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Abstract 

Distal humeral hemiarthroplasty is a treatment option for fractures, non-unions and avascular 

necrosis of the distal humerus.  Commercially available distal humeral implants are 

available; however, many unanswered questions remain regarding their role in treatment of 

distal humeral pathology.  The optimal articular shape of the implant has not been defined, 

the biomechanical effects have not been reported, and contact stresses on native articular 

cartilage are unknown. 

This work has defined the osseous anatomy and anatomic variability of the distal humeral 

articulation using accurate 3D reconstruction methods.  A data bank of distal humeral 

dimensions has been created and may be effective in the development of future implants. 

Kinematic investigations have shown small but significant alteration in elbow joint 

kinematics with placement of a distal humeral hemiarthroplasty. 

This work shows that currently available hemiarthroplasty implants may not be anatomically 

accurate, and may not reproduce native elbow kinematics.  Further efforts are needed to 

create and test more anatomic distal humeral implants. 
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Chapter 1 

Introduction 

 

Overview 

The purpose of this thesis is to evaluate the anatomy of the distal 

humerus, and the effect of elbow hemiarthroplasty on joint kinematics 

and joint congruency.  As an introduction, this chapter will focus on the 

anatomy and kinematics of the elbow.  The role and current state of 

knowledge on elbow hemiarthroplasty will also be reviewed.  The 

objective, hypothesis, rationale and outline of the thesis are highlighted. 
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1.1 The Elbow 

The primary function of the elbow is to position and stabilize the hand in space (1, 

2).  The elbow consists of three bones, as well as various ligaments and muscles which 

provide stability and assist in movement of the elbow joint. 

1.1.1 Osteology 

 The human elbow consists of the articulation between three bones: the humerus, 

radius and ulna.  These bones make up the three articulations of the elbow: the 

ulnohumeral joint, the radiocapitellar joint and the proximal radioulnar joint.  The 

ulnohumeral joint consists of the greater sigmoid notch of the ulna, which articulates with 

the trochlea of the distal humerus (Figure 1.1). 
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Figure 1.1 Osteology of the Elbow.  (A) Upper extremity, consisting of the scapula, 
clavicle, humerus, radius, ulna, carpals, metacarpals and phalanges.  (B) The elbow under 
magnification, demonstrating the three articulations of the elbow: the ulnohumeral joint, 
radiohumeral joint and proximal radioulnar joint. 

All figures in this thesis have been created/taken at the Roth|McFarlane Hand and Upper 
Limb Centre laboratory, London, Ontario, Canada unless otherwise specified.  

 

 

 

 

 



 

 
4 

The ulnohumeral joint allows for flexion/extension of the elbow and is 

responsible for the majority of the stability of the elbow.  Forearm rotation can also occur 

in the form of pronation and supination.  During rotation, the ellipsoid-like capitellum 

rotates against the lesser sigmoid notch of the ulna (Figure 1.2). 

The flexion-extension (F-E) axis of the distal humerus is defined by the geometric 

centers of the capitellum and the trochlear groove.  A line connecting these two points 

represents the F-E axis (Figure 1.3). The F-E axis is in valgus with respect to the humerus 

and is internally rotated with respect to the epicondylar axis (Figure 1.4). 
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Figure 1.2: Elbow motions: (A) Elbow flexion and extension.  (B) Forearm pronation 
and supination. 
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Figure 1.3: Flexion-extension (F-E) axis of the elbow. The F-E axis of the elbow is 
defined by a line connecting the geometric centre of the capitellum and the trochlea. 

 

 

 

 

 

 



 

 
7 

 

Figure 1.4: Alignment of flexion-extension (F-E) axis of the elbow. The F-E axis of 
the elbow is approximately 6-8o of valgus with respect to the long axis of the humerus 
and 5-7o of internal rotation with respect to the epicondylar axis of the distal humerus. 

 

 

 

 

 

 

 

 

 3 

A!

!
B!

!
$

Figure$ 1.2:$ The$ flexion\extension$ axis$ of$ the$ elbow$ joint.! (A)! The! flexionVextension! axis! (FEA)! passes!

through!the!center!of!the!capitellum!and!the!center!of!the!trochlear!groove.! !(B)!The!FEA!is!both!valgus!

and!internally!rotated!with!respect!to!the!long!axis!of!the!humerus!and!the!transVepicondylar!axis!of!the!

humerus,!respectively.!
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1.1.2 Ligaments and Joint capsule 

Elbow stability is conferred by inherent bony stability as a consequence of the 

interlocking shape of the articulation and is reinforced by capsuloligamentous structures.  

Two of the main sources of stability are the lateral collateral ligamentous complex and 

the medial collateral ligament (MCL).  The lateral complex consists of the lateral ulnar 

collateral ligament (LUCL), annular ligament, radial collateral ligament (RCL) and 

accessory ligament.  The MCL consists of three bands: Anterior band, posterior band and 

transverse band (Figure 1.5).  The elbow joint capsule attaches proximal to the coronoid 

and radial fossa on the anterior portion of the humerus, and above the olecranon fossa on 

the posterior humerus (3).  The elbow capsule encloses all three major articulations of the 

elbow. 
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Figure 1.5: Ligaments and capsule of the elbow: (A) Posterior view and (B) anterior 
view of the elbow showing capsular attachment (pink.  (C) Medial view showing the 
MCL with the anterior (green) and posterior (violet) bundle.  (D) Lateral view showing 
the LCL and three of its components – RCL (red), annular ligament (yellow) and LUCL 
(purple). 
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1.1.3 Musculature 

Numerous muscles crossing the elbow joint contribute to elbow motion and 

stability.  The motions produced are elbow flexion, elbow extension, forearm pronation 

and forearm supination.  Some muscles controlling the hand and wrist motion also 

originate proximal to the elbow (Figure 1.6). 
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Figure 1.6: Muscles of the elbow.  The main muscles crossing the elbow, including their 
origin and insertion, are displayed.  These muscles play a role in elbow motion and 
stability (4) 
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1.1.3.1 Elbow Flexors 

Three muscles contribute to flexion of the elbow: biceps, brachialis and 

brachioradialis.  The biceps consists of the long head and short head.  The long head of 

the biceps originates on the supraglenoid tubercle of the scapula while the short head 

originates from the coracoid process.  Both heads of the biceps insert into the bicipital 

tuberosity of the radius via the biceps tendon and the fascia of the forearm via the lacertus 

fibrosis.  The brachialis originates on the anterior-distal aspect of the humerus and 

attaches to the coracoid process, ulnar tuberosity and anterior capsule of the elbow.  The 

brachioradialis muscle originates on the lateral supracondylar ridge of the humerus and 

inserts distally into the radial styloid at the wrist. 

1.1.3.2 Elbow Extensors 

The triceps is the main extensor of the elbow.  The triceps has three heads: long, 

medial and lateral.  The long head originates from the intraglenoid tubercle of the 

scapula, the lateral head from the humerus distally and the intermuscular septum, and the 

medial head from the posteromedial humerus and medial intermuscular septum.  These 

heads coalesce and form the triceps tendon which inserts into the olecranon (3). 

1.1.3.3 Forearm Supinators 

Forearm supination is produced by two muscle groups: the biceps brachii and the 

supinator.  The biceps is primarily responsible for supination during elbow flexion, while 

the supinator is more active throughout elbow range of motion.  The supinator originates 

on the lateral epicondyle, lateral collateral ligament and the crista supinatorum of the ulna 

and inserts on the proximal radius. 
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1.1.3.4 Forearm Pronators 

The pronator teres and the pronator quadratus are the two muscles primarily 

responsible for forearm pronation.  The pronator quadratus is present distally at the wrist.  

It originates on the volar surface of the radius and inserts on the volar surface of the ulna.  

The quadratus is a weak pronator and also stabilizes the distal radioulnar joint (3).  The 

main pronator of the forearm is the pronator teres muscle.  The pronator teres has origins 

on both the medial epicondyle and the coronoid process.  It inserts on the middle-

proximal third of the radius. 
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1.2 Elbow Kinematics, Biomechanics and Stability 

1.2.1 Elbow Kinematics 

As previously mentioned, the F-E axis of the distal humerus is defined by the 

geometric centers of the capitellum and the trochlear groove.  A line connecting these 

two points represents the F-E axis (Figure 1.3).  This axis is positioned anterior to the 

humeral shaft.  Normal range of motion of the elbow is from approximately 0o extension 

to 145o flexion.  This can vary greatly between individuals based on amount of soft tissue 

present, prior injury or inherent ligamentous laxity.  Forearm rotation involves the radius 

pronating and supinating around a relatively fixed ulna.  Normal range of motion is 

approximately 150-160o (3).  In addition to flexion-extension and pronation-supination, 

the ulna also rotates and flexes with respect to the humerus (3).  The ulna internally 

rotates with pronation, and externally rotates with supination (3). 

 

1.2.2 Elbow Stability 

Elbow stability is conferred by inherent bony stability and is reinforced by 

capsuloligamentous structures.  The primary stabilizers of the elbow are the ulnohumeral 

articulation, anterior band of the MCL and the LUCL.  The secondary stabilizers of the 

elbow are the common flexor muscles, common extensor muscles, the radio-capitellar 

articulation and the joint capsule.  

Bony stability is derived from the congruency of the articular surfaces.  The 

greater sigmoid notch closely conforms to the trochlea.  The coronoid process is an 

important buttress to prevent posterior subluxation of the ulna on the humerus.  The 
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olecranon contributes to stability in both varus and valgus directions.  The radial head 

plays an important role as a secondary stabilizer, particularly in valgus in the case of a 

deficient MCL (3). 

The anterior bundle of the MCL originates from the anteroinferior aspect of the 

medial epicondyle, inferior to the axis of rotation, and inserts on the sublime tubercle at 

the base of the coronoid process.  The anterior bundle is of prime importance in elbow 

stability.  It is the primary stabilizer of the elbow from 20-120o flexion.  The main 

restraint is to valgus angulation.  The LUCL originates at isometric point on the lateral 

epicondyle and attaches to supinator crest of proximal ulna. The LUCL functions as an 

important restraint to varus angulation. 

The elbow joint capsule plays a role in elbow stability, particularly in full 

extension and is less important in flexion (3).  The elbow capsule prevents 

hyperextension of the elbow and provides coronal stability. 
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1.3 Elbow Hemiarthroplasty 

Total joint replacement is one of the most commonly performed procedures in 

orthopaedic surgery.  Total knee and hip replacements are amongst the most successful 

orthopaedic procedures.  Total elbow arthroplasty (TEA) is a procedure which is 

becoming increasingly popular, and may be utilized for the management of primary 

osteoarthritis (5), post-traumatic osteoarthritis (6), stiffness (7), fractures (8), rheumatoid 

arthritis (9) and bone tumours (10).  Similar to hip and knee arthroplasty, elbow 

replacements have been shown to improve pain and function.  However, the success rate 

of elbow arthroplasty has thus far been inferior to hip and knee arthroplasty.  This may be 

related to the extensive surgical approaches required for implantation as well as 

suboptimal implant designs and implantation techniques (11).  
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A.     B.  

Figure 1.8: Total elbow arthroplasty: Total elbow arthroplasty consists of a humeral 
component and an ulnar component.  Some designs also include the ability to place a 
radial head replacement (Latitude, Tornier, Stafford, TX). 
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As a result of the problems associated with TEA, there has been an increased 

interest in elbow hemiarthroplasty (Figure 1.9).  This partial replacement may be ideal in 

situations where only one portion of the elbow joint is affected.  This may be particularly 

useful in the situation of comminuted distal humerus fractures that are not amenable to 

open reduction internal fixation.  Other potential pathologic conditions which may benefit 

are avascular necrosis or non-unions of the distal humerus.  Hemiarthroplasty has the 

advantage of less invasive surgical approaches, potentially less patient morbidity, and 

preservation of bone stock for potential future procedures.  Furthermore it avoids 

problems of polyethylene wear which is common with TEA. 
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A.  

B.   

Figure 1.9: (A) Distal humeral implant.  (B) Lateral and anterior-posterior radiographs 
of a distal humeral replacement (Latitude Anatomic, Tornier, TX) 
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1.3.1 Distal Humerus Fractures 

Approximately 7% of all adult fractures involve the elbow, one third of which 

involve the distal humerus (12,13).  Therefore, it can be estimated that approximately 2% 

of all adult fractures involve the distal humerus.  There is a bi-model age distribution, 

with hi-energy injuries occurring mainly in young, and lower energy injuries mainly in 

elderly.  The overall incidence of distal humerus fractures has steadily increased.  

Palvanen et al. (12) found a two-fold increase in age-adjusted incidence of distal humerus 

fracture from 1970 (12/100,000) to 1995 (28/100,000), and predicted a three-fold 

increase by 2030.  These fractures remain extremely challenging to manage, particularly 

in elderly patients with osteoporotic bone.  These patients may present with significant 

intraarticular comminution (Figure 1.10).  Because of the complex anatomy of the joint 

surface, displaced intraarticular fragments that are not perfectly reduced may alter the 

kinematics of the joint.  This will lead to post traumatic osteoarthrosis and subsequent 

stiffness and pain.  While sometimes it is possible to recreate the joint surface, 

imperfections may be unavoidable considering the severity of the initial trauma.  

