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The success of insects in terrestrial environments is due in large part to their ability to resist desiccation stress.
Since the majority of water is lost across the cuticle, a relatively water-impermeable cuticle is a major component
of insect desiccation resistance. Cuticular permeability is affected by the properties and mixing effects of
component hydrocarbons, and changes in cuticular hydrocarbons can affect desiccation tolerance. A
pre-exposure to a mild desiccation stress increases duration of desiccation survival in adult female Drosophila
melanogaster, via a decrease in cuticular permeability. To test whether this acute response to desiccation stress
is due to a change in cuticular hydrocarbons, we treated male and female D. melanogaster to a rapid desiccation
hardening (RDH) treatment and used gas chromatography to examine the effects on cuticular hydrocarbon
composition. RDH led to reduced proportions of unsaturated and methylated hydrocarbons compared to controls
in females, but although RDH modified the cuticular hydrocarbon profile in males, there was no coordinated
pattern. These data suggest that the phenomenon of RDH leading to reduced cuticular water loss occurs via an
acute change in cuticular hydrocarbons that enhances desiccation tolerance in female, but not male, D. melanogaster.
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1. Introduction

The success of insects in terrestrial habitats is due in a great part to
their ability to tolerate desiccation (Hadley, 1994). The majority of
insect water loss is across the cuticle, due to the high surface area to
volume ratio (Gibbs, 2002; Hadley, 1994), and reduced rates of cuticular
water loss (CWL) are associated with greater resistance to desiccation
(Parkash et al., 2008). Cuticular permeability can be modified via struc-
tural changes to the cuticle, such as melanisation (Hadley, 1978;
Parkash et al., 2009a, 2009b), or through changes to the quantity and
identity of cuticular hydrocarbons (CHCs) (Gibbs and Pomonis, 1995).
It has been suggested that cuticular permeability can be reduced by in-
creasing total amount, saturation, and chain length of CHCs (Gibbs and
Pomonis, 1995). However, an effect of CHC quantity on cuticular perme-
ability and water loss has not always been detected: in tsetse flies, the
quantity of CHCs does not drive variation in cuticular water loss
(Jurenka et al., 2007), suggesting that the composition, not quantity, of
CHCs may be more important in determining cuticular water loss.

Abbreviations: CHC, cuticular hydrocarbon; CWL, cuticular water loss; RDH, rapid desic-
cation hardening; RH, relative humidity.
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Similarly in Drosophila melanogaster, while adaptation to desiccation
stress in laboratory evolution experiments resulted in no change in
total CHC content, the relative concentration of long chain length
CHCs increased in two separate studies (Gibbs et al., 1997; Kwan and
Rundle, 2010) and this leads to reduced CWL and enhanced survival
(Gibbs et al., 1997).

In addition to evolved differences in cuticular permeability, CWL is
phenotypically-plastic, changing with acclimation to temperature and
humidity (Schimpf et al.,, 2009; Terblanche et al., 2010), and also during
the rapid desiccation hardening response (RDH; Bazinet et al., 2010;
Hoffmann, 1991, 1990). Rapid desiccation hardening occurs after a re-
covery from an initial desiccation stress (Hoffmann, 1990), increasing
survival during a subsequent desiccation stress from ~13 h (no RDH)
to ~16 h (RDH treated) and reducing CWL by ~30% in female, but not
male, D. melanogaster (Bazinet et al., 2010). While both CHC composi-
tion and melanisation could reduce CWL, RDH takes place faster
than melanisation can occur: within 1 h as opposed to 6-23 h for
melanisation (Bazinet et al., 2010; Hiruma and Riddiford, 1988).
Such a rapid response implicates changes in CHC composition. While
such changes may occur rapidly, they do appear to require a post-
desiccation recovery period as few changes in D. melanogaster CHC
content or profiles were observed when individuals were assayed
immediately upon extraction from an initial desiccation stress (Kwan
and Rundle, 2010). RDH is not accompanied by an increase in CHC
quantity in a range of Drosophila species (Kalra et al., 2014), so we
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hypothesized that a change in cuticular hydrocarbon composition is
responsible for reduced cuticular water loss during rapid desiccation-
hardening.

