique identifier representing the software binary. The variable version

represents the current version number of the update. The variable update type denotes the

severity of the update. The variable takes one of the two values: critical and non_critical.

The IaaS server or the VM is expected to install the critical updates as these updates carry se-

curity bug fixes. The non-critical updates need not be installed by the IaaS server or the VM.

With critical updates, the client is notified immediately if the IaaS server or the VM has not

updated the prev version of the software binary with the new version. However, failure to

install the non critical updates, leads to passive logging by the trust verifier, that can be in the

future observed by the client.

4.4.3 RIMM SaaS Cloud

The RIMM SaaS Cloud (RSC) provides the clients with a list of all verified valid integrity

values of the software that could be executed safely in a domain controller and a VM. RSC is

also responsible for the auditing of the software to ensure they are not vulnerable or malicious.
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The auditing functionality of the RSC is beyond the scope of this work. The RSC hosts the

following services:

• subscribe(software_list): Given the variable software_list that needs to be

verified, this service subscribes the invoker to the future software update notification and

returns the valid integrity value of all the versions of the software specified in the software

list. This service is invoked by the trusted third party to update its RIMM datastore with

the valid integrity values. When a software receives a critical update, RSC gets the latest

valid verification values from the software vendor and RSC notifies all the subscribed

clients about updated software. Each client of RSC, the TTP, is expected to implement

the publish_client service for receiving the updates from the RIMM. The update

scenario is detailed in Section 4.5.3.

• notify_update(update_info): The software vendors invoke this service every time

a new version of software is released by the vendor. The variable update_info repre-

sents the version and the update type. The update type denotes if the update is a critical

update that the user of the software should apply or an non-critical update, where the

update to a new version is optional.

In a typical workflow, the SaaS cloud audits the newly updated software binary and check

for any security vulnerabilities. Once the software’s audit is successful, the new update is

published to all the clients (TTP).

4.4.4 Client

The client in this architecture registers the VM and the domain controller with their custom

measurement list policy with the TTP. The client also subscribes for notifications from the

TTP when the verification fails or there are recommended updates that needs to be performed

in the VM, as specified in the VM policy.
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4.4.5 VM Policy

The VM policy is used by the client to specify advanced software verification configuration and

the update requirements of the client. The policy allows the client to denote a list of allowed

software (whitelist) that can be installed in the VM along with the software’s update configura-

tion. Platform Trust Services (PTS) specification [12] proposes a static whitelist management

of software. We present a policy with dynamic whitelist with the following functionalities:

• Integrity value origin: The integrity values can be either provided by the RIMM SaaS

cloud or by the client (The client may trust the software that they deployed in the VM and

do not want to take the RSC route). To accommodate both the integrity values from the

client and the RIMM datastore, we introduce origin attribute. The origin attribute also

allows the client to specify that certain software that are auto updated needs to verified

against the hash value of the most recent version of the software.

• Application Chaining: For some deployments, there is a need to specify that few appli-

cations has to be loaded before other applications, e.g, the client may want the database

server and the logging server to be loaded before the webserver, to avoid any error re-

quests. We propose the use of run levels for achieving application chaining (Section

4.4.5).

• Alert levels: This functionality allows users to define and customize various notification

levels and associate policy violations to a particular level, e.g, For some VMs the user

may not want aggressive notifications when there are policy violations. They may desire

in a daily/weekly digest mail with a list of violation. However, for violations in mission

critical applications, the user may expect automated phone calls, SMS or high priority

emails.

Formalisms

The formalism for the policy based on the functionalities described is presented here. This is

an extension of the PTS specification [12].
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The policy P is expressed as a set of the software configurations (S ), notification levels (N)

and time interval (T ).

P = {S ,N,T } (4.1)

S is a list of individual software configurations, s.

s = {id, build in f o, origin, r level, n level} (4.2)

The variable id represents the unique identifier of the software binary. The variable build in f o

denotes the details of the build (expanded in Equation 4.3). The variable origin represents if

the client is presenting the hash value or the hash value has to be fetched from RIMM reposi-

tory. The variable origin has valid values: global or client. The variable r level is the run

level of the software, indicated by integers. This will aid in establishing the application chain

in the system. The variable n level represents the notification level associated with the policy

violation. This notification level maps to the variable level of Equation 4.5.

The variable build in f o, either has the version number or tag.

build in f o = {version number | tag} (4.3)

The variable version number specifies the fixed version number (build version, major ver-

sion and minor version with patch levels) of the software that is allowed to be hosted. The

variable tag allows extra flexibility in specifying the current software version. Instead of fixed

number, the variable has one of the following values: stable, unstable or testing. The val-

ues stable, unstable and testing denotes the latest stable, unstable and the testing builds

of the given software respectively. The trust verifier fetches the hash values of the specified tag

branch of the software from the RIMM for verification.

The variable origin has one of the following values: global or client.

origin = {global | client} (4.4)

where the variable global represents the hash value is updated by the RIMM SaaS cloud
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and the variable client denotes that the hash value is provided by the client.

The notification levels, N from Equation 4.1 is represented as

N = {level, options} (4.5)

where the variable level is the identifier that is used in the software configuration s (Equa-

tion 4.2) and the variable options represents the type of notification (e.g., notification through

email, phone etc.).

4.5 Scenarios

In this section we present the orchestration of the different units in our architecture, for the

registration, verification and update RIMM operations in the system.

4.5.1 Registration

The registration scenario of a remote server is presented in Figure 4.15. The client (user)

that needs to use the services of the TTP for verification of IaaS, registers the IaaS with the

register_vm call to TTP.

The algorithm of the register_vm service is presented in Algorithm 1. The algorithm

takes as input the invoker client, controller and vm that needs to be registered along with the

variable vm policy. The TTP checks if the domain controller was registered in the TTP by

some other client (Line 1). If the controller is not registered, the TTP invokes the function

get ml (function get ml calls the corresponding controller’s request ml) to receive the ml, the

measurement list, from the IaaS trust component (Line 2). The function get ml returns the

measurement list to the TTP and the TTP verifies the measurement list against the known

software values. If verification is successful then the controller is added to verification list of

the TTP (Line 6). The policy parameters, S, N and T, described in Section 4.4.5, are extracted

from vm policy (Line 9). The software binary configuration of each software in S is stored

in the RIMM repository (Line 11). The control is returned back and the TTP waits from

initialization of VM from the user at this point (Line 13).
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Figure 4.15: Registration Scenario

If the verification of the IaaS server succeeds the client initiates preparation of VM in the

IaaS server and deploys the application environment6 in the VM. After deployment, the client

invokes the service init_vm_ml of the TTP from the user’s VM in the IaaS provider by passing

the measurement list of the VM to the TTP. The TTP verifies the measurement list with allowed

values specified in the variable vm_policy that is passed to the TTP by the client during the

invocation of the service register_vm. The client is notified if the verification fails in the

future.

6Typically an application environment will involve the application that the user wants to host along with all
the supporting applications
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Algorithm 1 Registration of Controller
Input: client, controller, vm, vm policy

1: if not controller list.contains(controller) then
2: controller ml = get ml(controller)
3: if veri f y ml(controller,ml) = f alse then
4: noti f y client(CONTROLLER VERIFICAT ION FAILED)
5: else
6: controller list.add(controller)
7: end if
8: end if
9: Extract policy parameters {S, N, T}

10: for each s in S do
11: Store s in RIMM repository
12: end for
13: return WAIT FOR VM INITIALIZATION

4.5.2 Verification

The verification is performed by the TTP in predefined intervals specified by the client. The

scenario is presented in Figure 4.16.

The TTP, in predefined intervals specified by the client, invokes get ml service (trust com-

ponent) of IaaS server to get the measurement list of the server. The TTP verifies the mea-

surement list against the known values of the IaaS server and notifies all the users that have

registered with the IaaS controller, if the verification fails.

The verification of the VM is performed by the TTP by invoking the service get ml of

the virtual machine to retrieve the measurement list of the VM. The measurement list is veri-

fied against the valid measurement list specified by the client during registration. The user is

notified when the verification fails.

Algorithm 2 presents the logic for the veri f y ml function in TTP. The function takes as

input the varable target (controller or VM) for verification and the measurement list, ml from

the target. Each software binary represented in the variable ml is verified against known values

through a loop counter (Line 1). The variable hash value is extracted from the ml and stored in

a variable (Line 2). If the variable target is a controller then the reference value for verification

is retrieved from the global hash for that software binary and build, that is updated by the RIMM

SaaS cloud (Lines 4 to 5). If the variable target is a VM, the variable origin for the software
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Figure 4.16: Verification Scenario

is checked in the RIMM repository of TTP. If the variable origin is global the reference

value is retrieved from the global hash and if the variable origin is client the reference value

is retrieved from the values provided by the client during registration (Lines 8 - 11). The

variable hash value of the software is checked against the variable re f erence value and if

they are not equal the notification options for that software binary is retrieved by the function

get noti f ication options (Line 15). The client is notified based on the notification options

(Line 16).

4.5.3 RIMM policy update

RIMM policy update scenario is presented in Figure 4.17. The TTP invokes the subscribe

service of the RIMM Saas cloud by passing the software list as the parameter. the software list

contains the identifier all the software binaries that the TTP is interested in getting the update

information. The RIMM SaaS cloud adds the client to the subscription list of all the software

denoted by the TTP. When a particular software in the software list gets an update the software
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Algorithm 2 Verification of ML: veri f y ml
Input: target, ml

1: for each s in ml do
2: hash value = s.hash value
3: reference value = NULL
4: if is controller(target) then
5: reference value = get global hash(s.id, s.build in f o)
6: else
7: origin = get origin(s.id, target)
8: if origin is global then
9: reference value = get global hash(s.id, s.build in f o)

10: else
11: reference value = get client hash(s.id, s.build in f o, target)
12: end if
13: end if
14: if hash value != reference value then
15: n = get noti f ication options(s.id)
16: noti f y client(VERIFICAT ION FAILED, s, n)
17: end if
18: end for

vendors invokes the noti f y update service of the RIMM SaaS cloud with the new hash value.

