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Abstract

Mesial temporal lobe epilepsy (TLE) is themost common form of drug-refractory epilepsy. The

clinical application of non-invasively mapped networks using resting-state functional magnetic

resonance imaging (rsfMRI) in humans has been rather limited due to heterogeneous (varying

etiology, drugs, onset, latent period, etc.) patient groups. We employed a pharmacological (kainic

acid) rodent model of TLE to measure the extent of functional network disruptions using rsfMRI,

and study selected behaviors and olfactory to hippocampus transmission. Graph theoretical net-

work modelling and analysis revealed significant increase in functional connectivity connectivity

to the temporal lobe (hippocampus) in epileptic-rats compared to controls in the limbic (nucleus

accumbens, medial dorsal thalamus), and “default mode” network (retrosplenial, sensorimotor,

auditory and posterior parietal cortices). Loss in righting reflex that occurred in response to a

lower isoflurane concentration in kainate-treated rats compared to controls was also revealed.

These results suggest extensive disruptions in brain networks affected by TLE.

Keywords: Temporal lobe epilepsy, hippocampus, resting-state networks, kainic acid, rsfMRI,
electrophysiology
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Chapter 1

Introduction

Epilepsy may be defined as the the brain’s pathological disposition to spontaneously generate

seizures. Epilepsy is a heterogeneous disorder with diverse etiologies (metabolic, genetic, structural,

immune, infectious, environmental, or unknown). This heterogeneity has prompted several

re-classifications of different epilepsies, partially due to scientific and technological advances to

study the epileptic phenomenon with unprecedented temporal and spatial resolution (see ILAE

review: Blümcke, Coras, Miyata, & Özkara, 2012, 2013).

1.1 Mesial Temporal Lobe Epilepsy (TLE)

In Canada alone, ~42 people, are newly diagnosed with epilepsy each day (Epilepsy Canada).

Long-term drug therapy is the most prescribed form of treatment. Despite the treatment and

constant influx of AEDs (anti-epileptic drugs) during the past decade, approximately 20% of

people living with epilepsy still develop drug resistance (Engel et al., 2012). While seizure focus

localization and its resection is the one of palliative treatments available, success rate described by

long-term (> 1 year) seizure free outcome is pegged at less than 50% (Thom, Mathern, Cross, &

Bertram, 2010;Wieser, Ortega, Friedman, &Yonekawa, 2003) and short-term (< 1 year) seizure free

outcome at ~65% (Rohan & Cunningham, 2002). Such sub-optimal success rates can be attributed

to the failure to detect the extent/reach of the network dysfunction. Evidently, successful surgical

treatment has been intricately linked to the resection of multiple limbic regions as opposed to a

1
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singular focus (Thom et al., 2010). Epilepsy research has focussed on diverse themes to address and

counter the neuropathology; ranging from the type of cognitive impairments, pharmacoresistance,

seizure propagation pathways, to the success of epilepsy surgery (Blümcke et al., 2012).

Mesial temporal lobe epilepsy (TLE; also referred to as limbic epilepsy), characterized by

focal seizures1 originating in mesial temporal lobe regions (includes hippocampus, amygdala,

parahippocampal gyrus, and entorhinal cortex), is the the most common form of drug refractory

epilepsy. Hippocampal sclerosis (HS) is the hallmark histopathology of this TLE syndrome

(Blümcke et al., 2013). Berg et al. (2010) defines TLE with HS as an electroclinical syndrome with

distinctive constellations - with etiological and pathological variations but involving the same

set of TL and extra-TL regions. While the epileptogenic area is confined to the mesial temporal

lobe regions, cognitive and psychiatric deficits in other cortical/subcortical areas have been well

documented. Improved surgical outcomes, however, have been attributed to resection of multiple

mesial temporal regions, not any one structure in particular (Thom et al., 2010). Thus, removing

hippocampus and/or other mesial structures capable of generating seizures is paramount for

seizure freedom.

Epileptic phenomena can emerge in many different systems in the brain. Notably, the thalamo-

cortical (important role in absence epilepsy) and the mesial temporal lobe (includes hippocampus

and other limbic regions - play a critical role in the MTLE syndrome) systems are particularly

predisposed to generating and maintaining epileptiform activity. Increasing sophistication of ultra-

high field acquisition protocols has been suggested to further refine the neuroimaging correlates

of HS, and inevitably improve diagnosis and prognosis (Blümcke et al., 2013).

1.1.1 Neuropathology in TLE

The partial seizures of TLE arise in limbic circuits (HC, EC, Amygdala) following an initial

precipitating injury (IPI). HS is characterized by hippocampal atrophy and the progressive neuronal
1TLE seizures are often described as complex partial seizures – focal seizures with impairment of consciousness or

awareness. Focal seizure is no longer a recommended term in ILAE terminology (see Berg et al., 2010, for review; but
also see Panayiotopoulos, 2012, for critical review)
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loss and gliosis in the dentate gyrus (DG) hilus, CA1, and CA3 of the hippocampal subfields. These

seizures break out and spread to other areas by recruitment of adjoining/adjacent regions.

The TLE syndrome does not result from the abnormal neuronal activity in a highly circum-

scribed focal area; rather, it involves a tightly connected neuronal network that includes several

structures of the limbic brain (Bartolomei et al., 2004; Bertram, Zhang, Mangan, Fountain, &

Rempe, 1998). This paves way for the formalism that the abnormality responsible for the epilep-

tic seizures may actually be a function of several intricately-linked networks involving multiple

anatomically distinct structures.

1.1.2 Mossy fiber sprouting

Mossy fibers are axons of the DG granule cells that project onto the dentate hilus and CA3 stratum

lucidum in animals and humans. These axons synapse with CA3 pyramidal cells, inhibitory

interneurons, hilar mossy cells, and infrequently with other granule cells. Mossy fiber sprouting

is a form of synaptic reorganization in the dentate gyrus that occurs in human TLE and animal

models of epilepsy. Mossy fibers spawn collaterals that grow abnormally into the inner third of

molecular layer of DG (Buckmaster, 2010; Scharfman, Sollas, Berger, & Goodman, 2003).

The causality between mossy fiber sprouting and epileptogenesis has not be clearly established,

with conflicting evidence ranging from positive-feedback seizure circuitry to the preferential

excitation of the inhibitory interneurons (seizure control circuitry, Buckmaster, 2010; Wu & Leung,

2001). This robust mossy fiber sprouting is a common neuropathological feature in TLE patients,

adults and children alike. Besides, it is not exclusive to the TLE syndrome – evidence of sprouting

has been found in non-mesial TLE, bipolar disorders, and cortical dysplasias (with or without

HC damage). Moreover, experimental models of epilepsy like KA, pilocarpine, and prolonged

kindling also induce mossy fiber sprouting (Buckmaster, 2010).
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1.1.3 Pathological oscillations in TLE

Limbic seizures are not the only physiologically-relevant EEG anomaly (brief events lasting be-

tween few milliseconds to several seconds) in the epileptic brain. Several mechanisms have been

implicated in aiding and abetting this epileptiform synchronization [in the form of interictal

discharges (IEDs) and high frequency oscillations (HFOs)] to varying degrees.

Interictal discharges, initiated by large postsynaptic depolarizations (Staley & Dudek, 2006),

are used as diagnostic tools for seizure localization and chronic pre-surgical monitoring (see Curtis,

Jefferys, & Avoli, 2012, for review). Using a kindling model, Wadman, Lopes da Silva, and Leung

(1983) showed that in addition to the after-discharges (ADs) occuring following the kindling

stimulus, short transients termed spontaneous interictal spikes (SISs) may occur spontaneously

between seizures. Similar transients or spikes may be found in the clinical EEG as spikes and sharp

waves of certain types of epileptic patients (Niedermeyer & Lopes da Silva, 2004). Leung (1988)

observed that the frequency of SISs was high during slow-wave sleep (SWS), waking immobility,

face-washing and chewing while it was relatively lower during rapid-eye-movement sleep (REMS),

walking and rearing. Engel and Ackermann (1980) suggested that a high SIS rate may be correlated

with an increased threshold for evoking an AD and consequently, seizures. In amygdala-kindled

spontaneous seizing cats, Wada, Sato, and Corcoran (1974) reported a significant increase in the

SIS rate before the onset of spontaneous convulsions, while Gotman (1984) and Gotman and

Marciani (1985) demonstrated in cats and humans respectively that this increase did not affect the

occurrence of spontaneous seizures.

The anatomical substrate for this IED chain reaction is the extensive axon collateral network

of CA3 pyramidal neurons, which project to the other CA3 neurons and onto themselves (au-

tosynapses) (Jefferys, Jiruska, Curtis, & Avoli, 2012). Spencer (2002) suggested that studying

the propagation patterns of inter-ictal spikes recordings using EEG/MEG can reveal invaluable

information about epileptic neuronal ensembles and thus, the networks (and their extent) they are

part of. Rodin, Constantino, Rampp, and Wong (2009, interictal EEG spikes review) and Tanaka
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et al. (2010, MEG spikes) suggested that this abnormal activity may be considered biomarkers

of epileptogenicity. Eventually, contributing to improving the outcome of the epilepsy surgery

(Schulz et al., 2000) and clinical prognosis by shedding light on mechanisms of ictogenesis and

epileptogenesis (Staley & Dudek, 2006). Jacobs et al. (2012) reviewed a novel biomarker to proxy

epileptogenicity index called high frequency oscillations, i.e., HFOs (80–500 Hz range; ripples and

fast ripples), piqued a lot of interest and are subject of active investigation (Stefan & Lopes da Silva,

2013).

Neuroimaging techniques like structural MRI can reveal structural abnormalities, while EEG,

MEG and BOLD fMRI can reveal the underlying dynamics to fully characterize epileptogenic

networks. On routine MRI, relative qualitative atrophy of the affected hippocampus decreased

signal intensity on T1 imaging, and unilateral T2 signal increase are the most common findings

(Liao et al., 2011). Functional connectivity mapping determines the dynamics of epileptiform

activities displayed as patterns of interactions between anatomically connected neural nodes

responsible for these abnormal activities.

The advent of technology facilitating faster sampling rates in the domain of clinical electro-

physiology has detected high frequency activity (HFA) at the seizure onset (Buzsáki & da Silva,

2012a). Current animal research has shown that the spontaneous bursting activity of population

spikes is the only defining feature that separates the pathological HFOs from a normal one (Bragin,

Benassi, Kheiri, & Engel, 2011, 2007). Further research is necessitated to relate the occurrence of

HFOs to different seizure types of seizures in humans and in experimental models of epilepsy to

shed light on their role in seizure generation, spread and maintenance. These HFOs may be key in

unlocking the mechanisms of seizure evolution and eventually aid in localizing the epileptogenic

zone in the clinical practice of epilepsy surgery. Zijlmans et al. (2011) highlighted their better

specificity in the seizure-onset zone than interictal HFOs or spikes while Modur, Zhang, and Vitaz

(2011), Ochi et al. (2007) revealed their possible role in post-surgical outcome prediction.

Wendling, Bartolomei, Bellanger, Bourien, and Chauvel (2003), in EEG signals recorded with

intracerebral electrodes in patients suffering from partial epilepsy, found evidence for decorrelation
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at seizure onset as very fast (60-90 Hz band) oscillations of low amplitude in the EEG, followed by

an abnormally high degree of synchronization as the seizure develops (Thom & Bertram, 2012).

A substantial body of converging research has indicated that focal lesions affect brain regions

beyond the epileptogenic lesion site, involving several functionally and anatomically connected

neuronal populations. Temporal lobe-plus epilepsy (Harroud, Bouthillier, Weil, & Nguyen, 2012)

epileptiform activity emerges from diffuse areas in the multiple lobes in addition to temporal lobe.

Some promising findings, however, have been reported. In a study of patients with focal epilepsies,

Jacobs et al. (2009) demonstrated that changes in BOLD signal were associated with, and preceded

by a few seconds, the inter-ictal spikes recorded at the scalp. This early BOLD response may be

interpreted as resulting from changes in neuronal activity in epileptogenic neuronal networks

situated deep in the brain that are not reflected at the level of the low-pass filtered scalp EEG.

1.2 Competing theories of epileptogenesis

The functional anatomy of the TLE is best described by two models taken together, viz. the

trisynaptic circuitry of the hippocampus, and the multiple independent generator hypothesis. The

hippocentric view of the limbic epilepsy, especially in the light of characterization of the trisynaptic

circuitry (EC→DG→CA3→CA1→Subiculum/EC), has been the most accepted cortical basis of TLE.

Mossy fiber sprouting resulting due to the abnormal physiology of the hilar interneurons reflects

aberrance in the role of DG as a gatekeeper serving to modulate the synaptic transmission from

the EC to the ammon’s horn. However, this construct failed to explain the emergence of broader

generalization in multifocal limbic and extra-limbic sites; and has largely been corroborated by the

fact that maximal surgical reprieve is achieved by resecting as many limbic regions as possible. This

suggests that one-structure hypothesis to explain the development of epilepsy is largely inadequate

and must involve multiple initiators and critical amplifier sites.

The multiple generator hypothesis points to extra-temporal lobe involvement with medial dor-

sal thalamic nuclei (MDL; with its prolonged excitatory drive) as a potent conductor orchestrating
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the epileptic symphony. Tract tracing and electrophysiological studies to establish anatomical

connectivity have confirmed reciprocal projections between the MDL and the HC, EC, amygdala

and the olfactory cortex complex - suggesting significant physiological substrate for interaction

between the thalamus and limbic system. In addition, clinical studies have reliably found thalamic

atrophy specific to TLE patients. Nonetheless, the emergent phenomena of the interaction between

the thalamus and limbic seizure circuitry in the development and spread of seizures has proved

elusive. Clearly, the affected areas lie beyond the lesion site across areas of functional and anatomi-

cally connected neuronal ensembles, and thus, bolstering the need for therapeutic interventions

inline with a network disorder rather than a focal disease (see Bertram, 2014; Thom & Bertram,

2012, for review).
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Figure 1.1: Competing hypotheses in epileptogenesis.
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1.3 Kainatemodel of TLE

Kainic acid is a cyclic l-glutamate analogue and a high affinity agonist of the ionotropic KA

receptor (iGluRs: ionotropic glutamate receptors). The neuroexcitotoxic activity of the KA has

been implicated in the epileptogenic character of its insult in the temporal lobe, consequently

leading to symptoms that most closely imitate several behavioural, electroencephalographic, and

neuropathological features of human TLE (Buckmaster, 2004; Coppola & Moshé, 2012; Dudek &

Edward, 2005; Lévesque & Avoli, 2013).

High potency levels of this neurotoxin make it ideally suited to evoke robust depolarizations

leading to cell death and eventually a status epilepticus state in experimental models of epilepsy.

This rodent model mimics one phenomenon central to human TLE – the latent period 2 followed

by the spontaneous recurrent seizures. The latent period has been regarded as an important

therapeutic window for the development of antiepileptogenic strategies (Raol & Brooks-Kayal,

2012; Sloviter, 2008).

KA and pilocarpine are the preferred neurotoxins to induce acute epileptiform seizures arising

in the temporal lobe; although pilocarpine results in additional selective lesions of the neocortex

(Sharma et al., 2007). Systemic administration of KA leads to sustained limbic seizures lasting

for several hours/days characterized by wet-dog shakes (WDS), facial and forelimb clonus, and

rearing, falling and jumping (see Table 1.2, Dudek & Edward, 2005). Days, even weeks, following

the status epilepticus (initial insult in TLE patients) a rather seizure-free/latent period results

which inevitably leads to a significant proportion of surviving animals manifesting a chronic phase

of spontaneous recurrent seizures with varying frequency but no remission during their entire

lifespan (Drexel, Preidt, & Sperk, 2012; Sperk, Lassmann, Baran, Seitelberger, & Hornykiewicz,

1985).
2The latent period is characterized by a pre-epileptic seizure-free state following an initial insult to the brain

that leads to molecular, cellular and network changes that give rise to delayed secondary processes which eventually
matures, leading to spontaneous seizures
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1.3.1 Kainic Acid Receptors (KARs)

KARs play an important role in the regulation, neuronal excitability and synaptic transmission

in the limbic regions. Their role remains unclear in human epilepsy although their therapeutic

potential in human diseases is an active topic of research (Matute, 2011). KA receptors [subunits:

high-affinity GluK1, GluK2, GluK3, and low-affinity GluK4, GluK5; formerly GluR5, GluR6,

GluR7, KA1, and KA2 respectively, see, Sharman et al. (2013, for revised nomenclature)] are

differentially distributed throughout the brain, suggesting a specific role of each of the subunits

in glutamatergic transmission: both ionotropic and metabotropic [See Table 1.1]. Functional

KARs are expressed at presynaptic, postsynaptic, and extra-synaptic sites, and their activation has

a plethora of effects (Lerma, Paternain, Rodríguez-Moreno, & López-García, 2001; Lerma, 2003).

