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ABSTRACT 

In gas-fluidized processes such as Fluid Coking
TM

 and Fluid Catalytic Cracking, heavy 

hydrocarbons are converted to lighter products. In the Fluid Coking process, heavy oil 

feed is contacted with hot fluidized coke particles, heats up and undergoes thermal 

cracking. If the local concentration of liquid is very high, particles may stick together 

which can eventually result in process upset because of poor fluidization or even 

defluidization, a condition commonly known in industry as "bogging".  

Coke particles in a Fluid Coker have a high dielectric constant and can concentrate an 

electric field within themselves. Using a capacitance sensor, the void distribution in a bed 

of coke particles can be visualized based on the difference in dielectric constant between 

coke particles and the fluidization gas. The voidage fluctuations caused by gas bubbles 

have been shown to change dramatically as the bed becomes bogged.  Therefore, 

capacitance sensors are capable of predicting the bogging condition in fluid cokers. 

However, they should be properly designed to account for the bed geometry, the position 

of sensors, the temperature and the degree of electromagnetic noise in the area. This was 

the primary research objective for this thesis. 

The first part of the thesis research focused on designing noiseless capacitance sensors 

that can be used to measure the liquid concentration in a fluidized bed as well as bubble 

properties and the length of jet cavities. The effect of bogging on the distribution of a 

liquid sprayed into fluidized bed was then investigated by determining the impact of 

bogging on the breakage rate of the liquid-solid agglomerates that are formed when a 

liquid is sprayed into a fluidized bed. Bubble rise velocity and frequency was measured at 

different locations of the fluidized bed to understand and predict early bogging.  

Pressure measurements are easier to perform in industrial units than capacitance 

measurements.  The knowledge acquired with capacitance measurements was then 

applied to the design of early bogging detection methods from pressure measurements.  A 

bogging index was proposed; it uses a Kolmogorov-Smirnov test of the wavelet 

coefficients of pressure fluctuations and was optimised using a genetic algorithm to 

detect early bogging. 
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Detection of bogging with acoustic measurements is discussed in the next section. The 

speed of sound was measured at different levels of particles cohesiveness and fluidization 

velocities. Experimental data was compared with the results of simulations with the 

COMSOL acoustic toolbox. 

 

The last part of the thesis applies the new capacitance sensors to the measurement of jet 

cavity fluctuations in fluidized beds.  Two types of jets were investigated:  the supersonic 

gas jets used for particle attrition in fluidized beds and the jets formed when liquid is 

atomized with a gas into a fluidized bed. Jet fluctuations can cause the erosion of fluidized 

bed internals and must be known when designing a fluidized bed.  A new correlation was 

developed to predict the fluctuations of the jet penetration in fluidized beds. The effect of 

bogging on jet fluctuations was also investigated. The results of these experiments were 

interpreted with the previously developed correlations. 

 

 

Keywords: 

Fluidized bed, bogging detection, capacitance measurements, agglomerate breakage, 

bubble properties, wavelet analysis, supersonic jet fluctuation 
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NOMENCLATURE 

 

A     Approximation wavelet component 

A      Wavelet scale 

A�    Cross section area of nozzle exit (m
2
) 

a�    Particle acceleration, m/s
2
 

a�     Characteristic dimension, m 

B      Bogging index             

c      Speed of sound, m/s 

Cij     Capacitance (F) 

D       Effective electric field length, m             

 D	    Bed hydraulic diameter (m) 

D
     Detail wavelet component  

d�    Bubble distance from the wall, cm 

 d�    Distance between two sources, m 

d�     Particle Sauter mean diameter (m) 

d     Nozzle exit diameter (m) 

d��    Nozzle throat diameter (m) 

 F       Thrust of the nozzle (N) 
g         Normalized total free liquid                   
GLR    Gas-to-liquid ratio, wt%                                   
 H     Static bed height (m) 
I          Normalized bogging index                  
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In        Electrical current (A) 

M  Total mass, kg          

m  Level of oil mass fraction          

 m0         Nozzle mass flowrate (kg/s) 

n  Level of fluidization velocity       

nw  Number of wavelet octaves           

p       Pressure at nozzle throat (Pa) 

p�       Pressure at nozzle exit (Pa) 

Q        Monopole acoustic source, N/m.kg 

R        Gas constant, J/mol.K 

Rx          Electrical resistance (Ω) 

SNRout  Signal to noise ratio at output 

T        Temperature, K 
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Us      Speed of sound in particles, m/s 

U0      Speed of sound in ideal gas, m/s 
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CHAPTER 1: INTRODUCTION 

1.1. Present Thesis Work 

Fluidized beds have been in use for decades and have been applied to numerous 

industries due to their excellent gases and solids mixing, and rapid mass and heat transfer. 

Fluid Coking as an application of fluidized beds is a continuous process for heavy oil 

upgrading. The main objective of the thesis is to develop a method to detect early 

bogging in the Fluid Coking process, using non-invasive methods that can be used in 

industrial fluidized bed. Analysis of the effect of bogging on jet penetration and its 

fluctuations is the other objective of the thesis. 

After a general introduction to the Fluid Coking process, this chapter reviews 

published, experimental studies on bogging detection in fluidized beds. The research 

objectives of this thesis are then presented.  

1.2. Fluid Coking Process 

Canada has the third largest oil reserves in the world behind Saudi Arabia and 

Venezuela. Out of the total oil reserves, 170 billion barrels are bitumen from the oil sands, 

which are currently recoverable and are located in Alberta (Syncrude Canada, 2011). Oil 

sands contain a mix of clay material, water and a form of heavy oil called bitumen. 

Bitumen, in its raw form is a dark-colored, asphalt-like oil, that requires upgrading to 

enable its transportation by pipeline and to be used by conventional refineries.  

Heavy oil such as bitumen can be upgraded into synthetic crude oil using Fluid 

Coking
TM

 which is a thermal, non-catalytic conversion process. Fluid Coking is prefered 

for upgrading bitumen because of its high flexibility, reliability, continuous operation and 

low greenhouse gas emissions. Syncrude Canada Ltd. has the three largest Fluid Cokers 

in the world and is one of the largest producers of crude oil in Canada (Syncrude Canada, 

2011). 
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The Fluid Coker that is used by Syncrude Canada is a two vessels system, 

including a fluidized bed burner and a fluidized bed reactor, as shown in Figure 1.1 

(House, 2007).  

 

Figure 1.1: The fluid coking process (adapted from House, 2007) 

During the process, the fluidized bed burner heats up coke particles to temperatures 

ranging from 600 to 680 °C while they are transported to the top of the reactor section 

where they are contacted with bitumen feed, at a temperature ranging from 300 to 400°C. 

The coker reactor as the primary equipment in the bitumen upgrading can be divided into 

three sections: stripper section, reaction section and scrubber section. There are some 

liquid-gas nozzles in the reaction section to atomize the bitumen and to quickly and 

uniformly spray it over the individual particles for a stable reaction rate. In the Syncrude 

fluid coker, these spray nozzles use 600 psig steam to atomize and spray the bitumen into 

the reactor dense coke bed. Bitumen then thermally cracks on the surface of the hot coke 

particles, at a temperature ranging from 510 to 550 °C. Vapours released from the 

thermal cracking of bitumen first go through the cyclones located at the top of the reactor 
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to remove the entrained coke particles which are sent back to the dense bed into the 

stripper section. The average superficial velocity of the rising gases is ranging from 0.3 

m/s to 1.0 m/s depending upon the coke size to maintain fluidization (Pfeiffer, 

1959).After passing the cyclones, the released vapours flow through the condenser to be 

processed into the shipping section downstream. Coke particles losing heat in the 

cracking process move down the reactor and circulate back to the reactor after reheating 

in the burner. 

1.3. Problem statement 

Industrial fluidized beds are often used for continuous operation, with particles added to 

or removed from the fluidized bed continuously. In a continuously operating fluidized 

bed, alteration of hydrodynamic behaviour may occur over time due to imposed or 

unwanted changes. Changes in fluidization velocity or particle size distribution are 

examples of imposed changes. Unwanted changes are usually due to formation of 

cohesive particles, agglomeration or sintering of particles. Formation of cohesive 

particles can be a serious problem in processes such as thermal cracking of bitumen to 

naphtha, drying of freshly produced polymers or food and coating of particles for 

pharmaceutical use. The problem can be worse if the liquid feed rate is sufficiently high 

that it can result in process upset and defluidization, a condition commonly known in 

industry as bogging. In Fluid Cokers, bogging can lead to complete unit shut down and 

clean-out. Therefore, it is important to detect early bogging to prevent unit upset and shut 

down. 

Bogging is a gradual phenomenon. In a wet bed, the minimum liquid concentration above 

which bed bogging occurs depends on each practical application. The distribution of 

injected liquid on fluidized coke particles is critical to the operation of commercial Fluid 

Cokers (Briens, 2003).  It is important to determine how bogging can impact this 

distribution.  Therefore, the characterization of early bogging by directly investigating its 

impact on the breakage kinetics of the wet agglomerates is of crucial importance and very 

useful for developing effective bogging detection methods.  
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Bogging also affects the liquid feed jet length and fluctuations in the fluidized bed and 

results in less liquid-solid mixing. The analysis of the effect of bogging on gas jet and gas 

liquid jet length and fluctuations is also important to determine the impact of bogging on 

liquid-solid mixing and yield of the reaction especially in Fluid Cokers. 

2.  Choice of measurement techniques and analysis methods   

In methods reviewed in this section, one or more process parameters are measured during 

fluidized bed operation. These methods could, therefore, be applied as an online bogging 

detection system.  

Other methods have been published that could not be applied to the routine monitoring of 

commercial reactors. Positron Emission Particle Tracking (Bridgwater, 2004) is based on 

tracking a radioactive particle coated with a positron emitter tracer and requires adding 

radioactive particles to the bed. The “falling ball method” (McDougall, 2005) in which 

the velocity of a ball falling from the top to the bottom of the bed is measured, 

characterizes the fluidity of the fluidized bed.  

In contrast, most of the bogging detection methods that have been proposed in the 

literature are concerned with the measurement of process variables that can be applied to 

large industrial fluidized beds. Examples of these methods are measurement of 

temperature or pressure (Werther, 1999). In addition, the capacitance measurement based 

on the designed noiseless circuit described in chapter 2, could also be applied to industrial 

fluidized beds.   

2.1.a. Electrical Capacitance Tomography 

Electrical capacitance tomography (ECT) is a measurement method based on the change 

in the electrical capacitance due to variations in the distribution or concentration of 

dielectric materials in a given volume. Using the measured capacitance, an image of 

material distribution can be reconstructed. compared with other tomography methods, 

ECT is fast (300 frames/s was used in this thesis), low cost, non-invasive, without 

radiation and can withstand high temperature and pressure in the fluidized bed. The 

hardware of an ECT system can be designed based on charge/discharge or AC based 
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circuits with advantages and disadvantages associated with each of those (Yang, 1996). 

ECT can be used to monitor different processes including fluidized beds, fluidized bed 

dryers, gas-solids pneumatic conveying and gravity flows. No studies has been reported 

using ECT directly for bogging detection but there are publications, reviewed below, in 

which ECT has been applied to identify flow dynamics and liquid concentration that are 

closely related to bogging. 

2.1.a.1. Flow dynamics measurements  

Wang et al. studied bubbling and slugging flow regimes in a circulating fluidized bed 

with a square cross-sectional area using the ECT technique (Wang, 2006). The frequency 

spectrum, probability density function, and autocorrelation function of the solid holdup 

fluctuations as well as bubble diameter were calculated under different regimes to 

investigate chaotic particle behaviours in the fluidized bed. The dominant frequency of 

bubbles near the wall and near the center of the bed was also obtained by fitting the 

power spectra as power-law. 

Zhao et al. used ECT sensors to obtain the solids distribution in a downflow fluidized bed 

equipped with specially designed solid distributor (Zhao, 2010). Using reconstructed 

images, the spatial and temporal characteristics of solids distribution were calculated. 

Their results showed that their new distributor provided a more uniform solids 

distribution at the inlet of the downer. 

Du et al. analysed and monitored flow dynamics of fluidized beds using the ECT 

technique (Du, 2004). Choking phenomenon in a circulating fluidized bed for group A 

and B particles was studied. Using 3D ECT to study solid distribution of FCC catalyst 

particles (group A particles) in the riser, they found that when the air velocity was lower 

than the transport velocity, there were double solids ring flow structure and three-region 

flow structure (solids cluster at the core, solids ring close to the wall and a dilute gas ring 

region between them). When the air velocity was increased, during choking transition, the 

solids cluster in the center disappeared suddenly and the flow structure changed to two-

region flow (dilute phase at the core and dense phase at the wall region). For sand 

particles (group B), when the air velocity was lower than the transport velocity, wall 
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slugs and gas intervals were formed,  whereas at higher air velocity, open slugs with 

particle clusters inside them were observed in the riser. 

The studies cited above showed that the ECT technique is a robust method for analysis of 

material distribution and its movement in a fluidized bed. The technique can therefore be 

used to measure bubble properties and to detect defluidization in a fluidized bed. 

2.1.a.2. Liquid concentration measurements  

ECT has been used to detect rapid changes in the hydrodynamic regime of dryers. 

Chaplin et al. utilized an ECTmethod to measure moisture content in a fluidized bed 

dryer (Chaplin, 2005). Results were validated with X-Ray tomography that showed that 

the ECT data were fairly accurate when the moisture content was less than 5 wt%. 

Wang et al. utilized ECT for online monitoring of solids moisture in a batch fluidized bed 

(Wang, 2009). They found that the moisture content only affected the adjacent electrodes. 

With compensating the measurement error caused by temperature variations, operation 

efficiency was improved with applying a single closed loop control strategy to process 

where the data from ECT was used to control actuators.  

In summary, the ECT technique was shown to detect local concentration of liquid in the 

fluidized bed when there was a considerable difference between the dielectric constant of 

the liquid and the dielectric constant of the other materials.  

2.1.b. Pressure measurement 

Differential and absolute pressure measurements are the most frequently measured and 

analyzed parameters influidized beds. Pressure reflects closely the hydrodynamics of 

fluidized beds. The analysis method can be categorized as linear or non-linear methods. 

Average pressure drop measurements provide information on global properties of a 

fluidized bed such as bed height and density while the high frequency components of 

measured pressure yield useful information on flow characteristics in the fluidized bed. 

2.1.b.1. Linear methods 

Kai et al. analysed the average deviation of differential pressure fluctuations (standard 

deviation divided by the average) in a fluidized bed (Kai, 1987). Bubble size was 
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measured as well using an optical probe in the bed. They observed that the standard 

deviation of differential pressure fluctuations was correlated with fluidization regime and 

fluidization quality when fluidization quality was decreasing as the bubble size was 

increasing. However, the signal was strongly correlated with fluidization velocity as well. 

The variance of high-frequency pressure fluctuations was used for bogging warning 

(Chirone, 2006). A steady decrease in variance of high-frequency (100 Hz) pressure 

fluctuations observed during combustion of pine seed shells in fluidized beds with 

internal diameters of 10 and 37 cm. However, the effect of changes in fluidization 

velocity on this method was unknown. 

Daw et al. patented a technique called “Fluidization quality analyzer” to determine 

fluidization quality by measuring high-frequency pressure drop over the whole or part of 

the fluidized bed (Daw, 1995). The pressure signal was amplified by a “buffer amplifier” 

and processed by a low-pass filter, a differentiator, a rectifier and a PID-controller that 

compared the signal to a predefined set point and regulated a control valve to adjust the 

gas flowrate being fed to a fluidized bed. The system was not designed directly to detect 

bogging but has potential for bogging detection. 

To sum up, methods based on the standard deviation of pressure or high-frequency 

component of a pressure signal can indicate the bogging phenomena. However, these 

methods are not only sensitive to the fluidization quality, but also to changes in the 

fluidization velocity (Van Ommen, 1999). This drawbackposes a problem for robust 

implementation of these methods in industrial fluidized beds where fluctuations in the 

fluidization velocity are common. 

2.1.b.2. Non-linear methods 

Many non-linear analysis methods have been developed based on the so-called state-

space projection. In general, at a certain time, the state of a dynamical system such as a 

fluidized bed can be determined by projecting all state variables of the system into a 

multi-dimensional space. A set of successive states of the system during its evolution in 

time is called the “attractor”. The attractor is often considered as the characteristic 

measure for a dynamical system. Takens showed that time series of just one characteristic 
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variable can, theoretically, reconstruct the dynamic state of the system (Takens, 1981). 

Using time-delay coordinates, it is possible to convert the time series of local pressure in 

the fluidized bed to delay vectors that can be seen as characteristic measure of the 

hydrodynamics of the fluidized bed (Takens, 1981). The “bin method” (Fuller, 1993), 

“symbol statistics method” (Daw, 1998), “attractor properties method” (van der Stappen, 

1993) and “attractor comparison method” (van Ommen, 2000) are nonlinear pressure 

analysis methods that have been proposed to detect bogging based on space state 

projection. The “attractor comparison method” was shown to be insensitive towards 

effects other than bogging within specific limits. 

Some studies have proposed statistical methods that are based on the statistical distance 

between the probability distribution of a reference pressure signal and the pressure signal 

at the current state of the fluidized bed. The Kullback-Leibler distribution distance 

(Gheorghiu, 2004) and the Kolmogorov–Smirnov statistic (Bartels, 2010) were proposed 

based on this analysis method to detect early bogging in a fluidized bed. Both methods 

were able to detect early agglomeration in the fluidized bed. While the sensitivity of the 

Kullback-Leibler method to fluidization velocity was not discussed in the publication, a 

comparison of the probability distribution of pressure signal based on Kolmogorov-

Smirnov test was shown not to be sensitive to changes in the fluidization velocity. The 

reference probability distribution of pressure fluctuations need to be measured during the 

normal, desired operating condition of a fluidized bed, which is unfortunately not a 

constant condition in industrial fluidized beds. 

