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INTRODUCTION
The effect of time-varying electrical cur-
rents (AC) on neuronal activity is cur-
rently the focus of intense translational
and multidisciplinary research efforts.
Thanks to a broad range of neuromod-
ulation modalities, it is indeed possible
to induce, more or less invasively, elec-
trical currents in brain tissue. On the
non-invasive side, transcranial alternat-
ing stimulation (tACS), or transcranial
magnetic stimulation (TMS) have demon-
strated their potential for the symptomatic
treatment of neurological disorders. In
the domain of more invasive stimula-
tion techniques, deep brain stimulation
(DBS), or cortical stimulation (electrical
motor cortex stimulation, EMCS) have
proven extremely successful therapies for
Parkinson’s Disease (PD) or pain man-
agement, and are used in tens of thou-
sands of patients worldwide (over 100,000
patients for DBS only). The underlying
mechanisms are increasingly understood,
even if they remain wrapped in some mys-
tery that refrains the outstanding potential
of brain stimulation for treating neuro-
logical disorders. However, the basic idea
is simple: information processing by the
brain is achieved, at least partially, by neu-
ronal electrical oscillations in various fre-
quency ranges, produced by a variety of
neuronal networks distributed throughout
the brain. Efforts to link the spatiotempo-
ral structure of these neuronal oscillations
with brain function and behavior have
provided an enormous amount of data
that is shaping our understanding of brain
function (see Buzsáki and Draguhn, 2004

for a review on the functional significance
of brain oscillations). By inducing currents
in brain tissue, it is possible to modu-
late the membrane potential of neurons,
thereby resulting in detectable changes in
neuronal activity, and to impact associated
function of neuronal networks.

The most widespread neurostimula-
tion therapy today is DBS, clinically used
to treat symptoms in neurological dis-
orders such as in PD (see Modolo and
Beuter, 2009 for a review). More than
25 years after its discovery, the tech-
nology of DBS has not changed much:
high-frequency (>130 Hz) electrical stim-
ulation using biphasic pulses, which are
defined by their pulse width and ampli-
tude. One minor recent innovation is the
use of current-controlled DBS devices,
which keep the stimulation steady at all
times to avoid fluctuations in the stimu-
lation signal being delivered and potential
associated side effects (Bronstein et al.,
2014). Given the tremendous progress of
electronics over the last 25 years, and the
advance in our qualitative and quantita-
tive understanding of brain function, it is
somewhat surprising that more personal-
ized, sophisticated devices have not sur-
faced yet. Of course, using more advanced
neuromodulation technologies would be
meaningless if current technology was
sufficient. With only 5–10% of patients
eligible for DBS, a 1–3% rate of compli-
cations during surgery, batteries to replace
every 4 years on average (under general
anesthesia), stimulation parameters need-
ing manual adjustments, and a complete
absence of brain activity monitoring, there

is however a consensus on the facts that
current technology is not sufficient, and
that the next generation of neuromodu-
lation devices has to be pushed forward.
Perhaps the most important aspect of all
is the ability of novel neuromodulation
devices to deliver stimuli with the right
timing: with DBS, no matter what the
ongoing brain activity is, the same stim-
ulation pattern is continuously repeated.
Why is that a limit, and why is it of
fundamental importance to improve DBS
drastically?

WHY DOES TIMING MATTER?
Increased quantitative understanding of
brain oscillations, combined with knowl-
edge from non-linear dynamics, has
revealed numerous examples of non-
linearities in brain activity. One example,
related to DBS since it was hypothe-
sized as a possible mechanism of action,
is called “depolarization block”: when
the stimulation frequency exceeds a cer-
tain threshold value, some neurons will
stop increasing their firing frequency
and will become silent (Beurrier et al.,
2001). The underlying mechanism is fun-
damentally non-linear in nature, and
counter-intuitive. Another example is the
importance of the phase response curve
of a system to incoming stimuli (for an
overview, see Canavier, 2006): in the case
of neurons, the neuronal response is sen-
sitive to the stimulus phase. Therefore, in
addition to “what” happens in neural net-
works, it is crucial to know “when” it does
happen. In the area of neuromodulation,
the idea of stimulation signals precisely
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timed to induce predetermined effects
on neuronal activity is being actively
explored, with “closed-loop” stimulation
protocols (Modolo et al., 2010, 2011, 2012;
Beuter et al., 2014).

An excellent experimental demonstra-
tion of the importance of timing was pro-
vided by Brittain et al. (2013). In this
paper, the authors showed that an inno-
vative electrical brain stimulation strat-
egy was remarkably efficient to dampen
pathological tremor in patients with PD.
In brief, they found that a stimula-
tion (delivered using tACS) applied to
the motor cortex had maximal effects at
tremor frequency (5 Hz), when a spe-
cific time delay was present between the
tremor and the stimulation signals. This
result is of crucial interest since it illus-
trates the role of timing, and also con-
stitutes an experimental validation of a
biophysical model that we have developed
and published in 2010 (model of adap-
tive motor cortex stimulation in “closed-
loop”—Modolo et al., 2010; and Patent
application #EP09305432.8 by Beuter and
Modolo, 2009). Our model indeed nat-
urally predicts and explains the tremor
reduction obtained by Brittain et al. (2013)
using such a neuromodulation technique.

