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ABSTRACTS 

 
Dilation of the cerebral ventricles is a common condition in preterm neonates with intraventricular hemorrhage 

(IVH). This post hemorrhagic ventricle dilation (PHVD) can lead to lifelong neurological impairment through ischemic 

injury due to increased intracranial pressure (ICP). Interventions, such as ventricular tapping to remove cerebrospinal fluid 

(CSF), are used to prevent injury, but determining the optimal time for treatment is difficult as clinical signs of increased 

ICP lack sensitivity. There is a growing interest in using near-infrared spectroscopy (NIRS) because of its ability to monitor 

cerebral oxygen saturation (StO2) at the bedside. However, the accuracy of NIRS may be affected by signal contamination 

from enlarged ventricles, especially if there are blood breakdown products (bbp) in CSF following IVH. To investigate 

this, serial NIR spectra from the head and from CSF samples were acquired over a month from seven IVH patients 

undergoing treatment for PHVD. Over time, the visual appearance of the CSF samples progressed from dark brown (“tea 

color”) to clear yellow, reflecting the reduction in bbp concentration as confirmed by the stronger absorption around 760 

nm at the earlier time points. All CSF samples contained strong absorption at 960 nm due to water. More importantly the 

same trend in these absorption features was observed in the in vivo spectra, and Monte Carlo simulations confirmed the 

potential for signal contamination from enlarged ventricles. These findings highlight the challenges of accurately 

measuring StO2 in this patient population and the necessity of using a hyperspectral NIRS system to resolve the additional 

chromophores.  

 

INTRODUCTION 

 

Preterm neonates born very early at low birth weight (<1500g) commonly have brain bleeds inside the ventricles, called 

intraventricular hemorrhage or IVH, and it is estimated to effect 10-30% of these patients.[1] IVH is thought to be 

caused by a combination of poor autoregulation and a fragile germinal matrix (the highly vascularized region from which 

brain cells migrate during development).[2] Bleeding can cause dilation of the cerebral ventricles, called post 

hemorrhagic ventricle dilation (PHVD), through blood clots which block the ‘flow’ of CSF from the ventricles to the 

arachnoid space where it is reabsorbed into the blood stream. While mild IVH is generally associated with mild PHVD 

that eventually will resolve without intervention, severe IVH can result in persistent, progressive enlargement of the 

ventricles, called hydrocephalus, which is associated with a greater risk of brain injury and many morbidities later in life. 

[3, 4] 

 

Since preterm neonates are often incubator bound, they are not good candidates to be moved to an imaging facility for 

more traditional 3D images such as CT or MRI. Patients at risk of neurological impairment, such as those with PHVD, 

are currently monitored using serial 2D ultrasound (US) to detect ventricular enlargement.[5] Additionally, patients are 

monitored for increased intracranial pressure (ICP), which in neonates with non-sutured skull plates presents as 

tense/bulging fontanelles (‘soft spots’) and abnormal expansion of the head (macroencephaly), which is measured 

through serial head circumference measurements.[6] However, these indicators do not have the specificity to guide 

surgical interventions aimed at preventing brain injury, as these symptoms often present after injury has already 

occurred. 

 

Cerebral monitoring using near infrared spectroscopy (NIRS) is a promising technology for PVHD monitoring 

considering it can be performed at the bedside and should be capable of detecting changes in cerebral oxygenation and 
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blood flow caused by elevated ICP. Previous work in IVH patients has been primarily targeted at monitoring 

oxygenation saturation very early in life.[7-9] There has been additional work looking at patients with PHVD who 

required intervention and acute changes in hemodynamic indicators showed improvement immediately after the 

intervention.[10] To our knowledge no NIRS study on PHVD patients has been done longitudinally over the entire 

course of a NICU stay. 

 

In this paper we will describe potential sources of signal contamination seen in NIRS measurements of PHVD patients 

which could affect longitudinal monitoring. Specifically, the effect of ‘ventricular contamination’ due to decreased 

cortical thickness associated with PHVD was examined. We obtained both cerebral spectra from preterm patients with 

‘normal’ brains as well as the abnormal spectra from patients with IVH using a hyperspectral continuous wave (CW) 

NIRS system. Ultrasound images and NIRS spectra were acquired early in life (within the first month), and any time an 

interventional ventricle tap (VT) was required clinically. Cerebral spinal fluid (CSF) spectra were obtained after VT to 

determine the amount of blood breakdown product (bbp) within the ventricles. This in turn were compared to Monte 

Carlo results modelling decreasing cortical thickness to determine at what point we should expect to see ventricular 

contamination in the cerebral NIRS signal. Examining these data, we will begin to determine at what cortical thickness 

the assumption of light propagation through only brain is no longer valid within PHVD neonatal patients. 

 

METHODS 

 
Patients 

 

Neonates with IVH were enrolled into the study following a positive diagnosis on a clinical head ultrasound. Study 

protocol has been approved by the local Research Ethics Board. To date, we have enrolled 54 patients and, of those, 10 

required ventricle taps. Patients in the NICU with ventricle dilation for other reasons such as spina bifida, meningitis, or 

from a congenital cause were also enrolled in the study. The severity of the IVH was graded based on the scale by Papile 

et al.[11] which is the current clinical standard, with grade I-III describing increasing severity of hemorrhage contained 

in the ventricle, and a grade IV describing a hemorrhage into the periventricular brain region.  