The W-statistic method proposed by McDougall et al. is based on high frequency 

pressure fluctuation measurements in the fluidized bed to detect early bogging 

(McDougall, 2005). The underlying rationale is that in the poor fluidity condition, the 

fluidized bed transmit pressure fluctuations less well than a well-fluidized bed. Small 

pressure fluctuations can be considered the result of pressure waves transmitted from 

events far from the pressure tap, while large fluctuations are assumed to result primarily 

from local events. The small pressure fluctuations are calculated by subtracting from the 

raw signal, a signal smoothed using a wavelet transform of the raw signal. The method 

could detect early bogging with different liquid sprayed into a fluidized bed of coke 

powder. The W-statistic method was also successfully applied to a pilot-plant fluidized 
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bed where coke particles were fluidized with steam and heavy oil was the liquid sprayed 

into the bed. The effect of changes in fluidization velocity was not investigated.  

In summary, non-linear analysis methods of pressure measurements received great 

attention in the reviewed publications. Attractor comparison and Kolmogorov–Smirnov 

test were shown to be insensitive to effects other than agglomeration. 

2.1.c. Acoustic emission 

Acoustic emissions refer to pressure waves with a specific frequency range that are 

emitted from a fluidized bed. They can therefore be considered as shift of pressure 

measurements to a higher frequency range and relevant to bogging in the fluidized bed. 

Fluidized rigid particles emit sound when they collide with each other. For single size 

spherical particles, the generated fundamental frequencies and their harmonics can be 

calculated using equation of motion for isotropic elastic spheres. When two spheres with 

different diameters collide, the low frequency component of so-called “beat frequencies” 

results from the interference of their two fundamental frequency signals. Collision of 

particles with a Gaussian size distribution results in a distribution of frequency 

differences that causes characteristic beat frequency patterns. Leach et al. showed that 

beat patterns are linearly correlated with particle size and the mean frequency can be used 

to detect changes in particle size distribution and agglomeration (Leach, 1978). 

Zukowski directly evaluated the amplitude of the acoustic emission signal during the 

combustion of gaseous fuels in a bubbling fluidized bed of inert particles. Sound waves 

with frequencies within the audible range were measured by a microphone placed outside 

the fluidized bed (Zukowski, 1999). The mean intensity of the acoustic signal was found 

to correlate with bed temperature. A low amplitude signal was observed when the process 

was relatively smooth at higher temperature in the range of 950 
o
C. The amplitude of the 

signal was higher at lower temperature when exploding bubbles were the dominant 

acoustic source. The work isn’t directly related to bogging detection but made it is clear 

that acoustic signals contain valuable information about the bubbling behaviour in the 

fluidized bed. 
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Book et al. used two microphones and an accelerometer to determine the fluidization 

quality of a large scale gas–solid fluidized bed of particles, using multi-linear and power 

law regressions of traditional (Fourier analysis) and advanced (wavelet decomposition) 

signal analysis. The measurements were well correlated to physical measurements of 

fluidization quality in the bed (Book, 2011). 

Principal component analysis (PCA) has also been used to analyseacoustic measurements 

in fluidized beds (Halstensen, 2006). High-temperature accelerometers were installed at 

different locations of a urea granulator to measure the sound waves. The process was 

monitored using the score-plot for the first two principal components of the measured 

signal. The method was capable of detecting unwanted lump-formation in the bed about 

30 minutes in advance.  

Wang et al. used chaos analysis to detect bogging in a fluidized bed (Wang, 2009). The 

signal measured by acoustic emission sensors was first divided into micro-, meso-, and 

macroscales by wavelet transform. A coefficient of malfunction was then defined based 

on Kolmogorov entropy and correlation dimension, which are measures of 

unpredictability of the signal. The proposed coefficient of malfunction was found tobe 

sensitive to bogging. However, the method could detect bogging in the fluidized bed only 

after formation of cohesive particles. 

To sum up, acoustic emissions from fluidized bed processes have been used to determine 

the fluidization state and bogging. However, it is still not clear if this method can detect 

early bogging. Since other acoustic sources can affect the signal, one has to carefully 

select the measuring equipment and location to avoid irrelevant sound emissions (Chen, 

2005).  

2.1.d. Temperature measurement 

Temperatures are often measured in fluidized beds (Werther, 1999). In some fluidized 

bed processes, temperature signals carry information on the level of mixing of the bed, i.e. 

how quickly differences among local measured temperatures disappear. Temperature 

measurements are generally more localized with smaller temporal resolution compared to 

pressure measurements. 
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Lau and Whalley developed a method to detect bogging based on the temperature 

difference between two radial locations in a batch fluidized bed of caking coals (Lau and 

Whalley, 1981). Since sticky bed material slowed down bed circulation, the thermal 

boundary surface shifted away from the wall toward the center of the fluidized bed. The 

temperature difference between two radially separated points was measured with a 

differential thermocouple (DT). One thermocouple mounted at the center of the bed and 

the other one was close to the wall. The temperature difference as well as the variance of 

local temperature was higher at lower bed fluidity so the method was able to detect 

bogging. However, the temperature difference was also sensitive to fluidization velocity. 

Scala et al. proposed a method based on the variance of the measured temperature as well 

as the vertical temperature difference in a fluidized bed (Scala, 2006). Both of these 

parameters are influenced by the extent of mixing of particles in the fluidized bed. A 

laboratory-scale bubbling fluidized bed of silica sand equipped with electrical heaters was 

used for their experiments. During the experiments, operating conditions of the bed were 

held constant until defluidization occurred. The variance of the temperature signal 

measured by the upper probe decreased as it approached the initial point of defluidization 

while the normalized relative temperature difference increased at the same time. The 

results looked promising in terms of detection of bogging. However, the influence of 

fluidization velocity was not investigated. 

In summary, the temperature uniformity is closely related to the fluidization quality. A 

decrease in the bed fluidity causes the temperature difference between different locations 

of the bed to increases while the variance in local temperatures decreases at the same time. 

The methods seem promising for detecting early bogging but variations in the fluidization 

velocity can make those methods problematic in industrial applications. 

 

3.  Research Objectives  

This research work aimed at developing robust methods for detecting early bogging 

in industrial fluidized beds. In addition the work investigate the effect of bogging on gas 

and gas-liquid jet lengths and fluctuations. The work was broken down into six studies. 
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The objective of the first study was provide basic measurement tools that could be used in 

the rest of the thesis.  A noiseless capacitance sensor was developed for void and liquid 

measurements in a fluidized bed. 

The objective of the second study was to develop a non-invasive technique to detect early 

bogging in a fluidized bed based on capacitance measurements.  Early bogging condition 

is defined from its impact on the breakage of wet agglomerates which is an inherent 

characteristic of the solid and liquid interaction. To provide basic information for the rest 

of the thesis, the impact of bogging on bubble properties was also studied. 

The objective of the third study was to develop a method based on pressure 

fluctuations to detect early bogging. The objective of the fourth study was to investigate 

and model the impact of bogging on the speed of sound in the fluidized bed, and relate it 

to observed changes in bubble properties.   

The objective of the fifth study was to measure the fluctuations of the penetration depth 

of supersonic jets in fluidized beds. A jet length correlation was also be developed.  

 The objective of the sixth study was to investigate the effect of bogging on the 

fluctuation of gas and gas liquid jets at different gas to liquid ratios and fluidization 

velocities. 
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CHAPTER 2: A NOVEL AC-BASED IMPEDANCE METER TO 

REDUCE CAPACITIVE AND INDUCTIVE COUPLING NOISE 

 

2.1. Introduction 

 Electrical impedance measurements have been used in material characterization and 

applied to several areas from biological tissue characterization (Geddes, 1989) to obtain 

information in fluidized beds (Du, 2006). Various methods have been described in 

literature, such as: network analysis method, FFT-based method, resonant method, RF I-

V method and auto balancing bridge method (Yamazaki, 2010, Randus, 2011, Angrisani, 

1996). The auto balancing bridge method has wide frequency coverage from LF to HF 

and high accuracy over a wide impedance measurement range while other methods are 

usually used for a specific frequency range (Angrisani, 1996). In industrial applications 

of the auto balancing bridge method, a capacitive and inductive coupling noise, can exist. 

This can affect the output signal, and cause errors in the amplitude and phase of the signal. 

Solutions have been proposed that included using analog filter, digital filter and lock-in 

amplifier in the output (Angrisani, 1996). Analog filter can’t solve the problem 

completely because the signal phase will change due to phase response of the filter and 

the error is a function of frequency. In addition, instability of the filter decreases the 

amolitude measurement accuracy. If a lock-in amplifier is used, the output signal will be 

proportional to the product of the signal and reference frequency amplitudes, So the 

amplitude can be measured with high accuracy if the phase of the signal is known 

accurately and vice versa (Angrisani, 1996). Therefore an error in one of these parameters 

causes the error in measuring the other one. Using a digital filter can be a good solution 

to this problem but it in turn may increase the implementation complexity and costs. This 

paper presents a novel AC based impedance meter that uses differential measurement. 

The differential method for noise cancellation allows for a significant increase of the 

signal to noise ratio independent of the frequency of the noise.  The effects of capacitive 

and inductive coupling noise on both the auto balancing bridge method and the new 

method are analysed. Experimental results are given to compare the performance of two 

methods. 
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2.2. Auto-balancing bridge method  

In this method, the impedance is identified by measuring the voltage and current passes 

across the device under test (DUT). As shown in Figure 2.1 a sine-wave voltage is 

applied to the DUT and an AC input current is produced. The operational amplifier with a 

resistive feedback determines this current by converting it to an AC voltage. The DUT 

impedance can be calculated using the following expression: 

BC D E FGFH IC                                  

(2.1) 

 

Figure 2.1: Auto balancing bridge circuit 

To investigate the effect of capacitive and inductive coupling it is assumed that     (Ott, 

1988): 

1- Shields are from nonmagnetic materials with a thickness much less than skin 

depth corresponds to the frequency of interest. 

2- Induced currents in the cables and shields are small enough not to distort the 

original field 

3- Length of cables is short compared to the wavelength corresponds to the 

frequency of signal. 

Figure 2.2 shows the capacitive coupling between an external conductor and the cable 

between DUT and operational amplifier in the auto balancing bridge. 
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Figure 2.2: Capacitive coupling between a conductor and 

The capacitor C31 is grounded on both sides and no current can pass through it. 

Therefore if the grounded shield covers all the interface cable between Cx and the 

operational amplifier, the noise current which passes through the cable is reduced to 

zero. However, in practice the cable usually does extend beyond the shield which 

results in forming a coupling capacitance C21. Therefore a noise current exists in the 

cable and is amplified by the operational amplifier. The inductive coupling between 

an external conductor and the cable between DUT and operational amplifier in an 

auto balancing bridge is shows in Figure 2.3. 

 

Figure 2.3:  Inductive coupling between a conductor and auto balancing bridge 

circuit 

When a current flows in an external conductor it produces a voltage in the cable as 

well as in the shield that is proportional to the mutual inductance. To reduce the noise 

the shield should be grounded at the both sides otherwise there is no benefit to use the 

shield (Ott, 1988). In addition, the noise voltage induced in shield generates a 
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circulating current and this in turn induces a noise voltage in the cable proportional to 

M31. To evaluate the effect of this noise on the signal to noise ratio of the output 

signal, the equivalent circuit is presented in Figure 2.4. 

 

Figure 2.4: Equivalent circuit for the inductive coupling  

To analyse the inductive coupling noise effect, the total noise voltage induced in the cable 

and the total stray capacitance between the cable and the shield are divided into k 

segments. The noise current passing through R1 can be calculated as follow: 

JK D ∆MK N O∆PQRSK T 2∆MK N O∆PQRSK T V T W∆MK N O∆PQRSK T ∆FXYZ                  (2.2) 

Where PQR represents the capacitance between the cable and shield, SK is the inductive 

coupling noise frequency. Assuming that: 

 MK D W∆MK                                                                                                                   (2.3) 

PQR D W∆PQR                                                                                                                (2.4) 

The noise current can be rewritten as: 

JK D O [\Q
][ PQRSKMK T ∆FX[YZ                                                                                             (2.5) 

And if k approaches infinity it will be: 

lim[^_ JK D O0.5PQRSKMK                                                                                   

(2.6) 

The output signal to noise ratio can be written as: 

cdIefg D hihX D (jkYZlkFik)m
(jkn.opkqrXFX)m D 4 t YZlk

pkqrXu] tFikFX u]
                                                     (2.7) 
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The supply voltage is always selected to be much greater than the induced noise voltage, 

therefore the output signal to noise ratio is low where: 

BC v Q
pkqrX                                                                                                                     (2.8) 

This constraint limits the application of the Auto-balancing bridge method when the 

impedance of DUT is too large compared to the capacitive impedance between the cable 

and the ground or when the cable is too long and the frequency cannot be increased 

enough to compensate the effect of the  length of the cable. 

 

2.3. Proposed impedance meter 

2.3.1. Circuit Design 

 

Figure 2.5 shows the proposed circuit for measuring of impedance. The interface cable 

contains two wires inside a shield conductor. Each wire is connected to an operational 

amplifier with a resistive feedback like the auto-balancing bridge and the output of 

operational amplifiers are connected to an instrumentation amplifier. 

 

Figure 2.5: Proposed impedance meter 
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One operational amplifier amplifies the current that passes through DUT as well as the 

capacitive and inductive coupling noise while the other one just amplifies the same noise 

so that the noise is eliminated due to subtraction in the instrumentation amplifier.  

2.3.2. Effect of capacitive coupling 

Figure 2.6 shows the capacitive coupling between an external conductor and the cable 

between DUT and proposed impedance meter. 

 

Figure 2.6: Capacitive coupling between a conductor and the proposed impedance 

meter  

Using two twisted wires in the interface cable the value of the mutual capacitances C41 

and C42 will be the same. Therefore an equal voltage will be induced in the wires and the 

noise will be cancelled in the final differential amplification. 

 

2.4. Effect of inductive coupling 

Figure 2.7 shows the inductive coupling between an external conductor and the cable 

between DUT and proposed impedance meter. 
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Figure 2.7:  Inductive coupling between a conductor and the proposed impedance 

meter  

 

Similar to the auto-balance bridge, noise voltages are induced to each conductor of 

the interface cable. Figure 2.8 shows the equivalent circuit for the inductive coupling. 

As in the section 2.2, the inductive noise currents in conductors are equal and can be 

expressed as:  

JK D O0.5PQRSKMK                                                                                            (2.9) 

And it is amplified in each operational amplifier with the same gain so we have: 

 

Figure 2.8: Equivalent circuit for Inductive coupling between a conductor and the 

proposed impedance meter  
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Me D wxIQ tFikYZ T O0.5PQRSKMKu E I](O0.5P]RSKMK)y                                      (2.10) 

Where G is the gain of instrumentation amplifier. With selecting similar resistors and 

cables for both amplifiers: 

IQ D I]                                                                                                              (2.11) 

PQR D P]R 

The output voltage becomes:     

Me D E FGYZ IQ                                                                                                       (2.12) 

Therefore the circuit cancels the inductive coupling noise and the proposed circuit 

doesn’t have limitations associated with the auto-balance bridge. 

2.5. Disscussion and experimental results 

To validate the novel impedance measurement method the output voltages of two 

impedance meters were recorded and the power spectrum of output signals were 

compared. Figure 2.9 shows the power spectrum of the output signal of the auto 

balancing bridge and the novel impedance meter when the signal generator’s frequency is 

7 KHz. 
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Figure 2.9: Power spectrum of output signal of a- auto balancing bridge b- novel 

impedance meter 
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As expected there is considerable noise in the output signal of the auto balancing bridge 

because all induced voltages in the interface cable are amplified by the operational 

amplifier. In contrast the noise has been cancelled in the output signal of the novel 

impedance meter because of the differential amplification of the current. To validate the 

accuracy of the novel method in measuring the impedance, a 100 KΩ resistor in parallel 

with a 5nF capacitor were used as DUT. Figure 2.10 illustrates the difference between 

theoretical and experimental values of amplitude and phase of the impedance versus 

frequency. For all the values the error is less than 5%. It is seen that with increasing the 

frequency the error increases gradually because of the limited bandwidth of the 

instrumentation amplifier. To reduce the error, the bandwidth can be selected according 

to the needed frequency for DUT.  
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Figure 2.10: Theoretical and experimental values for a) amplitude of the impedance 

versus frequency b)phase of the impedance versus frequency 

 

2.6. Conclusions 

 A novel AC based impedance meter has been designed and implemented and its 

performance in cancelling capacitive and inductive coupling noise has been analysed. 

The novel impedance meter then compared with a conventional AC-based impedance 

meter. The performance of the circuit has been proved independent of the frequency and 

tested experimentally. Using this impedance meter the amplitude and phase of impedance 

in a noisy environment can be measured with high accuracy. Since the filter has been 
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removed, the output signal is more stable compared to conventional AC- based methods 

which in turn adds to the measurement accuracy. 
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CHAPTER3: EFFECT OF FLUIDIZED BED BOGGING ON THE 

DISTRIBUTION OF SPRAYED LIQUID ON FLUIDIZED 

PARTICLES  

3.1. Introduction  

In gas-fluidized bed processes such as Fluid Coking
TM

 and Fluid Catalytic Cracking, a 

liquid feed stream is contacted with fluidized particles in the bed. In Fluid Coking, heavy 

oil is injected into a fluidized bed of hot coke particles, where it undergoes thermal 

cracking. A high local concentration of liquid in the fluidized bed may result in particles 

coated with liquid that stick together, which in turn causes defluidization, a condition 

called "bogging". There is no published study of the impact of this bogging on the 

distribution of the sprayed liquid on the fluidized particles.  

Several methods have been developed to detect local defluidized zones in fluidized beds. 

Ropchan measured local heat transfer coefficients of fluidized particles and used their 

fluctuations to detect defluidized zones of a fluidized bed (Ropchan, 1981). Their results 

were confirmed by Marzocchella and Salatino (Marzocchella, 1995). Yutani found that 

auto correlation of local capacitance signals could be used to find defluidized zones 

between neighboring gas jets in the grid zone of a fluidized bed (Yutani, 1983). 

Triboelectric sensors can also be used to detect defluidized zones in the fluidized bed 

(Briens, 1999). 