KA interaction with KARs induces excessive depolarization that results in a cascade of cellular

events, including excessive neuronal firing, but not limited to influx of cellular Ca2+, reactive

oxygen species (ROS) production, and neuronal apoptosis and necrosis as a consequence of

mitochondrial dysfunction (Wang, Yu, Simonyi, Sun, & Sun, 2005).

GluK4 receptors exhibit a high expression profile in CA3 pyramidal cells but sparsely in

CA1 while GluK5 is highly expressed in both CA1 and CA3 pyramidal neurons. This GluK4/K5

localization leaves CA3 region highly susceptible to KA-induced excitotoxic damage, rendering the

hippocampus effectively the seizure onset zone (SOZ) in this TLEmodel. GluK2 is highly expressed

in CA3 pyramidal cells. GluK1 is highly expressed in GABAergic interneurons of the CA1 and

CA3 subfields (Lévesque & Avoli, 2013). At the presynaptic level, some KAR subtypes can effect

glutamate transmission and short-term plasticity, whereas others regulate GABAergic transmission.

At the postsynaptic level, KARs activated in response to endogenous release of glutamate exert

an excitatory action onto both pyramidal cells and GABAergic interneurons (see Figure 1.3),

and moderating neuronal excitability [by inhibiting slow afterhyperpolarization (sAHP)]. This

duality in their response characteristics suggests that KARs can effectively modulate the activity

of neuronal networks in either direction. Naturally, the fragile balance between excitation and
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Figure 1.2: Overview of hippocampal formation connectivity with other limbic structures. Bold arrows de-
pict well defined afferents and efferents of the hippocampal formation, and the entorhinal cortex. Light grey
arrows/boxes represent connectivity of the amygdaloid complex. NST: nucleus of the solitary tract; PAG: peri-
aqueductal grey; PBN: parabrachial nucleus; SNc: substantia nigra pars compacta; VTA: ventral tegmental area.
Reproduced from Kandratavicius et al. (2012).

inhibition relies on the differential distribution and thus, activation of specialized KAR subtypes

(O’Dell, Das, Wallace, Ray, & Banik, 2012; Vincent & Mulle, 2009). Exogenous KAR activation has

been shown to potentially alter the GABA-mediated synaptic transmission in the hippocampus,

amygdala, neocortex, dorsal striatum (Caudate-putamen (CPu); Chergui, Bouron, Normand,

& Mulle, 2000), hypothalamus, as well as the dorsal horn (see Crowder, Ariwodola, & Weiner,

2006, for review). In addition, extrasynaptic release of glutamate from neighbouring synapses

can activate KARs at GABAergic synapses and mimic the effect of exogenous KA on inhibitory

synaptic transmission in the hippocampus, amygdala, and dorsal horn (Crowder et al., 2006).
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The prominent neuromodulatory role of KARs is supported by the finding that these ionotropic

channels can mediate slow neurotransmission through G-protein coupled receptors (GPCRs) and

protein kinase C (PKC) (see Figure 1.4). This dual signalling underlies the diverse functions of

KARs and defining this metabotropic component of the signalling system operated by KARs is

essential in understanding the physiological contributions of glutamate receptors (Rodrigues &

Lerma, 2012). Thismetabotropic action of KARs has been purported to physiologically support the

temporal integration of glutamate transmission and synaptic plasticity, and it may be responsible

for the KA-mediated epilpetogenicity. (Lerma & Marques, 2013; Rodrigues & Lerma, 2012).

Figure 1.3: Myriads of functional changes affected by KARs. Any alteration in the regulation of these activities,
including circuit maturation during development, may provoke sufficient disequilibrium as to lead to a disease
state. Reproduced from Lerma and Marques (2013)

Lesions extraneous to the amygdala could not attributed to the toxin itself rather to the SE it

induces, since diazepam injection before administering the KA in the amygdala did not affect the

extent of lesions but prevented distant hippocampal damage (Lévesque & Avoli, 2013). GluK1–5

receptors are also expressed in the olfactory cortex complex – including the external plexiform layer,
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Figure 1.4: Metabotropic action of KARs. Presynaptic KARs can bidirectionally modulate neurotransmitter release
at glutamatergic and GABAergic synapses. The inhibitory but not the facilitatory activity of KARs is most likely
linked to GPCR coupled mechanisms. The inhibition of voltage-gated Ca2+-channels by KARs, independent of
ion flux, may contribute to the inhibitory action of KARs on neurotransmitter release. Regulation of synaptic
activity is made possible via the presynaptic modulation of neurotransmitter release, and network activity control
by regulating neuronal excitability. In addition, postsynaptic KARs can regulate neuronal excitability by inhibition
of slow afterhyperpolarization (sAHP). Reproduced from Rodrigues and Lerma (2012)

olfactory nerve, glomerular layers, granule cells, mitral cells, and mitral/tufted dendritic processes

(see Table 1.1 for differential expression). GluK1 and GluK2 mRNA levels are downregulated

in response to sustained seizures (Mathern et al., 1998). However, Li, Lytle, Lan, Sandau, and

Boison (2012) found contradicting evidence where GluK1 mRNA levels were upregulated in the

hippocampus of TLE patients.

Mossy fiber sprouting in epileptic patients is correlated with an increase in GluR5 upregulation

(Lévesque & Avoli, 2013; Li et al., 2012), and such upregulation has been shown to precede mossy

fiber sprouting in KA-treated rats (Bernard et al., 1999). These data suggest that KARs may be

responsible in facilitating the generation of epileptiform activity recorded from these functionally
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KAR subtype Brain region Relative abundance
in the Olfactory bulb

GluK1

Dorsal root ganglion (DRG) neurons

5

Subiculum
Septal nuclei
Piriform cortex
Nucleus accumbens
Cingulate cortex

GluK2

Cerebellar granule cells

4
Nucleus accumbens
Dentate gyrus
Hippocampal CA1

GluK3
Deep layers of cerebral cortex

1Striatum
Inhibitory interneurons of the moleculer layer of the cerebellum

GluK4

Hippocampal CA3

2
Dentate gyrus
Amygdala
Nucleus accumbens
Entorhinal cortex
Cingulate cortex

GluK5 Essentially ubiquitous in the nervous system 3
5: highest abundance

Table 1.1: Differential distribution of KAR subtypes (Bischoff, Barhanin, Bettler, Mulle, & Heinemann, 1997; Casas-
sus & Mulle, 2002; Davila, Houpt, & Trombley, 2007; Lerma, Paternain, Rodríguez-Moreno, & López-García, 2001;
Montague & Greer, 1999; Vincent & Mulle, 2009)

aberrant synapses. Further, pharmacological blockade of KA receptors can effectively inhibit

synchronized epileptiform transmission in the DG induced by electrical stimulation (Epsztein,

Represa, Jorquera, Ben-Ari, & Crépel, 2005).

1.3.2 Neuropathological changes

Systemic administration of KA causes lesion similar to intracerebral injection, although to greater

extent of neuronal damage (Lévesque & Avoli, 2013). Prominent loss of pyramidal neurons occurs

in the CA1, CA3 and hilar regions of the hippocampus. (Haas, Sperber, Opanashuk, Stanton, &

Moshé, 2001; Suárez et al., 2012). In addition, high sensitivity of parvalbumin-positive interneurons

to KA leads to neurodegeneration in the CA1 region, the subiculum and the entorhinal cortex

(Best, Mitchell, & Wheal, 1994; Drexel, Preidt, Kirchmair, & Sperk, 2011).

Fritsch et al. (2009) reported a significant reduction in the density of GABAergic (mainly
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Mode of
Administra-
tion

Mortality Rate Latent pe-
riod (days)

Neuropathological changes (< 48
hours after SE)

Neuropathological changes (> 2 days
after SE)

Intra-
amygdaloid

± 5% 10-40 Ipsilateral CA1, CA3 and DG hilar re-
gion. CA2 region and dentate granule
cell resistance.

Entire hippocampus, contralateral
amygdala, extra-temporal regions.

Intra-
hippocampal

± 12% 5–30 Ipsilateral CA3 and DG hilar region,
CA1 less sensitive.

Entire hippocampus, DG granule cell
dispersion.

Systemic ± 17% 10–30 Bilateral neurodegeneration in the
CA1, CA3 and DG hilar region, ex-
trahippocampal sites.

Extensive bilateral neuronal loss in
the hippocampus and extra-temporal
regions, DG granule cell dispersion.

Table 1.2: Effects of different modes of KA administration on the survival rate, latent period duration and associated
neuropathological changes < 48 hours after SE, and at > 2 days after SE (Lévesque & Avoli, 2013).

somatostatin-expressing) interneurons present in the basolateral amygdaloid nuclei. Drexel et al.

(2012) observed, in systemically induced SE, that bilateral neuronal loss in the extra-temporal

regions, neurodegeneration in entorhinal cortex (layer III), proximal subiculum, claustrum, thala-

mus, caudate putamen and the cerebral cortex occur within 24 hours of administration. Animals

that survive relatively longer time periods (> 48 hours) after SE exhibit bilateral gliosis, neuronal

shrinkage/edema in the piriform cortex, entorhinal cortex, olfactory bulb, substantia nigra, thala-

mus and mid brain, coupled with cell layer dispersion in the DG (Ben-Ari, Tremblay, Ottersen,

& Meldrum, 1980, see Table 1.2). Interestingly, Sperk et al. (1983), Sperk et al. (1985) demon-

strated that these extensive and diverse neuropathological changes are the mainstay of animals

exhibiting robust convulsions during SE. Thus, bolstering the view that damage presenting in the

extra-temporal/hippocampal regions is not directly caused by the toxin itself but is dependent on

the propagation of epileptiform activity along monosynaptic and polysynaptic pathways.

1.3.3 Epileptogenesis

Systemic injections induce a latent period interspersed with SISs. Quite interestingly, in animals

that go on to develop chronic epilepsy following SE, the interictal spike frequency during the latent

period is higher relative to non-epileptic rats. Also, epileptic rats have a higher tendency to exhibit

clusters of such interictal spikes, which suggests these events may serve as proxy for biomarkers
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of pathological network activity in limbic networks, in the KA model of SE (White et al., 2010).

These results also indicate that such patterns of interictal spikes may be a product of underlying

epileptogenic or ictogenic mechanisms.

KA-inducedmicroglial activation

Microglial/astrocytic activation accompanies neuronal death in the KA model, which is evident

by the congregation of activated gliocytes in the hippocampus (Ravizza et al., 2005). However,

the role of microglia in initiating the inflammatory and degenerative processes that aggravate

the damage, is still scant and unclear. Gliosis has been suggested to play a neuroprotective and

reparative role in MS (with its animal model) and experimental autoimmune encephalomyelitis

(EAE). Microglial activation seems to be a physiological response to KA-induced excitotoxicity,

but serves to aggravate the debilitating effect of neurodegeneration. Additional evidence comes

from studying the glial fibrillary acidic protein (GFAP), a marker for astrogliosis, which was shown

to rise steadily following local/systemic injections of KA (Vargas, Takahashi, Thomson, & Wilcox,

2013).

Non-synaptic effects of glial interaction play a role in the synchronicity of epileptic events aswell.

Gap junctions between astrocytes are upregulated in TLE patients, and may have a pro-epileptic

effect due to glutamatergic signalling between astrocytes and neurons (Seifert, Carmignoto, &

Steinhäuser, 2010). Gap junctions between interneurons in the hippocampus (Fukuda & Kosaka,

2000) are capable of enhancing coherent oscillations facilitated by their GABA mediated synaptic

networks (Jefferys et al., 2012; Mancilla, Lewis, Pinto, Rinzel, & Connors, 2007).

Pathological oscillations in Kainatemodel of TLE

The occurrence of synchronized electrical activity across multiple bands (δ (delta), β (beta), θ

(theta), α (alpha), γ (gamma), etc.) fluctuate as a function of behavioural-state or task demands

(Engel, Fries, & Singer, 2001). These distributed oscillatory systems facilitate resonant communi-

cation through which discrete neuronal populations are synchronized, providing a precise timing
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of discharges for information coding and transfer (Buzsáki, 2006; Buzsáki & Wang, 2012b). High

frequency-band oscillations are typically confined to a relatively small area, linking local popula-

tions of neurons, whereas distributed brain regions are recruited during slow oscillations to form

large-scale networks (Buzsáki & Draguhn, 2004; Csicsvari, Jamieson, Wise, & Buzsáki, 2003). The

coincidence of various neuronal oscillations within the connectome permits independent infor-

mation integration and processing at multiple temporal and spatial scales (Buzsáki & Draguhn,

2004).

Fisahn et al. (2004), using KAR knock-out homozygous (GluK1-K5-/-) mice populations,

established distinct roles of GluK1/K2 in support of the rhythmic activity of the healthy brain

(gamma oscillations) and the pathological brain (epileptiform bursts). Ben-Ari, Riche, Tremblay,

and Charton (1981) and Lothman and Collins (1981) discovered interictal spikes that first occur

in the entorhinal cortex or the hippocampus following a systemic (i.p., s.c., or i.v.) injection of

KA in rats, travelling to the amygdala, and then propagating to the thalamus, CA1 and the frontal

cortex; without any detectable clinical signs or symptoms. In addition to interictal spikes, EEG

recorded from the HC in KA model was characterized by rhythmicity of gamma (25–30 Hz)

oscillations. Medvedev, MacKenzie, Hiscock, and Willoughby (2000) confirmed and characterized

this phenomenon recorded from hippocampal EEG in the KA model, observing runs of gamma

oscillations (30–40Hz) followed by sporadic spikes preceded by clinical signs (Figure 1.5). Lévesque

et al. (2009) also reported gamma oscillations, recorded from the HC, during seizure activity

induced by KA.

Behavioural alterations in Kainatemodel of TLE

Comorbidities observed in TLE patients comprise major depression, anxiety disorders, psychosis

and/or cognitive dysfunction (Engel, 1996; Trimble, 1991). Experimental models of epilepsy,

such as the kainate/pilocarpine model of acquired epilepsy, help explore the relationship between

epilepsy and behavioural deficits (Gröticke, Hoffmann, & Löscher, 2007).

TLE is often associated with schizophrenia-like symptoms, which are measured in rodents
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Figure 1.5: (A) EEG depth recordings in rat depicting a seizure recorded simultaneously in the amygdala, hippocam-
pus and neocortex ~2 h following intra-peritoneal (systemic) administration of KA (6 mg/kg). Gamma oscillations
(30–80 Hz) (white bordered rectangles) occurs in the CA1 and CA3 region. (B) Seizure-onset is depicted on an
expanded time scale. Note: Arrow indicates the seizure start timepoint in the CA3 region. Reproduced from
Lévesque and Avoli (2013).



SECTION 1.4. TLE IN A GRAPH THEORETICAL FRAMEWORK 18

by behavioural hyperactivity and loss of sensorimotor gating. Sensorimotor gating describes

neurological processes responsible for distinguishing useful information from the background

noise. A reduction in the startle amplitude is indicative of the ability of the nervous system

to briefly adapt to a strong sensory stimulus when a pre-emptive attenuated signal serves as a

warning to the organism. Deficits of prepulse inhibition (PPI) have been linked to abnormalities

of sensorimotor gating and have been observed in psychiatric and neurodegenerative illnesses, for

instance, schizophrenia (Braff, Geyer, & Swerdlow, 2001). PPI was also disrupted by kindling of the

hippocampus or prefrontal cortex, and immediately after a stage 5 amygdala seizure (Koch & Ebert,

1998) or a single hippocampal seizure (Ma, Shen, Rajakumar, & Leung, 2004b). These PPI deficits

are most likely due to hyperactivity within the mesolimbic dopaminergic system, or a disturbance

of the glutamatergic neurotransmission in the nucleus accumbens (Koch & Schnitzler, 1997).

Another schizophrenia-like symptom induced by TLE models in rats is behavioural hyperactivity,

which could be recorded as hyperlocomotion in an open field, or induced by stress or drugs.

Epileptic rodents exhibit deficits in cognitive and memory tasks (Ando, Morimoto, Watanabe,

Ninomiya, & Suwaki, 2004), quantified by tests such as the water maze, the open-field test, and the

object exploration tasks. In addition, deficits in short-term spatial memory and long-term spatial

learning, a higher anxiety level (Ratté & Lacaille, 2006), and depression-like behaviors have also

been observed (Gröticke, Hoffmann, & Löscher, 2008).

1.4 TLE in a graph theoretical framework

The intrinsic complexity of the organization of the anatomical and functional connectome has

been considered akin to large-scale networks such as the Internet, social networks, or metabolic

networks; and has been the object of network modelling based on topological properties known

as the graph analysis.

The delineation of epileptogenic networks plays a substantial role in improving planning

leading up to the resective surgery, and consequentially guide targeted interventions and therapies



SECTION 1.4. TLE IN A GRAPH THEORETICAL FRAMEWORK 19

with the aim of controlling epileptiform activity in relevant hubs and nodes within the abnormal

network(s) (Lopes da Silva, Gorter, & Wadman, 2012). Functional connectivity mapping of brain

networks has consistently identified sets of regions critical in enabling efficient neuronal signaling

and communication. These brain hubs in anatomical and functional networks facilitate diverse

functional roles across a host of cognitive tasks and both global and local dynamic coupling of

functional networks (van den Heuvel & Sporns, 2013).