This value is published to all the clients (TTP) that has subscribed to get the updates of that

software. The TTP then adds that value to its datastore. Any future verifications by the TTP

will use the new updated version value.
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Figure 4.17: RIMM Update Scenario

4.6 Establishing a minimal trusted computing base

The Trusted Computing Base (TCB) consists of the hardware and software stack that is audited

and tested thoroughly for the security of a particular application. For each software identified

in TCB, the software need to be verified against valid values and all the updates of that software

needs to be maintained by the system. Therefore, the size of the TCB is directly proportional

to the complexity of attestation. Therefore it is necessary for the TCB size to remain small.

Our goal is to establish a minimal TCB for the domain controller and the VM for effective

attestation. We established minimal TCB using the Debian flavor7 of GNU\Linux operating

7http://www.debian.org
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system by leveraging Debian’s advanced package management infrastructure, referred to as

dpkg.

TCB using Debian Package Management (dpkg)

In the early days GNU\Linux programs were distributed as source code, expecting the users to

compile and generate binary files. As the software ecosystem evolved considerably, the source

code distribution was no longer feasible for effective software management as there are depen-

dencies in the software and also all users cannot be assumed to spend time on compiling every

program they install. To counter this, most GNU\Linux distributors use a pre-compiled and

built collection of programs called packages that can be directly installed on their distribution.

The Debian distribution of GNU\Linux uses dpkg to manage the software that can be installed

in it.

A dpkg package file is a standard tar file, optionally compressed with gzip or bzip2 com-

pression. The tar files consist of all the binary files and configuration files that are part of the

software package along with a control file. The control file has meta-data about the package,

such as the name of the package, version, architecture, list of dependent packages, maintainer

etc. Along with these it has a priority that can contain the following values: required, impor-

tant, standard, optional and extra. The required packages are essential for the execution of the

operating system. Linux kernels, networking stacks are a part of required packages. The other

class of packages are not of interest.

For our experiments we extracted the packages with priority, required, of the Debian. There

were around 336 required packages in Debian Sid version. Each package has an average of 5

to 10 files. The hash values of each file are extracted and saved to form the RIMM SaaS cloud.

We also installed the Xen VM machine and the supporting software for it and added to the

measurement list in RIMM SaaS cloud.

If we assume the packages are secure then dpkg can be used to host the secure packages of

the proposed infrastructure. Moreover, IaaS can utilize the dpkg sync and update functionalities

to receive automatic updates from the dpkg repository.
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4.7 Implementation

The TTP, server and client are implemented using the Twisted networking framework [46] in

Python. Twisted is a platform for developing event driven networking applications. Twisted

enables developers to implement non blocking servers using callback programming model.

The services in all the servers use serialized Python objects (Pickle) to transfer messages in

between them. Synchronized queues are used to regulate data flow during slow connections.

The RIMM SaaS cloud and RIMM datastore of TTP use redis key/value database for storing

the policy information.

4.8 Experiments

Experiments are conducted to analyze the effectiveness of the proposed infrastructure and to

study the overhead. The effectiveness of the proposed infrastructure is illustrated by the Heart-

bleed bug scenario, where the clients are alerted when the server is running a vulnerable version

of the OpenSSL software. The overhead of the system is measured against plain vanilla setup

without remote attestation infrastructure.

4.8.1 Heartbleed Detection

On April 7 2014 a bug related to the OpenSSL cryptographic library, popularly referred to

as Heartbleed, was made publicly disclosed. OpenSSL is a widely used implementation of

Transport Layer Security (TLS) protocol. Heartbleed is buffer over-read security bug, that

allows software to read more data than it is allowed. This vulnerability was propagated to all

Debian machines through the OpenSSL version 1.0.1e-2+deb7u4 [5].

OpenSSL maintainers fixed this vulnerability and released a new version of OpenSSL. The

Debian maintainers of the OpenSSL package released a new version 1.0.1e-2+deb7u5 with

the updated OpenSSL. The servers that are executing OpenSSL are expected to update their

version of OpenSSL with this new version.

For experiments, we established a TCB that contained the vulnerable OpenSSL u4. The

following servers were setup based on the TCB:
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• An RIMM server is deployed with the hash values of the vulnerable OpenSSL software

binaries.

• An IaaS server is set up with software based on TCB, hosting the vulnerable OpenSSL

binary.

• The TTP server was also deployed and the client was made the register the IaaS with the

TTP.

The registration scenario (Section 4.5.1) is executed to register the IaaS for verification by

the TTP. The registration scenario triggers the subscribe call by TTP to RIMM SaaS cloud

for all the new software in TTP’s RIMM datastore. At this point the RIMM datastore of TTP

contains the vulnerable OpenSSL version and the verification cycle is successful as long as the

software in IaaS server is not modified.

The hearbleed bug scenario is simulated and the workflow that follows the heartbleed de-

tection is presented in Figure 4.18. When a new Debian package is released with updated

binaries of OpenSSL, u5, notify_update of the RIMM SaaS is invoked by the software ven-

dor with the variable update type, critical. The RIMM SaaS updates its datastore with u5’s

hash values. The service publish_client of each TTP that has subscribed to the updates of

OpenSSL is invoked by the RIMM SaaS with the variable update type, critical. The TTP

updates its RIMM datastore with new hash values. These hash values are used for verification

in the next verification cycle of the IaaS controller and VM. If the controller or the VM is not

running the new version of OpenSSL the client is immediately notified.

In this scenario the proposed system was successfully able to notify the client about the

issue with the IaaS server.

4.8.2 Overhead

The overhead of the infrastructure is analyzed by comparing it with an IaaS server that does

not run the remote attestation infrastructure. The booting overhead of the system and overhead

during computational work is studied and analyzed.

For the experiments we set up two different infrastructures: Setup A and Setup B. Setup A,

the remote attestation infrastructure, has three servers: IaaS server, TTP and the client. Setup
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Figure 4.18: Heartbleed Detection Workflow

B without remote attestation has two entities: IaaS server and client. The IaaS servers of both

A and B run the same version of the Debian operating system, Sid with kernel version 3.7.1.

The kernel of setup A’s IaaS is installed with IMA enabled kernel and the IMA kernel code

is instrumented to log the time taken for hashing of each binary file that is loaded into the

memory.

Booting

The booting process of IaaS server involved loading of 84 files to the memory. Both the IaaS

in setup A and setup B are booted around 5 times to measure the average difference in booting.

In our experiments setup A, that ran the IMA enabled IaaS took 1772ms longer to boot than

the setup B without the remote attestation setup. This is because at the boot time many binary

files are loaded into the memory for the first time, hence they need to be hashed before loading.

In a complete boot process which takes around 30 seconds, 1772ms is negligible.
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Computations

To measure the overhead on processing, Unixbench [104] was executed in the IaaS server on

both Setup A and B. UnixBench executes a number of computationally intensive operations

on the server and returns indicator values, that denote the performance of the system. Higher

scores in Unixbench indicate better performance. The experimental output of both the opera-

tions are tabulated in Table 4.1. Setup A took 251.266s to complete the operations specified in

Table 4.1 and Setup B took 252.521s.

Operation Setup B Setup A
Numeric Sort 813.44 836.32
String Sort 523.56 532.32
Bitfield 2.59E+08 2.59E+08
FP Emulation 275.8 275.76
Fourier 21142 18937
Assignment 26.544 26.576
Idea 5167.7 5165.8
Huffman 2340.3 2340.5
Neural Net 46.526 46.483
LU Decomposition 1267.7 1264.7

Table 4.1: Iterations per second for Setup A and Setup B

4.9 Limitations

We prototyped a remote attestation infrastructure and verified and validated the system through

experiments. However, the infrastructure has several open issues.

Verifying the software for security vulnerabilities and malwares is non-trivial. An open

source disk encryption software, TrueCrypt was commissioned for auditing in September 2013.

It took two security engineers 6 months to complete the audit of a part of the software [61].

This experience show that auditing of all the software by RIMM SaaS cloud is an extremely

challenging task.

Our infrastructure is based on static load-time measurements (“measure before load”). In-

herently these measurements cannot completely predict the dynamic properties of the software.

Once the software is loaded in the memory, there could be variety of reasons why the software
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could fail or behave insecurely (e.g., buffer overflow). This behavior is not captured by static

measurements as the behavior is also dependent on other unpredictable parameters. There is

very little research on how to guarantee these dynamic properties of the software.

Also the proposed infrastructure is vulnerable to hardware attacks. There are known attacks

on TPM [65, 19] that need to be resolved before TPM becomes truly tamper resistant.

4.10 Conclusion

In this chapter we showed it is feasible to create a remote attestation infrastructure that can

force the IaaS to comply with the SLA and the clients can trust the remote attestation system.

However, the infrastructure proposed by us introduces additional resources such as the TTP and

the RIMM SaaS cloud. Someone will have to pay to keep these services running and typically

the cost will be borne by the client.

The clients that already trust the cloud provider without the remote attestation provisions

may find it is not in their interest to invest in the proposed infrastructure. This trust may arise

from many factors such as the past record knowledge of strong SLA compliance of the provider

with the client.

Hence there is a need for the infrastructure to take into account the subjective trust percep-

tion of the client and allow the clients to configure the remote attestation mechanisms based

on the clients requirements. In further chapters we will explore how the infrastructures can be

modified to adapt to this changing trust of client.
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Subjective and Dynamic Trust in SaaS

In Chapter 3 and 4, we presented architectures that allowed clients to transact with untrusted

cloud providers. The architectures supported mechanisms such as searchable encryption and

remote attestation, that induced cooperation and compelled compliance from the cloud service

providers. Even though it was feasible to use these mechanisms in terms of security, these

mechanisms have high overhead and require considerable investments in additional servers

on the part of the cloud provider and client. Due to the overhead and additional investment

some clients may not desire these mechanisms especially when they transact with trusted cloud

provided. Therefore these mechanisms should be selectively targeted for clients that lack trust.

