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Abstract 

The effect of non-Fourier heat transfer and partial-slip boundary conditions in Rayleigh-

Bénard are analyzed theoretically. Non-Fourier fluids possess a relaxation time that reflects 

the delay in the response of the heat flux to a change in the temperature gradient while the 

partial slip boundary condition assumes that the fluid velocity and temperature are not equal 

to that of the wall. Both non-Fourier and partial-slip effects become important when small-

scale heat transfer applications are investigated such as convection around micro- and nano-

devices as suggested by the extended heat transport equations from kinetic theory. Other 

applications are also known to exhibit one or both of these effects such as low-temperature 

liquids, nanofluids, granular flows, rarefied gases and polymer flows. Small scale effects are 

measured by the Knudsen number. From this, non-Fourier effects can be estimated, measured 

non-dimensionally by the Cattaneo number and modelled using the frame indifferent 

Cattaneo-Vernotte equation which is derived from Oldroyd’s upper-convected derivative. 

Linear stability of non-Fourier fluids shows that the neutral stability curve possesses a 

stationary Fourier branch and an oscillatory branch intersecting at some wave number, where 

for small relaxation time, no change in stability is expected from that of a Fourier fluid. As 

the relaxation time increases to a critical value, both stationary and oscillatory convection 

become equally probable. Past this value, oscillatory instability is expected to occur at a 

smaller Rayleigh number and larger wave number than for a Fourier fluid. Non-linear 

analysis of weakly non-Fourier fluids shows that near the onset of convection, the convective 

roll intensity is stronger than for a Fourier fluid. The bifurcation to convection changes from 

subcritical to supercritical as the Cattaneo number increases and the instability of the 

convection state for a non-Fourier fluid is shown to occur via a Hopf bifurcation at lower 

Rayleigh number and higher Nusselt number than for a Fourier fluid. When hydrodynamic 

slip and temperature jump boundary conditions are considered, a significant reduction in the 

minimum critical Rayleigh number and corresponding wave number are found. Depending 

on the sign used for second-order coefficients, critical conditions can be greater than or less 

than that for first-order boundary conditions. 
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Chapter 1  

1 Introduction 

1.1 Objective 

The main objective of this thesis is to investigate thermal convection in fluids in a small 

gap, particularly in a Rayleigh-Bénard configuration. As the gap size decreases, both 

non-Fourier heat transfer and partial slip boundary conditions are expected to be 

important. The main questions to be answered are how the onset of convection and the 

critical wave number will be affected by the small length scale. The properties of the 

steady state convective flow for a fluid with non-Fourier character will also be explored. 

Emphasis will be put on the deviation of the flow properties and heat transfer from that of 

a fluid that possesses Fourier heat transfer.  

1.2 Heat Transport 

The interaction between energy and matter is a complex area of study, having an effect 

on all aspects of day-to-day life, nature and engineering applications. Energy can take 

many different forms including thermal, kinetic, potential, and chemical, to name only a 

few. Thermal energy is one of the most interesting types of energy, especially to 

mechanical engineers. Thermal energy from the sun drives our weather systems and is 

part of the by-product of nearly every invention man has created. Thermal energy can be 

detrimental to functionality if not removed properly and thus the topic of its transport is 

studied vigorously. 

The most basic method of heat transport is conduction.  Pure conduction (diffusion) 

results in a medium with no bulk motion. Here, the microscopic collisions of particles 

due to a temperature gradient transfer energy from more energetic particles, to less 

energetic particles [1], [2]. Translational, internal rotational and vibrational motions are 

all related to the measure of energy of a given particle. High energy particles are 

associated with high temperatures and as a result, energy is always transferred from hot 
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to cold. Heat transfer via conduction is typically described by Fourier’s law, which is 

given by 

K T  Q .          (1.2.1) 

Here, Q is the heat flux, K is the thermal conductivity of the medium, and T is the 

temperature. Conduction is the primary method of heat transport within solids where the 

net motion of the particles within the medium is zero. 

Thermal energy can also be transported due to the bulk motion of the medium. When this 

method of energy transport is considered exclusive of the microscopic collisions of the 

particles, it is known as advection. Advection is only theoretically possible within a fluid 

medium since these microscopic collisions will always occur. Thus, researchers are 

primarily interested in the combination of conduction and advection, known as 

convection. In the presence of a velocity field, the equation for the conservation of energy 

is 

 p tc T T    V Q ,        (1.2.2) 

where ρ is the density, cp is the specific heat at constant pressure, V is the velocity vector 

and a subscript t denotes a partial differentiation with time. The second term on the left 

hand side is the advection term, and the right hand side describes pure conduction when 

Eq. (1.2.1) is substituted for Q. As a result of the particles ability to travel more freely, 

convection heat transfer is commonly explored in fluids. The applications here are 

endless, for example cooling of mechanical and electrical devices, the human body, 

weather systems, ocean currents and more. 

Finally, heat transfer can also occur via radiation. Radiation is special in that it needs no 

material medium in order to transport energy since it uses electromagnetic waves, or 

photons [1].The Stefan-Boltzmann law describes the radiation emitted from a surface, 

given by Eq. (1.2.3), 

4
R sq T   ,          (1.2.3) 
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where ε is the emissivity of the medium, σR is the Stefan-Boltzmann constant (5.67×10-8), 

and Ts is  the absolute temperature of the surface. All objects above absolute zero transfer 

heat to their surroundings through radiation and also absorb thermal energy due to 

thermal radiation from other bodies. Consequently, radiation is technically a part of every 

heat transfer problem, however its effects may be negligible and are often ignored unless 

temperature differences are high [3]. 

1.3 Rayleigh-Bénard Convection 

Convection heat transfer exists in two forms: forced and natural. Forced convection exists 

when an external force such as a pump drives fluid flow. Natural convection is a 

buoyancy-driven phenomena caused by density variations induced by a temperature 

gradient. Natural convection is convenient to study due to its theoretical and experimental 

simplicity [4], as well its importance in everyday natural phenomena [5]. The most 

common natural convection configuration is known as Rayleigh-Bénard, shown in Fig. 

1.1. 

 

Figure 1.1 – 2D Rayleigh-Benard convection diagram showing the roll pattern 

formed after the loss of stability of the conduction state. Image from [6]. 

This configuration is defined by a thin layer of fluid confined between two infinite 

horizontal plates maintained at fixed temperatures where the lower plate is maintained at 

a temperature difference δT higher than the upper plate. If δT is low enough, viscous 

effects keep the fluid layer motionless despite the fact that the lower fluid layers are 

lighter due to gravity and thermal expansion. This is defined as the steady conduction 

state and a linear temperature profile develops between the upper and lower boundaries. 

As the temperature difference between the plates increases through a critical limit, the 

buoyancy effects overcome the viscous effects and some form of convection sets in.  
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The equations governing Rayleigh-Bénard convection of a two dimensional 

incompressible fluid in the x,z-plane are the equations of continuity and Navier-Stokes, 

respectively given by 

0V  ,          (1.3.1) 

 t ˆP gV V V z V       ,       (1.3.2) 

along with the energy equation and Fourier’s law given by Eqs. (1.2.1-1.2.2). Here, P is 

the pressure, g is the acceleration due to gravity, ẑ  is a unit vector in the vertical direction 

and μ is the dynamic viscosity. The Navier-Stokes equation assumes that the fluid 

stresses are Newtonian in nature, where the viscous stresses vary linearly with the rate of 

strain [7]. 

As previously stated, variations in density drive the convective flow. This is generally 

modeled by the Boussinesq approximation, which states that the temperature induced 

density variations are negligible everywhere in the conservations equations except in the 

buoyancy term in the Navier-Stokes equation [8]. 

To study this form of convection, boundary conditions are required on the upper and 

lower surfaces. Mathematically, free-free boundary conditions can be used on the 

velocity, where the normal derivative of the tangential fluid velocity is zero, physically 

corresponding to zero shear stress at the fluid-solid interface. Although this is the least 

physical boundary condition, free-free conditions are mathematically convenient and no 

qualitative change in behaviour is expected if one set of boundary conditions is used over 

another [5]. Practically, no-slip boundary conditions are used, where the fluid velocity at 

the fluid-solid interface is equal to that of the solid surface. The same boundary condition 

is generally used for the temperature, where the temperature of the fluid immediately in 

contact with the boundary is assumed to be the same temperature as the boundary. 

The simplest model of Rayleigh-Bénard convection is the Lorenz model [9]. Using 

stress-free boundary conditions and the Boussinesq approximation, Lorenz solved Eqs. 

(1.2.1-1.2.2) and Eqs. (1.3.1-1.3.2) by using a truncated Fourier series to represent the 
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velocity and temperature fields. A minimum of one Fourier mode was kept related to the 

velocity, along with two modes for the temperature in order to preserve non-linearities. 

After a Galerkin projection to eliminate the dependence of x and z, the resulting system is 

 t

t
cF

t

X Pr X RaY

X
Y XZ Y

Ra

Z XY bZ

  

   

 

        (1.3.3) 

where the non-dimensional Rayleigh number and Prandtl number are 

3
TTg D

Ra
 




 and 

Pr





, respectively. b is a strictly positive scaling coefficient, RacF is the critical 

Rayleigh number for the loss of stability of the steady conduction state, and X, Y and Z 

are the Fourier modes related to the velocity and temperature. In the Rayleigh number, ν 

= μ / ρ is the kinematic viscosity and αT is the thermal expansion coefficient. This system 

of ordinary differential equations is a simplified model for atmospheric convection. It 

also possesses chaotic solutions, which under the right conditions, produces the Lorenz 

attractor, otherwise known as the butterfly effect. 

As with any mathematical model, assumptions are made that are normally highly 

accurate. Two assumptions that are commonly made, which we will seek to implement 

more accurately, are Fourier’s law and the no-slip boundary condition on the velocity and 

temperature. 

1.4 Fourier vs non-Fourier behaviour 

When Fourier’s law is combined with the conservation of energy equation Eq. (1.2.2) for 

zero flow, the diffusion equation 

2

2

T T

t x

 
 

 
          (1.4.1) 

is generated where κ = K/ρcp is the thermal diffusivity. Eq. (1.4.1) may be cast into non-

dimensional form by scaling length, time and temperature by L, L2/κ, and T0, 
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respectively, where T0 is a reference temperature. The resulting non-dimensional 

equation is 

2

2

T T

t x

 


 
.          (1.4.2) 

In order to illustrate the properties of Fourier heat conduction, consider a rod of length    

L = 1 subject to the following conditions:  

 

 

   

 

T 0, t 1

T 1, t 0

T x 0.1, t 0 cos 5 x

T x 0.1, t 0 0





   

  

.        (1.4.3) 

Using the method of separation of variables [10], the solution to Eq. (1.4.2) is 

 
   

 
2 2n t

n 0

n 5 n 5
1 cos 1 cos

210 10
T x, t 1 x sin n x e

n 5 n 5 n


 



      
       

         
     

  

  (1.4.4) 

where n is the mode number of the Fourier series. This is depicted by Fig. 1.2, which 

shows the solution T vs x for different times, t. Here, the non-zero heat profile diffuses 

out to the rest of the rod, eventually achieving a linear profile between the x = [0, 1]. 
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Figure 1.2 – Temperature t vs position x for Fourier heat transfer in a 1D rod, n = 

1000 

Although difficult to see, this solution unrealistically predicts an infinite speed of heat 

propagation since even for small times, T > 0 everywhere. This implies that some energy 

from x = 0.1 instantaneously travels to the rest of the bar. Physically, a temperature 

disturbance propagates by molecular interaction, and thus should possess a finite speed 

[2]. 

The most basic characterization of the finite speed is given by the Maxwell-Cattaneo  Eq. 

(1.4.5) [11], where a partial time derivative has been added to the left-hand side of Eq. 

(1.2.1): 

K T
t


   


Q
+Q .         (1.4.5) 

τ is the thermal relaxation time of the medium and characterizes the temporal relaxation 

of the heat flux to a new steady state after a perturbation to the temperature field. This 

results in a hyperbolic differential equation that yields a wave-like heat transport equation 

when combined with Eq. (1.2.2), shown in non-dimensional form by 
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2 2

2 2

T T T
C

tt x

  
 
 

.         (1.4.6) 

Here,
2

C
L


 is the Cattaneo number which is proportional to the relaxation time. For a 

hyperbolic equation such as Eq. (1.4.6), the speed of the temperature propagation is 




[2], [12] which will decrease for increasing relaxation time. Again, using the method of 

separation of variables and adding the initial condition 

 
T

x, t 0 0
t


 


,         (1.4.7) 

the following solution is obtained, 

   
   

1 2
r t r t

2 1
2 1n 0

2 2

1,2

n 5 n 5
1 cos 1 cos

1 210 10
T x, t 1 x sin n x r e r e

r r n 5 n 5 n

1 1 4n C
r

2C





      
       

            
       

  

   



 (1.4.8) 

where r1 and r2 are the characteristic values of the temporal solution in the method of 

separation of variables. Due to the definition of r1 and r2, there will always be some 

oscillatory or wave-like behaviour for C > 0. For small C, oscillatory effects will not 

appear until n becomes large, at which point the effect on the solution will be small. 

When C is large, the low-order modes will contain oscillatory effects and their influence 

in the solution will be large. 
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Figure 1.3 - Temperature, t vs position, x for non-Fourier heat transfer in a 1D rod. 

The temperature distribution propogates outward with a finite speed, n = 1000. 

The solution to the wave equation shown by Fig. 1.3 for τ > 0 characterizes the physical 

response more realistically. The temperature far from x = 0.1 is not immediately greater 

than zero. The non-zero initial condition travels outward as a wave, showing the effect of 

molecular interaction. 

Non-Fourier heat transfer can also lead to oscillatory solutions. Consider, again, a 1D rod 

of length 1, subject to the following boundary and initial conditions: 

 

 

 

 
2

T 0, t 1

T 1, t 0

x
T x, t 0 cos

2

T x
x, t 0 cos

t 4 2





 
   

 

   
    

  

.       (1.4.9) 

The solution to Eq. (1.4.6) subject to these boundary conditions is 
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   

   

   

1 2
r t r t

n n
n 0

2 2 2
n

2 1

n n

T x, t 1 x sin n x A e B e

r 4r 4r 2
A

r r n 0.5 n 0.5 n

1 1 2
B B

n 0.5 n 0.5 n





     
 

    
    

        


   
    



               (1.4.10)  

 

Figure 1.4 - Temperature T vs time t for x = 0.5 with varying C. As C increases, 

damped oscillations appear, eventually reaching the steady state, n = 1000. 

For Fourier heat conduction, the temperature profile monotonically decreases from T(x,0) 

= cos(πx/2) to the steady state solution T(x) = 1 – x. As the relaxation time increases, and 

consequently C increases, oscillations begin to emerge. These oscillations are dampened 

and the steady state is eventually reached. 

These two examples show that non-Fourier heat conduction should be expected to 

introduce interesting new phenomena. When non-Fourier effects are relevant, Fourier’s 

law will no longer accurately characterize the solution and a non-Fourier heat conduction 

model must be employed. This will be discussed in the next section.  
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1.5 Breakdown of Fourier’s law and the generalized non-

Fourier equation for fluids 

For most practical problems, Fourier’s law is an accurate representation of the system. 

There are, however, systems where the finite thermal response time still matters and can 

lead to significant non-Fourier effects. Thermal waves in superfluid liquid Helium, 

known as second sound, are expected to lead to non-Fourier effects [13], [14]. 

Additionally, there exists acids and biological tissues that are known to possess relaxation 

times between 1-100 seconds [15]–[18]. Non-Fourier contributions have also been 

predicted in theories of granular flows [19], [20]. These effects may also be prevalent for 

cases such as laser pulse heating [21] where the frequency of temperature variation at the 

surface can be on the order of femtoseconds. Here, even though the relaxation time of 

many practical media can be as short as picoseconds [15], the relaxation time may need 

to be considered relative to the period of the laser pulse. 

Another area of particular interest in non-Fourier effects has been with nanofluids. 

Nanofluids consist of a base fluid such as water or organic fluids, and 1-5% volume 

fraction of nanoparticles. These particles are between 1-100 nm and can be made from 

copper, gold, diamonds, nanotubes or oxides of aluminum and silicon. Nanofluids have 

been given special interest recently due to their unexpected enhancement in conduction 

heat transfer. Despite the low volume fractions involved, thermal conductivity has been 

found to increase by as much as 40% [22]. This makes them useful in industrial cooling 

applications, nuclear reactors, extraction of geothermal power, vehicle radiators, fuel 

additives, cooling of microchips, nanocryosurgery and more [23]. 

The earliest attempts to model nanofluids used existing models to develop equations 

illustrating the overall change in the thermophysical properties as a whole [24]. These 

models ultimately failed due to their inability to properly predict the fluid viscosity as 

well as the single phase heat transfer coefficient. Buongiorno [24] analyzed potential 

mechanisms within nanofluids that could cause a relative slip between the nanoparticles 

and the base fluid, which may be responsible for the unaccounted heat transfer. He 

concluded that the effects of Brownian motion and thermophoresis should be accounted 
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for. This was further investigated by Tzou [25] and Nield [26], who showed through 

linear stability analysis, that the addition of nanoparticles resulted in a less stable 

conduction state, leading to an earlier onset of convection in a Rayleigh-Bénard cell. The 

major downfall of their formulation is the boundary conditions imposed on the 

nanoparticle concentration, which they assumed to be unrealistically fixed and different 

from one another. Although due to the effects of thermophoresis, a concentration gradient 

can exist, nanofluids are generally quite homogeneous solutions. Furthermore, if the 

concentration of nanoparticles at each boundary was set to be equal, no change in the 

stability picture could be observed. In this case, the nanofluid was predicted to behave as 

if it were just the base fluid due to their choice of reference density. 

A different approach to model nanofluids was brought forth by Wang [27], showing the 

similarities between the Fourier heat transport in a two-phase medium and a single-phase 

medium with dual-phase-lagging non-Fourier effects. The dual-phase-lagging 

constitutive equation for heat conduction relates the temperature gradient at a material 

point x and time t + τT to the heat flux density at x and time t + τQ by 

   Q T, t K T , t      Q x x .                 (1.5.1) 

Here, τQ is the relaxation time and τT is the retardation time of the medium. By 

employing a first-order Taylor series expansion of Eq. (1.5.1) and combining it with the 

energy equation including energy generation terms, then if all thermophysical properties 

are assumed to be constant, one arrives at, 

   
 2

Q T Q2

S , tT T
T T S , t .

t t K tt

    
          

    

x
x              (1.5.2) 

Above, S is the volumetric internal heat source. Next, Wang used a volume averaging 

process to analyze Fourier heat conduction within a two-phase solid. After considerable 

mathematical manipulation, he was able to generate a single equation for the temperature 

field, which is of the same form as Eq. (1.5.2), except that the coefficients are written in 

terms of the physical properties of the medium. As a result, he was able to show that two-

phase systems with Fourier heat transport can be analyzed as a single-phase medium with 
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non-Fourier effects, making results in these two fields mutually applicable. He 

specifically mentions studying nanofluids in this way. This result can be very 

advantageous since the analysis of two-phase media is significantly more mathematically 

involved than studying non-Fourier effects, producing a much simpler method of analysis 

to a difficult problem. 