Other methods have been developed to detect bogging of the whole bed.  Pressure 

fluctuations have been used with methods such as the W statistic to characterize the 

fluidized bed fluidity and detect bogging (Briens, 2003, Chong, 1987). Chaos analysis of 

pressure fluctuations was also used to identify the fluidization degradation caused by 

agglomeration of the fluidized particles (Van Ommen, 2000). However, chaos analysis is 

slow and requires several minutes of data. Bartels et al. compared fourteen different 

methods of pressure fluctuations analysis for their ability to detect process changes in a 

fluidized bed (Bartels, 2010). The Kolmogorov–Smirnov Test based on the mean 

crossing data with a 15 Hz low-pass filter performed best (Bartels, 2010). 
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Previous studies have shown that bubble behavior is greatly affected by the bed 

cohesivity (Briens, 2003, Chong, 1987). Reductions in bubble size and frequency as the 

fluidized bed approaches bogging has been attributed to an increase in minimum 

fluidization velocity (McLaughlin, 2001). 

This paper has three objectives. First, it determines the effect of bogging on the 

distribution of sprayed liquid on fluidized particles. Second, it investigates how bogging 

affects the bubble properties. Third, it develops a simple bogging detection method based 

on capacitance measurements.  

3.2. Experimental Set up 

3.2.1. Equipment and Materials 

Experiments were conducted in a 1.97 m high fluidized bed with a trapezoidal cross 

sectional area, shown in Figure 3.1.  

 

Figure 3.1: Schematic of experimental set up 
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Two rectangular wooden windows were mounted on two sides of the wall of the fluidized 

bed to enable capacitance measurement with electrodes on the outside of the bed wall. 

Coke particles with a Sauter mean diameter of 144 µm, density of 1450 kg/m
3
 and a total 

mass of 42 kg were used for most experiments.  For some experiments on the effect of 

liquid concentration on bubble properties, glycerol and sand particles Sauter mean 

diameter of 400 µm and mass of 40 kg were also used. Both types of solid particles 

belong to Geldart’s type B particles.  For all experiments, the bed was fluidized with air 

at a superficial velocity ranging from 0.1 to 0.2 m/s. 

In typical applications, the liquid sprayed into a fluidized bed is also the liquid causing 

bogging. In this study, however, the method used to measure the quality of the liquid 

distribution on the fluidized particles requires a vaporizable liquid.  Using the same liquid 

to induce bogging would have meant that the liquid concentration in the bed would have 

varied greatly with both time and location.  This study, therefore, used two separate 

liquids:  a non-vaporizable liquid to induce bogging and a vaporizable liquid to measure 

the quality of the liquid distribution on fluidized particles.  

Voltesso
TM

 oil was selected as non-vaporizable liquid, with coke particles in the bed.  

Voltesso oil simulates, at room temperature, the properties of bitumen in Fluid Coking
TM

 . 

Voltesso oil at room temperature has the viscosity of 7 CPS and density of 864 kg/m
3
 

while bitumen at 300 
o
C has the viscosity of 5 CPS and density of 922 kg/m

3
. Voltesso 

has a negligible vapor pressure at room temperature and can be used to provide a constant 

liquid background during each experiment. Voltesso was mechanically mixed with 

particles to ensure uniform coating of all the particles and to prevent the formation of 

coke-Voltesso agglomerates. Some additional experiments were conducted with a bed of 

sand particles and glycerol as background liquid. 

To determine the impact of the background liquid on the distribution of sprayed liquid on 

fluidized coke particles, Varsol was sprayed into the bed with a scaled-down version of 

an industrial spray nozzle as shown in Figure 3.1. The nozzle has a convergent-divergent 

geometry with a throat diameter of 2 mm. The flowrate of Varsol was 0.016 kg/s while 

the gas to liquid ratio was 2 wt% and the injection time was 10 s. A significant fraction of 

the liquid sprayed into the fluidized bed forms agglomerates with the bed particles, and 
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these agglomerates gradually break up in the fluidized bed, thanks to the turbulence 

resulting from the gas bubbles.  Varsol has a significant vapor pressure at room 

temperature, which allows for accurate measurement of the evolution of the liquid 

trapped in agglomerates. 

 

3.2.2. Origin of bogging 

Preliminary experiments were performed to determine the general cause of bogging in the 

experimental system used in this study.  Degradation of fluidization quality has been 

attributed to a variety of fluidized bed phenomena such as particle cohesivity, particle 

agglomeration, reduced bubbling, increase in minimum fluidization velocity and 

channeling (Van Ommen, 2000, McLaughlin, 2001). In general, defluidization is a result 

of changes in the surface properties of particles in the fluidized bed and their interactions 

at presence of liquid bridges or sintering mechanisms (McLaughlin, 2001).   

Some observations of changes in fluidization behavior caused by liquids that have been 

reported in the literature (McLaughlin, 2001, Seville, 1984, Molerus, 1982), suggest that 

adding liquid to Geldart group B particles may cause a transition to group A and group C 

behavior that finally can result in bogging or defluidization. Molerus mentioned that the 

balance between interparticle forces and fluid drag force on the particles is the main 

reason behind of BA and AC boundaries in Geldart diagram (Molerus, 1982). According 

to Molerus, the ratio of interparticle forces to drag force should increase and reach 6 and 

100 to enable the transition from Geldart group B to A and A to C respectively. It has 

also been reported that the increase in particle cohesivity caused by liquid bridges 

between particles decreases the effective bulk density of particles (Nokhodchi, 2005). In 

this case, a lower bed pressure gradient would be expected, as was confirmed by 

McLaughlin et al (McLaughlin, 2001).  

The agglomeration of fluidized particles has been proposed as another mechanism that 

can lead to bogging and defluidization (Van Ommen, 2000, Bartels, 2010). In an 

agglomerating fluidized bed, the increase in effective particle size results in a higher 

minimum fluidization velocity that in turn degrades the fluidization. Agglomeration thus 
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increases the bed density (Lipsanen, 2008), which results in a higher bed pressure 

gradient. 

To determine the general cause of bogging, this study performed experiments with two 

different experiments systems: Voltesso with coke particles and glycerol with sand. Since 

direct measurement of wet particle size wasn’t possible with particle size analyzer, the 

fluidized bed pressure gradient was studied to find whether agglomeration or particle 

group transition causes bogging. In both cases, the fluidized bed pressure gradient was 

determined from the measured pressure drop between two taps (Figure 3.1) at different 

concentrations of liquid. Figure 3.2 shows that, in both cases, the bed pressure gradient 

gradually decreases with increasing liquid concentration. This indicates that, in this study, 

bogging was not caused primarily by particle agglomeration but, instead, by an increase 

in particle cohesivity. Therefore, transition of wet coke particles from group B to A to C 

resulted in bogging. 
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Figure 3.2: Average pressure gradient measured between two taps at heights 0.05 m 

and 0.45 m above the gas distributor versus mass fraction of Glycerol and Voltesso 

oil  

3.2.3. Measuring Methods 

Capacitance sensors have been applied for void and bubble measurements (Elkow, 1996), 

(Kobayashi, 2012). Capacitance sensors allows for measuring the distribution of 

materials with low dielectric constants like air and Varsol with dielectric constant of 1 

and 3 inside materials with high dielectric constant like coke particles with dielectric 
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constant of 7 as measured for these experiments. Figure 3.1 shows the planar capacitance 

sensors that were used to measure the local bed capacitance between the central electrode 

and each side electrode on the wooden window of the bed. The capacitance meter was an 

AC based circuit with a differential noise cancelling system (Chapter 2). The local 

capacitance fluctuations were used to determine the local bubble properties while time-

averaged local capacitance provided the local concentration of “free” Varsol liquid, i.e. 

Varsol that was not trapped in agglomerates. Taking the mixture of coke and Voltesso oil 

as the background material with a high dielectric permittivity allows the detection of the 

Varsol as the foreground material with a low dielectric permittivity. In experiments 

conducted to characterize bubble properties, the capacitance was measured with an 

acquisition frequency of 5 kHz during 15 seconds. Experiments conducted to investigate 

agglomerate breakage, used an acquisition frequency of 1 kHz. 

Preliminary experiments showed that when Varsol is added to coke particles, Varsol 

trapped within agglomerates has no significant impact on the bed capacitance, which was 

affected only by the free liquid that is not trapped within agglomerates (Mohagheghi, 

2013). Some calibration experiments were required to determine the relationship between 

bed capacitance and free liquid concentration, i.e. the mass fraction of the Varsol liquid in 

the fluidized bed that was not trapped within liquid-solid agglomerates. In these 

experiments, Varsol was injected into the bed with a special “ideal” spray nozzle 

operating with an atomization gas to liquid ratio of 50 wt% to prevent the formation of 

agglomerates. Figure 3.3 shows the calibration curve for average capacitance of all 

electrodes in which the average capacitance is a linear function of the free liquid 

concentration in the bed.  
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Figure 3.3: Calibration curve 

Normal experiments were performed with a more common atomization gas to liquid ratio 

of 2 wt%, using a scaled-down version of an industrial spray nozzle. The free Varsol 

mass fraction was calculated with capacitance sensors, using the calibration relationship. 

After each injection, free Varsol is continuously generated from agglomerate breakage 

and gradually disappears from the bed through evaporation: 

z({|)z} D ~z({|)z} ��� T ~z({|)z} ��                                                                                     (3.1) 

Since both the fluidization velocity (��) and mass of solid ({�) were kept constant after 

injection in all experiments, the evaporation rate was only a function of the mass of free 

Varsol liquid. Therefore, the results of calibration experiments could be used to 

determine the relationship between the free Varsol concentration X and the evaporation 

rate at a given superficial gas velocity, since there were then no agglomerates. 

Substituting the calibration results for the evaporation rate in Equation 3.1, we obtain: 

{� ���
�g ��� D {� ���

�g � E {� ���
�g ���|                                                                                  (3.2) 

Where (dX/dt)cal is calculated for the instantaneous value of X. The free Varsol content X 

at any time can be calculated as the sum of the free Varsol during injection and the 

cumulative Varsol freed from agglomerates after injection. The ratio of the total free 

Varsol to the total mass of injected Varsol ({�) can be obtained from: 
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�(}) D �(}){� D  {�{� ���|g�n T � ~�z�z} � E �z�z} ���|� z} g
n �                                          (3.3) 

�(}) has been plotted as a function of time after injection for different Voltesso mass 

fractions and for several fluidization velocities. For instance, Figure 3.4 shows �(}) as a 

function of time after injection for a 0.3% Voltesso mass fraction and fluidization 

velocities of 0.1 m/s during injection. 

The data was fitted with an exponential curve that can be expressed as: 

�(}) D 1 T (�(0) E 1)���g                                                                                                    (3.4) 

Where �(0) is the value of �(}) at the end of injection and � is the natural frequency of 

agglomerate breakage. Bogging was determined from its impact on the distribution of 

sprayed liquid, by measuring � at different oil mass fractions and fluidization velocities. 

Figure 3.4 shows that most of the Varsol injected into the bed was initially trapped within 

agglomerates while the background Voltesso oil was not trapped within agglomerates.  

As a result, during the Varsol injection, practically all the free liquid, which affects the 

bed bogging, is in the form of Voltesso oil and the impact of Varsol on bogging is then 

negligible.   
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Figure 3.4: The mass of total Varsol freed from agglomerate versus time 
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3.3. Results And Discussion 

3.3.1. Bogging Condition in the Fluidized Bed 

The increase of particle cohesivity that is caused by increasing liquid concentration in a 

fluidized bed, and can lead to bogging, is a gradual phenomenon. In a wet bed, the 

minimum liquid concentration above which the bed becomes bogged depends on each 

practical application. The focus of this study is the impact of the liquid background on the 

distribution of sprayed liquid on fluidized particles.  Bogging in the fluidized bed has, 

therefore, been characterized by directly investigating the impact of the background 

liquid concentration on the breakage kinetics of the wet agglomerates of coke and Varsol 

formed when Varsol was injected in a bed previously wetted with Voltesso oil.  

Figure 3.5 illustrates the effects of the Voltesso oil concentration in the bed on the natural 

frequency of agglomerate breakage, for various fluidization velocities during liquid 

injection. The natural frequency of agglomerate breakage increases with increasing 

fluidization velocity during Varsol injection.  
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Figure 3.5: Effects of Voltesso oil mass fraction on natural frequency of agglomerate 

breakage for various fluidization velocities during liquid injection   

Figure 3.5 also shows that increasing the concentration of background Voltesso oil has a 

detrimental impact on the distribution of the sprayed Varsol, since the natural frequency 

of agglomerate breakage is reduced. A sharp drop occurs when the Voltesso oil fraction is 
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increased from 0.25 to 0.275 wt%. These experiments, thus, indicate that bogging occurs 

when the oil mass fraction is increased from 0.25 to 0.275 wt%. There are two possible 

causes:  wetter beds may not distribute injected Varsol as well as dry beds, and wet beds, 

by affecting bubble properties, may hinder agglomerate breakage. The following section, 

therefore, studies the impact of background oil concentration on bubble properties. 

3.3.2. Effect of Bogging on Bubble Properties     

The objective of this section is to determine how bubble properties, measured with 

capacitance sensors, are related to the onset of bogging detected from the distribution of 

liquid sprayed into the fluidized bed.  This might also provide a method to detect 

conditions under which sprayed liquid could no longer be distributed properly and 

stronger agglomerates would be formed (Figure 3.5). 

Previous studies confirmed that bogging has a considerable effect on bubble rise velocity, 

which can be measured directly with planar capacitance sensors (Briens, 2003, Chong, 

1987).  In this study, measured capacitance signal was smoothed using a low pass filter 

with a cut off frequency of 25 Hz to remove the effect of small bubbles. Then, the rise 

velocity was determined for each bubble from the ratio of the vertical distance between 

two electrodes (D in Figure 3.6a) to the measured bubble rise time. Figure 3.6 shows how 

the bubble rise time was calculated from the time lag (tr in Figure 3.6b) between the drops 

in the capacitance signal caused by the passage of a gas bubble presence past each 

electrode. 
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Figure 3.6: a) bubble crosses the electric field of three electrodes b) The effect of 

crossing on capacitance signals – calculation of bubble rise time 

Simulation of the effect of a moving bubble on capacitance signal (section 5.3.3) with 

COMSOL electrostatic toolbox also confirms the curve shown in Figure 3.6b. Using 

planar capacitance sensors, one can measure bubble frequency as well as bubble rise 

velocity. When bogging occurs, poorly fluidized zones form at some fluidized bed 

locations which can cause a strong variation in bubble frequency with location within the 

bed. Therefore, the standard deviation of the bubble frequencies obtained from eight pairs 

of electrodes across the bed can be used to detect the changes in bubble properties caused 

by bogging.  

This paper uses the bubble rise velocity and the standard deviation of bubble frequency to 

detect bogging and to investigate the effect of liquid concentration and fluidization 

velocity on bogging. The fluidized bed was operated with a constant fluidization velocity 

and Voltesso oil was added to coke particles in several steps until bogging was observed. 

For each step, the bubble rise velocity and the standard deviation of bubble frequency as 

well as the bed pressure drop were measured. The same experiments were performed for 

different fluidization velocities between 0.1 and 0.2 m/s. Another set of similar 

experiments were performed in the same column with sand particles and glycerol. 

3.3.3. Results of Experiments with Coke Particles 
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In our fluidized bed, the bubble rise velocity was found to be log-normally distributed, as 

in other studies (McLaughlin, 2001, Seville, 1984).  Figure 3.7 shows the effect of 

bogging and fluidization velocity on the average bubble velocity. Figure 3.7 indicates that 

bubble velocity increases with fluidization velocity, as expected (McLaughlin, 2001). As 

displayed in Figure 3.7, the bubble velocity first decreases slightly with increasing 

Voltesso oil content:  if bed particles become cohesive, their effective diameter increases 

resulting in an increase in the minimum fluidization velocity, which explains the decrease 

in bubble velocity (McLaughlin, 2001). 
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Figure 3.7: Effects of fluidization velocity and oil mass fraction on average bubble 

velocity  

When the Voltesso oil fraction increases past 0.2 wt%, the bubble velocity starts 

increasing sharply with increasing oil fraction: this is likely caused by the appearance of 

channeling. When the channeling begins at some locations of the fluidized bed, the 

bubble rise velocity increases due to limited routes for the fluidization gas.  
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Figure 3.8: Effects of fluidization velocity and oil mass fraction on standard 

deviation of bubble frequency  

Figure 3.8 illustrates the effect of fluidization velocity and Voltesso oil mass fraction on 

the standard deviation of the bubble frequency, which characterizes the variation of the 

bubble frequency over the bed width. At first, the standard deviation of the bubble 

frequency increases gradually with increasing Voltesso oil fraction. When the Voltesso 

oil fraction goes past 0.2 wt% and channeling starts at some locations, the standard 

deviation of bubble frequency starts increasing much more quickly with increasing 

Voltesso oil fraction.  

A comparison of Figures 3.5, 3.7 and 3.8 shows that the bogging transitions observed 

from abrupt changes in sprayed Varsol distribution, bubble velocity and standard 

deviation of bubble frequency all occur at about the same Voltesso oil concentration.  

Partial channeling caused by the increase in particle cohesiveness due to the increase in 

background Voltesso oil concentration is, therefore, likely to cause the observed major 

degradation in sprayed Varsol distribution.  

3.3.4. Results of Experiments with Sand Particles 
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Figure 3.9: Effects of fluidization velocity and glycerol mass fraction on standard 

deviation of bubble frequency  

Figure 3.9 illustrates the effect of fluidization velocity and glycerol mass fraction on the 

standard deviation of the bubble frequency. A sharp increase happens at a glycerol mass 

fraction of 0.5% which shows the initial point of channeling at some locations of the 

fluidized bed. The results are similar to the results obtained with Voltesso oil and coke 

(Figure 3.8). This suggests that the standard deviation of the bubble frequency is a better 

way to detect the onset of bogging than the average bubble velocity.  

3.4. Conclusions 

When the Voltesso oil concentration in a fluidized bed increases past a critical value, the 

breakage rate of wet agglomerates slows down, which results in a poorer distribution on 

the fluidized particles of the Varsol sprayed into the bed. 