The client - server trust relationship decides the server configuration. However, trust rela-

tionships are complex. In Chapter 1 we discussed in detail the subjective and dynamic nature of

trust in the real world by illustrating the plumber problem (Example 1) and the storage problem

of the photographer Alice (Example 2). In Example 2, we noted a need for changing a server’s

configuration based on the client’s requirements for effective policy deployment.

Policy mapping is the extraction of information from a policy to be used to configure ele-

ments of an underlying privacy management system in order to enforce the given policy. From

Example 2, we observe that the level of trust in the cloud provider influences policy mapping

mechanisms. In this chapter and Chapter 6, we continue exploring the influence of trust in

privacy policy deployment in the cloud provider.

This chapter describes an architecture and algorithms for policy mapping that considers

trust as a subjective and dynamic entity. In Section 5.1, we introduce an abstract model con-

95
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taining the storage, processing and monitoring unit and describe different configurations for

each unit based on trust level. We present the high level architecture of the cloud service

framework and explain its individual components in Section 5.3. The implementation details

are discussed in Section 5.5. The performance characteristics are studied in the Section 5.6 and

finally we conclude in Section 5.8.

5.1 Configurable Elements

This section presents our proposed system model as a set of discrete components. The config-

urable aspects of each component are described. The clients decide on the configuration values

based on their trust assessment of the CSP.

In this work we used three equivalence classes for the CSC’s trust value of a CSP as follows:

(0, t1), (t1 + 1, t2), (t2, 1) (t1 = 0.25 and t2 = 0.75). The first class corresponds to “no trust”, the

second corresponds to “uncertain trust” and the third corresponds to “complete trust”. Our

definition of equivalence classes is similar to the trusted, distrusted and untrusted view of trust

taken by Marsh et al. [75].

The configuration values based on the trust, are provided as input to mapping algorithms

along with the data item and its privacy policy.

Each CSP consists of a storage engine, policy engine, monitoring engine and systems ser-

vices.

5.1.1 Storage Engine

The storage engine is responsible for storing client data. Configurable elements include the

encryption and logging levels.

Encryption Levels: The storage engine allows client data to be stored unencrypted or encrypted.

One of the configuration parameters represents the type of encryption to be used which includes

the following:

• Unencrypted: The data is not encrypted before being sent to the CSP. This is suitable

when the client has a high level of trust in the CSP e.g., the trust level is 1.
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• Obfuscated: A lightweight encryption (e.g., substitution cipher) is applied to the data

before it is stored in the file system. This may be suitable when the client’s trust in the

CSP is medium to high e.g., the trust level is between 0.5 and 1.

• Server Encryption: Encryption (e.g., AES) is used for encryption of data before it is

stored. This may be suitable when the client’s trust in the CSP is medium e.g., the trust

value is 0.5.

• TPM Enabled Encryption: A TPM (cryptographic co-processor) is used for encrypting

the data.1 This may be used when the client’s trust in the CSP is low to medium e.g., the

trust value is between 0 and 0.5.

• Client Encryption: The data is already encrypted by the client before reaching the stor-

age system. This may be used when the client has no trust in the CSP e.g., the trust value

is 0.

Logging Levels: The level of logging used to generate access logs on each read and write by

the storage engine for a data item is also configurable. These access logs may be inspected by

the client to assess if there have been any policy violations. If the trust level is low, detailed

logs need to be generated for effective auditing, where as when the trust level is high, minimal

logging should be sufficient. The detailed logging can contain the identifier of the entity making

the data operation request, the IP address that the request originates from, timestamp, for what

purpose, the server integrity value, etc. Minimal logging may only consist of the IP address

that the request originates from.

5.1.2 Policy Engine

A data item is associated with a P-RBAC policy. These policies are translated into machine

readable representations that can be interpreted by the policy engine. For each data opera-

tion request, the policies are checked by the policy engine to determine if the requested data

operation can be carried out. The configurable elements include execution and logging levels.
1The client encrypts the data using AES, and encrypts the AES key using a binding key provided by the TPM

and sends both the encrypted data and encrypted key to the CSP. The CSP decrypts the AES key using TPM and
decrypts the data. The TPM can decrypt the key only when the server is running an uncorrupted version of the
middleware.
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Execution Environment: The policy engine supports the following types of execution:

• Trusted Co-processor: A cryptographic co-processor such as a Trusted Platform Module

(TPM) is used to execute the Policy Engine. TPM ensures that the policy engine is not

tampered with (using integrity values [34]). TPM also makes sure that the application

environment does not run any malware. A TPM could be used when the trust level is low

e.g., trust level is 0 to 0.5

• Traditional application environment: The normal application stack is used to run the

policy engine. The could be used when the trust level is high e.g., trust level is 1.

Logging Levels: This is similar to that of the Storage engine.

5.1.3 Monitoring Engine

The monitoring engine (ME) inspects the logs generated by the policy engine and the storage

engine and raises alerts as needed. The monitoring engine is designed as a reactive measure

against a privacy breach. This engine can also be configured to monitor the other system ser-

vices, such as the file system services and the network traffic. The logs read by the monitoring

engine are useful for auditing and cyber forensics [24].

Execution Environment: The configuration arguments specified for the policy engine also apply

to the monitoring engine, as it is a computational component of the middleware like the policy

engine.

Log Storage: The logs read by the monitoring engine can be saved in one of the following

locations:

• Within the CSP in an unencrypted format. This may be suitable when the trust in the

CSP is high e.g., trust level is 1.

• With a TTP (Trusted Third Party). This may be suitable when the CSP’s trust is uncertain

e.g., trust level is 0.5.

• Client specific logs can be pushed back to the client. This may be suitable when the CSP

is somewhat trusted e.g., trust level < 0.5.
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5.2 Configurations

The configuration levels are specified by clients based on their trust. The configuration (C) is

a tuple defined as follows:

C = (p, s,m) (5.1)

The possible values that can be assigned to p, s and m are presented in Table 5.1 and were

described earlier (Section 5.1).

Configuration Parameters

p (Policy Engine)
r (type of run)
l (log options)

s (Storage Engine)
e (encryption type)
m (memory required)
l (log options)

m (Monitoring Engine)
ev (event)
l (log storage option)

Table 5.1: Configuration Parameters

The configuration parameters and the privacy policy (P-RBAC policy) are input from the

client. The client uses the trust level it has in the CSP to determine the values of the configura-

tion parameters.

The configuration details enable the CSC to express the desired setting in the server. Dy-

namic trust allows users to adapt to the changing perception of trust. As the trust opinion of

CSC changes over time, the configuration of the services also changes with trust values. This

may cause a change in the configuration. In this work we assume three configurations that are

associated with a CSP that is distrusted, a CSP with uncertain trust and a trusted CSP. The

configuration associated with a distrusted CSP is used when Ex ∈ [0, 0.25]. The configuration

associated with a CSP with uncertain trust is used when Ex ∈ (0.25, 0.75]. The configuration

with a CSP that is trusted is used when Ex ∈ (0.75, 1] (The equivalence classes represented

here are explained in Section 5.1).
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5.3 Architecture

This section presents our proposed architecture (Figure 5.1) designed based on the configurable

elements described in Section 5.1 and the formalisms explained in the previous section. The

architecture has the following servers: Application Server, Storage Server, Crypto Server and

Monitoring Server.

Figure 5.1: System Architecture

The CSC transacts with CSP through web services exposed by the application server. The

application server uses the crypto server for encryption and decryption of the data and the

storage server for the storage of the data. The monitoring server, collects the logs for all the

servers and stores them for diagnostics in the future. The individual servers and the services

offered by them are detailed below.

5.3.1 Application Server

The application server is responsible for providing service endpoints for the CSC to interact

with the CSP. The following services are provided by the application server:
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put (data, policy, config info)

This service is called by the CSC, to store the data in the CSP. The policy parameter specifies

the P-RBAC policy assignment details and the config_info parameter is the configuration

tuple for the policy, storage and monitoring engine (from Section 5.2) for the data item. The

application server stores the policy and the configuration details in the Policy database.

The storage component of config_info parameter contains the encryption requirements

for the data. Based on the encryption requirement, the data is encrypted or obfuscated using

the crypto server or sent in plain text to the storage server.

This service returns data_id which is used by CSC for data retrieval.

get (data id)

When a get request is received from a CSC, the application server, checks if the CSC has

access to the data, denoted by data_id in the Policy database. The data is read from the

storage server. If the data was encrypted initially during the put operation, it is decrypted

using the crypto server and the data is returned to the client.

get tpm quote ()

This service is invoked by the client to get the TPM quote [106] of the CSP to remotely verify

if the CSP is tampered with malware (remote attestation). A quote is a value shared by the CSP

with the CSC to prove that CSP is not running any malware or programs that the CSC does not

trust. This service invokes Crypto server’s get tpm quote to get the current TPM quote. TPM

quote contains the integrity values2 of the software that is executed in the server along with a

binding key (kb) that is bound to the integrity values. The usage of kb is discussed in detail in

Section 5.4.

2Integrity values are software binaries’ computational hashes, representing a unique build of the software. If
the software is tampered with, the integrity values of the software changes.



102 Chapter 5. Subjective and Dynamic Trust in SaaS

update (data id, policy, config info, keyclient)

This service is called by CSC when there is a change in the CSC’s trust perception of CSP. This

service needs policy and config_info, such as in the put web service. The configuration

and policy changes are updated in Policy database. The data corresponding to data_id is

transformed using the encryption type specified in the config_info. The parameter keyclient

is the client encryption key. It is used only when the encryption level needs to be changed from

client encryption. The usage of this service is explained in the migration scenario of Section

5.4.

delete(data id, is shred)

The CSC invokes this service to delete the data item from the server. The application server

removes all the policy entries from the policy database corresponding to the data id and in-

vokes the delete service of storage server. The is_shred parameter is explained in the storage

server’s service description below.

5.3.2 Crypto Server

The crypto server is a streaming encryption decryption server with a TPM. It does not have any

storage capability. It receives the data to encrypt/decrypt as a byte stream along with the key.