 

Cortical Thickness through 3D Ultrasound imaging 

 

To determine the severity of the PHVD, 3D ultrasound images were acquired every time a NIRS cerebral measurement 

was performed. The 3D US system has previously been described and validated.[12] A coronal slice at the level of the 

Foramen of Monro was selected and cortical thickness (CTh) measurements were estimated (Fig. 1). 

 

 
 
Figure 1 – Ultrasound image of a preterm neonatal brain in the coronal plane at the level of the Foramen of Monro showing a bilateral 

bleed in the lateral ventricles along with mild ventricle dilation. Estimates of cortical thickness indicated by lines on the image.  
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Cerebral spectral measurements from CW system 

 

A hyperspectral CW-NIRS system was used at the patients’ bedside to obtain cerebral spectral measurements during the 

first month of life, usually during the second week of life. This system has previously been used in a neonatal piglet 

model[13, 14] and neonatal patients at our center.[15] The optical fibers were attached to the head either using a fiber 

holder headband, or using the CPAP cap to support the fiber holder. We obtained broadband spectra from 600-980 nm at 

approximately 0.3 nm spectral resolution using a holographic grating coupled to a cooled CCD. Tissue spectra were 

normalized to 960 nm (the ‘water peak’) as the concentration of water in the neonatal head is relatively stable around 

90%[16] in comparison to the other chromophores.  

 

CSF spectral measurements from CW system 

 

If an IVH patient enrolled in the study required a VT for clinical reasons, the CSF removed during the procedure was 

analyzed prior to being discarded. The reference signal was acquired from a 1x1x3 cm polymethacrylate cuvette (Sigma-

Aldrich Canada, Oakville, ON)  prior to filling the cuvette with CSF, after which the absorption signal was recorded 

from the sample. Assuming negligible scattering in the CSF sample, the Beer-Lambert law was used to measure the 

absorption spectrum of each sample. To date we have collected 12 CSF samples.  

 

Monte Carlo Simulations 
 

Simulations of light propagation through the neonatal head were performed with Monte Carlo eXtreme[17] using a two-

layer model of brain tissue and CSF to estimate the expected signal contamination from the latter for a range of cortical 

thicknesses. Simulations were performed with assumed tissue properties shown in Table 1 at an emission wavelength of 

800 nm [18-20] and a source detector distance of 3 cm. For the purpose of this study, the properties of the cortex were 

taken to be an average of published white and gray matter values, and ventricular CSF was assumed to be relatively 

clear, with low scattering and no bbp. These characteristics would represents CSF samples from either normal patients or 

patients in which the bbps from the IVH would have broken down. Mean photon pathlengths in both brain and ventricle 

layers were recorded after 20 simulations of 108 photons each.  

 
Table 1 – Optical properties for simulations. Cortical thickness varied between 5-25 mm  

Tissue µa (mm-1) µs’ (mm-1) g n 

Cortex 0.0425 0.8 0.9 1.3 

CSF 0.0041 0.032 0.9 1.3 

 

RESULTS 

 
Cortical Thickness Measurements 

 

During the neonatal period following clinical diagnosis of IVH, the thickness of the cortex ranged from 0.80 to 2.20 cm 

(Fig. 2). The average CTh measured by 3D US was 1.58 ± 0.34 cm. Generally, patients with more severe IVH (grade II 

and III) had lowered CTh. Grade IV IVH tended to have markedly lower CTh if the hemorrhagic region became cystic 

(such as in the patient with a CTh of 0.8 cm), although cystic development was not always present. We used corrected 

gestational age (GA) as a measure of prematurity, with a GA of 37-40 weeks considered a ‘full term’ infant. Patients 

ranged between 25-35 weeks GA. Generally, patients born more preterm had lowered CTh, since they had smaller heads 

(Fig 2).  
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Figure 2 - Cortical thickness measurements of very low birth weight neonates with IVH obtained from coronal slices at the level of the 

Foramen of Monro from 3D US images taken < 30 minutes before NIRS acquisition.  

 

  

Cerebral Broadband NIRS Spectra – Patients with mild IVH 

 

Patient descriptions during baseline NIRS are shown in Table 2. Patients who had cortical thicknesses above 1.5 cm had 

similar looking spectra but once the CTh was under 1.3 cm, a noticeable ‘shift’ in the spectra in the lower wavelengths 

was evident (Fig. 3). These patients usually had mild ventricle dilation as seen in Fig 4; however, most patients 

eventually had spontaneous resolution of this ventricle dilation.  

 
Table 2 – Patient Characteristics for those diagnosed with mild IVH 

 

Patient Age (days) GA (weeks) IVH 

Grade 

CTh (cm) 

1 6 26 II 1.50 

2 17 33 4/7 II 2.20 

3 15 27 4/7 II 1.27 

4 13 30 3/7 II 1.25 
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Figure 3 – Spectra from four neonates with grade II IVH who had differing levels of ventricle dilation. Cortical thickness indicated in 

the legend. All spectra were normalized to absorbance at 960 nm. 