Bubble properties in a wet fluidized bed of coke particles were measured with planar 

capacitance sensors at different levels of bed moisture and fluidization velocity. Major 

changes in bubble properties and changes in the kinetics of wet agglomeration breakage 

occur at the same Voltesso oil mass fractions. Results indicate that the standard deviation 

of the bubble frequency can be used as a bogging index, since it increases sharply when 

the agglomerate breakage drops. This index provides effective detection of bed bogging 

in a few seconds. 
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CHAPTER4: EARLY DETECTION OF DEFLUIDIZATION USING 

WAVELET ANALYSIS OF PRESSURE FLUCTUATIONS 

 

4.1. Introduction 

Bogging degrades fluidized bed processes.  It usually occurs when particles stick together 

or become too cohesive due to an excess of liquid or too high a temperature. Bogging 

generally occurs due to changes in the surface properties of the bed particles and particles 

adhesion resulting from sintering or the presence of liquid bridges (Molerus, 1982).   

Two main interpretations of the bogging phenomena have been proposed: 

1) It can result from increasing particle cohesivity.  It has been reported that adding 

an excess amount of liquid to Geldart group B particles may cause a transition to 

group A and group C behaviour that can eventually result in defluidization 

(Molerus, 1982, McLaughlin, 2001, Seville, 1984). Molerus et al found that the 
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balance between interparticle forces and fluid drag force on the particles is the 

underlying reason for BA and AC boundaries in Geldart diagram (Molerus, 1982). 

They observed that the transition from Geldart group B to A and A to C occurs 

when the ratio of interparticle force to drag force increases and reaches 6 and 100, 

respectively.  

2) It can result from more permanent particle agglomeration (Fuller, 1993, Briens, 

2003). Due to agglomeration, the effective particle size increases, which increases 

the minimum fluidization velocity and may eventually result in bogging. 

In chapter 3, it is shown in the system used in the present study, which is intended to 

simulate Fluid Coking conditions at room temperature, bogging results from increasing 

particle cohesivity. 

Early detection of bogging in the fluidized bed would provide opportunities for timely, 

corrective action. Several published methods detect early bogging in the fluidized bed. 

Methods based on pressure fluctuations are more attractive since other methods are still 

facing practical limitations in their potential application to industrial fluidized beds 

(Werther, 1999). Furthermore, pressure fluctuations result from different phenomena 

affected by bogging such as bubble frequency, bubble coalescence and bubble size and 

shape (Van der Schaaf, 1998).  

Pressure fluctuations are obtained from the instantaneous, local bed pressure gradient, 

measured from the pressure drop per unit height between two locations within the dense 

fluidized bed.  The simplest criteria use the time-averaged pressure gradient or its 

standard deviation to detect changes in fluidization quality but are not effective for 

bogging detection (Schouten, 1998).  The normalized standard deviation of high 

frequency components of the pressure fluctuations has been applied to bogging detection 

(Weinstein, 2000). Principal component analysis (PCA) has also been implemented on 

pressure signals to identify bogging (Schouten, 1998). However, both methods are 

sensitive to fluidization velocity, which makes them difficult to implement in industrial 

fluidized beds. A W-statistic was proposed based on to detect bogging in the fluidized 

bed: it uses filters to differentiate between pressure fluctuations from local bubbles and 
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pressure fluctuations from bubbles further away in the fluidized bed, whose transmission 

is affected by particle cohesivity (Briens, 2003). Van Ommen et al. detected early 

bogging using Chaos analysis of pressure fluctuations in a fluidized bed, but this method 

is slow when compared to methods based on the frequency analysis of pressure 

fluctuations (Van Ommen, 2000). Bartels et al. compared different bogging detection 

methods and concluded that the Kolmogorov-Smirnov Test based on the mean crossing 

data with a 15 Hz low-pass filter is the most suitable one (Bartels, 2010).  

All previous methods for bogging detection can find an initial point of bogging that is not 

unique and depends on the implemented method. Since bogging affects liquid distribution 

and consequently the yield of reaction in the fluidized beds with chemical reactions, 

detection of initial bogging based on liquid distribution properties is of importance. The 

effect of bogging on liquid distribution can be investigated with from the breakup kinetics 

of the agglomerates formed during liquid injection, as well as from the bubble properties 

in the fluidized bed, both of which can be obtained from sophisticated local bed 

capacitance measurements (chapter 3). However, such capacitance measurements would 

be difficult to perform in industrial units. 

The objective of this study is to develop a new bogging detection method based on 

pressure fluctuations, which could be performed in industrial units, to detect early 

bogging as defined from the breakup kinetics of agglomerates formed during liquid 

injection (chapter 3). The proposed bogging index should be insensitive to moderate 

changes in fluidization velocity. It should also be compared with other bogging detection 

methods using defined performance indices. 

4.2. Experimental 

4.2.1. Experimental Setup 

All the measurements were performed in a 1.97 m high Pie-shape fluidized bed, as shown 

in Figure 4.1.  

 



45 
 

 

Figure 4.1: Schematic diagram of experimental set up 

Coke particles with a Sauter mean diameter of 144 µm and a mass of 42 kg were used for 

experiments. Air at room temperature was the fluidization gas for all experiments with its 

superficial velocity ranging from 0.1 to 0.2 m/s. The bed height was approximately 0.4 m 

when the fluidization superficial velocity was 0.2 m/s. 

Measurements were performed with different concentrations of Voltesso oil in the 

fluidized bed of coke particles. Since Voltesso oil has a negligible vapor pressure at room 

temperature, it could provide a constant liquid background during each experiment.  

Voltesso oil at room temperature simulates the properties of heavy oil at high coker 

temperatures, making the results of this study relevant to processes such as Fluid 

Coking
TM

. Voltesso was mechanically mixed with particles to ensure that the liquid 

coated individual particles and that no coke-Voltesso agglomerates were formed.   

The impact of the background liquid on the distribution of sprayed liquid on fluidized 

coke particles was determined by spraying Varsol into the bed with a scaled-down 

version of an industrial spray nozzle (chapter 3). The fluidization velocity was kept 

constant during injection and after injection. Agglomerates are formed by a significant 
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fraction of the liquid sprayed into the bed particles, and these agglomerates gradually 

break up in the fluidized bed, due to the shear forces resulting from the gas bubbles 

(chapter 3).  

The differential pressure was measured between each two vertically separated pressure 

taps (Figure 4.1) with acquisition frequency of 1 kHz.  The taps were located 5 cm and 42 

cm m above the gas distributor. The pressure fluctuation data during 6 minutes was 

acquired with pressure transducers at different oil mass fractions ranging from 0 to 0.4 wt% 

in the bed of coke particles and different fluidization velocities ranging from 0.1 to 0.2 

m/s. 

4.2.2. Measuring methods 

Figure 4.1 shows the planar capacitance sensors; each sensor was used to measure the 

local bed capacitance between a small electrode and a large electrode on the opposite side 

of the bed. The capacitance meter was an AC based circuit with a differential noise 

cancelling system (chapter 2).  The time-averaged local capacitance provided the local 

concentration of “free” Varsol liquid, i.e. Varsol that was not trapped in agglomerates. 

Taking the mixture of coke and Voltesso oil as the background material with a high 

dielectric allows the detection of the Varsol as the sprayed  material with a low dielectric 

(chapter 3).  

Calibration experiments determined the relationship between local bed capacitance and 

free liquid concentration, i.e. the mass fraction of the Varsol liquid in the fluidized bed 

that was not trapped within liquid-solid agglomerates (preliminary experiments indicated 

that Varsol trapped within agglomerates has a negligible impact on the bed capacitance 

(Mohagheghi, 2013). In the calibration experiments, Varsol was injected into the bed 

with a special “ideal” spray nozzle operating with an atomization gas to liquid ratio of 

50 wt% to prevent the formation of agglomerates as discussed in chapter 3.  

4.3. Kinetics of agglomerate breakage 

Experiments were performed with a more common atomization gas to liquid ratio of 2 

wt%, using a scaled-down version of an industrial spray nozzle. VoltEsso oil was selected 
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as non-evaporating background liquid to generate the bogging condition, while Varsol 

was the sprayed liquid. The detail of these experiments can be found in a previous 

publication (chapter 3).   

Bogging has been determined by measuring the natural frequency of agglomerate 

breakage ( �)  at different oil mass fractions and fluidization velocities. Figure 3.5 

illustrates the effects of oil mass fraction and fluidization velocity during and after liquid 

injection on the natural frequency of agglomerate breakage. The natural frequency of 

agglomerate breakage increases with increasing fluidization velocity and decreases at 

higher Voltesso oil concentration and increased particle cohesiveness but when the 

Voltesso oil concentration passes 0.275%, the effect of fluidization velocity becomes 

negligible. The Voltesso oil concentration of 0.25% therefore can be considered as initial 

point of bogging. 

4.4. Results of previous methods 

Figure 4.2 shows that the pressure data at normal operating conditions and at initial point 

of bogging exhibit different patterns. 
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Figure 4.2: Differential pressure data measured between two vertically separated 

pressure tapes at a) Normal operation b) Initial point of bogging 

  The question is, therefore, which method can best extract a single number from pressure 

data that can be used to determine whether the bed is bogged or not.  Ideally, such a 

number: 
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• Would clearly distinguish between bogged and non-bogged beds 

• Could be calculated quickly 

• Would not be very sensitive to small changes in fluidization velocity, since it may 

vary significantly with location in commercial units. 

Average and standard deviation of pressure fluctuations have been used to detect 

defluidization (Schouten, 1998). As shown in Figure 4.3, both of those change with 

increasing the concentration of Voltesso oil in coke particles. However, those are not 

sensitive enough at initial point of bogging. For standard deviation of pressure fluctuation, 

the high sensitivity to fluidization velocity is also make it difficult to recognize the initial 

bogging. In this section, results of implementation of three previous methods, 

Kolmogorov-Smirnov test, Wstat and attractors difference index is provided using 6 

minutes of pressure data. 
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Figure 4.3: Average and standard deviation of measured pressure versus oil mass 

fraction and fluidization velocity 

Kolmogorov-Smirnov test of mean crossing data extracted from low pass filtered 

pressure fluctuation has been found in previous studies to be the best method to detect 

particle agglomeration when compared to all proposed pressure based methods until 2010 

(Bartels, 2010). In this method, the data is first filtered with a low pass filter with a cut-

off frequency of 15 Hz. The cumulative distribution of distances between mean crossing 

points at filtered time series is then compared with a reference cumulative distribution by 

implementing the Kolmogorov-Smirnov test.  
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Figure 4.4: Kolmogorov-Smirnov statistic (Bartels, 2010) of measured pressure 

versus oil mass fraction and fluidization velocity after injection 

Here, data extracted from pressure fluctuations with dry particles has been used as the 

reference. Pressure data acquired while Voltesso oil was progressively added to coke 

particles. Figure 4.4 shows the Kolmogorov-Smirnov stat of pressure fluctuations at 

different oil mass fractions and fluidization velocities. As it is shown in Figure 4.4, the 

Kolmogorov-Smirnov statistic increases before oil mass fraction reaches 0.25% where 

natural frequency of agglomeration breakage changes  
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Figure 4.5: Wstat of measured pressure versus oil mass fraction and fluidization 

velocity 
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However, due to fluctuations in the index at low oil fractions, bogging cannot be detected 

for individual gas velocities until the oil mass fraction reaches about 0.275 %: it cannot 

provide early detection.  This index is also sensitive to fluidization velocity and may give 

false alarm due to change in local fluidization velocity in the fluidized bed. 

Figure 4.5 and Figure 4.6 show the Wstat with 95% compression, using the Daubechies 4 

wavelet (Briens, 2003), and the attractors difference index at different Voltesso oil mass 

fractions and fluidization velocities respectively (Schouten, 1998, Briens, 2003). 
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Figure 4.6: Attractors difference index versus oil mass fraction and fluidization 

velocity (measured pressure at dry bed is the reference) 

As it is shown in the Figure 4.5, Wstat can predict the bogging earlier since it drops at 

Voltesso oil mass fraction of 0.2%; however, due to fluctuations in the index at low oil 

fractions, bogging cannot be detected for individual gas velocities until the oil mass 

fraction reaches about 0.225 %.  Because the initial point of bogging according to Figure 

3.5 corresponds to an oil fraction of about 0.25%, the Wstat would provide early 

detection.  The attractors difference index starts increasing at an oil fraction of 0.25%; 

however, due to fluctuations in the index at low oil fractions, bogging cannot be detected 

for individual gas velocities until the oil mass fraction reaches about 0.275 %.   
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A problem with both the Wstat and attractors difference indices is their sensitivity to 

fluidization velocity.  For example, with the Wstat, if one takes a Wstat value of 0.4 to 

prevent any risk of erroneous bogging detection at low oil fractions, bogging will be 

detected at an oil fraction ranging from 0.225 to 0.25 %, depending on the fluidization 

velocity.  Therefore, if the exact fluidization velocity is not known, the Wstat can only 

reliability detect bogging at its initial point, for an oil fraction of 0.25 %, and cannot 

always provide early detection.  The attractors difference index is significantly worse, 

since, if the exact fluidization velocity is not known, it can only reliably detect bogging 

for an oil fraction of 0.29 %, well past initial bogging. 

4.5. Wavelet analysis of pressure fluctuations 

4.5.1. Wavelet transform 

Wavelet transform is a mathematical tool for representing a signal in time and frequency 

simultaneously. Wavelets transform can be used in two general forms: a continuous and a 

discrete Wavelets transform. The continuous wavelet transform of a signal y at time t of 

scale a is defined as: 

���(}) D Q
√� ¡ �(})Ψ tg�¢

� u z£                                                                                             

(4.1) 

Continuous wavelet transform is a convolution of the signal with the scaled version of the 

function Ψ called “mother wavelet”. The function Ψ must be localized well in time and 

frequency to satisfy the admissibility criterion.   

Discrete wavelet transform implements a pair of digital filters to decompose the signal 

into a low frequency component A1 called the approximation and a high frequency 

component D1 called the detail. Decomposition is then repeated at the next level using 

A1 as the input signal. With repeating the decomposition at nw levels, a hierarchical 

multi-resolution representation of the signal x will be obtained: 

� D ¤Q T ¤] T V T ¤K¥ T ¦K¥                                                                                               

(4.2) 
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Each detail component Di contains information at frequencies between fs/2i to fs/2i+1 

where fs is the sampling frequency and i is called the octave number.          

Since there was no need to obtain all the wavelet coefficients of the continuous wavelet 

transform of pressure signals, this study uses the discrete wavelet transform to analyze 

the data. The discrete wavelet transform calculation is also much faster, which is major 

advantage for on-line bogging detection. 

 

4.5.2. Optimized bogging index based on wavelet coefficients 

Bogging in a fluidized bed deteriorates the fluidization quality which affects bubble 

properties and consequently pressure fluctuations in the fluidized bed. Since the change 

in fluidization velocity also affects bubble properties and pressure fluctuations, an 

optimized bogging index should be defined as a function of pressure fluctuations that 

detects the particle cohesion or agglomeration exactly at the time of deterioration of 

fluidization quality in the fluidized bed without sensitivity to fluidization velocity. The 

liquid concentration at initial point of deterioration of fluidization can be detected 

through the measurements of natural frequency of agglomerate breakage in the fluidized 

bed and can be used to calibrate the pressure fluctuation based bogging index.  

Attenuation of pressure fluctuations at different frequency bands is a function of particle-

particle interactions (Seville, 1984).  Bogging in a fluidized bed changes the interactions 

between particles that in turn affects the source of pressure fluctuations and its 

attenuation at different frequencies. So it is possible to detect early bogging in the 

fluidized bed through fitting a function on wavelet coefficients of pressure fluctuations. 

Since pressure fluctuation is a non-stationary time series, a function based on statistical 

test is a better option for detection of early bogging. Here, Kolmogorov-Smirnov test 

(Cohn, 2012) as a function of cycle rms of wavelet coefficients has been used to compare 

the pressure fluctuations measured in wet particles with the pressure fluctuation measured 

in less wet particles as reference data. Kolmogorov-Smirnov test is a statistical test for the 

equality of probability distributions of two samples and is sensitive to difference in both 

shape and location of cumulative distribution of two samples. When the frequency 
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characteristics of pressure fluctuation changes due to agglomeration, the Kolmogorov-

Smirnov statistic increases. 

The bogging index can be expressed as Kolmogorov-Smirnov statistic of product of cycle 

rms of wavelet coefficients with unknown exponents: 

§ D ¨c(∏ zª«¬)K¥ª�Q                                                                                                  (4.3) 

Where nw is the number of octaves of wavelet coefficients and d represents the cycle rms 

of wavelet coefficients at each octave. Unknown exponents in Equation 4.1 can be 

determined through optimization of the proposed index based on the information from 

kinetic of agglomeration breakage. Assuming that initial point of early agglomeration 

occurs at the oil mass fraction equal to 0.25%, , the proposed index at Equation 4.1 

should be optimized to change sharply at this point.  
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Figure 4.7: New ideal bogging index  

The proposed index at Equation 4.1 should increase to a high value at initial point of 

bogging and should not change at other oil mass fractions and be independent of 

fluidization velocity as it is shown in the Figure 4.7. Therefore the optimization problem 

can be expressed as: 

{® ¯ °��Kx±|q²X³´,µ y
°��Kx±|¶²X³· y\kX ∑¹(º)¹»¼

½                                                                                          (4.4) 
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Where n represents oil mass fraction level ranges between 0 and 6 (corresponds to 0% 

and 4% oil mass fraction) and U3 represents fluidization velocity.  

4.6. Results and discussion 

The measured pressure data for all Voltesso oil mass fractions and fluidization velocities 

was decomposed to 16 octaves. The cycle rms of each octave at every second was 

calculated. A genetic algorithm was used to optimize the objective function shown in 

Equation 4.8 with an initial population size of 1000 and 2500 iterations. Table 4.1 shows 

the initial result for exponent of octaves at Equation 4.7: 

Table 4.1: Exponents of wavelet coefficients at each octave calculated with Genetic 

algorithm 

Octaves 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Highest frequency (Hz) 

166 83 41 21 10 5.2 2.6 1.3 0.65 0.32 0.16 0.08 0.04 0.02 0.01 0.005 

Lowest frequency (Hz) 

83 41 21 10 5.2 2.6 1.3 0.65 0.32 0.16 0.08 0.04 0.02 0.01 0.005 0.002 

Exponents 
0.01 0.07 -2.18 0.62 0.217 0.017 0.015 0.020 0.023 0.025 0.027 0.020 0.019 0.015 0.018 0.017 

Since octaves 3, 4 and 5 were dominant due to higher exponents, the optimization was 

done again considering just octaves 3, 4 and 5 and the result is given in Table 4.2. 