It supports both server encryption and obfuscation of data. After performing the operation it

does not store the data and key. The following services are provided by the crypto server:

crypt init key (enc type, operation, key, data id)

This service is used to initiate any cryptographic operation. The operation parameter de-

notes if it is an encryption or decryption operation, enc_type specifies if it is server encryp-

tion (AES) or obfuscation, key denotes the symmetric key used for encryption encryption and

data_id specifies the identifier of the data.
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crypt (data)

The data as a byte stream is passed to this service and after crypt_init is invoked. This

service encrypts or decrypts the data as specified in crypt_init invocation and returns the

result as a byte stream. Invocation of this service without invoking crypt_init is invalid.

If the operation is encryption, the result is sent to the storage server. If the operation

is decryption, the result is sent to the application server. The reason for this is explained in

Section 5.4.

get tpm quote ()

As explained in Section 5.4.1, this service is invoked by Application Server’s get_tpm_quote

to get the TPM quote of the server.

5.3.3 Storage Server

The storage server is responsible for optimally storing the data in a storage pool. The data can

be either encrypted data or plain text data. The storage server is oblivious to the policy and

security requirements of the data. The services offered by the storage server are the following:

put(data, data id)

This service saves the data specified by the data_id in its storage system and returns true after

storing. If the storage is unsuccessful owing to disk space or disk error, the function returns

false.

get(data id)

This service fetches the data specified by the data_id and then return the data to the applica-

tion server.

delete(data id, is shred)

This service deletes the data specified by data_id from its storage system. If is_shred is

specified as true, the data from the storage system is securely erased to make it unrecoverable.
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This is achieved by using shred3 command in Unix.

5.3.4 Monitoring Server

The monitoring server provides services for the other servers in the architecture to store the

logs. It also monitors the network traffic and file accesses for any unauthorized access. Moni-

toring server also implements a publish subscribe model for the CSC. The CSC can subscribe to

alerts regarding data access and reject requests from the application engine through monitoring

server.

5.3.5 Configuration of Servers

The dynamic trust value calculated is used to configure the individual servers in the architec-

ture. The individual configuration of each server is tabulated in Figure 5.2.

0

0.5

1

Application Server Crypto Server Storage Server Monitoring Server

policy_info and
config_info 

are encrypted 

policy_info and
config_info 

are not encrypted 

policy_info and
config_info 

are encrypted 

no configuration

no configuration

no configuration

Logs are encrypted

Logs are encrypted 
and file monitoring 

is enabled

Logs are stored as
plaintext

Server encryption 
of data

TPM encryption 
of data

-not used-

-not used-

Figure 5.2: Configuration of the servers

3Shredding does not ensure that the any backup of the data in the system is deleted. We only delete the master
file.
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When the trust level is 0 (no trust), the policy_info and config_info are encrypted

and stored in the application server. The Crypto server is not used, as the data is encrypted

by the client. The monitoring server encrypts all the logs. With uncertain trust (0.5), the

policy_info and config_info are encrypted and the data is encrypted either using server

encryption or TPM encryption as specified by the client. The logs are encrypted and file moni-

toring is enabled in this mode. When the trust level is 1 (complete trust), the application server

stores the policy_info and config_info as plain text and cryptoserver is not used for data

encryption as the data is stored in plain text. The monitoring server also stores the logs in plain

text. It has to be noted that the storage server does not have any special configuration specific

to the trust level as the encryption details are abstracted from the storage server. The storage

server sees the data as BLOBS (binary large objects) and saves it in storage server’s filesystem.

5.4 Scenarios

In this section we describe the orchestration of storage and crypto servers by the application

server for the following operations performed in the CSP.

5.4.1 get tpm quote

get_tpm_quote is requested by the client to remotely verify the server to ensure CSP’s server

is not executing any malware (remote attestation). The initial request is made to the application

server, which makes the same request to Crypto server to fetch the integrity value and the

binding key k. The binding key ensures that the key becomes invalid, when the server’s integrity

value changes in between a transaction. Both the integrity value and the binding key k are

forwarded to the CSC. The CSC checks if the integrity value is valid and proceeds only if it

is valid. For secure communication with the TPM, CSC encrypts the data using a new key, k1

using symmetric encryption such as AES, S Enck1(data), and it applies asymmetric encryption,

to the key k1 using the binding key k, AEnck(k1). The crypto server can decrypt the data only

if the integrity values bound to k do not change during decryption.
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Figure 5.3: PUT

5.4.2 put

The put operation is invoked by the CSC to save a data item in the server. Figure 5.3 presents

the use case using the put scenario. If the CSC wants to remotely attest the server before

the transaction, CSC carries out the get tpm quote scenario described in Section 5.4.1. The

application server on receiving the put request, saves the policy and config info in its policy

database. If the encryption requested by the CSC is either server encryption, ob f uscation

or tpm encryption, the application engine sends encryption messages to crypto server for en-

cryption. The crypto server encrypts the data and sends the put request to the storage server

for saving the data. If the encryption requested by the CSC is plain text or client encryption,

data is sent directly from application server to storage server. The storage server return boolen

status to the application server. On successful storage, the application server, returns the
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Figure 5.4: GET

data_id to the CSC.

5.4.3 get

The get service is invoked when the CSC wants to retrieve the data saved using put service.

The policy and the config_info corresponding to the data_id is loaded from the policy

database. A get request is sent to storage server, along with encryption type. The storage

server sends the data to the crypto server for decryption if the enc_type is server encryption,

ob f uscation or tpm encryption. The crypto server decrypts the data and sends it to the ap-

plication server. If the enc type is plain text or client encryption, the data from the storage

server is directly sent to the application server. The application server then sends the data to

the CSC.
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5.4.4 migrate

This service allows the CSC to change the configuration settings of the stored data item. This

is invoked when there is a change in the CSC’s trust perception of CSP. The algorithm for the

migration to different trust levels for individual data items are described below. The CSC needs

to execute these algorithms for every data item stored in the CSP.

Migration to trust level - 0

At trust level zero, encryption type is changed to client encryption as the CSC no longer trust

the CSP with the data. The CSC executes Algorithm 3, to ensure safe migration of data to the

new trust level. The input to the algorithm include the data identifier, data id, the new P-RBAC

policy for the data, policy, and con f ig in f o, representing the new configuration for the data in

the server.

Algorithm 3 Migrate to Trust Level: 0
Input: data id, policy, con f ig in f o

1: get tpm quote()
2: data = get(data id)
3: delete(data id, is shred = true)
4: enc data = client encrypt(data)
5: put data(enc data, policy, con f ig in f o)

Before initiating migration, CSC remotely attests the server state using get tpm quote. Af-

ter verifying the server’s state, the data is fetched by the CSC using the get operation. The

data is deleted from the server using is shred = true. The is shred attribute will ensure safe

removal to data so that it becomes unrecoverable. The data is encrypted by CSC locally using

a secret key only known to client and the data is sent back to CSP with the new policy and

con f ig in f o objects. Algorithm 3 is executed for all the data items stored by the CSC in the

CSP.

Migration to trust level - 0.5

Migration to 0.5 trust level changes the encryption to tpm encryption or server encryption

based on the client’s preference. The migration can be done from a lower trust level 0 or a
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higher trust level 1. The CSC executes Algorithm 4 for the migration of a data item to the new

trust level 0.5.

Algorithm 4 Migrate to Trust Level: 0.5
Input: data id, policy, con f ig in f o

1: get tpm quote()
2: if current trust level = 1 then
3: update(data id, policy, con f ig in f o)
4: else if current trust level = 0 then
5: update(data id, policy, con f ig in f o, kclient)
6: end if

When migrating from trust level 1, the data is already available in plain text in the server.

Hence the update call (Line number: 3), initiates encryption using using the crypto server and

the encrypted data is saved back in storage server.

When migrating from trust level 0, the client key, kclient is passed as the parameter in the

update service (Line number: 5) of the application server. This key is used to decrypt the data

and then the data is encrypted back by the server using a new key, known only to the server

and is saved in the storage server.

Migration to trust level - 1

Migration to trust level 1 indicates an increase in trust level to a complete trust in CSP. The

algorithm for this migration is presented below .

Algorithm 5 Migrate to Trust Level: 1
Input: data id, policy, con f ig in f o

1: if current trust level = 0.5 then
2: update(data id, policy, con f ig in f o)
3: else if current trust level = 0 then
4: update(data id, policy, con f ig in f o, kclient)
5: end if

When migrating from 0.5, the update service (Line: 2) is called with the new policy and

con f ig in f o objects. The crypto server will decrypt the data and send it back to storage server

for saving.

If the current trust level is 0, then kclient is passed as the parameter in the update service of

the application server. The crypto server decrypts the data on update call with kclient.
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5.5 Implementation

The application server, storage server, crypto server and monitoring server are implemented

using the Twisted networking framework [46] in Python. Twisted is a platform for developing

event driven networking applications. Twisted enables developers to implement non block-

ing servers using callback programming model. The services in all the servers use serialized

Python objects (Pickle) to transfer messages in between them. Synchronized queues are used

to regulate data flow during slow connections. The application server uses MySQL database

for storing the policy information. The storage server uses the CSP server’s filesystem to store

the files. The monitoring server subscribes to events in all the three servers and logs them in a

MySQL database. Pynotify is used to monitor file activity in the filesystem.

The server encryption is performed using GCM (Galois/Counter Mode) [78] algorithm.

GCM is an authenticated encryption cipher that uses AES-128 (Advanced Encryption Stan-

dard) for encryption and Galois Message Authentication Code (GMAC) [78] for authentica-

tion. GCM and GMAC are part of the NIST official standards for authenticated encryption.

Encryption provides confidentiality, integrity and authentication provides assurance on the data

(against tampering). GCM algorithm is implemented using the M2Crypto library for Python.

M2Crypto is an OpenSSL wrapper for Python. In our experiments we found M2Crypto to

outperform the popular PyCrypto library of Python.