Eq. (1.4.5) is only sufficient to solve the problem of instantaneous heat propagation [28]–

[30] for conduction. The Maxwell-Cattaneo equation is not frame-invariant and thus its 

application is restricted to non-deformable media. In order to remedy this situation, heat 

transport equations involving different objective derivatives have been introduced to 

replace the partial derivative, although many had significant shortfalls. The most 

promising modification of the Maxwell-Cattaneo equation appears to be that of Christov 

[31], which was later revisited by Khayat and Ostoja-Starzewski [32]. They were able to 

derive Eq. (1.5.3), which when coupled with the energy equation, yields a single equation 

for the temperature field, an advantage that other frame-invariant formulations do not 

possess [31]. 

 t K T        Q V Q Q V Q
                (1.5.3) 

Eq. (1.5.3) is the Cattaneo Vernotte equation, which replaces Fourier’s law whenever 

non-Fourier effects are relevant, collapses back to Fourier’s law when they are not, and 

can be applied to both deformable and non-deformable media. Throughout this thesis, 

any media in which the effects of the relaxation time are non-negligible are referred to as 

non-Fourier, while those in which the effects of the relaxation time can be ignored are 

referred to as Fourier. 

Non-Fourier effects are not only characterized by the magnitude of the relaxation time. 

Using non-dimensional arguments, non-Fourier effects become important when the ratio 

of the thermal relaxation time and time scale for thermal diffusion becomes significant. If 

D is a characteristic length scale and κ is the thermal diffusivity of the fluid, then D2/κ is 

the thermal diffusion time. The Cattaneo number,
2

C
D


 , thus determines when non-

Fourier effects are to be considered. As the length scale of any heat transfer problem 
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decreases, C increases relatively quickly and so non-Fourier effects are expected to be 

prevalent in small scale systems that involve heat transport such as in micro- and 

nanodevices [12], [33]–[43] as well as rarefied gases [44], [45]. The importance of small 

length scale effects are generally measured by the Knudsen number, Kn = λ / D, where λ 

is the mean free path of the fluid particles. When Kn is small, the familiar macroscopic 

equations such as Navier-Stokes and Fourier’s law produce accurate models and are 

actually derived from low order expansions of Boltzmann’s equation in kinetic theory.  

Kinetic theory concerns itself with the solution of the particle distribution function 

ƒ(x,t,s) where s is the microscopic velocities of the particles. This defines the number 

density of particles in a given position x, and at given time t, with velocity s. 

Macroscopic quantities for mass density, velocity and internal energy U, respectively, are 

obtained by the following integrations 

2ƒd , V m ƒd
3 m

m U S ƒd
2

,
2

       s s s s ,           (1.5.4) 

where R T
m


  , m is the mass of the particle and S = s – V. The pressure tensor is given 

by 

2m
ƒd where S ƒd and m ƒd .

3
p m pSS c s SS s                        (1.5.5) 

The pressure obeys the ideal gas law, p = ρθ, due to Eq. (1.5.4) and   describes the 

stress where σii = 0 and σij = σji. Finally, the heat flux is given by 

2m
S ƒd

2
q S s  .                 (1.5.6) 

Governing the particle distribution function in space and time is the Boltzmann equation, 

t

ƒ
ƒs


   


,                   (1.5.7) 
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where Γ is the collision term describing the change of ƒ due to particle collisions. The 

collision term, shown by Eq. (1.5.8), is a complex equation that assumes all collisions are 

between only two particles: 

         A B A A
3

B A B A Aƒ , t ƒ , t ƒ , t ƒm I , d d, t .S SS S SS S S S             (1.5.8) 

Here, the subscripts A and B denote any two colliding particles, the prime notation 

indicates the value before the collision, and I is the differential cross section of the 

collision in which the solid angle is denoted by Ω. When considering deriving macroscale 

equations, the particles are assumed to move together with an average velocity with no 

collisions, and thus Γ is equal to zero for Kn  0. In this case, the solution to the Eq. 

(1.5.7) is the Maxwellian distribution. For larger Kn, the interaction between individual 

particles becomes more important and a correction to Γ = 0 will need to be considered. In 

order to develop meaningful macroscopic equations from the particle distribution 

function, Eq. (1.5.7) is multiplied by m, msi and mS2/2 to get, respectively, the equations 

for conservation of mass, momentum and internal energy as follows: 

 

 

0,
t

0,
t

3 3
p :

2 t 2

V

V
V V p σ

V q δ σ V


  




     


  
    






                        (1.5.9) 

In order to solve these equations completely, additional macroscopic equations must be 

obtained for   and q from the Boltzmann equation. The first well-known approach is 

the Chapman-Enskog [46] method which uses a correction to the Maxwellian distribution 

function by adding higher order terms in Kn as a correction to Γ = 0. For zeroth-order, the 

expansion gives zero stress and heat flux, known as the Euler equations which do not 

describe dissipative processes. For first-order solutions using this method, the Navier-

Stokes and Fourier heat transfer equations are achieved, where the stress is proportional 

to the rate of strain. However for larger Kn, higher order extended transport equations are 

needed. Using the Chapman-Enskog method for higher orders leads to Burnett [47] and 

super-Burnett [48] equations, however they are inadequate for time-dependent problems, 
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are only applicable to Kn < 1, and lack of a complete set of boundary conditions making 

them difficult to solve [49]. 

Another approach to finding extended transport equations for Kn > 0 is Grad’s moment 

method [50]. Grad developed a set of 5 equations containing 13 moments in the variables 

ρ, s, θ,   and q. The resulting equations for the stress and heat flux are both non-

Newtonian and non-Fourier in nature. Although these equations are stable, they lack 

proper guidelines for their use at different Kn and illegitimate subshocks can occur due to 

its hyperbolic nature. 

The equations for the stress and heat flux from the Chapman-Enskog [46] method and 

Grad’s 13 [50] moment method are highly non-linear and complex (the reader is referred 

to Eqs. (3.7)-(3.8) and Eq. (3.10)-(3.11) in [49]). Instead of using the complicated 

extended transport equation for the heat flux, we have adopted the frame invariant 

Cattaneo-Vernotte equation (Eq. (1.5.3)) and assumed Newtonian stresses. Not only is 

this equation well behaved, but it has been widely accepted and used previously in the 

exploration of viscoelastic fluids [51]–[53] where a non-Newtonian stress equation based 

on Oldroyd’s upper-convected derivative is used in place of extended transport equations 

from kinetic theory for the stress. In viscoelasticity, the elasticity number E = τsν / D2 

represents the level of non-Newtonian character and closely resembles the Cattaneo 

number. Here, τs represents the relaxation time of the stress to changes in strain rate, 

which is analogous to τ in the Cattaneo-Vernotte equation, representing the relaxation of 

the heat flux to changes in the temperature gradient. 

So far, investigation of non-Fourier heat transport has been sparse and pertains mostly to 

instability [28], [54]–[56]. 

1.6 Breakdown of the No-Slip Boundary Condition 

Macroscopic fluid flow over solid surfaces is regularly modeled using the no-slip 

boundary condition. This boundary condition makes the assumption that both the fluid 

velocity and temperature are equal to that of the solid surface. The validity of the no-slip 

boundary condition is measured by the Knudsen number. To date, the most practical 
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engineering flows have been largely in the macroscopic regime (larger length scales), 

where Kn << 1 and the no-slip boundary condition is a suitable assumption. However, at 

the macroscopic level, slip flows have been known to occur for polymer flows [57] and 

gases that have been rarefied due to an imposed low pressure [58], [59]. At the 

microscopic level, as with Fourier’s law, the no-slip assumption may no longer be valid. 

With the introduction of micro-electromechanical systems (MEMS) and nanotechnology, 

the length scale can now approach the mean free path of ordinary fluids, yielding non-

negligible values of the Knudsen number. Slip flows have been explored in micro-

devices a great deal in the last two decades [60]–[67]. 

For 0.01 < Kn < 0.1, known as the slip-flow regime [68], [69], no-slip is no longer a 

realistic boundary condition and also leads to a potential breakdown in Fourier’s law, the 

Newtonian stress assumption and the Boussinesq approximation which have been 

previously investigated [53], [70]–[73]. When Kn >> 1, even the continuum assumption 

must be abandoned [74]. In the slip-flow regime and beyond, partial-slip boundary 

conditions must be implemented. These represent that the velocity of the fluid 

immediately in contact with the solid surface is not equal to the velocity of the surface 

and that there exists a temperature jump at the boundary [58], [59], [74]–[76]. The most 

general form of hydrodynamic slip and temperature jump boundary conditions including 

second-order effects are given by 

2
2 2

w 1 2 32
wall wall

T
a a a

n mn

      
                

V V
V V               (1.6.1) 

2
2

w 1 2 2
wall wall

T T
T T b b

n n

   
             

                (1.6.2) 

Here, n is the unit vector normal to the boundary facing into the fluid and m is the unit 

vector in the tangential direction. As there is currently no globally accepted values of an 

and bn, coefficients with different characteristics will be explored in the thesis. First order 

slip effects are sufficient for Kn < 0.1 and have been considered by [74], however, in 

order to reach into the transition regime (0.1 < Kn < 10), second-order slip effects must 
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be considered [62], [68], [69]. Second-order effects can increase or decrease the amount 

of slip compared to first-order depending on the sign of the coefficient.  

In order to demonstrate the effects of slip, consider a 2D non-dimensional isothermal 

Poiseuille flow between two stationary plates such that Vw, the last term in Eq. (1.6.1) 

and all of Eq. (1.6.2) are equal to zero. The solution is then 

  2 2
1 2

1 P 1 P 1 P P
u y y y a Kn a Kn

2 x 2 x 2 x x

   
   

   
               (1.6.3) 

where u is the horizontal velocity and y is the vertical direction. For Kn = 0, the solution 

quickly collapses onto the familiar solution for stick boundaries. For a negative pressure 

gradient and where second-order slip effects increase the amount of slip, Fig. 1.5 shows 

the change in the velocity profile, comparing no-slip with first- and second-order effects. 

 

Figure 1.5 - Comparison of first- and second-order slip effects with the no slip 

boundary condition. Bold lines denote the upper and lower surface. ls1 and ls2 denote 

the slip length for first- and second-order effects, respectively. 

In Fig, 1.5 Kn = 0.1, a1 = 1 for both slip cases and a2 = -1 for second-order slip effects. 

As the effects of slip are considered, the velocity at the boundary, as well as the 
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maximum velocity, increases. When the velocity profile is extrapolated toward the 

outside of the boundaries at y = 0 and 1, it intersects with the u = 0 axis. The distance y 

outside of the boundary where the velocity is extrapolated to zero is known as the slip 

length ls which can be solved for analytically using the quadratic formula: 

2
s 1 2

1 1 1
l 2 a Kn a Kn

2 4 2

 
    

 
.                  (1.6.4) 

Again, depending on the sign of a2, second-order slip can be greater than or less than that 

for first-order effects. 

Although the validity of the Navier-Stokes equation comes into question in the transition 

regime, second-order boundary conditions are expected to push its realm of applicability 

[62]. Furthermore, higher-order continuum equations such as those predicted by the 

Chapman-Enskog method and Grad are expected to give better solutions than the Navier-

Stokes equation with Fourier’s law in the slip and transition regime [77]. Thus, it seems 

logical to explore both non-Fourier effects through the frame invariant Cattaneo-Vernotte 

equation, and second-order slip hydrodynamic slip and temperature jump as it applies to 

Rayleigh-Bénard convection. Although the combination of these effects will not be 

explored in this thesis, it is realistic to expect that good results could be obtained by such 

a continuum solution for Kn in the slip and transition regime [77], [78]. 

1.7 Linear Stability and Steady State Analysis 

An important aspect of Rayleigh-Bénard convection is the stability of the steady 

conduction state. As stated previously, the fluid is initially at rest until critical conditions 

are reached, causing convection to set in. Determining the critical conditions requires that 

a perturbation be applied to the steady conduction state, where each quantity of interest ε 

is perturbed by 

    t ikx, t z e .   x                    (1.7.1) 

Here, k is the perturbation wave number in the x direction and the time evolution of the 

disturbance is described by σ which can have both real and imaginary parts. These 
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perturbations are assumed to be small, and thus non-linear quantities are neglected, which 

linearizes the set of equations. For example, substituting Eq. (1.7.1) into the Lorenz 

model Eq. (1.3.3) yields the following linearized set of equations after dividing through 

by the exponential term: 

 

cF

X Pr X RaY

X
Y Y

Ra

Z bZ

   

   

  

.         (1.7.2) 

Through elimination of the variables X, Y and Z, the dispersion relation is generated 

which relates the temporal response term σ and the Rayleigh number, shown by Eq. 

(1.7.3) as, 

 2
cF cF cFRa Ra Pr 1 Pr Ra Pr Ra 0      .     (1.7.3) 

When σ < 0, then the perturbation will die out and the original steady state is recovered. 

After reaching some critical limit in Ra which contains the temperature difference 

between the two plates, σ > 0, and the perturbations are expected to grow until a new 

state is established. The critical value can be deduced by setting σ = 0 (no growth or 

decay of the perturbations) and solving for Ra. In the case of the Lorenz model, σ can 

only exist as a real number. However, as we will show in Chapter 2, the system of 

equations generated when including non-Fourier effects has 5 degrees of freedom (as 

opposed to 3 in the Lorenz model), which will yield a cubic term in the dispersion 

relation. Due to this fact, the solution for the dispersion relation must allow for the 

possibility of an imaginary portion to temporal response term such that σ = σr + iω. In 

this case, to solve for the critical Rayleigh number, only the real part of σ is set equal to 

zero. Under the correct conditions, the growth of the perturbations will be oscillatory in 

nature, a phenomena seen in nanofluids and in the case of viscoelastic fluids [52], [79].  

Determining the critical conditions for which the steady conduction state loses its 

stability is of particular interest in this thesis. As well as the changes in these critical 
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conditions due to their relationship to properties of the fluid or gap size. This will be 

explored extensively in Chapter 2. 

When Eqs. (1.2.1-1.2.2) and Eqs. (1.3.1-1.3.2) are used in conjunction with no-slip 

boundary conditions, the minimum criteria for the instability of the steady conduction 

state are Ra ≈ 1708 corresponding to k ≈ 3.117. If stress-free boundary conditions are 

employed, then the critical conditions become Ra ≈ 657 at k ≈ 2.22, and thus partial slip 

boundary conditions will significantly affect the stability criteria. The introduction of 

non-Fourier effects are also expected to change the conditions for critical stability as well 

as the behaviour of the growth of the perturbations. 

Once the steady conduction state has lost stability, it can lead to either stationary or 

oscillatory convection. In order to analyze this non-linear behaviour, a system of ordinary 

differential equations is generated, such as in the Lorenz model [9]. This can be achieved 

by describing the spatial dependence of the solution to Eqs. (1.2.1-1.2.2) and Eqs. (1.3.1-

1.3.2) as an infinite series such as Fourier series. Each mode has a separate weight in this 

expansion and the weight comes in the form of the time dependent coefficients. Since it is 

not realistic to find the solution with an infinite number of modes, this series must be 

truncated to a finite number of modes, which introduces an error. In an attempt to 

minimize this error, a Galerkin projection [5] can be employed by projecting these 

equations onto each of the chosen modes, taking advantage of their orthogonality. This is 

similar to projecting a vector onto orthogonal axes. Now, that the spatial dependence is 

eliminated, the system of partial differential equations is transformed into a system of 

ordinary differential equations. As the complexity of the flow increases, higher order 

modes will need to be taken into consideration. 

In the case that the system achieves a stationary mode of convection, this can be analyzed 

mathematically by setting the time derivatives (such as in Eqs. (1.3.3)) equal to zero. The 

resulting non-linear system can be solved analytically as a function of the Rayleigh 

number in order to investigate its behaviour as the temperature difference between the 

plates increases. Eventually, the steady conduction state can also become unstable, and a 
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linear stability analysis can again be invoked to explore when this will occur, leading to a 

new mode of convection.  

1.8 Motivation 

With the advent of new technologies, such as fast processes, nanofluids, micro-and nano-

technology and low temperature liquids, new heat transfer phenomena are being 

observed. These topics are complex and non-Fourier heat transfer has been 

experimentally observed, or at least suggested to play a significant role, in these 

phenomena [27], [34], [35], [38]. In particular, the existence of non-Fourier heat transfer 

in microscale and nanoscale applications is backed by kinetic theory [49], [80]. With 

advances in technology allowing us to create smaller devices, care must be taken to 

characterize the heat transfer from these small devices in order to safely and efficiently 

take advantage of them. Although non-Fourier heat transfer is expected in many 

applications, this thesis will focus particularly on small length scale systems. Another 

occurrence in flow in the microscale is the relevance of hydrodynamic slip and 

temperature jump at the fluid-solid interface [58], [59], [81], and thus, it makes sense to 

also investigate these phenomena. 

Rayleigh-Bénard convection is a very commonly occurring natural process, driving ocean 

currents, the weather and the Earth’s mantle. It is also a naturally occurring process in 

heating and cooling applications. Rayleigh-Bénard convection in macroscale systems has 

been well understood for quite some time and due to its physical relevance as well as 

theoretical and mathematical simplicity[4], [5], it is a well suited platform for analyzing 

the effects of non-Fourier heat transfer and partial slip boundary conditions. 

1.9 Thesis Summary 

Chapter 2 analyzes the linear stability of a non-Fourier fluid in a Rayleigh-Bénard 

configuration subject to stress-free boundary conditions. The changes in the stability 

boundary are discussed, outlining the introduction of a new oscillatory mode of 

instability with increased non-Fourier effect. The critical wave number, Rayleigh number 

and oscillation frequency are also explored as a function of the Prandtl number. 
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The third chapter investigates the stationary convection of a non-Fourier fluid in 

Rayleigh-Bénard convection. The bifurcation curves are studied in detail, highlighting the 

important qualitative behaviour expected of non-Fourier fluids. Non-dimensional heat 

transfer is analyzed via the Nusselt number and compared to experiment, showing 

agreement that increased heat transfer is expected. The linear stability of the steady 

convection state is also investigated showing that non-Fourier effects lead to a loss of 

stability for lower Ra than for a Fourier fluid. 

The effect of second-order boundary conditions on the tangential velocity and the 

temperature will be considered exclusively in Chapter 4 in order to isolate their 

contribution to Rayleigh-Bénard convection from non-Fourier effects. Highlighted are the 

minimum critical Rayleigh number and corresponding critical wave number that are 

expected with different slip conditions. As the length scale of the problem decreases, both 

the critical Rayleigh number and wave number are predicted to decrease. Finally, the 

conclusion chapter will reiterate the key conclusions from the preceding chapters for a 

thorough understanding of the concepts at hand. 
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Chapter 2  

2 Thermal convection of non-Fourier fluids. Linear 
stability 

2.1 Introduction 

Heat transfer is commonly governed by the classical Fourier’s constitutive law. When 

used in combination with the First Law of Thermodynamics, Fourier’s law assumes an 

infinite speed of heat propagation, and a parabolic temperature field. In reality, a 

disturbance wave in the temperature will travel at a finite speed since it is transferred by 

molecular interaction [1]. This behaviour is characterized by the Maxwell-Cattaneo 

equation, which adds a transient term multiplied by the thermal relaxation time of the 

medium. This is the time required for the heat flux to reach a new steady state following a 

perturbation to the temperature gradient, establishing a hyperbolic heat (wave) response. 

Non-Fourier effects have long been recognized to emerge in the form of second-sound 

thermal waves in low-temperature liquids [2], [3], but are increasingly observed in a 

variety of phenomena involving ultrafast heating, heat transfer in biological tissues, 

convection in nano-devices and complex fluids [4]–[8]. Most common practical problems 

involve materials with relaxation times on the order of 10-12 seconds [9], and thus, the 

Maxwell-Cattaneo equation collapses onto the classical Fourier model. However, 

physical media exist in which the relaxation time may not be considered negligible. 