Furthermore, healing of the fractures can be problematic, particularly in the elderly. As a 

result of these issues with internal fixation, TEA has become a popular option to manage 

these fractures in older low demand patients (8) (Figure 1.8).  Although some studies 

have shown good short-term and mid-term results (14,15), long-term concerns, such as 

polyethylene wear and aseptic loosening persist.  There are also significant restrictions in 

weight bearing, often limited to only 5 lbs.  Due to these concerns, the interest in distal 

humeral hemiarthroplasty has increased in recent years. 
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Figure 1.10: Distal humerus fracture.  Example of a comminuted, intra-articular distal 
humerus fracture in an elderly patient.  This type of fracture would be extremely 
challenging to fix by conventional open reduction internal fixation. 
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1.3.2 Role of Hemiarthroplasty in Distal Humerus Fractures 

The role of hemiarthroplasty has been well established for humeral neck fractures 

of the shoulder (16) and femoral neck fractures of the hip (17).  To date there has been 

very little in the literature on treatment of acute distal humerus fractures with 

hemiarthroplasty (18-20).  The majority of the literature on distal humeral 

hemiarthroplasty involves clinical studies limited to either case controls or studies with 

small sample sizes (21-25).  In 1947 Mellex and Phalen (21) were the first to describe the 

use of hemiarthroplasty in the elbow.  They presented a series of 4 patients who 

underwent distal humeral replacement with an acrylic prosthesis.  These patients had 

been involved in significant trauma, and presented months after the initial trauma with 

significant deformity.  They were able to provide each patient with good pain relief, but 

unpredictable function and range of motion.  In 1965, Barr and Eaton (22) placed a 

custom prosthesis in a patient with a prior distal humerus fracture.  They had a good 

functional result at four year follow-up; however, some bone resorption had occurred and 

the distal screw in the construct had broken.  Shifrin and Johnson (23) presented a case 

report on a 19 year old patient who received a custom distal humeral prosthesis after 

suffering from post-traumatic arthritis secondary to a distal humerus fracture.  After 21 

years of observation, a painless, stable range of motion was established.  Swoboda and 

Scott (24) evaluated early results of distal humeral hemiarthroplasty of 5 young, 

rheumatoid arthritis patients.  The patients had good pain relief, but the post-operative 

range of motion was not predictable.  The largest early series of distal humerus 

hemiarthroplasty was reported by Street and Stevens (25) in 1974. They described their 

results in 10 patients: 5 with post-traumatic lesions, 3 with rheumatoid arthritis, and 2 



 

 
23 

with ankylosis secondary to hemophilia.  They found poor results in patients with 

inflammatory arthritis or hemophilia, and stable, painless range of motion in 4 of 5 

patients with post-traumatic arthrosis. 

More recently, Adolfsson and Hammer (18) reported the short-term outcome of 4 

elderly female patients (average age 80 years) treated with a distal humeral 

hemiarthroplasty for complex intraarticular distal humerus fractures.  At an average of 10 

months, 3 patients had excellent results and one patient had a good result according to the 

Mayo elbow performance score.  Parsons et al. (19) reported the outcome of 8 patients 

treated with a distal humeral prosthesis.  Of these patients 4 were treated for acute 

fractures and 4 treated non-acutely.  Patients treated for acute fractures had a better range 

of motion and lower pain post-operatively.  Malone et al. (20) presented their results in 30 

patients (mean age 65) who underwent hemiarthroplasty for distal humeral fractures 

considered unreconstructable or for salvage of failed internal fixation.  They also reported 

their acute cases had better outcomes than salvage cases.  A re-operation on 16 patients 

(53%) was required for various reasons; including aseptic loosening, periprosthetic 

fracture, prominent hardware and ulnar nerve symptoms.  Seven had cement lucencies >1 

mm; one was loose but acceptable.  Two elbows had degenerative changes and 15 an 

osteophytic lip on the medial trochlea (20).  

1.3.3 Hemiarthroplasty Concerns 

 Although hemiarthroplasty appears in theory to be a good option in certain cases, 

there are some concerns.  While the risk of bearing wear is eliminated, their remains 

concern regarding the fate of the adjacent cartilage.  Cruess et al. (26) studied 

hemiarthroplasty in the hips of dogs, and followed changes in acetabular cartilage up to 
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24 weeks.  They found early loss of protoglycan, articular damage and progressive 

degenerative changes.  They suggested the articular cartilage maintains its structural 

integrity for only a brief period following the hemiarthroplasty.  Dalldorf et al. (27) took 

biopsy specimens of cartilage and subchondral bone in patients who were undergoing 

revision from a hemiarthroplasty to a total hip replacement.  They also took similar 

samples from patients of similar age undergoing a total hip replacement for femoral neck 

fracture.  Significant degeneration of acetabular cartilage in those with a previous 

hemiarthroplasty was found.  A direct correlation was made with the duration of 

hemiarthroplasty use. 

 The mechanism of cartilage erosion in hemiarthroplasty is not well defined; 

however, several possible causes have been proposed.  Factors may include improper 

implant sizing or geometric conformity, abnormal contact pressures and the activity level 

of the patient (28,29).  In their case study, McGibbon et al. (29) found that areas 

experiencing increased contact pressures were associated with increased severity of 

cartilage degeneration.  There is also suggestion that degenerative enzymes may 

accelerate cartilage breakdown.  Moon et al. (30) noted that abnormal stresses and 

reduced contact area between the implant and native cartilage promotes the secretion of 

degenerative enzymes which induce softening and reduced elasticity in the articular 

cartilage.  The resulting biomechanical changes may destroy the existing cartilage, 

causing further degeneration at the articulation. 
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1.4 Rationale 

 There is a clear lack of clinical literature regarding the use of hemiarthroplasty of 

the elbow.  All studies to date are small studies, with limited samples sizes, poor long-

term follow-up, inconsistent indications for surgery, and variable implant materials and 

design (18-25).  In addition to lack of clinical information in the literature, there is a 

complete void of information regarding the biomechanics, kinematics, and articular 

contact stresses of these devices.    Altered elbow kinematics may result in implant 

loosening and accelerated wear of the native articulation.  In addition to the need to 

define the influence on kinematics, there is also a lack of information regarding the 

implant characteristics.  Current hemiarthroplasty implants available are presumed to re-

create normal anatomy.  However, these implants may not be optimally designed based 

on the lack of anthropometric data currently available (31,32).  The effect of these 

implants on articular contact mechanics on native cartilage has also not been reported. 

Given that surgeons estimate the optimal implant size at surgery, the effect of incorrect 

implant sizing on joint kinematics and contact is also of clinical interest.  
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1.5 Objectives 

The objectives of this thesis were as follows: 

1. To quantify the osseous anatomy of the distal humerus and define 

anatomic variability using three-dimensional (3D) imaging techniques; 

2. To determine the influence of distal humeral hemiarthroplasty and implant 

size on joint kinematics and stability in-vitro; 

3. To determine the influence of distal humeral hemiarthroplasty on joint 

congruency in-vitro. 
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1.6 Hypothesis 

Based on the above objectives, these hypotheses have been generated: 

1. The morphology of the distal humerus would be consistent in shape but vary 

in size between elbows. A family of distal humeral implant sizes could be 

developed to closely replicate the anatomical shape of the distal humerus. 

2. The kinematics of the elbow with an optimally sized hemiarthroplasty will 

best recreate the kinematics and stability of the elbow. 

3. Distal humeral hemiarthroplasty with an optimally sized hemiarthroplasty will 

demonstrate the greatest joint congruency. 
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Thesis Overview 

Chapter 2 defines the anatomy and anatomic variability of the distal humerus 

using 3D imaging techniques.  Chapter 3 examines the influence of distal humeral 

hemiarthroplasty and implant size on joint kinematics and stability in-vitro.  Chapter 4 

quantifies the effects of hemiarthroplasty on joint congruency.  Chapter 5 provides a 

general discussion, summary and potential areas of future work. 
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Chapter 2 

An Anthropometric Study of the Distal Humerus 

 

Overview 

The optimal articular shape for distal humeral hemiarthroplasty has not 

been defined due to a paucity of data quantifying the morphology of the 

normal distal humerus. This chapter explores the osseous anatomy and 

anatomic variability of the distal humerus using three-dimensional (3D) 

imaging techniques. 
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2.1 Introduction 

Hemiarthroplasty of the distal humerus was reported as early as 1927. It has only 

recently become more commonly used as devices specifically designed for this indication 

have become commercially available.  This procedure may be ideal in situations where 

only one portion of the elbow joint is affected, including distal humerus fractures not 

amenable to open reduction internal fixation, avascular necrosis and non-unions.  The 

optimal shape of hemiarthroplasty implants has not been established due to a lack of data 

quantifying the morphology of the normal distal humerus (1,2).  Anthropometric 

information is available for the shoulder (3-6) and has played an important role in 

optimizing the design of these implants.  The purpose of the present study was to quantify 

the osseous anatomy of the distal humerus and define anatomic variability using three-

dimensional (3D) imaging techniques.  The data bank of distal humeral dimensions 

created may improve the designs of future distal humeral hemiarthroplasty implants. 
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2.2 Materials and Methods 

2.2.1 Specimen Preparation 

This three dimensional (3D) computer tomography (CT) anatomic study of the 

distal humerus utilized 50 unpaired normal human cadaveric elbows.  There were 34 

male donors and 16 female donors, with an average age of 72 ± 12.5 years.  CT scans 

were acquired using a 64-slice clinical scanner (GE Light Speed Ultra, New Berlin, WI, 

USA) at a slice thickness of 0.625mm. The humeri were manually segmented from the 

CT images using semi-automated methods and a fixed threshold of 148 Hounsfield Units 

(HU) using Mimics software (Materialize NV, Leuven, Belgium).  Three dimensional 

surface models were generated. A series of custom programs created using the 

Visualization ToolKit (VTK, Kitware Inc., Clifton Park, NY, USA) were used to measure 

each model. To simplify the measuring process, all left-sided models were mirrored 

before the measurements were taken.  

2.2.2 Axis Determination 

On the 3D surface model, nine points were manually chosen on the capitellum, 

six points on the trochlear groove, and 2 points on the posterior surface of humerus.  

Using a semi-automated algorithm, point clouds were created on the surface of the 

capitellum and along the trochlear groove.  This algorithm ensured precision and 

consistency of point placement.  These points were used to define the geometric center of 

the spherical capitellum and the circular trochlear groove (Figure 2.1). 
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Figure 2.1: 3D surface models of the distal humeri.  Coordinate systems were 
established by choosing nine points on the capitellum, six points on the trochlear groove, 
and 2 points on the posterior surface of humerus (not shown). Using a semi-automated 
algorithm, point clouds were created over the surface of the capitellum and along the 
trochlear groove.  These points were used to define the geometric center of the spherical 
capitellum and the circular trochlear groove.  These points, along with the posterior 
points selected, were used to create the co-ordinate system. 
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A line connecting these center points defined the flexion-extension (FE) axis.  A 

humeral coordinate system, aligned with the FE axis, was created in order to provide a 

measurement reference frame.  The axial direction was determined using two points 

chosen on the distal aspect of the posterior humeral shaft, one located distally and one 

mid-shaft, respectively. The distally pointing axial vector was defined as the x-axis and 

the laterally pointing axis defined as the z-axis. The y-axis was determined using the 

cross-product and pointed anteriorly (Figure 2.2).  The process of selecting points and 

creation of the coordinate system was repeated by the primary author (SJD) on 20 of the 

specimen models to ensure intra-observer reliability.  The process was also repeated on 

twenty models by another author (AL) to ensure inter-observer reliability.  These were 

quantified using intra-class correlations of absolute agreement. 
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Figure 2.2: 3D surface model of the articular surface of the distal humerus with co-
ordinate system used to determine measurements.  The distally pointing vector (red) was 
defined as the x-axis, the lateral pointing vector (green) represented the z-axis and the 
anteriorly pointing axis (blue) was y-axis.   
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2.2.3  “C-Line” 

Using the FE axis as an initial reference direction vector, transverse cross sections 

of the articular surface were automatically segmented at 0.1 mm increments, and then 

circle-fitted using a least-squares method.  A best-fit line through these centers of all the 

cross sections was generated as per method of Shiba et al. (1), who defined this as the C-

Line.  Cross sections with fewer than 30 points were automatically ignored in order to 

ensure a sufficient number of points at each slice to obtain an accurate circle fit.  This 

process was iterated again, using the C-Line as the reference vector, thus refining the 

final C-Line by ensuring that it was defined solely by the articular surface cross sections.  

The reference coordinate system was aligned with the refined C-Line and its origin was 

defined as the center of the most medial slice.  The distance between the most medial and 

lateral slices defined the width of the articulation. The purpose of the algorithm was to 

determine the C-Line, articular width and coordinate system.  The final cross-sections 

were obtained between the medial and lateral slices at increments of 1% of the measured 

articular width.  The 3D location and radius of the fitted circle was recorded for each of 

these 100 cross-sections (Figure 2.3).  The data was transferred into Microsoft Excel 

Spreadsheet (Microsoft, Redmond, WA, USA) where pre-defined anatomic 

measurements were calculated (Figure 2.4). 
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Figure 2.3: 3D reconstruction of the distal humerus with 100 circle-fitted transverse 
slices.  The red line represents the joint axis (i.e. C-Line) as defined by the centres of the 
least squares circle fits. 

 



 

40  

 

Figure 2.4: (A) Measurements taken from anterior-posterior view, perpendicular to the 
C-Line.  (B) Measurements taken from the axial view, also perpendicular to the C-Line. 

(A) The capitellar height (CH) is the diameter of the capitellar circle with the largest 
radius in the AP plane; lateral trochlear height (LTH) is the diameter of the most lateral 
circle on the trochlea ridge with the largest diameter; trochlear height (TH) is the height 
of the trochlear groove, the diameter of the circle with the smallest radius in the trochlear 
groove; medial trochlear height (MTH) is the diameter of the most medial circle on the 
trochlea ridge with the largest radius.  Articular width (W) is the width of the distal 
humeral articulation, from the medial most circle on the trochlea to the lateral most circle 
on the capitellum. 