5.6 Experiments

This section describes the experiments used to evaluate the performance of the scenarios under

different storage configurations.

5.6.1 Performance of Put and Get

In this experiment we study the response time of put and get scenarios described in Section

5.4 under varying data sizes. The response time is the total time for completing a transaction

starting with a request from the CSC to the CSC receiving the output from the CSP. Within a

transaction, the data flow in between application, storage and crypto servers, the processing of
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data in an individual server, and the latency in the data flow contribute to the overall response

time for a single connection.

Figure 5.5 represents the response time of put and get of different storage modes and differ-

ent data sizes. We observe that the plain text version of put and get has the best response time,

as the data is not transformed in the server. The same scenario is applicable for client encryp-

tion, where the data is stored in the server without any modification. In this experiment, with

larger files, Put(tpm) and Get(tpm) is a more expensive operation than Put(Enc) and Get(Enc),

as Put(tpm) and Get(tpm) involve interfacing with the TPM which is a limited resource device.

Performance of Put and Get
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Figure 5.5: Put, Get Performance

5.6.2 Scalability Experiments

In these experiments, we study the behavior of the individual storage modes under concurrent

connections, to understand the total number of requests, that the system can handle under

acceptable response times. The number of concurrent requests are varied from 2 to 30 and we

measure the average response time of requests at that given point of time. Each connection

makes a put request of a 64KB file.

The plain text storage (Figure 5.6) deals with concurrency more effectively than other stor-

age modes. The response time almost remains constant for up to 8 connections after which the
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Plain Text Put with Concurrent Connections
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Figure 5.6: Plain Text with concurrent connections

response time starts to peak. Even with a load of 30 concurrent data requests, the response time

stays well below 0.04 seconds.

With AES server side encryption (Figure 5.7), there is a linear relationship between re-

sponse time and number of concurrent connections. We believe this is due to a bottleneck

in the design of the Crypto server that makes the request handling serial. As encryption and

decryption requires a lot of CPU cycles, in the current design we handle each encryption and

decryption request serially. However, in faster hardware with multiple processors, parallel han-

dling of requests with a scheduler will reduce the response time of put and get. This experiment

still gives an insight into how the crypto server will perform in a uniprocessor environment with

no parallel request handling.

TPM encryption degrades substantially under heavy load (Figure 5.8). TPM encryption is

expensive. TPM is a uni-processor limited resource device. Even though, we use it only for

protecting the symmetric keys that are used in the encryption of data, multiple usage within a

short span of time appears to affect its performance.
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AES Encryption with Concurrent Connections
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Figure 5.7: AES Encryption/Decrpytion with concurrent connections

5.6.3 Performance of Migrate

The migration scenario is executed by the CSC when there is a change in the CSC’s trust

perception of the server. To study this scenario we stored 10, 4MB files in the CSP using

the put operation. All the different mode transitions described in Section 5.4.4 were executed

on the stored files in CSP and their average respective response times are noted. In total 12

different scenarios are executed to study the cost in the mode transition. The results are graphed

in Figure 5.9.

In the graph, 1-0, indicates the transition in trust level from complete trust 1 to no trust

0. Hence the transition will also involve change in storage mode from plain text to client side

encryption. Similarly we observe the response time for the change from all the other trust

levels. For uncertain trust, 0.5 two different storage modes: TPM encryption and client side

encryption are also noted.

We observe that the change of client encryption to TPM encryption (0-0.5(tpm)) took the

maximum time of 44.23 seconds. This is followed by TPM encryption to server encryption

(0.5(tpm)-0.5(server)), server encryption to TPM encryption (0.5(server)-0.5(tpm)), client en-

cryption to server encryption (0-0.5(server)). All the operations that involved TPM encryption
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TPM with Concurrent Connections
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Figure 5.8: TPM with concurrent connections

or decryption were expensive.

5.7 Related Work

To the best of our knowledge, no existing work addresses the issue of subjective and dynamic

trust in the context of privacy policy enforcement in Cloud Computing. Existing literature in

privacy policy enforcement addresses trust models and the issue of trusted and untrusted cloud

providers separately. We focus on state of the art in policy enforcement in untrusted providers

in this section.

5.7.1 Trust Model

A trust model refers to the specification, evaluation and setting up of trust relationships among

entities for calculating trust. Existing work studies trust modeling in specific systems such as

P2P systems (e.g., [113]), ad hoc networks (e.g., [73, 31]), GRIDs (e.g,[81]), web services and
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Figure 5.9: Response time for trust transition

component softwares [118]. The literature not only focuses on the factors that influence the

trust (reputation, recommendation and trustor’s past experience), but also studies the dynamic

nature of trust. Balakrishnan et al. [31] proposed the use of a subjective logic in the context of

a mobile ad hoc network. The factors that influence the trust of cloud computing model can be

calculated using a trust middleware framework such as Yew et al. [120].

Liu et al. [73] proposed a dynamic trust model that is used for message routing in mobile

ad hoc networks. Wang et al. [113] introduced a dynamic peer trust evaluation model for

measuring the credibility of peer recommendations. Meng et al. proposed a dynamic grid trust

model, DyGridTrust [81] that can evaluate trust dynamically by distinguishing between honest

and dishonest recommendation. Wagng et al. [112] presented a quantifiable subjective trust

evaluation approach for cloud computing model using randomness and fuzziness. Balakrishnan

et al. [31] proposed a subjective logic [62] based trust model for mobile ad hoc networks.

Our work’s focus is not on the calculation of trust. We assume that there is a trust model

that will provide the client with trust values. These trust values will be used by the client to

configure the services in the proposed architecture.
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5.7.2 Policy Enforcement Mechanisms in Trusted and Untrusted Clouds

Privacy preserving storage in untrusted providers is achieved by one or more of the following

methods in an untrusted cloud: i) Cryptography and ii) Trusted Platform Module (TPM). In

cryptography, data owners (clients) encrypt data before the data is sent to the CSP. Therefore

the data is completely hidden from the server. The key management is performed by the client.

Pearson et al. [89] presented a privacy manager based framework in an untrusted cloud. This

work investigates several obfuscation techniques to hide the data from the cloud provider. The

Chaavi webmail system (Chapter 3) introduced an architecture for webmail systems, that sup-

ports privacy preservation in an untrusted cloud without compromising the functionality of the

webmail.

Trusted platform module is a cryptographic co-processor chip developed using the specifi-

cations created by the Trusted Computing Group [106]. TPM has the following functionalities:

Secure storage, platform integrity reporting, platform authentication and authenticated boot.

TPM provides a secure execution environment within an untrusted CSP. This is achieved by

a set of protocols that enables integrity checking of softwares running in the CSP along with

secure encryption and decryption of data within TPM. Chen et al. [39] proposed solutions

involving trusted computing based on remote attestation of software and hardware. Baldine et

al. [32] proposed integrity based protection and access control. These attestation techniques

are further refined using property based attestation which is done by hashing by Gupta et al.

[54]. Bade et al. [28] developed a platform using TPM based on root of trust. Santos et al.

[99] proposed a solution that uses a cloud monitor that stores the valid integrity values of all

softwares that is certified to run on the CSP.

Cloud computing industry is dominated by Amazon, Dropbox, Google and Microsoft.

Amazon S3 [1] offers a web service, that allows storage of objects in a collection abstraction

referred to as a bucket. This allows clients to store data securely in the server with the option of

storing keys both in the server and client. Dropbox is built over the Amazon S3 infrastructure

and provides easy storage and synchronization services through a web client and a native OS

client. Dropbox [3] offers encryption, but it stores the keys only at the server for accessing

data. Dropbox needs to access the data in the server for data deduplication [57] to reduce the
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file storage space. This makes Dropbox vulnerable to attacks such as, malicious insider attacks

and hash value manipulation attacks [84]. To overcome this problem, the users can run client

side encryption applications such as BoxCryptor [2] and Truecrypt [13] that encrypts the files

and presents the encrypted file for dropbox to save it in their servers. Wuala [15] is a storage

service like Dropbox, however it provides out of the box encryption before sending the files to

the Wuala servers. Owncloud [11] is an opensource storage service that supports server side

encryption and plain text storage.

Existing work in industry and academia makes an assumption that the trust value is not

subjective and dynamic, and hence the same policy enforcement mechanisms is used for all

the clients. Subjective and dynamic trust is studied for trust modeling by Balakrishnan et al.

[31], Meng et al. [82] and Wang et al. [112]. The work proposed is distinct in that we take the

multiple values of trust at a given point of time (the output trust value from the trust model) for

a single CSP into consideration for configuring the services. Each of the work discussed above

do not change its configuration dynamically based on clients trust requirements.

5.8 Conclusion

In this chapter we discussed the concept of subjective and dynamic trust in cloud computing

and prototyped a working system. The prototype performed encryption in different modes and

we studied the performance for the same.

We considered an abstract model with computational (policy engine), storage (storage en-

gine) and monitoring unit. However a CSP will have multiple servers and when this model is

extended across multiple servers, there are several resource management challenges and op-

portunities.

A storage service was implemented to validate our model. Other testing scenarios would

include complex workflow scenarios such as a banking or health care management systems.

In the next chapter we consider the subjective and dynamic trust in an IaaS setup.
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Subjective and Dynamic Trust in IaaS

In this chapter we continue exploring the subjective and dynamic characteristics of trust with

respect to IaaS providers. Chapter 5 described the mapping of policies to system configurations

based on different levels of trust, with respect to Software as as Service (SaaS) cloud provider.

Adhering to the same principle of policy mapping, in this chapter we will present architectures

and algorithms that enable IaaS platforms to configure their services based on the client’s trust

perception.

Chapter 4 presented a notification based remote attestation architecture that supported dy-

namic whitelisting, softwares that are allowed be executed in the server, along with an archi-

tecture design based on separation of concerns. In this chapter we expand the work done in

Chapter 4 to selectively apply remote attestation mechanisms on client demands.