In a graph theoretical network framework functional networks can be objectively characterized

by different mathematical measures (see Rubinov & Sporns, 2010, for a non technical review;

Table 1.3). Watts and Strogatz (1998) defined small-world networks as a class of networks with

significantly more clustering than random networks, while still have a similar characteristic

path length as random networks. In addition, small-world networks have the property of being

highly segregated and integrated, with highly connected hubs, and high modularity (Bullmore

& Sporns, 2009).These networks are hypothesized to optimize rapid synchronization transfer

creating a balance between local processing and global integration (Meador, 2011). Such optimal

configuration of information transfer and processing is the hallmark of brain networks, and

other biological networks (Stam & Reijneveld, 2007b). Random networks, on the other hand, are

characterized by a low clustering coefficient and a typical short path length. In contrast, small

world networks have higher absolute clustering coefficient but similar absolute path length, that is

γ = Cnet/Crandom > 1, λ = Lnet/Lrandom ≈ 1. γ and λ can be be quantified as small-world-ness, σ =

γ /λ , which is � 1 for small-world networks. To study the small world properties, the value of

Cnet and Lnet of the functional network is compared to that of a random network (Crandom and

Lrandom).

Graph-theoretical analyses of global anatomical network organization of patients revealed

increased path length in TLE (Bernhardt, Chen, He, Evans, &Bernasconi, 2011). Global integration

and local segregationmeasures of functional networks in TLE have been reported to be significantly

altered relative to controls. Most noteworthy, increased connectivity within the mesial temporal

lobe (higher clustering) and decreased connectivity (longer path length) along extratemporal
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Measure Definition

Assortativity The correlation between the degrees of connected nodes. Positive assortativity indicates
that high-degree nodes tend to connect to each other

Centrality How many of the shortest paths between all other node pairs in the network pass through a
node

Clustering coefficient Quantifies the number of connections that exist between the nearest neighbours of a node
as a proportion of the maximum number of possible connections (Watts & Strogatz, 1998)

Connection density/cost The number of edges in the graph as a proportion of the total number of possible edges

Degree The number of connections that link a node to the rest of the network

Degree distribution The distribution of the degree values for all of the network’s nodes (Amaral, Scala, Barthelemy,
& Stanley, 2000)

Efficiency Efficiency is inversely related to path length but is numerically easier to use to estimate topo-
logical distances between elements of disconnected graphs

Hub Hubs are nodes with high degree, or high centrality.

Modularity Nodes that are highly interconnected and that overlap in their external connection patterns.
Modules may also be functionally defined on the basis of the pattern of functional or effective
connections. A given network can be decomposed into a set of non-overlapping, overlapping,
or hierarchical arranged modules (Sporns, 2010, p. 328)

Motifs A small subset of network nodes and edges forming a subgraph (Sporns, 2010, p. 328). The
distribution of different motif classes in a network provides information about the types of
local interactions that the network can support (Sporns & Kötter, 2004)

Path length The minimum number of edges that must be traversed to go from one node to another.

Robustness Robustness refers either to the structural integrity of the network following deletion of nodes
or edges or to the effects of perturbations on local or global network states.

Triangle The number of triangles around a node.

Table 1.3: Graph theory network measures. See Appendix A for mathematical notation. Adapted from Bullmore
and Sporns (2009), and Hutchison (2012)
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Figure 1.6: Random rewiring in network configurations A random rewiring procedure is dependent on the vari-
able p, the probability of rewiring (0 < p < 1). This rewiring commences with a regular ring lattice with edges
connecting node with probability p. As p increases, the graph becomes increasingly disordered until for p = 1, all
edges are rewired randomly. For intermediate values of p, the graph is a small world network: highly clustered
like a regular graph, yet with small characteristic path length, like a random graph. Three realizations of the pro-
cess (for three different p values) are depicted. Reproduced fromWatts and Strogatz (1998, with n = 20 vertices
an average degree of k = 4 edges per vertex).

areas, including contralateral temporal regions (Cortical thickness networks; Bernhardt et al.,

2011; Functional networks; Bettus et al., 2009), indicative of a reduction in global efficiency (Wang

et al., 2014). Morgan, Rogers, Sonmezturk, Gore, and Abou-Khalil (2011) suggested altered

bitemporal connectivity in patients with TLE. These findings suggest a deleterious impact of the

epileptic lesion and the epileptogenic zone on the whole brain, potentially impacting multiple

cerebral networks (Tracy et al., 2014). Liao et al. (2010) demonstrated using nodes derived from

resting-state data, small world character in TLE patients along with increased connectivity in the

medial temporal lobe regions and disconnection within the “default mode” network. Notably, Voets

et al. (2012) explored the three-way relationship between functional network disruption, white

matter disconnection, and gray matter atrophy in TLE patients. They found a lower functional

connectivity between the hippocampus, anterior temporal cortex, and precentral cortex; and the

DMN and sensorimotor networks.
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Figure 1.7: The characteristic path length L(p) and clustering coefficient C(p) for the family of randomly rewired
graphs described in Figure 1.6 (averaged and normalized over 20 realizations). A logarithmic horizontal scale has
been used to resolve the rapid drop in L(p), corresponding to the onset of the small-world phenomenon. During
this drop, C(p) remains almost constant at its value for the regular lattice, indicating that the transition to a small
world is almost undetectable at the local level.Reproduced from Watts and Strogatz (1998, n = 1,000 vertices
and an average degree of k = 10 edges per vertex).

1.4.1 Resting State Networks and Multimodal Strategies

Resting-state fMRI (rsfMRI) has facilitated non-invasive visualization of the the neuronal activity

in the brain at unprecedented spatial resolution, although at the cost of temporal resolution.

The haemodynamic response that underlies the BOLD (Blood Oxygenation Level Dependent)

signal is predominantly based on the displacement of deoxyhaemoglobin by inflowing oxygenated

haemoglobin, and thus, acts as a proxy for the underlying neuronal activity. Further, Logothetis

and Wandell (2004) demonstrated that the BOLD signals rely heavily on blood volume and flow, as

well as on oxygen consumption, all factors which are generally positively correlated with neuronal

activity (i.e., neurovascular coupling).

rsfMRI examines the spatial synchronization of intrinsic spontaneous low frequency fluctua-
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tions (BOLD signal) rooted in the neuronal and synaptic activity that reflects stimulus-independent

processing in the brain as opposed to an external stimulus (Kandel, Schwartz, & Jessell, 2012). Func-

tional networks are statistical constructs that exhibit considerable variability on short timescales

(temporal evolution), either spontaneously or in response to varying conditions of input and

task (Sporns, 2013). These functional networks arise in the form of low-frequency oscillations

(LFOs; 0.01 < f (Hz) < 0.1) and are assumed to reflect the intrinsic functional architecture of the

brain. Such simultaneous task-independent variations in different parts of the brain are thought to

represent various networks, working in tandem to achieve a common goal of complex information

processing. A growing number of studies have recognized such large-scale brain networks (Smith

et al., 2009) to investigate basal brain states in health and disease (Kaiser, 2013) ever since the

first RSNs were discovered within the somatosensory motor system (Biswal, Yetkin, Haughton, &

Hyde, 1995). Such local and global networks have begun to serve new insights into the human

connectome and the role it plays in shaping the functional dynamics (Greicius, Supekar, Menon, &

Dougherty, 2009; Sporns, 2011, 2013). This realization has culminated in the setting up of BRAIN

initiative (Insel, Landis, & Collins, 2013) and the Human Connectome Project (Van Essen et al.,

2013) to chart the structural and functional connectome of the human brain.

The high spatial resolution of this BOLD signal complements the high temporal resolution of

the EEG and better aids in the localization of focal epilepsies (Ando et al., 2004), and hence are

seen today as invaluable diagnostics in the study of epileptic networks. rsfMRI connectivity also

has been suggested as a good predictor of surgical outcome in TLE patients (Negishi, Martuzzi,

Novotny, Spencer, & Constable, 2011). Effectively, fMRI aids in detection of various perturbations

that impede the information flow and processing in the short- and long-range networks (Waites,

Briellmann, Saling, Abbott, & Jackson, 2006). Hutchison, Mirsattari, Jones, Gati, and Leung (2010)

identified several bilateral functional networks in the subcortical areas like the hypothalamus and

the hippocampus of the rat brain. These RSNs are present in homologous brain regions in the rat,

monkey and human (see Figure 1.8), indicative of an evolutionarily conserved feature.

The “default mode” network (DMN), one of several RSNs, is deactivated during goal-directed
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of a non-self referential nature, while being most active in a resting state (awake with eyes closed),

and involved in episodic memory processes and self-referential mental representations. Greicius

et al. (2009) found structural connectivity between functionally connected parts of the default

mode network (DMN), consisting of areas in dorsal/ventral medial prefrontal cortices, medial

and lateral parietal cortex, and regions in the medial/lateral temporal cortices. The structural and

functional substrates of the rat DMN are detailed in Lu et al. (2012). The existence of DMN in

humans, nonhuman primates and rodents both under anaesthetic and conciousness states suggests

that the basic role of DMN is not restricted to the self-referential behavioural constructs.

Figure 1.8: Comparison of the homologous Default Mode Network (DMN) in rat, monkey, and human.
Rat DMN, significant brain regions include: 1, orbital cortex; 2, prelimbic cortex (PrL); 3, cingulate cortex (ACC);
4, auditory/temporal association cortex (Au1, AuD, AuV, TeA); 5, posterior parietal cortex; 6, retrosplenial cortex
(Rsp); 7, hippocampus. (Center) Brain spatial activation in the axial plane.
Human DMN (Right), significant clusters include: 1, orbital frontal cortex; 2/3, medial prefrontal cortex/anterior
cingulate cortex; 4, lateral temporal cortex; 5, inferior parietal lobe; 6, posterior cingulate/retrosplenial cortex; 7,
hippocampus/parahippocampal cortex.
Macaque (monkey) DMN: 2/3, dorsal medial prefrontal cortex; 4/5, lateral temporoparietal cortex (including area
7a and superior temporal gyrus); 6, posterior cingulate/precuneus cortex; 7, posterior parahippocampal cortex.
Adapted from Lu et al. (2012) and Vincent et al. (2007).
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Multimodal Strategies

EEG-fMRI has the operational advantage of both the techniques in adequately sampling the

complex spatiotemporal domain of the brain networks, while being able to directly relate the

BOLD response to epileptic phenomenon (Abela et al., 2014; LeVan, Tyvaert, Moeller, & Gotman,

2010; Mulert & Lemieux, 2009). Abela et al. (2014) using a spike-based evaluation of EEG-fMRI,

and Huster, Debener, Eichele, and Herrmann (2012) by implementing an ICA-based approach,

identified interictal discharges to be intrinsic predictors of estimating the haemodynamic responses

linked to IEDs. Clinical data from multiple modalities like MRI, SPECT, PET, EEG, MEG, etc.,

in isolation and combination, has aided in making better estimates to localize epileptogenic foci

and improve outcomes following focal resection surgery. Evidence gathered independently using

several multimodal techniques is slowly converging to reveal a better network topology in epilepsy.

Evidently, the effect mesial temporal sclerosis and/or anti-epileptic drugs may have on the

neurovascular coupling (prime for observing the BOLD effect) in compromising the global/local

connectivity, is largely unclear (McAndrews & Cohn, 2012). However, it has been, invariably,

argued that understanding the alterations in network structure and dynamics could improve

diagnostic classification and identify new biomarkers and potential targets for therapy.

1.4.2 RSN Pathologies in TLE

Further impetus to investigate networks using resting-state has come from the discovery of RSN

alterations across a plethora of neuropathologies. Research on experimental models of neu-

ropathologies has significant clinical value. Need for experimental animal models in rsfMRI has

been stressed several times due to the advantage of manipulability that is not possible in humans,

due to obvious ethical considerations. In addition, animals models are free of multiple confound-

ing factors and host of other factors that share a complex relationship with BOLD activation: (i)

non-availability of age matched controls, (ii) estimates of structural integrity, (iii) etiology of and

duration of disease state, (iv) cerebral reserve and extent of functional lateralization (Bettus et al.,
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2011; McAndrews & Cohn, 2012).

Disruptions in the functional RSNs (see Greicius, 2008, for review), most notably the DMN,

have been reported in several neurological and psychiatric disorders including major depression

(Greicius et al., 2007; Kühn & Gallinat, 2013; Veer et al., 2010), schizophrenia (Bassett, Nelson,

Mueller, Camchong, & Lim, 2012; Lynall et al., 2010), Alzheimer’s disease (Damoiseaux, 2012;

Wang et al., 2007), attention deficit hyperactivity disorder (ADHD) (Castellanos et al., 2008; Fair

et al., 2010), epilepsy (Bettus et al., 2009; Luo et al., 2011), coma (Norton et al., 2012), chronic

pain (Farmer, Baliki, & Apkarian, 2012), multiple sclerosis (Enzinger & DeLuca, 2012; Lowe et al.,

2008), amyotrophic lateral sclerosis (Mohammadi et al., 2009), and Parkinson’s (Prodoehl, Burciu,

& Vaillancourt, 2014). Besides disruption of the DMN in TLE patients (see Cataldi, Avoli, &

de Villers-Sidani, 2013, for review), several networks including attentional (Zhang et al., 2009b)

and perceptual (Zhang et al., 2009a) have also been reported to be dysfunctional.

1.5 Effect of Anaesthesia

Hippocampal theta rhythm has been implicated in various phenomena that includes attention and

acquisition of sensory information. The circuit of hippocampal theta synchronization includes the

medial septum-diagonal band of Broca (MSDB), with cholinergic and GABAergic neurons serving

as the main projections from MSDB to HC (Yoder & Pang, 2005). These neurons project to the

HC through the fimbria-fornix which mediates hippocampal theta (M’Harzi & Monmaur, 1985).

Electrolytic lesion of the medial septum had the effect of increasing the sensitivity to anaesthetics

– propofol and isoflurane (Leung, Ma, Shen, Nachim, & Luo, 2013).

Determining LORR sensitivity to isoflurane is critical for the rsfMRI studies since isoflurane is

a potent vasodilator and likely affects neurovascular coupling in the brain directly modulating

the BOLD response (Farber et al., 1997; Masamoto, Fukuda, Vazquez, & Kim, 2009), warranting

the use of lowest possible dose of isoflurane concentration to maintain rat immobility during

the fMRI scanning session. When microinfused into the medial septum, KA acts as poison to
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preferentially eliminate GABAergic neurons, while 192 IgG-saporin (SAP) selectively destroy

cholinergic neurons (Yoder & Pang, 2005). Tai, Ma, and Leung (2014) recently reported that

selective lesion of cholinergic neurons in the media septum mediate enhancement of isoflurane

sensitivity and prolonged isoflurane anaesthesia.

Hutchison et al. (2010) discovered several coherent resting-state networks in the brains of

anaesthetized rats using ICA in high-field fMRI data. However, no conclusions could be drawn

on how the spatiotemporal landscape of the RSN changes with isoflurane type and concentration.

Nonetheless, these RSNs have been found to exist in both awake (Becerra, Pendse, Chang, Bishop, &

Borsook, 2011; Liang, King, & Zhang, 2011; Upadhyay et al., 2011) and anesthetized (Kannurpatti,

Biswal, Kim, & Rosen, 2008; Liang, King, & Zhang, 2012) states in rats. Moreover, Wang et al.

(2011) demonstrated that the spatiotemporal characteristics of the spontaneous BOLD signals are

significantly preserved under light to mild anaesthetic levels (<2.9% isoflurane concentration).

Hutchison, Hutchison, Manning, Menon, and Everling (2014) in nonhuman primates showed

that the number of functional brain state transitions linearly decreases with increased isoflurane

dosage. Thus, as a caveat, anaesthetic state should be carefully monitored in resting-state study,

esp. when using volatile anaesthetics.

Isoflurane sensitivity is the function of ED50 , or the isolfurane dose that induced half the rats

to lose righting reflex. Across different anaesthetics, ED50 in rats is highly correlated to the loss of

consciousness in humans (Franks, 2008).

1.6 Olfactory System and TLE

In a fraction of patients living with TLE, olfactory hallucinations (olfactory aura) precede complex

partial seizures (Acharya, Acharya, & Lüders, 1998; Chen et al., 2003; Hong, Holbrook, Leopold,

& Hummel, 2012). These auras appear to involve the piriform cortex – a primary olfactory cortex.

Interestingly, it is a possibility to obviate a seizure episode by smelling an odor, although with

sufficient warning. Olfactory cortex is also widely being used as a model to study epileptogenesis,
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to which it is highly susceptible (see Restrepo, Hellier, & Salcedo, 2013, for review). A particular

intriguing aspect of this cortex is its ability to process the exceedingly complex spatial and temporal

patterns of neuronal activity that constitute the olfactory code.

Olfactory bulb (OB) serves as the olfactory processing stage in the vertebrate brains. Olfactory

receptor neurons in the epithelium send axonal projections to the mitral cells in the OB, which

directly project to piriform cortex (PC), entorhinal cortex (EC), and other related limbic areas.