(B) The capitellar width (CW) is the distance along C-Line from the depth of the groove 
between the capitellum and trochlea, to the lateral edge of capitellum; trochlear width 
(TW) is the distance along the C-Line from the medial trochlear ridge to the groove 
between the capitellum and trochlea; trochlear width proper (TWP) is the distance 
along the C-Line from the medial trochlear ridge to lateral trochlear ridge; capitellar 
depth (CD) is from the most anterior point on the capitellum to the C-Line; lateral 
trochlear depth (LTD) is from the most anterior point on the lateral trochlear ridge to 
the most posterior point;  trochlear groove depth (TD) is measured from the most 
anterior point of the trochlear groove to the most posterior point; medial trochlear depth 
(MTD) is measured from the most anterior point of the medial trochlear ridge to the most 
posterior point. 
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2.3 Results 

2.3.1 Summary of results 

The results of all measurements, including various ratios, are presented in Table 

1. Intra-observer reliability for the manual steps of coordinate system creation, had intra-

class correlations of 0.9 (95% confidence interval [95% CI], 0.2 – 1.0).  Inter-observer 

reliability had intra-class correlations of 0.9 (95% confidence interval [95% CI] 0.5 – 

1.0). 
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Table 2.1: Average measurements for all specimens, men only and women only.  CW: 
Capitellar width; CH: Capitellar height; TW: Trochlear width; TWP: Trochlear width 
proper; LTH: Lateral trochlear height; TH: Trochlear height; MTH: Medial trochlear 
height; CD: Capitellar depth; LTD: Lateral trochlear depth; TD: Trochlear groove depth; 
MTD: Medial trochlear depth; W: Articular width. 
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2.3.2 Flexion-Extension Axis 

The anatomic FE axis of the distal humerus was 0.85 ± 0.70 degrees from the C-

Line (range 0.07-3.17 degrees) in the coronal plane and 1.57 ± 1.45 degrees (range 0.04-

7.47 degrees) in the axial plane. 

2.3.3 Distal humeral dimensions 

The mean width of the capitellum (CW) was 17.2 ± 1.9 mm, while the height 

(CH) was 23.3 ± 2.3 mm.   A paired T-test revealed that the width and height were 

significantly different (p < 0.001). The Pearson correlation coefficient between CW and 

CH was 0.772, representing a significant correlation (p < 0.001) (Figure 2.5).  The 

average trochlear width proper (TWP) was 21.6 ± 2.6 mm, and the correlation with CW 

was 0.676, also representing a significant correlation (p < 0.001) (Figure 2.6).  The 

average trochlear height (TH) was 17.8 ± 2.0 mm.  TWP and TH were significantly 

correlated with a Pearson correlation coefficient of 0.454 (p < 0.05) (Figure 2.7). 
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Figure 2.5: Correlation of capitellar height (CH) with capitellar width (CW).  (R = 0.772, 
p < 0.001) 
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Figure 2.6: Correlation of trochlea width proper (TWP) with capitellar width (CW).  
(R=0.676,p < 0.001) 
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Figure 2.7:  Correlation of trochlear height (TH) with trochlear width proper (TWP).  
(R= 0.454, p < 0.05) 
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The mean lateral trochlear height (LTH) was 21.6 ± 2.2 mm, while the mean 

medial trochlear height was significantly larger at 29.9 ± 4.1 mm (p < 0.001).  Likewise, 

the lateral trochlear depth (LTD) was 21.9 ± 2.3 mm, while the average medial trochlear 

depth (MTD) was  significantly larger at 30.0 ± 4.1 mm (p <0.001).  Refer to Appendix C 

for complete set of measurements from all specimens. 

2.3.4 Gender comparison 

When comparing men and women, the capitellar width (CW), capitellar height 

(CH), trochlear width (TW), trochlear width proper (TWP), lateral trochlear height 

(LTH), trochlear height (TH), medial trochlear height (MTH), capitellar depth (CD), 

lateral trochlear depth (LTD), medial trochlear depth (MTD), and articular width (W) 

were significantly larger in men (p<0.001).  The morphological ratios: CW/CH, TW/CW, 

MTH/LTH and W/TH were not significantly different between men and women 

(p>0.05). 

2.3.5 Graphical representation 

The average diameter of each of the 100 circle fits was calculated.  This was done 

for all 50 donor arms, as well as for men and women groups.  This is presented in both 

the distal-proximal (coronal) and anterior-posterior (axial) projections in Figure 2.8. 
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Figure 2.8: Average diameter of each of the 100 slices in millimeters (mm) of all 
specimens.  X-axis represents the 100 slices, Y-axis represents diameter in mm.  Top 
figure represents distal to proximal projections (coronal plane).  Bottom figure represents 
anterior to posterior projections (axial plane).  
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2.3.6 Implant Sizes 

Using the data on the various morphological measurements collected (Table 2.1), 

seven implant sizes were developed – Sizes 1-7.  The average morphological size for all 

50 specimens was used as the middle size (i.e. Size 4).  The implant which is one size 

larger (Size 5) was created by adding 2 mm to overall width (W).  An additional 2 mm 

was added to the width to create Size 6, and an additional 2 mm to create size 7.  

Likewise, the implant which is one size smaller (Size 3), was created by subtracting 2 

mm from the width (W). An additional 2 mm was subtracted from the width to create 

Size 2, and an additional 2 mm to create Size 1.  The remainder of the measurements 

(Figure 2.4) were calculated proportionally based on various morphological ratios 

(W/CW, W/TW, CW/CH, TW/CW, etc).    
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Implant Size W CW CH TW TH TWP MTH LTH TD MTD LTD CD 

1 48.5 19.6 26.6 28.9 20.4 23.9 34.1 24.7 20.3 34.2 25.0 10.2 
2 46.5 18.8 25.5 27.7 19.5 22.9 32.7 23.7 19.5 32.8 24.0 9.8 
3 44.5 18.0 24.4 26.5 18.7 22.0 31.3 22.6 18.6 31.4 23.0 9.4 
4 42.5 17.2 23.3 25.3 17.8 21.0 29.9 21.6 17.8 30.0 21.9 9.0 
5 40.5 16.4 22.2 24.2 17.0 20.0 28.5 20.6 17.0 28.6 20.9 8.6 
6 38.5 15.6 21.1 23.0 16.2 19.0 27.1 19.6 16.1 27.2 19.9 8.1 
7 36.5 14.8 20.0 21.8 15.3 18.0 25.7 18.6 15.3 25.8 18.8 7.7 

Table 2.2: Seven implant sizes (in mm) create based on average measurements from the 
50 specimens.  Refer to Figure 2.4 for diagram and abbreviations. 
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2.4 Discussion 

Implants used for elbow hemiarthroplasty aim to recreate the normal distal 

humeral articular anatomy.  A thorough knowledge of the distal humerus morphology is 

necessary to create anatomic implants which will help to optimize elbow kinematics and 

maximize contact area with the proximal radius and ulna. 

Shiba et al. (1) were the first to thoroughly quantify the anatomy of the 

ulnohumeral joint.  Four human cadaveric elbows were used in their study.  The humeri 

were cut in 0.76mm thick slices perpendicular to the transepidondylar line (line joining 

the medial and lateral epicondyles).  The geometry was examined using surface analysis 

by creating circle fits of each slice and determining a center and radius of each circle.  

The centers of each circle generally were on a straight line they referred to as the C-Line 

(1).  They performed similar measurements on the trochlea and reported ranges of sagittal 

radii of the lateral trochlear flange, trochlear groove and medial trochlear flange of 9.6-

11.6mm, 8.4-9.0mm and 11.8-14.7mm, respectively.  This is similar to the results of the 

present study which found sagittal diameter of the lateral trochlear height (LTH), 

trochlear height (TH) and medial trochlear height (MTH) to be 22 ± 2 mm, 18 ± 2 mm, 

and 30 ± 4 mm, respectively. 

Sabo (7) performed a morphological analysis of the capitellum on fifty cadaveric 

elbows using CT scan images and similar measurements to the present study.  They 

found an average capitellar height of 23.2 ± 2.8 mm (range, 18.0-29.5 mm) with a mean 

width of 13.9 ± 2.3 mm (range, 9-19 mm).  Wevers (2) sectioned 6 distal humeri in the 

sagittal plane and performed circle-fits to characterize the shape of the distal humeral 
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articulation.  They found a range in capitellar width from 14.5 to 21.5 mm.  They did not 

specifically report on capitellar height, but suggested the size for the height of the 

capitellar portion ranging from 19.2 to 23.7mm (2).  Shiba (1) also measured sagittal 

radius of the capitellum, and reported a range from 9.8-12.0 mm.  The present study’s 

results are consistent with the results from the previous three studies.   The current study 

found a mean capitellar width of 17 ± 2 mm (range, 12-21 mm), and a mean capitellar 

height of 23 ± 2 mm (range, 18-27 mm).  In addition, we found that the capitellar width 

and height were statistically different.  This indicates that the capitellum is ellipsoid, not 

spherical, and consistent with a recent report on capitellar morphology (7). 

The measures taken in the present study were referenced from the C-Line as 

described by Shiba et al. (1).  In the current study, the C-Line was defined as the line of 

best fit connecting the geometric centres of each of the 100 circle fits of the distal 

humerus.  The FE axis of the distal humerus is defined by the geometric center of the 

capitellum approximated as a sphere, and the geometric center of the trochlear, 

approximated as a circle (8-12).  We found that on average, these lines differed by 1 ± 1o 

(range 0-3o) in the coronal plane and 2 ± 1o (range 0-7o) in the axial plane (p < 0.0001).  

These large standard deviations and large ranges demonstrate the variability between the 

C-Line and the FE axis.  This information becomes significant in implant design, as the 

measurements found in this study are referenced to the C-Line; therefore, any implant 

produced from these measurements must also be referenced to the C-Line, not the 

anatomic FE axis. 

 The circle fit method used in the present study created 100 circles in the sagittal 

plane.  Diameter of each is presented in schematic form in both anterior-posterior and 
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axial projections in Figures 2.8.  This provides a detailed description of the articular 

shape of the distal humerus which could prove useful when developing a distal humeral 

hemiarthroplasty.  Additionally, seven implant sizes have been proposed based on the 

average morphological size of the specimens studied.  The average size of all 50 

specimens was used as the middle implant (Size 4).  The remainder of the sizes were 

based on adding or subtracting 2 mm from the middle implant.  The range of 2 mm 

between sizes was chosen for a number of reasons.  First, the industry standard for 

hemiarthroplasty of the shoulder and hip is also approximately 2 mm between sizes.  

Second, the thickness of articular cartilage is between 1.0 and 2.0 mm (13), therefore, 2 

mm compensates for this slight mismatch.  Third, most of the other morphological 

parameters are less than 2 mm between sizes; the width is the largest measurement.  

Fourth, the only commercially available implant has six sizes; therefore, adding an extra 

size is not unreasonable.  Finally, by using this method, 96% of cadaveric specimens used 

fell within a 2 mm range of the implant sizes. 

The present study has limitations.  First, the sample size is relatively small to 

define such a complex articulation which has such high variability between subjects.  

Second, we defined the anatomy of the distal humerus based on 3D CT reconstructions.  

CT scans do not include articular cartilage; therefore, the measurements taken reflect 

only the osseous anatomy of the distal humerus.  Schub et al. demonstrated that the 

thickness of cartilage was not uniform in their MRI study (13).  They selected eight 

points along the distal humeral articular surface, including three points on the lateral 

capitellum, three points on the medial capitellum and two points along the trochlear 

groove.  They found the cartilage thickness of the lateral capitellum ranged from 1.06mm 
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to 1.49mm, the medial capitellum ranged from 0.87mm to 1.63mm and the trochear 

groove from 0.78mm to 1.32mm (13).  These differences may affect the calculation of 

the FE axis and C-Line.  In spite of this, the previously cited studies which included 

articular cartilage in their analysis demonstrated relatively consistent measurements with 

the present study (1,2).  Finally, we used a circle fit algorithm to define the morphology 

of the capitellum and trochlea.  Neither of these structures conforms to perfect geometric 

shapes, such as spheres or ellipses; therefore, this may result in measurement error in 

some cases. 

The strengths of this the present study are that we examined the morphology of 

the distal humerus using modern 3-dimensional techniques, with high intra- and inter- 

observer reliability.  We used similar principles to the study performed by Shiba (1); 

however, because of the technology used, we were able to analyse many more specimens, 

and used a software program which is very accurate (<1.0 mm measurement error).  

Other studies using the similar software report high accuracy of <0.5 mm discrepancy 

between measurements taken on CT scan and direct measurements on the anatomical 

specimens (14).  We were also able to define our circle fits based on slices perpendicular 

to the C-Line, whereas Shiba (1) initially created circle fits perpendicular to the 

transepicondylar axis, which has considerable variability between subjects. 
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2.5 Conclusion 

The present study characterizes the osseous anatomy and anatomic variability of 

the distal humeral articulation using accurate 3D reconstruction methods.  Despite not 

including the articular cartilage thickness in our measurements, a data bank of distal 

humeral dimensions has been created and may be effective in the development of future 

distal humeral hemiarthroplasty implants.  Seven implant sizes based on average 

morphological measurements have been proposed.  A more anatomic implant may 

optimize elbow kinematics and maximize contact on the native ulna and radius, which 

may ultimately increase function and improve longevity of the implant. 
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Chapter 3 

The Effect of Implant Size on Kinematics and Stability 

 

Overview 

Distal humeral hemiarthroplasty is a treatment option for distal humerus 

fractures, non-unions and avascular necrosis.  The biomechanical effects, 

however, have not been reported.  The purpose of this chapter is to 

quantify the effects of hemiarthroplasty and implant size on elbow joint 

kinematics using in vivo techniques. 
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3.1 Introduction 

While described and reported many years ago, there has been recent interest in 

elbow hemiarthroplasty as a less invasive alternative to total elbow arthroplasty (TEA).  