In D. melanogaster, an exposure of 3 h (male) or 4.5 h (female) to low
humidity followed by 1 h recovery with access to food and water
increased desiccation tolerance (an RDH response) in female, but not
male, flies (Bazinet et al., 2010). Bazinet et al. (2010) showed that
RDH reduced cuticular water loss rates and glycogen content; however
absolute water content at death was unchanged between control and
treated male and female flies. Cuticular water loss can be reduced by
both changes to the cuticle structure (e.g. melanin, Kalra et al., 2014),
or by changes to cuticular hydrocarbon composition or abundance
(e.g. Kwan and Rundle, 2010), but the speed of the change in CWL fa-
vours changes to CHCs. Thus the aim of our study was to investigate
how desiccation pre-treatment affects the relative composition of
CHCs. We predicted that RDH pre-treatment would lead to increased
proportions of saturated and longer chain CHCs, and reduced propor-
tions of unsaturated and methyl branched CHCs in female, but not
male, D. melanogaster. To test this, we used the same population of D.
melanogaster as in Bazinet et al. (2010), and measured relative CHC con-
centrations of adult flies with or without an RDH pre-treatment.

2. Methods
2.1. Fly rearing

Our D. melanogaster population was established from isofemale lines
collected in London, Ontario in 2007 (Marshall and Sinclair, 2010), and
was reared according to Bazinet et al. (2010). Briefly, flies were reared at
21.5 °C (13:11 L:D, 50% RH) on banana-yeast medium (Table S1) in
35 mL vials (70-100 individuals/vial). Eggs were collected every
14 days in 3.8 L plastic population cages. We sexed and sorted flies
under CO, within 12 h of eclosion, remaining consistent with Bazinet
et al. (2010). Flies were used for experiments 96 h post-sorting/
sexing, so that all individuals were ca. four days old at time of experi-
mentation. Experiments were conducted at approximately 21 °Cin a
climate-controlled laboratory.

2.2. Rapid desiccation hardening

We exposed individual flies to a rapid-desiccation hardening pre-
treatment as per Bazinet et al. (2010). Briefly, individual flies were
transferred to 35 mL vials and restricted to the lower half via a foam
stopper. Approximately 2 g of silica gel (4-10 mesh; J.T. Baker,
Phillipsburg, NJ, USA) was added to the upper portion of the vial,
which was then sealed with Parafilm (Pechiney Plastic Packaging,
Menasha, WI, USA). Desiccation pre-treatment was 3.0 h for male flies,
and 4.5 h for female flies to achieve 10% water loss according to
Bazinet et al. (2010), followed by a 1 h recovery period in a vial with
banana-yeast medium prior to cuticular hydrocarbon (CHC) extraction.
To account for starvation during the desiccation treatment, we also ex-
posed separate flies to a starvation pre-treatment. This consisted of 3.0 h
and 4.5 h for male and female flies, respectively, on non-nutritive agar,
followed by a 1 h recovery period on banana-yeast medium. Control
flies were kept on banana-yeast medium until CHC extraction.

2.3. Cuticular hydrocarbon extraction and analysis

Cuticular hydrocarbons were extracted from 27 control (C), 25 rapid
desiccation-hardened (RDH), and 17 starved (S) female flies, and from
28 C, 25 RDH, and 11 S male flies. Flies were individually aspirated
into sterile 400 pL borosilicate glass microinserts in 2 mL vials and
washed in 100 L of hexane, containing 10 ng/pL of octadecane (Cig)
as an internal standard, for 3 min, followed by vortexing for 1 min
after which the flies were discarded.

Cuticular hydrocarbons were identified and quantified by gas
chromatography (method modified from Kwan and Rundle, 2010)
using an Agilent 6890N fast gas chromatograph fitted with a HP-5
phenylmethyl siloxane column of 30 m x 250 pm internal diameter
(0.1 um film thickness), a pulsed splitless inlet (at 275 °C), and a flame
ionization detector (at 310 °C). The temperature program began by
holding at 140 °C for 0.55 min, ramping at 120 °C/min to 190 °C, slowing
to 7 °C/min to 260 °C, then ramping at 120 °C/min to 310 °C and holding
for 3.5 min. Individual CHC profiles were determined by integration of
the area under 28 peaks in females and 24 peaks in males, representing
all those that could be consistently identified in all individuals. The
pattern of peaks was broadly consistent with those identified in two
previous studies (Everaerts et al.,, 2010; Foley et al., 2007) using differ-
ent populations of D. melanogaster and chemical identities were
assigned with reference to these studies. To correct for technical error
associated with quantifying absolute amounts via gas chromatography,
relative concentrations were calculated for each CHC by dividing the
area under each peak by the total area of all peaks for a given individual.
The resulting proportional values are a form of compositional data to
which standard statistical methods should not be applied (Aitchison,
1986; Egozcue and Pawlowsky-Glahn, 2011). To address this and to
break the unit-sum constraint also inherent in compositional data, all
traits were transformed to log contrast following Aitchison (1986),
using the first eluted CHC, (Z)-9-C51.1, as the common denominator:
log contrast CHC,, = log (proportion CHC,,/proportion CHC;); propor-
tions were derived individually for each fly. The choice of peak as
the divisor does not affect the statistical analysis or interpretation
(Aitchison, 1986).