Noteworthy examples include some acids and biological tissues, which may possess 

relaxation times between 1-100 seconds [9]. It is important to realize that ‘large’ 

relaxation times should also be identified relative to the rate of heating. Processes such as 

laser pulse heating introduce a large quantity of energy over a small period of time, which 

are comparable to the relaxation time of the medium. Letfullin, George, Duree & 

Bollinger [4] point out that, in some applications, the duration of the laser pulse can be 

measured on the scale of 10-15 seconds, of the order of the relaxation time of electrons 

[10]. Thus, when the rate of heating is of the same order of magnitude as the relaxation 

time, non-Fourier effects must be accounted for. The fact that the importance of non-

Fourier effects is not solely embedded in the absolute value of the relaxation time is, 
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perhaps, best illustrated using generalized non-dimensional arguments. More specifically, 

non-Fourier effects become significant whenever the relaxation time is of the same order 

as the thermal diffusion time. Thus, if D is the length scale, or typical gap width as in the 

present problem, and τ and κ are, respectively, the relaxation time and thermal diffusivity 

of the fluid, then the dimensionless relaxation time is given by the Cattaneo number, 

2
C

D


 . Consequently, C increases relatively rapidly as D decreases, and non-Fourier 

(NF) effects are expected to be significant for a very small gap, as in the convection and 

flow in micro- and nano-devices [11]–[14]. 

It has long been realized that adding the partial time derivative does not completely solve 

the problem of instantaneous thermal relaxation [15]–[17]. The Maxwell-Cattaneo 

equation is not a frame-invariant constitutive relation and, as such, is restricted to non-

deformable media. Several objective derivatives have been applied to remedy this 

situation. However, they each have their own shortcomings. The most promising 

modification is that of Christov [18], which was recently revisited by Khayat & Ostoja-

Starzewski [19], whose use of the Oldroyds’ upper-convected derivative leads to the 

frame indifferent Maxwell-Cattaneo equation. Coupled with the energy equation, this 

constitutive equation can also yield a single equation for the temperature field, an 

advantage that other invariant formulations do not possess[18]. This equation replaces 

Fourier’s law for fluid flow whenever the relaxation time is relevant, and collapses back 

to Fourier’s law whenever it is not.  

Currently, there is limited literature available on NF convection, and much of it pertains 

only to thermal instability [15], [20]–[22]. However, this is rapidly changing with the 

advent of fast processes and the emergence of nanofluids, which are solutions consisting 

of a base fluid solvent, containing a small volume fraction (1-5%) of nanoparticles of size 

of O(1-100nm). Nanofluids allow a substantial enhancement in conductive heat transfer, 

as much as 40 percent increase in thermal conductivity, despite the low volume fraction 

of the nanoparticles [23]–[25]. The presence of flow is expected to lead to complex and 

rich physical behavior [26]. Given the small spatio-temporal scales involved in heat 

transfer enhancement in nanofluids, resulting from the addition of nanoparticles to the 
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base fluid, it is not surprising that NF effects are envisaged as being behind this 

enhancement. That this may be the case is suggested at both the theoretical [8], [24], [27] 

and the experimental [28] levels. The NF effects resulting from the addition of 

nanoparticles are reminiscent of the non-Newtonian effects for viscoelastic fluids with 

colloidal and particle suspensions. The addition of the polymer to a base solvent leads to 

a finite relaxation time of the stress [29]. 

The NF constitutive equation for heat will be revisited in Section 2.2. The formulation is 

then applied to thermal convection (Section 2.3) and its linear stability (Section 2.4). 

Discussion and results will be covered in Section 2.5. Finally, concluding remarks are 

given in Section 2.6. 

2.2 Constitutive equation for heat 

The most commonly used NF constitutive equation for the heat flux, Q, is the Maxwell-

Cattaneo equation for heat conduction [1]. For a moving fluid, however, this equation 

needs to be reformulated and rendered objective (frame indifferent). This was achieved 

by Christov [18]. The resulting equation is simply reproduced here as 

k T
t

Q
+Q


   


,         (2.2.1) 

where τ is the relaxation time, and the Oldroyd upper-convected derivative [30] is given 

by 

   
     

t t
V V V

 
      

 
.      (2.2.2) 

For pure heat conduction, Eq. (2.2.2) reduces to 

k T
t

Q
+Q


   


.         (2.2.3) 
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It is not difficult to see that this equation relates the temperature gradient at a material 

point x and time t to the heat flux vector at the same point at time t + τ for a medium of 

thermal conductivity k. The relation reads: 

   , t k T , tQ x x     ,        (2.2.4) 

and Eq. (2.2.3) is recovered by Taylor expansion of Eq. (2.2.4) for small relaxation time. 

Note that Eq. (2.2.3) is hyperbolic. It is worth noting that other two-phase systems do 

reflect the phase-lagging character exhibited in Eq. (2.2.3). One such connection is the 

case of a hot jet penetrating a porous medium [31] or the flow through porous layers [32]. 

In this regard, Eqs. (2.1a and b) of Rees et al. [31] are comparable to Eqs. (4) and (5) of 

Wang & Wei [8]. Also, in this case, the former equations switch from parabolic to 

hyperbolic for high jet penetration velocity.  

2.3 Governing equations and boundary conditions 

Consider a thin layer of a Newtonian non-Fourier liquid confined between the planes Z = 

0 and Z = D, maintained at fixed temperatures T0 + δT and T0, respectively. The fluid 

layer is assumed to be of infinite horizontal extent. Convection emerges when the 

buoyancy effect exceeds a critical threshold relative to the viscous effect. The gravity 

acceleration vector is given by g = - g ẑ , where ẑ  is the unit vector in the Z direction. The 

fluid density, ρ, is assumed to depend on the temperature, T, following 

 Tρ = ρ 1-α T -T0 0   ,        (2.3.1) 

where 
T is the coefficient of volume expansion and ρ0 is the mass density of the fluid at 

T0. The fluid is assumed to be incompressible, of specific heat at constant pressure Cp, 

thermal conductivity k and viscosity . In this case, the general governing equations for a 

non-Fourier fluid comprises the conservation of mass, linear momentum and energy, as 

well as the constitutive equation for the heat flux. In this case, the conservation equations 

are given by 

0V  ,          (2.3.2) 
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 0 t ˆP g      V V V z V ,       (2.3.3) 

 0 p tc T TV Q     ,       (2.3.4) 

where  and   are the gradient and Laplacian operators, respectively, and a subscript t 

denotes partial differentiation with respect to time. Here V is the velocity vector, P is the 

pressure, T is the temperature and Q is the heat flux vector. Note that the Boussinesq 

approximation, is assumed to hold as it is valid when “a) the vertical dimension of the 

fluid is much less than any scale height, and b) the motion-induced fluctuations in the 

density and pressure do not exceed, in order of magnitude, the total static variations of 

these quantities” [33]. Consequently, the Boussinesq approximation should hold for an 

ordinary fluid and a small gap, where the temperature gradient is typically small.  For a 

non-Fourier fluid, however, the temperature gradient may not be sufficiently small, and 

the Boussinesq approximation may break down. Given the complexity of non-Fourier 

convection, it is reasonable to adopt the approximation at this exploratory stage. 

Furthermore, the Boussinesq approximation is only used here as far as linear stability 

analysis is concerned. If the approximation were to break down, it would likely happen 

further from criticality where flow and thermal fluctuations are larger.  

In this work, the heat flux is assumed to be governed by the Cattaneo-Vernotte phase-

lagging Eq. (2.2.1), explicitly re-written here as 

 t K T        Q V Q Q V Q ,      (2.3.5) 

where τ is the relaxation time. With this equation, it is possible to generate a generalized 

energy equation. Indeed, upon taking the divergence of Eq. (2.3.4), noting the identity 

   :a b a b a b       , a and b being two general vectors, and using Eq. 

(2.3.5), one obtains 

  2
tt t t tT 2 T T T T T T,V V V V V                  (2.3.6) 
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where 
0 p

K

c
 


 is the thermal diffusivity. The boundary conditions at the lower and 

upper surfaces are taken to correspond to free-free conditions. In this case 

   ˆ ˆx,Z 0, t x,Z D, t 0,     V z V z  

   zz zzˆ ˆx,Z 0, t x,Z D, t 0,     V z V z       (2.3.7) 

   0 0T x,Z 0, t T T, T x,Z D, t T .      

Other boundary conditions could be adopted, such as the rigid-rigid or rigid-free 

conditions [34]. However, the free-free conditions are convenient and most commonly 

used in the literature. Moreover, no qualitative change in behaviour is expected if one set 

of boundary conditions is used over another [35]. In fact, Khayat [36] confirmed this 

consistency in behaviour for rotating flow as well.  

The base state corresponds to stationary heat conduction, which remains the same as that 

for a Fourier fluid since both transient and upper convective terms in Eq. (2.3.5) vanish in 

this case. Consequently, the temperature, pressure gradient and heat flux for the 

conductive state are given by  

 B 0T Z D T T T     , 

 B 0 TdP / dZ 1 T 1 Z D g       ,      (2.3.8) 

B
T

0,K
D

 
  
 

Q , 

respectively. The problem is conveniently cast in dimensionless form by taking the 

length, time and velocity scales as 

2D
D, and

D




, respectively. Let  

2

B
D

p P P 


 and 
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BT T

T


 


 be the dimensionless pressure and temperature deviations from the base 

(conductive) state. In this case, the dimensionless perturbation equations are given by 

0 V ,          (2.3.9) 

 1
t ˆPr p Ra       V V V z V ,                (2.3.10) 

t j w     V ,                  (2.3.11) 

 t zC        q V V q q V q ,                (2.3.12) 

where V(u, w) and q are the dimensionless velocity and heat flux vectors, respectively. 

Here j q . It is interesting to note the presence of two linear terms of non-Fourier 

origin in Eq. (2.3.12), namely the transient term and the velocity gradient in the z 

direction. This contrasts with the convection of viscoelastic fluids where the transient 

terms are the only linear terms that survive in the stress equations (see [37]). This is an 

important point that will be explored further in Section 2.4. Eq. (2.3.6) takes the form: 

  2
tt t t t tC 2 w w .              V V V V V             (2.3.13) 

The following non-dimensional groups have been introduced, namely, the Prandtl 

number, the Cattaneo number and the Rayleigh number, respectively, given by 

3
T

2

T gD
Pr , C , Ra

D

  
  
 

.             (2.3.14) 

The problem can be simplified by casting the constitutive equation for heat flux in terms 

of the scalar variable j. Thus, upon taking the divergence of Eq. (2.3.12), and recalling 

again the identity    :a b a b a b       , one obtains the following 

constitutive equation for j: 

 tC j j j    V ,                  (2.3.16) 
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where the continuity Eq. (2.3.9) is used. The boundary conditions Eq. (2.3.7) reduce to 

   

   

   

z z

w x,z 0, t w x,z 1, t

u x,z 0, t u x,z 1, t

x,z 0, t x,z 1, t 0,

  

   

      

               (2.3.17) 

which must be used to solve Eqs. (2.3.9), (2.3.10), (2.3.11) and (2.3.16). Finally, the 

Fourier model is recovered upon setting C = 0 (zero relaxation time) in Eqs. (2.3.12), 

(2.3.13) or (2.3.16). In this case, q    and j   satisfy Eqs. (2.3.12) and (2.3.16), 

respectively. 

At this stage, it is helpful to examine the order of magnitude of the Cattaneo number for 

practical fluids and thermal processes. For most fluids under normal conditions, the 

relaxation time is typically small. In particular, the Cattaneo number can be sufficiently 

large for some real fluids.  Helium II, a low temperature liquid, possesses a relaxation 

time of O(10-2) [38]–[40] which corresponds to a Cattaneo number of O(10) for a 5cm 

gap. Furthermore, using Wang’s formula for the relaxation time of a nanofluid [8], a 5% 

v/v mixture of water and TiO2 has a relaxation time of O(10-4) with Cattaneo number of 

O(10-2) for a 50μm gap. 

2.4 Linear stability analysis 

Comparable to a Fourier fluid, the conduction of a non-Fourier fluid is lost to convection 

once a critical value of the Rayleigh number, Rac(k), is exceeded, where k is the wave 

number of the disturbance. However, in contrast to a Fourier fluid, and similar to a 

viscoelastic fluid [37], non-Fourier conduction can be lost to steady or oscillatory 

convection, depending on the flow parameters. The linear stability analysis of the 

conduction state is similar to the case of a viscoelastic fluid, except that, unlike a 

viscoelastic fluid, a non-Fourier fluid at rest does recognize the non-Fourier character, 

which is reflected by the presence of the additional linear velocity gradient on the left 

hand side of Eq. (2.3.12), in addition to the transient term. The stability of the conduction 

state is examined by applying a small (infinitesimal) perturbation of the form 
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       

       

t ikx t ikx

t ikx t ikx

x,z, t z e , x, z, t z e ,

p x,z, t P z e , j x, z, t J z e ,

   

   

   

 

V v
    (2.4.1) 

where k is the perturbation wave number in the x direction, and σ dictates the time 

evolution of the disturbance. Thus, the conduction/base state is stable (unstable) if the 

real part of σ is negative (positive). In this case, the dispersion relation is given as 

 
2

3 2 3 2
n n n

n n

1 Pr 1 k Ra Pr Pr
Pr k Ra 0

C C C

  
                   

.   (2.4.2) 

Where βn = n2π2 + k2, and n is the mode number. In contrast to a Fourier fluid, the 

presence of the cubic term in Eq. (2.4.2) hints to the possibility of stationary or 

oscillatory convection. In this regard, it is well established that the n = 1 mode is the most 

prominent mode for a Fourier fluid. This is not easily established analytically for a NF 

fluid by examining Eq. (2.4.2). However, the n = 1 mode turns out to be the most 

prominent mode, for both stationary and oscillatory convection. Consequently, only the  

n = 1 mode will be examined in this work. 

For steady convection, one recovers the same critical Rayleigh number, Rac, as a Fourier 

fluid, namely 

3

c cF 2
Ra =Ra

k


 ,         (2.4.3) 

where β = n2π2 + k2. In this case, Rac displays a minimum, 

4

m
27

Ra
4


  at mk

2


 . 

For oscillatory convection, the corresponding neutral curves are obtained upon setting σ 

= iωc in Eq. (2.4.2), ωc being the frequency, and separating real and imaginary parts to 

give 

2

c cF2 2 2

Pr C Pr 1
Ra Ra

C Pr

 



,   c

1 CPr Pr 1

C Pr

 
  .  (2.4.4) 
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Clearly, oscillatory convection is possible only if 

1 Pr

Pr C


   or 

21 Pr
k

Pr C


  .      (2.4.5) 

This criterion constrains the range of wave number for oscillatory convection. Thus, it is 

anticipated that each marginal stability curve in the Ra-k plane comprises two distinct 

branches: a Fourier branch, corresponding to steady convection, for k < ki, and a non-

Fourier branch, corresponding to oscillatory convection, for k > ki, where ki is the wave 

number at which the two branches intersect, and satisfies the relation, 

2
i

1 Pr
k

Pr C


  ,         (2.4.6) 

since, at intersection, the frequency vanishes. It is not difficult to verify that substituting 

Eq. (2.4.5) into Eq. (2.4.4) leads to    c i i cF iRa k k Ra Ra k k    . Eq. (2.4.6) 

suggests that a limit, C∞, of C exists for which ki = 0, and thus only oscillatory 

convection should be expected.  

Two limits are worth examining here. Consider first the limit of large Cattaneo number. 

This case could reflect the situation where the thermal process time (D2/κ) is at least of 

the same order as that of the relaxation time of the liquid. In particular, if the gap is small 

(for instance, in the thermal convection in a nano-device), then the molecular mean-free 

path becomes of the same order as the gap. In this case, it is well established that both 

Newton’s Law of viscosity and Fourier’s law of heat are no longer valid. In other words, 

the liquid behaves more like a rarified gas, of non-Newtonian and non-Fourier character 

[41], [42]. For large C, Eq. (2.4.4) suggests that 

c
1

Ra ~ ,
C

   
c

1
~

C
 .      (2.4.7) 
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A couple of interesting observations can be made. First, the oscillation frequency behaves 

like c ~1/ C , suggesting that oscillatory rolls may not be detected in reality for large C. 

Second, the critical Rayleigh number decreases even faster with C. Whether this 

behaviour holds for any C will be examined below. Another limit of interest is the large 

Pr limit. In this limit, Eq. (2.4.4) reduces to  

2

c cF c2Pr Pr

1 1
lim Ra Ra , lim C 1

C CCk 


    


.    (2.4.8) 

In this case, the intersection wave number becomes 

2
i

Pr

1
lim k

C
  .         (2.4.9) 

In the double limit of large C and Pr, Eq. (2.4.8) suggests that oscillatory convection sets 

in at any Rayleigh number. Further physical insight of these limits will be gained below 

when numerical results are reported. 

Finally, it is helpful to list the eigenvector components, which will be used later, and take 

the form: 

       

   
2

i
U z cos z , W z sin z ,

k

Ra C 1
P z 2 n cos z ,

C


    

  
           

                           (2.4.10)

 

 

       
2 2

C 1 1
z sin z , J z sin z

C C

   
                 

. 

Of particular interest here is the non-Fourier character reflected in the flow and heat 

transfer. In fact, Eq. (2.4.10) clearly reflects the absence of non-Fourier effects at 

criticality for stationary convection. This is easily verified upon setting σ = 0, as one 

recovers the Fourier limit. This is, of course, not the case for oscillatory convection. 
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Consequently, stationary convection of a non-Fourier fluid is expected to be Fourier in 

character, near criticality. It is observed that other modes will be present near criticality, 

which do exhibit a non-Fourier character, but they will be dominated by the critical 

mode. Of course, as the Rayleigh number increases beyond the critical value, non-Fourier 

effects become increasingly significant. Similarly, in the case of a viscoelastic or a non-

Newtonian fluid, in general, any convective steady state emerging near criticality will not 

have a significant non-Newtonian character to it given the absence of shearing and 

elongation rates of the base (conductive) state [37]. Despite the apparent similarity, there 

is a significant difference between the current non-Fourier and non-Newtonian loss of 

conduction to steady convection. For non-Newtonian convection near criticality, the 

elastic component of the stress remains small given the absence of flow in the pre-critical 

range of Rayleigh number. More generally, for a non-Newtonian flow, the destabilization 

of the base state to a steady state leads to a Newtonian state at criticality. However, if the 

base state involves shearing and elongation, as in the case of Taylor-Couette flow, the 

steady vortex flow does exhibit non-Newtonian character near criticality [36].  

The lack of Fourier character in the stationary convection mentioned above is only 

apparent, as Eq. (2.4.10) does not reflect the whole situation. At the center of the 

argument is the relation between the heat flux vector components and the temperature 

(gradient), which has not been invoked so far in the discussion since j, and not q, is 

needed for the solution of the problem. The replacement of the heat equation, Eq. 

(2.3.12), by Eq. (2.3.16) leads to significant simplification in the current linear stability 

(and, eventually, any nonlinear) analysis as the formulation includes the scalar variable, j 

instead of the vector q, reducing the number of degrees of freedom. Moreover, the upper-

convective terms are replaced by a convective term, jv  . This term does not survive in 

the linear analysis given the stationary character of the base conductive state. Even the 

generalized energy equation, Eq. (2.3.13), illustrates the absence of non-Fourier character 

upon the onset of stationary convection. However, the heat flux vector does exhibit a 

non-Fourier contribution at criticality, emerging from the upper-convective terms. 

Indeed, near criticality, the heat flux in Eq. (2.3.12) reduces to 
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zCq= v .                   (2.4.11) 

Although, as deduced upon setting σ = 0 in Eq. (2.4.10), the temperature, velocity and 

pressure do not display any non-Fourier character at criticality, the heat flux does, as Eq. 