This chapter is organized as follows: Section 6.1 presents the requirements for an archi-

tecture to support trust relationships in IaaS by illustrating different scenarios. The different

components of the proposed architecture are described in Section 6.2. Section 6.3 presents the

algorithms and Section 6.4 describes the implementation details. Section 6.6 presents the state

of the art and this chapter concludes with Section 6.7.

6.1 Supporting trust relationships in IaaS

An IaaS provider has multiple IaaS servers. Each IaaS server hosts a domain controller which

in turn manages multiple virtual machines within that server. To support multiple clients with

118
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different trust perceptions, the IaaS provider should be able to deploy remote attestation on

domain controllers and virtual machines on demand, based on the client’s requests. This on-

demand provisioning of remote attestation on clients can lead to many challenges.

IaaS Provider

S1 S2

S3

User1

User2

vm1 vm3
vm4vm2

Figure 6.1: IaaS and Trust Relationship: Initial State

The problem is illustrated in Figure 6.1. Assume there are two users: User1 and User2.

There is one IaaS provider with multiple servers (domain controllers): S 1, S 2 and S 3. User1

owns vm1 in S 1 and User2 owns vm2 in S 2. The user, User1 trusts the provider, therefore

remote attestation is not deployed in the server, S 1. The user, User2 does not trust the provider

hence server, S 2 has remote attestation mechanisms. The VM, vm3 is owned by a client that

trusts the provider and the VM, vm4, is owned by a client that does not trust the provider. In

this illustration, we assume that each server can host a maximum of two VMs for simplicity.

6.1.1 Scenario 1: User1 moves from trusting the provider to distrusting

When User1’s trust in IaaS deteriorates and User1 starts to distrust the provider, the IaaS

provider has one of the following options to improve the trust: a) the IaaS can deploy remote

attestation in S 1 and vm1; b) IaaS can migrate vm1 to a remote attestation provisioned server

and add remote attestation to vm1.
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With option (a), S 1 will continuously relay its measurement list to the trusted third party.

There is an overhead in Server S 1 that may also affect vm3’s performance. However as vm3 is

owned by a user that already trusts the provider, they may perceive the additional monitoring

as un-necessary overheard. Hence option (a) is not an ideal way of handling this.

Option (b) is to migrate vm1 to S 2 which already has remote attestation. As S 2 has already

the maximum number of VMs it can host (two VMs), S 3 is prepared for remote attestation and

vm1 is moved to S 3 (Scenario 1 of Figure 6.2).

User1

User2

S1 S2

S3

vm1

vm3 vm4
vm2

S1 S2

S3

vm1

vm3 vm4vm2

S1 S2

S3

vm3
vm4vm2

vm1

Scenario 1 Scenario 2

Unfragmented Version

Figure 6.2: IaaS and Trust Relationship: Steps

6.1.2 Scenario 2: User2 starts to trust the provider

When the user, User2’s trust perception improves over time and User2 starts trusting the IaaS

provider, User2 will no longer need remote attestation capabilities in vm2 and S 2 (the server

hosting vm2). Hence remote attestation has to be disabled in vm2 and S 2.

However disabling remote attestation in vm2 can affect vm4, as the owner of vm4 relies on
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the remote attestation for continuously monitoring S 2. Therfore vm2 needs to be moved to a

different server that does not support remote attestation.

The only server available without remote attestation capabilities is S 1. Hence vm2 is moved

to S 1. We can observe from Scenario 2 of Figure 6.2 the migrations from Scenario 1 and

Scenario 2 has lead to fragmentations in the system. In an ideal system, the migration of VMs

should have finally looked like the Unfragmented version in Figure 6.2.

6.1.3 Requirements

Based on these scenarios, we arrive at the following requirements for an architecture that deals

with trust relationship in IaaS:

1. The architecture needs to support migration of VMs across different domain controllers

(servers).

2. There should be a common middleware installed on all the servers that is able to en-

able/disable the support of remote attestation in domain controllers on demand.

3. Any server at a given point of time can either be hosting remote attestation enabled VMs

or normal VMs. The server should not be allowed to host both the VMs simultaneously,

as this may lead one of the VMs to suffer from unnecessary overhead.

4. The migration can result in fragmentation of VMs and the algorithms that are designed

will have to effectively deal with the fragmentation.

6.2 Architecture

The proposed system contains the following components hosted within an IaaS infrastruc-

ture (Figure 6.3): Infrastructure Controller, Trusted Pools, Untrusted Pools and Unallocated

Servers. The pool of unallocated servers enable the the IaaS provider to scale the trusted and

untrusted pool based on demand. The infrastructure controller is responsible for allocating and

deallocating resources to and from trusted pools, untrusted pools and unallocated servers. The
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trusted pools, untrusted pools and unallocated servers are virtual organization of IaaS servers

within the IaaS infrastructure.

Infrastructure 
Controller

Trusted Pools Untrusted Pools

Unallocated Servers

IaaS

Figure 6.3: Components of the architecture

6.2.1 Infrastructure Controller

The infrastructure controller has algorithms (described in Section 6.3.2) that effectively manage

resources between trusted pools, untrusted pools and unallocated servers. The resource alloca-

tion is performed on-demand from client requirements. The infrastructure controller contains

an upper threshold limit for maximum number of servers that can be allocated for trusted pools

(τt) and untrusted pools (τu). The values represented by the variables τt and τu determine the

percentage of servers that is allocated to each pool (τt + τu = 1). For example, if the total

number of resources are 100 and τt is 0.25 and τu is 0.75, the trusted pools, at a given point of

time, cannot exceed 25 servers and untrusted pools cannot exceed 75 servers. The variable τt

and τu values are decided by the IaaS provider based on several parameters such as demand for

each type of pool, the profit margin for allocating a particular kind of resource etc. The details

of this are beyond the scope of this work.

The infrastructure controller executes a controller middleware that is responsible for allo-

cation and deallocation of servers in all the pools. To handle scenarios described in Section
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6.1.1 and Section 6.1.2, the middleware also executes a periodical defragmentation algorithm

that migrates the VMs and consolidates similar VMs together for optimum resource utilization.

The algorithms for allocation and deallocation along with defragmentation are presented in

Section 6.3.2.

6.2.2 Trusted Pools

The trusted pools are formed by IaaS servers, that do not have remote attestation support. These

pools are virtual organization of traditional IaaS servers. The IaaS servers within the pool do

not communicate with each other and the controller decides which server is allocated to and

deallocated from a trusted pool. The IaaS servers in the pool host the traditional hardware and

software stack without any remote attestation support. The motherboards of the IaaS server

need not be equipped with TPM (Trusted Platform Module). The software binaries loaded in

these IaaS servers are not restricted by a limited trusted computing base. It has to be noted that

a server equipped with TPM chip can be a part of trusted pool if the TPM chip is disabled and

not used for remote attestation.

6.2.3 Untrusted Pools

The untrusted pools are a collection of IaaS servers that host the remote attestation enabled

IaaS servers. These IaaS servers, similar to trusted pools, do not communicate with each other.

The servers in the pools have a TPM chip and run IMA (Integrity Management Architecture)

enabled kernels and the VMs also host IMA enabled OS. They also host the notification based

remote attestation trust component discussed in Chapter 4. The services available through the

trust component enables the client to remotely verify the domain controller (server) and the

VM.

6.2.4 Unallocated Servers

The unallocated servers are a pool of resources that are waiting to be allocated by the controller.

There are two types of servers in servers: unallocated servers that come with a TPM and servers

that do not have TPM chip.
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Un-allocated servers with a TPM chip can be used for both trusted (with the TPM chip

disabled) and untrusted pools. The servers without a TPM chip can only be used for trusted

pools.

The infrastructure controller goal is to increase the size of unallocated servers to reduce the

resource and power consumption of the entire data center.

6.2.5 Resource Middleware

The resource middleware is the software component that is installed on all the servers and the

virtual machines in the IaaS provider. This middleware, enables and disables remote attestation

capability in the servers as per the demand. The resource middleware communicates with the

controller middleware that is hosted by the infrastructure controller periodically to update the

status of VMs running in the server. The controller middleware sends commands to resource

middleware when a VM needs to be migrated or a server needs to be migrated.

6.2.6 Modifications to Trusted Third Party (TTP)

We described TTP and the services hosted by the TTP in Chapter 4. The TTP with the same

functionality is used with the following additional modification. In the original TTP because

the reference to a VM and IaaS server never changes (as the assumption was there is no migra-

tion between servers), the IP address of the VM and IaaS server can be used for identification.

In this context an indirection table was introduced that stores the current IP address of the VM

and IaaS server. Virtual machines and IaaS servers are identified by a GUID (Global Unique

Identifier) in the TTP. The following service is added to TTP for supporting migration:

update server(vm, target ip, target server,RA):

This service is called by the IaaS infrastructure controller when there is a migration of VMs

between different servers. The input variable vm represents the GUID of the VM, target ip

denotes the new IP of the VM, target server represents the IP address of the server to which the

VM is migrated to and RA denotes if remote attestation is enabled or disabled in the VM. The

service changes the server associated with a client to a new server location, thereby updating

the indirection table. The IP address of the VM changes to target ip, when it is migrated.



6.3. Algorithms 125

This new server location (target server) is used by TTP to check the server in the predefined

intervals. The service is invoked when the client requests the migration to IaaS infrastructure

controller or the infrastructure controller wants it for VM consolidation (defragmentation). For

the given variable vm, the TTP updates its target IP in the indirection table to the new address.

6.3 Algorithms

This section presents algorithms that are used for migration of VMs. Section 6.3.1 describes

the algorithms that enable migration in resource middlewares in IaaS server. The algorithms

used by the infrastructure controller to manage resources are presented in Section 6.3.2.

6.3.1 Migration Algorithms in Resource Middleware

The migration algorithms presented in this section are executed within a resource through a

middleware. The resource can be either a IaaS server or the VM. Algorithm 6 presents the

algorithm for migrating a resource (change of pool of a IaaS server or migrating a VM) to the

trusted or untrusted pool, specified by input variable target state. The migration of the resource

modifies the state of the resource from remote attestation enabled to remote attestation disabled

or vice versa. This algorithm is executed by the the resource middleware that is hosted in the

IaaS servers and VM. This algorithm is called when a resource needs to be moved to the target

machine pool corresponding the input variable, target state.