Hemiarthroplasty may be ideal in situations where only one portion of the elbow joint is 

affected, such as distal humerus fractures not amenable to open reduction internal 

fixation, non-unions or avascular necrosis.  Hemiarthroplasty has the advantage of less 

invasive surgical approaches, less patient morbidity, avoidance of polyethylene wear 

concerns and preservation of bone stock for future reconstructive procedures (1). 

There is a paucity of literature regarding hemiarthroplasty of the elbow.  Clinical 

studies to date are few, with limited samples sizes, short-term follow-up, inconsistent 

indications for surgery, and variable implant materials and designs (2-9).  In addition to 

lack of clinical information, there is a complete void of information regarding the 

biomechanics of these devices.  Altered elbow kinematics may result in symptomatic 

instability from mal-tracking, implant loosening and accelerated wear of the native 

articulation.  Given that surgeons estimate the optimal implant size at surgery, the effect 

of incorrect implant sizing on joint kinematics and mechanics is unknown.  Therefore, the 

purpose of the present study was to determine the influence of distal humeral 

hemiarthroplasty and implant size on joint kinematics and stability in-vitro. 
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3.2 Materials and Methods 

3.2.1 Specimen Preparation 

This in vitro study quantifying the effects of hemiarthroplasty on elbow joint 

mechanics utilized eight fresh, previously frozen male cadaveric arms (76 ± 6.4 years) 

amputated at the mid-humerus.  Each arm underwent 64-slice, computed tomography 

(CT) (GE LightSpeed Ultra; General Electric, New Berlin, Wisconsin).  A three-

dimensional (3D) surface model was generated (Visualization Toolkit, VTK; Kitware, 

Clifton Park, New York) from CT scan DICOM data.   

The optimal size distal humeral implant was determined by measurements taken 

from the 3D CT reconstruction. Points were defined on the surface of the trochlea and 

capitellum with a semi-automated algorithm using initial boundary points selected by a 

single user (Figure 3.1). The geometric center of the capitellum and trochlea was found 

using a sphere-fit of the capitellum and a circle-fit of the trochlear groove.  The distance 

from the geometric center of the trochlear groove to the geometric center of the 

capitellum was measured for each 3D model.  To match the implant to the specimen, 

comparative measurements were taken from 3D models of the six distal humeral implants 

(Latitude Anatomic, Tornier, Inc, Stafford, Texas). 
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Figure 3.1: Three dimensional (3D) reconstruction of the distal humerus. Nine points 
were selected on the surface of the capitellum and six points along the trochlear groove.  
Using a semi-automated algorithm, a point cloud was created over the surface of the 
capitellum and along the trochlear groove.  These points were used to define the 
geometric center of the spherical capitellum and the circular trochlear groove.   
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Specimens were thawed at room temperature (mean 22 ± 2 °C) for eighteen hours 

prior to testing.  The specimen was kept hydrated throughout the preparation and testing 

protocol using normal saline.  The tendons of the biceps, triceps and brachialis were 

sutured using a locking Krackow repair (10).  All skin incisions were closed using #2 

Vicryl (Ethicon Inc, USA).  A Steinmann pin was placed through the third metacarpal, 

through the carpus and into the distal radius to fix the wrist in neutral flexion and 

extension.  Two fully threaded 3.5 mm cortical screws were placed across the distal 

radio-ulnar joint to fix the forearm in neutral rotation. 

3.2.2 Elbow Simulator 

The distal humerus was mounted in an in-vitro, unconstrained elbow simulator 

previously developed in our laboratory (11).  The sutures were connected to servomotors 

via braided Dacron® cords.  The servomotors applied forces to the tendons which moved 

the elbow from full extension to full flexion or vice versa at a controlled rate (10 

degrees/second).  The motion simulation was based on electromyographic data and 

muscle cross-sectional area (12,13).  Established muscle loading protocols were used 

during active motion, as reported by Ferreira et al. (2010) (11).  The simulator allowed 

for testing in the dependent (vertical), horizontal, varus and valgus positions (Figure 3.2).  

The motion of the ulna with respect to the humerus was quantified with the use of an 

electromagnetic tracking system (trakSTAR, Ascension Technology, Burlington, 

Vermont).  Accuracy reported by the manufacturer is 1.8 mm and 0.5o root-mean-squared 

deviation.  A tracker receiver was rigidly fixed to the ulna, while the tracking transmitter 

was mounted on the simulator rigidly with respect to the humerus. 
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Figure 3.2.  Schematic diagram of the elbow motion simulator showing the mounted 
specimen.  The simulator is shown in the (a) vertical, (b) valgus, (c) dependant, and (d) 
varus positions. 
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3.2.3 Experimental Testing Protocol 

The testing began with the intact arm.  The various elbow orientations, including 

varus, valgus, dependent and horizontal positions were tested in random order both 

actively and passively in flexion and extension.  Passive flexion was performed by one 

investigator (SJD) slowly moving the arm through a full arc of motion.  The elbow was 

then surgically exposed through a midline posterior incision.  Medial and lateral 

fasciocutaneous flaps were created and the subcutaneous border of the ulna was 

identified.  A chevron-type olecranon osteotomy was performed to gain access to the 

distal humerus.  The osteotomy was fixed with a pre-contoured olecranon plate and 

locking screws (Accumed Llc, Hillsboro, Oregon).  The collateral ligaments were left 

intact.  The testing protocol with the native articulation was repeated following the 

osteotomy and fixation to act as a control in order to determine if there were any 

kinematic changes due to the osteotomy alone. 

A medium humeral stem (Latitude, Tornier, Texas, USA) was shortened for ease 

of placement into the humeral canal.  The stem was shortened in order to optimize 

articular alignment by avoiding stem impingement with the humeral canal (14). The 

shortened stem was placed under computer navigation, which has been shown to improve 

accuracy and reproducibility of humeral component placement (15).  This step was 

performed by first digitizing the native elbow’s distal humerus articular surface using a 

3D optical tracking system (Optotrak Certus®, NDI, Waterloo, ON, Canada).  This was 

accomplished by using a stylus and tracing the native distal humeral articular surface.  

Based on the point cloud created, a 3D surface model was generated.  The humeral stem 

was calibrated to the tracking system and its location was tracked in real-time during 
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navigation relative to the humeral anatomy.  The stem location was visualized by viewing 

the CAD model of the implant spool.  During navigation, the spool was not actually 

attached to the stem; however its virtual representation aided navigation by aligning it to 

the virtual humeral articular surface (Figure 3.3).  Navigation was performed as the stem 

was cemented in the humeral canal.  
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Figure 3.3: Navigation of the distal humeral implant.  The distal humerus was digitized, 
and a virtual humeral surface was created (light).  The implant CAD model (dark) was 
also visualized and tracked in real-time.  The implant stem was navigated by closely 
matching the implant and humeral virtual surfaces.  Differences in surface shape between 
the native articulation and the humeral implant can be seen. 
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The optimally sized implant, which was pre-determined based on the 3D CT 

measurements and the implant which was one size too large and one size too small were 

tested in random order (Figure 3.4).  The stem was custom designed to fit all three 

implants using a locking mechanism; therefore, only a single stem was cemented 

throughout the duration of the testing protocol. Loosening of the stems were not observed 

in any of the tested elbows; all were well fixed at the conclusion of the testing protocol.  

Just prior to testing, a fellowship trained elbow surgeon estimated the size of the implant 

based on direct visualization of the native distal humerus.  This allowed us to determine 

any trends in accuracy of implant size selection.  
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A     B           C 

Figure 3.4: Radiographs of the three implants in-situ: (A) Under-sized (B) Optimal (C) 
Oversized-sized. 
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3.2.4 Statistical Analysis 

A two-way repeated-measures analysis of variance was used comparing flexion 

angle and implant size for varus-valgus angulation and internal-external rotation.  

Significance was defined as p < 0.05. 
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3.3 Results 

3.3.1 Varus/Valgus Angulation 

3.3.1.1 Olecranon Osteotomy 

Small but significant increases in valgus angulation occurred after the olecranon 

osteotomy with the arm oriented in the valgus position for active and passive motion, 1.4o 

± 0.96o (p < 0.05) and 1.4o ± 0.95o (p < 0.05), respectively. In the varus position, there 

were no differences in varus angulation for either active (p = 0.8) or passive (p = 0.2) 

motion. 

As a result of the small differences in kinematics after the olecranon osteotomy, 

the post osteotomy state was used as the control for all further analyses. 

3.3.1.2 Dependent and Horizontal Position 

There was no difference in varus-valgus angulation between the intact, post-

osteotomy, optimally sized, over-sized and under-sized hemiarthroplasty groups in either 

active (p > 0.05) or passive (p > 0.05) motion in both the dependent (p > 0.05) and 

horizontal positions (p > 0.05). 

3.3.1.3 Valgus Position 

  When compared to the post-osteotomy state, there was a significant increase in 

valgus angulation for all implant sizes in both active (p < 0.05) and passive motion (p < 

0.05), respectively (Figure 3.5).  The optimal implant had an increase in valgus 

angulation of 3.0o ± 1.3o (p = 0.003), the over-sized increased angulation by 3.0o ± 1.7o (p 

= 0.01), and the under-sized by 4.4o ± 2.2o (p = 0.01).  In passive motion, the optimal 
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implant increased valgus angulation 2.6o ± 0.7o (p < 0.001), the over-sized by 2.9o ± 1.8o 

(p = 0.02), and the under-sized by 4.4o ± 2.3o (p = 0.01). 

When comparing individual implant sizes, there were no differences between the 

optimally-sized implant, and either the over-sized or under-sized implant (p > 0.05) 

(Figure 3.6).   However, the under-sized implant had a significant increase in valgus 

angulation of 1.3o ± 0.8o (p=0.02) and 1.5o ± 0.7o (p=0.006) in active and passive motion 

respectively when compared to the over-sized implant.   

3.3.1.4 Varus Position 

When compared to the post-osteotomy state, there was a significant increase in 

varus angulation for the optimally-sized and under-sized implants in both active and 

passive motion (p < 0.05) (Figure 3.7).  The optimal implant had an increase in varus 

angulation of 2.6o ± 1.4o (p = 0.01) and the under-sized implant had an increase by 3.2o ± 

1.2o (p = 0.001).  There was no difference in varus angulation between the over-sized 

implant and the post-osteotomy control (p = 0.2).   During passive motion, the optimal 

implant had an increase in varus angulation of 2.1o ± 1.4o (p = 0.04) and the under-sized 

increased by 3.0o ± 1.3o (p = 0.004).  There was no difference in varus angulation 

between the over-sized implant and the control (p = 0.8). 

When comparing individual implant sizes to each other, there were no differences 

between the optimally-sized implant, and either the over-sized or under-sized implant in 

active motion (p > 0.05).  In passive motion, the under-sized implant had an increase in 

varus angulation of 0.9o ± 0.5o (p=0.01) when compared to the optimally sized implant. 
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In both active and passive motion, there were kinematic differences between the 

over-sized and under-sized implants.  The under-sized implant had an increase in varus 

angulation of 1.6o ± 0.7o (p=0.004) in active motion when compared to the over-sized 

implant.  In passive motion, the under-sized implant had an increase in varus angulation 

of 1.9o ± 0.8o (p=0.003) when compared to the over-sized implant. 
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Valgus Angulation in Valgus Position 

Figure 3.5:  Mean valgus angulation for active and passive motion with the arm oriented 
in valgus.  There was an increase in valgus angulation after olecranon osteotomy 
throughout range of motion (p < 0.05). During passive motion, there was also a 
significant increase in valgus angulation (p < 0.05).  
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Flexion Angle (degrees) 

Valgus Angulation in Valgus Position 

Figure 3.6: Mean valgus angulation for a) active motion and b) passive motion with 
arm oriented in valgus position.  There was an increase in valgus angulation for all 
implant sizes throughout range of motion (p < 0.05).  
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Figure 3.7: Mean varus angulation for a) active motion and b) passive motion with arm 
oriented in varus position. When compared to the post-osteotomy state, there was an 
increase in varus angulation for the optimally sized and under-sized implant.  There was 
no difference in varus angulation between the over-sized implant and the control (p = 
0.2). When comparing the over-sized to the under-sized implants, the undersized implant 
had an increase in varus angulation in both active and passive motion (p < 0.05). 
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3.3.2 Ulnohumeral Rotation 

3.3.2.1 Olecranon Osteotomy 

Significant changes in ulnohumeral rotation occurred after the olecranon 

osteotomy with the arm in valgus position. During active motion, there was a significant 

increase in external rotation of 2.1o ± 0.98o (p = 0.005) after the olecranon osteotomy. 

During passive motion, there was also a significant increase in external rotation of 2.2o ± 

0.7o (p < 0.0001).  No changes in ulnohumeral rotation were present in the varus position 

in either active or passive motion. 

During passive motion in the dependent position, there was an increase in external 

rotation of 1.8o ± 1.0o (p = 0.01) after the olecranon osteotomy.  No changes were found 

in active motion.  Due to the alterations in kinematics after the olecranon osteotomy, this 

was used as the control for analysis. 

3.3.2.2 Dependent and Horizontal Position 

There was no difference in ulnohumeral rotation between the intact, post-

osteotomy, optimally sized, over-sized and under-sized hemiarthroplasty groups in either 

active (p > 0.05) or passive (p > 0.05) motion in either the dependent or horizontal 

position. 