(2.4.11) suggests. This is verified further by substituting the temperature and velocity 

from Eq. (2.4.10) into Eq. (2.4.11), to give 

 
2

x 2

C k
Q i sin z

C 1 k C

 
    

    

,              (2.4.12) 

 z 2
n

1 1
Q n C cos n z

C 1 C

 
    

    

.             (2.4.13) 

Clearly, the non-Fourier character survives when σ = 0. However, given the decoupling 

from q, as Eqs. (2.3.9)-(2.3.11) and Eq. (2.3.16) suggest, the flow and temperature fields 

are not expected to reflect a significant non-Fourier character upon the onset of stationary 

convection. Of course, this is not the case for the onset of oscillatory convection.  

2.5 Results and discussion 

In this section, results based on the formulation above are discussed. Conditions for 

both stationary and oscillatory convection are emphasized. It is helpful to schematically 

summarize the stability picture and notations used, in anticipation of the ensuing 

discussion and details. The neutral curves are illustrated in the (Rac-k) plane in Fig. 2.1 

for different non-Fourier levels. The Fourier limit is reflected by the C = 0 curve. For a 

weakly non-Fourier fluid (C<< CH), the neutral curve comprises a Fourier branch and an 

oscillatory branch, intersecting at (Rai, ki). In this case, the minimum critical Rayleigh 

number is that of the Fourier branch
4

mF mF

27
Ra ,k

4 2

  
   

 

. As C increases, a 

minimum develops in the oscillatory branch. At C = CH, the minima of the stationary and 

oscillatory branches coincide at the same Rayleigh number but different wave numbers. 
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For a moderately strong non-Fourier fluid (C > CH), there is only one minimum

 m mF m mFRa Ra ,k k  .  

 

Figure 2.1 - Schematic illustrating notations used in the (Ra-k) plane, qualitatively 

showing various marginal stability curves and corresponding regimes with respect 

to the critical Cattaneo number, CH. The curves 1, 2, 3, 4 and 5 correspond to C << 

CH, C < CH, C = CH, C > CH, C >> CH. 

2.5.1 Stability of the conduction state 

The influence of the Cattaneo number on the overall marginal stability picture is typically 

illustrated in Fig. 2.2, where the marginal stability curves (Fig. 2.2a) and corresponding 

frequency (Fig. 2.2b) are plotted against the wave number for Pr = 10. At the center, is 

the marginal stability curve for a Fourier fluid, which is recalled to be independent of Pr. 

For a Fourier fluid, there is an exchange of stability between the pure conduction state 

and stationary convection for any wave number. For relatively small C, each non-Fourier 

curve comprises a stationary branch, also part of the Fourier curve, for k < ki, and an 

oscillatory convective branch (overstability) for k > ki. The critical Rayleigh number and 

frequency for the oscillatory branch are given by Eq. (2.4.4). Clearly, oscillatory 

convection is possible only if k > ki. In this case, it is not difficult to show that the 
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oscillatory branch always lies below the Fourier curve. This is also evident from Fig. 

2.3a. Thus, 

2

c cF2 2 2

Pr C Pr 1
1, or Ra Ra

C Pr

  
 


.      (2.5.1) 

 

 

Figure 2.2 - Influence of the Cattaneo number on (a) the marginal stability curves in 

the Ra-k plane and (b) corresponding oscillation frequency for a Pr = 10. 
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The inequality k > ki constrains the range of wave numbers for oscillatory convection. As 

C increases, ki moves to the left of the Ra-k plane, reducing the range for stationary 

convection, and, simultaneously, lowering the oscillatory branch until the minimum 

Rayleigh number of this branch becomes equal to 
4

mF
27

Ra
4


 , at C = CH. 

Consequently, two non-Fourier regimes are clearly distinguishable from Fig. 2.2 (see also 

Fig. 2.1). The weakly non-Fourier regime is taken to correspond to C < CH. Here, CH is 

the level of non-Fourier threshold below which stationary convection is predicted to be 

observed in reality since the minimum of the marginal stability curve lies above that of 

the Fourier curve, that is Ram > RamF, km > ki. Note, however, that the oscillatory branch 

remains present for k > ki. The oscillatory branch is expected to play an increasingly 

dominant role as C increases from zero in the post-critical range of Rayleigh number as a 

result of nonlinear modal interaction from different wave numbers. Here CH signals the 

onset of oscillatory convection via a Hopf bifurcation at criticality. The values of CH and 

corresponding wave number, kH, must be determined numerically (see later). However, 

some insight is gained for large Pr. In this case,
2

c 2
Ra

k C


 , which has a minimum at k = 

π, H 2

16
C 0.06

27
 


 and 

2
H

9 5

16 3
   . This CH value should be compared to the 

0.0655 value for Pr = 10 estimated from Fig. 2.3. 
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Figure 2.3 - Influence of Pr and C on (a) the minimum critical Rayleigh number, 

Ram, (b) corresponding wave number, km, and (c) frequency, ωm. 

For a strongly non-Fourier fluid (C > CH), oscillatory convection is predicted to occur at 

Rac = Ram, with the steady convection range (k < ki) diminishing as C increases, to 

eventually disappear for 
2

11
C C 0.111

10
  


. In this domain, oscillatory convection is 

predicted to be observed first for any wave number. The conductive state loses its 

stability to oscillatory convection at a Rayleigh number that is increasingly smaller than 

RamF as C increases. Eq. (2.4.4) suggests that the critical Rayleigh number vanishes at 

large C, indicating that strongly non-Fourier fluids exhibit spontaneous convection with 

no prior conduction. Note that the wave number, km, corresponding to the onset of 

oscillatory convection is always larger than kmF. Thus, the decrease in roll size makes it 

more difficult to detect the convective roll pattern for more non-Fourier fluids.  

The corresponding frequency values are shown in Fig. 2.2b. Obviously, the frequency 

vanishes for k < ki. Typically, the frequency increases monotonically with k. 

Consequently, smaller rolls tend to oscillate faster. The rate of increase is large near k = 

ki, but decreases with C. For C = 0.111, ω increases linearly with k. This linear behaviour 
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is not difficult to establish. In fact, for ki = 0, Eq. (2.4.6) yields 
2

Pr 1
C

Pr





. In this case, 

the critical Rayleigh number and corresponding frequency are given by 

 

2

c cF2

Pr 1
Ra Ra

Pr 1

 

 

, c
Pr

k
Pr 1

  


.      (2.5.2)  

Only oscillatory convection is possible for this and higher C values, with an increasing 

jump in ω at k = 0 as C increases. Interestingly, Fig. 2.2b reflects a slow increase in ωc 

with k for small wave number. Indeed, Eq. (2.4.4) suggests that the frequency behaves 

like 
c ~

C


  for large C, indicating that oscillation occurs at a small frequency, 

independent of the Prandtl number. In this regard, the marginal stability curves for 

2

Pr 1
C

Pr





 reflect a weaker minimum with increasing C (Fig. 2.2a), suggesting that a 

range of roll sizes are equally likely to be observed in experiment. The neutral curves in 

Fig. 2.2a are similar to the ones obtained by Tzou [43] for a nanofluid using a two-phase 

approach (see Tzou’s Fig. 4b), and also behaves similar to the linear stability prediction 

of Nield [44]. This trend is also encountered when the level of elasticity increases for a 

viscoelastic fluid, for both Rayleigh-Benard convection [37] and rotating flows, such as 

Taylor-Couette flow [36], Taylor-Dean flow [45], the flows between two co-rotating 

disks [46] and cone-and-plate rheometer [47]. 

An important quantity in this analysis is the minimum critical Rayleigh number, Ram, as 

it reflects the Rayleigh number (temperature differential) for the observation of 

convection in experiment. Fig. 2.3 displays the influence of the Cattaneo and Prandtl 

numbers on Ram (Fig. 2.3a), corresponding wave number, km (Fig. 2.3b), and frequency, 

ωm (Fig. 2.3c). All curves in Fig. 3a show that Ram decreases monotonically with C, 

suggesting that rolls emerge more readily for strongly NF fluids, for any Prandtl number. 

The figure also depicts the 
4

mF

27
Ra

4


  line, the Fourier line that divides the weakly 
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from the strongly NF fluids, with corresponding Ram value located above and below the 

line, signaling the onset of stationary and oscillatory convection, respectively. Note that 

the intersection of a curve with the Fourier line occurs at C = CH. Note also that each 

curve begins at a non-zero C value, below which no minimum exists in the oscillatory 

branch of the Rayleigh number (see also Fig. 2.2a). The starting point corresponds to the 

coincidence of the minimum with the intersection Rayleigh number, Rai. The log-log 

plots in the inset in Fig. 2.3a suggest that the minimum critical Rayleigh number 

decreases with C, essentially like
a

mRa ~ C
, where a is a constant that depends on the 

Prandtl number. 

The influence of the Prandtl number is significant, particularly for small Pr. This is of 

particular relevance to liquids at low temperature (see, for instance, [3], [48]). 

Conduction appears to be more stable for fluids with lower Prandtl number. For fluids 

with Pr > 10, the stability picture is essentially unaffected by the Prandtl number. This is 

also evident from the wave number and frequency curves in Fig. 2.3b and 2.3c, 

respectively. The wave number decreases with C, suggesting that the size of stationary 

and oscillatory rolls increases with C, but decreases with Prandtl number. The expression 

for the wave number is not difficult to establish from Eq. (2.5.1) to be

1/4

m 2 2

Pr 1
k 1

CPr

 
   

 
. Clearly, at small Prandtl number,

1/4 1/2
mk ~ C Pr 

, reflecting 

small roll size for low-temperature liquids. Finally, the frequency in Fig. 2.3c exhibits a 

non-monotonic response with C. In fact, there seems to be an optimal C value for the 

oscillation frequency. Interestingly, both the frequency maximum and corresponding C 

value do not depend strongly on the Prandtl number. 

The interdependence on C and Pr is reminiscent of that predicted for a viscoelastic fluid, 

with C playing the role of the elasticity number, E. This becomes particularly evident at 

large Prandtl number. The large Pr oscillatory behaviour is captured from Eq. (2.4.8). In 

particular, the saturation in the minimum critical Rayleigh number, corresponding wave 

number and frequency shown in Fig. 2.3 is recovered as 
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2
2

m m m
Pr Pr Pr

4 1
lim Ra , lim k , lim 2 C 1.

C C  


        (2.5.3) 

These limit expressions are exactly the same as those for a viscoelastic fluid if C is 

replaced by E (see [36]). Similar to non-Fourier fluids, the region for elastic overstability 

grows as Pr increases. This observation is in agreement with the results of Brand & 

Zielinska and Eltayeb [49], [50] in the case of a Maxwell fluid. At large Pr values (Pr > 

10), which is typically the case of polymeric solutions, the region of overstability remains 

essentially unchanged, as indicated by the saturation of the curves, especially those 

corresponding to the critical Rayleigh number and wave number.  

Although the parallels between non-Fourier and non-Newtonian effects are striking, there 

is, however, one significant difference in the behaviour of the frequency. The trends are 

simply opposite with respect to the Prandtl number, for small Pr (compare the current 

Fig. 2.3c to Fig. 4 in [37]). More particularly, while the frequency approaches infinity at 

large Prandtl number for a viscoelastic fluid, it reaches a finite value as in Eq. (2.4.8) for 

a NF fluid. However, the trend in frequency is not consistent with Pr as Fig. 2.3c 

suggests. Although there is an overall decrease in the frequency with Pr over most of the 

C range, this trend is markedly reversed for C near the critical threshold CH. This is the 

trend that is most likely to correspond to reality.  

2.5.2 Further influence of the Prandtl number 

The influence of Prandtl number is assessed upon examining the behaviour of the 

Rayleigh number, Rai, and corresponding wave number, ki, at the intersection of the 

oscillatory and stationary branches (see Fig. 2.2a and 2.3a). Fig. 2.4 displays the 

dependence of Rai (Fig. 2.4a) and ki (Fig. 2.4b) on C for Pr ϵ [0.1, 100]. The curves in 

Fig. 2.4 are more easily interpreted in conjunction with the marginal stability curves as in 

Fig. 2.2a. Recall from those curves that two intersection points are possible for the same 

critical Rayleigh number, one for a weakly and another for a strongly NF fluid, on the 

right and left branch of the Fourier curve, respectively. The intersection wave number is 
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given by Eq. (2.4.6). The double-valuedness is reflected in Fig. 2.4a as well as in the 

expression of the Rayleigh number at intersection, namely 

 

 

3

i 2 2 2

1 Pr
Ra

Pr C 1 Pr Pr C




  

.        (2.5.4) 
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Figure 2.4 - Influence of the Cattaneo and Prandtl numbers on (a) the Rayleigh 

number, Rai, and (b) wave number, ki, at the intersection between the steady and 

oscillatory marginal stability branches. 

The minimum of Rai is the same regardless of the Prandtl number, but occurs at different 

C values corresponding to ik
2


 , given by 

 
2

2 Pr 1
C

3 Pr





. These C values coincide 

with the intersection of the ki curves and the 
2


 line in Fig. 2.4b. Fig. 2.4a shows a 

widening of the C range as Pr decreases. The intersection wave number in Fig. 2.4b 

decreases monotonically with C (or relaxation time), signaling a wider oscillatory range 

for more strongly NF fluids. The decrease is more rapid for larger Pr, leading to 

oscillatory convection over the whole k range at some critical C value. At small Pr, 

realistically, there is always a range of small wave number for stationary convection. 

2.5.3 Overstability threshold 

The emergence of oscillatory convection is an important phenomenon for non-Fourier 

fluids. When C approaches CH, the critical Rayleigh number experiences a second 
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minimum, as apparent from Fig. 2.2a. Consequently, the quantity of prime interest is CH, 

the value of C at which the minimum Rayleigh number for oscillatory convection 

coincides with the minimum of the Fourier curve for stationary convection. At C = CH, 

the minimum Rayleigh number, Ram, coincides with the Fourier value 
4

mF
27

Ra
4


 . It 

is helpful to refer to the curve corresponding to C = CH = 0.0655 in Fig. 2.2a. At C = CH, 

the neutral curve possesses two minima in Rac, which suggests the existence of a bistable 

mode. Thus, depending on the initial conditions or even possibly the imposed cell size, as 

the curve in Fig. 2.2a suggests, conduction can be lost to stationary or oscillatory 

convection.  

For C > CH, linear stability predicts that oscillatory, and not stationary, convection is 

bound to be observed, with a Hopf bifurcation expected to emerge at Ram. Fig. 2.5 

displays the dependence of the critical Cattaneo number, CH, corresponding wave 

number, kH and oscillation frequency, ωH, on the Prandtl number. Both the low and high 

ranges of Pr values are examined to cover a wide range of NF fluids. In this regard, low-

temperature liquids (Pr < 1) display a strong NF character (see [51] and references 

therein) despite their low Pr. For fluids at room temperature, the Prandtl number is 

typically much larger than one (on the order of 10 to 1000). In this case, Fig. 2.5 suggests 

that the conditions for onset of oscillatory convection are independent of the Prandtl 

number. Consequently, it is helpful to examine the critical conditions for large Pr. In this 

case, recalling the critical minimum Rayleigh number from Eq. (2.5.3) and setting it to 

RamF leads to 

2 4

c mF H 2Pr H

2
2

H H H
Pr Pr H

4 27 16
lim Ra Ra , C ,

C 4 27

1 3
lim k , lim 2 C 1 15.

C 16



 

 
   




      

   (2.5.5) 



56 

 

Fig. 2.5 indicates that NF fluids with higher thermometric conductivity (smaller Pr) are 

less likely to exhibit oscillatory convection, and is difficult to detect in practice given the 

low oscillation frequency. However, for Pr >> 1, the influence of fluid conductivity is 

less significant as indicated by the flattening of the curves at larger value of Pr. The 

critical C decreases monotonically with Pr, at a steeper rate in the small Pr range. Thus, a 

more viscous NF fluid tends to exhibit oscillatory convection more easily. However, 

there is a limit to the influence of the Prandtl number. Indeed, CH remains essentially 

unchanged for Pr > 3.  

 

Figure 2.5 - Influence of the Prandtl number on (a) the critical Cattaneo number, 

CH, (b) the corresponding wave number, kH, and (c) the oscillation frequency, ωH. 

In contrast to the threshold in Cattaneo and wave numbers, the frequency exhibits a 

nonmonotonic response against the Prandtl number. The frequency generally decreases 

with Prandtl number, but exhibits a weak maximum at small Pr. 

The onset of overstability coincides with the emergence of a pair of imaginary 

eigenvalues in the characteristic Eq. (2.4.2). Oscillatory convection (overstability) always 

emerges for strongly non-Fourier fluids (C > CH) at a critical Rayleigh number Ram < 
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RamF. The conductive state remains unconditionally stable for Ra < Ram, and becomes 

overstable for Ra > Ram. Both Ram and km generally decrease with C. The jump in wave 

number coincides with the sudden shift from 
mFk

2


  to km > kmF when C exceeds 

CH. The corresponding frequency, ωm generally displays a maximum. The frequency 

increases sharply (from zero) at C = CH, reaching a maximum. The minimum Rayleigh 

number and corresponding frequency reduce to 

m m
C C
lim Ra lim 0.
 

           (2.5.6) 

There is a discontinuity for the wave number, which is easily established for large C. 

Indeed,
m

C
lim k


  . 

Finally, the parallels between non-Fourier and non-Newtonian effects, at both the 

theoretical and experimental levels, cannot be overemphasized. Donzelli studied 

Rayleigh-Benard convection of nanofluids and found that when a uniform suspension 

was heated suddenly from below, transient oscillatory convection was observed [52]. In 

contrast to the current formulation, this behaviour is not within the capability of the 

models developed by Tzou [43] and Nield [44] who predict only stationary instability 

when equal concentrations of nanoparticles are imposed at the boundaries. In analogy 

with the current findings, the existence of an overstable mode for strongly elastic fluids 

was also predicted by linear stability analysis, and was confirmed experimentally. 

Kolodner [53] examined the thermal convection of DNA suspensions in a narrow annular 

configuration. Travelling short rolls (indicating oscillatory thermal convection) were 

observed at a Rayleigh number smaller than the Newtonian critical Rayleigh number (of 

the base solvent) for DNA suspensions, with sufficiently large elasticity number. 

Comparison between theory and experiment was carried out by Li & Khayat [37]. The 

threshold Rayleigh number for the onset of oscillation was found to be a decreasing 

function of E, dropping below the threshold for the onset of stationary convection, which 

parallels the behaviour in Fig. 2.4a with respect to C for a NF fluid. The theoretical 
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predictions of Li & Khayat [37] tend to overestimate the critical Rayleigh number, 

especially in the higher elasticity range.  

2.5.4 Mechanism behind oscillatory convection in non-Fourier fluids 

The oscillation induced in NF heat conduction is not difficult to understand given the 

hyperbolic character of energy/heat equations [1]. Physical insight is gained for NF fluid 

convection by examining heat accumulation and invoking the divergence of the heat flux 

vector rather than the heat flux vector itself. Fig. 2.6 shows the distribution of j versus x 

at z = 0.5 for a Fourier fluid (C = 0) and a NF fluid (C = 0.5), for a relatively large 

Prandtl number (Pr = 1000). Note that if j is negative (positive), heat is accumulated 

(removed) by conduction. Now, consider the centre of the roll 
1

x ,z
k 2

 
  

 
where there 

is no flow for a stationary roll (stagnation point), and thus, the only mode of heat transfer 

is conduction. For a Fourier fluid 
1

j x ,z 0
k 2

 
   

 
, and, therefore, the temperature at 

the centre of the roll remains constant. On the other hand, for a NF fluid, 

1
j x ,z 0

k 2

 
   

 
. Consequently, the temperature at the centre rises, and, due to 

buoyancy, an upward flow is generated. By considering a similar argument for other 

locations over the roll, one can explain the movement of the roll perpendicular to its axis 

in the horizontal plane, in the form of a travelling wave. 
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Figure 2.6 - Distribution of j at z = 0.5 for a Fourier (C = 0) and a non-Fourier fluid 

(C = 0.5). 