Algorithm 6 Prepare for migration: prepare f or migration()
Input: target state

1: stop all jobs()
2: if target state != current resource.state then
3: modi f y boot param(target state)
4: current resource.state = target state
5: end if
6: if current resource.type = V M then
7: halt machine()
8: else
9: reboot machine()

10: end if
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The variable target state can take two values RA and NO_RA, specifying remote attestation

(untrusted pool) and no remote attestation (trusted pool) specifically. Before preparing for

migration all the current jobs running in the resource are stopped (Line 1). If the target state

of the resource (IaaS server or VM) is not the current state of the resource, then the boot

parameters of the resource is modified to reflect the target. The resource’s current state is

modified to target (Lines 2-4) thereby moving the resource to the corresponding pool.

If the current resource is a VM, then the VM is halted so that it can be migrated to a new

server. If the current resource is the IaaS server then the machine is rebooted, so that the

machine on its next boot will be in the state specified by the variable, target state.

Algorithm 7 Migrate VM: migrate vm()
Input: vm, target state, target server

1: Invoke prepare f or migration(target state) in vm
2: wait f or vm halt(vm)
3: return xen migrate(vm, target machine)

Algorithm 7 denotes the algorithm for the migration of a VM. The input variable vm, repre-

sents the identifier of the VM and the input variable target state denotes the target state of the

VM and the variable target machine, that denotes the machine to which the VM needs to be

migrated to. Initially the algorithm calls the prepare f or migration algorithm that prepares

the VM for migration. It then waits for the VM to halt after that xen migrate is called on the

algorithm that migrates the VM to the new server.

6.3.2 Resource allocation algorithms in Controller

The resource allocation algorithm (Algorithm 8) is executed by the infrastructure controller for

the allocation of the VM based on client’s requests. This algorithm is invoked to allocate a new

server from unallocated pool.

The algorithm takes as input the variable server type. The variable server type denotes

the kind of server that needs to be allocated. It takes two values: RA, which represents remote

attestation support and NO_RA, which represents no remote attestation support.

Initially the algorithm tries to find a server that has the ability to add a new VM (with free

VM slots) for the given variable sever type (Line 1). If a server is found with a free slot then
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the server identifier is returned.

If a server with free slot is not found a new server needs to be prepared from the unallo-

cated pool. If the requested server type is RA then the variable server count is set to S u. The

variable S u is a global variable that denotes the total number of untrusted servers allocated.

The threshold value denoted by τ is set to the threshold value of trusted servers, τt (Lines 3-5).

Similarly if the server type is NO_RA, server count is set to the total number of trusted

servers allocated denoted by the variable S t and the threshold value τ is set to the threshold

value for untrusted providers τt (Lines 6-8).

The threshold value τ is assigned from either τt and τu (Lines 5 and 7) to enable verifying

threshold limits independent of the type of the server (Line 9).

After setting the variable server count and the threshold value, τ, there is a check to see if

the allocation of new server will exceed the overall threshold limit (τt or τu) allowed for that

type of server (Line 9). If it exceeds the new resource is not allocated.

If the allocation of new resource will keep the resources well within the threshold limit,

then a new server with free slot (tpm server for server type, RA and any server for server type

NO_RA respectively) is found from the unallocated servers. If there are servers available in

the unallocated pool, then a new server is prepared by installing the OS and the required re-

source middleware. The OS is configured based on the variable server type (Line 10). The

corresponding global variable for the new server type is is incremented (Lines 10 to 11).

Migration of VMs

The migration algorithm for migrating a VM from one IaaS server to another IaaS server with

the desired target state is presented in Algorithm 9. This algorithm is executed by the infras-

tructure controller. The input variable vm denotes the identifier representing the virtual machine

and the variable target state represents if the VM should be migrated to a RA or a NO_RA state.

Initially the algorithm tries to find a server with free slot of given server type by invoking

the function f ind server f or vm() of Algorithm 8 (Line 1). If a server is not found, null is

returned. If the server is found the VM is migrated by invoking the migrate vm function call

of Algorithm 7 (Line 5). The function get allocated vms returns the total number of VMs

that are allocated in the specified server. If the migration is successful then the corresponding
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Algorithm 8 Allocate VM: f ind server f or vm()
Input: server type . RA or NO_RA

1: server = f ind server with f ree slot(server type)
2: if server is null then
3: if server type is RA then
4: server count = S u

5: τ = τu

6: else server count = S t

7: τ = τt

8: end if
9: if (server count * τ) >= server count + 1 then

10: server = prepare new server(server type)
11: server count = server count + 1 . Incrementing server count increments either S u

or S t

12: end if
13: end if
14: return server

variables in the infrastructure controller are incremented and decremented. The source vms

from the source machine in decremented and the target vms are incremented (Lines 7-12).

These variables will enables the infrastructure to find if there are any servers with free slots

available for future allocations.

Algorithm 9 Migrate VM: migrate vm()
Input: vm, target state

1: server = controller o f (vm)
2: target server = f ind server f or vm(server type)
3: if target server is NULL then return NULL
4: end if
5: migration status = migrate vm(vm, target, target server) of server
6: if migration status is TRUE then
7: source vms = get allocated vms(server)
8: source vms = source vms - 1
9: set allocated vms(server, source vms)

10: target vms = get allocated vms(target server)
11: target vms = target vms + 1
12: set allocated vms(target server, target vms)
13: end if
14: return migration status
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Defragmentation Algorithm

The defragmentation algorithm migrates the VMs and consolidates similar VMs together for

optimum resource utilization. A very primitive defragmentation algorithm is presented in Al-

gorithm 10. The presented algorithm is a proof of concept of how the functions within the

resource middleware can be orchestrated for VM consolidation.

This algorithm is invoked by the server in predefined intervals during a scheduled mainte-

nance time. The algorithm takes as input the variable, server type, which has the values RA

or NO_RA. For each type, the algorithm is executed separately. This algorithm assumes that a

server can host only a maximum of two VMs.

An IaaS server is referred to as completely filled if it hosts two VMs (the maximum, a

server can host based on our initial assumption) and partially filled if it hosts only one VM.

Initially the list of all IaaS servers that are not completely filled with VMs (containing only

one VM) are stored in the array partially f illed servers (Line 1). Each element in the array

partially f illed servers represents a server object. The server object contains the identifier of

the server (id), identifier of the server’s VM (vm) and the current state of the server (state), RA or

NO_RA. A pair of servers is considered by iterating through the array, partially f illed servers

and the VM in the first server (i) in the pair is migrated to the second server (i + 1) in the

pair. The migration is achieved by calling the function, migrate vm (Algorithm 7) of the

server denoted by i (Line 4). This step will make one server (i + 1) completely filled and

the other server (i) is returned to the pool of unallocated servers. The service update server

is invoked in TTP to update the TTP of the migration (Line 5). At the end of the loop (Line

7), partially f illed servers/2 number of servers will be completely filled and the remaining

partially f illed servers/2 servers will be unallocated.

The time complexity of this defragmentation algorithm is O(n) because of the assumption

that a server can host only a maximum of two servers. However, VM consolidation problems

are similar to bin-packing problems and are NP complete problems [111]. Our work can be

extended to support the VM consolidation algorithms [58] in the literature.
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Algorithm 10 Defragment Virtual Machines: de f ragment()
Input: server type

1: partially f illed servers = get partially f illed servers(server type) . Return all the
servers hosting only one VM

2: for i = 1 to partially f illed servers.length step 2 do
3: if i + 1 ≤ partially f illed servers.length then
4: . Migrate the VM from ith server to (i + 1)th server, making ith server return to

unallocated pool
migrate vm(partially f illed servers[i].vm,

partially f illed servers[i].state,
partially f illed servers[i + 1].id

) of partially f illed servers[i]
5: update server in TTP
6: end if
7: end for

6.4 Implementation Details

As this is extension of the IaaS system described in Chapter 4, the TTP, server and client

is implemented using the similar technology: Twisted networking framework [46] in Python.

Migration of VMs was done using Python scripts by manually supplying commands to the Xen

controllers. The infrastructure controller was implemented using python and Redis key value

store for storing the datastructures. The datastructures stored the state of trusted, untrusted and

unallocated pools.

Among all the migration capabilities available in Xen, a manual (script-based) Stop and

copy migration is used. When a user starts to distrust the server, the user will be more con-

cerned with immediately moving the VM to a remotely attested server rather than keeping the

VM up and running during the migration, as it may cause security issues. Therefore the VM

is stopped immediately after enabling the remote attestation, when the user requests remote

attestation. The image is immediately moved to the server with remote attestation and the VM

is booted again in the remote attested server.
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6.5 Experiments

The functionality of remote attestation and the overhead was studied extensively in Chapter 4.

We focused our experiments in this section to analyze the effectiveness of the proposed algo-

rithms and to study the overhead of the migration. The algorithms were verified and validated

by setting up a test environment and executing scenarios to test the system and the overhead of

the migration was analyzed by measuring the time taken to migrate a VM from one IaaS server

to the other IaaS server.

To study the effectiveness of the system, three different servers are used to verify the in-

frastructure, Server A, B and C. Server A was loaded with the infrastructure controller and the

redis key value datastore for storing the datastructures. The server B and Server C were running

the resource middleware in Debian operating system, Sid with kernel version 3.7.1. Server B

hosted Sid Debian version with remote attestation enabled and Server C hosted the Debian OS

with remote attestation disabled. Through the experiments we verified the migration of VMs

between server B and server C as directed by server A.

The migration time of a 4GB VM image was found to be 10.3 minutes in 5 trials. This

migration time can increase the time for defragmentation algorithms considerably as each mi-

gration for VM consolidation can potentially take 10 minutes. However this can be decreased

by asynchronously initiating migration from the controller by not waiting for each migration

to complete to start a new migration.