24. Statistical analysis

To determine whether there were changes in the relative propor-
tions of CHCs in response to starvation and/or rapid desiccation harden-
ing treatments, multivariate analysis of variances (MANOVAs) were run
on the log contrasts values. Log contrasts were visually inspected for
multivariate normality and equality of variances, and all assumptions
of the MANOVA were satisfied. First, to determine whether there was
a starvation effect on CHCs, MANOVAs were run comparing control
and starvation treated groups—differences were not significant in either
sex and these groups were therefore pooled (see Results). Then, to
determine how RDH affected CHCs, MANOVAs of pooled control and
starved flies compared to desiccated flies if there were no significant
differences between control and starved flies. To determine whether
there were differences in proportions of individual CHCs, significant
MANOVAs were followed by univariate ANOVAs with a Bonferroni
correction, and discriminant function analysis (DFA) to test the predictive
power of the MANOVA model. Prior probabilities for DFAs were comput-
ed for each treatment from the proportion of total observations for each
treatment. All statistical analyses were performed in R version 3.0.2
(R Development Core Team, 2013).

3. Results

The cuticular hydrocarbons quantified in our D. melanogaster sam-
ples were comprised of saturated, singly- and doubly-unsaturated, and
methyl-branched hydrocarbons (Fig. 1, Table 1). Hydrocarbon chain
length varied from 21 to 31 carbons, and there were qualitative differ-
ences between the CHC profiles of males and females (Fig. 1). There
was no difference between the CHC composition of starved and control
female (MANOVA, Pillai's Trace = 0.5935, df = 25,18, P = 0.4647) or
male (MANOVA, Pillai's Trace = 0.6177, df = 23,15, P = 0.4695) flies.
Thus, S and C flies were pooled within each sex for further analysis.

We could successfully discriminate the CHC composition of RDH-
treated flies from their pooled C and S counterparts in both females
(MANOVA, Pillai's Trace = 0.5946, df = 25,43, P = 0.0037) and males
(MANOVA, Pillai's Trace = 0.5285, df = 23,40, P = 0.031). Cross-
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Fig. 1. Representative mirrored chromatograms of cuticular hydrocarbons from male
(above) and female (below) D. melanogaster. Putative peak identities are given in
Table 1.

validation of the discriminant functions for females and males correctly
classified >65% of RDH and control/starved flies (71% correct for fe-
males, 65.6% correct for males), which suggests that the RDH pre-
treatment changes the composition of CHCs in flies of both sexes.

In females, this difference was driven by significantly decreased pro-
portions of (Z,2)-7,11-Cys5.5, 2-Me-Cyg, and (Z,2)-7,1-Cyg., in the RDH
group, along with trends for decreased proportions of (Z,2)-7,11-Cy3.5,
(Z,2)-7,11-C37.5, and 2-Me-C3q in RDH flies (Fig. 2, Table S2). While
not statistically significant in univariate tests, female (but not male)

Table 1
Putative identities of cuticular hydrocarbons (CHCs) of female and male D. melanogaster;
numbers refer to peaks in Fig. 1.

Female CHC Putative identity Male CHC Putative identity
1 (2)-9-Ca11 1 Coy

2 Ca 2 (2)-9-Cy24
3 (Z2)-711-Cy32 3 (Z)-7-Cy2:4
4 (2)-9-Ca3:4 4 Ca

5 (2)-7-Ca3:1 + (Z,2)-5,9-Ca3:2 5 2-Me-Cyy
6 (Z)-5-Cy3:1 6 (2)-9-Cy34
7 Co3 7 (Z)-7-Cy34
8 (2)-7-Ca4:1 8 (Z)-5-Ca3:1
9 Coa 9 Cy3

10 (Z2,2)-7,11-Cys.2 10 (Z2)-9-Ca41
11 (2)-9-Cas:1 11 (Z)-7-Caa:1
12 (2)-7-Cys:1 + (Z,2)-5,9-Cos2 12 (2,2)-5,9-Ca4:2
13 (2)-5-Cs5:1 13 Cas