The increase in the oscillation frequency with increasing wave number, depicted in Fig. 

2.2b, is physically rationalized by first invoking the argument of Manneville [54]. “The 

emergence of wide convection cells is hindered by horizontal shear viscous damping 

whereas narrow cells have to fight against both thermal diffusion and the vertical shear 

viscous damping.” For narrow rolls, thermal diffusion opposes the flow by transferring 

heat from hot regions (upward moving fluid) to the cold regions (downward moving 

fluid). As rolls become narrower due to thermal diffusion, the temperature difference 

between upward and downward flows decreases, and, consequently, fluid velocity 

decreases [54], [55]. However, for NF fluids the horizontal heat flux crosses the roll 

boundary and shifts the location of rolls perpendicular to the roll axis, as previously 

explained. As rolls become narrower, the effect of thermal diffusion becomes more 

dominant and thus rolls seem to move faster. 
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2.6 Concluding remarks 

This study examines the natural convection of non-Fourier fluids of the single phase-

lagging type. These fluids possess a relaxation time, reflecting the delay in the response 

of the heat flux and the temperature gradient. The study is particularly relevant to low-

temperature liquids, small length scales and fast heat transfer processes. The relevance of 

NF effects to nanofluids has also been recently recognized in the literature. The parallels 

between NF and polymeric fluids are highlighted. Similar to viscoelastic fluids, the 

constitutive equation for heat flux used in the present analysis is frame invariant. 

Linear stability analysis indicates that, in contrast to ordinary fluids, a NF fluid can lose 

its conductive mode to stationary or oscillatory convection. For small relaxation time 

(small Cattaneo number, C), the neutral stability curve comprises a Fourier branch (k < 

ki) and an oscillatory branch (k > ki). As C increases and reaches a critical value, CH, both 

stationary and oscillatory convection become equally probable, confirming the existence 

of the bistable mode observed in experiment [52]. For C > CH, only oscillatory 

convection is predicted, at a Rayleigh number decreasing with C (see Fig. 2.3a). Thus, 

oscillatory convection becomes increasingly the mode of preference, compared to both 

conduction and stationary convection. In fact, for strongly non-Fourier fluids, oscillatory 

convection may practically become spontaneously observed, with no prior conduction. It 

is found that the oscillatory roll size grows with relaxation time. Although the oscillation 

frequency decreases monotonically with roll size (Fig. 2.3b), it exhibits a non-monotonic 

response with respect to relaxation time (emergence of a maximum with respect to C). 

Finally, the effect of Pr on linear stability appears to be negligible for Pr > 10.  The 

figures show a flattening of the curves well before Pr = 100 and thus as far as linear 

stability is concerned, a fluid with Pr = 105 should behave similar to a fluid with Pr = 10. 
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Chapter 3  

3 Thermal convection of fluids with non-Fourier heat 
transport 

3.1 Introduction 

Heat transfer is typically described by Fourier’s law, which is given by 

K T  Q .          (3.1.1) 

Here, Q is the heat flux, K is the thermal conductivity of the medium, and T is the 

temperature. When combined with the First Law of Thermodynamics, Fourier’s law 

predicts an infinite speed of heat propagation. Physically, however, a disturbance in T 

must travel at a finite speed that is determined by molecular interactions [1]. One 

approach to remedy this problem has been to add a partial time derivative to the left-hand 

side of Eq. (3.1.1), as in the case of the Maxwell-Cattaneo equation [2]. This results in a 

hyperbolic differential equation, implying wave-like heat transport. This does not 

necessarily solve the problem of instantaneous heat propagation, however [3]–[5], since 

the Maxwell-Cattaneo equation is not frame-invariant and, as such, its application is 

restricted to non-deformable media. Heat transport equations involving different 

objective derivatives have been introduced in attempts to remedy this situation. The most 

promising modification appears to be that of [6], recently revisited by [7], whose use of 

Oldroyd’s upper-convected derivative [8] leads to the frame indifferent Cattaneo-

Vernotte equation, 

K T
t


   


Q
+Q          (3.1.2) 

 where 

t t

 
      

 

Q Q
V Q Q V Q V .      (3.1.3) 
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τ is the thermal relaxation time of the medium and characterizes the relaxation of the heat 

flux to a new steady state following a perturbation of the temperature field. 

Coupled with the energy equation, this constitutive equation yields a single equation for 

T(x,t), an advantage that other frame-invariant formulations do not possess [6]. This 

equation replaces Fourier’s law whenever non-Fourier effects are relevant, collapses back 

to Fourier’s law when they are not, and can be applied to both deformable and non-

deformable media. In this paper, we refer to fluids in which the effects of τ are non-

negligible as non-Fourier fluids, while those in which the relaxation time can be ignored 

are referred to as Fourier fluids. 

Most practical problems involve materials with relaxation times on the order of 

picoseconds [9] and, in such cases, the Cattaneo-Vernotte equation reduces to the 

classical Fourier model. There are systems, however, in which the relaxation time is not 

negligible. Non-Fourier effects lead to thermal waves in superfluid liquid helium, 

referred to as second sound [10], [11], and have been increasingly observed in a variety 

of other systems as well. For example at small lengths scales, the heat transport properties 

of rarefied gases [12], [13] and convection around MEMS devices have been explained in 

terms of non-Fourier behaviour [14]–[16], and non-Fourier contributions to heat transport 

have been predicted in theories of granular flows [17], [18] as well as nanofluids [19].  

The importance of non-Fourier effects is characterized by the ratio of the thermal 

relaxation time to the time scale for thermal diffusion. If D is a characteristic length scale 

and κ the thermal diffusivity of the fluid, then the thermal diffusion time is

2D


. Non-

Fourier effects become significant when the ratio
2

C
D


 , referred to as the Cattaneo 

number, becomes significant. C increases relatively rapidly as D decreases, and so non-

Fourier effects are expected to be observable in very small systems such as micro- and 

nanometer devices that involve heat transport and flow [15], [20]–[28]. 

There has been a limited amount of work done on convection with non-Fourier heat 

transport [3], [29]–[31]. In this paper, we analytically investigate the linear stability of the 
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steady conduction state in a Rayleigh-Bénard configuration with C > 0, as well as the 

heat transport and stability of the steady convection state that bifurcates from the 

conduction state. 

3.2 The Mathematical Model 

3.2.1 Governing equations and boundary conditions 

Consider a thin layer of a Newtonian non-Fourier liquid of infinite extent in the (x,y) 

directions, confined between isothermal plates at Z = 0 and Z = D. The fluid layer is 

heated from below, with the plates maintained at temperatures T0 + δT and T0, 

respectively. When δT is small, there is no flow and the heat transport across the layer is 

solely due to conduction. As δT is increased, thermal expansion causes the density of the 

liquid near the lower plate to decrease. When the decrease in gravitational potential 

energy, which results from raising the less-dense fluid to the top of the layer, becomes 

larger than the energy dissipated by viscosity and thermal diffusion, a convective flow 

develops. 

The fluid density ρ is assumed to depend linearly on the temperature T according to 

 Tρ = ρ 1-α T -T0 0   ,        (3.2.1) 

where 
T is the coefficient of thermal expansion and ρ0 is the density of the fluid at T

0
. 

The fluid is assumed to be incompressible, with specific heat at constant pressure cp, 

thermal conductivity K and viscosity μ. The fluid behavior is described by equations for 

the conservation of mass, linear momentum and energy, as well as the constitutive 

equation for the non-Fourier heat flux. In this case, the conservation equations are given 

by 

0 V ,          (3.2.2) 

 0 t ˆP g      V V V z V ,       (3.2.3) 
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 0 p tc T T    V Q ,        (3.2.4) 

where Δ is the Laplacian operator and the subscript t denotes partial differentiation with 

respect to time. Here V = (U, 0, W) is the velocity vector, P is the pressure, g is the 

acceleration due to gravity, and ẑ  is a unit vector in the z-direction. In writing Eqs. 

(3.2.2)-(3.2.4) we have used the Boussinesq approximation, which states that the effect of 

the variations in density are negligible everywhere in the conservation equations except 

in the buoyancy term of Eq. (3.2.3) [32]. We take the heat flux to be governed by the 

Cattaneo-Vernotte equation introduced above, re-written here as 

 t K T        Q V Q Q V Q .      (3.2.5) 

We use free-free boundary conditions and perfectly conducting upper and lower plates, 

such that the boundary conditions are  

   W X,Z 0, t W X,Z D, t 0,     

   zz zzW X,Z 0, t W X,Z D, t 0.          (3.2.6) 

   0 0T X,Z 0, t T T, T X,Z D,t T .       

While other boundary conditions could be adopted, the free-free conditions are 

convenient due to the mathematical simplicity of the corresponding solutions for V and T 

[33].  

The base state of the system of Eqs. (3.2.2)-(3.2.5) with the boundary conditions in Eq. 

(3.2.6) corresponds to no flow. Both the transient and upper convective terms in Eq. 

(3.2.5) vanish in this state, and transport of heat occurs simply by conduction. 

Consequently, the temperature, pressure gradient and heat flux in this state are given by  

 B 0T Z D T T T     , 

 B 0 TdP / dZ 1 T 1 Z D g       ,      (3.2.7) 
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B
T

0,K
D

 
  
 

Q , 

respectively, where the subscript B refers to the base state. The problem is conveniently 

cast in dimensionless form by taking the length, time and velocity scales as
2D

D, and
D




, 

respectively. Let  
2

B
D

p P P 


,  B
D

K T
 


q Q Q and BT T

T


 


 be the 

dimensionless deviations of the pressure, heat flux and temperature from their values in 

the base state. Substituting these into Eqs. (3.2.2)-(3.2.5) the dimensionless equations for 

these deviations are 

0 v ,          (3.2.8) 

 1
t zPr p Ra       v v v e v ,     (3.2.9) 

t w     v q ,                  (3.2.10) 

 t zC        q v v q q v q ,                (3.2.11) 

where v = (u, 0, w) is the dimensionless velocity vector. There are two linear terms of 

non-Fourier origin in Eq. (3.2.11): the transient term proportional to qt and the term 

involving vz. The non-dimensional Prandtl number, Rayleigh number, and Cattaneo 

number are given by 

3
T

2

T gD
Pr , Ra , C ,

D

  
  
 

               (3.2.12) 

respectively, where 
0 p

K

c
 


 is the thermal diffusivity. 



72 

 

The heat flux can be eliminated from Eqs. (3.2.10) and (3.2.11) by taking the divergence 

of Eq. (3.2.11), using the identity    :a b a b a b       , where a and b are 

two general vectors, and using (3.2.8) and (3.2.10). We obtain 

  2
tt t t t tC 2 w - w .              v v v v v             (3.2.13) 

Since the problem is two-dimensional, we introduce the stream function  x,z, t , such 

that 

z xu , w .    

Finally, taking the curl of Eq. (3.2.9) eliminates of the pressure term from the momentum 

equation. The resulting system of equations for the two unknowns ψ and θ is 

 1 2
t z xzz x zzz z xxx x xxz xPr Ra                          (3.2.14) 

 tt zt x xt z z xt x zt xt z xx x xz z xz x

2 2
z xx z x zz x x xz z z xx x z xz x zz

t z x x z x xx zz

C[ 2

2 ]

0

                 

                

        

  (3.2.15) 

The non-dimensional boundary conditions on ψ and θ are 

   

   

   

x x

zz zz

x,z 0, t x, z 1, t

x, z 0, t x, z 1, t

x, z 0, t x, z 1, t 0.

    

    

      

               (3.2.16) 

Eqs. (3.2.14) and (3.2.15) reduce to the usual equations for Rayleigh-Bénard convection 

with Fourier heat transport if C = 0. 

3.2.2 Development of the Dynamical System 

The solution to Eqs. (3.2.14) and (3.2.15), subject to boundary conditions in Eq. (3.2.16), 

can be represented by an infinite Fourier series in x and z with time dependent Fourier 
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coefficients. This yields an infinite set of coupled ordinary differential equations. In the 

spirit of Lorenz [34], we truncate this Fourier series to obtain a finite system of ordinary 

differential equations, keeping only the minimum number of terms required to include the 

necessary physics. The truncated system must still satisfy the boundary conditions. 

Additionally, we require that the truncated equations for the non-Fourier system reduce to 

the well-known Lorenz model [34] in the absence of non-Fourier effects, i.e., when C  

0. As in the case of Fourier fluids, we keep only the first term in the Fourier series for the 

stream function, which satisfies the boundary conditions in Eq. (3.2.16): 

       1x,z, t t sin z sin kx   .                 (3.2.17) 

Here, k is the wave number of the flow in the x-direction. As with a Fourier fluid, more 

than one term must be kept in the expression for the temperature field to retain some part 

of the original system’s essential nonlinearity. Again, following Lorenz [34], we write the 

temperature field as 

           1 2x,z, t t sin z cos kx t sin 2 z      .               (3.2.18) 

Projecting Eqs. (3.2.14)-(3.2.15) onto the modes in Eqs. (3.2.17)-(3.2.18), we obtain, 

after some algebra, a system of five coupled first-order ordinary differential equations: 

 X Pr X RaY                      (3.2.19) 

Y A                     (3.2.20) 

   2

cF cF

Pr X
A X Y 2XB Pr X RaY Z X RaY a A XZ Y

Ra Ra

 
          

 
           (3.2.21) 

Z B                      (3.2.22) 

   
2

2

cF

X
B 2XA Pr X RaY Y 2X Z a XY B bZ

Ra
                     (3.2.23) 
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Here, time has been rescaled has been rescaled by β = π2 + k2, and the scaled mode 

amplitudes are 

2 2

1 1 23 3

k k k
X , Y , Z .

2b 2

  
     

 
              (3.2.24) 

The parameters 

2 3

cF 2

1 4
a , b , Ra

C k

 
  

 
               (3.2.25) 

have also been introduced. When C = 0, Eqs. (3.2.19)-(3.2.23) reduce to the usual Lorenz 

Model [34].

 

3.3 Linear Stability Analysis of the Conduction State 

The linear stability of the conduction state for a fluid with a single relaxation time was 

examined previously [35]. The results will be summarized here for completeness and to 

provide the background information necessary to properly discuss the transition from 

conduction to steady convection expected for non-Fourier fluids. 

As for any fluid, once a critical value of the Rayleigh number has been exceeded, the 

stability of the conduction state of a non-Fourier fluid is lost to convection. We introduce 

an infinitesimal perturbation to the steady conduction state defined by  

           

       

t ikx t ikx t ikx

t ikx t ikx

X x,z, t X z e , Y x,z, t Y z e , A x,z, t A z e ,

Z x,z, t Z z e , B x,z, t B z e ,

     

   

    

  
  (3.3.1) 

where σ describes the growth rate of the perturbation. The dispersion relation is given by 

   2 3 2

cF cF

Ra Pr Ra Pr
0 a ab a Pr a Pr a a Pr a

Ra Ra

  
               

  
  (3.3.2) 

The non-Fourier conduction state can lose stability to either steady or unsteady 

convection, and to allow for this possibility, σ is taken to be complex, i.e., 
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r i     . 

ω is the dimensionless frequency of oscillation of the convective flow. If the real part σr 

is negative (positive), then the conduction state is stable (unstable) to these infinitesimal 

perturbations. The quadratic portion of this Eq. (3.3.2) yields only stable values for σ. To 

obtain the marginal stability boundary, we thus set the cubic factor in Eq. (3.3.2) equal to 

zero and then set σr = 0.   

For steady convection, ω = 0, and the Rayleigh number Rac at the onset of convection is 

the same as for Fourier transport, i.e., 

3

c cF 2
Ra Ra ,

k


           (3.3.3) 

where the subscript F indicates the Fourier result. In this case, Rac has a minimum of 

4

mF

27
Ra

4


 at a wave number mFk

2


 . 

For the case of oscillatory convection, Rac and ω are given by 

 2

c cF 2

Pr a Pr 1
Ra aRa

Pr

  
  

 
 

       (3.3.4) 

and 

 2a Pr 1
a

Pr


  ,         (3.3.5) 

respectively. An oscillatory solution to Eq. (3.3.2) is only possible if the right-hand-side 

of Eq. (3.3.5) is positive. This requires 
Pr

a
Pr 1




or, using Eq. (3.2.25a), 

Pr 1
C

Pr





.          (3.3.6) 
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Similarly, oscillatory convection can only occur if  

21 Pr
k

Pr C


  .         (3.3.7) 

Eq. (3.3.6) indicates that oscillatory convection is only possible if either C or the wave 

number is large enough. There are thus two distinct regions of the marginal stability 

curve, as shown in Fig. 3.1. One is the weakly non-Fourier fluid region, defined as C < 

0.0651. Here, the stability boundary is comprised of the Fourier curve (shown as a heavy 

line in Fig. 3.1) splitting off into the oscillatory non-Fourier branch at their intersection 

point. Since the minimum of this curve is at the same values of Ra and k as in the Fourier 

case, the conduction state still loses stability at RacF with no oscillatory behaviour. The 

other region is strongly non-Fourier, corresponding to C > 0.0651. Here, the minimum of 

the non-Fourier branch is less than RacF and convection sets in earlier than for a Fourier 

fluid. On this branch, the loss of stability is via a Hopf bifurcation to an oscillatory 

convection state. 
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Figure 3.1 - Marginal stability curves for the onset of convection in a non-Fourier 

fluid for several values of the Catteneo number C. Pr = 10 in all cases. The Fourier 

stability boundary (C = 0) is shown by a heavier line. The weakly non-Fourier 

region corresponds to C < 0.0651, and the strongly non-Fourier region to C > 

0.0651. 

The Fourier and non-Fourier branches intersect at  

2
i

1 Pr
k

Pr C


  ,         (3.3.8)  

where the frequency ω vanishes. It can be easily verified that 

   c i i cF iRa k k Ra Ra k k    .  

Eq. (3.3.8) indicates that as C increases, ki decreases and eventually goes to zero, at 

which point oscillatory convection is expected to occur at all wave numbers. 

As shown previously [35], Pr does not affect the Fourier curve, however, an increase in 

the Prandtl number drives the non-Fourier branch of the stability boundary downward, 

promoting instability. Conversely, lower Pr fluids require stronger non-Fourier effects to 

change the instability conditions from the standard Lorenz model. 
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When the system becomes unstable by crossing the strongly non-Fourier stability 

boundary, it is predicted to do so via a Hopf Bifurcation. One can show numerically that 

there is only one pair of purely imaginary roots, where all other roots have non-zero real 

parts. At a Hopf Bifurcation, the transversality condition, 

 
c

1,2
Ra Ra

d
Re 0

dRa 

  ,        (3.3.9) 

must also be satisfied [36]. Here, σ1,2 represents the pair of purely imaginary eigenvalues. 

The derivative of the cubic portion of the dispersion relation is taken and isolated for 

 

 2

cF

Pr ad

dRa Ra Pr
Ra 3 2 a Pr a Pr a

Ra




  
       

  

.               (3.3.10) 

The transversality condition Eq. (3.3.9) is clearly satisfied since the ‘a’ term in the 

numerator ensures a non-zero real part. 

In the analysis that follows, we investigate weakly non-Fourier steady state solutions to 

Eq. (3.2.19)-(3.2.23). This will limit the analysis to C < 0.0651 where the minimum of 

the stability boundary occurs at Ra ≈ 657 and k / 2  . 

3.4 Steady State Solutions 

We first find the steady state solutions and study their linear stability analytically. The 

goal is to shed light on the key differences between convection in fluids with Fourier and 

non-Fourier heat transport. Although the value of RacF does not change, weak non-

Fourier effects are still expected to alter the stability of the steady convection state due to 

the additional non-linear terms, of non-Fourier origin, that come into the energy equation. 