Importantly, the PC projects to the amygdala and lateral EC (Nagayama et al., 2010; Shepherd,

2004), brain structures well known to be involved in limbic seizures in patients with TLE (Ben-Ari,

Crepel, & Represa, 2008; Bertram, 2009; Thom et al., 2010, Figure 1.9).

Figure 1.9: The axons of mitral and tufted relay neurons of the OB project through the lateral olfactory tract to the
olfactory cortex. The olfactory cortex consists of a number of distinct areas, the largest of which is the PC.
From these areas olfactory information is transmitted directly to other brain areas as well as indirectly via the
thalamus. Targets include frontal and orbitofrontal areas of the neocortex, which are thought to be important for
odor discrimination, and the amygdala and hypothalamus, which may be involved in emotional and physiological
responses to odors. Mitral cells in the accessory olfactory bulb project to specific areas of the amygdala that
transmit signals to the hypothalamus. Reproduced from Kandel, Schwartz, and Jessell (2012, p. 712).
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Olfactory dysfunction in TLE patients is not quite well documented. Rather there has been

a dearth of studies exploring the consequences of such sensory alterations. Some reports have

suggested loss in OB volume in TLE patients, which correlated with odour threshold and discrimi-

nation abilities (Hummel et al., 2013). Hudry, Ryvlin, Royet, and Mauguière (2001) demonstrated

that the human amygdala, in addition to spindles, is capable of evoking chemosensory potentials.

Previous studies found evoked potentials to represent specific odour-induced responses. Lowry

and Kay (2007) analysed LFPs from the olfactory bulb and anterior piriform cortex to find that the

beta oscillations (15–30 Hz) in awake rats are generated specifically in response to volatile organic

compounds (VOCs; vapour pressures: 1-120 mm Hg). Heale, Vanderwolf, and Leung (1995) were

able to generate coherent chemosensory induced potentials in the rat olfactory bulb and the dentate

gyrus with the peak frequency band of 15–20 Hz using toluene, while disrupting the coherence

using KA and colchicine – pointing to the role of DG granule cells in the synchronization. These

studies may potentially lend insight into how the olfactory system reorganizes following the SE in

TLE patients.

1.7 Current Study

With the advances in neuroimaging techniques, it has been possible to derive the underlying neural

phenomena at unprecedented spatial and temporal resolution. Kainate model of TLE displays

several of the symptoms of human TLE. The behavioural patterns, encephalographic features, and

pathogenesis is strikingly similar, although not the same. Therefore, it is possible to chart various

features of human TLE and even validate them in the rodent model; which has obvious advantages

of manipulability.

This study focusses on the disruptions in the resting-state networks, specifically the ones with

the hippocampus as the hub, in the kainate model of temporal lobe epilepsy. The motivation to

explore the functional network alterations stems from previous research in our laboratory, wherein

Hutchison et al. (2010) discovered several functional networks in the anaesthetized rat brain.
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Several RSNs have been reproduced in human TLE with varying disruptions. However, these

RSNs have not been explored in the pathological state in the animal models of epilepsy.

Since, behavioural changes accompany TLE, it is crucial to establish how well it correlates

with development of epilepsy at adequately spaced time intervals following SE. Heale et al. (1995)

established high coherence between olfactory bulb and dentate gyrus in the β (15–20Hz) frequency

band using toluene. Such task can potentially be used to gauge the extent of damage in animal

models of TLE. In addition, olfactory system dysfunction is the least characterized of all the

co-morbidities associated with TLE. The olfactory deficits can be detrimental to the quality of

the life of the afflicted individual. Thus, warranting inquiry into this line of research. Changes

in sensitivity in response to isoflurane levels, as observed using loss of righting reflex (LORR),

was tested since a higher sensitivity in response to general anaesthetics was observed by Long

et al. (2009) in a pilocarpine model of TLE. Prepulse inhibition (PPI) and locomotion studies

probe the role of hippocampal-accumbens circuitry in behavioural modifications. These behaviour

correlates have been shown to be deficient in hippocampal kindling (Ma & Leung, 2004a) and

kainate model of TLE (Ando et al., 2004).

The objective of this study was to implement resting-state fMRI to establish the disconnect

between various regions of the brain, more generally the RSNs, in a kainate model of temporal

lobe epilepsy. The experimental design allowed for the behaviour to be chronically recorded and

changes observed as a function of the experimental variable could be recorded and analyzed. The

disruptions in the BOLD signal connectivity hypothesized to be correlated with the behavioural

changes were measured using PPI and open-field test (OFT).

In the first series of experiments, summarized in Figure 2.1, baseline behaviour was recorded

at Day 0, followed by induction of SE using, then resting-state fMRI recording while behaviour

was recorded at adequately spaced intervals following SE. We hypothesize that both the local and

global functional connectivity will be significantly altered following SE in this rodent model of

TLE.

In the second set of experiments, 10 weeks following the SE, rats were subjected to chronic EEG
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recordings while an olfactory task was being performed. We hypothesize that the kainate-group

will have lower coherence between the OB and DG in kainate group as compared to controls.



Chapter 2

Materials & Methods

2.1 Animals

Adult male Long-Evans rats (Charles River Laboratories, Canada) weighing 250-400 grams were

used in these experiments. Rats were housed in standard cages and subjected to 12:12 hour

light/dark cycle (7am, 7pm). Food and water was accessible ad libitum, in a temperature regulated

environment. The study was conducted in accordance with the guidelines established by the

CanadianCouncil onAnimal Care and approved by theAnimalUse Subcommittee at theUniversity

of Western Ontario (AUP # 2007-085-10, see Appendix D).

All experiments were conducted during the light phase (0800 - 1900 EST).

2.2 Sequence of Experiments

Behaviour, EEG and fMRI recordings were incorporated in the study design to reveal the effect of

the independent variable (kainate/saline administration) on the dependent variable (differential

cortical and sub-cortical brain activation). Figure 2.1 depicts different methods used spread across

a period of 15 weeks.

32
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Figure 2.1: The following figure, in essence, depicts one complete cycle for the project with the timepoints chosen
carefully to tentatively reflect any change/activity that can be attributed to the difference in the experimental
variable, i.e. kainic acid treatment v. controls.

2.3 InductionofSpontaneousSeizuresusingKainicAcid

Kainic acid (Abcam Biochemicals, Cambridge, UK) was administered systemically through the

intraperitoneal (i.p.) route, with modifications of the protocol defined by Dudek and Edward

(2005), to induce status epilepticus (SE) in rats. Twenty-nine male rats were randomly allocated

to the experimental kainate group [n = 21; weight: 247 ± 3.9 g, mean ± standard error of the

mean (SEM)] and sham saline group (n = 8; 255 ± 5.8 g,). The groups of rats did not significantly

differ in weight (P > 0.05, Wilcoxon signed rank test). Rats were monitored for the development

of behavioural seizures following an initial kainate dose of 5mg/kg i.p. (diluted to 10 mg/mL

with sterile saline), with subsequent subthreshold doses administered (usually 1 hour after the

initial dose) according to the stages of seizure development and motor progression (see Table 2.1).

Repeated doses [Full dose (FD): 5.0 mg/kg, Half dose (HD): 2.5 mg/kg] were administered to rats

until they developed fully generalized (stage 5) seizures or exhibited convulsive status epilepticus

(SE) for more than 3 hours. Age matched controls were injected with the same volume of sterile

saline (0.1–0.2mL i.p.) as the volume of kainate solution in the experimental group. The differential

doses delivered aim to maximize animal survival. Diazepam (Sandoz, Canada; 5 mg/mL) was

administered (4 mg/kg i.p.) following ≥ 3 hours of stage 5 seizure manifestation to prevent any
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Seizure Stage Behavioural Correlate Remarks
Class I Facial Automatisms Difficult to detect and record while an animal is

grooming/exploring its environment.Class II Head Nodding
Wet Dog Shakes
(WDS)

WDS and the number of class III/IV/V seizures
are recommended as the criteria for subsequent
injections.

Class III Forelimb clonus with a lordotic
posture

Class IV Forelimb clonus coupled with rear-
ing

Class V Class III or IV stage seizure and fall
over

Fall to one side first, followed by forelimb clonus.

Jumping Spontaneous jumping in one place
or throughout the cage

Table 2.1: Seizure Assessment: Severity of motor seizure activity according to a modified Racine scale (Ben-Ari,
1985; Dudek & Edward, 2005; Racine, 1972).

extraneous damage due to excessive or sustained convulsive episodes. Sterile saline (1.5–2.5 mL,

2×) was administered subcutaneously to hydrate the rats; shortly after diazepam.

Figure 2.2 depicts a hierarchical flow-chart diagram that was followed to induce SE in rats,

who eventually develop chronic, spontaneous recurrent seizures that were observed for the whole

duration of the study (upto 15 weeks); persisting throughout the life of the animal.
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start

more than 3hr of
convulsive SE?

administer
diazepam and
normal saline

> 3hr of convulsive
SE?

only WDS, only
class III seizures, or
1-4 class IV and/or
class V seizures?

1-4 class IV and/or
class V seizures?

administer
a full dose

5-9 class IV and/or
class V seizures?

5-9 class IV and/or
class V seizures?

administer
a half dose

> 10 class IV and/or
class V seizures or
excessive inactivity
or hyperactivity?

skip the dose

skip the dose

end

hourly assessment
of seizure activity

no

30-min
assessment
of seizure
activity

no

yes

no

noyes

yes

yes

no

yes

no

yes

yes

Figure 2.2: A flowchart to determine subsequent dose administration for each kainate-treated rat. Following
the first full dose (5 mg/kg i.p.), seizure-like behaviour (see Table 2.1) is monitored and recorded for 1 hour. This
recorded seizure activity along with the seizure assessment flowchart serves to establish the next course of
action (full dose, half dose (2.5 mg/kg), or no dose). Two finite state loops (an hourly assessment loop—left side
of figure, thin lines and a 30 minute assessment loop—right side of figure, thick lines) determine the process
(rectangles) for each possible decision (diamonds). The start box represents the first hour after the initial kainate
injection and all remaining hours until each rat experiences > 3 hours of convulsive SE. SE = status epilepticus;
WDS = wet dog shakes. Modified from Dudek and Edward (2005).
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2.4 FunctionalMagneticResonance ImagingProcedures

2.4.1 Animal Usage and Preparation

In animals (n = 15), general anaesthesia was induced with 5% isoflurane mixed with oxygen

supplied at the rate of 1.5 L/min, using a calibrated vapourizer (Harvard Apparatus, Holliston,

MA). Isoflurane was thereafter maintained at 2% while the rat was readied in the stereotaxic frame

mounted on the MR-compatible cradle and eventually inserted into the magnet bore for image

acquisition. Minimum 30 minutes were allowed for the isoflurane to equilibrate and global haemo-

dynamics to stabilize at the 2% concentration, during which shimming and image localization

were performed. The gaseous mixture was delivered via a custom nose-cone (serving partially

as a bite bar) for spontaneous respiration throughout the experiment. Once under anaesthesia,

the rats were secured in a custom-built nylon stereotaxic frame (Mirsattari et al., 2005) using

ear bars to prevent head motion. The body temperature was measured using a rectal fiber-optic

probe and maintained at 37°C via a feedback-controlled warm air system (MR compatible small

animal monitoring and gating system, SA Instruments, Stoney Brook, NY) along with a heated

feedback-controlled, water-circulated heating pad (TP500, Gaymar Industries, Orchard Park,

NY). Respiration was monitored using a pneumatic pillow (SA Instruments) wrapped around

the rat’s chest wall. Heart rate and blood oxygen saturation level were measured using a pulse

oximeter (MR-compatible; 8600V, Nonin Medical, Plymouth, MN) positioned on the hind-paw.

Physiological parameters were in the normal range (temperature: 37 ± 0.5°C, heart rate: 250–390

beats/min, breathing rate: 60–90 breaths/min, oxygen saturation: > 95%) for the entirety of the

recording/scanning session.
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2.4.2 Image Acquisition

All rats (nkainate = 6, nsaline = 9) were scanned for approximately 60 minutes at 4 isoflurane con-

centrations (2.0%, 1.5%, 1.0%, and 0.5%), while the first scan was taken ~4-5 weeks after the

kainate-treatment. The first scan was taken at 2.0% isoflurane induction and was incrementally

reduced with every progressing scan (10 minutes per scan, 2×) and continued until the rat ex-

hibited any movement, which was monitored using the heart rate and breathing rate (during the

scan) and by visually inspecting the EPIs overlaid on the anatomical post-scan. Since the ED50 for

isoflurane in Long-Evans rats was ~0.8%, very few scans were made, without movements, at 0.5%

(see Results chapter; Leung et al., 2013; Tai et al., 2014).

All experiments were accomplished using a Varian DirectDrive imaging console (Palo Alto,

CA), with a Magnex 31 cm actively shielded 9.4 T horizontal bore magnet equipped with an

actively shielded gradient set (12 cm ID, SR 3,000 mT m−1 s−1; Yarnton, UK). An optimized

custom built 1.5×2.0 cm linear transmit-receive surface coil was positioned proximally to the

anterior aspect of the rat’s head for imaging (Hutchison, 2012). Magnetic field optimization over

the volume of interest was accomplished using an automated shimming algorithm (RASTAMAP,

Klassen & Menon, 2004). Thirteen coronal slices of 1-mm thickness spanning the nucleus ac-

cumbens (anterior ~2.0 mm), to the entorhinal cortex (posterior ~8.0 mm), and including the

septohippocampal extent of the hippocampus were selected using the Paxinos and Watson (2007)

atlas. A fast spin echo (FSE) anatomical [effective echo train (TE) 40 ms, reception time (TR) 5

s, echo train length (ETL) 4] was acquired with a 256×256 matrix and a field of view (FOV) of

25.6×25.6 mm2. Functional images were acquired using an echo planar imaging sequence (TE

15 ms, repetition time TR 1,000 ms, flip angle 60°), with a 64×64 matrix, and a FOV of 25.6×25.6

mm2, corresponding to an in-plane spatial resolution of 400×400 μm2 (Hutchison, 2012). For

each fMRI run, 600 images were acquired over 10 minutes (1 brain volume every second), while

the rat was resting under isoflurane anaesthesia in the scanner.
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2.4.3 Image Preprocessing and Analysis

Preprocessing was carried out using command-line tools bundled within the FSL (Jenkinson,

Beckmann, Behrens,Woolrich, & Smith, 2012) andAFNI (Cox, 1996) framework. First 30 volumes

(initial TRs) were removed to allow magnetization equilibrium (steady state), and all volumes

were registered to the first volume in the fMRI datasets to correct for minor movements. Trilinear

three-dimensional (3D) head motion correction and spatial smoothing using a 2D Gaussian filter

(full-width at half-maximum, FWHMxy = 0.8×0.8 mm2) was applied in tandem to each EPI data

set. Functional to structural space registration was achieved using FLIRT (FSL toolbox) with affine

transformation (12 DOF). An eighth-order Chebyshev (Type I bandpass, ~0.01–0.1 Hz) filter with

peak-to-peak passband ripple of 0.1 dB was implemented in Matlab (Mathworks, Natick, MA)

and applied to all time courses on a voxel by voxel basis over the entire EPI functional (3D + time)

dataset (Hampson, Peterson, Skudlarski, Gatenby, & Gore, 2002).

The standardized rat templates available could not be used owing to low degrees of freedom

inherent in the data (13 slices) relative to high dimensionality (≥ 100 slices with finer resolution)

of the template data. Besides, the creation of the template would require the acquisition of a

separate dataset that would then have to be manually labelled, negating the benefit of the template

(Hutchison, 2012). To circumvent the standardization issue, the 33 regions-of-interest (ROIs)

corresponding to brain regions and 2 ROIs corresponding to cerebrospinal fluid (to serve as

zero/null connectivity controls) were manually drawn for each of the rats in accordance with the

Paxinos and Watson (2007) rat brain atlas.

Seed regions were selected in the following medial- and extra-temporal regions in both hemi-

spheres independently: medial frontal cortex, piriform cortex, hippocampus, mediodorsal thala-

mus, orbitofrontal cortex, prefrontal cortex, posterior parietal cortex, auditory/temporal associa-

tion cortices, anterior/posterior cingulate cortex and amygdala (see Appendix B.1 for a complete

list of ROIs). The voxels of each structure were defined according to neuroanatomical landmarks

on the T2 structural scan since functional localization would be difficult and was not used. Figure
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2.3 depicts the general pipeline/workflow implemented (does not illustrate preprocessing).

Figure 2.3: Workflow/pipeline for graph theoretical network modelling and analysis of rsfMRI data. Nodes
correspond to a priori chosen ROIs or brain regions. The connections/links reflect the functional connectivity
between the the nodes, calculated using the temporal correlation between the signals (preprocessed data: tem-
porally filtered and spatially smoothed); this information is stored in a correlation matrix which is further thresh-
olded (to constitute only the significant links in the brain graph) to obtain binary/sparse connectivity matrices.
The brain graph topology is computed by several graph metrics to detect global integration and local segregation.
Statistical analysis of the graph metrics reveals significant differences between the 2 groups. Reproduced from
De Vico Fallani, Richiardi, Chavez, and Achard (2014).