3.3.2.3 Valgus Position 

There was no difference in ulnohumeral rotation between the intact, post-

osteotomy, optimally sized, over-sized and under-sized hemiarthroplasty groups in either 

active (p > 0.05) or passive (p > 0.05) motion in the valgus position. 
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3.3.2.4 Varus Position 

Significant changes in ulnohumeral rotation occurred with the arm in the varus 

position. When compared to the post-osteotomy state, there was an increase in 

ulnohumeral internal rotation for the optimally sized and under-sized implant in passive 

motion.  The optimal implant had an increase in internal rotation of 3.2o ± 2.1o (p = 0.04) 

and the under-sized implant increased by 3.7o ± 2.0o (p = 0.01).  There was no difference 

in varus angulation between the over-sized implant and the post osteotomy state (p = 0.1).  

No differences were present during active motion. 

 Prior to performing the humeral cuts, the size of the optimal implant was 

estimated by a fellowship trained elbow surgeon.  This size was compared to the optimal 

implant size chosen based on 3D CT measurements.  In three of the eight specimens, an 

incorrect size was chosen.  In all cases, an under-sized implant was selected. 
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3.4 Discussion 

The olecranon osteotomy did not precisely recreate the native kinematics after 

repair and as such was not a perfect control.  The surgical technique for the osteotomy 

involved leaving all major stabilizing ligaments intact, including the anterior band of the 

medial collateral ligament and the lateral ulnar collateral ligament.  However, the surgical 

exposure sacrificed the accessory stabilizers of the elbow, including the postero-lateral 

capsule and the posterior portion of the posterior band of the medial collateral ligament 

(pMCL).  This likely resulted in a subtle increase in elbow instability as previously 

reported (16).  Interestingly, there was no difference in varus angulation or ulnohumeral 

internal rotation in the varus position after the olecranon osteotomy in either active (p > 

0.05) or passive (p > 0.05) motion.  A possible explanation is the relatively greater 

contribution to elbow stability of the pMCL when compared to the postero-lateral 

capsule.  Another possible explanation is the olecranon osteotomy, which was fixed with 

a pre-contoured locking plate, may not have been repaired in an anatomic position in 

spite of our best efforts. 

The present study demonstrates that distal humeral hemiarthroplasty alters elbow 

joint kinematics, regardless of the implant size in both varus and valgus positions.  This 

difference in kinematics between the post-osteotomy elbow and the elbows with the 

hemiarthroplasty implant may, in part, be related to the navigation technique.  The distal 

humeral implant was navigated into position by visually matching the digitized surface of 

the native distal humerus with the surface of the humeral implant. Navigation of distal 

humeral implants has been shown to increase accuracy; however, inaccurate placement 

still occurs due to errors in registration and optical implant tracking and due to the 
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subjective nature of the navigation attempting to match the surface contours.  This error 

in navigation may result in a mismatch in flexion-extension (FE) axis between the 

implant and the native distal humerus. The anatomic FE axis of the distal humerus is 

defined by the geometric center of the capitellum approximated as a sphere, and the 

geometric center of the trochlear, approximated as a circle (17-21).  As mentioned, the 

navigation was performed by matching the surface of the implant with the native distal 

humeral surface, not the native FE axis.  This resulted in a difference between the FE axis 

of the native distal humerus and the navigated implant of 7o ± 3o (p < 0.001).  Also, even 

the optimally sized distal humeral implant shape did not precisely match the shape of the 

native distal humerus, indicating the implant may not precisely recreate normal anatomy.  

This may further explain the alteration in joint kinematics. 

 When comparing individual implant sizes, not surprisingly, the under-sized 

implant was consistently more lax than the over-sized implant in both the valgus and 

varus positions.  The optimally sized implants would be expected to best recreate 

physiologic tension in the soft tissues and restore normal stability.  In the present study, a 

fellowship trained elbow surgeon chose an implant size based on the size of the native 

distal humerus.  In three of the eight distal humeri, the size was underestimated by the 

surgeon when compared to the CT-derived optimal dimensions.   The results of this study 

suggest that intra-operatively, when uncertainty exists in choosing between sizes, the 

surgeon should choose the larger implant, as this may reduce post-operative instability 

and provide more favourable contact mechanics.  However, the effect this may have on 

articular cartilage contact area, loading and wear is not known. 
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The present study has limitations.  First, we performed an olecranon osteotomy to 

insert the implant whilst leaving the stabilizing ligaments intact.  This is a common 

technique to insert a hemiarthroplasty clinically and also closely models other surgical 

approaches where the collateral ligaments are taken down and repaired or epicondyle 

fractures are internally fixed around the implant. Second, we used the width between the 

center of the capitellum and the center of the trochlea to determine the size of the distal 

humeral implant. Sizing the implant using a different technique such as using the 

diameter of the capitellum and trochlea may have lead to a different size for the optimal 

implant, explaining the finding that the oversized implant best recreated normal 

kinematics.  Further studies are needed to evaluate the optimal shape of distal humeral 

implant designs.  Third, the implant size determined from CT scan did not account for 

articular cartilage.  Our approach to determine optimal size, using the width between the 

center of the capitellum and the center of the trochlea, would not be affected by the 

thickness of the articular cartilage.  Therefore, lack of incorporation of articular cartilage 

would not have an affect on implant sizing.  Fourth, we used an in vitro elbow motion 

simulator which may not precisely replicate the clinical scenario.  Fifth, our protocol 

involved prolonged testing with four positions and multiple conditions, which may have 

resulted in changes in the mechanical behaviour of the soft tissues.  However, previous 

studies suggest that these changes may be minor in relation to the experimental effects of 

interest (22).  Finally, we have quantified the differences in varus-valgus angulation and 

ulnohumeral rotation; however, we are unsure of how much alterations in angulation or 

rotation are clinically significant in elbow hemiarthroplasty.  Additionally, these results 
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can only be applied to the hemiarthroplasty implants tested and should not be generalized 

to other designs. 
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3.5 Conclusion 

 The current study showed an alteration in elbow joint kinematics with placement 

of a distal humeral hemiarthroplasty, regardless of implant size, when compared to the 

control group. The kinematic alterations were small; therefore it is difficult to deduce 

whether patients would have symptomatic instability.  Clinical studies are required to 

further assess this hypothesis.  The modest changes in joint kinematics will cause 

significant changes in articular contact and loading (23), which may result in pain, 

accelerated cartilage degeneration and arthritis.  Also, within the hemiarthroplasty group, 

the implant which is too small showed the greatest alteration in joint kinematics and 

stability.  This suggests that intra-operative sizing has an important role in joint stability.  

Intra-operatively if a surgeon is faced with uncertainty, the larger implant may be a better 

option, at least from the perspective of joint kinematics and stability. 
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Chapter 4 

The Effect of Implant Size on Joint Congruency 

 

Overview 

Distal humeral hemiarthroplasty is a treatment option for distal humerus 

fractures, non-unions and avascular necrosis.  The effect on native 

articular cartilage, however, have not been reported.  The purpose of this 

chapter is to quantify the effects of hemiarthroplasty and implant size on 

elbow joint congruency using in vivo techniques. 
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4.1 Introduction 

There has been a recent increased interest in distal humeral hemiarthroplasty as a 

less invasive alternative to total elbow arthroplasty (TEA).   Distal humeral 

hemiarthroplasty may be ideal in situations where only the distal humerus is affected.  

This includes distal humerus fractures not amenable to open reduction internal fixation, 

avascular necrosis and non-unions.  Distal humeral hemiarthroplasty has the advantage of 

being a less invasive surgical approach, decreasing patient morbidity, avoiding concerns 

surrounding polyethylene wear and preserving the bone stock for future reconstructive 

procedures (1). 

 The current literature on distal humeral hemiarthroplasty is limited.  Clinical 

studies to date have small samples sizes, short-term follow-up and inconsistent 

indications for surgery (2-11). Articular wear from abnormal contact of the metallic 

implant on the proximal radius and ulna is a long-term concern. A recent biomechanical 

study on distal humeral hemiarthroplasty demonstrates its limitations in restoring normal 

elbow kinematics (12).  The purpose of the present study was to determine the influence 

of distal humeral hemiarthroplasty and implant size on joint congruency in vitro.   
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4.2 Materials and Methods 

4.2.1 Specimen Preparation 

This in vitro study examined the effect of distal humeral hemiarthroplasty on joint 

congruency using five fresh, previously frozen male cadaveric arms (74.1 ± 6.4 years) 

amputated at the mid-humerus.  A 64-slice, computed tomography (CT) scan was 

performed on each arm (GE LightSpeed Ultra; General Electric, New Berlin, Wisconsin).  

A three-dimensional (3D) surface model was generated (Visualization Toolkit, VTK; 

Kitware, Clifton Park, New York) from CT scan DICOM data.  A pre-operative surgical 

plan was conducted using the 3D reconstructed bone model. The distal humerus 

hemiarthroplasty component size was selected using the geometric center of the 

capitellum and trochlea based on the 3D model. Points were identified on the capitellar 

and trochlea surface and a semi-automated algorithm created a point cloud over the 

capitellum and trochlear groove.  The geometric center was found using a sphere-fit of 

the capitellum and a circle-fit of the trochlear groove.  The size of the native distal 

humerus was based on the distance between these two points, and then compared to the 

six available implants to determine the optimal implant size (Latitude Anatomic, Tornier, 

Inc, Stafford, Texas). 

 Prior to testing, specimens were thawed at room temperature (mean 22 ± 2 °C) for 

eighteen hours.  Normal saline was used throughout the testing protocol to keep the 

specimen well hydrated.  The tendons of the biceps, triceps and brachialis were sutured 

using a locking Krackow technique (13).  A Steinmann pin was placed through the third 

metacarpal into the distal radius to fix the wrist in neutral flexion and extension.  The 
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forearm was also fixed in neutral rotation by placing two fully threaded 3.5mm cortical 

screws across the distal radio-ulnar joint. 

4.2.2 Elbow Simulator 

An in-vitro unconstrained elbow simulator was used (14).  The humerus was mounted in 

the simulator.  The tendons sutures were connected to servomotors via braided Dacron® 

cords.  The servomotors applied forces to the tendons which moved the elbow from full 

extension to full flexion and vice versa at a controlled rate (10 degrees/second).  The 

motion simulation was based on electromyographic data and muscle cross-sectional area 

(15,16).  Elbow motion was simulated with the arm in the horizontal position.  Two 

optical position sensors were used.  One sensor was rigidly fixed to the ulna using a 

bone-fixated mounting pedestal, while the other sensor was mounted on the base of the 

simulator adjacent to the humerus. 

4.2.3 Experimental Testing Protocol 

 The distal humeral hemiarthroplasty stem was then surgically implanted.  The 

elbow was approached through a midline posterior incision.  The subcutaneous border of 

the ulna was identified and a chevron-type olecranon osteotomy was performed to access 

the distal humerus while maintaining the integrity of the collateral ligaments.  The distal 

humeral cuts were made as per manufacturers protocol. A medium humeral stem 

(Latitude, Tornier, Texas, USA) was shortened for ease of placement into the humeral 

canal.  The stem was cemented under computer navigation as previously described (12), 

in order to the maximize accuracy and reproducibility of stem placement (17).  The 

optimal sized implant, along with the implant which was one size too small and one size 

too large, were tested in random order.  The stem was cemented and used for the entire 
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testing protocol.  The stem had a custom locking mechanism which allowed the various 

humeral articular components to be locked to the same stem. The osteotomy was secured 

with a pre-contoured olecranon plate and locking screws (Accumed Llc, Hillsboro, 

Oregon). 

Active and passive flexion were performed on each specimen with the three 

implant sizes in the horizontal position.  Established muscle load protocols were used 

during active motion, as reported by Ferreira et al. (2010). Passive flexion was performed 

by one investigator (SJD) slowly moving the arm through a full arc of motion. The 

optical tracking system recorded motion of the ulna with respect to the stationary 

humerus throughout elbow flexion (Optotrak Certus®, NDI, Waterloo, ON, Canada).  

At the conclusion of testing, each specimen was denuded of all soft tissue 

structures and the distal humerus was isolated.  Coordinate systems were created by 

digitizing anatomical landmarks using a calibrated tracked stylus (16).  Four delrin 

spherical 19 mm fiducials were attached to the humerus in a previously described 

configuration (18).  Each fiducial was digitized using a calibrated stylus to record the 

precise position of each fiducial marker with respect to the bone optical sensor (18). 

 A post-test CT scan was then performed using the same CT parameters used on 

the pre-testing CT scan.  Landmark registration and determination of ulnohumeral joint 

congruency, a surrogate of joint contact, was examined using a previously reported 

image-based proximity mapping technique (19). 
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4.2.4 Statistical Analysis 

 In order to determine the statistical differences between joint congruency for each 

level of proximity (inter-surface distance less than 3.5mm, 2.5mm, 1.5m and 0.5mm), a 

three-way repeated-measures analysis of variance was performed.  Variables include 

implant size (optimal, oversized, undersized), joint loading (active, passive), and flexion 

angle (30o-120o).  Statistical significance was set at p < 0.05, then corrected with a 

Bonferroni correction factor to account for the multiple comparisons. 
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4.3 Results 

4.3.1 Implant Size 

Overall, the optimal-sized implant demonstrated the greatest joint congruency 

with the ulna, followed by the oversized implant, then the undersized implant at all levels 

of proximity (Figure 4.1).  The three-way ANOVA revealed a significant effect of 

implant size on joint congruency at an inter-surface distance less than 3.5mm (p = 0.008).    