14 Cys 14 2-Me-Cyy
15 (Z2,2)-7,11-Cyg:2 15 (Z2)-9-Cy5:1
16 (2,2)-7,11-Cy7.2 16 (Z2)-7-Cy51
17 2-Me-Cy6 17 (Z)-5-Cys5:1
18 (2)-7-Cy7.1 + (Z,2)-5,9-Ca7:2 18 Cys

19 (2)-5-Cary 19 2-Me-Cog
20 Cor 20 (2)-7-Cors
21 (22)-9,13-Cog. 21 Coy

2 (22)-711-Cog. 2 2-Me-Cyg
23 2-Me-Cg 23 Cao

24 Cus 24 2-Me-Csg
25 (22)-7.1-Cog2

26 (2)-7-Ca0:1

27 Cyo

28 2-Me-Cso

29 Can

RDH flies had consistently higher proportions of all saturated CHCs
(C22, €23, C24, €25, C27, €28, C29) compared to the C and S flies.
(Tables S2, S3). In male flies, the proportion of 2-Me-C,4 was signifi-
cantly higher in RDH flies than in controls, while the proportion of
(Z)-7-C7.1 was significantly lower in RDH flies than C/S flies
(Fig. 2B, Table S3). There was also a trend toward lower proportions
of (Z)-7-Cy3:1, (Z)-9-Cy3.1, 2-Me-Cyg, and 2-Me-Cso in male RDH flies
(Table S3).

4. Discussion

We show that rapid desiccation hardening leads to a coordinated
change in the CHC profile of female D. melanogaster toward greater sat-
uration and reduced methyl chains in the cuticular lipids. While males
also change their CHC profile after a desiccation pre-treatment, this re-
sponse is not as coordinated as in females, and does not have the same
bias toward CHC species expected to decrease cuticular permeability.
This is consistent with the observation that only female D. melanogaster
reduce CWL in response to RDH (Bazinet et al.,, 2010), and suggests that
a change in CHC profile may be the mechanism underlying reduced
CWL in the RDH response. This response is specific to dehydration:
the CHC profiles of starved flies were indistinguishable from untreated
controls. Given that rapid desiccation hardening in response to acute
desiccation stress occurs in female D. melanogaster via a change in cutic-
ular CHCs, the mechanism by which the cuticular lipids are altered
remains unknown. Further study is needed to determine whether the
changes in CHCs due to acute desiccation stress occur during the desic-
cation stress, or during the recovery from stress. Kwan and Rundle
(2010) found a change in CHCs extracted from females immediately
after desiccation, suggesting that desiccation-responsive CHC modifica-
tions have at least begun during that time window, and Petfield et al.
(2005) show that CHCs can change in a timespan of minutes in response
to social interactions. In addition, it is unclear how the CHCs are altered
during RDH; possible (non-mutually-exclusive) mechanisms include se-
cretion of new lipids onto the cuticle (Wigglesworth, 1975; Pennanec'h
et al,, 1997), or secretion of extracellular enzymes (Oakeshott et al.,
2005) to saturate/demethylate (or selectively degrade) existing CHCs.

Our results suggest that an acute change in the CHC composition of
CHCs can be enough to have dramatic effects on whole-organism phys-
iology, e.g. reduced CWL and enhanced desiccation tolerance. Kalra et al.
(2014) found that total quantity of CHCs does not change under RDH in
a variety of species, which suggests that total CHC quantity does not
occur in the RDH response. Ramniwas et al. (2013) show that desicca-
tion resistance is increased and CWL is reduced during selection for
increased melanisation, and Parkash et al. (20093, 2009b) found similar
results among different populations of D. melanogaster. Total CHCs
did not change in either study, and the implicit assumption was that
melanisation was primarily responsible for the change in CWL rates
and desiccation survival (Parkash et al., 2009a, 2009b; Ramniwas
et al., 2013); however, CHC profiles were not measured. Similarly, in
tsetse flies, total CHCs were unable to explain differences in desiccation
rates among populations (Jurenka et al., 2007), implying that some
other mechanism must differ among populations (e.g. cuticular
melanisation, changes in CHC profile). Our results, in combination
with those of Bazinet et al. (2010) and Kalra et al. (2014), suggest
that changes in the CHC profile, not CHC quantity, can have strong
impacts on CWL rates and desiccation resistance—this means that if
melanisation and CHC profiles are linked, the enhanced desiccation
resistance of melanised flies observed by Ramniwas et al. (2013)
could, in part, be due to altered CHC profiles. Further, total CHC mass
in D. melanogaster does not show a plastic response to changes in devel-
opmental growth temperature (Parkash et al., 2013), developmental
humidity conditions (Aggarwal et al., 2013), and acute desiccation
response (Kalra et al., 2014). This would suggest that total CHCs in
D. melanogaster cannot explain changes in desiccation resistance, and
indeed this was observed by Parkash et al. (2011). Melanisation is
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Fig. 2. Relative concentrations (log contrast transformed proportions) for individual cuticular hydrocarbons for control/starved (white bars) and rapid desiccation hardened (RDH, grey
bars) A) female and B) male Drosophila melanogaster. Peak numbers correspond to cuticular hydrocarbons in Table 1; underlined peak numbers denote saturated hydrocarbons. Data
presented as means =+ s.e.m. + indicates a trend at P < 0.10; * indicates significance at P < 0.05. Log contrasts were calculated using (Z)-9-C,1.1 (peak 1 in Fig. 1) as a common divisor.