Network-based Statistic

The extracted BOLD time courses averaged over the seed region was cross-correlated with all

other ROIs to derive a corresponding connectivity map. For statistical analysis, the Pearson’s

correlation coefficients (r) were gaussianized using the Fisher’s r-to-Z transformation [Z = 1
2 ln(

1+r
1-r )
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= atanh(r)]. Network-based statistic (NBS, http://www.nitrc.org/projects/nbs/)

approach was implemented to localize specific connected components in which the functional

connectivity was significantly different between the two groups. NBS is a method to adjust for

multiple comparisons in graphs – by controlling the link-based family-wise error (FWE) rate when

mass-univariate hypothesis testing is performed at each connection within the graph (Zalesky,

Fornito, & Bullmore, 2010). Briefly, most consistent connections were recognized within each

group. Consequently, a t-statistic is computed for each connection (node-to-node; t ≥ 3, P <

0.05) to construct a subset of suprathreshold links for the most consistent connections. Connected

components along with the number of links/connections present in the set of suprathreshold

links were thus identified. To estimate the significance of each component, the null distribution

of the connected component size was empirically derived using a nonparametric permutation

approach (15,000 permutations). Ultimately, a corrected p-value for a connected component of

size M found in the non-randomized data was then determined by computing the proportion of

the 15,000 permutations for which the maximal connected component was significantly larger

than M (Wang et al., 2013a).

Graphmetrics and Random network generation

The significant supra-threshold links were visualized as a graph network using the Gephi software

(Bastian, Heymann, & Jacomy, 2009). The various graph-based metrics [Weighted Clustering Co-

efficient (Cw ), Characteristic Path Length (Lw ), Global Efficiency (Eglob ), Local Efficiency (Eloc ),

Node Degree (Ki), Betweenness Centrality (Bi) and small-world characteristics (γ , λ , σ )] were

computed using the brain connectivity toolbox (BCT, http://www.brain-connectivity-

toolbox.net; Rubinov & Sporns, 2010). Nonparametric Wilcoxon signed rank tests and non-

parametric permutation tests (Wang et al., 2013b) were conducted to test differences in each of the

graph-based metrics across the two groups.

Stam, Jones, Nolte, Breakspear, and Scheltens (2007a), Stam and Reijneveld (2007b) suggested

that statistical comparisons should generally be performed between networks with equal (or at least

http://www.nitrc.org/projects/nbs/
http://www.brain-connectivity-toolbox.net
http://www.brain-connectivity-toolbox.net
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similar) degree sequence. However, theoretical random networks are characterized by Gaussian

degree distributions, which may be incongruous with the degree distribution of the functional

brain networks. Therefore, we generated, for a single threshold (r ≥ 0.3), 100 synthetic undirected

random networks with preserved degree distribution (from the KA/saline-treated brain networks)

of size 35×35 using BCT. Then, we averaged across all 100 generated random networks, and

binarized, to obtain a mean Crandom
1 and a mean Lrandom

2.

2.5 Behavioural Test Procedures & Analysis

2.5.1 Open Field Test

Horizontal movements (locomotion) of a rat were measured by the number of interruptions of

infrared (IR) beams in a Plexiglas® chamber (69×69×49 cm3). Four independent IR sources, at 23

cm intervals, were located on a horizontal plane 5 cm above the base, with photodiode detectors on

the opposite side. Interruptions of the IR beams were counted and transferred to a microcomputer

interfaced via software (Columbus Instruments). Spontaneous locomotor activity was recorded

for 45-60 minutes (at 5 mins interval, movements summed over 40 minutes) within a repeated

measures design for up to 5 weeks (once before SE induction and twice after), in both experimental

and control rats. Statistical differences were evaluated using 1-way repeated measures analysis of

variance (ANOVA).

2.5.2 Pre-Pulse Inhibition

A Plexiglas® cylinder served as the startle chamber (8.2 cm diameter, SR-LAB, San Diego Instru-

ments, San Diego, CA). A piezoelectric accelerometer was used to detect startle amplitude, and

bursts of acoustic noise were delivered by a loudspeaker mounted 24 cm above the rat. A micro-
1clustering coefficient of an equivalent random network
2path length of an equivalent random network



SECTION 2.5. BEHAVIOURAL TEST PROCEDURES & ANALYSIS 42

computer interfaced with SR-Lab software was used to present acoustic stimuli and to record data.

During PPI testing period, a rat was placed inside the startle chamber with a 68 dB background

noise for a 5 minute acclimatisation. Following the acclimatisation period, the rat was presented

with four types of stimuli: (i) startle pulse (120 dB – 40 ms broad band burst); and (ii) each of

prepulse (73, 75, or 80 dB – 20 ms broad band) presented 100 ms prior to startle pulse. The session

was designed with five trial types: startle pulse alone, each of three prepulse trials followed by

a startle pulse or a period of no acoustic stimulation. For each test session, 50 trials (10 startle

pulse, 10 no stimulation, and 10 of each prepulse trial types) were given in randomized order. The

intertrial interval was 15 s. Each test session was repeated twice (Ma et al., 2004b).

PPI was measured as the difference of the response to the startle pulse alone and that to

prepulse-startle, or PPI (in %) = 100 × [1 − (mean startle response amplitude for prepulse-startle trial
mean amplitude of response to startle alone )]. In this

study, mean values of the prepulse intensity of 73, 75, 80 dB (integrated prepulse intensity) and

each of the three types of intensity was used for calculation of the percentage of the PPI.

A 2-way repeated measures ANOVA was conducted to reveal differences in the 2 groups across

time and the type of prepulse (73, 75, 80 dB, and integrated) or startle pulse presented. Tukey

multiple comparisons were conducted to establish significance.

2.5.3 Loss of Righting Reflex under Isoflurane

Loss of righting reflex (LORR) measure was selected as the behavioural endpoint to investigate the

hypnotic properties of isoflurane (Forane® ; Baxter International Inc., Canada), following methods

previously described albeit with slight modifications (Tai et al., 2014). To determine the isoflurane

concentration that induced LORR, each rat was placed in a small Plexiglas® chamber (23×12×12

cm3) connected to an isoflurane vaporizer with 1-1.5 L/min flow of 100% oxygen. The outlet

from the chamber was fed into an infrared (IR) gas analyzer (RGM5250; Ohmeda® , Louisville,

CO). Isoflurane was delivered to the chamber starting at 0.5% concentration, and was increased in

0.125% increments until LORR occurred in the rat. The concentration of isoflurane plateaued in >

10 minutes after the dose increment, which was confirmed by the IR gas analyzer. Each anaesthetic
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concentration was maintained for a minimum equilibration period of 15 min, after which the

chamber was rotated and tumbled to place the rat on its back. A rat was considered to show LORR

if it did not return to all fours (feet) within 30 seconds, and was confirmed by a subsequent trial.

Nonparametric Wilcoxon signed rank tests were conducted to test differences in isoflurane

sensitivity in the two groups.

2.6 Local Field Potentials (LFPs) Procedures

2.6.1 Surgery & Electrode Implantation

Ten rats were initially anaesthetized with sodium pentobarbital (60 mg/kg i.p.) and secured in a

stereotaxic frame. The skull was exposed relative to lambda and bregma in a horizontal plane. For

electrophysiology, electrodes were implanted with 4 hippocampal electrodes (bipolar-electrodes: a

pair on each side but placed at different depths), and one electrode each in left frontal neocortex,

left olfactory bulb, and right amygdala with 2 grounds/references over the cerebellum and the

frontal cortex.

Burr holes were drilled for implantation using coordinates from a rat brain atlas (Paxinos &

Watson, 2007). Rats were chronically implanted with depth electrodes [127-μm bare diameter

stainless steel wires insulated with Teflon-PFA (perflouroalkoxy alkane) except at the cut ends] at

the following coordinates relative to bregma: right basolateral amygdaloid nucleus (posterior 2.8

mm, lateral 5.1 mm, ventral ~8.6 mm), right dentate gyrus hilar region (posterior 3.8 mm, lateral

2.7 mm, ventral ~4.0 mm), right CA1 radiatum (posterior 3.8 mm, lateral 2.7 mm, ventral

~3.3 mm), left CA1 stratum oriens (posterior 3.8 mm, lateral 2.7 mm, ventral ~2.3 mm), left

CA1 radiatum (posterior 3.8 mm, lateral 2.7 mm, ventral ~2.6 mm), and a depth electrode was

positioned in the left frontal neocortex (anterior 2.0 mm, lateral 3.0 mm, ventral ~2.5 mm)

and another in the olfactory bulb [(glomerular layer), anterior 7.0 mm, lateral 1.5 mm, ventral

~2.5 mm]. Approximate electrode locations are depicted in Figure 2. A jeweller’s screw was



SECTION 2.6. LOCAL FIELD POTENTIALS (LFPS) PROCEDURES 44

implanted in the skull over the left frontal cortex and another over the left cerebellum to serve as

reference/ground electrodes in all rats; while two additional screws served to secure the head cap

onto the skull. The electrodes were affixed semi-permanently to the top of the skull by moulding a

head cap out of dental acrylic cement. Experiments did not commence until at least a week after

surgery to allow for recovery.

2.6.2 Local Field Potential (LFP) Recordings

Bench-top experiments were conducted to characterize the TLE model of spontaneous recurrent

seizures in freely moving and behaving rats. Two days prior to the recording session and ~1 week

following surgery, rats were placed in a Plexiglas® cage for 1-2 hours to become accustomed to the

recording environment.

Each electrode was connected to a Grass Electroencephalograph Model 8-10 system (Grass

Instruments Co., Quincy, MA, USA) for EEG recordings. The LFP recording channels were

filtered between 0.03 Hz and 10 kHz (first order bandpass filter). LFP signals were then fed into

the Data Translation D303 analogue-to-digital converter and sampled and stored at 1 kHz using

SciWorks 7 (DataWave Technologies, Loveland, CO, USA). Data acquisition was realized using

custom workflows compiled using SciWorks 7 while analyses was completed using an in-house

Matlab program.

LFPs - Spontaneous Behaviour

LFPs were recorded during two main wake behavioral states: awake immobility (rat holding its

head against gravity), and walking (including periods of walking, body turning and rearing) and;

two main sleep behavioural states: slow wave sleep (SWS) and rapid-eye movement sleep (REMS)

as characterized in Leung (1998). Multiple trials extending ~5 mins were recorded for each of the

four behaviours.



SECTION 2.6. LOCAL FIELD POTENTIALS (LFPS) PROCEDURES 45

LFPs - Odor-Evoked Olfactory Potentials

Experimental testing began after ~1 week recovery period for chronically implanted rats. Rats

were placed in a Plexiglas® cage for ~15 mins before data collection began. To elicit olfactory bulb

and hilar odor-evoked oscillatory potentials, a Q-tip soaked in either toluene, water, or acetic acid

[vapour pressure (at 25°C in mm Hg): 27.7, 24.0, and 15.8 respectively] was presented under the

snout for at least 20 trials while taking care not to startle the rat (Heale et al., 1995). A trial was

rerun if the rat exhibited any jerky movement before arrival of the cotton swab under the snout.

Trials were at least 1 minute apart, and a minimum of 6 trials were performed for each solvent.

The duration of odour presentation was usually 1–2 seconds, and LFPs were recorded for at least 6

seconds preceding and 30 seconds following the presentation while the time of the presentation

was synchronized with the EEG data using a marker field. Further, a dry Q-tip (free of any solvent

or solution) was presented multiple times before data collection began to familiarize the rats with

the testing procedure, and prevented habituation to the test stimulus.

2.6.3 Perfusion & Histology

Following completion of electrophysiological recordings, rats were euthanized by administering a

surgical anaesthetic dose of sodium pentobarbital (60 mg/kg i.p.). The rats were transcardially

perfused with 120 mL saline followed by 120 mL of 4% paraformaldehyde solution. The brain

was extracted from the cranium with the olfactory bulb intact and placed in 4% formaldehyde

solution until ready for sectioning. Brains were frozen and sliced on a freezing sledge microtome

(Leitz 1320) in 60 μm coronal sections. Brain slices were mounted onto slides and later stained

with thionin. They were dehydrated in a series of 70, 95 and 100% ethyl alcohol, cleared in xylene

(5 min, 2×), and cover-slipped with SHUR/Mount™ (TBS) mounting medium. The electrode

placements for LFPs were identified and confirmed using a light microscope, and the amount of

damage was qualitatively assessed (Long et al. 2009).
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2.6.4 Data Analysis & Statistics

LFPs in Olfactory Task

All LFP recordings were visually inspected for artefacts using a custom Matlab (Mathworks,

Natick, MA, USA) program, and only artefact-free datasets were used for further analysis. Each

spectrum was constructed by averaging 6 or more segments of LFP, with each segment being 4096

points, or 4.096 s with 1 kHz sampling (Leung, Lopes da Silva, & Wadman, 1982; Leung, 1985).

Each segment was tapered (10% of segment at each end) by a cosine bell function, and the auto-

and cross-power (coherence and phase spectra) were obtained by Fast Fourier Transform (FFT)

and smoothed across 5 adjacent frequency bins, by an elliptical function. The spectrum was filtered

to remove 60 Hz line noise, and replaced with average of magnitudes from two digital frequency

bins on either side of the 60 Hz peak. Each spectrum had a frequency resolution of 0.24 Hz

(1/4.096 s), and statistically independent values were separated by 5 bins, or 1.22 Hz, nonetheless

with ≥ 200 degrees of freedom. Peak power and coherence values and frequencies were obtained

from the power and coherence spectra between olfactory bulb and other channels [hippocampus

(CA1/DG), or amygdala] before, during, and after odour presentation. The integrated power in

each channel and coherence between any of the channels against olfactory bulb was averaged

between 14-20 Hz, 20-30 Hz, 30-40 Hz, 40-60 Hz, and 60-80 Hz, before, during, and after odour

presentation task. Statistics were conducted on the average of these values using a linear mixed

effects model. Treatment variable (Kainate v. Saline) was modelled as a fixed effect while the

time of presentation (-2s,-1s, 0s, +1s, +2s), multiple trials with the same stimulus (to account for

the unbalanced design, nkainate 6= nsaline), and odour stimulus (water, toluene, kainic acid) were

modelled as random effects. Tukey multiple comparisons were conducted to establish significance.
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LFPs during Spontaneous Behaviours

For spectral analysis of LFPs during different behaviours, each spectrum was constructed by

averaging 6 or more segments of LFP, with each segment being 2048 points, or 2.048 s with 1 kHz

sampling (Leung et al., 1982; Leung, 1985). Auto- and cross-power (coherence and phase spectra)

were obtained using FFT. The spectrum was filtered to remove 60 Hz line noise, and replaced with

average of magnitudes from two digital frequency bins on either side of the 60 Hz peak. One

way ANOVA (treatment as the fixed effect and repeated trials as the random error) followed by

Bonferroni post-hoc tests were conducted to test differences in power and coherence across all 4

behaviours in the two groups.

All statistical testing was accomplished in R Studio (R Studio, 2012) using R (version 3.1.1;

R Core Team, 2014).

2.7 Seizure Observation & Inclusion Criteria

Approximately 2-3 weeks following seizure induction, KA-treated rats were monitored, either

in the lab or animal facility during the afternoons for 1-2 hours every other day, for any signs

of seizure activity. Overnight video monitoring to detect seizures was conducted at 3 weeks.

The observation was continued upto ~4-5 weeks, terminating just before the fMRI scanning

session. This observation period was critical since this allowed identifying the rats that had been

spontaneously seizing following the status epilepticus (SE) episode.

Of the 15 rats that were scanned, 3 rats despite being injected with kainic acid were rather

resistant (Suárez et al., 2012) and did not develop any limbic/convulsive seizures either immediately

after the kainate injection or during the ~1-2 months of observational period. Interestingly, these

3 rats were part of the same batch and were induced the same day.

Due to lack of any observed seizures, the resting state data from these rats was not used in

the group analysis to establish changes in functional connectivity. They were also excluded from
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group analysis of behavioural and electrophysiological data.