For small relaxation times (or equivalently, for large a), one expects that for Ra close to 

RacF, the flow will be similar to that in a Fourier fluid.  

The nonlinear terms in Eq. (3.2.15) that come from the upper-convective derivative alter 

the steady state solution from that of the standard Lorenz model. As in the Fourier case, 

the trivial solution X = Y = Z = A = B = 0 still exists, and corresponds to pure thermal 
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conduction with no flow. As Ra becomes greater than RacF, two branches bifurcate from 

the conduction state, corresponding to the onset of convective rolls. These two branches 

are symmetric with respect to a change in sign of X, which corresponds physically to 

reversing the direction of rotation of the rolls. For simplicity, we consider only solutions 

with X 0  here. The steady state solution is found by setting 

X Y Z A B 0     . 

In this case, the momentum equation Eq. (3.2.19) gives,  

X
Y

Ra
  ,          (3.4.1) 

as in the original Lorenz model. Making this substitution in Eq. (3.2.21) we get

 2
cF cF

cF

Ra X a Ra Ra
Z

aRaRa

  
 .       (3.4.2) 

Finally, using Eq. (3.4.1) and Eq. (3.4.2) in Eq. (3.2.23), we obtain 

    4 2 2
cF cF cF0 2Ra X a Ra Ra a 2 b X a b Ra Ra       .   (3.4.3) 

This equation is quadratic in X2. It can be rearranged to give Ra as a function of the 

convective amplitude X: 

 4 2 2 2

cF 2 2

2X 2a a ab X a b
Ra Ra

aX a b

     
 
 
 

 .    (3.4.4) 

We will denote the solution to Eq. (4.4) for C > 0 by XNF, and the Fourier solution at the 

same Ra by XF. 
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Figure 3.2 – Steady state convection amplitude as a function of Ra. The heavier 

curve represents C = 0, and the fine curves are, from right to left: C = 0.01, 0.02, 

0.03, 0.04 and 0.05. Solid lines are linearly stable states, and dashed lines are 

linearly unstable. The stars indicate the point of at which the steady convection state 

becomes unstable, as discussed in the text. 

Eq. (3.4.4) indicates that the steady state solution is independent of Pr. This expression is 

plotted for weakly non-Fourier fluids with different values of C in Fig. 3.2, allowing a 

comparison of the convection amplitude in the Fourier and weakly non-Fourier cases. For 

all C, the bifurcation occurs at Ra = RacF, where the conduction state X = 0 becomes 

unconditionally unstable in favour of convection (X ≠ 0). The critical Rayleigh number is  

 
3

2 2 3

c cF 2 2

k
Ra Ra

k k

  
   ,       (3.4.5) 

with the critical wave number also equal to its Fourier value, 

c cFk k
2


  .         (3.4.6) 
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Fig. 3.2 shows that for C less than about 0.02, the bifurcation to the convecting state 

remains supercritical. Close to the onset of convection, XNF is larger than in the Fourier 

case, and increases as C increases. This indicates that even a small amount of non-Fourier 

character increases the convective flow velocity close to the onset.  

As Ra is increased for a given value of C, however, XNF flattens out and eventually 

crosses and then falls below the curve for C = 0. At high Ra, XNF approaches a horizontal 

asymptote due to the vanishing of the denominator in Eq. (3.4.4). Equating this 

denominator to zero gives the maximum steady state roll amplitude, 

 

2

inf 2
2 2

4
X ab

C k


 

 

.       (3.4.7) 

 

Figure 3.3 -  The limiting amplitude of the steady state convection branch as Ra goes 

to infinity plotted as a function of C. 

As shown in Fig. 3.3, the value of this asymptote decreases from infinity as C increases 

from zero. Although these results suggest that XF will always eventually surpass XNF, we 

show below that for large enough C, the non-Fourier convection state loses stability 

before this happens. In addition, when C is sufficiently large, the steady conduction state 

becomes unstable to large perturbations even for Ra < RacF.  
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The value of X at the intersection of the Fourier and non-Fourier solutions is found by 

equating the expressions for Ra in the two cases:  

 4 2 2 2
2

cF cF 2 2

2X 2a a ab X a bX
Ra 1 Ra

b aX a b

      
   
       

. 

Solving for X and excluding the trivial intersection at Ra = RacF gives the amplitude at 

the intersection as 

 ab 1 b
X

a 2b





         (3.4.8) 

for finite a (C > 0). Note that when a = ∞ (C = 0), the two solutions overlap for all Ra. 

As C increases, the bifurcation to convection becomes subcritical. To find where this 

occurs, we set Ra = RacF in Eq. (3.4.4), obtaining 

 4 20 2X a 1 a b X     .        (3.4.9) 

A real, non-trivial solution appears when the coefficient of X2 becomes positive. This 

occurs when 

suba 1 b  ,                    (3.4.10) 

or from (3.2.25a), 

sub

1
C C 


 .                   (3.4.11) 

Fig. 3.2 shows the transition from a supercritical bifurcation to a subcritical bifurcation. 

The fact that the bifurcation becomes subcritical demonstrates that in sufficiently non-

Fourier fluids, convection can occur at much lower Ra than in Fourier fluids. Note that 

the backward portion of the subcritical bifurcation curves shown in Fig. 3.2 is unstable. 

The minimum value of Ra for which the convection state exists, and the corresponding 
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value of the roll amplitude Xm can be found from Eq. (3.4.4) by setting dRa/dX = 0. The 

result for Xm is 

2
m

1
X 4ab 2a 2b 2ab 2b

2
     ,                (3.4.12) 

where the two possible solutions correspond to the branches above and below the x-axis. 

The value of Ra at the minimum of the subcritical branch is found by substituting Eq. 

(3.4.12) into Eq. (3.4.4), giving  

    m cFRa 2Ra 4 b b a 1 2 2 a 3b                    (3.4.13) 

Eq. (3.4.13) applies only in the weakly non-Fourier regime, and so breaks down for C > 

0.0651. Fig. 3.4 shows the behaviour of Xm and Ram as functions of C. 
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Figure 3.4 – a) The minimum value of X and b) Ram on the subcritical bifurcation 

curves for values of C in the weakly non-Fourier regime 

3.5 Linear Stability Analysis of the Steady State Convection 

In the absence of non-Fourier effects, the steady convection state discussed in Sect. 3.4 

loses stability to chaos at Ra/RacF ≈ 24.74 [34]. The stability behaviour changes for 

weakly non-Fourier fluids, however. A linear stability analysis of the steady convection 

state leads to a dispersion relation that is fifth order in the complex growth rate σ. The 

point at which the real part of σ changes sign and the steady convection state becomes 

unstable must be found numerically. Fig. 3.5 shows the Rayleigh number Ra* at which 

this instability appears as a function of C. 
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Figure 3.5 – Ra* vs C. The solid line represents the region in which the bifurcation 

from conduction to convection is supercritical and dotted line represents the 

subcritical bifurcation regime. The horizontal line represents RacF. The inset shows 

the same data, but with a logarithmic x-axis. 

As C is increased, the range of existence of the steady convection state decreases, 

approaching 0 asymptotically as C  ∞. When C ≈ 0.05, the instability of the steady 

convection state occurs for Ra* = RacF as indicated in Fig. 3.5. In this regime, there is no 

direct transition from conduction to steady convection as Ra is increased through RacF. 

As discussed above, XNF is always larger than XF close to Rac, but becomes smaller for 

large Ra. As C increases, the stable range of the steady convection state decreases. We 

find that the non-Fourier convection state may lose stability before XNF is surpassed in 

magnitude by XF. This is illustrated in Fig. 3.6, which shows the steady Fourier and non-

Fourier convection amplitudes XF and XNF at the Rayleigh number Ra* at which the non-

Fourier convection state loses stability. The inset shows the difference XNF-XF at the 

same Rayleigh number. 
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Figure 3.6 – The convection amplitude, X, for a Fourier and a non-Fourier fluid at 

the Rayleigh number Ra* at which the steady convection state becomes unstable. 

The inset shows the difference XNF-XF at Ra*. 

As C increases from zero, XNF < XF at Ra*. As the stability limit of the non-Fourier 

convection state decreases, the value of XNF-XF at Ra* initially decreases as well, 

approaching a minimum at C ≈ 0.004. The difference then increases until C ≈ 0.02, where 

XF and XNF become equal. At higher C, non-Fourier convection amplitude is always 

greater than XF at Ra*
, reaching a maximum C ≈ 0.05 where Ra* ≈ RacF, and thus XF = 0.  

The loss of stability of the steady convection state occurs via a Hopf Bifurcation. 

Numerical solution of the fifth-order polynomial dispersion relation at the bifurcation 

point yields one pair of purely imaginary roots with all other roots having strictly 

negative real parts. The transversality condition, Eq. (3.3.9), is also satisfied, as 

illustrated in Fig. 3.7, which shows that the slope of σr as a function of Ra is non-zero at 

Ra*.  
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Figure 3.7 – σr vs Ra near the loss of stability of the steady convection state at Ra* 

for C = 0.01. The vertical line shows Ra*, at which σr = 0. 

Pr has no effect on the steady convection state itself, but it does affect its linear stability. 

As Pr increases, the steady convection state becomes more unstable, similar to the effect 

of Pr on the linear stability of the conduction state for a non-Fourier fluid [35]. Fig. 3.8 

shows Ra* as a function of Pr. 
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Figure 3.8 - Ra* as a function of  C for two values of Pr. The inset is a log-log plot of 

the same data. 

Decreasing Pr increases Ra*, increasing the stability range of the convection state. This 

effect is more pronounced at low C.  For example, for C = 0.0001, the Rayleigh number 

at the instability for Pr = 1 is over 23 times that of Pr = 10. In addition, the range of C 

over which steady convection exists is larger for low Pr. This reflects the results of [35] 

showing that lowering the Prandtl number inhibits non-Fourier effects. 

3.6 Heat Transport 

Convective heat transfer is described by the Nusselt number, Nu, defined as the ratio of 

total heat transport to the conductive heat transport that would exist in the absence of 

convection. In our dimensionless units, Nu is given by 

zNu 1 Q            (3.6.1) 

Averaging this horizontally over one convection cell gives  
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2

k
z z0

Nu 1 Q 1 Q dx



             (3.6.2) 

In general, Qz will include contributions due to convective heat transport as well as 

thermal gradients. At z = 0 and z = 1, however, the flow vertical velocity is zero, so Qz 

will simply be proportional to T . In this case, we can write Qz as 

           z z1 z2Q x,z, t q t cos z cos kx q t cos 2 z         (3.6.3) 

with z = 0 or z = 1.  

Integrating this over x as in Eq. (3.6.2) we get 

z2Nu 1 q  .          (3.6.4) 

By conservation of energy, Nu is independent of z under steady state conditions, so this 

expression holds for all z.   

Substituting the truncated Fourier expansions for the stream function, temperature, and 

heat flux into Eq. (3.2.11) and projecting over x = [0, 2π/k] gives  

z2 2q 2   ,          (3.6.5) 

and thus 

2Nu 1 2    .        (3.6.6) 

Scaling this expression as above, we can find the cell averaged Nusselt number in terms 

of X: 

 2
cF cFRa X a Ra Ra

Nu 1 2
aRa

  
  
  

.      (3.6.7) 
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Figure 3.9 - Nu vs Ra showing the point of instability for Pr = 10 (•) and Pr = 1 (x). 

Fig. 3.9 depicts the effects of non-Fourier heat transport on Nu. In the Fourier case (C = 

0), Nu increases monotonically as Ra is increased, and approaches Nu = 3 as Ra  ∞ 

[37]. As C is increased, the Nusselt number at any particular value of Ra increases 

monotonically even though XNF may not be larger than XF. When C > 0, Nu reaches a 

maximum value that is higher than the asymptotic Fourier limit, then decreases to 

approach Nu = 3 from above. When C is large enough that the bifurcation to convection 

is subcritical, Nu jumps discontinuously at the onset of convection, as shown by Figure 

3.9 for C = 0.05. 

The Prandtl number does not affect the value of the Nusselt number directly, but, as 

discussed above, it does influence the point at which the steady convective state becomes 

unstable. As Pr decreases, the Rayleigh number at the point of instability increases, as 

shown in Fig. 3.9. As a result, Nu may not always be an increasing function of Ra, 

although as explained above, Nu will always increase as C increases for a given value of 

Ra. 
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3.7 Discussion 

Non-Fourier heat transport was previously shown to affect the stability boundary of the 

steady conduction state and the onset of Rayleigh-Bénard convection [35]. Our present 

results demonstrate that they will also lead to changes in the properties and stability of 

the steady convection state. For C close to zero, the amplitude of non-Fourier steady state 

convection is larger than for a Fourier fluid close to onset, however for all values of C, 

XNF becomes smaller than XF at large Ra. As C increases through a critical value, the 

bifurcation to convection becomes subcritical, yielding the possibility of convection at 

values of Ra less than RacF. We have also shown that Nu is expected to be larger for non-

Fourier convection at all C > 0, regardless of the value of Ra, suggesting that non-Fourier 

effects could lead to higher heat transfer than in the Fourier case. The linear stability of 

the steady convection state is also affected by the presence of non-Fourier effects. As C 

increases from zero, the value of Ra at which the steady convection state loses stability 

decreases quickly and at large C approaches zero asymptotically. 

As discussed in the introduction, non-Fourier effects are expected to become important at 

small length scales. This point has been considered in the last decade [15], [25] as the 

importance of nano-structured devices has grown. Experimentally, increased heat transfer 

has been observed in small scale natural convection around MEMS devices [15] and it 

was pointed out that conventional models could underestimate the heat transfer in such 

microscale flows. It has also been suggested that the efficiency of applications making 

use of Polymerase Chain Reactions (PCR) could be enhanced by further characterization 

of the small-scale convective flow fields [28]. PCR utilizes Rayleigh-Bénard convection 

at a scale on the order of 10-3 m where non-Fourier effects could be significant. 

The dimensional analysis of [15] can provide some insight into the behaviour of the 

Nusselt number. We define the Grashof number by 

3
T
2

T gD Ra
Gr

Pr

 
 


.        (3.7.1) 
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For natural convection on macroscopic scales, the buoyancy force is balanced by the fluid 

inertia, in which case it can be shown by dimensional analysis that 

0.5Nu Gr Pr .          (3.7.2) 

As the length scale of the problem decreases, the inertial force becomes dominated by 

viscosity. In this case, buoyancy is balanced by viscous forces and dimensional analysis 

gives 

Nu Gr Pr .          (3.7.3) 

As long as Gr remains larger than 1, this analysis predicts that Nu should increase for 

microscale heat transfer at a given value of Gr. This is consistent with our predictions for 

the effect of non-Fourier heat transfer, which indeed is expected to be important in small 

scale problems. 

Eq. (3.6.7) shows that as Ra  ∞, the Nusselt number tends to Nu = 3, just as in the 

Fourier case. Interestingly, Fig. 12 in [15] also shows that the influence of the small 

length scale on the convective heat transfer disappears at large Ra as the Nusselt number 

predicted from macroscale correlations merges with the experimental results. This 

behaviour is again consistent with our analysis. 

Non-Fourier effects have also been recognized in nanofluids [19] and rarefied gases [12], 

[13]. Experimentally, nanofluids have exhibited oscillatory convection [38] which we 

have shown to be a characteristic of non-Fourier effects. Nanofluids have also shown to 

have increased heat transport capabilities with increasing volume fraction of 

nanoparticles [39]. 

From kinetic theory pertaining to rarefied gases, we can relate the Cattaneo number to the 

Knudsen number, Kn = λ / D, where λ is the mean free path. For a rarefied gas, [40] 

equivalently describes the kinematic viscosity as 

c

3


  ,          (3.7.4) 
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where c  is the mean molecular velocity. Further, from Eq. (3.11) and Eq. (3.15) in [40], 

the relaxation time can be defined as 

3

2p


  ,          (3.7.5) 

where p is the mean pressure. From [41], the pressure is approximately given by 

2c
p

3


           (3.7.6) 

and thus, substituting into Eq. (3.7.5), writing υ = μ / ρ, and substituting Eq. (3.7.4), the 

relaxation time becomes  

3

2 c


  .          (3.7.7) 

Next, we recall the Cattaneo number and substitute κ = υ / Pr to obtain 

2
C

Pr D


 .          (3.7.8) 

Here, we can insert Eq. (3.7.4) and (3.7.7) as well as make use of the Knudsen number, to 

give the following relationship: 

2Kn
C

2Pr
 .          (3.7.9) 

Eq. (3.7.9) shows that an increase in Kn leads to larger non-Fourier effects and allows us 

to estimate the relationship between the importance of small scale effects, typically 

described by the Knudsen number, and non-Fourier heat transfer. For gas microflows, 

where the mean free path of the fluid and the length scale may be of similar order, the 

validity of Fourier’s law becomes questionable as it is valid only for small Kn [40]. Using 

this relationship, we can attempt to envelope both the effects of non-Fourier heat transfer 

and partial slip in small scale applications using the Knudsen number. The table below 
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uses Eq. (3.7.9) to estimate the Cattaneo number for some common gases at 20oC and 

standard atmospheric pressure, assuming the Prandtl number to be 2/3. 

Table 1 - Cattaneo number for some common gases (mean free paths are from [42]) 

 

Fluid 

Cattaneo Number (C) 

D=10-5 m D=10-6 m D=10-7 m 

Air 3.47×10-5 3.47×10-3 3.47×10-1 

Argon 3.89×10-5 3.89×10-3 3.89×10-1 

CO2 1.52×10-5 1.52×10-3 1.52×10-1 

Hydrogen 1.17×10-4 1.17×10-2 1.17 

Water Vapour 1.32×10-5 1.32×10-3 1.32×10-1 

Helium 2.88×10-4 2.88×10-2 2.88 

Nitrogen 3.37×10-5 3.37×10-3 3.37×10-1 

Neon 1.47×10-4 1.47×10-2 1.47 

Oxygen 3.89×10-5 3.89×10-3 3.89×10-1 

 

Table 1 shows that with advancements in micro- and nano-scale technologies, the scale 

length can approach the mean free path even at standard pressures, which is expected to 

lead to significant non-Fourier and partial slip effects [43]. Previously, vacuum pressures 

were required to achieve such effects. 

Finally, there is a strong analogy between the Cattaneo-Vernotte equation used to 

describe non-Fourier heat transfer and Maxwell’s equation for a viscoelastic fluid. We 

have shown that the steady conduction state for non-Fourier fluids can lose stability to 



95 

 

either steady or oscillatory convection, and that at a certain value of C, the bifurcation 

from steady conduction to convection changes from supercritical to subcritical. 

Analogous behaviour is seen in the case of a viscoelastic fluid when the elasticity number 

is sufficiently large [37], [44]. The stress and strain in the viscoelastic case play the role 

of the temperature and heat transport in the heat transfer problem, and the relaxation time 

in the viscoelastic case is equivalent to τ here. 

3.8 Conclusion 

This study has examined the steady state Rayleigh-Bénard convection of non-Fourier 

fluids. We have investigated the case in which there is a single relaxation time τ 

governing the response of the heat flux to changes in the temperature gradient. Non-

Fourier effects are expected to become important when the dimensionless Cattaneo 

number,
2

C
D


 , is significant.  

We have shown by steady state analysis that near the onset of convection, the convection 

amplitude is always greater in the presence of non-Fourier effects than for a Fourier fluid. 

As Ra increases, however, there is a point at which the Fourier convection amplitude 

becomes greater than the non-Fourier convection amplitude. As C increases, the 

bifurcation to convection becomes subcritical, making the conduction state unstable to 

large perturbations at values of Ra below the Fourier bifurcation point. 