Pairwise comparisons demonstrated significant differences in joint congruency between 

the optimal sized implant and the undersized implant (p = 0.036), as well as the oversized 

implant and the undersized implant (p = 0.001) (Figure 4.2).   

There were no differences in joint congruency between implants at 2.5mm (p = 

0.077), 1.5mm (p = 0.133), and 0.5mm (p = 0.445) levels of proximity. 
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Figure 4.1: Surface area graphs for optimal, oversized and undersized implants and each 
level of flexion at 3.5mm of proximity for (a) active and (b) passive flexion.  Optimal and 
oversized implants consistently demonstrate higher surface area contact compared to the 
undersized implant.  This was also found at all other levels of proximity for both active 
and passive flexion. 
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Figure 4.2a:  Active Flexion.  Example of ulnar proximity maps of a selected specimen 
at 30, 60 and 90 degrees of active flexion.  Inter-bone distances are assigned a colour 
between blue (4mm) and red (0mm) to demonstrated overall inter-bone distances.  Two 
views of the proximal ulna are presented to better visualize the olecranon and coronoid 
regions.  Significant differences were found between the oversized and undersized 
implant at all four levels of proximity (p < 0.05) 
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Figure 4.2b:   Passive Flexion.  Example of ulnar proximity maps of a selected specimen 
at 30, 60 and 90 degrees of passive flexion.  Inter-bone distances are assigned a colour 
between blue (4mm) and red (0mm) to demonstrated overall inter-bone distances.  Two 
views of the proximal ulna are presented to better visualize the olecranon and coronoid 
regions. Significant differences were found between the oversized and undersized 
implant at less than 3.5mm of proximity (p = 0.016). 
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4.3.2 Active vs. Passive Motion 

There was a significant effect of loading (active vs. passive motion) on joint 

congruency at an inter-surface distance less than 3.5mm (p = 0.018), 2.5mm (p = 0.009), 

and 1.5mm (p = 0.045).  Pairwise comparison demonstrated the joint had greater 

congruency during active versus passive flexion.  This indicates that during active flexion 

the joint is more reduced than in passive flexion. 

No difference was found in joint congruency between active and passive motion 

at an inter-surface distance less than 0.5mm (p = 0.312). 

4.3.3 Flexion Angle 

A significant effect of elbow flexion angle (30-120o) on joint congruency 

occurred at an inter-surface distance less than 3.5mm (p = 0.031), 2.5mm (p = 0.014), 

1.5mm (p = 0.004), and 0.5mm (p = 0.008).  Pairwise comparisons revealed no 

significant findings at the various flexion angles.  This indicates an overall trend that joint 

congruency increased at higher angles of flexion. 
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4.4 Discussion 

Distal humeral hemiarthroplasty may be an option in selected patients to avoid the 

issues of polyethylene wear commonly reported following TEA in younger, higher 

demand patients.  While the risk of implant bearing wear is eliminated, there remain 

concerns regarding the fate of the adjacent cartilage.  Cruess et al. (1984) studied 

hemiarthroplasty in the hips of dogs, and followed changes in acetabular cartilage up to 

24 weeks.  They found early loss of proteoglycan, articular damage and progressive 

degenerative changes.  They suggested the articular cartilage maintains its structural 

integrity for only a brief period following hemiarthroplasty (20).  Dalldorf et al. (1995) 

took biopsy specimens of cartilage and subchondral bone in patients who were 

undergoing revision from a hemiarthroplasty to a total hip replacement.  They also took 

similar samples from patients of similar age undergoing a total hip replacement for 

femoral neck fracture.  Significant degeneration of acetabular cartilage in those with a 

previous hemiarthroplasty was found.  A direct correlation cartilage degeneration was 

made with the duration of hemiarthroplasty use (21). 

 The mechanism of cartilage erosion in hemiarthroplasty is not well defined; 

however, several possible causes have been proposed.  Factors may include improper 

implant sizing or geometric conformity, abnormal contact pressures and the activity level 

of the patient (22,23).  In their case study, McGibbon et al. (1999) found that areas 

experiencing increased contact pressures were associated with an increased severity of 

cartilage degeneration.  There is also suggestion that degenerative enzymes may 

accelerate cartilage breakdown (23).  Moon et al. (2008) suggested that abnormal stresses 

and reduced contact area between the implant and native cartilage promotes the secretion 
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of degenerative enzymes which induce softening and reduced elasticity in the articular 

cartilage (24).  The resulting biomechanical changes may destroy the existing cartilage, 

causing further degeneration at the articulation. 

The present study examined proximity regions of the ulna using various implant 

sizes. A previous study by Lapner et al. (2014), examined the effect of hemiarthroplasty 

and implant size on cartilage contact area, not inter-bone distance, using a vastly different 

methodology.  The study found differences in articular contact with hemiarthroplasty 

implants, but did not find any effects of implant size.  These authors suggested that the 

implant shape and material are more important than the implant size itself.  In the present 

study, differences in joint congruency were found between implant sizes.  The optimally 

sized and oversized implant consistently demonstrated the highest contact area, while the 

undersized implant demonstrated the lowest contact area (Figure 4.1).   

There are a couple of potential explanations for these findings.  First, there are 

subtle alterations in kinematics between implants sizes.  A previous study in our 

laboratory found that elbow kinematics were most abnormal with the undersized implant, 

while the optimal and oversized implant best reproduced native elbow kinematics (12).  

This would suggest that the kinematic alterations present in the undersized implant may 

contribute to the higher point loading on the ulnar articular cartilage.  Lalone et al. (2012) 

used a similar technique as the current study to quantify articular congruency in both the 

native elbow and following simulated ligament injury and repair.  This study found that 

even small changes in elbow joint kinematics resulted in relatively large alterations in 

joint congruency (19).  Second, the distal humeral implant does not precisely match the 

shape of the native distal humerus.  Desai et al. (2014) observed differences in distal 
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humeral morphology when compared to the hemiarthroplasty implant used in the present 

study (25).  This difference in shape may have contributed to the alterations in contact 

area on the native ulna.  This difference in implant shape, as well as altered kinematics, 

may have exaggerated the surface area contact in the undersized implant condition. 

This alteration in contact area on the native ulna with the undersized implant 

may have harmful consequences on native articular cartilage, especially considering the 

stiff metallic surface of the hemiarthroplasty implant.  In the native elbow, the cartilage 

possesses viscoelastic properties, which accommodates some joint incongruity. Eckstein 

et al. (1993) demonstrated that the incongruity between articular surfaces disappears as 

the joint is loaded.  In their study, at 10N of load across the elbow, articular contact was 

only present ventrally and dorsally in the joint.  As the load increased to 640N, the joint 

surfaces became more congruent.  They hypothesized this was a result of the viscoelastic 

properties of the articular cartilage and subchondral bone (26).  This observation of 

increased contact area at higher loads has been supported in other studies in the literature 

(27-29).  In the present study both active and passive motion were tested.  Considering 

the native elbow becomes more congruent with the greater loads placed in active motion, 

it would be expected that active motion would have better reduced the joint and 

subsequently increased joint congruency.  The present study confirmed this finding, as 

there was increased joint congruency at 3.5mm, 2.5mm and 1.5mm levels of proximity in 

active motion compared to passive motion.  With a hemiarthroplasty implant, the 

accommodation for joint incongruity on the humeral side is not present; therefore, the 

accommodation occurs on only the ulnar side.  As a result, the effects of incongruity with 

an implant may result in accelerated cartilage wear. 
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 This study has some limitations.  First, this study included relatively few 

cadaveric specimens.  Although we found significant differences between implant sizes at 

certain levels of proximity, further specimens may have revealed further differences 

between implants at other levels of proximity.  Second, we used an in vitro elbow motion 

simulator, which may not fully replicate the normal clinical scenario.  Third, the distal 

humeral implant was placed under navigation, which has been previously shown to 

increase accuracy (17).  However, there still exists the possibility of errors due to the 

subjective nature of the navigation.  Any errors in navigating the optimal sized stem may 

exaggerate contact area changes in the undersized and oversized implants.  
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4.5 Conclusion 

This study suggests that an undersized distal humeral hemiarthroplasty implant 

had the lowest joint congruency when compared to an optimal or oversized implant.  An 

undersized implant has previously been demonstrated to have the greatest alterations in 

elbow kinematics (12).  The present study has further shown that the undersized implant 

also has the lowest surface area contact.  This would suggest that if a surgeon must 

decide between two sizes of implants, the larger implant should perhaps be favoured.  

The larger implant would better recreate normal elbow kinematics (12), increase 

congruency on the native ulna, and presumably reduce wear and delay arthrosis on the 

native ulna. 
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Chapter 5 

General Discussion, Conclusions and Future Work 

 

Overview 

This chapter will review the objectives and hypotheses that were 

established in Chapter 1.  Chapters 2 through 4 will be reviewed in detail, 

and key findings will be summarized.  Future directions for this research 

will be explored.  

. 
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5.1 Summary of Objectives 

Distal humeral hemiarthroplasty is a potential treatment option for elbow pathology 

that only affects one portion of the elbow joint, including distal humerus fractures, non-

unions and avascular necrosis.  Currently, there is a lack of literature examining the effect 

of distal humeral hemiarthroplasty on elbow joint kinematics and congruency. 

Furthermore, the morphology of the distal humerus has not been well characterized and 

as such current implant designs may not be optimal. 

The objectives of this thesis were: 

1. To quantify the osseous anatomy of the distal humerus and define 

anatomic variability using three-dimensional (3D) imaging techniques; 

2. To determine the influence of distal humeral hemiarthroplasty and implant 

size on joint kinematics and stability in-vitro; 

3. To determine the influence of distal humeral hemiarthroplasty on joint 

congruency in-vitro. 

Correspondingly, the hypotheses were: 

1. The morphology of the distal humerus would be consistent in shape but vary 

in size between elbows. A family of distal humeral implant sizes could be 

developed to closely replicate the anatomical shape of the distal humerus. 

2. An optimally sized distal humeral hemiarthroplasty will best recreate the 

kinematics and stability of the elbow. 

3. Distal humeral hemiarthroplasty with an optimally sized hemiarthroplasty will 

demonstrate the greatest joint congruency. 
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5.2 An Anthropometric Study of the Distal Humerus 
(Chapter 2) 

This study set out to quantify the osseous anatomy of the distal humerus and 

define anatomic variability using 3D imaging techniques.  The optimal shape of 

hemiarthroplasty implants has not been established due to a paucity of data quantifying 

the morphology of the normal distal humerus (1,2).  Anthropometric information is 

available for the shoulder (3-6).  This data played an important role in current designs of 

shoulder hemiarthroplasty implants.  We set out to obtain accurate anthropometric data in 

order to work towards the creation of a more anatomically shaped distal humeral implant. 

Using Visualization ToolKit (VTK) software program, transverse cross sections 

of the articular surface were automatically segmented at 0.1 mm increments, and then 

circle-fitted using a least-squares method.  A best-fit line through these centers of all the 

cross sections was generated as per method of Shiba et al. (1), who defined this as the C-

Line.  The anatomic flexion-extension (FE) axis of the distal humerus was 0.85 ± 0.70 

degrees from the C-Line (range 0.07-3.17 degrees) in the coronal plane and 1.57 ± 1.45 

degrees (range 0.04-7.47 degrees) in the axial plane.  The C-Line was defined using the 

FE axis as an initial reference direction vector. The difference found between the 

anatomic FE axis and the C-Line has implications for implant design, as the 

measurements determined are based off of the C-Line and not the anatomic axis.  We 

have established a data bank of humeral dimensions may be used for the development of 

future distal humeral hemiarthroplasty implants.  With this database, creation of a more 

anatomic implant should be completed.  Because of the difference between the C-Line 

and the FE axis, basing measurements off the FE-axis would result in non-anatomic 
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implant surfaces.  A more anatomic implant would have to base all measurements off the 

C-Line to optimize kinematics and joint congruency. 

The creation of a more anatomically shaped distal humeral implant is an 

important future direction based on this work. Further studies to characterize the cartilage 

thickness distribution are needed. The currently available commercial system used in this 

study has six different implant sizes (Small, Small plus, Medium, Medium plus, Large 

and Large plus).  This study has demonstrated no morphological differences between 

men and women, only a difference in overall size between genders.  We propose that 

seven implant sizes would be a reasonable number of options for a surgeon to choose 

from.  We proposed the seven sizes based on the average of all the morphological data 

that was collected.  With seven sizes, 96% of the cadaveric specimens used in this study 

fell within a 2mm range of the implant sizes.   Additionally, the option of reverse 

engineering implants may also prove beneficial.  This would involve obtaining a CT scan 

of the opposite (unaffected) elbow and engineering a mirrored implant.  Patient specific 

implants would best reproduce native anatomy, and would likely optimize kinematics and 

joint congruency, however further studies are required to confirm this hypothesis. 

5.3 The Effect of Implant Size on Kinematics and Stability 

This study sought to determine the effects of distal humeral hemiarthroplasty and 

the importance of implant size on elbow joint mechanics using in vitro techniques.  There 

is currently no literature examining the effects of hemiarthroplasty on elbow mechanics.   

The present study demonstrates that distal humeral hemiarthroplasty alters elbow 

joint kinematics, regardless of the implant size with the arm in both the varus and valgus 
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positions.  These changes could be secondary to errors in implant positioning and/or 

differences in the shape of the humeral implant relative to the native elbow.  Navigation 

of distal humeral implants has been shown to increase accuracy (7); however, due to the 

subjective nature of the navigation there was still a possibility of inaccurate placement.  