For further details on statistics and signs of log contrasts, see Table S2 and S3.

positively correlated with desiccation tolerance and negatively correlat-
ed with CWL in D. melanogaster (Parkash et al., 2011; Parkash and
Aggarwal, 2012; Kalra et al., 2014). However cuticular melanisation is
determined during development (Gibert et al., 2000; Parkash et al.,
2013), and may evolve (see Parkash et al., 2011, and Parkash and
Aggarwal, 2012, for among-population differences), but is unlikely to
change in response to acute desiccation stress and thus cannot explain
short-term variation in CWL (Aggarwal et al., 2013; Kalra et al., 2014).
By contrast, the changes in CHC profile in response to RDH that we ob-
served would be consistent with a rapid decrease in CWL. While CHC
production is complex (Howard and Blomquist, 2005), the rapid plastic-
ity we observed in CHCs could involve multiple mechanisms at genetic-,
protein-, or behavioural-levels, and all of which could bias experiments
where this rapid plasticity might be induced (e.g. pre-treatment
desiccates flies and induces RDH).

The rapid plasticity in CHCs that we observed may help to explain
the reversibility of the RDH response reported by Hoffmann (1990,
1991). Hoffmann (1990, 1991) demonstrated that the RDH response
that occurs in females of D. melanogaster, Drosophila immigrans, Dro-
sophila simulans, and Drosophila serrata persists for at least 24 h; howev-
er, desiccation survival returns to control levels after [48 to 53 h].
Because the CHC composition can be changed rapidly to reduce CWL,
we expect that it should also be able to be modified back to the non-
acclimated state. If the reversibility of RDH is dependent on CHC compo-
sition, then it implies that there are costs to the wholesale modification
of the CHC profile.

In D. melanogaster, CHCs also act as pheromones that are involved
sex and species recognition, as well as in courtship, with demonstrated
stimulation and inhibitory roles (Billeter et al., 2009; Chertemps et al.,
2006; Coyne et al., 1994; Ferveur, 2005; Grillet et al., 2006; Rybak
et al., 2002; Savarit and Ferveur, 2002). Changes in CHCs in response
to RDH may therefore have reproductive consequences including
altered mating success. In particular, differences in 7,11 dienes and 7
monoenes of females can affect male courting behaviour (Antony
et al., 1985; Chertemps et al., 2006) and our results show that several
7,11 dienes decreased in proportion in the cuticle after RDH in females.
Such changes may allow males to select for or against females based on
their previous exposure to desiccation stress, and/or allow females
to signal enhanced desiccation tolerance. In addition, in males the
importance of CHCs as sexual displays that affect attractiveness to
females has been well established in multiple Drosophila species
(e.g., Chenoweth and Blows, 2005; Van Homrigh et al., 2007; Curtis
et al, 2013; Chung et al., 2014; Dyer et al., 2014). Sexual selection on
CHCs may therefore be antagonistic to desiccation hardening responses,
as well as longer-term adaptation to desiccation stress (e.g., Kwan and
Rundle, 2010), potentially explaining the reduced response in males in
both of these contexts. Further work is needed to determine whether
acute changes in CHC composition are a general mechanism for increas-
ing short-term desiccation tolerance in other Drosophila and whether
other species also show sex-specific patterns of RDH. With respect to
the latter, tests of the effects of these CHC changes on mating success
may provide insight into constraints on RDH expression.
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