We also performed a linear stability analysis of the steady convective state showing that 

it loses stability at a Hopf bifurcation at a Rayleigh number lower that the stability limit 

of a Fourier fluid. For large enough C, the steady convection state loses stability for Ra 

lower than the bifurcation from the conduction state. In such a case, a steady convection 

state cannot be reached via small perturbations of the conduction state. We find that the 

Nusselt number calculated for a non-Fourier fluid is always larger than that for a Fourier 

fluid, even though the convection amplitude may not be greater. Our results are in 

qualitative agreement with experimental results and dimensional analysis for natural 

convection around MEMS devices. 
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Chapter 4  

4 The influence of second order partial slip boundary 
conditions on thermal convection 

4.1 Introduction 

Macroscopic fluid flow over solid surfaces is regularly modeled using the no-slip 

boundary condition. This assumes that the fluid velocity at the boundary is equal to the 

velocity of the boundary. Similarly, no-jump refers to the temperature boundary 

condition, assuming that the temperature of the fluid at the liquid-solid interface is equal 

to that of the solid; however, in this paper the term no-slip will serve to encompass both 

velocity slip and temperature jump conditions. From a microscopic point of view, these 

assumptions may no longer be accurate. The validity of the no-slip boundary conditions 

are a function of the Knudsen number, Kn / D  , where λ is the mean free path of the 

fluid particles, and D is a physically relevant length scale. For most practical 

circumstances to date, Kn << 1, and the no-slip boundary condition is suitable. At large 

Kn, fluid velocity and temperature at the boundary differ from that of the solid, a 

phenomena typically associated with incompressible liquids at small scales [1] and gases, 

especially rarified gases [2], [3], where λ can easily be on the order of the length scale. 

Polymer flows [4], [5] have also exhibited slip at the solid-liquid interface. With the 

advent of micro-electromechanical systems (MEMS) and nanotechnology, the length 

scale has begun to approach the mean free path of ordinary fluids as well. 

The slip flow regime is defined by 0.01 < Kn < 0.1 [6]–[8]. As the Knudsen number 

increases into this regime and higher such as for micro- and nanodevices, no-slip ceases 

to be an appropriate boundary condition. Further increase of the Knudsen number may 

also cause the breakdown of other approximations such as Fourier’s law, Newtonian 

stress and the Boussinesq approximation, which have previously been examined 

separately in terms of their effect on linear stability of the steady conduction state in 

natural convection [9]–[11].  
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When Kn is sufficiently large such that the no-slip boundary condition is no longer 

suitable, the slip at the boundary must be taken into account. This means that the 

tangential component of the velocity and temperature of the fluid immediately in contact 

with a solid surface are not equal to the velocity and temperature of the solid surface, 

respectively [8], [12], [13]. When the effects of slip are accounted for, this will be 

referred to as partial slip. 

The non-dimensional first-order hydrodynamic slip boundary condition proposed by 

Maxwell [8], [14] which governs the velocity at the boundary is 

wall
wall

2
Kn

n

V
V V

  
   

 




       (4.1.1) 

where V is the velocity, ς is the tangential momentum accommodation coefficient [15] 

and n is the normal to the boundary facing into the fluid. The coefficient on the partial 

derivative is known as the slip length ls, which is related to the mean free path [16]. This 

is the theoretical distance outside of the boundary for which the tangential velocity would 

be zero, as shown by Fig. 4.1. 

 

Figure 4.1 - Slip length for no-slip and first-order partial slip boundary conditions 

First-order boundary conditions assume that the extrapolated velocity profile is linear. 

Higher-order approximations to the slip conditions relax this assumption. The first-order 

non-dimensional temperature jump boundary condition [8], [17] is described by 

wall
wall

2 2 Kn T
T T

1 Pr n

   
   

   




       (4.1.2) 
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where T is the temperature, γ is the specific heat ratio and Pr is the Prandtl number. 

Again, the coefficient on the partial derivative indicates a distance toward the outside of 

the boundary for which the temperature would be equal to that of the wall. 

Slip effects are expected to be important in small length scale Rayleigh-Bénard 

convection where two infinite horizontal plates with separation D confine a thin layer of 

fluid. These plates are at fixed temperatures, where the lower plate is maintained at a 

temperature δT greater than the upper plate. When the temperature difference between 

the plates is low enough, the fluid layer remains motionless and conduction is the only 

method of heat transport between them. As δT increases through a critical value, thermal 

expansion causes the lower layers to become less dense and buoyancy effects induce a 

transition to convective rolls. This critical value is generally described by the Rayleigh 

number, which is proportional to the temperature difference between the plates. Due to its 

natural occurrence in macroscale systems such as the ocean, weather, and the Earth’s 

mantle, Rayleigh-Bénard convection possesses physical relevance as well as theoretical 

and experimental simplicity [18], [19]. Convective rolls have also been observed in the 

molecular-dynamics studies of microscopic Rayleigh-Bénard convection [20], [21]. It is a 

well-suited platform for analyzing the effects of partial slip boundary conditions. 

When the no-slip boundary condition is applied at both the top and bottom plates, the 

critical Rayleigh number at which the loss of the stability of the steady conduction state 

occurs is Rac ≈ 1708. By incorporating hydrodynamic slip at the boundary, the stress, and 

thus the viscous dissipation are reduced. As a result, viscous forces are less able to 

balance buoyancy forces, and convection sets in more easily. For Kn  ∞ in Maxwell’s 

first-order approximation, the boundaries become stress free and Rac ≈ 657.5. The first-

order boundary conditions proposed by Maxwell [14] have been studied previously [13], 

however, second-order effects are expected to be important near what is called the 

transition regime, where Kn > 0.1 [22], [23], and will be discussed further in the 

following sections. Second-order boundary conditions include the effects of the second 

derivative normal to the boundary on the velocity and temperature and thus would not 

add any new slip to Fig. 4.1 due to its linear profile at the boundary. 



104 

 

 

Figure 4.2 - Comparison of first- and second-order slip effects on Poiseuille flow. ls1 

and ls2 denote the slip length for first- and second-order slip, respectively. 

In the case of Poiseuille flow however, second-order effects alter the flow conditions as 

shown by Figure. 4.2. Second-order slip changes the slip length and thus the slip velocity 

from the first order approximation, as shown by ls2 and ls1, respectively. Boundary 

conditions with second-order effects have been reported to give high accuracy in 

microchannel flows up to Kn = 0.25 [24] and are expected to be necessary for flows in 

the transition regime where Kn > 0.1 [25]. 

In this paper, we analyze the linear stability of Rayleigh-Bénard convection with Kn > 0 

using both first and second-order slip boundary conditions in velocity and temperature, 

showing their effect on the onset of convection. Results calculated using values of the 

coefficients proposed in references [12] and [8] are compared, and the difference between 

first- and second-order boundary conditions are highlighted. 

4.2 Governing equations and boundary conditions 

Consider a thin layer of a Newtonian liquid of infinite extent in the (x,y) directions, 

confined between two perfectly conducting isothermal plates at z = -D/2 and z = D/2. The 
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fluid layer is heated from below, with the plates maintained at temperatures T0 + δT and 

T0, respectively.  

The fluid density ρ is assumed to depend linearly on the temperature T according to 

 Tρ = ρ 1-α T -T0 0   ,        (4.2.1) 

where 
T is the coefficient of thermal expansion and ρ0 is the density of the fluid at T

0
. 

The fluid is assumed to be incompressible, and to have specific heat at constant pressure 

Cp, thermal conductivity K and viscosity μ. The fluid behavior is described by equations 

for the conservation of mass, linear momentum and energy, as well as the constitutive 

equation for Fourier heat flux. In this case, these equations are given by 

0 V ,          (4.2.2) 

 0 t ˆP g      V V V z V ,      (4.2.3) 

 0 p tc T T    V Q ,        (4.2.4) 

K T  Q           (4.2.5) 

where   is the Laplacian operator and the subscript t denotes partial differentiation with 

respect to time. Here the flow is assumed to be two dimensional such that V = (U, 0, W) 

is the velocity vector, P is the pressure, g is the acceleration due to gravity and ẑ is a unit 

vector in the z-direction. In writing Eqs. (4.2.3) and (4.2.4) we have used the Boussinesq 

approximation, which states that the effect of the variations in density is negligible 

everywhere except in the buoyancy term of Eq. (4.2.3) [26]. 

The second-order slip boundary condition for the fluid velocity is given by Eq. (4.2.6) 

[8]. 

2
2 2

wall 1 2 32
wall wallwall

T
a a a

n mn

V V
V V

      
                

,   (4.2.6) 
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where m is the unit vector in the direction tangential to the wall. In our case, it reduces to 

2
2

wall 1 2 2
wall wall

a a
n n

   
             

V V
V V ,      (4.2.7) 

since the plates are assumed to be isothermal and thus no horizontal temperature gradient 

exists along the boundary. In the case of 2-dimensional Rayleigh-Bénard convection in 

an infinitely horizontal plane, with fixed impenetrable boundaries, Vwall = Wwall = 0, and 

thus 

2
2

1 2 2
wall wall

U U
U a a

n n

   
            

.       (4.2.8) 

In our geometry, 
n Z

 


 
, so  

2
2

1 2 2D DZ Z
2 2

2
2

1 2 2D DZ Z
2 2

D U U
U X, Z , t a a ,

2 Z Z

D U U
U X, Z , t a a .

2 Z Z

 

 

  
      

  

  
      

  

     (4.2.9) 

The second-order boundary condition on the temperature [8] is 

2
2

wall 1 2 2
wall wall

T T
T T b b

n n

   
             

                (4.2.10) 

which again due to geometry becomes 
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2

0 1 2 2D DZ Z2 2

2
2

0 1 2 2D DZ Z2 2

D T T
T X, Z , t T T b b

2 Z Z

D T T
T X, Z , t T b b

2 Z Z

 

 

  
         

  

  
      

  

 .            (4.2.11) 

The constants an and bn depend on the properties of the system and are generally 

determined by experiment. These boundary conditions are all encompassing as they 

embody slip (λ = ∞) and strictly no slip (λ = 0), allowing exploration of the limits as well 

as everything in between. 

The base state of the system of Eqs. (4.2.2)-(4.2.5) corresponds to no flow where 

transport of heat occurs simply by conduction. Consequently, the temperature, pressure 

gradient, heat flux and velocity in this state are given by  

 

 

 

B H
1

B 0 T

B

B

T T
T z T ,

2b 1 2

dP / dZ 1 T 1 Z D g,

T
Q 0,K ,

D

0,0,0 ,

 
  

 

      

 
  
 

v

,                (4.2.12) 

respectively, where the subscript B refers to the base state. The problem is conveniently 

cast in dimensionless form by taking the length, time and velocity scales as

2D
D, and

D




, 

respectively. Let  
2

B
D

p P P 


,  B
D

K T
 


q Q Q , 

D



v V , and BT T

T


 


 be the 

dimensionless deviations of the pressure, heat flux, velocity and temperature from their 

values in the base state. Substituting these into Eqs. (4.2.2)-( 4.2.5) the dimensionless 

equations for these deviations are: 

0 v                     (4.2.13) 
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 1
t zPr p Rav v v e v

                       (4.2.14) 

t w     v q
                  (4.2.15) 

 q
                               (4.2.16) 

The non-dimensional Prandtl number and Rayleigh number are given by 

3
TT gD

Pr , Ra ,
 

 
 

                    (4.2.17) 

respectively, where 
0 p

K

c
 


 is the thermal diffusivity. 

The heat flux can be eliminated from Eqs. (4.2.15) and (4.2.16), and since the problem is 

two dimensional, we introduce the stream function  x,z, t , such that 

z xu , w .    

Finally, taking the curl of Eq. (4.2.14) eliminates of the pressure term from the 

momentum equation. The resulting system of equations for the two unknowns ψ and θ is 

 1 2
t z xzz x zzz z xxx x xxz xPr Ra ,                       (4.2.18) 

t z x x z x xx zz 0.                             (4.2.19) 

The non-dimensional boundary conditions on ψ and θ for all x and t are, 
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z 1 zz 2 zzz

2
z 1 zz 2 zzz

2
1 z 2 zz

1

1 1
z z 0

2 2

1 1 1
z a Kn z a Kn z

2 2 2

1 1 1
z a Kn z a Kn z 0

2 2 2

1 1 1
z b Kn z b Kn z

2 2 2

1
z b Kn

2

   
         
   

     
               

     

     
              

     

     
               
     

 
     

 

2
z 2 zz

1 1
z b Kn z 0

2 2

   
       

   

              (4.2.20) 

Eqs. (4.2.18) and (4.2.19) are the usual equations for Rayleigh-Bénard convection with 

Fourier heat transport, yet the solution will depend heavily on the nature of the boundary 

conditions in Eqs. (4.2.20). 

4.2.1 Development of the Dynamical System 

The solution to Eqs. (4.2.18)-(4.2.19) with boundary conditions Eqs. (4.2.20) is 

represented by a truncated Fourier series in x and z with time dependent Fourier 

coefficients. We have truncated this Fourier series to the same order as that of Lorenz 

[27], such that the stream function is represented by 

     1x,z, t z, t sin kx                    (4.2.21) 

and the temperature field by 

       1 2x,z, t z, t cos kx z, t .                    (4.2.22) 

The z-dependence is left undefined to allow for the possibility of different boundary 

conditions. The following dynamical system is developed by projecting Eqs. (4.2.18)-

(4.2.19) onto the modes in Eqs. (4.2.21)-(4.2.22): 

1 2 4 2 iv
1 1 1 1 1Pr k k 2k kRa            

 
                 (4.2.23) 
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2
1 1 2 1 1 1k k k 0                           (4.2.24) 

22 1 1 1 1 2
1 1

k k 0
2 2

                           (4.2.25) 

Here, the over dot represents a derivative with respect to time and the prime denotes a 

partial derivative with respect to z. If the z-dependence for both ψ and θ was described by 

cos(nπz), then Eqs. (4.2.23)-(4.2.25) becomes the Lorenz model. 

4.3 Linear Stability Analysis of the Conduction State 

The linear stability of the conduction state for a fluid with first-order partial slip boundary 

conditions has been examined previously [13]. The results will be summarized and 

expanded on here by including second order slip conditions as well as slip coefficients, an 

and  bn, from [12] and [8] in Eq. (4.2.20). We substitute the following infinitesimal 

perturbation to the steady conduction state into Eqs. (4.2.23)-(4.2.25): 

 

 

 

t
1 1

t
1 1

t
2 2

e z

e z

e z







  

  

  

.         (4.3.1) 

Here, σ characterizes the growth rate of the perturbation. By neglecting nonlinear terms 

and isolating for the highest derivatives in z, we obtain the following set of ODEs: 

 iv 4 2 1 2
1 1 1 1 1 1

2
1 1 1 1

2 2

k 2k kRa Pr k

k k

            

      

  

.    (4.3.2) 

Only the trivial solution exists for the third equation, which is decoupled from the 

remainder of the system. Setting σ = 0 to obtain the critical stability condition (Ra = Rac) 

leaves 
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iv 4 2
1 1 1 1

2
1 1 1

k 2k kRa

k k

       

    
,           (4.3.3) 

showing that linear stability will be independent of the Prandtl number. Combined with 

Eqs. (4.2.20) and the condition 

1
z 1

2

 
   
 

, 

which is required for the solution of the extra parameter Ra,  this boundary value problem 

(BVP) can be solved numerically. 

Regarding the temperature jump boundary condition, upon analysis of the linearized Eq. 

(4.2.19) with σ = 0 we obtain, 

x xx zz 0    .             (4.3.4) 

At each of the boundaries ψx and θxx are zero since there is no flow through the plate and 

since the plate is isothermal, respectively. As a result, θzz is also zero at the boundaries, 

causing the second-order temperature jump term to become irrelevant for Rayleigh-

Bénard convection with isothermal plates. Thus, only second-order hydrodynamic slip 

and first-order temperature jump will be considered henceforth. 

The numerical solution of the BVP for the critical Rayleigh number is very sensitive to 

the initial guess and thus the linear stability method employed by [28] was used to 

provide an accurate initial guess to the BVP. Neglecting the non-linear terms, the 

linearized versions of Eq. (4.2.18)-(4.2.19) are 

2
x0 Ra             (4.3.5) 

2
x0               (4.3.6) 

Expressing the perturbations as 
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 

 

ikx t
k

ikx t
k

e z

e z





  

  
,         (4.3.7) 

and setting σ = 0 for critical stability, we can express θ as a function of ψ, leading to 

2
k z k

i
D

k


   .          (4.3.8) 

Substituting this into the energy equation yields 

3 2
z kD k Ra 0   

 
         (4.3.9) 

where 
2 2

z zD k   . The z-dependence is then assumed to take the form 

   
3

k n n

n 1

z M sin q z


                    (4.3.10) 

where the Mn are unknown coefficients and qn are the three solutions of  

   
1/32 23

n cq k k Ra k 1                    (4.3.11) 

where 1/3 1 11 1, 3
2 2

  . The coefficients Mn are determined by the three boundary 

conditions on ψ and θ at z = 1/2, listed in Eq. (4.2.20), giving 

   

3

n n

n 1

3 3 3
2 2 3

n n n 1 n n n 2 n n n

n 1 n 1 n 1

3 32 2
2 2 2 2

n n n 1 n n n n

n 1 n 1

1
M cos q 0

2

1 1 1
M q sin q a Kn M q cos q a Kn M q sin q 0

2 2 2

1 1
M q k cos q b Kn M q q k sin q 0

2 2



  

 

  
  

  

          
            

          

    
       
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 

 

These equations can be written as a matrix A times the vector M = [M1 M2 M3]
T. For a 

non-trivial solution, the determinant of A must be zero. The real and imaginary parts of 

the determinant are plotted with respect to Ra and the conditions for critical stability are 
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found wherever both intersect with zero. This solution is then used in the BVP to ensure 

the fastest and most correct solution. The BVP solver is used to generate the figures in 

the following sections due to its ability to output a numerical result. 

Suggested values for a1, a2 and b1 from Deissler and Karniadakis & Beskok ([8], [12] 

respectively) are shown in Table 2. 

 

Table 2 - Slip coefficients developed by [8] and [12] for second-order hydrodynamic 

slip and first-order temperature jump. 

 a1 a2 b1 

Deissler 1 -9/8 1 

Karniadakis and 

Beskok 

1 1/2 1 

 

The coefficient a1 is defined as (2-ς)/ ς from Eq. (4.1.1) where ς is the tangential 

momentum accommodation coefficient [15]. It is generally considered to be close to 1 for 

most engineering applications [3], explaining the choice for a1 by the authors depicted in 

the above table. For the results in this chapter, ς will continue be chosen as 1. The 

temperature coefficient b1 is defined as 2 2 1

1 Pr

 

 




from Eq. (4.1.2) [8], [13], [14], [29], 

where γ is also assumed to be 1 [25]. The Prandtl number used in the following 

calculation is also 1, which is its value for many gases. Thus, it is reasonable that b1 was 

chosen to equal one for the first-order temperature jump coefficient by both authors. 
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4.4 Results and Discussion 

4.4.1 First-Order Slip 

We will first evaluate the case where only first-order hydrodynamic slip is considered, as 

shown in Fig. 4.3 and Fig. 4.4. In this case, both [8] and  [12] suggest that a1 = 1. 

 

Figure 4.3 – The influence of first-order hydrodynamic slip on the Rayleigh number, 

Rac, vs wave number, kc, for varying Kn and a1 = 1. From top to bottom, Kn = 

0.001, 0.01, 0.1, 1 and 10. 