Chapter 3

Results

3.1 Functional connectivity of kainate and control rats

Rats were scanned ~4-5 weeks following kainate induction, and recorded at decremental isoflurane

concentrations. However, due to missing and artefactual data, only scans recorded at 1.5% isoflu-

rane concentration were used for subsequent analysis. To visualize the graph theory measures of

functional connectivity (positive and negative correlations), the mean correlation matrix (35×35)

for the 35 seed regions [33 brain regions with 2 zero connectivity controls; Figure 3.1: Correlation

matrix (top)] across all the subjects within each group (nkainate = 6, nsaline = 7) were computed

from their respective time series (> 500 seconds). The correlations were arbitrarily thresholded

[Figure 3.1: Connectivity matrix (bottom)] to generate sparse matrices to aid in the creation of

graph networks, with each ROI serving as the node and each connection serving as the edge in

an undirected (no causality) network. These sparse/binary matrices were used to derive graph

theory measures [Weighted Clustering Coefficient (Cw ), Characteristic Path Length (Lw ), Global

Efficiency (Eglob ), Local Efficiency (Eloc ), and small-world-ness characteristics (γ , λ , σ )] to

reveal differences between the kainate and the control group. Mathematical definitions are detailed

in Appendix B.2.
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No connection

Connection

Figure 3.1: Top: Correlation Matrix The heatmap figure represents the significant intra-group connections in the
kainate (left, P = 0.002, nkainate = 6) and the control (left, P = 0.014, nsaline = 7) group as Pearson’s r correlation
coefficients (-1 < r < 1) in an NBS framework. See Figure A.1 for a Fisher’s r-to-Z normalized version of the
matrix.
Bottom: Connectivity Matrix The binary heatmap represents the significant networks as connected and dis-
connected nodes .
See Table 3.1 and Appendix B.1 for edge/node abbreviations.
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3.1.1 Differences in connectivity

Thenetwork based-statistic (NBS) was used to reveal nodes that were significantly well-represented

(intra-group) within a group [(Kainate – edges: 303, nodes: 26, P = 0.003); (Controls – edges: 217,

nodes: 26, P = 0.009)]. The NBS was further used to determine the network components that were

significantly different between the two groups (inter-group). Compared to saline controls, the

analysis revealed one sub-network comprising of 18 nodes and 36 edges (total possible combination

of nodes = 0.5×33C2 = 264) that was significantly higher within the kainate group (see Figure

3.2, P = 0.016). No nodes and edges corresponded to a reduced connectivity in the kainate group

compared to controls. A significant number of nodes were localized in the medial temporal lobe

regions of the hippocampus; along with other subcortical regions like the nucleus accumbens and

the medial dorsal thalamus. Nodes were also identified in the components of the default mode

network (ACC/Rsp/Aud/PPC) and the somatosensory system (primary/secondary somatosensory

cortex). The specific ROI connections are detailed in the Table 3.1.

These 36 edges can be classified into several intra-system and inter-system connections. Most

of the increased inter-system connections were between the limbic/subcortical system and the

sensorimotor system and the default-mode system , while the intra-system functional connectivity

within the structures of the medial temporal lobe significantly increased. However, none of the

functional connections showed decreased correlations or connectivity in the kainate-group as

compared to controls.

3.1.2 Global parameters of the rat brain functional networks

Statistical tests were performed to detect significant differences in the global parameters (Cw , Lw ,

Eglob , Eloc ) of the functional networks between the two groups. Analysis revealed significantly

higher values of Eglob (W = 40, P < 0.05, with Bonferroni adjustment), Eloc (W = 40, P < 0.02, with

Bonferroni adjustment), Cw (W = 43, P < 0.02, with Bonferroni adjustment) while no changes

were detected in Lw in the functional networks of the kainate-treated rats compared with the
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Figure 3.2: Connectivity Graph (KA > Controls) – The filled rectangles (overlaid with labels) represent the brain
regions and the lines represent a significant supra-threshold connection between the two nodes (brain regions or
seeds/ROIs). The colour scheme represent nodeswith different degrees (Ki ). This sub-networkwas thresholded
at t ≥ 3.00, with P < 0.05. Suffices (-r and -l) indicate right and left hemisphere. See Table 3.1 and Appendix
B.1 for edge/node abbreviations.
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Source Node Target Node Edge/Connection t-stat, p = 0.016
Nucleus Accumbens Core - LH Anterior Cingulate Cortex - LH acbc-l⇀↽acc-l 3.63
Caudate Putamen - LH Anterior Cingulate Cortex - LH cpu-l⇀↽acc-l 3.33
Anterior Cingulate Cortex - LH Primary Somatosensory Cortex - LH acc-l⇀↽sm1-l 3.08
Nucleus Accumbens Core - LH Retrospenial Cortex - LH acbc-l⇀↽rsp-l 3.02
Anterior Cingulate Cortex - LH Mediodorsal Thalamic Nuclei - LH acc-l⇀↽mdt-l 3.46
Primary Somatosensory Cortex - LH Mediodorsal Thalamic Nuclei - LH sm1-l⇀↽mdt-l 3.21
Anterior Cingulate Cortex - LH Hippocampus - LH acc-l⇀↽hc-l 3.07
Anterior Cingulate Cortex - LH Auditory/Temporal Association Cortex - LH acc-l⇀↽aud-l 3.35
Nucleus Accumbens Core - LH Posterior Parietal Cortex - LH acbc-l⇀↽ppc-l 3.24
Caudate Putamen - LH Posterior Parietal Cortex - LH cpu-l⇀↽ppc-l 3.45
Anterior Cingulate Cortex - LH Posterior Parietal Cortex - LH acc-l⇀↽ppc-l 4.38
Mediodorsal Thalamic Nuclei - LH Posterior Parietal Cortex - LH mdt-l⇀↽ppc-l 3.04
Auditory/Temporal Association Cortex - LH Posterior Parietal Cortex - LH aud-l⇀↽ppc-l 4.97
Anterior Cingulate Cortex - LH Nucleus Accumbens Core - RH acc-l⇀↽acbc-r 4.01
Posterior Parietal Cortex - LH Nucleus Accumbens Core - RH ppc-l⇀↽acbc-r 3.22
Anterior Cingulate Cortex - LH Caudate Putamen - RH acc-l⇀↽cpu-r 3.38
Nucleus Accumbens Core - LH Anterior Cingulate Cortex - RH acbc-l⇀↽acc-r 3.42
Caudate Putamen - LH Anterior Cingulate Cortex - RH cpu-l⇀↽acc-r 3.55
Posterior Parietal Cortex - LH Anterior Cingulate Cortex - RH ppc-l⇀↽acc-r 3.02
Nucleus Accumbens Core - RH Anterior Cingulate Cortex - RH acbc-r⇀↽acc-r 3.02
Anterior Cingulate Cortex - LH Primary Somatosensory Cortex - RH acc-l⇀↽sm1-r 3.17
Secondary Somatosensory Cortex - LH Primary Somatosensory Cortex - RH sm2-l⇀↽sm1-r 3.08
Retrospenial Cortex - LH Primary Somatosensory Cortex - RH rsp-l⇀↽sm1-r 3.10
Anterior Cingulate Cortex - LH Mediodorsal Thalamic Nuclei - RH acc-l⇀↽mdt-r 3.14
Anterior Cingulate Cortex - LH Hippocampus - RH acc-l⇀↽hc-r 4.23
Primary Somatosensory Cortex - LH Hippocampus - RH sm1-l⇀↽hc-r 3.06
Retrospenial Cortex - LH Hippocampus - RH rsp-l⇀↽hc-r 3.27
Posterior Parietal Cortex - LH Hippocampus - RH ppc-l⇀↽hc-r 3.14
Anterior Cingulate Cortex - LH Auditory/Temporal Association Cortex - RH acc-l⇀↽aud-r 4.14
Auditory/Temporal Association Cortex - LH Auditory/Temporal Association Cortex - RH aud-l⇀↽aud-r 3.17
Posterior Parietal Cortex - LH Auditory/Temporal Association Cortex - RH ppc-l⇀↽aud-r 4.55
Nucleus Accumbens Core - LH Posterior Parietal Cortex - RH acbc-l⇀↽ppc-r 3.00
Anterior Cingulate Cortex - LH Posterior Parietal Cortex - RH acc-l⇀↽ppc-r 3.76
Auditory/Temporal Association Cortex - LH Posterior Parietal Cortex - RH aud-l⇀↽ppc-r 3.81
Posterior Parietal Cortex - LH Posterior Parietal Cortex - RH ppc-l⇀↽ppc-r 4.18
Auditory/Temporal Association Cortex - RH Posterior Parietal Cortex - RH aud-r⇀↽ppc-r 3.31

Table 3.1: Statistical significant undirected edges of the functional networks – kainate-treated group > controls. See
Figure 3.2 for the graph network representation. Source and target nodes do not imply causality or directional
connecitivity.

controls.

3.1.3 Regional parameters of the rat brain functional networks

Two regional parameters (degree Ki, and betweenness centrality Bi) were considered to reveal

any differences in the functional networks between the two subject groups. Twenty-two brain
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Figure 3.3: Z-correlation scores of edges (undirected connections) that are signficantly altered between the kainate
groups compared to controls are illustrated asmean± SEM. Labels corresponding to each edges (pair of 2 nodes)
is mentioned along the x-axis. See Table 3.1 for edge/node abbreviations. ‘*’ signifies P < 0.02.

structures were identified with a significantly higher degree, Ki(Wilcoxon test with Bonferroni

correction, P < 0.05; see Table 3.2) in the functional network of the kainate-treated rats compared

to controls. Four brain regions exhibited a significant between-group difference in betweenness

centrality, including the Prelimbic cortex (PrL-LH; W = 43, P = 0.012), Caudate Putamen (CPu-LH;

W = 8, P = 0.042), Posterior Parietal cortex (PPC-LH; W = 0, P = 0.0006), and Auditory/Temporal

Association cortex (Aud-RH; W = 5, P = 0.012). The same structures also had significantly different

degrees, Ki, between kainate-treated and control rats.
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Figure 3.4: Global Parameters: Statistical comparison of the global parameters (Cw , Lw , Eglob , Eloc ) of the
functional networks between the kainate-treated group and saline-treated controls. Results are expressed as
mean ± SEM. ‘*’ signifies P < 0.02, and NS – not statistically significant.

3.1.4 Small-worldness of networks in TLE

Small-worldness properties of the functional networks were tested in both the groups, and small-

worldness parameter, γ was found to be 1.16 ± 0.07 (mean ± SEM) for the kainate group and γ =

1.16 ± 0.04 for the controls, indicating that the clustering coefficients were approximately 1.16

times higher than those of a comparable random network (equivalent number of vertices, N and

edges, K, and same degree distribution) for both subject groups. We found λ = 0.98 ± 0.01 for the

kainate-group and λ = 0.95 ± 0.07 for the controls. However, these small-world-ness properties

did not significantly differ between the two groups. These λ values near magnitude 1 suggest

that the path lengths in the two subject groups were approximately equivalent to those of random

networks. The magnitudes of γ and λ were consistent with those reported by Liang et al. (2011) in

awake rats. Our results showed that the functional networks corresponding to the two subject

groups exhibited small-world properties, a finding which is consistent with extant literature on
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ROI # Brain region Mean Ki p-value (P )
1 Prelimbic Cortex - LH 13(4) 0.022
2 Nucleus Accumbens Core - LH 22(13) 0.006
3 Caudate Putamen - LH 21(12) 0.005
4 Anterior Cingulate Cortex - LH 21(7) 0.006
5 Primary Somatosensory Cortex - LH 17(6) 0.013
6 Secondary Somatosensory Cortex - LH 17(7) 0.016
7 Globus Pallidus - LH 16(7) 0.010
8 Mediodorsal Thalamic Nuclei - LH 21(13) 0.009
9 Auditory/Temporal Association Cortex - LH 21(13) 0.010
10 Posterior Parietal Cortex - LH 21(12) 0.040
11 Orbital Frontal Cortex - RH 10(3) 0.030
12 Prelimbic Cortex - RH 10(3) 0.040
13 Nucleus Accumbens Core - RH 22(13) 0.008
14 Caudate Putamen - RH 21(11) 0.002
15 Anterior Cingulate Cortex - RH 21(8) 0.004
16 Primary Somatosensory Cortex - RH 15(5) 0.036
17 Secondary Somatosensory Cortex - RH 16(6) 0.012
18 Globus Pallidus - RH 15(7) 0.020
19 Mediodorsal Thalamic Nuclei - RH 21(14) 0.010
20 Hippocampus - RH 22(13) 0.005
21 Auditory/Temporal Association Cortex - RH 21(14) 0.030
22 Posterior Parietal Cortex - RH 20(11) 0.013

Table 3.2: Regional Parameters: Statistical comparison of the regional parameter (Ki) of the functional networks
between the kainate-treated group and controls. Ki is significantly higher in the kainate group compared to
saline-treated controls. Mean Ki is expressed as Ki, kainate(Ki, control). P is computed for Wilcoxon tests with
W > 40.

human brain functional and anatomical networks (Guye, Bettus, Bartolomei, & Cozzone, 2010;

Hagmann et al., 2008; Liang et al., 2011; Liao et al., 2010).

3.2 Kainate-induced lesion enhanced anesthetic sensi-

tivity to Isoflurane

We explored the anaesthetic sensitivity of isoflurane in kainate-treated rats and saline-treated rats

by implementing a protocol of increasing isoflurane concentrations; starting at 0.375% and ending

at 0.125% above the concentration after LORR (loss of righting reflex) occurred.

LORR was tested at three different times - once before the kainate/saline (to test any prior

differences despite random group assignment), and two times 4 weeks apart after the treatment

(to test effect of time and treatment; see Figure 2.1).
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During Week 3 testing, no rats showed LORR at 0.625% or lower isoflurane concentration.

However, at 0.75% isoflurane, 5 of the 13 kainate-treated rats, but none of the 12 control (sham-

lesioned) rats, showed LORR. At 0.875%, 5/13 kainate-treated rats, and 2/8 control rats showed

LORR. The bar plot (Figure 3.5) indicates a significantly higher isoflurane sensitivity in kainate-

treated rats compared to control. The concentration at which half the rats showed LORR, or

ED50 (LORR), was 0.81% in kainate-treated rats (95% CI, 1.000–1.09%, n = 13) and 0.99% in

control rats (95% CI, 0.89–1.08%, n = 8). The ED50 (LORR) was significantly different between

kainate-treated and saline-treated rats (Wilcoxon test with Bonferroni correction, W = 17, P <

0.001).
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Figure 3.5: Isoflurane concentration (% volume) of loss of righting reflex. Kainate-treated rats have a signifi-
cantly higher isolflurane sensitivity than saline-treated rats. Results are expressed as mean± SEM. ‘*’ signifies
P < 0.001.

During Week 7 testing, no rats showed LORR at 0.625% or lower isoflurane concentration.

However, at 0.75% isoflurane, 8/13 kainate-treated rats, but none of the 12 control (sham-lesioned)

rats, showed LORR. At 0.875%, 4/13 kainate-treated rats, but none of the control rats showed LORR.

The bar plot (Figure 3.5) indicates a significantly higher isoflurane sensitivity in kainate-treated
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rats compared to saline-treated controls. The concentration at which half the rats showed LORR,

or ED50 (LORR), was 0.80% in kainate-treated rats (95% CI, 0.78–0.90%, n = 13) and 1.02% in

saline-treated rats (95% CI, 0.854–1.063%, n = 8). The ED50 (LORR) was significantly different

between kainate-treated and saline-treated rats (Wilcoxon test with Bonferroni correction, W =

23.5, P < 0.03).

No significant interaction of treatment and time was found when comparing the Week 3 and

Week 7 data.

3.3 Kainate did not affect sensorimotor gating

Prepulse inhibition was tested as a proxy for impairment of sensorimotor gating at 2 time points

(Week 3 and Week 7). The kainate group did not significantly differ in the PPI or the startle

amplitude [F(1, 11) = 0.61, NS] compared to saline-treated controls (Figure 3.6). PPI computed

at prepulse intensity of 73 dB [F(1, 11) = 1.10, NS], 75 dB [F(1, 11) = 0.40, NS], 80 dB [F(1, 11)

= 0.31, NS], and integrated prepulse [F(1, 11) = 0.57, NS] did not statistically reveal any sig-

nificant improvement (increase) or impairment (decrease). Moreover, there was no significant

treatment×time interaction between the two groups.

3.4 No behavioural hyperactivity was observed

Open field test was conducted twice, during Week 3 and Week 7, after kainate/saline treatment.

Locomotor activity tested in a freely behaving rat did not significantly differ between the two

groups [F(1, 17) = 0.63, NS]. No significant treatment×time interaction was identified (Figure

3.7).
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Figure 3.6: Prepulse Inhibition at Week 3. PPI did not significantly differ between the kainate-treated and saline-
treated control rats, or across time (Week 3 v. Week 7). Results are expressed as mean ± SEM. NS signifies
not statistically significant.

3.5 Effect of Kainate treatment on LFP coherence of ol-

factory bulb with the limbic system

Because of the extensive hippocampal atrophy, revealed by histological analysis in the epileptic

rats, hippocampal electrodes in 4 of 6 epileptic rats, implanted in accordance with the standard rat

stereotaxic atlas (Paxinos & Watson, 2007), missed the targeted locations.

Based on the limited number of rats, the DG-OB coherence (nkainate = 2, nsaline = 4) or CA1-OB

coherence (nkainate = 2, nsaline = 4), or amygdala-OB coherence (nkainate = 3, nsaline = 2) were not

significantly different between kainate-treated and control rats.
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Figure 3.7: Behavioural hyperactivity. Locomotor activity indicated by counts of interrupted infrared beams in
a horizontal plane within 40 minutes in a chamber did not significantly differ between the kainate-treated and
saline-treated control rats (nkainate = 6, nsaline = 6), or across time (Week 3 v. Week 7). Results are expressed as
mean ± SEM. NS signifies not statistically significant.