Specifically, the model derives equa-
tions providing the explicit form of a neu-
romodulation signal aiming to attenuate
abnormal neuronal activity at a given fre-
quency (Modolo et al., 2010). It was shown
that, to be efficient, the stimulation sig-
nal needed to be at the same frequency as
the targeted pathological rhythm, with a
time delay dependent on neuroanatomical
properties of cortical tissue (e.g., connec-
tivity). The underlying mechanism in the
model was related to the attenuation of
neuronal activity at the pathological fre-
quency (both for individual neurons and
neuronal coupling). Because our model
is biologically realistic, it successfully pre-
dicted that a tremor reduction would
occur with neuromodulation as applied by
Brittain et al. (2013), and offered a biolog-
ically plausible explanation supporting the
observed clinical benefits. Furthermore,
the model suggests ways to further atten-
uate PD symptoms, (tremor serving as a
proxy) using this neuromodulation tech-
nique. Overall, the use of quantitative
models appears inevitable to apprehend
the complex, non-linear nature of brain

activity. Furthermore, the possibilities of
applications for closed-loop stimulation
are not limited to PD, but are also con-
sidered for other neurological disorders,
such as epilepsy (see for example Sun and
Morrell, 2014 for a commercially available
closed-loop stimulation system designed
for epilepsy), and probably numerous
others.

TIME TO MOVE ON TO NOVEL
DEVELOPMENTS IN HUMANS
Currently, most of the experimental
research performed in the area of neu-
romodulation involves animals (e.g.,
mice, primates). The main motivation
behind such animal research is to bet-
ter understand the mechanisms by which
therapeutic electrical stimulation of brain
tissue can lead to a normalization of brain
activity and an improvement of symp-
toms, and to test the efficacy of potential
therapies. This approach seems reason-
able, and is perfectly justified in certain
neurological diseases such as epilepsy,
where the involved pathological brain
activity patterns and clinical manifesta-
tions of the disease are consistent between
species. However, it should be kept in
mind that over 80% of new drugs tested
for efficacy and safety in mice fail when
it comes to humans, which represents
not only an enormous waste of resources,
but also obviously of funding (Perrin,
2014). In the area of neuromodulation in
PD, a more recent example illustrates that
even using animals closer to humans than
mice can be problematic. For instance,
Drouot et al. (2004) showed clinical
improvements in akinesia and bradyki-
nesia following electrical stimulation of
the motor cortex, along with a normaliza-
tion of firing rates and synchronization
in the STN and GPi. This significant
finding was then followed by a clini-
cal trial (http://clinicaltrials.gov/show/
NCT00159172), which did not demon-
strate similar improvements in humans
and was stopped.

Another argument to encourage
human research in neuromodulation is
that, historically, the benefits of electri-
cal stimulation of the brain have been
discovered in humans (Bechtereva et al.,
1975; Benabid et al., 1987) using neuro-
modulation hardware (e.g., electrodes)
approved for use in humans. Since no

major advancement of neuromodulation
therapy for PD has been achieved using
animal research, this should encourage
human research instead. This is espe-
cially relevant since, nowadays, there are a
multitude of devices approved for use in
humans (flat electrodes, “Utah array,” DBS
electrodes. . .), and using such devices to
deliver stimuli that remain within limits of
what is considered safe (e.g., in terms of
frequency, amplitude, pulse width) should
offer the possibility to test, in human
patients, potential novel patterns of stim-
ulation or “smart” stimulation devices
delivering on-demand stimulation. The
maturity of available neurostimulation
hardware combined with the guidance of
reliable biophysical models of brain tissue
activity should convince researchers that
now is the good timing to focus on human
research regarding novel neuromodulation
therapies in PD.

CONCLUDING REMARKS
The fact that biophysical models can
predict the effects of electric stimula-
tion of brain tissue on brain activity
and associated symptoms reinforces the
role of biophysical modeling as a driving
force in engineering new neuromodula-
tion therapies for PD. Biophysical mod-
eling can therefore act at least as a
tool to accelerate research and develop-
ment, and might become in the future
the preferred alternative to animal test-
ing, given the growing success of the
former and the increasingly recognized
limitations of the latter. Such therapies
could soon outperform open-loop DBS
as it is done today. Let us also empha-
size that human research should be sup-
ported to accelerate further clinical testing
and validation of novel neuromodulation
therapies, since the technology is avail-
able to make it happen safely. Finally, this
convergence between biophysical model-
ing results and clinical results obtained in
PD patients gives confidence that cheaper,
on-demand, less invasive neuromodu-
lation therapies with a well-identified
mechanism of action will be available
in the near future for these patients.
Using mechanism-based approaches will
represent a drastic shift in paradigm,
ahead from empiric and evidence-based
approaches that have been predominant to
date.
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