 

 
Figure 4 - 3D ultrasound images cut through the para-sagittal plane of patients diagnosed with mild IVH (grade II). Cortical Thickness 

was measured to be a) 2.20 cm b)1.50 cm, and c) 1.27 cm.  

 

 

Cerebral Broadband NIRS Spectra – Patients with severe IVH and PHVD 

 

For PHVD with marked ventricle dilation, as seen in the ultrasound images, their spectra has more absorbance in lower 

wavelengths (Fig. 5). A representative case study of a neonate with bilateral grade III IVH is illustrated in Fig. 6. The 

same patient’s CSF spectra is seen in Figure 7, showing marked decreases in absorption over time as the bbp is cleared 

from the ventricles. This ‘clearance’ over time of the bbp can be seen visually in the photographs of the CSF samples in 

Figure 8, as the CSF returns slowly to a ‘normal’ clear CSF (not shown).  
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Figure 5 - b) Spectra from one infant, diagnosed with bilateral grade III IVH, who underwent three interventions. The ‘normal’ brain 

is mean spectrum from 5 patients without IVH. All spectra were normalized to absorbance at 960 nm.   

 

   
Figure 6 - 3D ultrasound images cut through the para-sagittal plane of from the example tapped neonate. Cortical thickness was 

measured to be a) 1.0 cm at tap 1, b) 1.0-0.8 cm at tap 3, and c) 0.8-0.6 cm at tap 5.  
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Figure 7 – CSF Spectra from the 1st, 3rd and 5th ventricle tap of an IVH patient undergoing serial ventricle taps to relieve increased 

ICP. Spectra were normalized to 960 nm.  

 
 

Figure 8 – Photographs of tapped CSF from a single neonate diagnosed with bilateral grade III IVH who underwent serial ventricle 

taps over the course of 3 weeks until a ventricular drain was implanted around 5 weeks of life. a) first tapped sample at 16 days of life 

b) third tap at 28 days of life and c) fifth tap at 36 days of life.  

 

Monte Carlo Simulations 
 

Monte Carlo simulations showed that for clear CSF, there was negligible difference between total pathlength and 

pathlength travelled through cortex for large Cth (>2 cm) (Fig. 9). However, at cortical thickness less than 1.3 cm the 

contribution of the mean pathlength was almost 10% from CSF. At the smallest observed cortical thickness in this 

present study (0.8 cm) the CSF contributed to 43% of the DP.  
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Figure 9 -  Differential pathlengths for simulations over a range of cortical thicknesses. Mean total pathlength is indicated by the black 

line, while the partial pathlengths for brain and ventricular space are shown by the colored symbols. Simulations were performed for a 

wavelength of 800 nm and a source-detector separation of 3 cm.  

 

DISCUSSION 
 

We have shown qualitatively that there appears to be noticeable ventricular contamination in the absorption signal from 

IVH patients with enlarged ventricles (Figs. 3, 5); however, this effect was not as noticeable in patients with thickness 

greater than 1.5 cm. This was corroborated by the results of the Monte Carlo simulations that showed a steep increase in 

signal contribution from the ventricles once the cortical thickness fell below 1.3 cm (Fig. 9). Since many clinical systems 

advice against the use in all IVH patients, perhaps these results show that there is a sub-section of IVH patients who have 

mild or no ventricle dilation who would be candidates for NIRS monitoring in spite of the IVH.  

 

That said, it should be noted that IVH patients with significant ventricle dilation, so called ‘post hemorrhagic 

hydrocephalus’ are the patients at greatest risk of neurological impairment later in life. These are the patients who would 

likely benefit the most from neuromonitoring during the neonatal period in order to better manage their condition 

through therapies and surgeries aimed at alleviating elevated ICP. As such, the results from this study provide some 

insight into how a two-layer model of the brain/ventricles could assist in analyzing NIRS signal from PHH patients in 

order to more accurately monitor brain oxygenation despite variations in ventricle volume.  

 

A limitation in the current study was the simulations were only performed using optical properties approximating clear 

CSF with no bbp. Consequently most of the light reaching the ventricle space would not be scattered back into the tissue. 

Likely, a model for darker, more absorbing CSF, with greater scattering properties would show different effects. Likely 

quantification of scattering in CSF with significant bbp is also required, which is currently under investigation. Another 

limitation was the cortical thickness measurements were not made at exactly the area interrogated by the NIRS probes 

because of the limited field of view obtained through the fontanels used to obtain the US images. The specific location 

for US imaging was chosen to capture the ventricle volume; however, other locations could be selected to image the 

cortical region interrogated by NIRS. 

 

In conclusion, considering there have been many studies exploring the ability to improve the sensitivity to the brain by 

the use of ‘image guided’ approaches, such as incorporating a priori information in the analysis of NIRS measurements, 

even a simple measure of cortical thickness from US should greatly improve the accuracy of NIRS when applied to 

neonates with PHH. 
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