3.6 Effect of Kainate treatment on LFP power of olfac-

tory bulb

OB log-power, recorded during the awake immobility state, was not significantly different between

the kainate-group and saline-treated controls [nkainate = 3 (observations = 6), nsaline = 3 (obser-

vations = 6)] in any of the frequency bands: 14-20 Hz [F(1, 4) = 0.60, NS], 20-30 Hz [F(1, 4) =

0.42, NS], 30-40 Hz [F(1, 4) = 0.11, NS], 40-60 Hz [F(1, 4) = 0.62, NS] and 60-80 Hz [F(1, 4) =

0.85, NS].



Chapter 4

Discussion

The primary objective of this thesis was to investigate how the hippocampal functional network

disruptions manifest following a systemic injection of kainic acid in a rat model of TLE, during the

interictal period. We investigated this hippocampal dysfunction using resting-state fMRI within

a graph statistical modelling framework. It has been hypothesized that the intra-hemispheric,

inter-hemispheric resting-state functional networks involving the hippocampus, and resting-state

activity within the medial temporal lobe region will be altered (increased or reduced connectivity)

in this pharmacological model of TLE. In addition to the resting-state connectivity, we also aimed

at establishing behavioural and electrographic correlates of the hippocampal dysfunction. In

behaviour, we hypothesized that locomotor activity would be higher; prepulse inhibition lowered,

and isoflurane sensitivity higher in epileptic rats as compared to saline-injected rats. We tested this

hypothesis using a battery of behavioural tests – open-field test, prepulse inhibition, and LORR test

respectively. For LFP correlates, we tested a functional network involving the hippocampus using

LFP recordings while an olfactory-stimulus (toluene) task is performed, and during spontaneous

behaviours; to test the hypothesis that olfactory LFP would present with disruption of the fast

oscillations (15–20 Hz) between the OB and DG.

61
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4.1 Differences in Functional Connectivity

4.1.1 Increased Connectivity within the Limbic Networks

To reiterate briefly, the regions participating in the medial temporal/limbic networks include the

cortical, subcortical, and bilateral regions of the hippocampus, amygdala, the entorhinal and

temporal neocortices, inferior frontal lobes and the extra-TL components of the medial thalamus

(Spencer, 2002).

Specifically, increased connectivity is observed between the hippocampus and the ACC on

both the right and the left hemisphere. In addition, right hippocampus shows signs of increased

connectivity with left retrosplenial cortex and left primary somatosensory cortex. No direct func-

tional connections were observed between the mediodorsal thalamus (MDL), however, indirect

functional connections were mediated by left ACC to connect both the right and left hippocampus

with their MDL counterparts. ACC projects to the hippocampus via the lateral entorhinal cortex

(Jones & Witter, 2007).

MDL/ACC and HC connectivity with the primary somatosensory cortex is also higher in the

kainate-treated than the control group. Since seizure activity spreads from hippocampus to the

extrapyramidal system and other cortical areas, it may be suggestive of the increased frequency

of motor seizures coupled with a decreased seizure threshold in the status epilepticus (SE) rats.

Moreover, somatosensory auras/hallucinations (Erickson, Clapp, Ford, & Jabbari, 2006), similar to

olfactory auras, are rare manifestations in refractory TLE patients. Wu and Leung (2003) docu-

mented recurrent excitation of CA1 following CA3b stimulation in kainate-treated but not control

rats as an evidence of reverberation of hippocampo-entorhinal activity, suggestive of increased

glutamatergic transmission. This apparent prolonged disinhibition in a kainate model of TLE can

affect widespread behaviour alterations in light of the hippocampal connectivity with other nodes

of the limbic system. Ullal, Fahnestock, and Racine (2005) demonstrated upregulation of GluK1

mRNA and its protein product in the KA-induced systemic SE model, while GluK2 and GluK3
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remained unaffected, at 180 days after the SE. GluK1 has been shown to suppress GABA-mediated

inhibition and GluK2 reduces neuronal excitability (Vincent & Mulle, 2009); taken together, this

illustrates their clear role in facilitating spontaneous seizures occurring months later. An increase

in defensiveness was seen in cats post-partial kindling of the amygdala or ventral hippocampus

(Adamec, 1991). These behavioural changes persisted anywhere from weeks to months, and

correlated with an enhanced transmission of the amygdala-ventromedial hypothalamic pathway.

Although no change in amygdalal connectivity was observed, it is quite relevant in the light of

intimate limbic connectivity. The dynamic progression of morphological and molecular changes

that affect the KAR expression profile seems like an attractive target in investigating the substrates

of epileptogenesis.

4.1.2 Increased Activity within the DMN

We found increased connectivity within the components of theDMN, including the ACC, Rsp, Aud,

PPC, and the hippocampus, in kainate rats as compared to controls. Liao et al. (2010) in a graph

theory study in TLE patients demonstrated results seemingly contrary to ours – not suggesting a

decreased/increased connectivity but rather that the number of DMN components participating

in TLE patients are lower than those in controls. This would be rather difficult to explain since

we tested the connectivity for only a single threshold while Liao et al. (2010) varied threshold

a several hundred times to generate connectivity matrices to reliably arrive at that conclusion.

Retrosplenial cortex has been shown to be one of the hub regions in the anaesthetized rat brain

(Lu et al., 2012). Although our results suggests this hub status does not significantly change across

groups, ACC, on the left and right side, however, emerge as the hub regions not only for the

DMN but for entirety of the network with limited nodes considered. This dynamic change may

reflect a change in functional reorganization following the status epilepticus, in light of the various

reciprocal direct/indirect projections shared with the hypersynchronous/epileptic hippocampus.

In addition, the intercalated (ITC) cells of the amygdala exert GABAergic inhibitory control over

the amygdala, and share strong reciprocal projections with the infralimbic cortex (prefrontal
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cortex; a subcomponent of the DMN) (Quirk & Mueller, 2008). Amygdala or the prefrontal

cortex were not affected by the treatment, serving to validate our results since presence of one

and not the other could be interpreted as spurious connections, to some extent. Corticocortical

connectivity (anterior and posterior DMN) and thalamocortical (MDL and DMN) connectivity is

also upregulated.

Other bilateral components of the DMN that include the posterior parietal cortex (PPC),

and auditory/temporal association cortex (Aud) are significantly more functionally connected

than in the epileptic rats as compared to controls. DMN disruptions have been reported during

the interictal (Liao et al., 2010) as well ictal (Laufs et al., 2007) states with consistent reports of

disconnection with other parts of the brain in TLE patients – citing reduced connection density

as the precipitating factor. The changes in DMN connectivity, taken together, suggest a global

reorganization of functional networks. However, we report increased connectivity within the

DMN components of PPC, Aud, ACC, Rsp and hippocampus. There is no refuting the fact that

in addition to temporal lobe sclerosis, the loss of white matter tracts would occur in the TLE rat

model. However, the reparative mechanisms promote the increase of aberrant connections leading

to re-entrant (mossy fiber sprouting in the DG) and autoassociative (CA3 auto synapses) pathways

and consequently, leading to the increase in the observed functional connectivity. Considering the

extent of the network in the TLE, this effect can be easily propagated to other local and distant

structures. This compensatory increase may be supported by short-term and long term plasticity,

considering the neuroplasticity of the medial temporal lobe structures.

Canals, Beyerlein, Merkle, and Logothetis (2009) reported a greater degree of interhemispheric

connectivity by means of an increase in the BOLD signal and recruitment of limbic and neocortical

circuits following LTP induction within the hippocampus following perforant path stimulation.

They reported significant activations in the perirhinal cortex (PRh), the prefrontal cortex (PFC),

the nucleus accumbens (Acb), and the anterior olfactory nucleus (AON). Parallels can be drawn

between the LTP-induced by means of the electrical stimulation, and the intermittent epileptiform

activity within the hippocampus. KA-treated rats are known to spontaneously seize even months
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after the treatment. Villers, Godaux, and Ris (2012) established that long-lasting LTP can be

induced either by single or repeated stimulations. A single IED originating in the hippocampus

can propagate via monosynaptic pathways, and possibly through polysynaptic pathways, to induce

short-term or long-term plasticity. This phenomena may tend to integrate in time with multiple

IEDs spread across time to induce LTP in various structures which may eventually manifest

as the increase in connectivity that we observed. The efficiency of KARs in the regulation of

neuronal excitability seems to rely on repetitive synaptic activation rather than on single impulses,

indicating that postsynaptic KARs are designed to modulate the temporal integration of excitatory

circuits (Lerma & Marques, 2013). White matter reorganization as a result of axonal sprouting and

neurite growth in spite of the excessive neurodegeneration are completely plausible explanations

supported by the paradoxical increase in the structural connectivity within the medial temporal

lobe (Bonilha et al., 2012). The concept of functional reserve and lateralization are particularly

important in clinical literature. Studies have determined the transfer of visual and memory

functions to the hemisphere contralateral to the lesion, without any surgery (Figueiredo et al.,

2008; Powell et al., 2007). This gives weight to our functional reorganization argument, while the

mechanisms facilitating such changes remains to be understood. Vaudano, Legg, and Glickstein

(1991) suggested that the rat temporal association cortex bridges visual/auditory cortex with the

limbic system via the amygdala and perirhinal cortex. Also, besides the usual sensory afferents

(cortical areas), perirhinal cortex is the limbic afferent to the PPC (Lu et al., 2012). Biagini et al.

(2013) showed that the perirhinal cortex is hyperexcitable in a pilocarpine model of TLE, and is

intimately connected with several limbic structures. This interconnectedness of limbic systems

with the PPC and “Aud” may be critical in relaying the epileptic activity to these cortical structures.

This may eventually provoke molecular changes and morphological rearrangements responsible

for the increase in connectivity observed between these structures.
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4.1.3 Changes in the Dopaminergic Mesolimbic System

In support of our findings, the mesolimbic dopaminergic system has been shown to be sensitized

by kindling (Csernansky, Kerr, Pruthi, & Prosser, 1988) was also inferred to be altered in the kainate

(Ando et al., 2004) TLEmodel. The change observed in the nucleus accumbens (NAC) connectivity

is particularly interesting. The nucleus accumbens manifests a significant degree increase in

KA-treated rats compared to controls. This can be justified since strong projections between the

hippocampus and the nucleus accumbens (Groenewegen, Vermeulen-Van der Zee, te Kortschot,

& Witter, 1987; Groenewegen & Trimble, 2007) have been shown to increase the dopaminergic

receptors in a hippocampal kindling model (Csernansky et al., 1988). This density increase in

the KA model – systemic administration can be regarded as a non-specific pharmacological

model of kindling – may spawn increased connectivity with regions it has connections with. In

addition, medium spiny GABAergic neurons in the nucleus accumbens can achieve the same

dysfunction through LTD as is achieved with LTP in the glutamatergic system. Therefore, an

excitation/imbalance may cause the network dysregulation associated with mesolimbic dopamine

system. The nucleus accumbens also projects to the medial part of the globus pallidus, but this

connection seems to affect no group-level change. Contrary to our findings, reduced connectivity

between the DMN and the dopaminergic mesolimbic network has been reported in TLE patients

(Pittau, Grova, Moeller, Dubeau, & Gotman, 2012).

ACC and caudate nucleus are anatomically connected and are key recipients of dopaminergic

projections from the ventral tegmental area (VTA) (Fallon, 1981; Groenewegen & Trimble, 2007).

The observation that the ACC and CPu are connected significantly can be explained in the context

of the hippocampal-VTA functional loop disruption. This DA-ergically mediated functional

loop affecting the long-term potentiation in the hippocampus has been suggested to be critical

component of the brain’s memory system (Lisman & Grace, 2005); and an apparent dysfunction of

this connection may be responsible for the observed upregulation. Lee, Hunsaker, and Kesner

(2005) cited the hippocampus as the center of novelty detection; with the CA1 subfield as the
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putative locus and serving as the “comparator” that computes novelty (Lisman & Grace, 2005).

Since the hippocampal circuit is compromised in KA model of TLE, this can induce changes in

the dopaminergic circuitry through the subiculum–accumbens projection that participates in the

hippocampal-VTA loop. This possible dopaminergic dysfunction can account for an increased

activity between the CPu and ACC. VTA also sends dopaminergic projections to the hippocampus,

the NAC and prefrontal cortex (PFC); and its kindling results in schizophrenia-like behavioural

changes (Glenthøj, Mogensen, Laursen, Holm, & Hemmingsen, 1993). Ma and Leung (2010)

demonstrated that postictal hyperactivity and gamma oscillatory activity after prelimbic cortical

kindling is mediated by the PrL-NAC connection via the hippocampus; and may help explain the

increased NAC activity in the KA model of TLE. Furthermore, Chergui et al. (2000) demonstrated

that exogenous KAR activation can depress the GABAergically mediated synaptic transmission in

the CPu. Even though GluK4 receptors are expressed in the cingulate cortex, there is no evidence

of KAR upregulation in the ACC. The associated functional and anatomical loop, however, may be

responsible for the chronic disruption in the excitatory/inhibitory neurotransmission.

4.1.4 Change in Graph Metrics

In considering the global network alterations, it is important to consider how the graph topology

and related graphmetrics change in human subjects. These graph topological properties tomeasure

the integration, segregation and centrality were significantly altered in epileptic rats compared

to controls. Liang et al. (2011) demonstrated small worldness characterized by high clustering

coefficient and a low characteristic path length, the configuration optimizing information transfer

at low wiring cost, in awake rat brains. Both metrics are suggestive of the high information

segregation and integration in the brain networks. Our graph metrics illustrate the same, in the

rat brain, with the network being more connected or cliquish than the random network.

In terms of global parameters, we found significantly highermagnitudes of clustering coefficient

(Cw ), global efficiency (Eglob ), and local efficiency (Eloc ) in epileptic rats compared to controls.

High Cw implies relatively high local connectedness of brain regions with metrics far from that of
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a random network. The path length was quite similar and short in the two groups. The shorter

absolute path lengths have been shown to promote effective interactions across cortical centres

of processing; also indicating faster information transfer between inter-connected regions. The

higher activity within the medial temporal lobe regions seems to corroborate our finding.

In a human study (Liao et al., 2010), the authors found that the values for Cw were significantly

lower, while no significant change in Lw was observed in the TLE patients compared to controls.

It is hard to reconcile the differences between the human and animal functional connectivity

literature. It is possible that the KA systemic administration, as opposed to localized to hippocam-

pus/amygdala, has far reaching consequences that modulate the network properties differently in

rats, as compared to the unknown etiology in human TLE.

Global and local efficiency were significantly higher in the epileptic rats compared to controls.

The global increase is especially obvious considering the increased interconnectivity of the DMN

substructures (anterior and posterior DMN). Even though the MDL is anatomically connected to

the ACC, it is functionally excluded from the DMN (Lu et al., 2012). MDL acts as the interface

between the limbic structures and the neocortex, and due to its connectivity with the limbic

structures acts as a major synchronizer of seizure activity. Thus, this compromised structure might

be responsible for induced potentiation in the neocortex, which results in the observed increased

functional connectivity of the limbic system with the DMN. The local efficiency can be attributed

to the increased connectivity within the limbic network. In a computational study investigating

DG epileptogenesis, Dyhrfjeld-Johnsen et al. (2007) found both local and long range connections,

in support of our increased clustering coefficient, and small world findings for local computations

and efficient global relay.

Similar to a study in TLE patients (Bonilha et al., 2012), we report in epileptic rats a global

reorganisation of the DMN and local/global reorganisation of the limbic circuitry. The KA model

of TLE is associated with regional loss of connections in the hippocampus. However, rsfMRI spatial

resolution limits detection of changes within the hippocampus, i.e, between the CA1, CA3, DG, etc.

Hippocampus, taken as a whole, is associated with higher clustering coefficient and consequently,
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a higher influence of specific nodes over the network, as demonstrated by the higher efficiency,

clustering and degree of various hubs in addition to the hippocampus. The global efficiency of the

network was also significantly higher. Bonilha et al. (2012) also suggested that the global increase

in clustering coefficient may indicate a higher fraction of reentrant to original connections (esp.

axonal sprouting in DG) that do not alter the ability of the whole network to transfer information

with high fidelity. Recent and past literature would suggest that the core of network alterations in

this TLE model are restricted to the medial temporal regions; however, we reported additional

alterations of the DMN.