Table 4.2: Exponents of wavelet coefficients at dominant octaves calculated with 

Genetic algorithm 

Octaves 3 4 5 

Exponents -2.66 0.76 0.061 

Figure 4.8 shows the new Kolmogorov-Smirnov statistic from Equation 4.1 with the 

exponents of Table 4.2 versus the oil mass fraction at various fluidization velocities for 6 

minutes of data when the reference is pressure data measured in dry coke. According to 

Figure 4.8 the proposed index increases sharply at 0.25% oil mass fraction while its 

sensitivity to fluidization velocity is small. A threshold value β was defined to determine 
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whether the fluidized bed is normal or failure. When the bogging index was larger than β, 

it can be judged that the fluidized bed is in malfunction. The red line in Figure 4.8 

represents β with the selected value of 4.   For a value of β of 4, the new Kolmogorov-

Smirnov statistic can reliably detect bogging for oil fractions greater than 0.275 %, 

independently of the fluidization velocity.   
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Figure 4.8: New Kolmogorov-Smirnov statistic versus oil mass fraction and 

fluidization velocity 
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Figure 4.9: New Kolmogorov-Smirnov statistic versus oil mass fraction a) at 

different length of data (Uf=0.1 m/s) b) at different fluidization velocities for 2 

minutes of pressure data 
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For β of 3, bogging could be detected for oil fractions greater than 0.25 %. 

Figure 4.9-a shows the new Kolmogrov-Smirnov statistic for different lengths of pressure 

data. It can be seen that the new Kolmogrov-Smirnov statistic performs better with longer 

data as the sensitivity to bogging increases. Figure 4.9-b shows the new Kolmogrov-

Smirnov statistic at different fluidization velocities for two minutes of data. According to 

this Figure the sensitivity to fluidization velocity is still low enough and with the same 

value for β, 2 minutes of data can be used to detect bogging. 
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Figure 4.10: Kolmogorov-Smirnov statistic (Bartels, 2010) of measured pressure 

versus oil mass fraction a) at different length of data (Uf=0.1 m/s) b) at different 

fluidization velocities for 2 minutes of pressure data 

Figure 4.10, 4.11 and 4.12 show the Kolmogrov-Smirnov statistic (Bartels, 2010), Wstat 

and attractors difference index for different length of pressure data. For all three indices, 

when the length of pressure data is reduced, the sensitivity to fluidization velocity 

increases that makes the detection of bogging more difficult. If just 2 minutes of pressure 

data be available, the new Kolmogrov-Smirnov statistic can perform better since it is less 

sensitive to fluidization velocity when compared to other presented methods. 
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Figure 4.11: Wstat of measured pressure versus oil mass fraction a) at different 

length of data (Uf=0.1 m/s) b) at different fluidization velocities for 2 minutes of 

pressure data 
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Figure 4.12: Attractors difference index versus oil mass fraction at different length 

of data (Uf=0.1 m/s) 

In practice, pressure data of fluidized dry particles with the same fluidization condition as 

the reference data is not available since the fluidization is usually a continuous process. 

The evaluation of new Kolmogrov-Smirnov statistic with pressure data of different oil 

concentration as the reference is therefore necessary. Figures 4.13-a and 4.13-b show the 

new Kolmogrov-Smirnov statistic while the reference pressure data measured at 0.1% 

and 0.2% of Voltesso oil mass fraction instead of dry coke. According to these Figures, if 



58 
 

the reference data is measured in wet fluidized particles, the new Kolmogrov-Smirnov 

statistic increases sharply at 0.25% oil mass fraction while its sensitivity to fluidization 

velocity is still negligible since the highest index at oil mass fraction of 0.2% is still much 

lower than the lowest index at oil mass fraction of 0.3% and can’t cause false detection of 

bogging. The new Kolmogrov-Smirnov statistic therefore can be used to detect bogging if 

the reference data is measured in wet fluidized particles. Comparison of all bogging 

detection methods is provided in Table 4.3. 
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Figure 4.13: New Kolmogorov-Smirnov statistic versus oil mass fraction and 

fluidization velocity a) The reference data measured at 0.1% oil fraction b) The 

reference data measured at 0.2% oil fraction 

4.7. Comparison of new KS test with other bogging detection methods 

To compare different bogging detection methods, first, all bogging index values 

calculated at different oil mass fractions and fluidization velocities were normalized: 

JK° D ±Xµ�±¶,µ±´,µ�±¶,µ                                                                                                            (4.5)  

 Where n represents oil mass fraction and m represents fluidization velocities. §n,° and 

§¾,°  are therefore calculated bogging index values at dry bed and  bogged bed 

respectively. Four indices defined using normalized values: 

a) As it is shown in the Figure 4.7 the ideal bogging index should be constant before 

initial bogging at oil mass fraction of 0.25% regardless of length of pressure data. 
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To evaluate methods based on this criteria, 6 minutes of measured pressure data 

was divided in 3 sections, each with a length of 2 minutes, then the standard 

deviation between the 3 values of Inm calculated for each of the 2 minutes sections 

(std(Inm)) was averaged over the three oil mass fractions at which the bed was 

normally operated, 0%, 0.1% and 0.2% for all 5 fluidization velocities to obtain 

the first performance index:  

¿JQ D Q
Qo ∑ ∑ À}z(JK°)]K�no°�Q                                                                           (4.6) 

b) The ideal bogging index should not be sensitive to fluidization velocity. The high 

sensitivity to fluidization velocity prevents distinction between normal operation 

and initial bogging. This criteria therefore can be formulated as: 

   ¿J] D n.oÁ(Âg�(Ã¶µ)\Âg�(ÃÄµ))kÄ(∑ ÃÄµ�ÄµÅk ∑ Ã¶µ)ÄµÅk                                                                             (4.7) 

c) Some bogging detection methods can detect bogging using few minutes of 

pressure data while others may require more than 10 minutes of pressure data. So, 

the minimum length of pressure data needed for bogging detection is another 

important criteria. In general, with reducing the length of pressure data for a given 

bogging detection method, the sensitivity of calculated values to fluidization 

velocity increases. This criteria therefore can be formulated by implementing the 

PI2 for 2 minutes of pressure data, giving the criterion PI3. 

d) The time that is needed for calculation of the bogging index also should be low 

enough to enable immediate remedial actions. The processor used here for 

calculations is a 4 core, 2.2 GHz Intel i7, and the software is Matlab. The 

calculation time of each bogging index is the fourth performance index. 

Results of all three performance indices are given in table 4.3. All three performance 

indices should be minimum at ideal condition.  According to this table the new Ks 

test outperforms other bogging detection methods at PI2 and is close to best index at 

PI1 and PI3. Surprisingly, the time-averaged pressure gradient performs relatively 

well, which means that bogging detection could be performed even if only the time-

averaged pressure gradient was available.  With the exception of the chaos analysis 

method, all methods require less than 1 s of calculation time, which is much smaller 

than the time required to acquire the data.  
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Table 4.3: Comparison of bogging detection methods 

 PI1 (%) PI2 PI3 PI4 

Average of 

pressure data 
3.61 5.95 7.3 <1s 

Standard deviation 

of pressure data 
6.37 6.32 8.62 <1s 

Kolmogorov-

Smirnov test 

(Bartels, 2010) 

5.47 5.75 6.61 <1s 

Wstat 8.79 6.42 11.41 <1s 

New Kolmogorov-

Smirnov test 
4.15 3.8 7.12 <1s 

Chaos analysis 12.184 13.3 28.31 <10 min 

 

Although the results obtained for PI3 suggest that bogging detection could be 

achieved with as little as 40 s of pressure fluctuations data, table 3 shows that much 

better results are obtained with PI2, indicating that using 2 minutes of data would give 

much better results.  With 2 minutes of data, the new Kolmogorov-Smirnov index 

was clearly superior to the other bogging indices. 

 

4.8. Effect of bogging on the frequency spectrum of pressure fluctuations 

It has been reported that measured pressure fluctuations originate from bubble formation, 

bubble velocity, bubble frequency and changes in bed voidage (Schouten, 1998). The 

change in frequency spectrum of pressure fluctuations due to bogging can be a result of 

the change in source or medium of pressure waves in fluidized bed since any medium can 

attenuate or magnifies each mechanical traveling wave with a specific frequency at 

different levels. According to the measurements, the average bubble velocity first 
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decreases with increasing Voltesso oil mass fraction but increases after passing the initial 

point of bogging (Figure 4.14).  
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Figure 4.14: Average bubble velocity and frequency at different Voltesso oil mass 

fractions (Uf=0.1 m/s) 

 

The change in bubble frequency is negligible with increasing oil mass fraction as shown 

in Figure 4.14. Therefore, regardless of changes in the source of pressure fluctuations, the 

effect of bogging on the medium was studied here using a speaker as the source that is 

independent of bed hydrodynamics. 

In order to study the effect of particle wetness on attenuation of pressure fluctuations, the 

attenuation of sound waves with different frequencies was measured in the fluidized bed. 

A subwoofer speaker generated the sound with frequencies ranging from 5 to 110 Hz at 

constant amplitude. A microphone was used to measure the intensity of the sound that 

passed the fluidized particles at minimum fluidization velocity. Experiments were 

performed using air, dry particles and wet particles with different liquid mass fractions as 

the propagating medium.  
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Figure 4.15: Measured acoustic intensity generated by subwoofer in air 

Figure 4.15 shows the measured sound intensity in the empty bed when the medium was 

air. This Figure actually shows the frequency response of the subwoofer speaker. Figure 

4.16 shows the measured sound intensity at different oil mass fraction in coke particles.  
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Figure 4.16: Measured acoustic intensity generated by subwoofer in a fluidized bed 

of dry or wet coke particles 

According to this Figure, the sound intensity decreased much more sharply with 

increasing frequency than in air due to loss of acoustic energy caused by particles 

vibration and friction. Figure 4.17 shows the acoustic intensity measured at different oil 
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mass fraction in coke particles that was smoothed using a low pass filter with normalized 

cut-off frequency of 0.1 (normalized by Nyquist frequency). 
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Figure 4.17: Smoothed acoustic intensity generated by subwoofer in a fluidized bed 

of dry or wet coke particles 

The sound intensity associated with wet coke particles normalized by the sound intensity 

measured with dry coke has been shown in Figure 4.18. As it can be seen in the Figure 

4.18, the sound attenuation in wet particles is stronger at higher frequencies; this stems 

from the higher loss of acoustic energy due to more friction loss between cohesive, wet 

particles. At higher oil mass fractions, particles act like a low pass filter with a cut off 

frequency close to 20 Hz and this is the main clue for the negative exponent for octave 3 

with frequency above 20 Hz and positive exponent for octave 4 and 5 with frequencies 

below 20 Hz, as shown in Table 4.2.  
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Figure 4.18: Normalized acoustic intensity generated by subwoofer in a fluidized 

bed of dry or wet coke particles (Octaves 3,4 and 5 are labeled)  

4.9. Conclusion 

Various methods for the detection of bogging in a fluidized bed from pressure 

fluctuations were tested.  The best results were obtained with a new index based on 

wavelet decomposition of pressure fluctuations. Results shows that the proposed method 

detects the early bogging caused by the injection of liquid into the fluidized bed. This 

method is not affected by fluidization velocity and its success has been explained based 

on the variation with bogging of the transmission of sound at different frequencies in the 

fluidized bed.  
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CHAPTER 5: EARLY DETECTION OF DEFLUIDIZATION FROM 

THE MEASURED SPEED OF SOUND 

 

5.1. Introduction 

Bogging is an important problem in some fluidized beds, which degrades the process. In 

a fluidized bed, bogging usually happens when particles stick together due to excess 

liquid or too high a temperature. This results in uneven distribution of the gas, poor solids 

mixing and defluidized zones. Early detection of bogging in fluidized beds is attractive as 

it provides time for remedial action.  

Several methods were published to detect defluidization in fluidized beds. Among them, 

pressure fluctuations (Briens, 2003, Chong, 1987,Van Ommen,2000), electrostatic(Briens, 

1999), heat transfer (Ropchan, 1981) and acoustic emission (Tsujimonto, 2000) are 

popular. Analysis of pressure fluctuations is widely used to detect early defluidization 

through the associated changes in bubble properties, which in turn affect the pressure 

fluctuations; however the shortcoming of this method is that the cohesive particles can 

easily block the pressure probe and hinder the required measurements.  

Propagation of pressure waves in fluidized bed has been studied to find proper 

explanation for pressure fluctuations behavior and diagnostics of local hydrodynamics 

(Grace, 1995, Roy, 1990). Roy et al. (Roy, 1990) studied the speed of sound in a gas-

fluidized bed by cross-correlating pressure fluctuations induced by a disturbance 

measured at two different locations in the fluidized bed. Roy et al. (Roy, 1990) derived an 

expression for the speed of sound in a homogenous two-phase medium that was verified 

later by Khawaja et al (Khawaja, 2011) using CFD-DEM numerical simulation. Grace et 

al. (Grace, 1995) found that the speed of pressure wave in a fluidized bed is in the order 

of 10 m/s while it tends to be higher when the bed is defluidized. Grace et al. (Grace, 

1995) observed that the propagation velocity of pressure waves in gas-solids fluidized 

beds can be well predicted by the pseudo-homogeneous compressible wave theory and 

the separated flow compressible wave theory for group A and B particles. However, both 
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theories fail to predict the tremendous increase in propagation velocity of pressure wave 

that occurs below the minimum fluidization velocity. 

Based on the above mentioned works, it might be possible to use the speed of sound to 

detect early bogging in the fluidized bed since its value varies greatly between fluidized 

and defluidized conditions. However, no research has been conducted in this area so far. 

The main objective of this study is to develop a new bogging detection method developed 

based on measured speed of sound in the fluidized bed of cohesive particles, where the 

bogging is defined from the kinetics of wet agglomerate breakage in the fluidized bed. 

This study has three goals: 

1) Show that the measured speed of sound in a fluidized bed is greatly affected by 

bogging and not greatly affected by fluidization velocity.  This would mean the 

speed of sound could be used to detect bogging in commercial beds where the 

local velocity may not be exactly known. 

2) Measure the bubble properties with an independent method and show which 

bubble properties are affected by bogging and not greatly affected by the 

fluidization velocity. 

3) Use simulation to verify that the impacts of bogging and fluidization velocity on 

bubble properties explain why changes in speed of sound are mostly affected by 

bogging.   

5.2. Speed of sound in the fluidized bed 

The speed of sound in continuous compressible medium can be expressed as (Lamb, 

1963): 

ÆÂ D Ç�È
�É                                                                                                               (5.1) 

Where ÆÂ  represents the speed of sound, p is the pressure and Ê is the density of the 

medium. Roy et al. (Roy, 1990) made a number of assumptions to apply Equation 5.1 to a 

two-phase mixture of gas and particles: 

1. The gas and particles move together 
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2. The interstitial gas is compressible and obeys the ideal gas law 

3. The gas and particles are isothermal 

4. Particles are incompressible 

The speed of sound in the two phase mixture is then: 

ÆÂ D Ç ÉËjÌ
Í(ÉÎ(Q�Í)\ÉËÍ)                                                                                                (5.2) 

The speed of sound in an ideal gas is ÆÂn D ÏÐIÑ , where Ð is the ratio of  specific heat 

constants. Therefore the speed of sound in the two phase medium can be related to the 

speed of sound in pure gas by 

ÆÂ D ÆÂnÇ ÉË«ÍÒÉÎ(Q�Í)\ÉËÍÓ                                                                                           (5.3) 

Two other approaches also were published in the literature for the calculation of speed of 

sound: the isentropic flow (Grace, 1995), and the separated phase flow (Weir, 2001). 

Table 5.1 summarizes the calculated speed of sound according to different assumptions 

where the frequency of sound is 250 Hz, ρp = 1480 kg m
-3

,   ρg = 1.25 kg m
-3

, ε =0.4, γ = 

1.4 and uso = 340 ms
-1

  

Table 5.1: Speed of sound calculated with different assumptions 

250 Hz, ρp = 1480 kg m
-3

,   ρg = 1.25 kg m
-3

, ε =0.4, γ = 1.4 and uso = 340 ms
-1

 

One phase isothermal flow 

(Roy, 1990) 

One phase isentropic flow 

(Grace, 1995) 

Separated phase flow 

(Weir, 2001) 

17.04 m/s 20.99 m/s 22.53 m/s 

 

5.3. Experimental 

5.3.1 Experimental set up 

Experiments were conducted in a 1.97 m high fluidized bed with a trapezoidal cross 

sectional area, as shown in Figure 5.1. Coke particles with a Sauter mean diameter of 

144 µm and a total mass of 42 kg were used for all the experiments. The bed was 

fluidized with air at a superficial velocity ranging from 0.1 to 0.2 m/s. 
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Two rectangular wooden windows were mounted on two sides of the wall of the fluidized 

bed to enable capacitance measurement with electrodes on the outside of the bed wall. 

The capacitance between the central electrode and each side electrode at the bottom of 

wooden window was measured with a capacitance meter with an acquisition frequency of 

5 kHz during 15 seconds. 

A speaker was mounted above the freeboard and eight microphones installed on the 

wooden window to enable measurement of speed of sound in the fluidized bed. The 

outputs of microphones amplified and measured with an acquisition frequency of 100 

kHz. 

Measurements have been performed as Voltesso oil was progressively added to the 

fluidized bed. Voltesso oil simulates, at room temperature, the properties of heavy oil at 

high coker temperatures. Voltesso oil, which has a negligible vapor pressure at room 

temperature, was used to provide a constant liquid background during each experiment 

and was mechanically mixed with particles to ensure that all the liquid coated individual 

particles and that no coke-Voltesso agglomerates were formed.   
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Figure 5.1: Schematic diagram of experimental set up 

5.3.2. Measuring the speed of sound 

To measure the speed of the sound, a speaker mounted at top of the bed to generate the 

sound as it is shown in the Figure 5.1. Train pulses with the frequency of 250 Hz were 

generated with a microcontroller to drive the speaker as shown in the Figure 5.2.  This 

frequency eliminated any risk of resonance of height of the bed or the column. 