6.6 Related Work

Azzed et al. [27] introduced the concept of trust in resource management, such that allocation

of a process to a server was made trust aware. Based on the security requirements of the

process, the process is allocated either to a highly secure environment with overheads or a

less secure environment with better throughput time. Tao Xie et al. [116] proposed a security

aware scheduling algorithm, SAREC that integrated security requirements into scheduling for

real time applications. The authors proposed a system model that consisted of list of tasks with

security level and deadline requirements. Each security level in the system added additional



132 Chapter 6. Subjective and Dynamic Trust in IaaS

overhead to the running task. Each task is scheduled for execution in the highest security level

possible (greater than the specified security level) as long as the deadline is not missed.

To the best of our knowledge no existing work addressed the issue of varying trust levels

in an IaaS provider. There is considerable literature on realtime security-aware scheduling,

however none in security-aware VM placement strategies in an IaaS provider.

6.7 Conclusion

We introduced the notion of subjective and dynamic trust for IaaS providers in this chapter.

The architecture proposed in this chapter enabled on demand remote attestation provisioning

on VMs based on the client’s trust perception. We verified and validated the system through

experiments. The clients can verify the migration through the TTP. However the system has

several open issues.

The experiments found the migration time is in the order of 10 minutes for a 4 GB image

which may be infeasible for certain kind of realtime applications. The VM consolidation will

require a scheduled downtime of the server. To simplify the defragmentation algorithm we

assumed that each server will host only a maximum of 2 VM images. In real world scenarios

this can greatly vary.
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Conclusion

This dissertation has investigated the complex trust relationships of the cloud clients with cloud

provider and proposed new architectures that take these trust relationships into account while

enforcing a privacy policy. This chapter concludes the thesis by summarizing the contribution

of the thesis in Section 7.1, presenting application scenarios in Section 7.2 and the future

directions for the research in Section 7.3.

7.1 Contributions

This thesis focused on architectures that enable secure transactions between cloud clients and

untrusted provider. We studied the feasibility of these architecture in a real world system

using a Privacy Enhancing Technology (PET). We further investigated the limitations of PET

and how Trusted Computing architectures (remote attestation) can be used to address these

limitations. We identified issues with state of the art in remote attestation architectures and

proposed improvements to it. Finally we introduced the concept of subjective and dynamic

trust in the cloud computing context.

PET in cloud architectures: We studied the challenges in architecting a real world web-

mail system using searchable encryption technology. The webmail system enabled secure

communication of messages using a public/private key model and privacy preserving keyword

search functionality using AES key encryption algorithm. The developed webmail system

133
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used searchable encryption without compromising on the security and the functionality. The

prototype is benchmarked and based on the results, we show the feasibility to architect a pri-

vacy preserving solution for webmail systems in a real working environment. However, the

proposed solution addressed only searching, which is one of the many possible scenarios in a

cloud computing environment.

Architectural Improvements to Remote Attestation: Remote attestation can be used in

systems independent of the application scenarios. We studied the state of the art in remote

attestation infrastructures in the cloud and identified two major issues: complexity in the man-

agement of software measurement values by the verifier (maintaining TCB) and the client’s

need to add verification workflow in its transactions. To address these issues, a remote at-

testation ecosystem of a Trusted Third Party (TTP), RIMM (Resource Integrity Measurement

Manifest), Cloud Service Provider (CSP) and Cloud Service Client (CSC) was proposed. A

notification based remote attestation infrastructure was prototyped that supported verification

of servers and virtual machines using the TTP and RIMM. RIMM maintained a list of known

secure software integrity values. The remote attestation of the server and VM was delegated

to a TTP. The software state of the server and the VM was verified continuously by the TTP

in predefined intervals through polling. The proposed remote attestation infrastructure was

studied in a web application scenario. A known minimal trusted computing base (TCB) is

established and its security implications and overhead of attestation were also analyzed.

Subjective and Dynamic Trust in IaaS and SaaS: Remote attestation introduces overhead

on the system that may be undesirable to the clients that already trust the provider. Remote

attestation may also be seen as an overhead if the clients start to trust the cloud provider.

Therefore, there is a need for the infrastructures to adapt to the client’s subjective trust percep-

tion of the client and allow the clients to configure the remote attestation mechanisms based on

the clients requirements.

We studied the dynamic and the subjective nature of trust is a cloud computing context and

its implications for SaaS and IaaS providers:

For the SaaS cloud, a policy based approach to the implementation of subjective and dy-
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namic trust was architected to enable privacy policy enforcement in a SaaS cloud was proposed.

An abstract model containing computational, storage and monitoring unit with configurable

elements was introduced and algorithms that reflect how a change of trust influences the con-

figuration of these elements were also designed.

In the IaaS context, the server pool is divided into virtual trusted and untrusted pools.

The trusted pools supported the notification based remote attestation infrastructure whereas

the untrusted pool does not have the overhead of the remote attestation infrastructure. We

introduce secure protocols for the migration of VMs between the pools based on the client’s

trust perception and then benchmarked the system.

7.2 Application Scenarios

The contributions of this thesis can be applied in several application scenarios. Few of them

are enumerated below:

• Improvements to the traditional webmail: Using a webmail system requires disturb-

ing levels of trust from the cloud service client on the cloud service provider. Pretty

Good Privacy (PGP) [122] is one of the widely used mechanisms for protecting the email

messages from the attackers including malicious web mail servers to ensure only the re-

cipients, who possess the secret private key can read the email. However PGP requires

extra bootstrapping and installation of the PGP plugins on the webclient. Moreover en-

crypting email messages using PGP renders it un-searchable in the email server. Our

contributions in Chaavi (Chapter 3) can be used to extend PGP by supporting secure

email through browsers and also making it searchable using the mail server infrastruc-

ture. The lessons learned from Chaavi can also be used in implementing other types of

PET in SaaS cloud architectures.

• Verification of applications hosted on a minimal software stack: Applications that are

hosted on a limited software stack can be verified using contributions in Chapter 4. An

example is a hospital management system software that runs over a known application

framework and operating system stack. This hospital management system along with
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the application framework and the operating system can be installed in a virtual machine

(VM). A trusted third party (TTP) can be utilized to verify the software stack running

on the VM and the VM controller. The services of the TTP can be utilized by multiple

hospitals to host their own instances of the hospital management system. Regulators can

control the approved software (software whitelist) that can be hosted on a VM and the

VM controller. In general the architecture proposed in Chapter 4 can be used in any

application architecture that uses a limited software stack, but requires strict monitoring.

• Adaptive trust-based architectures: Patterns of trust based service configuration can

be observed in cloud industry. The clients work with untrusted services by deploying

proactive mechanisms such as client side encryption. For example, in a storage system

scenario, when the cloud service client trust the cloud provider, the clients use services

such as Dropbox to store the content. However when the clients do not trust the provider,

they execute client side encryption applications such as BoxCryptor [2] and Truecrypt

[13] that encrypts the files and save them in dropbox. Using our contribution in Chapter

5, the cloud service clients can seamlessly configure the cloud service provider based

on the client’s trust perception without relying on multiple software and services. The

configuration of the services can be dynamic based on the changing trust perception of

the client over a point of time. This architecture can be extended to any application that

requires subjective and dynamic configuration of services based on trust.

7.3 Future Work

There are number of areas the thesis can be taken in the future. These areas include:

• Setting up of Government Regulations: Even though trusted computing and remote

attestation have been around in academia for 20 years, they are not widely adopted by the

industry. The principle of remote attestation is used in the mobile industry by Apple and

Google to maintain their private application market ecosystems and to prevent users from

installing unauthorized software. More research should focus on the steps government

can take to enforce the providers to use remote attestation. This can start by government
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setting up regulations on the remote attestation protocols a cloud provider should support

for third party verification.

• Risk: Much of the thesis focused on the trust concerns of the cloud clients. However,

assessment of the risk, along with trust is another important tool that is used for mak-

ing decisions in an uncertain environment [63]. The risk involved in choosing a cloud

provider will also take into account the purpose for which a cloud provider is being used

by the client. For example, the risk of the client in choosing a provider to store their per-

sonal photos can be relatively less than choosing the cloud provider for banking needs.

The natural succession to this work is to focus on studying the risk factors affecting the

cloud client and technological solutions to mitigate them and how risk and trust works

together.

• Remote Attestation Infrastructure: The verification of the software against security

vulnerabilities and malwares is non-trivial. The software measurement values (hash of

the software) cannot accurately predict the dynamic behavior of the software when it

is loaded in an unpredictable environment. Therefore the software needs to be tested in

multiple environments before being passed as “secure”. This process can be infeasible to

adopt for each and every software. The effective auditing of a software against software

vulnerabilities under dynamic environments needs to be studied in detail.

• Platform as a Service: This thesis focused on working with uncertain and changing

trust in Software As A Service (SaaS) and Infrastructure as a Service (IaaS) cloud service

models. Platform as a Service (PaaS) service models allow users to use the cloud server’s

Application Programming Interfaces (API) to implement their application. Future work

can study the policy mapping of the subjective and dynamic trust to PaaS architectures.

• Dataflow between different trust domains: When there is dataflow in the system be-

tween clouds (federation of clouds) of different trust levels, the data needs to be translated

for that configuration and the policy will have to be transported with the data. Moreover,

when multiple clients are involved in this federation, each client will have its own trust

view of the cloud service providers in the federation. Behavior and configuration of
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services in the federation of clouds for multiple clients needs to be explored.

• Effectiveness of Subjective and Dynamic Trust: The architectures proposed by this

work for enabling subjective and dynamic trust in cloud provider needs to be studied in a

real world industry scenario to observe how clients react to these adaptive architectures.

Detailed surveys along with user study will give deeper insight into the clients trust per-

ception and will verify if technological means of addressing the trust issues gets reflected

in the actual usage of the system.

The complex trust relationships in the social world will permeate into the computational

arena as the technology evolves. Our attempt in this thesis was to address those complexities

of trust relationships.
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