For Kn << 1, the stability boundary in the Ra-k plane is very close to the known solution 

for no-slip boundary conditions. As Kn increases from zero, the minimum critical 

Rayleigh number, Rac, and the critical wave number, kc, both decrease from their no-slip 

values of 1707.76 and 3.117, respectively. This is due to the reduced stress at the 

boundaries which reduces the effect of viscous dissipation, allowing convection to begin 

at lower Ra. As one might expect from quick analysis of the first-order hydrodynamic 

slip boundary conditions, the critical Rayleigh number and critical wave number decrease 

to the known values for stress free boundaries as the Knudsen number becomes large. 

Fig. 4.4 shows the minimum critical Rayleigh number, Racm, and the corresponding 
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critical wave number, kcm, as a function of Kn, as the boundary conditions change from 

stick boundary conditions (small Kn) to stress free boundary conditions (large Kn). 
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Figure 4.4 – The effect of first-order hydrodynamic slip with a1 = 1 on a) the 

minimum critical Rayleigh number and b) the corresponding critical wave number 

vs Kn. The inset to (a) shows the same results for Racm but with a linear scale on the 

Knusdsen axis. 

When plotted with a logarithmic Kn axis, as in Fig. 4.4, the values of Racm and kcm appear 

to change most rapidly in range 0.01 < Kn < 10. This however is an artifact of the 

logarithmic axis. The inset show that slope is most negative for small Kn and the 

magnitude decreases monotonically as Kn increases. For Kn < 0.01, the no-slip boundary 

condition should be sufficient, predicting instability to occur close to Ra = 1708 at a wave 

number near 3.117. When Kn > 10, the boundaries may be considered stress free since 

the partial derivative in the boundary condition is required to go to zero as Kn becomes 

large in order to keep the velocity well behaved. Thus, for large Kn the first-order 

boundary conditions predict instability to occur close to Ra = 657.5 at a wave number 

near 2.22. 

The effect of first-order temperature jump is shown by Fig. 4.5. 
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Figure 4.5 – The influence of first-order temperature jump on the Rayleigh number, 

Rac, vs wave number, kc, for varying Kn and b1 = 1. From top to bottom, Kn = 

0.001, 0.01, 0.1, 1 and 10. 

Interestingly, this too has the effect of lowering the critical Rayleigh number. One might 

expect that since the temperature jump brings the temperature at the boundaries closer to 

each other over the same distance this effect may inhibit the transition to convection by 

lowering the temperature gradient. In order to understand this behaviour, consider an 

extrapolated fluid cell with plate separation equal to D + 2ls as shown in Fig. 4.6. 
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Figure 4.6 - Real convection cell (solid horizontal lines) and no-slip linear 

temperature profile (solid line). Temperature profile with jump (dashed line) is 

extrapolated by a slip length ls to either side such that it has no temperature jump at 

the extrapolated cell (dashed horizontal lines). 

The thick solid horizontal lines represent the real fluid cell containing a no-slip 

temperature profile which has also been drawn with a solid line. The dashed line 

represents a real temperature profile with a temperature jump in the real cell. This 

temperature jump profile is extrapolated out to the virtual cell (dashed horizontal lines) 

by a slip length on either side. By doing so, the temperature jump there is equal to zero. 

The Rayleigh number for the extrapolated cell can then be defined as 

 
3

T sT g D 2l
Ra

  



. 

When δT reaches the critical temperature difference for the extrapolated cell such that 

RaE = 1708, the real cell’s Ra (Eq. 4.2.17) is still be below this critical limit. At this 

point, convection would begin to set in for the extrapolated cell as shown by the solid 

curve representing the infinitesimal velocity perturbation in Fig. 4.7. 
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Figure 4.7 - Onset of convection for the extrapolated cell. The temperature is shown 

by the dashed line and the infinitesimal velocity profile is shown by the sold line. 

Both temperature and velocity profile are no-slip for the extrapolated cell but not 

the real fluid cell. 

At the onset, both the temperature and velocity profile are no-slip at the extrapolated cell 

boundaries. However, the profiles are not no-slip at the boundary of the real fluid cell. 

Thus, a temperature jump boundary condition may also imply a partial slip boundary 

condition on the velocity, or that they are at least mathematically equivalent. 
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Figure 4.8 – The effect of first-order temperature jump on a) the minimum critical 

Rayleigh number and b) the corresponding critical wave number vs Kn for b1 = 1. 

The relationship between Racm and kcm as the Knudsen number increases is shown in Fig. 

4.8. As the Knudsen number increases past 0.01, the critical Rayleigh number begins to 
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exhibit significant changes. Significant changes continue to occur in Ra until Kn ≈ 100, at 

which point it asymptotically approaches approximately 700. At this magnitude of 

Knudsen number, however, the continuum assumption will break down since the random 

motion of particles will need to be considered. Considerable change still occurs for Kn < 

1, which may well be within the realm of applicability. 

Change in the critical wave number is small until Kn > 0.1, where it continues to decrease 

throughout the remainder of the domain. Again, one would not expect the continuum 

approximation to hold in the region of Kn = 100, but considerable change does still occur 

for Kn < 1. The first-order temperature jump can still greatly affect the critical conditions 

for instability and could even be more significant than first-order hydrodynamic slip for 

some values of γ and Pr. At least for the coefficients chosen, it appears as though a first-

order temperature jump has more of an effect on the critical wave number, whereas first-

order hydrodynamic slip as more of an effect on the critical Rayleigh number.  

 



122 

 

 

Figure 4.9 – The effect of both first-order hydrodynamic slip and first-order 

temperature jump (solid line) on a) the minimum critical Rayleigh number and b) 

the corresponding critical wave number vs Kn. The short dashed line shows the 

reuslts for first-order hydrodynamic slip only and the long dashed line is for a first-

order temperature jump only. 

Fig. 4.9 shows the critical Rayleigh number and critical wave number calculated for a 

system with both first-order hydrodynamic slip and a temperature jump. We can see that 

the minimum critical Rayleigh number decreases faster when both first-order effects are 

included and asymptotically approaches a lower Ra. The same effect is seen for the 

minimum critical wave number. It appears as though the velocity slip has a greater effect 

on Racm since the solution for first-order velocity slip (short dashed curve) is similar to 

the solution obtained when both first-order effects are considered (solid curve). 

Concurrently, the temperature jump has a greater effect on kcm since the solution for first-

order temperature jump (long dashed curve) is very similar to the solid curve. The 

changes in the stability boundary shows that partial slip boundary conditions are expected 

to play a significant role in Rayleigh-Bénard convection at the microscale where Kn 

enters the slip-flow regime and beyond. 
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4.4.2 Second-Order Slip 

According to [22], [23], the first-order slip conditions become insufficient near Kn = 0.1. 

After this point, second-order slip boundary conditions are necessary. Second-order 

hydrodynamic slip conditions have been reported to give results in good agreement with 

experiment up to Kn = 1.5 [22]. Different values of a2 have been proposed. We will first 

explore the effect of the sign of a2 by calculating with the values proposed by [12] and [8] 

and assuming no temperature jump. Beginning with a1 = 1 and a2 = -9/8 as proposed by 

[12], the general picture is again described using the Ra-k plane as in Fig. 4.10. 

 

Figure 4.10 – The influence of second-order hydrodynamic slip effects on the critical 

Rayleigh number, Rac, vs wave number, kc, for varying Kn with a1 = 1 and a2 = -

9/8. From top to bottom, Kn = 0.001, 0.01, 0.1, 1 and 10. 

By inspection of the boundary condition with the coefficients chosen by [12], second-

order hydrodynamic slip causes further slip for a2 < 0 compared with first-order effects. 

As depicted by Fig. 4.10, both the critical Rayleigh number and wave number are smaller 

than for stick boundary conditions. In the limit that Kn becomes large, the stress-free 

limit of Rac ≈ 657 and kc ≈ 2.22 no longer occurs since, in order for the boundary 
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condition to be well behaved, both the first and second derivative of the velocity in Eq. 

(4.2.20) are required to go to zero as Kn  ∞. Otherwise, the slip velocity would become 

infinite. Fig. 4.11 shows the minimum critical Rayleigh number and corresponding 

critical wave number, compared with the results for first-order hydrodynamic slip. 
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Figure 4.11 – The effect of second-order hyrdodynamic slip effects (solid line) with 

coefficients proposed by [12] on a) the minimum critical Rayleigh number and b) 

the corresponding critical wave number vs Kn with a1 = 1 and a2 = -9/8. Dashed line 

indicates solution for first-order hydrodynamic slip. 

Both Racm and kcm are significantly affected by the inclusion of second-order 

hydrodynamic slip for the value of a2 chosen. The difference becomes very apparent in 

the transition regime where Kn > 0.1 which has been suggested previously [25]. Here, 

Racm decreases faster and its asymptotic behaviour approaches a value approximately a 

third of that for first-order effects. This is due to the rate of change of the stress with 

respect to z (second-order effects) also approaching zero at the boundary, causing the 

stress to increase more slowly into the fluid. Concurrently, kcm decreases much more 

quickly than for first-order slip and approaches zero for large Knudsen number. Although 

second-order effects largely depend on the value of Kn, experimental analysis will be 

required to determine appropriate coefficients for second-order effects in a Rayleigh-

Bénard configuration since it is clear that their inclusion can yield drastic changes. 

When considering second-order slip proposed by [8] where a2 = 0.5, the solution for Racm 

and kcm yields a vertical asymptote near Kn = 0.5 as shown by Fig. 4.12. 



126 

 

 

 

 

Figure 4.12 – The effect of second-order hydrodynamic slip effects with coefficients 

proposed by [8] where a1 = 1 and a2 = 0.5 on a) the minimum critical Rayleigh 

number and b) the corresponding critical wave number vs Kn 
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By inspection of the boundary condition Eq. (4.2.20) for a2 > 0, there will exist a Kn that 

causes first- and second-order hydrodynamic slip effects to cancel out, numerically 

creating asymptotic behaviour. Due to the vertical asymptote, the decreases in both Racm 

and kcm are much slower than for a2 > 0. The critical Rayleigh number is predicted to be 

greater than that for first-order effects. As a result, it looks doubtful that a2 > 0 is a 

physically realistic boundary condition for Rayleigh-Bénard convection. A preference to 

the coefficient proposed by Deissler [12] where a2 = -9/8 was also communicated by 

Colin et al [24]. 

Finally, now that we’ve investigated the effects of velocity slip and temperature jump 

separately, we will explore the combination of both second-order hydrodynamic slip and 

first-order temperature jump effects. Only the negative a2 = -9/8 suggested by [12] will be 

considered below as we will assume for now that the vertical asymptote encountered 

using a2 > 0 is non-physical. 

Individual trends of Racm and kcm with respect to Kn are portrayed in Fig. 4.13 for first 

and second-order hydrodynamic slip as well as first-order temperature jump effects. 
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Figure 4.13 - For the combined effects of a1 = 1, a2 = -9/8 and b1 = 1 (solid line), the 

a) minimum critical Rayleigh number vs Kn and b) corresponding critical wave 

number vs Kn. Dashed curve represents combined contribution from first-order 

velocity slip and tempeature jump where a1 = 1 and b1 = 1. 

Including second-order velocity slip and first-order temperature jump increases the 

amount of total slip and gives the greatest decrease in the stability boundary. The 

minimum critical Rayleigh number begins to decrease around 10-2 and at a rate faster 

than when only first-order effects are considered. Little change is seen past 101, 

decreasing asymptotically to just more than 20 for large Kn. The value of kcm displays 

similar characteristics although the changes begin an order of magnitude later.  

Second-order slip boundary conditions have a far greater effect on the conditions for 

instability in Rayleigh-Bénard convection than first-order slip boundary conditions. This 

is especially true in the transition regime where second-order effects are said to improve 

the accuracy of the solution [25], but also in the slip-flow regime there exists a difference 

between the first- and second-order solutions. 
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4.5 Conclusion 

In this work, the effects of partial slip boundary conditions on the linear stability of 

Rayleigh-Bénard convection have been examined. Both first- and second-order effects on 

the hydrodynamic slip were studied; however, only a first-order temperature jump is 

explored since the second-order slip term in the temperature boundary condition was 

shown to vanish for isothermal plates. Linear stability is shown to be independent of Pr 

and the minimum critical Rayleigh number Racm and corresponding wave number kcm are 

calculated. Using first-order hydrodynamic slip, the microscale stability picture begins to 

change from that of the macroscale at the beginning of the slip-flow regime. This causes 

a significant reduction of the critical minimum Rayleigh number and, to a lesser extent, 

the corresponding wave number, approaching the known theoretical value for large Kn 

(Racm ≈ 657 and kcm ≈ 2.22). This change is most pronounced at small Knudsen number. 

The first-order temperature jump boundary condition also begins to show significant 

effects near Kn = 0.01, reducing both Racm and kcm. In this case, the boundary condition 

has a greater influence on the critical wave number than the Rayleigh number. 

Interestingly, it can be argued that the temperature jump at the boundary is 

mathematically equivalent to velocity slip. The combination of first-order velocity and 

temperature slip leads to an even more unstable conduction state compared with either of 

the first-order effects independently. The inclusion of second-order hydrodynamic slip 

effects further promotes instability of the conduction state, depending on the value of the 

coefficient a2. Analysis of two different conditions, a2 < 0 and a2 > 0 shows that a non-

physical solution is obtained for the latter in a Rayleigh-Bénard configuration. More 

experimental work and numerical work solving for the full velocity field is necessary to 

understand whether positive or negative second-order coefficients are appropriate and to 

determine their magnitude. The difference between the solution for first- and second-

order slip conditions increases drastically as the Knudsen number increases as both the 

minimum critical Rayleigh number and corresponding wave number approach zero for 

large Kn with second-order effects. As a result, any attempts to push a continuum 

solution of Rayleigh-Bénard convection near the transition regime should include second-

order boundary conditions. 
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Chapter 5  

5 Conclusions 

5.1 Conclusion 

This thesis has examined the effects of non-Fourier heat transfer on the natural 

convection of fluids in a Rayleigh-Bénard configuration. Single-phase-lagging effects 

were considered where a single relaxation time τ governs the response of the heat flux to 

changes in the temperature gradient. Non-Fourier heat transfer has been discussed to have 

significance in a multitude of areas such as nanofluids [1], low temperature liquids [2], 

[3], and liquid metals [4]. Arguably the most natural application appears to be in gases at 

small length scales, large mean free path, or more specifically by large Knudsen number. 

Typically, non-Fourier heat transfer at small length scales is described by the extended 

transport equations for the heat flux from kinetic theory.  These equations, such those 

developed from the Chapman-Enskog [5] method or Grad’s 13 moment method [6], are 

highly non-linear and complex equations that are not always well behaved or well 

defined. In this thesis, we have employed the frame indifferent Cattaneo-Vernotte 

equation, derived through Oldroyd’s upper-convected derivative, to represent non-Fourier 

effects. Use of this derivative has proven to be effective in the modeling of non-

Newtonian behaviour in viscoelastic fluids which is also anticipated by kinetic theory. 

Parallels between non-Fourier and non-Newtonian heat transfer have been drawn in this 

work. 

Through linear stability analysis, we show that non-Fourier fluids can lose the stability of 

their steady conduction state to either stationary or oscillatory convection. When the 

Cattaneo number, 2
C

D


 , is small, the neutral stability curve is comprised of a Fourier 

branch and an oscillatory non-Fourier branch. In this case, the fluid is defined as weakly 

non-Fourier, and stability is lost via the minimum of the Fourier stability curve (RacF ≈ 

657), yielding stationary convection. As C increases to a critical value, CH, both 

stationary and oscillatory convection become equally probable, leading to the existence 

of a bi-stable mode which has been observed in experiment [7], [8]. For C > CH, 
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oscillatory convection via a Hopf bifurcation is expected at a Rayleigh number that is less 

than that of a Fourier fluid. The oscillatory roll size is found to grow with the level of 

non-Fourier character. The frequency of oscillation decreases with roll size, however, a 

non-monotonic response is expected with respect to C. Unlike a Fourier fluid, the Prandtl 

number is expected to have an influence on the linear stability of non-Fourier fluids. An 

increase in Pr increases the likelihood of instability occurring via an oscillatory branch, 

however this effect becomes insignificant for Pr > 10.  

By non-linear steady state analysis, we have shown that the convection amplitude of 

weakly non-Fourier fluids is greater than that of a Fourier fluid near the onset of 

convection. As Ra increases, however, the convection amplitude of a Fourier fluid can 

exceed that of a non-Fourier fluid. Despite this fact, we find that the Nusselt number 

calculated for a non-Fourier fluid is always larger than that of a Fourier fluid which is in 

agreement with experimental results and analysis for natural convection around MEMS 

devices [9]. Eventually, as C increases past a critical value, the bifurcation to convection 

changes from supercritical to subcritical. As a result, the conduction state is no longer 

stable to large perturbations at values of Ra below the Fourier bifurcation point. 

A linear stability analysis of the steady convection state of a weakly non-Fourier fluid 

was also performed. This revealed that stability is lost via a Hopf bifurcation and at a 

Rayleigh number lower than the Fourier limit. If C is increased sufficiently, the steady 

convection state can lose its stability for Ra less than the bifurcation from the conduction 

state. As a result, there is no possible steady convection state that can be reached from 

small perturbations to the conduction state, which could not be predicted by linear 

stability analysis. 

We have also examined the effects of partial-slip boundary conditions on linear stability 

of the Rayleigh-Bénard configuration. This too is a consequence of high Kn, affecting 

both the value of the velocity and temperature of the fluid at the boundaries. First- and 

second-order hydrodynamic slip and temperature jump were considered at the boundaries 

and different types of coefficients were explored, exclusive of non-Fourier effects. 
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First-order hydrodynamic slip and temperature jump were explored first, both leading to 

a reduction in the minimum critical Rayleigh number and corresponding critical wave 

number. The effects of the temperature jump boundary condition were analogously 

explained as a hydrodynamic slip in order to understand how they reduce the critical 

conditions for instability. 

Second-order hydrodynamics slip effects were also explored. As the coefficients are 

largely empirical, both positive and negative values were analyzed. Although a2 < 0 was 

shown to further reduce the stresses at the boundary and reduce the criteria for instability, 

a2 > 0 yielded asymptotic behaviour which is assumed to be unphysical. The difference 

between first- and second-order effects became pronounced near the end of the slip flow 

regime where Kn ≈ 0.1. 

Second-order temperature jump was shown to be irrelevant to the problem when the 

assumption of isothermal plates is used.  

5.2 Future Work 

The combination of second-order boundary conditions with non-Fourier effects was not 

considered in this thesis, but is encouraged in order to push the applicability of 

continuum models into higher Kn territory, such as in the transition regime where Kn > 

0.1. Here, the Cattaneo-Vernotte non-Fourier model should be considered as well. The 

breakdown of the Boussinesq approximation as well as the Newtonian stress assumption 

are also expected in smaller scale applications and thus it may be enlightening to combine 

as many of these effects as possible. Furthermore, the diffusion term has been left out of 

the conservation of energy equation. Although this assumption is appropriate for 

macroscale systems, as the length scale approaches the microscale and nanoscale, this 

term may need to be considered. 

Additionally, an improvement to the relationship between a dual-phase fluid and a dual-

phase-lagging fluid as proposed by Wang [1] should be attempted. Although this 

connection is enlightening, it is limited to the conduction of dual-phase and dual-phase-

lagging fluids. It may be necessary to repeat this process for a nanofluid subject to 
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convection as well to see if the connection can still be made to non-Fourier fluids. Then, 

in order to more thoroughly explore non-Fourier effects in nanofluids, a dual-phase-

lagging non-Fourier equation should be employed. 

Finally, it may be of interest to explore the path to chaos and the attractors associated 

with non-Fourier heat transfer and partial slip boundary conditions. The modelling 

technique employed in this thesis is the same as was employed by Lorenz [10], where 

chaos was first investigated. This would also be interesting due to the similarities with 

viscoelastic models where exploration of the path to chaos and its attractors has been 

done[11], [12]. 
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