 

 

Figure 5.2: 250 Hz train pulses of sound generated by speaker 

Eight microphones were installed along two rows and 4 columns.. The first row of 

microphones was 5 cm above the gas distributor while the second row of microphones 

was 45 cm above the gas distributor and actual height of the bed was 60 cm at minimum 

250 250 
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fluidization velocity.  All microphones where flash mounted to the inside wall of the bed. 

The speed of sound between two vertically separated microphones in a column was 

calculated by dividing the distance between the microphones with the associated time 

delay, which was obtained from cross correlation between the microphones signals. The 

large difference in speed of sound between fluidized and defluidized beds means that the 

time delay between pulses measured by two microphones varied over a wide range. 

Using a pulse train to generate sound with adequate delay between two subsequent trains 

of pulses instead of using low frequency sound, enables the measurement of the time 

delay between microphones outputs over a wide range. 

 

5.3.3. Measuring the bubble geometry and bubble distance from the wall 

Planar capacitance sensors were used to determine the bubble geometries in the fluidized 

bed. This was done by comparing simulated capacitance variations due to the passage of 

gas bubbles of various characteristics, and then finding which of these simulated 

capacitance variations fitted best the observed capacitance variations.  These calculations 

would have been slow, so neural networks were used to greatly speed this determination 

of the bubble geometries. 

 

 

 

 

 

 

 

 

 

Figure 5.3: A bubble crosses the electric field 

Capacitance meter  

Electrode 

Electric field 

Bubble 

Bubble frontal 
diameter 

Bubble 
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The capacitance time series due to passing bubbles with a certain height, frontal diameter 

and distance from the wall was generated with simulation using Comsol Electrostatic 

toolbox as shown in Figures 5.3 and 5.4. The simulation results were, then, used to train 

three neural networks to enable the prediction of the vertical bubble height, frontal 

diameter and distance from the wall from measured capacitance time series. First, the 

capacitance time series was normalized in amplitude by dividing the measured 

capacitance with the measured background capacitance (i.e. the capacitance of the 

defluidized bed). It also was normalized in time, for each bubble, by dividing the time 

with the total time of passage of the bubble, as determined from the resulting capacitance 

disruption; the normalized time series was, then, independent of bubble velocity. Using 

16 values of normalized capacitance for each bubble (Figure 5.5), neural networks were 

trained to predict the bubble geometries.  
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Figure 5.4: Time series of simulated normalized capacitance at different bubble 

height when the bubble frontal diameter is 8 cm and the bubble distance from the 

wall ranges from 4 cm to 6 cm  
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Figure 5.5: a) Normalized capacitance in amplitude b) Normalized capacitance in 

amplitude and time, showing the 18 points used as input to the neural network 
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Targets: bubble distance from the wall (cm)
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Figure 5.6: Outputs of neural networks versus targets for all the simulated data 
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Each neural network was implemented with three layers, 18 inputs in the first layer, 13 

neurons in the hidden layer and one output in the third layer.  280 time series of 

capacitance were generated by simulation for different bubble geometries and bubble 

distances from the wall. 90% of the data was used for training while 5% of the data was 

used for testing and 5% of data for validation. Figure 5.6 shows the outputs of neural 

networks versus targets for all the data. 

5.4. Results: Measured Speed of Sound  

The speed of sound in the fluidized bed is much lower than the speed of sound in the 

defluidized bed. Figure 5.7 shows the speed of sound at different superficial gas 

velocities. The speed of sound measured in the fluidized bed is 26 m/s which is more 

close to the separate phase flow assumptions (Weir, 2001).  

To investigate the effect of bogging and fluidization velocity on the speed of sound, the 

fluidized bed was operated with a constant fluidization velocity and Voltesso oil was 

added to coke particles in several steps until channeling occurred in the bed. At each step, 

the speed of sound as well as capacitance were measured. 

Figure 5.8 shows the speed of sound measured at four locations in the bed for different 

concentrations of Voltesso oil and fluidization velocities. According to Figure 5.8, the 

speed of sound is almost constant before the concentration of Voltesso oil reaches 0.25 

wt%, which was identified as the initial point of bogging for a fluidized bed of coke and 

Voltesso oil in chapter 3. The sudden increase in the speed of sound at this point for all 

fluidization velocities shows that this method can detect initial bogging even if the 

fluidization velocity is unknown. Furthermore, it can be used with two vertically 

separated microphones within the fluidized bed without any concerns that cohesive 

particles may plug the microphones.  
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Figure 5.7: Measured speed of sound at different superficial gas velocities measured 

at four horizontally separated locations  
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Figure 5.8: Measured speed of sound at different oil mass fractions and fluidization 

velocities measured at four horizontally separated locations 
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Interpretation of Results 

5.3.1.  The Simulation Approach 

Since the speed of sound changes with the fluidization velocity after initial point of 

bogging in the well mixed bed, the effect of bubbles geometry on speed of sound can be 

significant. The inter-particle friction as another parameter that may change with bogging 

can also affect the speed of sound (Weir, 2001). Weir included the inter-particle friction 

in the equations of speed of sound and mentioned that the friction between particles 

increases the speed of sound (Weir, 2001).  
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Figure 5.9: a) Effect of fluidization velocity on the bubble frequency b) Effect of 

fluidization velocity on the bubble frontal diameter c) Effect of fluidization velocity 

on the bubble aspect ratio 
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However the inter-particle friction is difficult to measure in the fluidized bed and this 

approach is more qualitative. In a bubbling fluidized bed, it is much easier to accurately 

measure the impact of inter-particle friction on the geometry of the gas bubbles. 

Figure 5.9 shows the impact, in a dry bed, of the fluidization velocity on the bubble 

frequency, bubble frontal diameter and bubble aspect ratio as characterized from the ratio 

of bubble height to frontal diameter.  The bubble frequency, frontal diameter and bubble 

shape are not greatly affected by the fluidization velocity, as shown in Figure 5.9. 
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Figure 5.10: a) Effect of oil mass fraction on the bubble frequency b) Effect of oil 

mass fraction on the bubble frontal diameter c) Effect of oil mass fraction on the 

bubble aspect ratio 

Figure 5.10 shows the impact of the oil fraction on the bubble frequency, bubble frontal 

diameter and bubble aspect ratio.  The bubble frequency decreases with increasing oil 

fraction, as shown in Figures 5.10-a while the bubble frontal diameter does not change 
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much with oil mass fraction as shown in Figure 5.10-b. However, the bubble aspect ratio 

is greatly affected by the oil fraction, as shown in Figure 5.10-c, and it is much more 

affected by the oil fraction than by the fluidization velocity (Figure 5.9-c). When the bed 

approaches bogging, the particles are more sticky and bubbles elongate to decrease the 

drag force. 

The main assumption of this study, to be verified with simulation in this section, is that, 

although the speed of sound is not greatly affected by the changes in bubble size and 

frequency associated with large variations in fluidization velocity in a dry bed (Figure 

5.7), it is greatly affected by the changes in bubble shape associated with bogging.   

 
 

5.3.2. The Wave-Equation For Sound Propagation 

To investigate the effect of bubbles on speed of sound, the propagation of sound in the 

fluidized bed was modeled with Comsol. The equations that describe the sound 

propagation in fluidized particles are derived from the equations of fluid flow. The 

continuity equation or conservation of mass, the conservation of momentum that is often 

referred to as the Navier-Stokes equation, the equation of energy conservation, and an 

equation of state that describes the thermodynamic state of the matter. In the pressure 

acoustics model, the flow is assumed lossless, viscous effects are neglected, and a 

linearized isentropic equation of state is used. Under these assumptions the acoustic field 

can be described by the pressure p, and is governed by the wave equation. 

Ô
ÕÖ×

Ø×Ù
ØÚ× T Û. tE Ô

Õ (ÛÙ E Ü)u D Ý                                                                                            

(5.4) 

Where p is the pressure, q and Q are the dipole and monopole acoustic sources 

respectively. An acoustic monopole propagates the sound equally at all directions. An 

example of acoustic monopole is a small sphere whose radius alternately expands and 

contracts. An acoustic dipole forms when two monopoles of equal source strength, but 

opposite phase, are separated by a small distance d such that kds<<1 where k is the wave 

number and is equal to 2π/λ where λ is the wavelength. In general, any sound source with 

the dimensions much smaller than the wavelength of the generated sound can be 
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considered as a monopole source. This relationship between wavelength and dimension 

for a monopole is usually expressed as kas<<1, where k is the wave number and as is a 

characteristic dimension of the source and if the source is a speaker, as would be the 

diameter of the speaker (Russell, 1998). 

When the sound is propagating in a media, particles assist the transmission of the sound 

wave but they return to their original state without net movement. Particle velocity is the 

velocity of a particle in a medium as it moves back and forth in the direction that the 

sound wave is traveling as it passes. The particle velocity v can be related to the particle 

displacement and acceleration for a single frequency sound wave: 

Þ D ß. S D �Îr D È
Y                                                                                                   (5.5) 

Where ß  represents the particle displacement, ap is particle acceleration and Z is the 

specific acoustic impedance. The specific acoustic impedance is an inherent property of 

the medium and is equal to the product of density of medium and speed of sound in the 

medium. With solving the Equation 5.4 with the finite element method in a medium, one 

can calculate the pressure as well as particle acceleration and particle velocity 

everywhere in the medium. 

5.3.3. Simulation Results  

The simulation of sound propagation in the fluidized bed performed by solving Equation 

5.4 with Comsol while a single bubble with different geometry and distance from the wall 

was placed between two microphones and the speed of sound was calculated for each 

case. The speaker that was used in the experimental setup was 10 cm in diameter and 

generated sound with a frequency of 250 Hz. So for this case, k= 2π/λ= 2πf/c=4.58 rad/m 

where c=343 m/s, the speed of sound in the air above the freeboard where the speaker is 

installed. Thus, for the speaker used in the experimental setup, kas=0.46 rad, which is 

close to monopole approximation. Therefore in Equation 5.4, the value for dipole source 

considered zero and the speaker was assumed as a monopole source. 

 After solving Equation 5.4, the particle acceleration at the location of each microphone 

was calculated as it is shown in Figure 5.11 for a typical bubble when it is located 

between two microphones. Each microphone measures a different signal versus time due 
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to its different height and corresponding sound attenuation. The time lag between two 

microphone curves, as shown in Figure 5.11, was obtained using cross-correlation. Then 

the speed of sound was calculated by dividing the distance between the two microphones 

with the obtained time lag. Figure 5.12 shows how the speed of sound in the presence of 

various bubbles varies with the bubble distance from the wall. 

 

Time (s)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

 L
o

c
a

l a
c
c
e

le
ra

ti
o

n
 o

f 
p

a
rt

ic
le

s
 (

m
/s

^2
)

0.0

0.5

1.0

1.5

2.0

2.5

Microphone 1 

Microphone 2 

 

Figure 5.11: Local acceleration of particles at microphone location simulated with 

COMSOL using a bubble with a height of 8 cm and a frontal diameter of 6 cm, 

located 5 cm far from the wall 
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Figure 5.12: Simulated speed of sound versus bubble distance from the wall 

 

According to Figure 5.12, there is a critical distance from the wall where the bubbles 

beyond which the smaller bubbles cannot affect the measured speed of sound. The critical 

distance according to Figure 5.12 is about 6 cm. The rest of the simulation was performed 

by considering only the bubbles close to the wall i.e. at a distance from the wall smaller 

than the critical distance. 

Figure 5.13 shows the speed of sound for different bubble heights and frontal diameters. 

According to Figure 5.13, a single bubble can affect the measured speed of sound when 

its height and frontal diameter exceed threshold values. The speed of sound varied from 

25 to 50 m/s over the range of bubble properties relevant to this study: it was therefore 

assumed that the threshold was located at the half-way point, between 35 and 40 m/s that 

is the region in the Figure 5.13 where the blue color turns to green color.  The underlying 

reason can be explained as when the sound wave passes a bubble, first it comes from the 

dense phase to the dilute phase. At the boundary, part of the sound wave reflects and part 

of it comes inside the dilute phase. 
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Figure 5.13: Simulated speed of sound versus bubble height and bubble frontal 

diameter 
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 At the second boundary, when the sound wave comes from the dilute phase to dense 

phase, the same reflection and transmission happen again. The sound wave that passes 

through the bubble arrive earlier to the microphone location when compared to the sound 

wave comes directly through the rest of the bed to the microphone location from the 

speaker. However, the former is weaker than the later. The energy of the sound wave 

passes through the bubble depends on the bubble size because the sound intensity at a 

certain distance from a monopole source is constant and the energy of the wave that 

passes through the bubble is proportional to the surface of the bubble. So when the 

bubble has a bigger height or frontal diameter, the energy of the sound wave passes 

through the bubble is bigger so it can affect the measured time lag between outputs of 

two microphones and eventually affect the measured speed of sound while the similar 

effects associated with small bubbles are negligible.  

Figure 5.14 compares the measured speed of sound with the values obtained by modeling 

using the data presented on bubble properties obtained from capacitance measurements. 

As shown in Figure 5.14, the values of the speed of sound predicted by the model are in 

fair agreement with the measured results. There is, however, a systematic error between 

experimental and simulation data: the measured speed of sound is always lower than the 

speed of sound obtained by simulation. The underlying reason can be explained as 

follows: when two small bubbles moving side by side cross the electric field at the same 

time, the capacitance signal is equivalent of signal of one big bubble (Figure 5.15) but the 

effect of two small bubbles on the speed of sound is smaller than the effect of one big 

bubble due to attenuation of sound which them crosses twice as many boundaries 

between dilute and dense phases. Figure 5.14 confirms that the speed of sound in a 

fluidized bed is greatly affected by bogging.  It also shows that, in the dry bed, the speed 

of sound is not greatly affected by the fluidization velocity.   
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Figure 5.14: Measured speed of sound versus predicted speed of sound from the 

model Remove error bars, add dashed curve 
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Figure 5.15: Normalized simulated capacitance versus normalized time- Dash line 

when a bubble with frontal diameter of 6 cm and height of 8 cm is passing- 

Continuous line when another bubble with frontal diameter of 6 cm and height of 4 

cm is passing beside the first bubble  

Conclusion 

A novel method proposed that can detect initial bogging of a fluidized bed by measuring 

the speed of sound within the bed. 

 The geometry of the gas bubbles and their distance from the wall were measured with 

capacitance sensors to understand how bubble properties affect the transmission of sound 

through a fluidized bed. The propagation of sound in the presence of bubbles of various 

geometries was simulated with Comsol. Simulation results agreed with the experimental 

results.  

The proposed method can detect initial bogging and its application in industrial fluidized 

beds is not subject to the limitations of pressure transducers. 
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CHAPTER 6: STUDY OF SUPERSONIC GAS JETS 

FLUCTUATIONS IN A GAS-SOLID FLUIDIZED BED WITH 

CAPACITANCE SENSORS 

6.1. Introduction 

High velocity horizontal gas jets are used for particle attrition in several industrial 

processes such as the Fluid Coking
TM

 process. In the Fluid Coking
TM

 process, heavy oil is 

injected into a fluidized bed of coke particles where it undergoes thermal cracking; a by-

product of the thermal cracking reactions is solid coke that deposits on the bed particles, 

increasing their size.  The particle size must be controlled to avoid poor fluidization and 

poor operation of the coke transport lines (Dunlop, 1958). The particle size is reduced by 

injecting high velocity steam into the fluidized bed through supersonic attrition nozzles. 

If jets issuing from the attrition nozzles hit fluidized bed internals, they would cause 

significant erosion, and, therefore, such interactions must be avoided.    

Dawe et al. developed a correlation to predict the penetration of gas jets from supersonic 

nozzles (Dawe, 2007). Ariyapadi et al. proposed a model to predict the jet penetration of 

sonic horizontal gas-liquid jets by adapting a correlation from Benjelloun et al. 

(Ariyapadi, 2004, Benjelloun, 1995). Some published correlations for the jet penetration 

length in fluidized beds are provided in Table 6.1 (Gouhua, 1997, Hong, 1997, Hong, 

2003, Zhong, 2005). Correlations provided by Cruz et al. (Cruz, 2011) and Dawe et al. 

(Dawe, 2007) are the only correlations that were developed for supersonic jets.  

Jet penetration depends on parameters such as fluidization gas properties, solid density, 

particle diameter, bed height, fluidization velocity, void fraction, velocity of the injected 

gas, and injection nozzle diameter (Hong, 1997, Merry, 1971). Vaccaro et al. mentioned 

that the expansion angle is another important factor to be considered when describing jet 

behavior, as it may affect the prediction of gas and particle entrainment in the jet 

(Vaccaro, 1997). An increase in gas and solids entrainment into the jet reduces jet 

penetration because energy dissipation occurs faster. It is generally accepted that jet 

penetration increases with increasing nozzle diameter and increasing velocity of the 

injected gas (Dawe, 2007, Ariyapadi, 2004). Increasing the fluidization velocity also 
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increases the length of a horizontal jet (Wang, 2010).  

Table 6.1: Some correlations for horizontal jet penetration length 

àá�gzn T 4.5 D 5.52 � Ê��n](1 E â)ÊÈ�zÈ�n.ã �Ê�ÊÈ�n.] ~zÈzn�n.]
 Subsonic 

Merry et al. 

(1971)  

àá�gzn D 5.52 � Ê��n](ÊÈ E Ê�)�zn�n.]ä
 Subsonic 

Benjelloun et al. 

(1995)  

àá�gzn D 55.6 � Ê��n](ÊÈ E Ê�)�zn�n.]ä �(ÊÈ E Ê�)zÈ]�næzn ��n.Q]ã
 Subsonic 

Luo et al. 

 (1997)  

àá�gzn D P � Ê��n](1 E â)ÊÈ�zÈ��Q �Ê�ÊÈ��m ~zÈzn��q Ò� T ç2Ó�· ~zÈzn��q
 Subsonic 

Hong et al. 