The implant was navigated by matching the implant surface with the surface of the virtual 

distal humerus, not the native FE axis.  Even if we had navigated the FE axis of the 

implant to precisely replicate the native FE axis, the humeral surface would not have 

been precisely matched.  The kinematic effect of a precise match in FE axis but a 

mismatch in humeral surface is unknown.  The optimally sized distal humeral implant 

employed in this study did not precisely match the shape of the native distal humerus, 

which may further explain the observed changes in joint kinematics.  

These changes in joint tracking may cause abnormal articular contact and loading, 

which may result in pain and cartilage degeneration over time.  This has been recently 

demonstrated by Hughes et al. (2013) who found radiologic evidence of ulnar wear in 

50% of patients at an average of five years postoperatively.  In addition, they found 

worse wear was associated with higher American Shoulder and Elbow Society (ASES) 

scores, lower patient satisfaction and lower EuroQoL Visual Analog Score of quality of 

life.  These authors suggested that implant design was at least partially responsible (8). 

 

5.4 The Effect of Hemiarthroplasty on Joint Congruency  

This study sought to determine the effects of hemiarthroplasty and implant size on 

joint congruency in vitro.  Joint congruency was determined by proximity mapping 
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techniques as a surrogate to joint contact, previously described and validated by Lalone et 

al. (2013) (9,10). 

The present investigation demonstrated that distal humeral hemiarthroplasty using 

the optimal and oversized implants provide the greatest joint congruency, while the 

undersized implant demonstrated poorest joint congruency.  This may be a result of the 

subtle kinematic differences between implant sizes, which may lead to altered contact 

stresses.  Another likely contributing factor is that the implant shape does not precisely 

match the shape of the native distal humerus.  Undersizing the implant had the largest 

effect on congruency compared to oversizing the implant.  In the previous chapter it was 

demonstrated that the optimal and oversized implants best recreated native elbow 

kinematics.  The undersized implant poorly recreated normal elbow kinematics, and 

demonstrated the greatest amount of instability.  This increased instability and alterations 

in kinematics may also be responsible for the alterations found in elbow joint 

congruency. 

This decreased congruency with the undersized implant may cause abnormal 

articular contact and loading, which may result in pain and accelerated cartilage 

degeneration over time.   Hughes et al. (2013) have demonstrated radiologic evidence of 

ulnar sided wear in 50% of patients they studied and correlated wear with poor clinical 

outcomes (8).  This study highlights that abnormal congruency can not only cause 

radiographic deterioration but also poorer clinical outcomes.  This suggests that implants 

which optimize joint congruency would presumably have lower radiographic wear and 

improved outcomes.  Choosing implant sizes intra-operatively, therefore, is an important 

factor in radiographic and clinical outcomes.   Intra-operatively, if the surgeon is deciding 
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between two sizes, choosing the larger of the two implants will maximize joint 

congruency and potentially decrease radiographic wear and improve clinical outcomes. 

 

5.5 Conclusion 

The results from this work will contribute to the knowledge of distal humeral 

morphology and the effects of elbow hemiarthroplasty on elbow kinematics and joint 

congruency.  Distal humeral morphology has been accurately defined, which should 

contribute to the production of more anatomic implants in the future.  Based on the 

results of this in vitro study, improvements in the articular shape of distal humeral 

implants are needed to optimize the outcomes of this procedure.  When evaluating the 

effect of hemiarthroplasty size on joint kinematics and congruency, the undersized 

implant consistently had the greatest alterations in joint kinematics and the lowest joint 

congruency when compared to the optimal and oversized implants.  This would suggest 

that intra-operatively, if uncertainty exists in selection of implant size, the larger implant 

should be used.  The oversized implant best recreates normal elbow kinematics, and has 

comparable joint congruency to the optimal implant. 

 

 In summary, this treatise has accurately defined distal humeral morphology and 

may be used in the development of a more anatomically correct implant in the future.  

Evaluation of the effects of this implant on kinematics and joint congruency using similar 

methodology in the present thesis would be beneficial prior to the clinical application of 

this new design. 
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Appendix A: Glossary of Terms 

This appendix contains definitions of medical terms used in this thesis.  This is meant to 

provide assistance to the reader who may be unfamiliar with this terminology. 

 

Anatomic variability Inherent differences in size and shape between the 

anatomy of humans  

Annular ligament A ligament which encircles the head of the radius 

ensuring contact between the radius and PRUJ  

Anthropometric Measurement of the human individual 

Arthritis A disorder affecting the joints that can have a 

variety of causes including inflammation, 

degeneration, or trauma 

Arthroplasty    Surgical reconstruction or replacement of a joint 

Articular    Relating to a joint 

Aseptic loosening Loosening of a prosthesis that is not related to 

infectious causes 

Avascular necrosis Condition in which subchondral bone dies due to an 

insult to the vascular supply.  This leads to loss of 

mechanical integrity and can lead to collapse and 

loss of joint congruence 

Cadaveric Part derived from a dead body preserved for 

research purposes 
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Capitellum Smooth rounded surface on the lateral distal 

humerus which articulates with the radial dish  

Capsuloligamentous Refering to structures around a joint including the 

joint capsule and ligaments 

Cartilage Smooth, firm connective tissue found on 

articulating surfaces of joints  

Comminuted    Several small fragments 

Contact Area    Surface area in contact between two bones 

Coronoid Triangular anterior projection on the proximal ulna 

which articulates with the radius  

CT Computed tomography, method of x-ray imaging 

which produces cross section images of the body  

Digitization Acquiring three-dimension location of points 

relative to an object  

Distal     Away from the center of the body 

Distal humeral hemiarthroplasty Prosthetic implant replacing the distal humerus 

DRUJ Distal radioulnar joint, pivot-joint between the 

distal radius and ulna  

Epicondylar Axis Axis formed between medial and lateral 

epicondyles of the elbow 

Extension Movement in which two ends of a joint move away 

from each other 

External Rotation   Rotation away from the body 
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Flexion Bending movement that decreases angle between 

two parts 

Flexion-extension axis In elbow, defined as a line between geometric 

centres of the capitellum and trochlea 

Greater Sigmoid Notch Depression in the ulna formed by the olecranon and 

the coronoid process.  Point of articulation for the 

trochlea of the humerus 

Hemiarthroplasty Replacement of one surface of a joint with a 

prosthetic implant 

Hemophilia Bleeding disorder which can cause recurrent bleeds 

into articular joints and potentially irreversible 

damage to articular cartilage 

Humerus Bone of the upper arm forming the shoulder and 

elbow  

Internal Rotation   Rotation towards the body 

Intramedullary Canal  Marrow cavity of a bone 

Kinematics    Study of motion of one part with respect to another 

Landmark    Reliably identified feature 

Lateral    Away from the middle of the body 

Laxity     Looseness 

Lesser Sigmoid Notch Depression on lateral side of coronoid process, 

allows for articulation with proximal radius 

Ligament    Fibrous connective tissue between two bones 
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LUCL Lateral ulnar collateral ligament; extends from 

lateral epicondyle to the coronoid and serves as an 

important posterolateral rotational stabilizer  

Medial     Towards the middle of the body 

MCL Medial collateral ligament; extends from medial 

epicondyle of humerus to the coronoid providing 

primary valgus restraint  

Morphology Study of size, shape and structure 

Navigation Use of a tracking system and computer guidance to 

perform procedures with the goal of increasing 

accuracy in placement of prosthetic implants 

Non-union Absence of complete healing across a fracture site 

ORIF Open reduction and internal fixation; method for 

surgically repairing fracure bone using plates and/or 

screws  

Osseous Relating to bone 

Osteology The scientific study of bones 

Posterior Towards the back of the body 

Pronation Rotation towards the midline 

Proximal Towards the center of the body 

Proximal radioulnar joint Articulation between the proximal aspect of the 

radius and ulna 

Radius The lateral bone of the forearm articulating with the 

ulna, humerus and carpal bones  
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Radiocapitellar joint Articulation between the radius and the capitellum 

Rheumatoid Arthritis Autoimmune disease that results in chronic 

systemic inflammation. 

RCL Radial collateral ligament; originates on the lateral 

epicondyle and inserts into the annular ligament 

serving as a primary varus stabilizer of the elbow 

Stylus Penlike device used to obtain digitizations 

Supination Rotation away from the midline 

Total Elbow Arthroplasty  Prosthesis which replaces the entire elbow joint – 

distal humerus and proximal ulna (in some designs, 

radial head is also replaced) 

Trochlea Medial portion of articulating surface of the distal 

humerus which articulates with the trochlear notch 

of the ulna 

Ulna The medial bone of the forearm articulating with the 

radius, humerus, and carpal bones  

Ulnohumeral joint Articulation between the ulna and humerus 

Valgus Displacement of the distal aspect of the bone away 

from the midline of the body  

Varus Displacement of the distal aspect of the bone 

towards the midline of the body  
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Appendix B: Abbreviations List 

This appendix contains a list of all abbreviations used throughout this thesis. 

 

3D Three-dimensional 

AL Alex Leclerc 

CAD Computer-aided design 

CD Capitellar depth 

CH Capitellar height 

CT Computed Tomography 

CW Capitellar width 

F-E Axis Flexion-extension axis 

GE General Electric 

HU Hounsfield Units 

Inc Incorporated 

LTD Lateral trochlear depth 

LTH Lateral trochlear height 

LUCL     Lateral ulnar collateral ligament 

MCL Medial collateral ligament 

MTD Medial trochlear depth 

MTH Medial trochlear height 
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NDI Northern Digital Inc. 

ON Ontario 

pMCL Posterior band of the medial collateral ligament 

SJD Sagar J. Desai 

TEA     Total elbow arthroplasty 

TD     Trochlear groove depth 

TH     Trochlear height 

TW     Trochlear width 

TWP     Trochlear width proper 

TX     Texas 

W     Articular width 

USA     United States of America 

VTK     Visualization ToolKit 

WA     Washington 

WI     Wisconsin 
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Appendix C: Detailed List of Morphologic Measurements 

This appendix provides a detailed list of morphologic measurements.  Chapter 2 reported 

on means and standard deviations, but not an inclusive list of all measurements.  Each 

specimen examined has been reported (Specimen defined by Numbers 1-50).  Definitions 

for abbreviations used can be found in Appendix B. 
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Number Age Gender CW CH TW TWP LTH 
        

1 48 M 17.7 25.3 27.7 22.7 24.5 
2 47 F 17.5 22.4 24.5 20.6 23.5 
3 53 M 21.1 26.1 29.6 21.7 24.5 
4 76 F 15.6 20.3 22.6 19.1 18.7 
5 69 F 15.8 20.5 22.1 18.5 17.4 
6 87 F 13.8 19.6 21.5 18.0 18.1 
7 77 M 18.2 27.0 28.3 24.0 23.1 
8 46 F 14.4 20.2 22.3 18.1 19.3 
9 64 F 15.9 21.8 22.5 20.5 19.4 

10 93 M 19.8 27.2 33.8 27.4 24.3 
11 86 M 17.0 24.9 28.5 23.4 21.7 
12 67 F 16.2 22.1 20.5 15.8 21.0 
13 61 F 15.9 22.4 23.1 19.5 19.6 
14 82 M 15.7 23.3 26.7 22.7 21.6 
15 60 M 18.4 25.1 30.0 23.7 25.2 
16 60 M 16.6 23.0 27.9 22.7 23.0 
17 76 M 17.9 24.6 30.5 23.7 25.0 
18 49 M 15.9 21.7 22.3 17.5 21.3 
19 72 M 17.3 23.8 28.1 22.2 24.1 
20 76 M 17.8 25.6 22.3 18.7 20.7 
21 82 M 18.0 24.4 28.2 23.8 23.5 
22 82 F 15.0 18.2 19.6 17.1 17.1 
23 61 F 15.3 20.1 20.9 17.2 19.6 
24 88 F 15.3 21.2 21.5 18.8 19.4 
25 59 M 17.2 23.6 23.0 17.2 20.6 
26 83 F 15.4 19.3 21.9 18.1 17.2 
27 65 M 18.0 25.6 25.8 23.1 21.8 
28 66 F 15.7 23.3 25.9 22.1 21.3 
29 97 F 12.1 20.8 21.1 16.4 20.3 
30 82 M 18.8 24.2 25.0 22.1 21.0 
31 57 F 14.2 22.4 21.5 17.6 21.0 
32 90 F 16.1 20.5 22.2 19.2 18.2 
33 73 M 17.8 22.0 23.3 18.3 21.6 
34 81 M 17.4 23.6 27.5 23.4 21.6 
35 69 M 18.5 23.2 26.7 21.7 19.7 
36 82 M 16.6 22.9 23.4 18.7 23.9 
37 80 M 21.1 25.1 26.4 25.9 21.3 
38 64 M 19.6 25.9 25.3 21.0 24.8 
39 81 M 19.4 27.6 25.5 21.8 24.3 
40 73 M 20.7 26.8 27.4 22.1 22.4 
41 75 M 16.9 22.0 26.0 21.4 23.6 
42 79 M 18.1 27.1 29.8 22.9 22.4 
43 75 M 16.7 23.7 27.1 22.6 20.9 
44 84 M 17.7 24.1 28.1 22.9 24.0 
45 77 M 17.7 20.4 27.2 21.3 20.0 
46 78 M 17.6 24.3 25.4 22.4 22.1 
47 62 M 17.4 22.1 28.2 23.0 21.9 
48 59 M 20.2 26.0 28.3 23.3 24.5 
49 78 M 19.4 23.6 24.0 21.2 20.8 
50 84 M 17.4 25.1 27.0 21.5 24.0 
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TH MTH lst mst mit lit alt 
! ! ! ! ! ! !