4.2 Behavioural Alterations in KA Model of TLE

4.2.1 Increased Isoflurane Sensitivity in Epileptic Rats

Kainate-treated rats exhibited a higher sensitivity to the isoflurane anaesthesia, compared to

controls. Multiple brain areas that included wake-active neurons and the limbic system are known

to affect sensitivity to general anaesthesia (Leung, Luo, Ma, & Herrick, 2014). In particular,

inactivation of the hippocampus (Ma, Shen, Stewart, Herrick, & Leung, 2002) and inactivation

(Ma et al., 2002) or lesion of the medial septum (Leung et al., 2013; Tai et al., 2014) increased

sensitivity to isoflurane anaesthesia. Thus, isoflurane sensitivity in kainate-treated rats may be

the consequence of lesions in the hippocampus and limbic areas. The decrease in anaesthetic

sensitivity was found despite an inferred increase in resting state functional connectivity within

the limbic system and DMN. A similar increase in anaesthetic sensitivity has been observed in a

pilocarpine model of TLE (Long et al., 2009). Also, septal cholinergic system has been shown to

mediate and regulate the effects of anaesthesia on arousal systems (Leung et al., 2013; Tai et al.,

2014). Evidentally, septal GABAergic system is prone to KA-damage and is closely related to the

former system (Lévesque & Avoli, 2013).
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4.2.2 PPIDeficitsandHyperlocomotionarenotobserved inEpilep-

tic Rats

The two measures of schizophrenia-like symptoms in rats, PPI deficit and hyperlocomotion, were

not different between epileptic and control rats in the present study. Increase in hippocampal or

prefrontal glutamatergic inputs to the nucleus accumbens may be expected to enhance dopamine

release from VTA terminals in the nucleus accumbens (Mogenson et al., 1993), and mediate

locomotion increase and deficit in PPI (Swerdlow et al., 2001). Kindling of the hippocampus or

prefrontal cortex, to a stage without behavioural convulsions, resulted in PPI deficit for up to

2 weeks after hippocampal kindling (Ma and Leung, 2004), and 3 days after prefrontal cortex

kindling (Ma et al., 2010). PPI deficit was also observed immediately after a stage 5 amygdala

seizure Koch and Ebert (1998), and after a non-convulsive hippocampal seizure (Ma et al., 2004).

Our results were consistent with Koch and Ebert (1998), where the KA-treated rats tended to have

a non-trivial increase in startle amplitude but no significant change under prepulse exposure.

Nucleus accumbens acts as the interface between the limbic and the motor systems (Groe-

newegen & Trimble, 2007; Mogenson, Jones, & Yim, 1980). In a previous study, Ando et al. (2004)

reported higher locomotor activity induced by methamphetamine in kainate-treated as compared

to control rats. Hyperlocomotion is considered a schizophrenia-like behavior that can be induced

by a single or repeated seizures (Leung, Ma, & McLachlan, 2000), dopamine release in the nucleus

accumbens after hippocampal or temporal lobe seizure. However, spontaneous locomotor activity

in our study did not differ between epileptic and control rats, suggesting the baseline hippocampal

and accumbens dopaminergic activity are not inducing hyperlocomotion.
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4.3 Electrographic Characterizationof theKAModel of

TLE

4.3.1 No Significant Change in Olfactory Bulb Power

We observed no change in power in the olfactory bulb in any of the 5 frequency bands investigated

during the awake immobile state, in the epileptic rats compared to controls, most likely on account

of very limited data points. The odour-evoked beta oscillations in the range ~14–30 Hz are thought

to be responsible for odor learning while high power in the olfactory gamma oscillations (~40–100

Hz) have been implicated in the optimal discrimination of closely related odorants (Kay et al.,

2009). This finding, however, is not consistent with loss of OB volume in kainate-treated rats

(Davila, Houpt, & Trombley, 2007; Lévesque & Avoli, 2013). Also, the loss of neurons can not

be confirmed due to lack of immunohistochemical staining. The olfactory function deficit was

not empirically determined through additional experiments. Nonetheless, such olfactory deficits

correlated with reduction in OB volume have been reported in TLE patients (Hummel et al., 2013).

However, further research is warranted in regards to olfactory neuropathology and concomitant

dysfunction to better characterize this comorbidity in the KA model of TLE.

An attempt was made to obtain depth recordings from the hippocampus. However, due

to extensive hippocampal atrophy (revealed by histological analysis) in the epileptic rats, the

electrodes that were implanted according to the standard rat stereotaxic atlas (Paxinos & Watson,

2007)missed the targeted locations. Hence, we could notmake any conclusions and interpretations

concerning the OB-DG coherence levels following toluene stimulus in the epileptic rats.
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4.4 Disparity with Human Literature

We reported results in our study that both support and apparently contradict the human literature.

No study, to the best of our knowledge, has explored resting-state network disruptions in the

KA model of TLE. Besides, there is a paucity of research investigating pathological small-world

networks in small animals. In the same vein, the TLE models do not precisely replicate the human

symptomatology and neuropathology, but have enough similarities to allow appropriate questions

that may lend insight into the human condition, and thus, should be viewed as such.

There are potential pitfalls in drawing parallels between the TLE models and patients. Etiology

of human TLE is quite different from KA-treated epileptic rats, and most TLE patients, thus, do not

arise from a status epilepticus. TLE patients have large variability, but they do not uniformly have

the pathology in EC, CA3, piriform cortex, unlike KA-treated rats. However, this may account for a

lot of variability observed in the TLE patient population. This disparity could result from a number

of reasons. Firstly, the seizure focus can either be in the hippocampus, amygdala, entorhinal or

the perirhinal cortex in the TLE patients. In contrast, in the systemic administration of KA, the

focus mostly lies in the hippocampus (Lévesque & Avoli, 2013). Secondly, the human results can

easily be confounded due to a number of factors that include: (i) the cerebral functional reserve in

unilateral (more common in humans) TLE (bilateral onset in rats), (ii) age, (iii) gender, (iv) drug

load and drug interactions (rats not treated with AEDs), (v) etiology of and duration of disease

state, and (vi) initial injury cause and site.

4.5 Study Limitations

Firstly, the coarse resolution of 800×800 μm2 (400×400 μm2 before spatial smoothing) with 1

mm slice thickness considerably limits our ability to differentiate between small yet distinct brain

structures close together. Second, no causality or effective connectivity could be determined since

we used undirected networks. Third, although the resting state networks have been discovered in
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rodents under anaesthesia, a certain degree of biasmay be introduced in the results; since isoflurane

has been known to affect neurovascular coupling. Fourth, we manually defined seed regions in

each of the rats. Since this manual node definition is prone to human error, an ICA-optimized

approach – that recognizes the spatiotemporal activations inherent in the data to define seed

regions – may be a good choice. Still, to avoid averaging signals from 2 distinct brain regions, it

was made sure that they were at least 2 voxels (1×FWHM or 0.8 mm) apart. Lastly, a surface coil

placed atop the rat head/skull was used to record the BOLD contrast. This surface coil, however,

does not capture the BOLD signals from deeper subcortical with high fidelity. Volumetric coil,

with a higher curvature and better contrast-to-noise ratio (CNR), can help improve the BOLD

signal. However, the volumetric coil was not available to use until after half way through the study;

and will be used in future studies.

4.6 Conclusion

In conclusion, we have demonstrated that the KA model of TLE, far from a perfect model, is adept

at replicating several features of the TLE neuropathology that has been increasingly complex at

defining and diagnosing. We found increase in functional connectivity within the medial temporal

regions and the limbic network. In addition, the anterior and posterior DMN share a better

connection. Furthermore, our results suggest that the increased clustering coefficient, short path

length and higher level of global and local efficiency along with the small world properties, are

altered in this disorder. The network-level interaction of three main neurotransmission systems –

glutamate, dopamine, and GABA – is unequivocally themost crucial one in teasing apart the effects

of diverse symptomatology of TLE disorder. How KARs affect various actions under conditions of

physiological activation (canonical and noncanonical) and its behavioural consequences is still an

enigma, and naturally, an area of active research (see Figure 1.4). A better understanding of KAR

physiology would go a long way in interpreting the network effects of TLE.

Our understanding of the brain structure, function, and network-level pathology has grown
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leaps and bounds from the small animal investigations using neuroimaging techniques. The present

study systematically investigated the resting-state functional networks in the anaesthetized rat

brain. TLE has progressed in its definition from being a focal pathology to a network disorder. This

has led to shifting of the focus away from the hippocampus and to the limbic network. Resolving

the temporal character of these neuroplastic processes may be key in defining a more suitable and

effective methodology for treatment of TLE. Although this still requires a significant amount of

resting-state research in the animal models of epilepsy, we suggest that the alterations observed

in the functional connectivity and network topological properties could be potentially used as

tentative biomarkers of TLE in the near future.
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Appendix A

GraphTheory Analysis

A.1 Mathematical Notation
1. Edge,

eij =

{
1 if |tij| > T;
0 otherwise.

Edge, eij is the connection status between i and j: eij = 1 when link (i, j) exists (when i and j are neighbors);
eij = 0 otherwise (eii = 0 for all i).
N is the set of all nodes in the network, and n is the number of nodes. L is the set of all links in the network,
and l is number of links. (i, j) is a link between nodes i and j, (i, j ∈N).

2. Degree of a Node,

Ki = ∑
j∈N

eij

Degree – number of links connected to a node. eij is the connection status between i and j.

3. Shortest Path Length,

dij = ∑
auv∈gi↔j

auv

A basis for measuring integration.

4. Number of triangles,

ti =
1
2 ∑

j,h∈N
aijaihajh

A basis for measuring segregation.

5. Clustering Coefficient,

C = C
1
n ∑

i∈N
Ci =

1
n ∑

i∈N

2ti

ki(ki−1)
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where Ci is the clustering coefficient of node i (Ci = 0 for ki < 2).

6. Local Efficiency,

Eloc =
1
n ∑

i∈N
Eloc,i =

1
n ∑

i∈N

∑j,h∈N,j 6=i aijaih[djh(Ni)]
−1

ki(ki − 1)

where Eloc,i is the local efficiency of node i, and djh (Ni) is the length of the shortest path between j and h that
contains only neighbours of i.

7. Betweenness Centrality,

bi =
1

(n − 1)(n − 2) ∑
h,j∈N

h 6=j,h 6=i,j 6=i,

ρhj(i)
ρhj

where ρhj is the number of shortest paths between h and j, and ρhj(i) is the number of shortest paths between
h and j that pass through i.

8. Characteristic Path Length,

L =
1
n ∑

i∈N
Li =

1
n ∑

i∈N

∑j∈N,j 6=i dij

n − 1

where Li is the average distance between node i and all other nodes.

9. Global Efficiency,

E =
1
n ∑

i∈N
Ei =

1
n ∑

i∈N

∑j∈N,j 6=i(1/dij)

n − 1

where Ei is the efficiency of node i.

10. Measure of network small-worldness,

σ =
C/Crand
L/Lrand

where C and Crand are the clustering coefficients, and L and Lrand are the characteristic path lengths of the
respective tested network and a random network. Small-world networks often have σ� 1.

Graph theoretical measures and notations adapted from Rubinov and Sporns (2010)
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A.2 Fisher’s r-to-Z Normalized Map
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Figure A.1: CorrelationMatrix The heatmap figure represents the significant intra-group connections in the kainate
(left, P = 0.002, nkainate = 6) and the control (left, P = 0.014, nsaline = 7) group as Fisher’s normalized correlations
(-1 < Z < 2) in an NBS framework.



Appendix B

Node Definitions

B.1 Resting-state fMRI
ROI # Node Abbreviation Substructures (see Paxinos &Watson, 2007,

rat brain atlas)
1 Orbital Frontal Cortex - LH ofc-l LO, VO
2 Prelimbic Cortex - LH prl-l PrL
3 Nucleus Accumbens Shell - LH acbc-l AcbC
4 Nucleus Accumbens Core - LH acbsh-l AcbSh
5 Caudate Putamen - LH cpu-l CPu
6 Anterior Cingulate Cortex - LH acc-l Cg1, Cg2
7 Primary Somatosensory Cortex - LH sm1-l S1BF
8 Secondary Somatosensory Cortex - LH sm2-l S2
9 Globus Pallidus - LH gp-l GP
10 Piriform Cortex - LH pir-l Pir
11 Retrospenial Cortex - LH rsp-l RSD, RSGc
12 Mediodorsal Thalamic Nuclei - LH mdt-l MDL, MDM
13 Amygdala - LH amy-l BLA, BLP
14 Hippocampus - LH hc-l CA1, CA3
15 Auditory/Temporal Association Cortex - LH aud-l Au1, AuD, AuV, TeA
16 Posterior Parietal Cortex - LH ppc-l PtPD, PtPR
17 Medial Septum ms MS
18 Orbital Frontal Cortex - RH ofc-r LO, VO
19 Prelimbic Cortex - RH prl-r PrL
20 Nucleus Accumbens Shell - RH acbc-r AcbC
21 Nucleus Accumbens Core - RH acbsh-r AcbSh
22 Caudate Putamen - RH cpu-r CP
23 Anterior Cingulate Cortex - RH acc-r Cg1, Cg2
24 Primary Somatosensory Cortex - RH sm1-r S1BF
25 Secondary Somatosensory Cortex - RH sm2-r S2
26 Globus Pallidus - RH gp-r GP
27 Piriform Cortex - RH pir-r Pir
28 Retrospenial Cortex - RH rsp-r RSD, RSGc
29 Mediodorsal Thalamic Nuclei - RH mdt-r MDL, MDM
30 Amygdala - RH amy-r BLA, BLP
31 Hippocampus - RH hc-r CA1, CA3
32 Auditory/Temporal Association Cortex - RH aud-r Au1, AuD, AuV, TeA
33 Posterior Parietal Cortex - RH ppc-r PtPD, PtPR
34 Cerebrospinal Fluid (Ventricles) - 1 csf1 choroid plexus (chp, cerebrospinal fluid)
35 Cerebrospinal Fluid (Ventricles) - 2 csf2 choroid plexus (chp, cerebrospinal fluid)
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B.2 Electrophysiology

Figure B.1: CA1 radiatum, CA1 oriens, and DG hilus

Figure B.2: Frontal neocortex

Approximate electrode locations. Images reproduced from Paxinos and Watson (2007)



SECTION B.2. ELECTROPHYSIOLOGY 96

Figure B.3: Olfactory bulb (Glomerular layer)

Figure B.4: Basolateral amygdala

Approximate electrode locations. Images reproduced from Paxinos and Watson (2007)



Appendix C

Supplementary Data

C.1 EPI & Anatomical Images

Figure C.1: The spatial activation map overlaid onto the anatomical T2 image of a representative rat. The
spatial map was computed using the temporally filtered data using a seed (arbitrarily chosen, indicated by the
green crosshairs) in the left neocortex, with the aid of InstaCorr tool included with the AFNI package. Right to
left indicates anterior to posterior extent of the rat brain. Pearson’s correlation coefficient, r = 0.86.

Figure C.2: The spatial activation map overlaid onto the anatomical T2 image of a representative rat. The
spatial map was computed using the temporally filtered data using a seed (arbitrarily chosen, indicated by the
green crosshairs) in the right neocortex, with the aid of InstaCorr tool included with the AFNI package. Right to
left indicates anterior to posterior extent of the rat brain. Pearson’s correlation coefficient, r = 0.86.

Figure C.3: The EPI image of a representative rat The EPI slices serves to indicate the presence of a signal
gradient that is most likely responsible for weaker signal recorded from deeper brain structures using linear coil.
Right to left indicates anterior to posterior extent of the rat brain.
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C.2 EPI Spectrum

Figure C.4: Unfiltered spectrum: The EPI data with no spatial smoothing or preprocessing except skull stripping.

Figure C.5: Unfiltered spectrum: The power spectrum post-spatial smoothing, FWHMxy = 0.8×0.8 mm2.

Figure C.6: Bandpss filtered spectrum: Temporal bandpass (0.01–0.1 Hz) filtering was achieved using an
eighth-order Chebyshev Type-I filter. The dataset was spatially smoothed (FWHMxy = 0.8×0.8 mm2) before
subjecting the data to temporal filtering.
Relative scale: unfiltered power = ~100×bandpass power.
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Documentation of Ethics Approval

 
2007-085-10::6: 

AUP Number: 2007-085-10 
AUP Title: fMRI and Neurophysiology During Seizure and Theta Rhythm  
 
 
 
Yearly Renewal Date: 04/01/2014 
The YEARLY RENEWAL to Animal Use Protocol (AUP) 2007-085-10 has been approved, and will 
be approved for one year following the above review date. 
 
 

1. This AUP number must be indicated when ordering animals for this project. 
2. Animals for other projects may not be ordered under this AUP number. 
3. Purchases of animals other than through this system must be cleared through the ACVS 

office. 
4. Health certificates will be required. 

 
 
REQUIREMENTS/COMMENTS 
Please ensure that individual(s) performing procedures on live animals, as described in this protocol, 
are familiar with the contents of this document. 
 
The holder of this Animal Use Protocol is responsible to ensure that all associated safety 
components (biosafety, radiation safety, general laboratory safety) comply with institutional 
safety standards and have received all necessary approvals. Please consult directly with your 
institutional safety officers. 
 
 
Submitted by: Kinchlea, Will D  
on behalf of the Animal Use Subcommittee 
 
 

 
The University of Western Ontario 

Animal Use Subcommittee / University Council on Animal Care 
Health Sciences Centre ▲ London, Ontario ▲ Canada N6A 5C1 

PH: 519-661-2111 ext. 86770 ▲ http://www.uwo.ca/animal 
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