 (1997)  

àá�gzn D 26.47 � Ê��n](ÊÈ E Ê�)�zn�n.]éR ~Ê��nzÈæ ��n.QQRê
 Subsonic 

Hong et al.  

(2003)  

àá�gzn D 10.86 � Ê��n](ÊÈ E Ê�)�zn�n.Ré ~ìn¤� ��n.Qä � ���°���n.QQ ~Ê��nzÈæ ��n.QQRê
 Subsonic 

Zhong and 

Zhang (2005)  

àá�gzn D �. �ÂefK�,�ín.ãêê . ÊgªÈn.R]é T îzn Supersonic 
Dawe et al.  

(2007)  

àá�gzn D 5.52 � Ê��n](ÊÈ E Ê�)�zn�n.]ä Á (1.72 E 93.06zn) Supersonic 
Cruz et al.  

(2011)  

 

Considerable discrepancies have been reported between invasive and non-invasive 

measurements in fluidized beds. Liu et al (Liu, 2010) found that intrusive optical probes 

overestimates bubble chord lengths because they cannot detect small bubbles. 

Capacitance measurement is a non-invasive method that is not limited by the bubble size. 

Supersonic jets in a fluidized bed fluctuate. To avoid erosion of internals, it is, therefore, 

essential to not only know the time-averaged jet penetration length but, also, its 

fluctuations. The first objective of the current study was, therefore, to measure the 

fluctuations of the penetration depth of supersonic jets in a fluidized bed.   The second 

objective was to develop a correlation to predict the fluctuations of the penetration depth 

of supersonic jets.  
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6.2. Experimental 

6.2.1. Experimental Setup 

The experiments were performed in a small pie-shape fluidized bed column with a height 

of 1.9 m, and a width of 0.69 m, as shown in Figure 6.1. For all the experiments, coke 

particles with an initial Sauter mean diameter of 140 µm and a particle density of 1450 

kg/m3 were attrited using nitrogen as the attrition gas. The tip of the horizontal attrition 

nozzle was located inside the bed at 0.245 m above the porous plate gas distributor, and 

penetrated 0.06 m from the wall. The bed height was approximately 0.29 m when 

defluidized, and around 0.35 m when the fluidization velocity was 0.2 m/s. The minimum 

fluidization velocity was 0.03 m/s for all experiments.  

Two attrition nozzles were tested to determine the effect of nozzle scale on the jet 

penetration length. Both nozzles were convergent-divergent, Laval-type nozzles with a 

diameter at the nozzle throat of either 2.4 or 2.8 mm, as shown in Figures 6.2 and 6.3. For 

all experiments, nitrogen was injected into the bed except otherwise stated. 

 

Figure 6.1: Experimental set up  
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Figure 6.2: Laval type nozzle, dth =2.4 mm 

 

Figure 6.3: Laval type nozzle, dth =2.8 mm 

The capacitance meter used for this study was an AC based circuit with a differential 

noise cancelling system. Figure 6.4 shows the configuration of 30 electrodes mounted 

externally on one side of the fluidized bed, on the outside surface of a wooden window, 

while on the other side one single electrode covered the entire wall, and was also installed 

on the outside surface of a wooden window.  

 

Figure 6.4: configuration of electrodes 
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This electrode was connected to the signal generator, acting as a transmitter, while the 

rest of electrodes were connected to the virtual ground of the amplifier, functioning as 

receivers. Samples were acquired with a frequency of 100 kHz using an analog to digital 

converter connected to the 30 electrodes through an amplifier and a multiplexer. The 

multiplexer connected each electrode for 200 µs and then switched to the next electrode. 

By taking the rms value of the measurements in each 200 µs time window, the 

capacitance of each electrode was measured at 6 ms intervals. 

6.2.2. Measurement of Local Voidage 

Coke particles in the fluidized bed have a considerable dielectric constant and can 

concentrate an electric field within themselves. Using capacitance measurement, the 

voidage distribution within the fluidized bed could be visualized based on the difference 

in dielectric constant between coke particles and the fluidization gas. The average 

voidage of the bed at different fluidization velocities was calculated from the bed 

pressure gradient obtained from pressure transducers at different heights within the bed 

using Equation 6.1. 

ðÈ
ðñ D ÊÈ(1 E ò)�                                                                                                     (6.1) 

The bed capacitance was measured at different fluidization velocities and was normalized 

with respect to the defluidized bed capacitance.  Figure 6.5 shows that the average 

normalized bed capacitance is a linear function of the average bed voidage.   
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Figure 6.5: Average normalized capacitance of 30 electrodes versus the average bed 

voidage measured with pressure transducers 

The local bed voidage can, thus, be obtained from the normalized capacitance of any 

electrode, using the linear relationship of Figure 6.5.  

6.2.3. Pre-Test Imaging Experiments 

To confirm the ability of this system to get a precise image of the jet, a preliminary 

experiment was carried out. A void tube with a diameter of 7 cm and a height of 13 cm 

was inserted horizontally in the minimally fluidized bed of coke particles and the 

measured capacitances were converted to voidage using the method described in section 

6.2.2.  Figure 6.6 shows the resulting image of the void tube, viewed from the top. Figure 

6.6 indicates that the maximum measurement error was less than 1 cm.  

 

Figure 6.6: Image of the void tube acquired with capacitance sensors 

6.2.4. Measurement of Jet Length 

Figure 6.7 shows a typical image of the voidage distribution of the horizontal gas 

supersonic jet obtained by the capacitance sensors at a nozzle mass flowrate of 0.014 kg/s 

while the fluidization velocity was 0.1 m/s. The supersonic jet penetration length is 
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defined here as the distance between the nozzle tip and the farthest point on the 

supersonic jet axis where the voidage is equal to the average of the maximum jet voidage 

and of the bed voidage at the same height.   

 

Figure 6.7: Image of voidage distribution of the gas–solid fluidized bed with 

horizontal gas supersonic jet penetration obtained by ECT at mass flowrate of 0.007 

kg/s and fluidization velocity of 0.1m/s 

Since the horizontal resolution of the image is 6 pixels, a polynomial curve fitting of 

order 5 was used to specify the voidage at any point in the row and enable the accurate 

calculation of supersonic jet length. 

6.2.5. Measurement of Bubble Velocity 

The average bubble velocity at the same superficial gas velocity was measured through 

imaging of the voids with capacitance sensors. For each image of 30 pixels, the center of 

bubbles was obtained by fitting polynomials to the measured voidages from each sensor 

and calculating the local minima. The bubble velocity was calculated from the vertical 

displacement of the bubble center between successive images.  
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6.3. Results and Discussion 

6.3.1. Study of Supersonic Jet Penetration Length 

The effect of nozzle mass flowrate on the time-averaged supersonic jet penetration length 

is shown in Figure 6.8, which compares experimental results with the predictions from 

four different correlations. This figure demonstrates that the jet penetration depth 

increases with increasing the nozzle mass flowrate, which corresponds to what was found 

by other researchers (Cruz, 2011). The best agreement is with Benjelloun’s correlation. It 

should be noted that there is no universal definition for jet penetration length. Besides, 

invasive measurement methods as used in most of correlations can affect the measured jet 

length values. So the way that a jet penetration length is defined and the method used for 

jet penetration measurement may cause the measured jet penetration length values 

become closer to a specific correlation. 

 To study the impact of nozzle size, some experiments have been performed with two 

nozzle throat sizes, 2.4 and 2.8 mm. Figure 6.9 shows that increasing the nozzle size 

increases the supersonic jet penetration depth, as expected from the correlations listed in 

Table 6.1.  
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Figure 6.8: Comparison between measured supersonic jet penetration depth and 

correlations   
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Figure 6.9:  Jet penetration length versus gas mass flux for different nozzle 

diameters 

Another parameter which has impact on the jet penetration length is the density of the 

injected gas. The jet penetration length was therefore measured with N2, He and CO2 

attrition gases. Figure 6.10 shows that a less dense gas penetrates further at constant mass 

flowrate because of its higher velocity and momentum, as expected from the correlations 

in Table 6.1.  
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Figure 6.10: Jet penetration length versus gas mass flux for different gas densities 

The superficial gas fluidization velocity is also an important factor that can affect the jet 

penetration length (Wang, 2010). To investigate the effect of superficial gas velocity on 

the jet penetration length, the bed was fluidized at three different fluidization velocities 

and, in each case, the injection performed with three different gas mass fluxes. Figure 

6.11 shows that the jet penetration length increases with increasing fluidization velocity, 

as expected from the correlations.  

Figure 6.12 shows that the supersonic jet length slightly increases with increasing upward 

nozzle angle and decreases when nozzle angle increases downward. This result is in fair 

agreement with correlations for inclined subsonic jets (Hong, 1997).  
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Figure 6.11: Jet penetration length versus gas mass flux 

for different fluidization velocities 

 

Figure 6.12: Jet penetration length versus nozzle angle with respect to the horizontal 

Figure 6.13 compares the measured jet penetrations with the predictions from Benjelloun 

et al. (Benjelloun, 1997), for all the measured supersonic jet lengths at different nozzle 

mass flowrates, nozzle gas densities and nozzle sizes. As shown in Figure 6.13, measured 
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and predicted values of jet length are close but all predicted values are below the line of 

equality.  
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Figure 6.13: Comparison between values predicted with Benjelloun’s correlation 

and all measured horizontal supersonic jet lengths at different nozzle sizes, nozzle 

mass flowrates and nozzle gas densities 

The constant coefficient of Benjelloun’s correlation was, thus, adjusted to get a better fit 

of the experimental data: 

�óôõ�¶ D 6.38 ~ Éôö¶m(ÉÎ�É¼)÷�¶�n.]ä
                                                                                                             

(6.2) 

Figure 6.14 compared the measured jet penetrations with the predictions from the 

modified correlation in equation 6.2. 
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Figure 6.14: Comparison between values predicted with the adjusted correlation 

and all measured horizontal supersonic jet lengths at different nozzle sizes, nozzle 

mass flowrates and nozzle gas densities 

6.3.2. Study of fluctuations of the supersonic jet length  

With capacitance imaging of the jet as discussed in section 2.4, one can measure the 

supersonic jet length at each image and generate a time series of jet lengths. Distributions 

of supersonic jet lengths are symmetric around the mean, since the supersonic jet length 

moves through a cyclic sequence of left-central-right-central positions which is consistent 

with other studies for downward subsonic jets (Shen, 1991). Figure 6.15 shows the q-q 

plot of the distribution of supersonic jet lengths for different fluidization velocities and 

nozzle inclination angles: it compares the quantiles for the measured distribution to the 

quantiles for the Gaussian distribution.  
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Figure 6.15: q-q plot of jet penetration length distribution at constant nozzle mass 

flowrate :(1), (2), (3) with horizontal nozzle and Uf = 0.1, 0.2, 0.3 m/s and (4), (5) with 

inclined nozzle α=15
o
,-15

0
 while Uf = 0.1m/s   

Since the distribution of supersonic jet length can be approximated with the Gaussian 

distribution according to Figure 6.15, it can be fully determined from its mean and its 
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17, voidages measured with electrodes with distances of 

correlated with the supersonic jet 

length than voidages measured with electrodes farther from the nozzle. The relatively 
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high values of the maximum cross correlation integral for the locations corresponding to 

the jet indicate that the rising gas bubbles hitting the jet from below are the main cause of 

the jet length fluctuations. 
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Figure 6.17: Maximum cross correlation between voidages of horizontal supersonic 

jet and voidages measured with electrodes below the jet versus horizontal distance 

from nozzle tip (Uf = 0.1 m/s; Nitrogen injected with horizontal nozzle with do = 2.4 

mm) 

The time associated with maximum cross correlation between jet length and voidages 

close to nozzle, in Figure 6.16, is much larger than the time a bubble needs to travel to the 

jet location.  This indicates that the jet expanded relatively slowly when hit from below 

by a bubble. 

The thrust of the nozzle is calculated using the conditions at nozzle tip: 

ø D ù0 �e T (ú� E úe)¦�                                                                                            (6.3) 

 The effect of thrust of the nozzle at different nozzle inclination angles and fluidization 

velocity on the supersonic jet fluctuation has been investigated. The coefficient of 

variation of supersonic jet length was calculated at different nozzle thrusts, nozzle 

inclination angles, injected gas densities and fluidization velocities by dividing the 
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standard deviation of jet length distribution by its mean.  Figure 6.18 shows that the 

coefficient of variation of the supersonic jet length decreases with increasing nozzle 

thrust, for various nozzle inclinations. 
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Figure 6.18: Coefficient of variation of supersonic jet length versus nozzle thrust 

and nozzle inclination angle 

 

 

 When the nozzle thrust increases, the momentum of the supersonic jet increases and this, 

in turn, reduces the perturbations from the bubbles: the supersonic jet thus becomes more 

stable. Figure 6.18 also shows that the coefficient of variation of the supersonic jet length 

increases with increasing nozzle inclination in either upward or downward directions. 

This is caused by the decrease in the horizontal component of the nozzle thrust caused by 

the nozzle inclination, which reduces the horizontal stability of the jet when perturbed by 

gas bubbles. 

Figure 6.19 shows that the coefficient of variation of the supersonic length increases 

almost linearly with increasing fluidization velocity. This stems from the increase in the 
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size and momentum of the gas bubbles, which results in more frequent and stronger 

perturbations of the supersonic jet.  
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Figure 6.19: Coefficient of variation of horizontal supersonic jet length versus 

fluidization velocity and nozzle thrust  

 

Figure 6.20 shows that the measured bubble velocity increases almost linearly with 

increasing fluidization velocity, which explains the increase in the coefficient of variation 

of the jet length with increasing fluidization velocity. 
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Figure 6.20: Bubble velocity with 95% confidence interval versus fluidization 

velocity 
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Figure 6.21: Coefficient of variation of supersonic jet length versus nozzle thrust 

with different injection gases and nozzle diameters 

According to Figure 6.21, there was no considerable change in the coefficient of variation 

of the supersonic jet length when the gas molecular weight or the nozzle size was 

changed while keeping the nozzle thrust constant.  This confirms that the nozzle thrust is 

the most important nozzle parameter for the jet length fluctuations. 

6.3.3. Empirical correlation for supersonic jet fluctuations 

Since no correlation has yet been proposed for supersonic gas jet fluctuations, a new 

empirical correlation is developed. Assuming that the coefficient of variation of the 

supersonic jet tip depends on the horizontal component of the jet thrust (F cos(α))  and 

on the flowrate of gas bubbles (Uf – Umf) in the fluidized bed, the generic form of 

relationship can be expressed as: 

PMûàá�gü D 1.81 (ö¼�öµ¼)¶.ý´
(þ�eÂû�óôõü)¶.�´                                                                                     (6.4) 

Where CV represents the coefficient of variation, F represents the thrust of the nozzle and 

� is the nozzle inclination angle. The correlation fits the experimental data with a R-value 
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of 0.99. Figure 6.22 shows the excellent agreement between the predicted coefficient of 

variation and all the experimental values obtained in this study. 

6.4. Conclusions 

The effects of fluidization velocity, nozzle gas mass flux, nozzle gas density, nozzle 

diameter and nozzle inclination on the penetration length of a supersonic jet were 

investigated using capacitance sensors, a non-invasive measurement method.  

The measured time-averaged jet penetration was predicted well with the modified 

Benjelloun’s correlation for subsonic jets. The fluctuations of the supersonic jet length 

were analyzed and a new correlation was developed accounting for the effects of 

injection gas mass flowrate, nozzle inclination angle and fluidization velocity. The results 

demonstrate that the jet is more stable at higher nozzle thrusts, lower nozzle inclination 

angles and lower fluidization velocities.  Nozzle size and gas composition do not have a 

significant impact on the coefficient of variation of the jet length, for a constant thrust. 
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Figure 6.22: Predicted CV of supersonic jet versus measured CV of supersonic jet at 

different nozzle thrust, nozzle inclination angles and fluidization velocities 
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CHAPTER 7: EFFECT OF BOGGING ON GAS AND GAS-LIQUID 

JET FLUCTUATIONS 

 

7.1. Introduction 

Bogging can degrade some fluidized bed processes. In a fluidized bed, bogging usually 

happens when particles become cohesive due to injected liquid or a high bed temperature 

that melts some of the bed material. This results in uneven distribution of the gas, poor 

solid mixing and defluidized zones (Briens, 1999). Bogging can decrease the yield of 

reaction in different ways including affecting the particle size distribution, bed 

hydrodynamics and fluctuations of the jet cavity formed by liquid atomized into the bed.   

In many processes where liquid is injected into a fluidized bed, good liquid distribution 

on the bed particles is essential to achieve high yields of valuable products and maintain 

good reactor operability. The effect of feed jet fluctuations on the liquid distribution can 

be inferred from previous works. Several studies have explored how wet agglomerates 

are formed when liquid is injected into a fluidized bed.  Ariyapadi et al. studied the 

structure of gas-liquid jets in fluidized beds and calculated the penetration distance and 

jet expansion angle using digital X-ray imaging (Ariyapadi, 2003). Ariyapadi et al. 

observed that agglomerates form at the tip of the jet cavity, which suggests that horizontal 

fluctuations of the gas-liquid jet cavity plays an important role in agglomerate formation 

(Ariyapadi, 2003). McMillan  studied the local quality of solid-liquid mixing in the 

fluidized bed on a short time scale (McMillan, 2007). She observed that a liquid rich 
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region forms at the core of the jet cavity, while solid particles exist mainly at the annular 

region of the jet, and the quality of the liquid distribution can be improved by enhancing 

radial mixing within the jet cavity, which is affected by jet fluctuations. Saha et al. 

studied the formation of agglomerates when a high velocity, pure gas attrition jet interacts 

with the gas-liquid jet (Saha, 2007). He found that the agglomerate size can be reduced 

by using smaller attrition jets around the periphery of the main gas-liquid jet. 

The above mentioned studies suggest that gas-liquid jet fluctuations is of importance to 

decrease the size of the agglomerates that are formed when liquid is atomized into a 

fluidized bed. Although several works have been published to investigate the effect of 

bogging on bed hydrodynamics, there has not been a study to investigate the effect of 

bogging on liquid-solid jet fluctuations. 

The objective of this paper is, thus, to study the effect of bogging on the fluctuations of 

gas and gas-liquid jets under various conditions. 