18.3 37.3 23.8 42.9 26.1 15.5 14.7 
18.2 28.1 17.9 23.8 21.1 15.5 14.5 
22.3 34.3 7.0 21.1 21.1 10.0 3.8 
15.2 26.3 11.7 24.6 22.7 15.2 10.5 
14.8 25.9 7.7 22.7 28.5 12.6 8.4 
14.1 24.1 16.8 22.5 24.1 15.5 13.3 
19.2 32.3 11.1 24.8 24.7 11.4 14.5 
14.9 25.3 14.7 26.7 23.6 18.5 16.9 
15.9 25.2 11.0 21.6 22.1 14.9 9.0 
20.8 43.6 11.6 43.9 19.2 13.2 15.6 
17.9 30.6 11.2 25.5 22.7 13.0 13.9 
19.1 27.3 16.7 15.8 24.1 14.0 8.7 
16.3 29.5 18.2 27.1 24.4 14.2 7.7 
17.3 30.7 10.8 31.0 23.5 14.2 12.3 
21.6 31.1 17.5 15.6 16.9 12.8 13.7 
19.5 30.7 14.2 21.4 24.1 15.1 10.5 
19.2 31.1 13.6 25.0 23.2 21.8 18.2 
19.0 27.0 4.7 22.0 24.3 17.9 15.5 
19.0 33.8 16.7 33.3 23.8 17.0 13.7 
18.1 31.1 7.9 28.9 30.9 11.7 11.5 
20.7 30.6 10.1 17.9 20.3 13.9 6.6 
13.4 24.0 19.2 21.5 23.8 16.1 7.4 
15.0 23.9 14.0 25.1 23.6 22.0 17.0 
17.7 23.7 6.8 16.8 18.4 7.0 5.7 
16.1 29.0 15.6 25.8 25.6 16.8 14.6 
16.4 25.9 3.3 39.5 19.3 10.5 5.6 
17.4 28.8 12.5 25.9 24.4 14.2 12.6 
16.1 28.9 17.3 25.9 24.1 19.6 11.6 
15.8 24.1 23.5 22.7 23.4 18.0 18.6 
18.6 30.2 11.4 22.7 22.6 12.2 7.6 
18.8 26.8 12.2 16.6 23.3 11.3 8.1 
17.1 36.0 11.7 44.2 18.4 7.0 5.4 
18.8 29.3 16.1 18.4 24.1 8.5 8.2 
18.6 31.5 9.4 28.7 21.6 10.2 7.3 
17.5 42.4 16.9 43.6 26.4 8.3 7.7 
17.3 27.3 18.4 22.5 25.0 19.6 13.3 
14.8 30.8 14.2 29.0 26.0 22.3 14.0 
18.4 32.3 15.1 30.8 29.3 20.8 12.7 
19.1 30.8 19.3 23.2 21.0 15.3 11.8 
18.0 32.4 16.3 25.1 26.8 14.2 15.8 
19.8 28.1 9.4 23.6 19.4 15.1 9.3 
19.3 34.1 8.6 25.1 23.0 12.1 11.8 
17.1 27.6 13.5 19.7 21.4 13.4 14.3 
19.6 31.4 14.1 25.7 21.3 14.1 11.9 
16.8 27.8 10.7 23.1 26.7 9.6 7.6 
18.0 29.4 13.8 28.6 21.0 17.2 13.4 
16.1 31.1 19.8 28.8 26.2 18.8 18.3 
18.8 31.7 16.8 24.4 22.5 19.8 15.3 
18.2 28.3 9.6 20.2 21.4 10.2 4.9 
21.2 30.7 8.5 18.5 21.2 11.0 12.4 
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plt amt pmt CD LTD TD MTD 
! ! ! ! ! ! !

34.9 31.2 30.5 9.1 24.6 18.3 37.3 
18.7 23.0 20.1 9.2 23.7 18.2 28.4 
12.5 18.3 23.3 11.4 25.3 22.3 34.4 
14.3 25.5 26.9 7.4 18.7 15.2 26.5 
12.6 25.7 28.5 7.6 17.7 14.8 26.1 
19.3 22.0 24.6 6.9 18.2 14.1 24.1 
11.3 20.6 28.1 9.6 23.2 19.2 32.4 
16.6 24.6 27.7 7.5 19.3 14.9 25.3 
15.3 21.4 23.5 7.8 19.5 15.9 25.2 

9.5 26.3 34.9 10.5 25.0 20.8 43.6 
13.5 19.1 24.8 9.2 21.9 17.8 30.6 
16.4 20.8 21.4 9.7 21.4 18.7 27.3 
23.6 18.3 31.4 9.0 19.9 16.3 29.6 
13.8 23.8 29.5 8.7 21.7 17.2 30.9 
17.0 17.0 15.2 10.8 25.5 21.6 31.1 
15.6 21.6 17.6 9.7 23.0 19.5 31.0 
30.9 18.2 19.7 9.8 25.5 19.1 31.1 
14.3 21.7 17.0 9.1 22.1 18.7 27.0 
25.7 26.6 25.9 9.4 24.2 18.9 33.8 
10.2 27.6 27.0 9.4 20.9 17.9 31.2 
14.4 23.1 17.7 9.9 24.0 20.7 30.6 
32.4 24.2 24.4 7.1 17.4 13.4 24.1 
27.3 25.3 21.0 7.3 19.6 15.0 24.2 

8.1 21.3 11.9 8.4 19.7 17.8 23.8 
24.5 22.6 28.5 8.9 21.8 16.1 29.5 

4.9 20.5 32.0 8.2 17.5 16.4 26.3 
18.2 25.9 20.6 8.4 22.1 17.4 28.8 
22.8 24.1 27.9 8.5 21.3 16.0 28.9 
24.5 22.8 22.7 8.1 20.3 15.7 24.1 
12.2 23.6 22.1 9.3 21.1 18.5 30.2 
11.8 24.2 17.7 9.1 21.4 18.8 27.1 

6.4 22.3 42.6 8.9 18.4 17.2 36.0 
19.9 26.2 19.5 9.5 22.1 18.9 29.9 
19.5 21.9 23.7 9.4 21.7 18.6 31.5 
18.1 26.5 42.7 8.7 19.9 17.5 42.4 
27.9 24.6 23.7 8.5 24.3 17.2 28.1 
20.0 24.2 30.4 7.6 21.3 14.8 30.8 
27.6 28.8 27.2 9.4 25.4 18.4 32.3 
28.3 22.2 22.5 9.8 25.1 19.1 30.9 
31.8 26.3 21.6 8.6 23.2 17.7 32.7 
12.4 17.0 26.0 10.0 23.7 19.9 28.3 

9.9 21.0 27.2 10.5 22.4 19.2 34.7 
14.6 20.7 17.9 8.4 21.0 17.1 27.6 
15.2 19.8 25.2 10.0 24.1 19.6 31.4 
16.8 21.5 27.9 8.7 21.5 16.8 28.0 
20.1 21.1 22.1 9.0 22.5 18.0 29.4 
23.2 21.0 29.4 8.5 22.1 16.1 31.1 
21.6 24.0 24.3 9.4 24.5 18.7 31.8 
14.2 22.5 19.1 9.1 20.9 18.3 28.3 
14.1 19.0 17.9 10.6 24.4 21.2 30.8 
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it W CW/CH TW/CW MTH/LTH W/TH TW/TH TWP/TH 
! ! ! ! ! ! ! !

90.0 45.4 0.7 1.5 2.0 2.5 1.51 1.24 
93.5 42.0 0.8 1.3 1.5 2.3 1.35 1.13 
89.1 50.7 0.8 1.3 1.5 2.3 1.32 0.97 
91.7 38.1 0.8 1.5 1.7 2.5 1.48 1.25 
86.5 37.8 0.8 1.5 1.7 2.6 1.49 1.25 
90.0 35.3 0.7 1.5 1.7 2.5 1.52 1.27 
88.3 46.6 0.7 1.5 1.7 2.4 1.47 1.25 
89.1 36.7 0.7 1.5 1.7 2.5 1.50 1.22 
90.9 38.3 0.7 1.4 1.6 2.4 1.41 1.29 
90.0 53.6 0.7 1.6 2.1 2.6 1.62 1.31 
90.0 45.4 0.7 1.6 1.7 2.5 1.59 1.31 
90.0 36.6 0.7 1.1 1.4 1.9 1.07 0.83 
89.2 39.0 0.7 1.4 1.8 2.4 1.42 1.20 
92.4 42.4 0.7 1.5 1.8 2.5 1.54 1.31 
90.0 48.3 0.7 1.4 1.4 2.2 1.38 1.09 
95.3 44.5 0.7 1.4 1.6 2.3 1.43 1.16 
90.0 48.4 0.7 1.6 1.6 2.5 1.58 1.23 
90.0 38.2 0.7 1.2 1.4 2.0 1.18 0.92 
90.0 45.4 0.7 1.5 1.8 2.4 1.48 1.17 
94.9 40.1 0.7 1.2 1.7 2.2 1.23 1.03 
90.0 46.2 0.7 1.4 1.5 2.2 1.36 1.15 
92.5 34.5 0.8 1.5 1.8 2.6 1.46 1.28 
87.3 36.3 0.8 1.4 1.6 2.4 1.39 1.14 
89.1 36.8 0.7 1.2 1.3 2.1 1.21 1.06 
97.8 40.2 0.7 1.4 1.8 2.5 1.43 1.07 
86.7 37.3 0.8 1.3 1.6 2.3 1.34 1.10 
90.0 43.8 0.7 1.5 1.7 2.5 1.48 1.32 
90.0 41.6 0.7 1.6 1.8 2.6 1.61 1.37 
88.3 33.2 0.6 1.3 1.5 2.1 1.33 1.04 
89.1 43.8 0.8 1.3 1.6 2.4 1.34 1.19 
94.9 35.6 0.6 1.1 1.4 1.9 1.14 0.94 
90.0 38.3 0.8 1.3 2.1 2.2 1.30 1.12 
97.0 41.1 0.8 1.2 1.6 2.2 1.24 0.97 
90.8 44.9 0.7 1.5 1.7 2.4 1.48 1.25 
90.0 45.2 0.8 1.5 2.4 2.6 1.52 1.24 
95.2 40.0 0.7 1.4 1.6 2.3 1.36 1.08 
90.9 47.5 0.8 1.8 2.1 3.2 1.78 1.75 
90.0 44.8 0.8 1.4 1.8 2.4 1.37 1.14 
89.1 44.9 0.7 1.3 1.6 2.3 1.34 1.14 
88.3 48.1 0.8 1.5 1.8 2.7 1.52 1.23 
89.1 42.9 0.8 1.3 1.4 2.2 1.31 1.08 
96.2 47.9 0.7 1.5 1.8 2.5 1.55 1.19 
90.0 43.7 0.7 1.6 1.6 2.6 1.59 1.32 
90.0 45.8 0.7 1.4 1.6 2.3 1.44 1.17 
85.4 44.8 0.9 1.6 1.7 2.7 1.62 1.27 
90.0 43.0 0.7 1.4 1.6 2.4 1.41 1.24 
90.0 45.6 0.8 1.7 1.9 2.8 1.75 1.43 
89.1 48.6 0.8 1.5 1.7 2.6 1.51 1.24 
90.0 43.4 0.8 1.3 1.6 2.4 1.31 1.17 
88.3 44.3 0.7 1.3 1.5 2.1 1.27 1.02 
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APPENDIX D: Congruency Graphs  

As discussed in Chapter 4, this appendix presents all congruency graphs for active and 

passive motion for the optimal, oversized and undersized implants.  These figures 

compliment Figure 1 presented in Chapter 4. 
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Appendix E: Copyright Permission 

The work presented in Chapter 2 and Chapter 3 has been published in the Journal of 

Shoulder and Elbow Surgery, which an Elsevier publication.  This appendix provides 

copyright permission information from the Elsevier website which outlines that authors 

may use their accepted manuscript or final published article for inclusion in a thesis or 

dissertation. 
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Excerpt from http://www.elsevier.com/journal-authors/author-rights-and-
responsibilities#author-use 
 
 
Author Rights 
 
 
Elsevier supports the need for authors to share, disseminate and maximize the impact of 

their research. We take our responsibility as stewards of the online record seriously, and 

work to ensure our policies and procedures help to protect the integrity of scholarly 

works. 

Author's rights to reuse and post their own articles published by Elsevier are defined by 

Elsevier's copyright policy. For our proprietary titles, the type of copyright agreement 

used depends on the author's choice of publication: 

 

For subscription articles: These rights are determined by a copyright transfer, where 

authors retain scholarly rights to post and use their articles. 

 

For open access articles: These rights are determined by an exclusive license agreement, 

which applies to all our open access content. 

In both cases, the fundamental rights needed to publish and distribute an article remain 

the same and Elsevier authors will be able to use their articles for a wide range of 

scholarly purposes.  

Details on how authors can reuse and post their own articles are provided below. 

 
How authors can use their own journal articles 
 
Authors can use their articles for a wide range of scholarly, non-commercial purposes as 
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outlined below. These rights apply for all Elsevier authors who publish their article as 

either a subscription article or an open access article. 

We require that all Elsevier authors always include a full acknowledgement and, if 

appropriate, a link to the final published version hosted on Science Direct. 

For open access articles these rights are separate from how readers can reuse your article 

as defined by the author's choice of Creative Commons user license options. 

 

Authors can use either their accepted author manuscript or final published article for: 

 Use at a conference, meeting or for teaching purposes  

 Internal training by their company 

 Sharing individual articles with colleagues for their research use* (also known as 'scholarly sharing') 

 Use in a subsequent compilation of the author's works 

 Inclusion in a thesis or dissertation 

 Reuse of portions or extracts from the article in other works 

 Preparation of derivative works (other than for commercial purposes) 
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