7.2. Experimental 

7.2.1. Experimental set up 

Experiments were conducted in a 1.97 m high fluidized bed with a trapezoidal cross 

sectional area, as shown in Figure 7.1. Coke particles with a Sauter mean diameter of 

144 µm and a total mass of 42 kg were used for all the experiments. The bed was 

fluidized with air at a superficial velocity ranging from 0.1 to 0.2 m/s. 

 The tip of the nozzle for all experiments was located 0.245 m above the porous plate gas 

distributor, and penetrated into the bed 0.06 m from the wall. The bed height was 

approximately 0.29 m when defluidized, and around 0.35 m when the fluidization 

velocity was 0.2 m/s. The minimum fluidization velocity was 0.03 m/s for all 

experiments.  
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Figure 7.1: Experimental set up 

Attrition nozzles were used for gas jet experiments. Two attrition nozzles were tested to 

determine the effect of nozzle scale on the jet penetration length. Both nozzles were 

convergent-divergent, Laval-type nozzles with a diameter at the nozzle throat of either 

2.4 mm or 2.8 mm, as shown in Figures 7.2 and 7.3. The gas flowrate was ranging 

between 7 and 22 g/s. For experiments with the gas-liquid jet, a TEB Nozzle with a throat 

diameter of 2 mm were used (Figure 7.4). The flowrate of liquid was 16 g/s while the gas 

to liquid ratio was 2% and the injection time was 10 s. 

 

Figure 7.2: Laval type nozzle, dth =2.4 mm 
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Figure 7.3: Laval type nozzle, dth =2.8 mm 

 

 

 

Figure 7.4: Schematic of gas-liquid Spray nozzle 

The capacitance meter used in experiments was an AC based circuit with a differential 

noise cancelling system. Figure 7.1 shows the configuration of 32 electrodes mounted 

externally on one side of the fluidized bed, on the outside surface of a wooden window, 

while on the other side one single electrode covered the entire wall, also installed on the 

outside surface of a wooden window. This electrode was connected to the signal 

generator, acting as a transmitter, while the rest of electrodes were connected to the 

virtual ground of the amplifier, functioning as receivers. The capacitance signals were 

acquired with a frequency of 100 kHz using an analog to digital converter connected to 

the 32 electrodes through an amplifier and a multiplexer. The multiplexer connected each 

electrode for 200 µs and then switched to the next electrode. By taking the rms (root 

mean square) value of the measurements in each 200 µs time window, the capacitance 

measured by each electrode was sampled at 6.4 ms intervals. 

Measurements were performed as Voltesso oil was progressively added to the fluidized 

bed. Voltesso oil simulates, at room temperature, the properties of heavy oil at the 

temperature of Fluid CokersTM. Voltesso, which has a negligible vapor pressure at room 

temperature, was used to provide a constant liquid background during each experiment.  

Voltesso was mechanically mixed with particles to ensure that all the liquid coated 
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individual particles and that no coke-Voltesso agglomerates were formed. To study the 

effect of bogging on the gas jet, pure nitrogen was injected into the fluidized bed of coke 

particles with different concentrations of Voltesso oil. To study the effect of bogging on 

the gas-liquid jet, Varsol liquid was atomized with nitrogen into the fluidized bed with 

different concentrations of Voltesso oil. The mass of Varsol that was not trapped in wet 

agglomerates  at the end of the Varsol injection could be obtained from the  capacitance 

measurements, using a method described in chapter 3. 

7.2.2. Measurement of Local Voidage 

Coke particles in the fluidized bed have a considerable dielectric constant and can 

concentrate an electric field within themselves. Using capacitance sensors, the voidage 

distribution within the fluidized bed could be determined based on the difference in 

dielectric constant between coke particles and the fluidization gas. The average bed 

voidage was calculated at different fluidization velocities from the bed pressure drop 

measured with pressure transducers at different heights within the bed, using Equation 

7.1: 

ðÈ
ñ D ÊÈ(1 E ò)�                                                                                                     (7.1) 

The bed capacitance was measured at different fluidization velocities and was normalized 

with respect to the defluidized bed capacitance.  Figure 6.5 shows that the average 

normalized bed capacitance is a linear function of the average bed voidage.  The local 

bed voidage can, thus, be obtained from the normalized capacitance of any electrode, 

using the linear relationship of Figure 6.5.  

7.2.3. Measurement of jet length  

Figure 6.7 shows a typical image of the voidage distribution of the horizontal gas 

supersonic jet obtained by the capacitance sensors method at a nozzle mass flowrate of 

0.014 kg/s while the fluidization velocity was 0.1 m/s. The supersonic jet penetration 

length is defined here as the distance between the nozzle tip and the farthest point on the 

supersonic jet axis where the voidage is equal to the average of the maximum jet voidage 

and of the bed voidage at the same height (Figure 6.7). Since the horizontal resolution of 
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the image is 8 pixels, a polynomial curve fitting of order 7 was used to specify the 

voidage at any point in the row and enable the accurate calculation of supersonic jet 

length.  

The gas-liquid jet penetration was measured with the same definition of gas jet length but 

liquid holdup was used instead of gas holdup or voidage. Since in this case, three 

dielectric materials i.e. gas, liquid and coke particles co-exist at the same time, the 

dielectric of gas and coke particles merged together by averaging the time series of 

capacitance over a time period.  This time period was 200 ms assuming the gas holdup is 

constant during 200 ms regarding the bubble frequency which is greater than 5 Hz.     

7.3. Distribution of Jet length 
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Figure 7.5: q-q plot of  1,2: gas jet length at oil mass fraction of 0.25% and 0.3% 

3,4:gas-liquid jet length at oil mass fraction of 0.25% and 0.3% (Uf=0.1m/s) 
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An earlier study showed that in a dry fluidized bed, the probability distribution of the 

instantaneous length of a gas or gas-liquid jet follows a Gaussian distribution. Figure 7.5  

shows that, in a bogged fluidized bed, the probability is also Gaussian.  This means that 

in both dry and bogged beds, the probability distribution of the instantaneous jet length 

can be fully characterized with its average and standard deviation. 

7.4. Results and Discussion 

7.4.1. Effect of Bogging on Gas Jet Length  

The effect of bogging and fluidization velocity on the gas and gas-liquid jet was 

investigated, when the fluidized bed was operated with a constant fluidization velocity 

and Voltesso oil was added to coke particles in several steps until serious bogging 

occurred. In each step, the capacitance as well as pressure were measured.  

Figure 7.6 shows the average gas jet length measured at different concentrations of 

Voltesso oil and fluidization velocities. According to Figure 7.6, the average gas jet 

length is almost constant until the concentration of Voltesso oil reaches 0.2% and it 

increases gradually with increasing oil concentration past this point. 
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Figure 7.6: Average length of gas jet versus mass fraction of Voltesso oil at different 

fluidization velocities  
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 To understand the impact of oil concentration in gas jet penetration, the bed density was 

obtained from the pressure drop between two vertically separated pressure taps within the 

bed (Figure 7.1), using Equation 7.1. Figure 7.7 shows the measured pressure drop versus 

Voltesso oil concentration at different fluidization velocities. 
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Figure 7.7: Particle bulk density versus mass fraction of Voltesso oil at different 

fluidization velocities  

 According to Figure 7.7, the bulk density of particles decreases with increasing Voltesso 

concentration. The average length of gas jet, therefore, should simultaneously increase 

according to the correlation published by Hong et al. where (1 E ò)ÊÈ  represents the bed 

density (Hong, 1997): 

�óôõ�¶ T 3.8 D P ~ Éôö¶m(Q��)ÉÎ÷�Î�n.R]ä ~É¼ÉÎ�Q.éäã ��Î�¶��n.nã
                                  

(7.2)                                                                       

Figure 7.8 shows the comparison between the measured average gas jet length and the 

predicted value from Equation 7.2, using the measured bed density. The average 

penetration length of the gas jet becomes greater than the predicted value after initial 

point of bogging, suggested that the effect of bogging is not fully captured by the 

concomitant change in bed density. 
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Figure 7.8: Comparison of measured and expected average gas jet length at 

different fluidization velocities 

Figure 7.9 shows the coefficient of variation of gas jet length measured at different 

Voltesso oil concentrations and fluidization velocities (standard deviation divided by 

mean). At first, the coefficient of variation of the gas jet length decreases gradually with 

increasing Voltesso oil fraction, and then drops sharply as bogging conditions are reached, 

for a Voltesso oil fraction of 0.25%.  
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Figure 7.9: CV of gas jet length versus mass fraction of Voltesso oil at different 

fluidization velocities  

This can be explained by the increase in complete fluidization velocity as bogging 

conditions are reached, as shown in Figure 7.11. The complete fluidization velocity was 

calculated from the variation in measured bed pressure drop with the superficial gas 

velocity at different concentrations of Voltesso oil (Figure 7.10).  
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Figure 7.10: Bed pressure drop versus superficial gas velocity at different 

concentrations of Voltesso oil  
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Figure 7.11: Complete and minimum fluidization velocity at different 

concentrations of Voltesso oil  

The correlation developed for CV of the gas jet in the chapter 6 can be used to predict the 

decrease in the CV of the gas jet. 

PMûàá�gü D 1.81 (ö¼�öµ¼)¶.ý´
(þ�eÂ(�))¶.�´                                                   

(7.3) 

Where CV represents the coefficient of variation, F represents the thrust of the nozzle and 

� is the nozzle inclination angle. In this correlation, the complete fluidization velocity has 

been used instead of the minimum fluidization velocity since the minimum fluidization 

velocity is difficult to measure In beds of cohesive particles. Figure 7.12 compares the 

predicted coefficient of variation calculated using Equation 7.3 and its measured value, 

for the gas jet. Before the initial point of bogging, values are close but under fully bogged 

conditions, predicted values are less than the experimental values, presumably because of 

partial defluidization and uneven gas distribution.  
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Figure 7.12: Comparison of measured and expected CV of gas jet length at different 

fluidization velocities 

7.4.2. Effect of Bogging on Gas-Liquid Jet Length  

Figure 7.13 shows the gas-liquid jet length versus time at different concentrations of 

Voltesso oil. In the dry bed and at low Voltesso oil concentrations, the jet length varies 

substantially with time in an apparent periodic fashion with a strong random component.   

When the Voltesso oil is higher than the minimum concentration for bogging (0.25 wt%), 

the gas-liquid jet length is higher at the beginning of the injection and decreases as the 

increasing liquid concentration caused by the injected liquid increases the degree of 

bogging in the bed.   

Figure 7.14 shows the effect of bogging on the time-averaged length of the gas-liquid jet. 

The length of gas-liquid jet slightly decreases under bogging conditions.  This is the 

opposite of what was observed with the gas jet (Figure 7.6) and may be explained by the 
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increase in effective particle size due to formation of more agglomerates at the time of 

Varsol injections. The mass of injected Varsol that was trapped in agglomerates was 

calculated by measuring the free Varsol with capacitance sensors (chapter 3).  
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Figure 7.13: Gas-liquid jet length versus time at different concentrations of Voltesso 

oil (Uf=0.1 m/s) 
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Figure 7.14: Average length of gas-liquid jet versus mass fraction of Voltesso oil at 

different fluidization velocities  

Figure 7.15 shows that the mass of Varsol that was not trapped in agglomerates decreased 

with increasing Voltesso oil fraction, indicating the detrimental impact of bogging on the 

distribution of the sprayed liquid on the bed particles (House, 2004). 
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Figure 7.15: Measured mass of free injected Varsol liquid versus mass fraction of 

Voltesso oil at different fluidization velocities  
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Figure 7.16 shows the effect of bogging on the coefficient of variation of the gas-liquid 

jet length. According to the Figure 7.16, the coefficient of variation of the gas-liquid jet 

length decreases with increasing in Voltesso oil mass fraction.  
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Figure 7.16: CV of length of liquid-gas jet versus mass fraction of Voltesso oil at 

different fluidization velocities  

As with the CV of gas jet, a sharp decrease occurs at the 0.25% Voltesso oil fraction that 

corresponds to the initial point of bogging. The decrease in the CV of gas-liquid jet can 

be explained by the increase in the complete fluidization velocity and the concomitant 

decrease in the bubble flow rate as shown in the Figure 7.10. Figure 7.17 shows that there 

was good agreement between the measured CV of the gas-liquid jet length and values 

predicted using Equation 7.3. 
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Figure 7.17: Comparison of measured and expected CV of liquid-gas jet length at 

different fluidization velocities 

 

 

7.4.3. Effect of Bogging on the Frequency of Jet Fluctuations  

The frequency of the jet fluctuations is reported as the dominant frequency from the 

frequency spectrum of the jet length fluctuations. Bubble frequency was also obtained 

using the same technique from the time series of measured capacitance below the jet. 

Figure 7.18 shows the frequency of fluctuations of gas jet and gas liquid jet at different 

concentrations of Voltesso oil. The frequency of the fluctuations of the gas jet is 

considerably higher than the frequency of fluctuations of the gas-liquid jet. The main 

explanation for the difference between the two types of jets, since both their time-

averaged jet length and its coefficient of variation are similar, is the difference in the 

injected gas flowrates: 7 to 22 g/s for gas jet and 0.32 g/s for gas-liquid jet.   
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Figure 7.18: Frequency of fluctuations of gas jet and gas-liquid jet length at 

different Voltesso oil mass fractions (Uf=0.1 m/s) 

As it can be seen in the Figure 7.18, both frequencies decreases with the increase in 

Voltesso oil mass fraction. The underlying reason can be explained with mass balance 

Equation for the gas flow rate if the jet boundary be considered as the control volume for 

a specific period of time:  

ø� T ø÷ D d� N M�                                                                                                                 

(7.4) 

Where ø� represents the gas flow rate enters the jet as bubbles, ø÷ represents the gas flow 

rate of nozzle, d� is number of bubbles release from the jet and M� represents the average 

volume of bubbles release from the jet. Since the bubble frequency decreases with the 

increase in Voltesso oil concentration as it is shown in Figure 7.19, assuming the 

negligible change in bubble size and nozzle gas flow rate, the frequency of jet length 

fluctuations should decrease. 
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Figure 7.19: Bubble frequency at different Voltesso oil mass fractions (Uf=0.1 m/s) 

7.5. Conclusion 

Bogging increases the average length of gas jets but decreases the average length of 

liquid jets, while the amplitude of the jet fluctuations decreases with bogging in both 

cases.  

The frequency of jet fluctuations decreases with increasing oil mass fraction in the bed 

due to the concomitant decrease in bubble frequency. Results were interpreted with 

published correlations for jet length in the fluidized bed.  
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 

8.1. Conclusions 

Thanks to sophisticated cancelation of capacitive and inductive coupling noise, a new 

capacitance sensor can image jets, bubbles and evaluate the distribution of liquid on the 

solid particles. This non-invasive sensor enables the measurement of voids as well as 

“free liquid”, i.e. liquid that is not trapped within agglomerates in a fluidized bed. The 

rate at which liquid is released from breaking agglomerates can be measured with this 

sensor.  

Bogging greatly affects liquid distribution.  The changes in liquid caused by bogging 

were found to correlate well with changes in particle cohesivity that, in turn, affect the 

properties of the gas bubbles. 

Several methods have been developed to detect the onset of bogging: 

- The standard deviation of bubble frequencies, as measured with the new 

capacitance sensors.  

- A new bogging index based on the wavelet decomposition of pressure fluctuations, 

which performs better than other methods using pressure fluctuations. The new 

bogging index was developed from the observed changes with bogging of sound 

transmission at different frequencies through the fluidized bed.  

- The measured speed of sound in a fluidized bed.  A theoretical model confirmed that 

the changes in bubbles properties that result from bogging affect the transmission of 

sound through the fluidized bed.   

The new capacitance sensors were used to study jet cavity fluctuations in fluidized beds.  

Two types of jets were investigated:  the supersonic gas jets used for particle attrition in 

fluidized beds and the jets formed when liquid is atomized with a gas into a fluidized bed. 

A new correlation was developed to predict the fluctuations of the jet penetration in 

fluidized beds. Bogging greatly affects jet fluctuations, as suggested by correlations 

developed in this thesis. 
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8.2. Recommendations 

The following directions are suggested for future research: 

1. For evaluation of developed bogging detection methods, more experiments are 

suggested to investigate the effect of temperature on each bogging index. 

2. For the standard deviation of bubble frequency, more experiments are suggested 

to study the effect of bed scale up. 

3. For the correlation developed for supersonic jet fluctuations, experiments with 3D 

capacitance tomography are suggested to measure the fluctuations of supersonic 

jet length at all dimensions.  
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APPENDIX A 

This appendix shows measured bubble frequency at locations of 8 side electrodes in the 

fluidized bed (Figure 3.1) at different concentrations of Voltesso oil. Electrode 1 is the 

closest one to the nozzle while electrode 8 is the farthest one from the nozzle.  
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Bubble frequency 

Kolmogorov- Smirnov test

The Kolmogorov–Smirnov

dimensional continuous probability

used to compare a sample

or to compare two sample

defined as a statistical distance

of two samples. The null hypothesis

same probability distribution. 
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ubble frequency versus concentrations of Voltesso oil (Uf =0.1 m/s)

APPENDIX B 

Smirnov test 

Smirnov test  is a statistical test of the equal

probability distributions. The Kolmogorov–Smirnov

sample probability distribution with a reference probability distribution,

or to compare two sample probability distributions. The Kolmogorov–Smirnov statistic 

distance between the cumulative probability distribution functions 

null hypothesis for the test is that the samples are 

distribution.  

mirnov test - two cumulative probability distributions are shown with red and 

blue lines while the black arrow is the Kolmogorov- Smirnov statistic

cumulative probability distribution functions of the first and the 

second sample respectively, the Kolmogorov-Smirnov statistic is defined as

 

supremum function. The null hypothesis is rejected at level
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Smirnov statistic is 

distribution functions 
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defined as 

The null hypothesis is rejected at level α if 



 

The value of c(α) is given in the table below for each level of

 

α 0.10 0.05 0.025 0.01

c(α) 1.22 1.36 1.48 1.63
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is given in the table below for each level of α  

0.01 0.005 0.001 

1.63 1.73 1.95 
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